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Abstract. For all h, n ≥ 2, the problem of one-way liveness for height h
and length n captures the task of simulating one-way nondeterministic
finite automata with h states on inputs with n−2 symbols. We prove that
the number of states in a smallest two-way deterministic finite automaton
which decides this problem is Θ(h), if n = 2; and Θ(h2/ log h), if n = 3.

1 Introduction

A long-standing open question at the intersection of automata theory and com-
putational complexity is whether every two-way nondeterministic finite automa-
ton (2nfa) with s states can be simulated by a two-way deterministic finite
automaton (2dfa) with a number of states which is only polynomial in s. The
well-known Sakoda-Sipser conjecture proposes that the answer is negative [5].

A stronger variant of this conjecture claims that, indeed, a 2dfa needs super-
polynomially many states even when the input head of the 2nfa can only move
forward, namely even when the 2nfa is really a one-way nondeterministic finite
automaton. By [5], we know that this stronger claim holds iff a certain graph-
theoretic problem called one-way liveness for height h (owlh) cannot be solved
by any 2dfa whose number of states is only polynomial in h.

In one of the many approaches to this question, Hromkovič et al. [3] proposed
the concept of a reasonable automaton (ra). Intuitively, this is a 2dfa with the
following modifications: it works only on inputs of a fixed length n; it is random-
access, in the sense that its head can move from any cell of its n-long input to any
other in a single step; and, most importantly, it has every state associated with
a propositional formula which indicates what the automaton ‘knows’ about its
input when it is in that state. In this model, one uses the additional information
provided by the formulas to study the different types of propositional reasoning
that a 2dfa could possibly employ in trying to solve owlh on inputs of length n.
Clearly, the standard 2dfa model would be too lean to support such a study.

Not surprisingly, the power of a ra varies as we vary (i) the set of propositional
variables that can appear in the formulas and (ii) the rules for how these variables
can be combined to create the formulas. By [3, Theorem 2], we know that a suf-
ficiently expressive set of variables allows a ra to simulate any s-state 2dfa on
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n-long inputs with only O(sn) states; so, the model is powerful enough to repre-
sent any 2dfa algorithm for owlh on inputs of fixed length, and remains small
if so do both the 2dfa and the length. We also know that certain options for (i)
and (ii) make it necessary for a ra solving owlh to use 2Ω(h) states, even when
the length is restricted to just n = 2 symbols [3, Theorems 3 and 4]; while other
options make O(h) states already sufficient for n = 2 symbols [6], and O(h2) states
already sufficient for n = 3 and n = 4 symbols [3, Theorems 6 and 7].

For example, the linear upper bound for two symbols from [6] was proved for
the case where (i) there is one propositional variable ea,b for every two vertices
a, b of the input graph, indicating whether an edge between a and b exists; and
(ii) all rules of propositional-formula formation are allowed. That is, if 2owlh

denotes the restriction of owlh to instances of length exactly 2, then O(h) states
are enough for solving 2owlh by a ra which builds its formulas by arbitrarily
applying the logical connectives ∧,∨,¬ to the variables ea,b. In fact, this upper
bound is also known to be optimal in the specific case, as Bianchi, Hromkovič,
and Kováč [1, Theorem 1] recently proved that such ras for 2owlh also need
Ω(h) states. Overall, we arrive at the nice conclusion that, with such variables
and rules, every smallest ra for 2owlh has Θ(h) states.

By inspecting the proof of [1, Theorem 1] for the above linear lower bound,
one can observe that it is actually valid not only for ras with the particular
variables and rules, but also for all possible ras. In fact, minor technical changes
make that proof valid even for arbitrary 2dfas. That is, every 2dfa that solves
2owlh needs Ω(h) states, even if it is not reasonable. At the same time, one easily
realizes that the ra that proves the matching upper bound in [6] implies directly
that a 2dfa, too, can solve 2owlh with O(h) states. Overall, we actually know
the much stronger fact that every smallest 2dfa for 2owlh has Θ(h) states.

At this point, it is interesting to ask what the corresponding fact is for owlh

on three symbols, or four, or five, and so on. In general, for n ≥ 2, we let nowlh

denote the restriction of owlh to instances of exactly n symbols, and ask:

How many states are there in a smallest 2dfa for nowlh? (1)

For n = 2, the asymptotic answer to this question is, of course, provided by
our discussion above. Note, however, that we are still missing the exact answer,
namely a function s(h) such that some 2dfa for 2owlh has at most s(h) states
and no 2dfa for 2owlh has strictly fewer than s(h) states.

For n ≥ 3, we know neither the asymptotic nor the exact answer to (1). We
only have the asympotic upper bounds implied by the ras of [3, Theorems 6 and
7] which implement Savitch’s algorithm on n symbols and are easily converted
into 2dfas with (n times more states, and thus with) the same asymptotic size (if
n is constant). For the cases n = 3 and n = 4, those bounds are both quadratic, so
we know that every smallest 2dfa for 3owlh or for 4owlh has O(h2) states.

In this paper, we study (1) for the cases n = 2 and n = 3. Our main contri-
bution is the asymptotic answer for n = 3 (Sect. 4):

Theorem 1. Every smallest 2dfa for 3owl has Θ(h2/ log h) states.
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This involves a new algorithm for the upper bound (Lemma 8) and a standard
argument for the lower bound (Lemma 7). Before that, we also take the time to
carefully examine the case n = 2 and the known asymptotic answer (Sect. 3):

Theorem 2. Every smallest 2dfa for 2owl has Θ(h) states.

