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Abstract. We modify one of the foundational online problems, Disjoint
Path Allocation, to include weighted requests. We provide a comprehen-
sive competitive analysis, incorporating the viewpoints of both advice
complexity and parametrized complexity. Our bounds feature a consis-
tent parametrization and closely trace the trade-off between advice com-
plexity and competitiveness.

Jointly dedicated to an Unceasingly Requested Algorithmist on his three-
score Jubilee.

1 Motivation

Imagine an incredibly intelligent and industrious individual. Take the reasonably
random example of a professor in computer science at a renowned university in
the heart of Europe. Said professor has to meticulously manage his or her time
schedule—we will arbitrarily stick with “his” for the purpose of this paper. He is
invited to an influential school to give its teachers a brief talk on the education
in his field, illuminating computer science’s core principals and providing tried
and tested tools to guide our future generations. As always, the organizers wish
for an immediate confirmation whether he will embrace this offer. Undoubtedly,
he would love to do so; nevertheless, he needs to check whether he is already
booked at the requested time."

Even if the booking remains a viable possibility, however, he is of course
prudent enough to not accept any invitation precipitately. After all, it might
interfere with another opportunity yet to come—envision an extensive exposi-
tion of his educational efforts and an ensuing exemplary execution for the gov-
ernment’s leading officials. Such a feasible future request might fill the available
time window even better, thereby minimizing his idle time. As a conscientious
person valuing reliability, going back on a made commitment is no option to
him, limiting the flexibility even further. In order to cope successfully with all
the diverse and demanding duties, a good guideline for accepting or rejecting
requests is thus indispensable.

We try to help our professor in finding and analyzing the best acceptance
strategies.

! This is the most probable case. Inexplicably, he still finds time to mentor his doctoral
students.
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2 Introduction and Definitions

In this section, we introduce the model of our problem, the necessary formal
framework, and the tools used for its analysis.

2.1 Length-Weighted Disjoint Path Allocation

The task at hand can be described as follows. First, we are given a time span of
length ¢ € IN. It is measured in a reasonable time unit, assumed to be indivisi-
ble. Certainly, we should not be micro-managing single seconds. The time span
can be visualized as a path of length £, as it might appear in a day planner.
Switching from the motivating model to a more tangible example, suppose there
is a meeting room that can be booked, initially available over the entire time
span. Inevitably, an unknown number of reservation requests will start pouring
in. Every request corresponds to a subpath and demands immediate acceptance
or rejection. Once taken, a decision cannot be revoked. Our goal is to mazimize
the room’s occupancy, the overall time it is in use.

This is of course an optimization problem, but also a typical online problem.
Such problems appear abundantly in all areas of computer science. They are
characterized by the fact that a solving algorithm A is forced to produce parts
of the output without complete knowledge of the input.

We now define our problem of Length- Weighted Disjoint Path Allocation on
paths, LwDPA for short, more formally. An instance I consists of a path P of
length ¢ and n requests r;, which are just subpaths of P. An algorithm either
accepts or rejects each request. It cannot accept a request that overlaps a pre-
viously accepted request, where two requests are said to overlap if they share
at least one edge. In this case, we say that they block each other. The requests
accepted by an algorithm A on an instance I constitute the solution A(I) of A
on I. A solution is thus a selection of non-overlapping requests. For a fixed solu-
tion, we refer to the leaves of the accepted requests, that is, the starting and
ending points of the chosen subpaths, as transition points.

The gain of a solution to I computed by A4 is the total length of all accepted
requests, denoted by gain(.A(I)). A solution is optimal if it has the maximum
possible gain. An optimal algorithm OPT produces an optimal solution OPT(T)
with gain gain(OPT(I)) on every instance I. We refer to the accepted requests
of a fixed optimal solution as the optimal requests.

In accordance with the conventional way of defining related problems—see
Subsect. 2.2—we assume that all requests are unique; in other words, no subpath
is offered more than once. Moreover, we assume that the algorithm is not given
the number n of requests beforehand and also does not recognize the last request
as such. This is a severe constraint for any algorithm.

2.2 Connection with Classic Disjoint Path Allocation

Among all researched online problems, the problem of Disjoint Path Allocation
(DPA) is one of the earliest. It has been thoroughly analyzed in many different
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settings [1-3,8]. The difference to our Length- Weighted Disjoint Path Allocation
(LWDPA) lies in a single but significant detail: For DPA, the gain of a solution
is defined as the number of requests it contains; for LWDPA, on the other hand,
we weight the requests by their length. Thus, the gain is the total length of all
accepted requests.

Both DPA and LwDPA can be altered to allow preemption, that is, the
removal of provisionally accepted requests from the solution. The preemptive
model has been the focus of the work by Kovéacova [11]. Nevertheless, it con-
tains a few results for the non-preemptive case. Her Theorems 8, 9, 12 and 13
correspond to the unparametrized special case of our optimality results in Sub-
sect. 3.1, namely Theorems 1 to 4. Theorem 18 gives an upper bound that is
asymptotically improved upon in Theorem 7 by choosing b > 0.

DPA is traditionally motivated by a network wherein permanent commu-
nication channels between pairs of nodes are established. It is unknown what
the connections are used for; consequently, the only goal is to maximize their
number. In contrast, our motivating example of LWDPA illustrates why max-
imizing the number of covered edges will be preferred instead under the right
circumstances.

2.3 Competitive Analysis

Competitive analysis was introduced by Sleator and Tarjan as a tool to measure
the performance of online algorithms [12]. The basic idea is to assess the quality
of the solution computed by an online algorithm by comparing it to an optimal
solution that is calculated offfine, that is, by an algorithm with prior knowl-
edge of the whole input. Note that no limit on the computational complexity
is imposed; enforcing online decisions is restrictive enough. An offline algorithm
can, therefore, always deliver an optimal solution, if necessary by applying brute
force.

In the present case of a maximization problem, the following two notions
enable us to express the mentioned comparison succinctly:

Definition 1 (Strict Competitiveness). A is strictly c-competitive if

gain(OpT(I))
gain(A(I)) —

C.

The best attainable strict competitiveness is 1. This is only achieved if A
always produces an optimal solution. The poorer A’s handling of any worst-
case instance, the larger a ¢ we need to choose.

Definition 2 (Strict Competitive Ratio). The strict competitive ratio of
an online algorithm A is the infimum over all ¢ that satisfy the condition in
Definition 1.

A thorough introduction to online computation and competitive analysis can
be found in the textbook by Borodin and El-Yaniv [4].
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2.4 Advice Complexity

The competitive analysis of online algorithms compares them to offline algo-
rithms. One might say that this sets the bar far too high. Often, an online
algorithm has no chance to come even near the performance of an offline algo-
rithm.

Here, the concept of advice complexity comes into play, offering a more fine-
grained classification of online problems. The aim is to answer the question of
how much information about the complete input is required for an online algo-
rithm to guarantee any given competitiveness. Arguably the most fundamental
question in this regard is how much knowledge about the input suffices for an
online algorithm to ensure an optimal solution. With less information it is gen-
erally more difficult to solve a problem well; hence, a trade-off between the
necessary amount of information and the achievable competitive ratio occurs.

