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Abstract. We compare the number of states required for one-way prob-
abilistic finite automata with a positive gap (1P2FAs) and the number
of states required for one-way alternating automata (1AFAs). We show
that a 1P2FA P can be simulated by 1AFA with an at most polyno-
mial increase in the number s(P ) of states of P , provided only inputs of
length at most poly(s(P )) are considered. On the other hand we gather
evidence that the number of states grows super-polynomially if the num-
ber of alternations is bounded by a fixed constant. Thus the behavior of
one-way automata seems to be in marked contrast with the behavior of
polynomial-time computations.

Many thanks to Juraj for many ideas, many questions, many answers and
lots of hiking.

1 Introduction

Sipser [16] showed in 1983 that the complexity class BPP of languages recogniz-
able in polynomial time by probabilistic Turing machines with bounded error
probability is contained in the polynomial hierarchy. Later Peter Gacz and inde-
pendently Lautemann [15] strengthened his results to imply that BPP ⊆ Σp

2 ∩Πp
2

holds.
What is the relation between probabilism and alternation for one-way

automata if we consider the number of states as a resource? We follow the
notation in [14] and compare the number of states required by

(a) 1P2FAs, i.e., one-way probabilistic f inite automata with two-sided bounded
error,

(b) 1∃kFAs and 1∀kFAs, i.e., one-way alternating f inite automata which start in
an existential resp. universal state and alternate at most k−1 times between
existental and universal states,

(c) 1AFAs, i.e., one-way a lternating f inite automata.

(See Sect. 2 for formal definitions.) For an automata M let s(M) be the number
of states of M . To investigate the state complexity we again borrow from [14] and
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define complexity classes not consisting of languages but of families of languages.
In particular, for a computation mode χ define the class

{(Ln)n≥1 | there are one-way χ-automata Mn with L(Mn) = Ln

such that s(Mn) is polynomial in n}.

As a consequence, by choosing the computation mode accordingly, we may intro-
duce 1P2 as the automata-version of BPP and 1Σk, 1Πk, 1H, 1A as the automata
versions of Σp

k ,Πp
k , PH and AP respectively.

We gather evidence that a fixed number of alternations is insufficient to sim-
ulate 1P2FAs efficiently, i.e., that 1P2 is not a subset of 1Σk for any k ∈ N. To
do so we investigate “circuit automata”, a class of 1AFAs whose state transitions
depend – for all but one input position – on the position and not on the symbol
found in this position. Circuit automata with few alternations are quite powerful
since, if states and circuit size are compared, they turn out to be “equivalent” to
alternating circuits of AND, OR and NOT-gates with small depth (see Proposi-
tion 1). But for the same reason circuit automata are quite weak since they are
incapable of recognizing parity efficiently. We construct languages Ln,k imple-
menting the idea of “nested equalities” (see Definition 2) such that the family
(Ln,k)n≥1 belongs to 1P2 but show in Theorem 1 that circuit automata with
k − 1 alternations require a number of states which is super-polynomial in n. At
least intuitively, alternations and not automata-specific abilities seem to matter
when recognizing Ln,k and hence we conjecture that (Ln,k)n≥1 does not belong
to 1Σo(k).

Geffert [6] has separated all levels of the “polynomial” hierarchy 1H and
was even able to do so for two-way automata. However, we could not apply his
methods to languages which are easy probabilistically, but hard when using not
too many alternations. Instead we apply methods of circuit complexity and in
particular the Switching Lemma for bounded depth alternating circuits [7].

On the other hand we show in Theorem2 that 1AFAs with an unbounded
number of alternations simulate 1P2FAs efficiently when input of “too large”
length are excluded. This result is made possible by a normal form for proba-
bilistic automata (see Proposition 2), namely as a weighted majority of DFAs.

Hromkovič has made, among others, many fundamental contributions to
the understanding of the state complexity of nondeterministic and probabilis-
tic automata. In [9] the surprising result is shown that DFAs require at most
quadratically more states than Las Vegas automata and that this gap is largest
possible. This result was made possible by investigations into communication
complexity [4,5,10].