We give a detailed argument for the lower bound (Lemma 6), which mimics that
of [1, Theorem 1] but applies to any 2dfa and results in a higher exact value. For
completeness, we also give the known algorithm for the upper bound (Lemma 5).

In both cases, we put the extra effort to find exact values for our bounds,
so that one can appreciate the gap, between lower and upper bound, where the
actual size of the smallest 2dfa lies. For example, in the case n = 2, one sees that
the Θ(h) size of the best 2dfa is actually somewhere above 1

2h + 1
4 lg h − 1

2 and
below 2h. We also put the effort to make our intermediate lemmata as general
as possible, even if this full generality is not strictly needed in our proofs. For
example, the Hybrid Rule (Lemma 2) is proved for all cases, even for when the
computation on the hybrid string is looping, although we only use that rule once
(Lemma 6), in a case where that computation is (accepting, and thus) halting.

2 Preparation

If S is a set, then |S|, S, and P(S) are respectively its size, complement, and
powerset. If Σ is an alphabet, then Σ∗ is the set of all strings over it and Σn is
its subset containing only the strings of length exactly n. If z ∈ Σ∗ is a string,
then |z| and zj are respectively its length and its j-th symbol (if 1 ≤ j ≤ |z|). If
n ≥ 0, then [n] := {1, 2, . . . , n} is the set of the n smallest positive integers.

Problems. A (promise) problem over Σ is any pair L = (L, L̃) of disjoint
subsets of Σ∗. Its positive instances are all w ∈ L, whereas its negative instances
are all w ∈ L̃. A machine solves L if it accepts every positive instance but no
negative one. If L̃ = L, then we call L a language and represent it only by L.

Let h ≥ 2.1 The alphabet Σh := P([h] × [h]) consists of all two-column
directed graphs with h nodes per column and only rightward arrows (Fig. 1a).
A string w ∈ Σn

h is naturally viewed as an (n + 1)-column graph, where every
arrow connects successive columns (Fig. 1b, c); we usually index the columns
from 0 to n and, for simplicity, drop the directions of the arrows. If w contains
a path from the leftmost to the rightmost column (called a live path), then we
say that w is live; otherwise we say that w is dead. The language

owlh := { w ∈ Σ∗
h | w is live }

represents the computational task of checking that a given string in Σ∗
h contains

a live path [5]. If the string is guaranteed to be of a fixed length n, then the task
is best represented by the promise problem

nowlh :=
( {w ∈ Σn

h | w is live}, {w ∈ Σn
h | w is dead} )

.

1 Here, we exclude the trivial case of height h = 1, so that we can divide by lg h �= 0.
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Fig. 1. (a) Three symbols x, y, z ∈ Σ5; e.g., z = {(1, 2), (1, 4), (2, 5), (4, 4)}. (b) The
string xy of the first two symbols, simplified and indexed, as an instance of 2owl5.
(c) The string xyz of all symbols, simplified and indexed, as an instance of 3owl5.

Thennowl := (nowlh)h≥2 is the familyof all suchpromiseproblems forh ≥ 2.

Machines. A two-way deterministic finite automaton (2dfa) is any tuple of the
form M = (S,Σ, δ, qs, qa), where S is a set of states, Σ is an alphabet, qs, qa ∈ S
are respectively the start and accept states, and δ : S × (Σ ∪{�,	}) ⇀ S ×{l,r}
is a (partial) transition function, for �,	 /∈ Σ the left and right endmarkers, and
l,r the left and right directions.

An input w ∈ Σ∗ is presented to M surrounded by the endmarkers, as �w	.
The computation starts at qs and on �. In each step, the next state and head
move (if any) are derived from δ and the current state and symbol. Endmarkers
are never violated, except if the next state is qa; that is, δ( . ,�) is always (qa, l)
or of the form ( . ,r); and δ( . ,	) is always (qa,r) or of the form ( . , l). Hence,
the computation either loops, if it ever repeats a state on the same input cell; or
hangs, if it ever reaches a state and symbol for which δ is undefined; or falls off
� or 	 into qa, in which case we say that M accepts w.

Formally, for any string z, position i, and state q, the computation of M when
started at q on the i-th symbol of z is the unique sequence

compM,q,i(z) =
(
(qt, it)

)
0≤t<m

where (q0, i0) = (q, i), 1 ≤ m ≤ ∞, every pair is derived from its predecessor
via δ and z, every pair is within z (1 ≤ it ≤ |z|) except possibly for the last
one, and the last pair is within z iff δ is undefined on the corresponding state
and symbol. We say m is the length of this computation. If m = ∞, then the
computation loops. Otherwise, it hits left into qm−1, if im−1 = 0; or hangs, if
1 ≤ im−1 ≤ |z|; or hits right into qm−1, if im−1 = |z|+1 (Fig. 2). When i = 1
(respectively, i = |z|) we get the left (right) computation of M from q on z:

lcompM,q(z) := compM,q,1(z) and rcompM,q(z) := compM,q,|z|(z) .

The (full) computation of M on z is the typical compM (z) := lcompM,qs(�z	),
so that M accepts z iff compM (z) hits right or left (into qa).
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Fig. 2. (a) Cells and boundaries on a 6-long z; a computation that hits left. (b) One
that hangs. (c) One that hits right, and its i-th frontier: Rc

i in circles and Lc
i in boxes.

Frontiers. Consider a computation c = ((qt, it))0≤t<m over some input z, and
the index 0 ≤ i ≤ |z| of some boundary of z (Fig. 2c). How does c behave over
that boundary? One answer to this question is the standard notion of the i-th
crossing sequence of c [2], namely the sequence q1, q2, q3, . . . where qj is the state
entered by c right after the j-th time that c crosses that boundary.