We allow for any kind of information and measure it in bits. We model this
by an oracle with infinite computational power that delivers, in dependence of
the given instance, an infinite binary string of advice bits. This string is provided
to the online algorithm along with the instance in the form of an infinite tape.
The online algorithm may read a prefix of arbitrary length from the tape and
adjust its behavior accordingly. We refer to the read prefix as the advice string
and call its length the advice complexity of the algorithm on the given instance.

An online algorithm that reads at most b advice bits can also be interpreted
as a collection of 2° classic deterministic algorithms, one for each advice string.
Conversely, we need log B advice bits? to simulate B distinct deterministic algo-
rithms.? This viewpoint will come in handy in our proofs.

Across all possible online algorithms, there is a minimum number of advice
bits that must be read to process any problem instance optimally. This minimal
advice complexity can be interpreted as a fundamental property of the problem,
its information content.

The concept of advice complexity was introduced by Dobrev et al. [6] and
subsequently refined by Hromkovi¢ et al. [9], Bockenhauer et al. [3], and Emek
et al. [7]. In particular the work by Hromkovic et al. [9] elaborated on the intrigu-
ing idea of advice complexity as a tool to measure a problem’s information con-
tent. Advice complexity has since been successfully applied to numerous online
problems. For a recent and well-written introduction to both online problems
and the concept of advice, we refer to Komm [10].

2.5 Parametrization

For many online problems, bounds are naturally given as functions of n, the
number of requests. For DPA as well as LWDPA , however, there is the alternative

2 Throughout this paper, log denotes the logarithm to base 2.

3 Note that even [log B] advice bits are necessary. However, we will often omit ceil-
ing and floor brackets and assume divisibility in our proofs for the sake of better
readability.
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to express results in terms of the path length ¢ instead. We present results for
both choices.

Our analysis of the tIwDPA problem is consistently parametrized by kpip
and kmax, a guaranteed lower and upper bound, respectively, on the length
of the requests in the instances. These two parameters are known to both
the algorithm and the oracle. We denote the ratio between these two bounds
by ¢ := kmax/kmin- Naturally, we have 1 < kyin < kmax < £. When we restrict
the instances to requests of a single length, DPA and LwDPA coincide. This cor-
responds to the particular case of kynin = kmax, for which good bounds are already
proven in the bachelor’s thesis by Dietiker [5]; we therefore assume kmin < kmax-
Our parametrized results are a true generalization in the sense that setting
kmin = 1 and kpax = £ yields meaningful bounds on the strict competitive ratio
in the classic sense.

Why would we want to parametrize the LwDPA problem in this way? We
get a good intuition by going back to the motivating example of a meeting
room that is available for booking over a time span of length ¢. Blocks of
5 minutes could be a reasonable time unit, providing sufficient flexibility without
an excessive number of options. Since nobody properly enjoys concise meetings,
we might want to enforce a minimum reservation length of half an hour. With
our parametrization, we can model this by setting knyi, to 6, yielding a min-
imum of kpj, - 5 = 30minutes. One might object that we could have just as
well stretched the time unit to half an hour, with no need for introducing new
parameters. This, however, would leave no option between 30 minutes and a full
hour, thereby preventing a reasonable booking time for, say, a 45-minute exer-
cise class. Imposing upper bounds on the reservation length via kyax, on the
other hand, could make sense in order to avoid permanent reservations and give
everybody a booking opportunity.

Altogether, we see that the proposed parametrization in terms of kp;, and
kmax is well justified and will help us to deal better with boundary conditions
of this sort. Note that ki, and kynax are only bounds on the request lengths
known to the algorithm and not necessarily the actual lengths of the shortest
and longest requests. In the example, we know that every meeting will last at
least half an hour; however, this does not mean we can count on the appearance
of a booking request for a 30-minute meeting.

3 Results

This section presents all of our results for LWDPA in consistent parametrization.
It is structured as follows.

In Subsect. 3.1, we give upper and lower bounds on the amount of advice
bits needed to achieve optimality. In Subsect. 3.2, we prove a tight bound on the
strict competitive ratio of the problem without advice.

Subsection 3.3 bridges the gap between these two extremes; we present results
that trace the trade-off between strict competitiveness and advice complexity.
The first one, Theorem 6, is an upper bound witnessed by an intelligent greedy
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algorithm. It performs exceptionally well with only few advice bits. The perfor-
mance deteriorates quickly with increasing advice complexity, however. Theo-
rem 7 cures this shortcoming with an advice-assisted preprocessing; it is well-
suited for situations where much advice is available. The last two theorems give
the complementing lower bounds. Theorem 8 is a good match to Theorem 6;
it features a hard instance set that is tailor-made against the greedy approach.
Theorem 9, on the other hand, is a rather technical but all the more flexible
result, yielding multiple useful corollaries.

The conclusion in Sect. 4 recapitulates the results and discusses what light
they shed on the advice complexity behavior of LWDPA.

3.1 Optimality

This subsection answers the question of how much advice an online algorithm
needs in order to produce an optimal solution to every instance. Theorems 1
and 3 give an answer that depends on n, whereas Theorems 2 and 4 address
the question in terms of the path length ¢. It is worth noting that we have two
closely matching pairs of upper and lower bounds and even a perfect match in
the unparametrized case of ki, = 1 and kyax = £.

Theorem 1. Optimality can be achieved with n advice bits.

Proof. The oracle chooses an arbitrary but fixed optimal solution. Then, the
oracle specifies for every request whether it is part of this solution or not, using
n advice bits. Whenever the algorithm receives a request, it reads the next
advice bit from the tape and accepts or rejects accordingly. This strategy does
not depend on the values of ki, and kpax. O

Theorem 2. Optimality can be achieved with (£ — 1)/kmin - (1 + 210g(kmin))
advice bits.

Proof. Before we describe how the oracle determines the advice given to the
algorithm A, let us consider the subpaths of P consisting of ky, vertices. We
first show that in any optimal solution to an instance I, any such subpath can
contain at most two transition points. For the sake of contradiction, fix some
subpath S of length kmin — 1 and some optimal solution OPT(/) and assume
that S contains at least three transition points of OpT(I). Then we can pick
three consecutive transition points from S and call them (from left to right)
u, v, and w. Since v is the middle transition point, OPT(I) must contain at least
one of the requests (u,v) and (v, w). However, since S only contains ki, vertices,
the subpaths (u,v) and (v,w) both have length at most kpi, — 1 and are thus
shorter than the minimum guaranteed request length. Hence, they can neither
be part of the instance I nor OpT(I), yielding the contradiction.