He showed how to apply communication complexity to the state complexity of
various automata models, predominantly NFAs [8,12] and followed this approach
systematically. For instance it was possible to show a rather fine-grained state
hierarchy for NFAs with bounded ambiguity, where the ambiguity of an NFA is
the maximal number of accepting computations for a given input size. Another
example of the power of communication arguments is the proof in [11] that the
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standard construction of converting NFAs with ε-transitions into NFAs without
ε-transitions is almost optimal.

We formally introduce 1P2FAs, 1ΣkFAs, 1ΠkFAs, 1AFAs and circuit
automata in Sect. 2. Theorems 1 and 2 are shown in Sects. 3 and 4 respectively.
Conclusions are given in Sects. 5.

2 Basics

We introduce probabilistic and alternating automata. Finally circuit automata
are defined and their relation to unbounded fan-in circuits is made explicit.

Probabilistic Finite Automata. A one-way probabilistic finite automaton
(1PFA) P = (Q,Σ, δ, λ, q0, F ) with cut-point λ is defined by a sequence

δ = ( δa : a ∈ Σ)

of stochastic |Q| × |Q|-matrices δa where δa[p, q] is the probability that P enters
state q, when reading letter a in state p. If w = w1 · · · wk ∈ Σ∗ is a word of
length k over Σ, then the matrix product

δw[p, q] :=
(
δw1 · · · δwk

)
[p, q]

is the probability that P reaches state q when reading w in state p. We define
the acceptance probability of w for any state p ∈ Q as

prob[P accepts input w with p as initial state] :=
∑

q∈F

δw[p, q]

and say that P accepts w with probability
∑

p∈F δw[q0, p]. The language accepted
by P is

L(P ) := {w ∈ Σ∗ |P accepts w with probability at least λ}.

We say that P is a 1P2FA iff it accepts L(P ) with gap γ > 0, i.e.,
∣
∣
∣
∣
∑

q∈F

δw[q0, q] − λ

∣
∣
∣
∣ ≥ γ

holds for all words w ∈ Σ∗.

Alternating Automata. We say that A = (Q∀, Q∃, Σ, δ, q0, F ) is an alternat-
ing automaton (1AFA) iff A has disjoint sets Q∃, Q∀ of existential resp. universal
states. For the set Q := Q∃ ∪ Q∀ of all states the transition function

δ : Q × (Σ ∪ {ε}) → P(Q)

has the same structure as for NFAs with ε-moves. In particular we say that
q = (q0, . . . , qk) ∈ Qk+1 is a computation of A on input w = w1 · · · wn ∈ Σn iff
there is a sequence v ∈ (Σ ∪ {ε})∗ which results from w by possibly introducing
the empty word several times such that qi ∈ δ(qi−1, vi) holds for all i (1 ≤ i ≤ k).

The notion of acceptance is defined recursively:
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(a) A accepts the empty word in initial state q ∈ Q iff q belongs to F ,
(b) Let a ∈ Σ and u ∈ Σ∗. Then A accepts au with initial state q ∈ Q iff

– q ∈ Q∃ and A accepts u for at least one state in δ(q, a) as initial state
– q ∈ Q∀ and A accepts u for every state in δ(q, a) as initial state.

We say that A accepts word w ∈ Σ∗ iff A accepts w with initial state q0
and set L(A) := {u ∈ Σ∗ |A accepts u}. A is a Σk-automaton iff q0 belongs to
Q∃ and A, for all words w ∈ Σ∗ and all computations on w, alternates at most
k − 1 times between existential and universal states. A Πk-automaton is defined
analogously.

Circuit Automata. How difficult is it to derive lower bounds on the num-
ber of states of an alternating automaton? Geffert [6] gives non-trivial lower
bounds for the state complexity of languages in the polynomial hierarchy 1H.
However we were unable to apply these methods to languages which are “easy”
for 1P2FAs but hard for 1ΣkFAs and had to work with finite languages. There-
fore, to rephrase the above question: how difficult is it to derive non-trivial lower
bounds on the number of states of alternating automata for finite languages?
To at least partially answer this question we compare automata models with
alternating unbounded fan-in circuits.