Another answer, with much less information, is the i-th frontier of c [4], which
records only which states are used by the crossings, completely ignoring the order
in which they are used. Formally, this is the pair of sets of states (Lc

i , R
c
i ), where

Rc
i (respectively, Lc

i ) consists of every state which is entered by c right after some
left-to-right (right-to-left) crossing of the i-th boundary of z:

Rc
i := {qt | 0 ≤ t < m & it−1 = i & it = i + 1} ,

Lc
i := {qt | 0 ≤ t < m & it−1 = i + 1 & it = i} .

Here we also assume i−1 = i0 − 1, so that, if c starts on the cell right after the
boundary (i0 = i + 1), then Rc

i also contains q0. (This reflects the convention
that the initial state q0 is always the result of an ‘invisible’ left-to-right step.)

If c is a full computation, then it starts (on �, and thus) on the left side of the
i-th boundary of z (since i ≥ 0), and then eventually hangs or loops or accepts.
If it hangs or accepts also on the left side of the boundary, then it crosses it
from left to right exactly as many times as it crosses it from right to left; hence,
Rc

i and Lc
i contain the same number of states. By similar reasoning, if c hangs

or accepts on the right side of the boundary, then Rc
i contains one more state

than Lc
i . Finally, if c loops, then Rc

i contains either exactly as many states as Lc
i ,

if c never crosses the boundary or the latest crossing which does not result in a
repeated pair (qt, it) is from right to left; or one more state, otherwise. Overall,
we conclude that, if c is full, then |Rc

i | is always either |Lc
i | or |Lc

i |+1.
With this motivation, we define a frontier of M to be any pair (L,R) such

that L,R ⊆ S and either |L| = |R| or |L|+1 = |R|. In the former case, the
frontier is called balanced ; otherwise, it is called unbalanced. Standard count-
ing arguments show that, if M has s states, then it has

(
2s
s

)
balanced and(

2s
s+1

)
unbalanced frontiers, for a total of

(
2s+1
s+1

)
frontiers overall.

The next lemma (Lemma 1) and rule (Lemma 2) are of independent interest.
In this paper, we will use them to prove a lower bound for 2owlh (Lemma 6).
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Fig. 3. Computations in the proof of the Hybrid Lemma.

Lemma 1 (Hybrid Lemma). Let c1, c2, c be respectively the full computations
of M on strings x1y1, x2y2 and their hybrid x1y2. Let (L1, R1), (L2, R2), (L,R)
be the respective frontiers on the boundaries x1-y1, x2-y2, and x1-y2. Then

L1 ⊇ L2 & R1 ⊆ R2 =⇒ L1 ⊇ L2 ⊇ L & R ⊆ R1 ⊆ R2 .

Proof. Suppose L1 ⊇ L2 and R1 ⊆ R2. We must prove four inclusions. The first
and last of them are just our assumption (included in the statement only for
aesthetics), so we just need to prove that L2 ⊇ L& R ⊆ R1.

Let 0 ≤ k ≤ ∞ be the number of times c crosses the x1-y2 boundary. Let qj be
the state entered by c right after the j-th crossing, for all finite j with 1 ≤ j ≤ k
(Fig. 3). It suffices to prove the following.

Claim. All qj for odd j are in R1, and all qj for even j are in L2.

Indeed, if the claim holds, then every q ∈ R is also in R1, because it is a qj for
some odd j; and every q ∈ L is also in L2, because it is a qj for some even j.

To prove the claim, we first note that it is vacuously true when k = 0. So,
we assume 1 ≤ k ≤ ∞ and apply induction on j.

In the base case, j = 1 and we must prove q1 ∈ R1. But q1 is the result of the
first crossing of the x1-y2 boundary, so d0 := lcompM,qs(�x1) hits right into q1.
But d0 is clearly a prefix of c1, therefore the first crossing of the x1-y1 boundary
along c1 results into q1, as well. Hence, q1 ∈ R1.

In the inductive step, we assume the claim for j ≥ 1 and prove it for j+1 ≤ k.
If j is odd, then j+1 is even, and thus qj+1 is the result of crossing the x1-y2

boundary from right to left. In particular, dj := lcompM,qj (y2	) is an infix of c
and hits left into qj+1. We know qj ∈ R1 (by the inductive hypothesis), and thus
qj ∈ R2 (since R1 ⊆ R2). Therefore, c2 produces qj in one of its left-to-right
crossings of the x2-y2 boundary. Hence, after that crossing, c2 continues as in
lcompM,qj (y2	), namely as in dj , and thus crosses the boundary again, from
right to left and into qj+1. Consequently, qj+1 ∈ L2.

If j is even, we work symmetrically. Since j+1 is odd and ≥ 3, qj+1 results
from a left-to-right crossing of the x1-y2 boundary and c contains the infix
dj := rcompM,qj (�x1) which hits right into qj+1. But qj is in L2 (by the induc-
tive hypothesis), and thus in L1 (since L1 ⊇ L2), so c1 produces it in some
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Fig. 4. Computations in the proof of the Hybrid Rule. (a) If c never crosses the critical
boundary: then c, c1 decide the same. (b) If c crosses the critical boundary finitely often,
and the last crossing is from left to right: then c, c2 decide the same. (c) If c crosses
the critical boundary infinitely often, and the earliest same-side repetition is after a
left-to-right crossing: then c, c1 decide the same.

right-to-left crossing of the x1-y1 boundary. Hence, after that, c1 continues as in
rcompM,qj (�x1) = dj , which means that it left-to-right crosses the boundary
into qj+1, causing qj+1 ∈ R1. ��
Lemma 2 (Hybrid Rule). Suppose M decides identically on strings x1y1,
x2y2 but differently on their hybrid x1y2. Then the frontiers (L1, R1), (L2, R2) of
the full computations of M on x1y1, x2y2 on the boundaries x1-y1 and x2-y2 satisfy:

L1 �⊇ L2 ∨ R1 �⊆ R2 .