As depicted in Fig. 1, we now divide the ¢ — 1 inner vertices of the path P
into (¢ — 1)/kmin segments containing ki, vertices each. For the given input
sequence I, the oracle chooses some arbitrary but fixed optimal solution OPT(T)
and uses the advice bits to indicate the positions of the transition points
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Fig. 1. An example of a possible optimal solution OpT(/). The dashed lines indicate
the segments containing kmin vertices each. The bit string underneath indicates all
transition points of OpPT(I), enabling A to act optimally on I. The algorithm can
deduce this string by reading only 1 + 2log kmin advice bits per segment.

of OPT(I) in each segment. To calculate the number of advice bits necessary, let
us count the number of cases the oracle has to distinguish. Taking into account
that the number of transition points in a segment might be two, one, or zero,
the number of different possible combinations that have to be distinguished is

kmin kmin kmin -1 2k:min 2 kz i kmin 2
<2>+kmin+1: ( 2)+ + _ mm—’—2 + ,

which can be bounded from above by 2k2, . The number of advice bits necessary
to encode that many different possible combinations of transition points per
segment is

=1 a2,y = L1

- (1 + 2log(kmin))-

kmin kmin

The algorithm A reads exactly this many advice bits. (It can do so even before
the first request arrives.) From this information, .4 can derive all transition points
of OPT(I) except the first and last vertex of P, which can always be treated
as transition points. Now it only has to accept every presented request whose
starting and ending points coincide with two successive transition points, and
reject all others. This way, A never accepts any requests that block any requests
from OpT(I). Hence, A accepts all requests from OPT(I) and must be optimal
itself. O

For these two upper bounds, it was sufficient to provide an algorithm with
the given advice complexity that performs optimally on all instances. For the
corresponding lower bounds, we now take the adversary’s position and show that
there is always an instance that the algorithm will solve suboptimally, unless
given a certain number of advice bits.

Theorem 3. Atleastn—1—|(n—1)/(kmax — kmin + 1) | advice bits are needed
for optimality.

Proof. We describe a set Z of instances such that no deterministic algorithm can
solve two of them optimally. This implies that an optimal algorithm must be
able to distinguish them all, so log(|Z|) advice bits are required.

To give a lower bound in n, we can choose the path length as large as nec-
essary. We fix it to be ¢ := nkp, for all instances from Z. Every instance
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is presented in k blocks that consist of iy,...,i; requests, respectively; hence
i1+ -+, = n. The first block has i1 requests of lengths kyin, - - ., kmin +71 — 1;
they are all aligned on the left endpoint and presented in increasing order. All
following blocks are constructed in the same way: Block j has i; requests of
lengths Kmin, ..., KEmin +%; — 1, aligned as far as possible to the left, without
overlapping the previous block. See Fig.2 for an example. Every new request
protrudes further to the right: by 1 if it stays in the same block, and by ki, if it
starts a new one. Thus, the path length ¢ = n - kp;, is indeed just large enough
to accommodate all of them.

The optimal solution, obtained by accepting the last request of each block
and highlighted in Fig. 2, is unique. Hence, already a single mistake prevents
optimality. We prove now that a deterministic algorithm cannot handle any two
such instances I # I’ optimally, but will make a mistake on one of them. The
requests for I and I’ are identical up to some point. Let r; be the first request that
differs between them. Like every request, r; either starts a new block or continues
an existing one. Only in the former case is r;_; the last request in a block and
has to be accepted. Since the deterministic algorithm cannot distinguish the two
instances before r; is presented, it is bound to make a mistake on one of them.

It remains to give a good estimate on the number of instances in Z. For
this, we consider how these instances can be constructed step by step, adding
the n requests one after another. The first request in the first block is identical
for all instances; it has length kp,. In each of the following n — 1 steps we
can either start a new block with a request of length k,;, or—if the preceding
request is shorter than k,.x—extend the current block downward by a request
that is one unit longer. The second option is excluded only if the preceding
request has the maximum length k... How often can this situation, namely a
request of length k.« preceding another one, occur at most? There are n — 1
requests preceding another one. Also, any block featuring a request of length ky,ax
comprises kmax — kmin + 1 requests. Therefore, the answer is

n—1
d:= \‘kmax_kmin‘k]-J.

Thus, we always have at least n — 1 — d binary choices during the construction
of an instance and the number of different instances is bounded from below
by |Z| > 277179, As a result, the required number of advice bits is at least
log|Z| >n—1—d. O

Theorem 4. At least £/kmin — 1 — | (¢/kmin — 1)/ (kmax — kmin + 1) | advice bits
are needed for optimality.

Proof. The approach from the proof of Theorem 3 works here as well. In fact,
we can use the exact same set Z of hard instances. To obtain a lower bound that
now depends on ¢, we are free to choose the number n of requests conveniently.
Since we had ¢ = nkpy;, for all instances from Z before, we now set n := ¢/kmpin.
Using this to substitute n in Theorem 3 directly yields the desired result. O
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Fig. 2. An instance I € Z with kmin = 2, kmax = 5, n = 13 and k£ = 5. Requests are
presented from top to bottom and from left to right. The highlighted optimal solution
contains the last request of each block. Each block is adjacent to the previous one.

3.2 No Advice

Having explored the boundaries on advice complexity for optimality, we now
turn to the opposite end of the spectrum: What is the best strict competitive
ratio achievable by a classic online algorithm operating without advice? First,
we analyze the strict competitive ratio on only a subset of the requests, for
which even better lower and upper bounds on the request lengths might apply.
In Lemma 1, we give a case-based upper bound for this scenario, and we extract
a more general bound that encompasses all cases in Corollary 1. Although the
advantage of considering only subsets of requests may not be obvious at first,
this will prove to be useful for Theorem 6 in the next section. Additionally, we
can directly derive from Lemma 1 a greedy algorithm that is given in Theorem 5,
together with a perfectly matching lower bound.

Lemma 1. Let I be some input sequence for LWDPA and let I' C I be a subset
of its requests. Moreover, let k1 and ko be lower and upper bounds, respectively,
on the lengths of all requests from I', with kyin < k1 < ko < kpax. Then, the
strict competitive ratio of GREEDY —the algorithm that accepts every request
that is not blocked yet—on the requests from I' is

ko if ky =1,
c < (2k2+/€1)/(1€1+2) Zf k122andk1+1<k2<k%/4,
2ka /Ky otherwise.

Proof. The worst case for the greedy algorithm occurs in different situations,
depending on the lengths k1 and k. We distinguish several cases depending on
the length of an accepted request in comparison to the length of the subpath
which the blocked requests could have covered otherwise. All relevant cases are
depicted in Fig. 3.

If k1 = 1, only the cases depicted in Fig.3a and 3b can occur. In the case
corresponding to Fig.3a, GREEDY accepts one request of length k1 = 1, which
later blocks an optimal request of length ko, leading to a strict competitive
ratio of k. In the case corresponding to Fig.3b, GREEDY accepts a request
of length ki + 2, which blocks three requests appearing later: One request of



240 E. Burjons et al.

O0-0-0-0-00 0000000000000 O—-0-0-0-0-0—0-0-0-00
Ik l I ki + 2 l I k l
;2 1 k2 |1k1 1 ko | 1 k2 | 1 1 k2 |
<k —2
(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 3. The highlighted requests are those accepted by GREEDY. The three figures
show which requests can be presented afterwards such that the worst case for GREEDY
occurs, depending on k1 and k2. In case 1, a request of length ki is accepted, blocking
an optimal request of length k2. This situation can always occur, independently of the
values k1 and kg. Case 2 is only possible if k2 > ki + 2. Here, an accepted request
of length k1 + 2 can block one request of length ki and two requests of length ks. In
case 3, two requests of length ko are blocked by one accepted request of length k;. This
can only happen if k1 > 2.

length k1 = 1 and two requests of length ko, yielding a strict competitive ratio
of (2kg + 1)/3 < ko. The strict competitive ratio in the case k; = 1 is thus
C S kg.