We fix notation first. For a directed graph H = (U,D) and a node u ∈ U
we define fan-in(u) as the number of edges in D which are directed into u. A
circuit C is specified by a pair C = (G, gate), where G = (V,E) is a directed
acyclic graph and gate is a function which assigns to each node v ∈ V an input
position iff fan-in(v) = 0, respectively a boolean operation f : {0, 1}k → {0, 1}
iff fan-in(v) = k > 0. The size of C is the number of nodes of G and its fan-in
is the maximal fan-in of a node of V .

Remark 1. ACC is the complexity class of all boolean functions computable by
unbounded fan-in circuits with AND, OR, NOT and modulo-gates in bounded
depth and polynomial size. There are well known connections between bounded
depth circuit classes such as ACC and automata. For instance ACC is the fam-
ily of languages accepted by a nonuniform DFA (NUDFA) over a monoid that
does not contain an unsolvable group as a subsemigroup. (A NUDFA accepts
iff the product of the input bits belongs to a given list of monoid elements [1].)
Williams [17] showed that not all languages computable in quasi-polynomial non-
deterministic time belong to ACC. Super-polynomial lower bounds for languages
in P however are missing.

A Σk-circuit (Πk-circuit) C is a circuit composed of AND-, OR- as well
as NOT-gates. It has an OR-gate (AND-gate) as its top gate and its fan-in is
unbounded. We require that NOT-gates appear only at the bottom of C and
that there are at most k AND- resp. OR-gates on any path in C (and hence that
the depth of C is k − 1).

Circuit automata, a restricted version of alternating automata, are tailor-
made to simulate Σk- resp. Πk-circuits.
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Definition 1 (Circuit Automata). Let A be a 1Σk-automaton over the binary
alphabet. We say that A is a 1Σk-circuit automaton if for all inputs w, for
all computations of A on input w and for all but one input position: all state
transitions of A depend only on the position of the current input bit and not on
its value.

1Πk-circuit automata are defined analogously.

Observe that circuit automata process only binary words.

Example 1. We later investigate “nested versions” of the language

Ln,1 := {uv | u, v ∈ {0, 1}n, u = v}

of equality. Ln,1 can be recognized by a Π2-circuit Cn,1: An AND-gate as the top
gate of Cn,1 “checks” for all positions i (1 ≤ i ≤ n) whether the two disjunctions
ui ∨ ¬vi and ¬ui ∨ vi hold. Observe that Cn,1 has O(n) gates.

We build a Π2-circuit automaton An,1 from Cn,1. Starting from its universal
initial state, An,1 universally selects an input position i (1 ≤ i ≤ n) and one of
the two disjunctions. It then decides with a single alternation whether to check
ui or vi. It accepts iff the selected disjunction is verified to be true.

Observe that An,1 is indeed a circuit automaton since in any computation
only one input bit (namely ui or vi) is checked. Moreover O(n2) states suffice,
since any specific input location can be found with O(n) states.

It turns out that Σk-circuit automata and Σk-circuits are strongly related.

Proposition 1 (Circuit Automata and Circuits).

(a) Let C be a Σk-circuit of size s over the input space {0, 1}n. Then C can be
simulated by a Σk-circuit automaton with O(n · s) states.

(b) Let A be a Σk-circuit automaton with s states. Then A can be simulated –
for all binary inputs of length n – by a Σk-circuit of size O((n · s)k).

Proof. (a) Simulate C by a Σk-circuit automaton AC which has a state qv for
any node v of C. If the gate of v is an AND-gate (OR-gate), then qv is a universal
state (existential state). The initial state of AC is the state of the sink of C and
hence the initial state is existential. AC may transition from qv to qu only in an
ε-move and only if (u, v) is an edge of C.

Thus initially AC selects a path of C in a series of k − 1 alternating ε-moves
beginning with an existential initial state. If an input gate (¬)xi is reached, then
AC travels to the ith input bit. To make this possible attach a path of i new
states to the “state of” (¬)xi. Hence AC has at most O(n · s) states, where s is
the size of C.

So far AC has made only input-independent moves. Finally AC accepts if the
ith input bit satisfies the corresponding input gate.

(b) Let A be a Σk-circuit automaton with s states. W.l.o.g. we may assume
that all computations of A on inputs of length n become deterministic once the
single input-dependent transition is performed.
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Since A performs a single input-dependent move in any computation, all
computations – before performing the input-dependent move – define a single
computation tree Tn for all inputs in {0, 1}n. Whenever the input-dependent
move is made, we terminate the computation and hence reach a leaf in Tn.