Proof. Let c1, c2, c be the full computations of M on strings x1y1, x2y2, and their
hybrid x1y2. Let (L1, R1), (L2, R2), (L,R) be the frontiers of these computations
on the boundaries x1-y1, x2-y2, and x1-y2, respectively. Towards a contradiction,
assume L1 ⊇ L2 &R1 ⊆ R2. Then, by the Hybrid Lemma,

L1 ⊇ L2 ⊇ L & R ⊆ R1 ⊆ R2 .

Using this, we will prove that on at least one of x1y1 and x2y2, the decision of M
must be identical to its decision on the hybrid x1y2—a contradiction.

We take cases on how often c crosses the critical boundary x1-y2 (Fig. 4).
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If c never crosses the critical boundary, then c lies fully within �x1 (Fig. 4a).
So, M notices no difference between x1y2, x1y1, and decides identically on both.

If c crosses the critical boundary finitely often, then there is a last crossing.
Suppose this last crossing is from left to right (Fig. 4b). Let q be the state

resulting from it. Then d := lcompM,q(y2	) does not hit left (it hangs, or loops,
or falls off 	), and is thus a suffix of c. At the same time, q ∈ R (by its selection
as the result of a left-to-right crossing), and thus q ∈ R2 (since R ⊆ R2). Hence,
c2 also contains a left-to-right crossing of the boundary x2-y2 that results in q.
Clearly, from that point on, c2 behaves as in lcompM,q(y2	), namely as in d,
which does not hit left. Therefore c2 also finishes with d. Overall, c and c2 have
the same suffix d, which implies that M decides identically on x1y2 and x2y2.

If the last crossing of the x1-y2 boundary along c is from right to left, then
a symmetric argument applies: q ∈ L ⊆ L1 and d := rcompM,q(�x1) is a suffix
of both c and c1, causing M to decide identically on x1y2 and x1y1.

If c crosses the critical boundary infinitely often, then consider the infinite
list q1, q2, . . . where qj is the state produced by the j-th crossing (Fig. 4c). Of
course, this list contains repetitions: there exist 1 ≤ j1 < j2 such that qj1 = qj2 .
Equally clearly, it also contains same-side repetitions: namely, repetitions where
j1, j2 are either both odd or both even (so that qj1 , qj2 are produced both by
left-to-right crossings or both by right-to-left crossings, respectively). Let q be
the state in the earliest such repetition (namely q = qj1 = qj2 in the same-side
repetition with the smallest j2) and p the state produced by the crossing just
before that repetition happened (namely p = qj2−1).

Suppose the j1-th and j2-th crossings are from left to right. Then the j2−1st
crossing is from right to left and is followed by d := rcompM,p(�x1), which hits
right into q. At the same time, p ∈ L and q ∈ R (by their selection as the results
of a right-to-left and a left-to-right crossing, respectively) and thus p ∈ L1 and
q ∈ R1 (as L1 ⊇ L and R ⊆ R1). So, c1 also contains right-to-left crossings that
produce p (to be called “p-crossings”) and left-to-right crossings that produce q
(to be called “q-crossings”). The next claim implies that at least one of these
two types of crossings repeats, and thus c1 loops, exactly as c does. Therefore,
M decides identically on x1y2 and x1y1.

Claim. There are at least two p-crossings or at least two q-crossings in c1.

Proof. Towards a contradiction, assume c1 contains exactly one p-crossing and
exactly one q-crossing. We distinguish cases based on their order inside c1.

If the q-crossing appears before the p-crossing : We know the p-crossing is
followed by rcompM,p(�x1), namely by d, which we already know hits right
into q. So, the p-crossing is followed by a q-crossing. Hence, c1 contains at least
two q-crossings (one before and one after the p-crossing), a contradiction.

If the q-crossing appears after the p-crossing : We first return to c to observe
that j1 �= 1, namely the first of the two crossings that produce q cannot be the
very first of all crossings. (Because then lcompM,qs(�x1) hits right into q; so
the one q-crossing in c1 is also the very first of all crossings, and thus appears
before the p-crossing, a contradiction.)
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Hence, we can talk about the (j1−1)-st crossing of the critical boundary in c
(from right to left). Let p′ be the state it produces. Then d′ := rcompM,p′(�x1)
hits right into q. Note that p′ �= p, or else qj1−1 = qj2−1, contrary to our selection
of q = qj1 = qj2 as the earliest same-side repetition. Also note that p′ ∈ L (as
the result of a right-to-left crossing), hence p′ ∈ L1 (since L1 ⊇ L), hence c1 also
contains a right-to-left crossing that produces p′ (to be called “p′-crossing”).

It now follows that c1 contains at least two q-crossings: the one right after the
p-crossing (caused by d) and the one right after the p′-crossing (caused by d′),
which we know are distinct (because p′ �= p). This is again a contradiction. �

If the j1-th and j2-th crossings are from right to left, then we argue symmet-
rically. We know that d := lcompM,p(y2	) hits left into q, and that p ⊆ R ⊆ R2

and L2 ⊇ L � q, so c2 also contains left-to-right crossings that produce p and
right-to-left crossings that produce q. As before, at least one of these two types
of crossings repeats, hence c2 loops, causing M to decide on x2y2 just as on x1y2.