If k1 > 2, we further distinguish two subcases. If ko < k1+1, the case depicted
in Fig.3b cannot occur. We can quickly convince ourselves that, under this
assumption, the worst case realized in the situation of Fig. 3c is where GREEDY
accepts one request of length k; which blocks two requests of length ko. This
gives us a strict competitive ratio of ¢ < 2kqo/k7 in this case.

If &y > 2 and ko > k1 + 2, the worst case occurs when requests are presented
according to Fig. 3b or 3c. (Requests may also be presented according to Fig. 3a;
however, requests arriving according to Fig. 3c always ensure an even worse per-
formance of the greedy algorithm.) We have to distinguish two further subcases;
ko > k?/4 and ko < k3/4. In the former case, the worst-case strict competitive
ratio is 2ky/kq, as

2ko ng(kl + 2) . 2koky + 4ko > 2kok1 + k% . 2ko + k1

ko ki +2) ki(ki+2) T ki(k+2) k42

Analogously, in the case that ko < k7 /4, the strict competitive ratio obtained in
the worst case is (2kg + k1)/(k1 + 2). O

Corollary 1. Let I be some input sequence for IWDPA and let I' C I be a
subset of its requests. Moreover, let kv and ko be lower and upper bounds, respec-
tively, on the lengths of all requests from I', with kyin < k1 < kg < knax. Then,
the strict competitive ratio of GREEDY on the requests from I' is bounded from
above by 2ko k1 + 1.

Proof. We only have to consider the three different cases from Lemma 1 and
make sure the strict competitive ratio is bounded from above by 2ko/k; + 1 in
each case. It is obvious that the claim holds for the first and the last case. For
the second case, we make the following transformation.
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2ko + k1 < 2ko + k1 _ 2ko

— 4+ 1.
ki +2 k1 k1 * o

Theorem 5. There is an online algorithm without advice, namely GREEDY,
that has a strict competitive ratio of ¢, and no online algorithm without advice
can have a strict competitive ratio better than c, with

kmax Zf kmin = 1,
¢c= (2kmax + kmin)/(kmin + 2) 'Lf kmin Z 2 and kmin +1< kmax < k12nin/47
2kmax/kmin otherwise.

Proof. The first part of the statement follows directly from Lemma 1 by set-
ting I’ := I, k1 := kuin, and kg := kpax.

For the second part, we make the following considerations. Since we cannot
use any advice bits, we only have one deterministic algorithm available. Thus,
let A be some arbitrary but fixed deterministic algorithm for twDPA. We show
that for any combination of knin and knax, there is a hard set of two input
sequences for A that leads to the strict competitive ratio mentioned in the the-
orem. The hard input sequences we consider are derived from the worst-case
scenarios depicted in Fig. 3. If ky;, = 1, we consider the input consisting of only
one request of length 1 and the input consisting of this request and a second
one of length k. underneath it as depicted in Fig.3a. The algorithm A can
either accept the first request, leading to a strict competitive ratio of kpyax on
the second of these two inputs, or reject it, leading to a strict competitive ratio
of 1/0 on the first of the two inputs. Overall, A cannot have a strict competitive
ratio better than kpax.

Similarly, we can construct hard input sequences for the case that ky, > 2
and kpin + 1 < knax < kfnin /4 according to the scenario depicted in Fig. 3b, and
those for the remaining case according to Fig. 3c.

In all three cases, we choose the length of the path just long enough for all
requests to fit in; this is ¢ := kpax in the first case, £ := 2kpax + kmin in the
second, and £ := 2kax + Emin — 2 in the third case. O

3.3 Trade-Off

Having covered the two extreme cases, classic online algorithms and optimal
online algorithms with advice, we now we now strive to find the best possible
behavior in between, balancing out advice complexity and strict competitiveness.
Theorem 6 proves an upper bound by describing a class-based greedy algorithm.
It is a great choice when only few advice bits are given, but less so with increasing
advice complexity. Corollary 2 shows that it cannot undercut a strict competitive
ratio logarithmic in ¢ := knax/kmin, €ven when reading arbitrarily many advice
bits. This problem is remedied by Theorem 7, which incorporates the approach of
Theorem 6, but also makes efficient use of ample available advice by performing
a sort of preprocessing.
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Finally, we prove two lower bounds. Theorem 8 is evidently a counterpart to
Theorem 6, with the same order of magnitude for a constant number of advice
bits. Theorem 9, on the other hand, states a very versatile, albeit quite technical
result. The two Corollaries 5 and 6 bring it in a more applicable form. The first
one improves on the lower bound of Theorem 8 in the case of a strict competitive
ratio logarithmic in ¢; the second one yields the missing lower bound for even
larger advice complexities, complementing Theorem 7 and Corollary 3.

Theorem 6. There is an online algorithm reading b bits of advice that has a
strict competitive ratio of ¢ < 20 - (2 . 2W + 1).

Proof. The following is a variation of the randomized strategy Classify and Ran-
domly Select for DPA, first proposed by Awerbuch et al. [1], adapted to LwDPA
in our advice setting.

We divide the requests of the input sequence I into 2° classes according to
their lengths. Let class C; contain all requests of length k; with

kmin . 2b\/ Qai_l S If7, < kmin : ZW

for all i with 1 < i < 2° and let Cy additionally contain all requests of
length kin.x. This way, each request is contained in exactly one class since
Kmin 2 00 = kpin and kpiy - 2W = Kmin * © = kmax. Furthermore, let A; be
the deterministic algorithm that accepts all requests from class C; greedily and
rejects all others. The oracle specifies the algorithm A* € {A1, Aa, ..., Ay} that
has the largest gain on I among all algorithms A;. Let us denote this maximum
gain by a* := gain(A*(I)). To specify A*, the oracle uses b advice bits.

Now let us consider some arbitrary but fixed optimal solution OpT(I). Plug-
ging k1 := kyin - 2/ o=l and kg := kyin - 2W into Corollary 1, we can deduce
that for all 4, OPT(I) has a gain of at most

% 2]€2 % 2kmin' 2\b/ QDZ %
a(+1>:a<W+1 :a(22W+1)

on the requests from Cj.
As the overall gain of OPT(I) can be at most the sum of the gains on all
20 classes, we obtain

gain(Opr(I)) < 2°-a* - (2- ¥/ +1),
and hence the strict competitive ratio of A* on I is

gain(Op(I)) _2°-a"-(2- /o +1) b (9. ot
(A1) S = =20 (2. Yp+1).

O

As mentioned above, the algorithm of Theorem 6 is most efficient for little
advice. For no advice at all, b = 0, we get ¢ < 2¢ + 1; this coincides with the
upper bound that we get from Corollary 1 for the adviceless greedy algorithm
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Fig.4. An example with path length ¢ = 16. The requests are those of the fixed
optimal solution on the bases of which the advice is given. There are £ — 1 = 15 inner
vertices, gathered into groups of size s. The top part of the figure gives the advice
string that results from groups of size s = 3. Underneath, the advice string for s = 1
is given. From this string, we can easily deduce the advice string for general s > 1 by
conjoining the bits groupwise.

on the complete input sequence I by plugging in k1 := ki and ko := kpax. For
a single bit of advice, b = 1, the bound reads ¢ < 2-(2,/¢ +1). This is a marked
improvement for large ¢, whose influence is dampened significantly. We pay
with an additional factor of 2° = 2, however. This problem exacerbates quickly
with increasing advice complexity. In fact, there is a threshold beyond which
more advice even worsens the bound. The standard method for finding extrema
reveals it to be b = log(Inp/(1 4+ W (1/(2e)))), where W (x) is the Lambert W
function. For this value, Theorem 6 yields its lowest upper bound on the strict
competitive ratio: There is a strictly (4.41 - log ¢)-competitive online algorithm
that reads loglog¢ — 0.73 advice bits. The following corollary provides a more
tangible bound in the same order of magnitude.