The leaf is labeled with xi iff the computation has reached the ith input bit
and is accepting. Otherwise the leaf is labeled with ¬xi. Finally, a node v of Tn

receives an AND-gate if the state of v is universal and an OR-gate otherwise.
Remember that A is a Σk-automaton and we may assume that the root of

Tn has an OR-gate. The depth of Tn may be large, however there are at most
k − 1 “alternations” between AND- and OR-gates on any path of Tn. Connect
the root directly with all nodes of Tn which are reachable by a path of OR-gates
only. Once this is done, compress all AND-gates at the top of the new tree as
far as possible and continue this process. At the end we obtain a Σk-circuit T
with size O((n · s)k). �

Remark 2. How expressive are circuit automata? We show that the state com-
plexity of DFAs and circuit automata are incomparable.

First observe that DFAs may require exponentially more states than circuit
automata. Namely, as a consequence of Proposition 1, circuit automata and cir-
cuits – with alternations and depth coinciding – turn out to be “polynomially
equivalent”. As we have seen in Example 1 the language Ln,1 can be recognized
by a Π2-circuit automata and hence DFAs, when simulating Π2- or Σ2-circuit
automata, require an exponential blowup in the number of states.

On the other hand, as a consequence of Proposition 1(b), Σk-circuit
automata, for any k ∈ N, are too weak to simulate DFAs efficiently, since n-
bit parity requires alternating circuits of super-polynomial size in n if depth is
bounded [7].

Remark 3. One may hope to obtain lower bounds for the number of states of
alternating automata for finite languages using methods from circuit complexity.
However Proposition 1(a) may be strengthened to allow for threshold gates1 as
bottom gates of a Σk-circuit. If C is an alternating circuit of size s and depth
k containing threshold-gates with weight bound m as bottom gates, then C can
be simulated by a Σk-automaton of size poly(n, sk,m).

However no super-polynomial lower bounds for alternating circuits – with
threshold gates as bottom gates – seem to exist for languages in P.

3 Separating Probabilism from Few Alternations

We define a family Ln,k of languages which turn out to be easy for 1P2FAs and
1AFAs with a sufficiently large number of alternations. However Ln,k is shown
to be hard for circuit automata with too few alternations.

1 A threshold gate with weight bound m has integral weights −m ≤ w0, w1, . . . , wm ≤
m and binary inputs y1, . . . , ym. It accepts iff

∑m
i=1 wiyi ≥ w0 and rejects otherwise.
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3.1 Nested Equality

The language Ln,k ⊆ {0, 1}(2n)k

of “nested equality” is defined recursively. A
bottom-up view of the definition is as follows. Assume that the input x ∈
{0, 1}(2n)k

is partitioned into 2(2n)k−1 binary words u1, v1, . . . , u(2n)k−1 , v(2n)k−1

of respective length n with

x = u1v1 · · · u(2n)k−1v(2n)k−1 .

Compress x(1) := x into the word x(2) of length (2n)k−1 by replacing uivi by
one if ui = vi and by zero otherwise. Apply this compression repeatedly, each
time partitioning the current word x(i) into consecutive words of length n, and
accept x iff x(k+1) = 1. Here is the top-down view.

Definition 2 (The Language of Nested Equality).

(a) The functions fn,k : {0, 1}(2n)k → {0, 1} are defined recursively.

– For u, v ∈ {0, 1}n set fn,1(uv) :=

{
1 if u = v,

0 otherwise.

– For x ∈ {0, 1}(2n)k

set

fn,k(x) := fn,1

(
fn,k−1(u1) · · · fn,k−1(un), fn,k−1(v1) · · · fn,k−1(vn)

)
,

where x = u1 · · · unv1 · · · vn with |ui| = |vi| = (2n)k−1 for i = 1, . . . , n.
(b) Set Ln,k := {x ∈ {0, 1}(2n)k | fn,k(x) = 1}.

Ln,k turns out to be easy for bounded-error automata as well as for alternat-
ing circuit automata with a sufficient number of alternations.

Lemma 1 (1P2FAs and 1AFAs for Ln,k). For any k ≥ 1,

(a) There are 1P2FAs for Ln,k with O(
n2k2+3k

)
states and gap 1/4.