This concludes the third case of our argument and, with it, the full proof. ��

Behaviors. Let z be any string. The behavior of M on z is the (partial) function
which returns the results of all left and right computations of M on z. Specifically,
it is the function γM,z : S × {l,r} ⇀ S × {l,r} such that, for all p ∈ S,

γM,z(p, l) :=

⎧
⎪⎨

⎪⎩

(q, l) if lcompM,p(z) hits left into q,

undefined if lcompM,p(z) hangs or loops,
(q,r) if lcompM,p(z) hits right into q;

and similarly for γM,z(p,r), using rcompM,p(z) instead of lcompM,p(z).
With this motivation, we define a behavior of M to be any partial function

from S×{l,r} to S×{l,r}. Easily, if M has s states, then it has (2s+1)2s behav-
iors. However, if |z| = 1, then every left computation is also a right computation
(since the first and last cells of z coincide), causing γM,z(p, l) = γM,z(p,r) for
all p; hence, the number of single-symbol behaviors of M is only (2s+1)s.

A standard fact in the analysis of 2dfa computations is that, if M exhibits
the same behavior on two strings, then each of them can be replaced by the other
in any context, without M noticing the difference. Formally, this is captured by
the next lemma, which we state without proof.

Lemma 3 (Infix Lemma). If γM,y1 = γM,y2 , then γM,xy1z = γM,xy2z.

As a direct consequence of this, M cannot decide differently on two strings which
differ only at two infixes that do not change its behavior.

Lemma 4 (Infix Rule). If M decides differently on strings xy1z, xy2z, then:

γM,y1 �= γM,y2 .

Proof. Towards the contrapositive, assume γM,y1 = γM,y2 . Then, by the Infix
Lemma, γM,�xy1z� = γM,�xy2z�. In particular, the two functions return the same
value on (qs, l), which is either (qa, l), or (qa,r), or undefined. In all three cases,
it follows that M decides identically on xy1z and xy2z. ��
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3 The Case of Two Symbols

We now prove Theorem 2, that all smallest 2dfas for 2owlh have Θ(h) states.
This follows directly from the next two lemmata. The upper bound (Lemma 5)
is well-known and also implied by [6]; here, we give a careful construction. The
lower bound (Lemma 6) is a tighter variant of [1, Theorem 1] that uses frontiers,
as opposed to arbitrary pairs of sets of states. (Without this modification, the
lower bound for 2dfas by the argument of [1, Theorem 1] is only 1

2h.)

Lemma 5. Some 2dfa solves 2owlh with ≤ 2h states.

Proof. Fix h ≥ 2 and consider an instance xy of 2owlh, for x, y ∈ Σh (Fig. 1b).
Let u1, u2, . . . , uh be the nodes of column 1, from top to bottom. We say ui is
l-live, if it has non-zero degree in x; r-live, if it has non-zero degree in y; live, if
it is both l-live and r-live; and dead if it is not live. Clearly, xy is live iff some ui

is live. So, our 2dfa M simply searches for a live ui sequentially, from u1 to uh.
The set of states is S := [h] × {l,r} and state (1, l) serves as both the start

and the accept state. Each other state (i, l) is used only on �x; it assumes that
all uj above ui are dead and that ui is r-live, and tries to check if ui is also
l-live. Symmetrically, every state (i,r) is used only on y	; it assumes that all uj

above ui are dead and that ui is l-live, and tries to check if ui is also r-live.
The transitions between these states are now not hard to see:
From (1, l) on �, M moves to (1, l) on x. If x contains no edges, then xy is

obviously dead, so M just hangs. Otherwise, there exists at least one l-live ui, so
M finds the topmost such ui and moves to the corresponding state (i,r) on y.

From a state (i,r) on y, M checks if ui is r-live. If so, then xy is live, so
M moves to (i,r) on 	, and then off 	 into (1, l) to accept. Otherwise, it checks
if any uj below ui is r-live. If not, then xy is dead, so M just hangs. Other-
wise, M finds the topmost r-live uj below ui, and moves to the corresponding
state (j, l) on x, to check whether that uj is also l-live.

From a state (i, l) on x with i ≥ 2, M behaves symmetrically as above: if
ui is l-live, then M moves to (i, l) on �, and then off � into (1, l) to accept.
Otherwise, it either hangs, if no uj below ui is l-live; or moves to y and into the
state (j,r) corresponding to the topmost such uj .

It should be clear that M works correctly and uses exactly 2h states. ��
Lemma 6. Every 2dfa solving 2owlh has > 1

2h + 1
4 lg h − 1

2 states.

Proof. Let M be any 2dfa solving 2owlh. Let S be its set of states and s := |S|.
For every α ⊆ [h], let xα := {(u, u) | u ∈ α} be the symbol consisting of the

“horizontal” edges which correspond to indices in α (e.g., see the leftmost symbol
in Fig. 1a). Clearly, for every α, β ⊆ [h], the string xαxβ is live iff α ∩ β �= ∅. We
also easily verify the following.

Claim 1. For all distinct α, β ⊆ [h]:

(i) the strings xαxα and xβxβ are dead, but
(ii) at least one of their two hybrids xαxβ and xβxα is live.
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Proof. Let α, β ⊆ [h] with α �= β. Then (i) is obvious, since α ∩ α = β ∩ β = ∅.
For (ii), suppose both hybrids xαxβ and xβxα are dead. Then α ∩ β = ∅ and
β ∩ α = ∅; equivalently, α ⊆ β and β ⊆ α; hence α = β, a contradiction. �

Now, for each α ⊆ [h], consider the the full computation of M on xαxα and
let (Lα, Rα) be its frontier over the middle boundary. This effectively defines
2h frontiers of M , one for each α. We claim that these are all distinct.