Corollary 2. There is a strictly (5logy)-competitive online algorithm that
reads loglog ¢ advice bits.

Suppose now that a rather large amount of advice is available, ¢ or £/2 bits
for example. Only a tiny fraction of advice can be put to good use in the approach
of Theorem 6; most of it would be wasted on the algorithm. Theorem 7 shows
how to use this otherwise superfluous advice in a kind of preprocessing. The
underlying idea is that the oracle first gives information about transition points,
similarly to the optimal algorithm of Theorem 2. If the advice does not suffice
to communicate their locations exactly, we reveal them only approximately in
a way that is useful nonetheless. In essence, this first bulk of advice allows us
to predict all long optimal requests with reasonable accuracy and ensure that
enough of them will be accepted. The remaining advice can be spent in the spirit
of Theorem 6 on the remaining requests, with a virtual upper bound of 2s — 1
taking the place of kpax-

Theorem 7. For any s > 1 and any b > 0, there is an online algorithm that
is strictly max{6 — 8/(s +1),2°(2- %/(25 — 1) /kmin + 1)}-competitive and uses
(6 —1)/s+ b advice bits.

Proof. Asusual, the oracle fixes an optimal solution; let r1, ..., 7y be its requests.
Any request r; is a subpath with two leaves plus a set R; of inner vertices. This
set is empty if and only if the request has length 1. Since two requests r; # r;
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of a solution cannot overlap, any two sets R; # R; are separated by at least one
vertex; we will use this below. The given path of length ¢ contains exactly ¢ — 1
inner vertices. We gather these into groups G;, each of size s, as illustrated in
Fig. 4 for s = 3. For every group G;, the oracle communicates to the algorithm by
a single bit b; whether the group’s vertices are enclosed within a single optimal
request, that is, b, =1 <= 3j € {1,...,k}: G; C R;. This requires one bit per
group, hence (¢ — 1)/s bits in total.

How does this information help us? We begin with the case s = 1. Here, the
advice reveals the exact location of all vertices of all R;. Remember that R; is the
set of inner vertices of r;. Since these sets are pairwise separated, we can directly
infer the exact position of all requests r; containing any inner vertex, that is, all
optimal requests of length 2 or greater. Hence, the algorithm can reserve these
subpaths and accept the fitting requests whenever they appear. The requests of
length 1, in contrast, need to be accepted exactly if the reservations allow for it.
Indeed, either they are blocked by longer optimal requests and can therefore not
be part of the chosen solution; or they can and must be included in the solution
by its optimality. The algorithm will thus reconstruct an optimal solution, using
only ¢ — 1 advice bits.

Now to the general case s > 1. The advice bit of a group G; is still 1 if and
only if there is a request r; that encloses all its vertices, that is, G; C R;. If
this is true for two neighboring groups, they must be contained within the same
request, that is, G;,G;41 € R;, since the R; are pairwise disjoint. The groups
are also disjoint, so |G;|+|G;+1| < |R;|. By the same reasoning, we see that any
substring B of the advice string that consists of | B| consecutive ones stands for
| B| groups whose |B|- s vertices are inner vertices of a single optimal request r;;
hence |B| - s < |Rj].

Denote the set of all maximal substrings of ones by B. For any B € B, we
can state an upper limit of |R;| < |B|s + 2(s — 1). Otherwise, the substring
would not be maximal: The upper bound is attained if and only if R; overlaps
the vertices of the groups corresponding to B by s — 1 vertices on each side. If
the overlap were any larger on either side, then the respective neighboring bit
of the substring B would also have been set to 1 instead of 0, contradicting the
maximality.

This insight about R; translates directly to r;, the optimal request associated
with B; just add the two leaves: For the upper limit, r; covers exactly |B| + 2
groups, those of B plus one additional on each side; its length is therefore (|B|+
2)s — 1. The lower limit is attained if r; only contains the two leaves in addition
to the inner vertices of the |B| groups. In this case, the length of r; is |B|s + 1.
Thus, the optimal solution’s gain associated with block B stays in the range
[|B|s+1,(|B| +2)s — 1].

Now, we might hope for our algorithm to accept at least one request within
the described boundaries for each substring; this would result in a lower bound
of Y pepg|Bls +1 < gain’(A(I)), where gain’ denotes the gain from requests
that cover at least one group. Since there exists at least one fitting request for
each block, namely r;, the algorithm could just wait for the first one. Due to
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the mentioned potential overlap on either side, it may happen, however, that an
accepted request for one substring blocks all suited requests of the next substring.
In fact, this is only possible for two neighboring substrings that are separated
by a single 0. This might be the case for all substrings, however. So we forego
our unrealistic hopes on every second substring B € B and focus on the others.
For those, we can now reserve subpaths of size (|B| + 2)s — 1, large enough to
ensure an accepted request within the given range.

Among the two possible choices of alternate substrings of ones, the algorithm
picks that with the larger grand total of ones. This way, the actual lower bound
gets cut down to no less than half of what we have calculated above,

1
5 > [Bls +1 < gain’(A(I)).
BeB

For the optimal solution, we have gain’(OPT(I)) < 3 5. z((|B] +2)s — 1). The
strict competitive ratio on the reserved subpaths can therefore be bounded by 6:

gain’(OpT(I)) <949 2 BeB (25 - 2)

8
SRy < §2+22S+274:6*
gain’(A(1)) S pes (1Bls +1)

s+1 s+1°

We have not yet accounted for the gain on the unreserved subpaths. For this
part, all optimal requests went undetected by any advice bit. Hence, they have a
length of 2s—1 or less, as seen by setting | B| = 0 in the range established above.
The algorithm can thus greedily accept all requests with lengths up to 2s — 1
and be strictly (2s — 1)-competitive on this remaining part. Employing the more
sophisticated greedy approach of Theorem 6, we achieve a strict competitive
ratio of 2°(2 - %/(2s — 1)/kmin + 1) by granting b additional advice bits. This
way, the algorithm uses (¢ — 1)/s + b advice bits overall and guarantees

gain(OpPT(I))

iy <ma{o— 2 (2 V@D +1)} O

The following corollary extracts a more accessible result from Theorem 7 that
will later be complemented by Corollary 6.