(b) Ln,k can be simulated by a Π2k-circuit automaton with O((2n)2k) states.

Proof. We associate the (2n)-ary tree Tn,k of depth k with Ln,k. Tn,k helps to
visualize the hierarchical decomposition of the input bits of x into the 1 + 2n +
(2n)2 + · · · + (2n)k−1 = (2n)k−1

2n−1 equality problems.
(a) We describe probabilistic automata Pn,k for Ln,k with cut-point 1/2

and gap 1/4 recursively. The automaton Pn,1 selects a prime p ≤ N1 at ran-
dom, where N1 is to be determined later and checks whether

∑n
i=1 2n−iui ≡∑n

i=1 2n−ivi mod p holds. Pn,1 accepts iff the answer is positive. Hence Pn,1

accepts Ln,k with O(n · N2
1 ) states. It errs only if uv ∈ {0, 1}2n does not

belong to Ln,1 and in particular if it picked a prime divisor of the difference
D :=

∑n
i=1 2n−iui −

∑n
i=1 2n−ivi. Hence the error probability of Pn,1 is bounded

by the quotient of the number of prime divisors of D and the total number of
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primes used by Pn,1. Hence, by the Prime Number Theorem, the error for the
equality problem on n bits is bounded by

O
(

n

N1/ log2 N1

)
. (1)

We view Pn,k as a vector (P (1)
n,1, . . . , P

(k)
n,1 ) of k variants P

(1)
n,1, . . . , P

(k)
n,1 of Pn,1. If

j is the current input position, then P
(i)
n,1 deals with its equality problem which

is specified by the node of height i − 1 in Tn,k which is an ancestor of the leaf
containing position j. In particular, P

(i)
n,1 waits until P

(i−1)
n,1 has completed its

current equality problem, computes for one step after receiving the decision of
P

(i−1)
n,1 and then waits for the next decision. If P

(i)
n,1 finishes its equality problem

it sends the result to P
(i+1)
n,1 and begins with the next equality problem.

There is a total of (2n)k−1
2n−1 equality problems to be solved. To enforce a

gap of at least 1
4 , we choose the upper bound Nk for primes sufficiently large. In

particular Nk = Θ(nk+1) will do since, by (1), Pn,k errs with probability 1−o(1)
on none of the Θ(nk−1) equality problems.

The states of Pn,k are k-tuples with the ith component corresponding to a
state of P

(i)
n,1. The number of states of Pn,k is hence asymptotically bounded by

(nN2
k )k = nk · n2(k+1)k = n2k2+3k.
(b) We construct a Π2k-circuit Cn,k for Ln,k recursively and then apply

Proposition 1(a).
The Π2-circuit Cn,1 (with O(n) gates) is described in Example 1. Inputs of

Cn,k have the form x = u1v1 · · · u(2n)k−1v(2n)k−1 with |ui| = |vi| = n. We obtain
circuit Cn,k after feeding the outputs of (2n)k−1 copies of Cn,1 into a copy of
Cn,k−1, where the ith copy of Cn,1 checks whether ui = vi holds.

With an inductive argument one may verify that circuit Cn,k has depth 2k
and size O((2n)k). Hence we obtain a Π2k-circuit automaton with O((2n)2k)
states for Ln,k, if we apply Proposition 1(a). �


3.2 Circuit Automata Require Many Alternations

We show that Σk+1-circuit automata for Ln,k require a super-polynomial number
fk(n) of states.

Theorem 1. Let k ∈ N be even and assume that n ∈ N is sufficiently large.
Then any Σk-circuit automaton for Ln,k−1 has to have size super-polynomial in
n. However polynomial size is sufficient for Π2(k−1)-circuit automata.

Proof. Ln,k−1 is accepted by Π2(k−1)-circuit automata of polynomial size in n
as a consequence of Lemma 1(b). Hence the claim follows from Proposition 1 (b)
if we show that any Σk-circuit Cn,k for Ln,k−1 has to have size super-polynomial
in n, provided k ≥ 2.