Claim 2. For all distinct α, β ⊆ [h]: (Lα, Rα) �= (Lβ , Rβ) .

Proof. Let α, β ⊆ [h] with α �= β. By Claim 1 and since M solves 2owlh, we
know M decides identically on xαxα and xβxβ (it does not accept) but differently
on at least one of their hybrids xαxβ and xβxα (it accepts). Without loss of
generality, assume the interesting hybrid is xαxβ (otherwise, swap the roles of
the two strings). Then, by the Hybrid Rule (Lemma 2), we know Lα �⊇ Lβ or
Rα �⊆ Rβ . Therefore Lα �= Lβ or Rα �= Rβ , namely (Lα, Rα) �= (Lβ , Rβ). �

Overall, we conclude that M uses distinct frontiers on the 2h distinct dead
strings of the form xαxα. Since it has only

(
2s+1
s+1

)
frontiers total, it follows that

(
2s + 1
s + 1

)
≥ 2h , (2)

and we need to solve for s. Using the well-known Stirling’s bounds
√

2π
√

n · (n
e )n ≤ n! ≤ e

√
n · (n

e )n

for the factorial function, we calculate:
(

2s+1
s+1

)
=

(2s+1)!
(s+1)!s!

=
2s+1
s+1

· (2s)!
(s!)2

< 2 · e
√

2s · (2s/e)2s

(
√

2π
√

s · (s/e)s)2
=

e
√

2
π

· 22s

√
s

so that (2) implies (e
√

2/π)(22s/
√

s) > 2h, and thus

s > 1
2h + 1

4 lg s − 1
2 lg(e

√
2/π) . (3)

Since s ≥ 1 and 1
2 lg(e

√
2/π) ≤ 0.15, this implies s > 1

2h−0.15, and thus s ≥ 1
2h

(since s and h are both integers). So, lg s ≥ lg h − 1. Substituting in (3), we get:

s > 1
2h + 1

4 lg h − 1
2 lg(2e/π) .

Finally, we note that lg(2e/π) ≈ 0.8 < 1. ��

4 The Case of Three Symbols

To prove Theorem 1, that all smallest 2dfas for 3owlh have Θ(h2/ log h) states,
we start with the lower bound (Lemma 7), which is simpler; then continue with
the upper bound (Lemma 8), which is a bit more involved.
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Lemma 7. Every 2dfa solving 3owlh has ≥ 1
2

h2

lg h states.

Proof. Let M be any 2dfa solving 3owlh. Let S be its set of states and s := |S|.
Let y1, y2, . . . , yN be a list of all symbols in the input alphabet Σh. Since every

symbol may contain up to h2 edges, we know N = 2h2
. For each i = 1, 2, . . . , N ,

let γi := γM,yi
be the behavior of M on yi.

Claim. For all distinct i, j ∈ [N ]: γi �= γj .

Proof. Let i, j ∈ [N ] with i �= j. Then yi �= yj . Hence, there exists at least one
edge (u, v) which appears in one of yi, yj , but not the other. Without loss of
generality, assume (u, v) appears in yi but not in yj . Let x := {(u, u)} and z :=
{(v, v)} be the symbols containing only the “horizontal” edges corresponding
to u and v. Then the strings xyiz and xyjz are respectively a live and a dead
instance of 3owlh. Hence, M decides differently on them. By the Infix Rule
(Lemma 4), it follows that γi �= γj . �

Hence, M uses distinct behaviors on the 2h2
possible middle symbols. Since

it has only (2s + 1)s single-symbol behaviors in total (cf. p. 9), it follows that

(2s+1)s ≥ 2h2
, (4)

which implies the bound in the statement, as follows.
If h = 2, then (4) asks that (2s+1)s ≥ 16. Easily, this holds only if s ≥ 2,

which matches the bound in the statement: 1
2 (h2/ lg h) = 1

2 (4/1) = 2.
If h = 3, then similarly we need (2s+1)s ≥ 512, which holds only if s ≥ 4,

which exceeds the bound in the statement: 1
2 (h2/ lg h) = 1

2 (9/ lg 3) ≈ 2.84.
If h ≥ 4, then we first take logarithms to rewrite (4) as s lg(2s+1) ≥ h2.

Towards a contradiction, we assume s < 1
2

h2

lg h and calculate:

lg(2s+1) < lg
(
2 · 2s) < lg

(
2 h2

lg h

)
= 2 lg h − (lg lg h − 1) ≤ 2 lg h ,

where the first step uses the fact that 2s+1 < 4s (since s ≥ 1); the second step
uses the assumption that s < 1

2
h2

lg h ; and the last step uses the fact that lg lg h ≥ 1
(since h ≥ 4). Therefore, we can conclude that

s lg(2s+1) <
(
1
2

h2

lg h

)(
2 lg h

)
= h2 ,

contrary to the rewriting of (4) above. ��
Lemma 8. Some 2dfa solves 3owlh with ≤ 4h� h

	lg h
� states.

Proof. Fix h ≥ 2 and consider an instance xyz of 3owlh for x, y, z ∈ Σh (Fig. 1c).
Let u1, u2, . . . , uh and v1, v2, . . . , vh be the nodes of columns 1 and 2, respectively,
from top to bottom. Similarly to the proof of Lemma 5, we say ui is l-live if it
has non-zero degree in x; and vi is r-live if it has non-zero degree in z.