Corollary 3. For any constant k > 6, the number of advice bits sufficient to
achieve a strict competitive ratio of ¢ < k is at most

-1 k ¢
R —— - .
2k/5'kmin+1+ Og<5) Eo(kmin>

Proof. We plug the values s := (2%/° - kpin +1)/2 and b := log (k/5) into Theo-
rem 7 and obtain that there exists an algorithm with a strict competitive ratio
of at most

c:max{6—8 E(2~ k/\5/2k/5—|—1)} <max{6,£(2-24+1)} =k

s+1°5
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Fig.5. The 2° + 1 requests 7o,...,7q of Iy € Z.

and an advice complexity of

(6—1)-2 k ¢
b= % e (Z)eo . O
o5 kv 18\ ) €N

The following lower bound is a good match for Theorem 6 in the case of a
constant number of advice bits.

Theorem 8. No online algorithm reading at most b advice bits can have a strict
competitive ratio better than %/p.

Proof. Let f(i) := kmin - 3/¢" for all i with 0 < i < 2°. Note that f(0) = kumin
and f(2°) = ¢ - kmin = kmax. For any number b of advice bits, we consider the

following set Z = {Io,..., I} of instances. Instance I, presents 2° + 1 left-
aligned requests 79,...,79 of increasing length f(i), as illustrated in Fig.5.
Instance I; € T presents only the first ¢ + 1 of these requests, namely 7, ..., r;.

With b advice bits, we only have 2° deterministic algorithms available, and
thus at least two out of the 2° + 1 instances from Z must be processed by the
same deterministic algorithm. Hence, let A denote a deterministic algorithm that
processes at least two instances from Z and let I; and I; with ¢ < j be two of
the instances processed by A. The gain of A on any instance I, is

sain(A(LL)) = {f(t) if A accepts a request 7, with ¢ <s, and

0 otherwise.

The optimal gain for any I is f(s), of course. The two instances I; and I,
are identical for the first 7 4+ 1 requests; hence, A must treat them the same way
up to this point. We distinguish two cases and show that A performs badly on
at least one of the instances I; or I; in both cases:

First, if A does not accept a request 1, € {ro,...,r;}, then its gain on I; is
gain(A(I;)) = 0 and the strict competitive ratio is unbounded. Second, if A does
accept arequest ry € {ro,...,r;}, thenits gain on I; is gain(A(f;)) = f(t) < f(4),
which leads to a strict competitive ratio of

_f(]) f(j) f(2+1) _ 2b\/ (pi+1'kmin __ ob
TS0 D T ek VE
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This means that no matter which algorithm A is used for two instances
from Z, on one of these two instances the strict competitive ratio cannot be
better than 2/¢. O

The following proof of Theorem 9 adapts a method from Gebauer et al. [§]
that has been used to analyze the unweighted and non-parametrized disjoint
path allocation problem on paths. First, we need a result that is proven in the
mentioned paper. It is a slight variant of a bound for the tail of the hypergeo-
metric distribution.

Fact 1 (Corollary 1 from Gebauer et al. [8]). Let X be a discrete random
variable with a hypergeometric distribution with parameters M, N, and n, and
lett > 0. Then, for every M' < M, we have

M’ 2
Pr(XSn-N—tn> <e 2

We construct a set Z of instances which is hard for many deterministic algo-
rithms at once and thereby show that many deterministic algorithms are nec-
essary to achieve a good strict competitive ratio on all instances from Z. For
the time being, we choose three parameters x,y, and z with z,y,z € IN>; and
construct the set Z subject to those parameters to obtain a result as general as
possible. The parameters are chosen in such a way that the following require-
ments are satisfied.

r < logy, (1)
y <log (¢/kmin) — 22, and (2)

z</2Y/lnz. (3)

The general result we obtain eventually, depending on the variables x and z,
is the following.

Theorem 9. Let x,z € IN>;. For any x < logy and z < \/E/(kmin -4% . lnx),
any online algorithm for IWDPA needs to read at least

l loge
kmin 22 -4

b=

—logx

advice bits to obtain a strict competitive ratio of

x+ 2
052.@+3y

Proving this will be the goal of our subsequent considerations. Afterwards,
we will also see how to choose reasonable values for the parameters to get less
general but more expressive statements. More specifically, we will derive two
corollaries from Theorem 9, which will give us almost matching lower bounds to
two of the upper bounds proven above. Before we prove Theorem 9, however,
we will have to make the necessary arrangements.
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0 4 8 12 16 20 24 28 32

AT

Fig. 6. An example for £ = 32, kmin = 1, x = 2, and y = 1. The dashed lines indicate
the segments. There are 2°7Y = 8 segments of width 22 - kmin = 4 each, and requests
appear in z + 1 = 3 phases; 8 requests of length 1 in phase 0, then 4 of length 2 in
phase 1, and 2 of length 4 in phase 2. Good requests are marked by thick lines.

71

Let us start with a description of how to construct the hard instance set Z.
In each instance, requests are presented in x + 1 phases, starting with phase 0.
We divide the path into 2*™¥ segments of width 2% - ky,;, each, and all requests
presented during the whole computation are always aligned with the left border
of the respective segment. Phase 0 contains 2**¥ requests of length 2° - kyin
each, one in each segment. In each phase ¢ with 1 < i < z, we choose exactly
half of the segments that contained requests in phase ¢ — 1 and present a request
of twice the size in those segments. Let us call a request good if it has no further
requests underneath and bad otherwise. Figure 6 shows an example.

Let us define h := z 4+ y. We make the following observation.

Observation 1. For each i with 0 < i < x, phase i contains 2"~ requests of
length 2* - kyin each.

We have to check two points concerning the presentation of requests: First,
whether the path is long enough to hold all segments, and second, whether all
requests have lengths between kpin and kpax. Our requirement (2) ensures the
first point, as

£
2m+y A kmin = 22x+y : kmin < 210g (m> . kmin =/

Furthermore, according to Observation 1, all requests are between 2° - kuyin
and 2% - ki, in length. So all requests are large enough, and requirement (1)
ensures that no requests are larger than ky,.x, since

27 . kmin < 2logg9 kmin = @ - kmin = Fmax-

For all instances constructed in the way described before, the gain of their
respective optimal solutions is the same, as stated in the following observation.

Observation 2. For each instance I € I, the gain of the optimal solution is
gain(OPT(I)) = (x4 2) - kmin - 2" 1.

Proof. The optimal solution contains exactly all good requests. For each phase,
these are exactly half of the requests presented, except for the last phase, in
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which all requests are good and hence contained in the optimal solution. Thus,
using Observation 1, the gain of the optimal solution on each instance I is

G2 2,
gain<OPT(I)) = (Z 211'1111> + 2h_£ . szmin = (a? + 2)kmin . 2h_1.
=0

O

The set Z can be represented by a tree in which each vertex corresponds to a
subset of instances. The depth of this tree is = (i.e., it has x + 1 levels); the root
on level 0 represents all instances from Z, and every vertex on level i represents
the set of all instances with the same particular set of requests in phases 0, ... ;3.
Every leaf is located on level x and represents a single instance from Z. The
same tree representation of Z has also been used by Gebauer et al. [8]. However,
it is worth mentioning that in our case, the vertices of the tree have a different
number of children since we construct the instances from Z in a different way.

Consider some vertex v on level i and the corresponding set of instances Z,,.
Now consider any deterministic algorithm A, given an arbitrary instance from
7T, as input. Then A is in the same state during the whole computation up to
and including phase 7, independently of the exact instance from Z, that A is
given, meaning that it sees and accepts the exact same requests up until the end
of phase 1.