We apply a variant of the Switching Lemma for bounded depth alternating
circuits [7] to the two bottom layers of Cn,k. The original Switching Lemma,
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applied to circuits with N input bits, is proven by selecting a random restriction
ρ : [N ] → {0, 1, ∗}, where a star has probability p. Positions are fixed with a zero
or a one with respective probability (1 − p)/2.

Remember that an input x for Cn,k has the form x = u1v1 · · · u(2n)k−1v(2n)k−1

for strings ui, vi of length n. To obtain lower size bounds for Cn,k we place stars
with probability p in u1 · · · u(2n)k−1 and fix the remaining positions in ui at
random. Moreover all positions in v1 · · · v(2n)k−1 are fixed such that equality
ui = vi is still possible for all i (1 ≤ i ≤ (2n)k−1). A straightforward argument
shows that the results of the original Switching Lemma also hold with adjusted
parameters in our situation. Finally, for any i, fix all but one star in ui such
that equality remains possible. Here we utilize that fixing inputs bits does not
increase size or depth of the circuit.

If s is the size of Cn,k, then p = Θ( 1
log2 s ) will do. Hence to show that super-

polynomial size is required, we may by way of contradiction assume p = α
log2 n

for an arbitrarily large constant α. As a consequence with high probability there
will be exactly one star in each ui.

We apply the variant of the Switching Lemma, observing that all bits of vi

are fixed, and obtain with high probability that the new circuit Cn,k−1 has depth
k − 1 and that its size is polynomial in the size of Cn,k.

Observe that Cn,k−1 accepts Ln,k−2 and we may repeat this procedure. Since
k is even, the circuit Cn,2 is a Σ2-circuit. Hence there are restrictions such that
there is a Σ2-circuit for Ln,1 with size polynomial in the size of Cn,k.

Remember that an implicant of a boolean function f : {0, 1}N → {0, 1} is
a conjunction of literals which implies f . But Ln,1, interpreted as a boolean
function f : {0, 1}2n → {0, 1}, has only implicants of length 2n, namely one
conjunction for any pair uu. But Cn,2 is a disjunction of implicants and all
implicants are required to appear. Hence Cn,2 has to have size 2n and the claim
follows. �


4 Simulating Probabilism with Alternations

Our goal is to efficiently simulate a 1P2FA P = (Q,Σ, δ, λ, q0, F ) by an 1AFA
A. The constructions of Sipser, Lautemann or Canetti [2,15,16] in some shape
or form require the capability of performing and evaluating many simulations of
the probabilistic machine. For instance, Lautemann assumes an error probability
of 2−Ω(n) for input size n, a requirement which in general cannot be fulfilled for
1P2FAs. We therefore proceed differently and in particular do not impose any
bound on the number of alternations.

We begin by deriving a normal form for P when restricted to “short” inputs.
To do so we randomly fix P -transitions to obtain DFAs D1, . . . , Dr as well as a
distribution μ = (μ1, . . . , μr) on the DFAs. Define the 1P2FA

P ∗
r := majorityλ,μ(D1, . . . , Dr)

to pick the DFA Di with probability μi and to simulate the input w by Di. The
input w is accepted iff the combined acceptance probabilities, summed over all
accepting DFAs Di, is at least λ.
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We show that P ∗
r is equivalent with P on all inputs of approximate length

at most r · γ2 and that P ∗
r even has a gap of at least γ/2.

Proposition 2. Let P = (Q,Σ, δ, λ, q0, F ) be a 1P2FA with gap γ > 0 and let
r be a natural number. Then there are DFAs D1, . . . , Dr, each of size s(P ), as
well as a distribution μ = (μ1, . . . , μr) such that P ∗

r := majorityλ,μ(D1, . . . , Dr)
and P agree on all inputs of length at most K where

K = Ω
( r · γ2

ln(|Σ|)
)
,

provided |Σ| ≥ 2. If |Σ| = 1, then K = expΩ(r·γ2) holds. Moreover P ∗
r has a gap

of least γ/2 on all inputs of length at most K.

Proof. For an integer K set WK :=
⋃K

i=0 Σi. We randomly select DFAs Di =
(Q∗, Σ, δi, q0, F

∗) for i = 1, . . . , 2r + 1, where Q∗ := Q × [K] ∪ {q0} and F ∗ =
F × [K] – if q0 ∈ F , then q0 has to be inserted into F ∗. The transition functions
δi are obtained by setting δi((p, t), a) = (q, t + 1) with probability δa[p, q].