We first partition column 1 into h/ lg h blocks of length lg h each. More care-
fully, we let l := �lg h� be the desired length, and assign every ui to block b�i/l�.



Optimal 2DFAs for One-Way Liveness on Few Symbols 45

Fig. 5. The proof of Lemma 8 for the example h = 32, l = 5, m = 7, and r = 3.
Relative to br, the shown vertex vj has connectivity {2, 3, 5}.

Easily, this produces m := �h/l� disjoint blocks, b1, b2, . . . , bm ⊆ {u1, u2, . . . , uh}.
For example, for h = 5, the desired length is l = 2 and we get the m = 3 blocks
b1 = {u1, u2}, b2 = {u3, u4}, and b3 = {u5}. Note that, if l does not divide h,
then the length of the last block bm is not l, but only l′ := h mod l.

We say a block br is live if there exists a live path that passes through a node
belonging to br (Fig. 5). Clearly, xyz is live iff some br is live. So, our 2dfa M
simply searches for a live br sequentially, from b1 to bm.

Specifically, M consists of m disjoint sub-automata M1,M2, . . . , Mm, where
every Mr uses states of the form (r, . . . ) and is responsible for checking whether
the corresponding br is live. The start state of M is the start state of M1. From
then on, the iteration works as follows. If the current Mr confirms that br is live,
then it falls off 	 into the designated accept state qa of M , causing M to accept,
too. Otherwise, Mr arrives at a state and cell where it has confirmed that br is
dead; from there, it either advances the iteration by moving to x and to the start
state of Mr+1, if r < m; or just hangs, causing M to hang too, if r = m.

Every Mr works in the same way as every other, except that it focuses on its
own br. So, all sub-automata are of the same size s̃, causing M ’s total size to be
s = ms̃ = O(hs̃/ log h). Hence, to achieve the O(h2/ log h) size in the statement,
we ensure that each Mr has size O(h). Here is how.

Checking a block. Fix any br and let û1, û2, . . . , ûl be its vertices, from top to
bottom. In the case where br is the last block bm and has only l′ < l nodes, we
pretend that the nodes ûl′+1, . . . , ûl exist but have degree zero in both x and y.

Now consider any vj in column 2. (See Fig. 5.) The connectivity of vj (relative
to br) is the set ξ ⊆ [l] of the indices of all ûi which connect to vj :

i ∈ ξ ⇐⇒ y contains the edge (ûi, vj) .
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With this motivation, we call connectivity any subset of [l]. Clearly, the number
of different connectivities is k := 2l = 2	lg h
 ≤ 2lg h = h. Let ξ1, ξ2, . . . , ξk be
any fixed listing of them, so that each vj has its connectivity in this list.

We say that, relative to br, a connectivity ξt is l-live, if for at least one i ∈ ξt

the corresponding ûi is l-live; r-live, if at least one of the vj with connectivity ξt

is r-live; live, if it is both l-live and r-live; and dead, if it is not live. Easily:

Claim. Block br is live iff at least one connectivity ξt is live relative to it.

Proof. Suppose br is live. Then some live path passes through it. Let ûi and vj

be the nodes used by this path in br and in column 2, respectively, and ξt the
connectivity of vj relative to br. Then ûi is l-live and vj is r-live (clearly); and
i ∈ ξt (because of the edge from ûi to vj). Hence ξt is both l-live (because of ûi)
and r-live (because of vj). So, ξt is live.

Conversely, suppose some ξt is live relative to br. Let ûi and vj be witnesses
for why it is l-live and r-live, respectively. Then (i) ûi is l-live and (ii) i ∈ ξt;
and (iii) vj is r-live and (iv) vj has connectivity ξt relative to br. By (ii) and (iv),
we know the edge (ûi, vj) exists. By (i) and (iii), we know this edge is actually
on a live path through ûi and vj . Hence, br is live. �

Therefore, our sub-automaton Mr simply searches for a live ξt sequentially,
from ξ1 to ξk. Intuitively, Mr consists of k sub-automata Mr,1,Mr,2, . . . , Mr,k,
where every Mr,t is responsible for checking whether the corresponding ξt is
live. The machine starts on x and in the start state of Mr,1. From then on, the
iteration works as follows. If the current Mr,t confirms that ξt is live, then it
falls off 	 into qa, causing Mr to behave exactly as promised above. Otherwise,
Mr,t “halts” on x or y, in the sense that it enters a state where it has confirmed
that ξt is dead. From there: if t < k, then it advances the iteration over all
connectivities by moving to x and to the start state of Mr,t+1; otherwise (t = k),
it either moves to x and to the start state of Mr+1, if r < m, or just hangs, if
r = m, causing Mr to behave exactly as promised above.

Checking a connectivity. Every Mr,t starts on x in state (r, t, l), trying to decide
whether ξt is l-live. For this, it checks if any of the ûi in br with i ∈ ξt have non-
zero degree in x. If not, then ξt is dead, so Mr,t halts (on x). Else, it moves to y in
state (r, t,r), to check if ξt is also r-live. Reading y, it computes the connectivities
of all vj relative to br, and focuses only on those vj with connectivity ξt. If no
such vj exist, then ξt is dead, so Mr,t again halts (on y). Else, Mr,t iterates over
all such vj , from top to bottom, moving to z to check if any of them is r-live.