From now on, let A be arbitrary but fixed. For a given vertex v on level i,
let a(4) be the number of accepted requests of A on any instance from Z,, during
phase ¢, and let g(¢) be the gain of A achieved during phase . Obviously, due to
Observation 1,

9(i) = a(i) - 2" - kmin- (4)

Moreover, let us define (i) to be the gain that A achieves in all phases up to
and including phase i and, in accordance with this definition, §(—1) to be the
total gain of requests accepted before the start of computation. Hence,

(i) == _g(j) and §(-1):=0. (5)
=0

Now let us define the sets of requests B(i) and BT (i) as follows. Let B()
be the set of requests from phase i that are already blocked at the beginning of
phase i. Let BT (i) be the set of requests from phase 4 that are blocked at the
beginning of phase ¢ + 1, including those that were accepted during phase ¢ and
are now blocking themselves.

We call a phase i bad for A if B(i) contains at least

I [ Y N
d’b o 2t ( kmin z 2 (6)

requests and good otherwise. Moreover, let us call a vertex v on level ¢ bad
for A if, when given an instance from Z,, as its input, phase ¢ is bad for A, and
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otherwise let us call v good for A. Since each instance corresponds to a vertex
on level x + 1, an instance is bad for A if and only if phase x + 1 is bad for A.

Observation 3. If at least d;11 requests from B (i) are bad, then phase i + 1
is bad for A.

Proof. As defined before, B*(i) is the set of requests from phase i that are
blocked at the beginning of phase ¢+ 1. If at least d;11 requests of those are bad,
then at least d; i1 requests are presented in phase 7 + 1 that are already blocked
at the beginning of phase ¢ + 1; this matches the definition of a bad phase. O

Lemma 2. For each bad vertex, the fraction of bad vertices among its children

s at least
1-— e_2y/22.

Proof. Let v be a bad vertex on level i. Since v is bad, phase ¢ must be bad
for A when A is given any instance from Z,, as input. Thus, B(¢) must contain at
least d; requests. As A accepts a(i) requests in phase 4, the set BT (i) contains
at least d; 4+ a(i) requests. According to Observation 3, if at least d; 1 requests
from BT (i) are bad, phase i+ 1 is bad. Hence, a sufficient condition for a child w
of v to be bad is that at least d; ;1 requests from B¥ (i) are bad when A is given
an instance from Z,, as input. Thus, we have the following scenario. There are
N := 2"~ requests in phase i; out of these, M > M’ := d; + a(i) are blocked
at the beginning of phase i + 1 and hence contained in BT (i). Each child w of v
corresponds to the set of instances in which the same set of n := 2*7*~1 requests
from phase ¢ are bad. This in turn corresponds to the following. We have an urn
containing N balls, out of which M > M’ are black; we draw n balls without
replacement, and we are interested in the probability that the number of black
balls drawn is at least d;11.

Let X; be the random variable counting the number of bad requests
from BT (i) in this scenario. X; has a hypergeometric distribution with param-
eters M, N, and n, and we are interested in Pr(X; > d;11).

We can bound the probability

M’ ta(i)—t.oh—i
Pr(Xi <n- A —tn) = Pr(X,» < %)
from above for any ¢t > 0 by using Fact 1. We obtain

d; + CL(Z) —t.2h
2

2 2 gh—i—1 2 oh—1
Pr <Xz S ) S 97275 no_ e72t -2 — eft -2 . (7)

Using (5) and (6), we get

_ (9@ il oy L (a1 9@ i on 1o
d¢+1—2i+1( — -2 = 5 + _;.2 _;.2 .

kmin z kmin kmin
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Doing further transformations using (4) and again (6), we obtain

6(i—1) i i (i ;
% . (79](%““) — L. 2" 421 a(i) — % . Qh) di+a(i) — % . gh—i
2 Bl 2 '

dit1 =

Combining this result with (7) and choosing ¢ := 1/z yields
_gh—i v
1.9 ) e

and since h —i > y for all ¢ with 0 < ¢ < z, we finally obtain that for all such 1,

I

2

Pr(X; >diy1) >1—Pr (Xi <

Pr(X; > di) > 1—e /% 0

From the fraction of bad vertices among the children of bad vertices, we can
now draw conclusions concerning the fraction of bad vertices on each level.

Lemma 3. The fraction of bad vertices on level i is at least

(1 - e_2y/z2)i.

Proof. We prove the claim by induction on 7. For the base case, we consider the
root, the only vertex on level 0. The root is bad if phase 0 is bad for A, and
phase 0 is bad for A if at least dy requests from phase 0 are already blocked at
the beginning of phase 0. This is obviously the case as dy = 0 according to (5)
and (6). Hence, the root is a bad vertex and thus the fraction of bad vertices on
level 0 is 1, which is at least

(1 — efzy/ZQ)O =1.

For the induction step, let us assume that the claim holds for level ¢ — 1. Let
us define v(4) to be the number of all vertices on level ¢ and b(¢) the number of
bad vertices among those. Moreover, let ¢(i) denote the number of children of
each vertex on level i. As a final definition, let f (i) be the fraction of bad vertices
among the children of each bad vertex on level i. Lemma 2 states that f(i) > 1—
e=2"/2 for all 4, and by the induction hypothesis it holds that b(i — 1)/ v(i—1) >
(1- e*2y/z2)i’1. Using Lemma 2, the induction hypothesis, and the fact that
b(i) >b(i—1)-c(i—1)-f(i—1) and v(i) = v(i—1)-c(i—1), the fraction b(7) /v (7)
of bad vertices on level i can be bounded from below by

DD (o) ™ (e ) = (L) g

From this we can conclude that for each deterministic online algorithm, a
large number of instances must be bad.
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Corollary 4. For any deterministic online algorithn% A, the fraction of
instances of T which are bad for A is at least (1 —e=2"/%7)%,

Proof. This follows directly from Lemma 3 and the fact that each single instance
from 7 corresponds to a vertex on level x. a

Now we want to show that any deterministic algorithm can only accept few
requests on each bad instance.

Lemma 4. Let A be an arbitrary but fized deterministic online algorithm for
LWDPA, and let I € T be a bad instance for A. Then the gain of A on I is

gain(A(I)) = g(x) < 2" - kpin - (1 + g)

Proof. According to the definition of bad vertices and instances, an instance
(corresponding to a vertex on level ) is bad if there are at least d, requests
from phase = blocked at the beginning of phase z. In this phase, A is presented
2h=% requests of length 2% - ki, due to Observation 1, so the gain of A in
phase x is

g(iL‘) <2 kmin : (2h7$ - d:c)

2k 1 gz —1)
=2 kyin | — 4+ — [ 2227
k (QI +2$ (Z Emin

= 2" K - (1+§) ~ gz —1).

8

For the total gain at the end of A’s computation, we obtain

3(w) = (@) + §le = 1) 2" ki (14 g)

O
Now we can bound the strict competitive ratio of A on any bad instance from

below.