Let D be the set of DFAs which can be build this way and let pD be the
probability for a DFA D ∈ D to be picked. We define the distribution μ by setting
μi = pDi

/
∑r

j=1 pDj
and work with the 1P2FA P ∗

r := majorityλ,μ(D1, . . . , Dr).
Fix some input w ∈ WK . Assume that w is accepted with probability pw by

P and with probability p∗
w by P ∗

r . By how much does p∗
w deviate from pw and

with which probability does that happen?
Assume first that P accepts w and as a consequence pw ≥ λ + γ follows. For

any path P in P , which starts in q0 and is consistent with w, the probability of
P equals the probability of a DFA D ∈ D to possess path P. Hence pw coincides
with the probability pD

w that a DFA D ∈ D, selected with probability pD, accepts
w and pD

w = pw ≥ λ + γ follows.
How likely is it that p∗

w is significantly smaller than pw, i.e., that p∗
w ≤ λ+γ/2

holds? If r DFAs are selected in D, then r · pw is the expected number of DFAs
in D accepting w. If P ∗

r errs on w or if its gap is less than γ/2, then r ·p∗
w, as the

result of r independent random trials of picking a DFA from D, deviates from
its expected value r · pw by a factor μ with μ = λ+γ/2

pw
≤ λ+γ/2

λ+γ = 1 − γ/2
λ+γ . We

apply the Chernoff bound and obtain for |Σ| ≥ 2,

prob[there is w ∈ WK such that p∗
w ≤ λ + γ/2 ≤ λ + γ ≤ pw]

≤
∑

w∈WK ,pw≥λ+γ

prob[p∗
w ≤ λ + γ/2]

≤ |WK | · exp−(
γ/2
λ+γ )2·r·pw/2 ≤ |WK | · exp− γ2

λ+γ ·r/8 (Chernoff bound)

≤ 2 expK ln(|Σ|) · exp− γ2

λ+γ ·r/8 = 2 expK ln(|Σ|)− γ2

λ+γ ·r/8 .

To obtain a sufficiently failure probability it suffices to (asymptotically) demand
r = λ+γ

γ2 · K ln(|Σ|) = O(K ln(|Σ|)
γ2

)
, respectively K = Ω

(
r·γ2

ln(|Σ|)
)
. If |Σ| = 1
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we obtain, again asymptotically, r = λ+γ
γ2 · ln(K + 1) = O( ln(K+1)

γ2

)
and hence

K = expΩ(rγ2) follows.
The case that P rejects w is treated analogously. We find a majority-of-DFAs

with the required properties if the probability for P ∗
r to err on an input w of

length at most K or to have a gap smaller than γ/2 is less than 1. The claim
follows. �


Let P = (Q,Σ, δ, λ, q0, F ) be a 1P2FA with gap γ. We just found out that P
can be simulated by the weighted majority

P ∗
r = majorityλ,μ(D1, . . . , Dr)

with gap γ/2, provided correctness is required only for inputs of approximate
length K = Ω

(
r·γ2

ln(|Σ|)
)
. We now show how to simulate P ∗

r by a 1AFA

Ar = (Q∀, Q∃, Σ, δA, q0, FA)

on inputs of length at most K. Assume that q0 is the starting state of P ∗
r and

Q × {i} is the set of states of Di. We begin the definition of Ar by choosing q0
as its (existential) starting state and set

Q∀ := {!} × Q × [r] × [r2],

Q∃ := {?} × Q × [r] × [r2] ∪ {?} × {continue} × [r] × [r2] ∪ {q0}.

Only universal states are accepting, since we set

FA = {!} × F × [r] × [r2].

Also, insert q0 into FA iff P accepts the empty word. We describe the transitions
of Ar next.

Let w be an arbitrary input. The alternating automaton Ar guesses which
DFAs accept w and then verifies its guess each time. In particular, Ar may
guess that Di accepts w and therefore introduces for each i (1 ≤ i ≤ r), the
ε-transitions

q0
ε−→ (?, q0, i, j)

ε−→ (!, q0, i, j),

where j := �r2 ·μi� keeps track of the probability of Di. The ε-transition from the
existential to the universal version of (q0, i, j) is the only applicable transition and
therefore Ar immediately challenges its guess. It verifies its guess by simulating
Di with (!, q0, i, j) as the starting state.