Let us first see a naive way to implement this last iteration: From y and in
state (r, t,r), Mr,t finds the topmost vj with connectivity ξt and moves to z in
state (r, t, j, 
). Reading z, it checks whether vj is r-live. If so, then it moves to 	
into qa and then off 	 into qa. Otherwise, it moves back to y in a state (r, t, j, ⊥).
Reading y, it finds the topmost vj′ with j′ > j and connectivity ξt. If none exists,
then it halts (on y). Else, it moves to z in state (r, t, j′, 
), and so on. Of course,
this implementation needs 2h states in each Mr,t (two for each j = 1, . . . , h),
causing the total size of Mr to rise to Θ(h2)—when our goal is only O(h).
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The smart implementation works similarly to the naive one, except for the
following modification. Every time Mr,t moves to z to examine the r-liveness of
some vj , its state is not (r, t, j, 
), but just (r, j, 
). In other words, whenever on z,
the automaton “forgets” the connectivity ξt that it is responsible for. Of course,
this creates no problem in checking whether vj is r-live (since this needs only j).
Still, if vj is not r-live and the automaton returns to y, then it is unclear how it
will continue its iteration over the remaining nodes of connectivity ξt (below vj),
let alone the iteration over the remaining connectivities (after ξt). How will it
manage to do all this, if it has forgotten ξt?

The answer is that the automaton can recover the forgotten ξt from (i) what
it still remembers and (ii) the edges in y. Specifically, whenever vj is not r-live,
the automaton moves from z and state (r, j, 
) back on y and in state (r, j, ⊥).
Reading y, it finds all edges between the nodes of br and vj ; from these, it
computes the connectivity of vj relative to br, which is exactly ξt. Hence, having
remembered ξt, it continues its iteration as if it had never forgotten it.

Put another way, the trick is that Mr,t is not disjoint from the rest of the
sub-automata Mr, . . Although it uses its own states (r, t, l) and (r, t,r) on xy,
it shares with the rest of the Mr, . the states (r, j, ⊥) and (r, j, 
) on yz.

Overview. Returning to M , we see that it has states of the form (r, t, l), (r, t,r),
(r, j, ⊥), and (r, j, 
), where r ∈ [m], t ∈ [k], j ∈ [h]. Namely, its set of states is

S := ([m] × [k] × {l,r}) ∪ ([m] × [h] × {⊥,
}) ,

for a total size of 2mk + 2mh ≤ 4mh, as promised in the statement.
State (1, 1, l) is simultaneously the start and accept state: qs = qa := (1, 1, l).

When in it and on � or 	, the machine stays in the state and moves right (either
to x, to start the search for a live block; or off 	, to accept). This is the only state
used on � and 	. All other states are used only on x, if of the form (r, t, l); or
only on y, if of the form (r, t,r) or (r, j,⊥); or only on z, if of the form (r, j,�).

When in (r, t, l) reading x, the machine checks if some node in br with non-
zero degree in x has its index in ξt (i.e., ξt is l-live relative to br). If so, then
M moves to y and in (r, t,r) to check if ξt is also r-live relative to br. Otherwise,
M “continues the search from x”, meaning that: it moves to (stays on) x and
enters (r, t+1, l) to advance the iteration over connectivities, if t < k; or moves
to (stays on) x and enters (r+1, 1, l) to advance the iteration over blocks, if
t = k and r < m; or hangs immediately to signify rejection, if t = k and r = m.

When in (r, t,r) reading y, the machine checks if any node of column 2 has
connectivity ξt relative to br. If so, then M finds the topmost such node vj and
moves to z and in (r, j,�) to check if vj is r-live. Otherwise (ξt is not r-live),
M continues the search from x (as above).

When in (r, j,�) reading z, the machine checks if node vj has non-zero degree
in z. If so (br is live), then M moves to 	 and in qa to signify acceptance. Else,
it moves back to y in (r, j,⊥) to advance the iteration over nodes which share
with vj the same connectivity relative to br.
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When in (r, j,⊥) reading y, the machine finds the connectivity ξt of node vj

relative to br and searches for the topmost vj′ with j′ > j and the same con-
nectivity relative to br. If such vj′ exists, then M moves to z and in (r, j′,�) to
check if vj′ is r-live. Otherwise, M continues the search from x (as above).

This concludes the definition of the transition function of M . Note that our
description uses transitions (out of the states (r, t, l)) which do not move the
input head, contrary to our definition of 2dfas as machines which always move
(Sect. 2); but this violation can be easily removed, with a standard, well-known
technique that does not change the number of states.

Other than that, it should be clear that M decides 3owlh, as promised. ��

5 Conclusion

Motivated by recent work on reasonable automata [1,3], we initiated a study of
the size of arbitrary 2dfas solving one-way liveness on inputs of constant length.
We gave (i) a more detailed proof of the known fact (from [1]) that Θ(h) states
are necessary and sufficient for length 2; and (ii) a proof of the new fact that
Θ(h2/ log h) states are necessary and sufficient for length 3. This concludes the
discussion for these two lengths and for the asymptotic size.

For longer lengths, the question remains open. For example, we can still ask:
What is the size of a smallest 2dfa solving one-way liveness on four symbols?
The answer is known to be both O(h2) and Ω(h2/ log h) (by the application of
Savitch’s method in [3, Theorems 6 and 7]; and our Lemma 7, which clearly also
extends to four symbols). However, the tight asymptotic growth remains elusive.

At the same time, we still do not know the exact sizes of the smallest 2dfas
for two and three symbols. Finding those sizes would also be very interesting.
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1. Bianchi, M.P., Hromkovič, J., Kováč, I.: On the size of two-way reasonable automata
for the liveness problem. In: International Conference on Developments in Language
Theory, pp. 120–131 (2015)

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)
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