Lemma 5. The strict competitive ratio of any deterministic online algorithm
on any bad instance from T is

x+ 2
> -
C‘2-(1+§)

Proof. Let A be some arbitrary but fixed deterministic online algorithm
for twDPA and let I € 7 be a bad instance for A. Using Lemma 4 and Obser-
vation 2, we obtain

_ gain(OpT(I))
gain(A(I))

L (@+2) ki 2V w42
T2 k- (14 2) 20 (14 2) 5
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From this we can conclude that any online algorithm for twDPA needs to
read a large number of advice bits to obtain a good strict competitive ratio.
Hence, we are finally ready to prove Theorem 9.

Proof (of Theorem 9). We interpret an online algorithm that reads b advice bits
in the usual way as a set of deterministic algorithms {A1, ..., Ay }. According to
Lemma 5, each such algorithm A; can have a strict competitive ratio of at most
c only on instances which are good, and according to Corollary 4, for each A;
the fraction of good instances from 7 is at most

1= (1-e ) < (®)

e2y/22 ’

where we used Bernoulli’s Inequality. Requirement (3) from the very beginning
makes sure that (8) always yields a reasonable result, i.e., that the right-hand
side of (8) never becomes larger than 1, since

T T xT
e2v/22 — @2v/(2v/Inx) - elnz -

Thus, the number of deterministic algorithms that are necessary tozguarantee a
strict competitive ratio of ¢ on all instances from 7 is at least (e2"/%")/z. Hence,
the number of necessary advice bits is

e2'/7? 2y
b > log = — loge —logz.
x z

Now we are almost done. As our final step, we observe that the variable y
that appears in the formula for b does not have any influence on c¢. Since the
number of necessary advice bits grows with y, we can set it to the maximum
possible value according to requirement (2). Thus, we set y := log (¢/kmin) —
2z = log (6/ (kmin . 2293)), and as a result, we finally obtain that the number of
necessary advice bits is

olos (ﬁ) ! loge

b2272~10ge—logx:kmm~zz.4x

Plugging the value that we just fixed for y into requirement (3) yields the range
of 2 < \/0/(kmin - 4° - Inz) given in the theorem. O

By plugging in values for x and z into this theorem, we can derive two results
which nicely complement Corollaries 2 and 3, respectively. The first one states
that many advice bits are necessary to obtain a strict competitive ratio better
than 1/4 - log .

Corollary 5. Let ¢ be an arbitrary constant with 0 < § < 1/2 and let € > 20.
Any online algorithm for tWDPA that achieves a strict competitive ratio of
§/2 -log ¢ needs to read at least w ('~ - £/kyax) advice bits when ¢ € w(1).
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Proof. Let & := 610g(kmax/kmin) = 0log ¢ and z := log? p. Then, 4% = 22* =
220logw — ()20 We obtain
é Z k!nax -
Fomr _ o bwm _ L 9 L ¥
2247 logte- 92 kmax logtp- 92 kmax logto’

The number of advice bits necessary to achieve a strict competitive ratio of c is

1-26
N

10g4 2] . kmax

12 loge
Kmin 22 . 4=

b > —logx = -loge —log § — loglog ¢.
For any constant € > 26, we have (o' =2 /log* ) € w(p' ™) if ¢ € w(1). There-
fore, the number of advice bits necessary to obtain a strict competitive ratio
of ¢ is in w(gpl’e . é/kmax), for any constant € > 2. The value of ¢ obtained by
plugging in the values for x and z as chosen above is

42 S dlogp+1 (0logp+1)logy  dloge logp + 3

c> = .
“21+%) = 2(1+10§<p) 2(log ¢ + 4) 2 logp + 48

Using this together with § < 1/§, we can bound ¢ from below by (dlog¢)/2. O

Combining this with Corollary 2, we observe a surprising fact. While
log log ¢ advice bits are sufficient to obtain a strict competitive ratio of 5log ¢,
we need (,u(cpl_6 -4/ kmax) advice bits to decrease the strict competitive ratio by
only another constant factor. The next corollary complements Corollary 3, stat-
ing that many advice bits are necessary to obtain a constant strict competitive
ratio. The two bounds match up to a constant factor.

Corollary 6. Let kuyin € 0o(f). For any constant k < (logy + 2)/4, the number
of advice bits necessary to achieve a strict competitive ratio of ¢ < k is at least

l loge

¢
Ry g k-2 € Q(kmm)

Proof. We set x := z := 4k — 2 and plug these values into Theorem 9. To be able
to apply this theorem, it must hold that z < log ¢ and z < \/¢/(kmin - 4 - Inz).
The first requirement is trivially fulfilled as @ = 4k — 2 < 4 - (logp + 2)/4 —
2 = logp. The second one is also satisfied since kpyin € o(f) and hence
V€] (kmin - 4% - Inz) € w(1), while z € O(1). Due to Theorem 9, any algorithm
needs to read at least

/ loge /
> . — log (4k — 2 (9]
b= Femin (4k — 2)2 - 43F—2 og (4k —2) € (kmin>

advice bits to achieve a strict competitive ratio of
T+ 2 4k

< = =K.
S+ T2+ K

.. . . . .0
Thus, combining Corollaries 3 and 6, we obtain that ©(¢/kmin) advice bits
are necessary and sufficient to achieve any constant strict competitive ratio.
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Fig. 7. A schematic plot of the results proven in this paper.

4 Conclusion

In this paper, we thoroughly studied the length-weighted disjoint path allocation
problem on paths parametrized by given lower and upper bounds on the request
lengths kmin and kpax.

We examined the trade-off between the number of advice bits an online algo-
rithm reads and the strict competitive ratio it can achieve. The strict competitive
ratios we considered cover the entire possible range; from optimality to the worst-
case strict competitive ratio when no advice is given at all. We described several
algorithms for LWDPA and were able to give nearly or perfectly matching lower
bounds in most cases. Our results imply a very interesting threshold behavior of
the twDPA problem.

As depicted schematically in Fig. 7, we showed the following. When an online
algorithm for LwDPA is not given any advice at all, the strict competitive ratio
cannot be better than 2¢ + 1, where ¢ = kpax/kmin, and a simple greedy app-
roach achieves this ratio. With any constant number b of advice bits, the achiev-
able strict competitive ratio lies between 2/ and 2° - (2 20/ + 1), which
is matching up to a constant factor. When the algorithm is allowed to read
loglog ¢ advice bits, a relatively good strict competitive ratio can be obtained
already, namely 5 log . However, to decrease it further by only a constant factor
to §/4-log ¢ for any 6 < 1, we showed that £/kuy;n - ¢ advice bits are necessary,
for any € > 6. We proved that ©(¢/kmin) advice bits are necessary and sufficient
to achieve any constant strict competitive ratio ¢ with 6 < ¢ < (log ¢ + 2)/4.
Finally, in order to be optimal, n or (£ — 1)/kmin - (1 + 21log kmin) advice bits are
sufficient; the number of advice bits necessary to be optimal is at least - (n—1)
or 7y - (£/kmin — 1) for some constant v that depends on both kyax and ki, but
is always at least 1/2 and approaches 1 with growing difference between ki,
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and Kpax. Thus, there is only a factor of O(log kmin) between the lower and upper
bounds for optimality in ¢ and a constant factor between those in n; moreover,
in the unparametrized case, the bounds in ¢ are perfectly matching and those
in » match up to an additive constant of 1.

Acknowledgements. We thank Hans-Joachim Béckenhauer and Dennis Komm for
valuable discussions.
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