But Ar may have to search for further DFAs Di′ accepting w and therefore
introduces all ε-transitions of the form

(!, q0, i, j)
ε−→ (?, continue, i, j) ε−→ (?, q0, i′, j + j′) ε−→ (!, q0, i′, j + j′),

where j′ := �r2 ·μi′� keeps track of the probability of Di′ . However, to avoid that
DFAs are selected more than once, i < i′ has to hold. Hence, again the guess is
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immediately challenged and subsequently verified. This process continues until
a universal state (!, q0, i∗, j∗) is reached with 1

r2 · j∗ ≥ λ.
In summary, Ar accepts an input w iff there are DFAs Di1 , . . . , Dis

accepting
w such that i1 < i2 < · · · < is and

1
r2

·
s∑

t=1

�r2μi� ≥ λ

hold.

Theorem 2 (1P2FAs and 1AFAs). Assume that P = (Q,Σ, δ, λ, q0, F ) is a
1P2FA with gap γ and let r be a natural number. Then there is a 1AFA Ar such
that Ar and P agree on all inputs of length at most K where

K = Ω

(
r · γ2

ln(|Σ|)
)

,

provided |Σ| ≥ 2. If |Σ| = 1, then K = expΩ(r·γ2) holds. The size of Ar is
bounded by O(r3 · s(P )).

Proof. We apply Proposition 2 and transform the 1P2FA P into the weighted
majority automaton P ∗

r which agrees with P on all inputs of length at most K.
We may assume that r ≥ 2/γ2, since otherwise K < 2 and the claim is trivial.

In particular γ/2 ≥ γ2/2 ≥ 1/r follows. We do a case analysis.

Case 1: P ∗
r accepts w. But P ∗

r has gap γ/2 and hence
∑

i:Di accepts w

μi ≥ λ + γ/2. (2)

Ar accepts w as well, since

1
r2

·
∑

i:Di accepts w

�r2μi� ≥ 1
r2

·
∑

i:Di accepts w

(
r2μi − 1

)

≥
∑

i:Di accepts w

(
μi − 1

r2

) (2)

≥ λ + γ/2 − 1
r

≥ λ.

Case 2: P ∗
r rejects w. We again utilize that P ∗

r has gap γ/2 and obtain
∑

i:Di accepts w

μi ≤ λ − γ/2. (3)

This time Ar rejects w, since

1
r2

·
∑

i:Di accepts w

�r2μi� ≤ 1
r2

·
∑

i:Di accepts w

r2μi

(3)

≤ λ − γ/2.

Finally observe that the size of Ar is asymptotically bounded by r3 · s(P ). �
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5 Conclusions

We gather evidence that a fixed number of alternations is insufficient to simu-
late a 1P2FA P efficiently and thus the behavior of one-way automata is quite
different from unrestricted computations in, say, polynomial time or at least log-
arithmic space. However such an efficient simulation exists for inputs of length
at most polynomial in the number s(P ) of states of P , if an unbounded number
of alternations is allowed.

Quite a few fundamental problems remain unresolved. First, showing non-
trivial lower bounds on the number of states of 1AFAs for finite languages seems
to be an important extension of the lower size bounds for circuits of bounded
depth. For instance we conjecture that 1AFAs with o(k) alternations may recog-
nize Ln,k only if their size is super-polynomial in n. It certainly seems also viable
to construct infinite languages which are presumably easy for 1P2FAs and hard
for 1ΣkFAs for some k, since then automata specific arguments may be applied.

Second, does 1P2 ⊆ 1A hold? We conjecture that the answer is positive.
Observe that even 1P2 ⊆ 1H may hold.

Third, is it possible to simulate arbitrary 1P2FAs with positive gap efficiently
by a majority-of-DFAs without any restriction on the size of inputs? Or, in other
words, can the restriction on input length in the claim Proposition 2 be dropped?
Of course a positive answer implies that 1P2 ⊆ 1A holds.

Acknowledgement. Many thanks to a referee for many valuable comments.
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