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Abstract. Large neighbourhood search, a meta-heuristic, has proven to
be successful on a wide range of optimisation problems. The algorithm
repeatedly generates and searches through a neighbourhood around the
current best solution. Thus, it finds increasingly better solutions by solv-
ing a series of simplified problems, all of which are related to the current
best solution. In this paper, we show that significant benefits can be
obtained by simulating local-search behaviour in constraint program-
ming by using phase saving based on the best solution found so far dur-
ing the search, activity-based search (VSIDS), and nogood learning. The
approach is highly effective despite its simplicity, improving the highest
scoring solver, Chuffed, in the free category of the MiniZinc Challenge
2017, and can be easily integrated into modern constraint programming
solvers. We validated the results on a wide range of benchmarks from the
competition library, comparing against seventeen state-of-the-art solvers.

1 Introduction

Large neighbourhood search (LNS) [14] is a widely used metaheuristic for con-
strained optimisation. A neighbourhood of a given solution is the set of solutions
that can be obtained by performing perturbations on a target solution. The size
of the neighbourhood is determined by the used perturbations. Conventional
local search considers small neighbourhoods due to efficiency. However, since
the scope of the search is narrow, such methods are prone to be trapped in
local optima. In contrast, large neighbourhood search uses significantly larger
neighbourhoods. Thus, the optimisation algorithm has more options to escape
local optima, while retaining the advantages of local search. Different techniques
may be used to explore the neighbourhoods, including systematic search meth-
ods such as constraint programming or problem-specific heuristics. The use of
constraint programming for neighbourhood exploration is particularly suitable
for highly constrained optimisation problems where propagation and systematic
search are advantageous compared to heuristic algorithms.
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Phase saving is an approach, originally from SAT solvers [11], where the last
value assigned for a variable in the search is given priority the next time the
variables is branched on. The advantage is that phase saving interacts well with
restarting since it was presumably nontrivial to find the value before the restart.

Solution-based phase saving is different, and not so commonly applied (see
e.g. [1]). It gives priority to the value the variable is assigned to in the last solution
found. For satisfaction problems, this is meaningless, as the search terminates
once a solution is found. In optimisation problems, however, this concentrates
the search around the current best solution, just as in LNS.

We use solution-based phase saving with activity-based search and nogood
learning as a means of focusing the search around the best solution, mimick-
ing typical local search behaviour. An advantage of this approach is that stan-
dard CP machinery can be used; hence it can be easily incorporated in most
CP solvers. The method bears similarities with large neighbourhood search, as
activity-based search and restarts can be seen as defining a “neighbourhood”.

Our experimental results on a wide range of benchmarks from the MiniZ-
inc Challenge 2017 demonstrate that by using the described approach, we can
achieve significant improvements over Chuffed [4]. Furthermore, our approach
can be easily integrated into modern constraint programming solvers, and it
does not introduce additional parameters. To summarise:

– We introduce solution-based phase saving in constraint programming as a
means to capture some of the benefits of LNS in a complete solving approach.

– We combine solution-based phase saving, activity-based search, Luby restarts,
and nogood learning to obtain a complete CP algorithm that focuses its
search around the best solution found so far. Our experiments show that
activity-based search, perhaps unsurprisingly, is better suited for this task
than random variable selection.

– We evaluate the proposed approach using benchmarks from the MiniZinc
Challenge 2017 competition and compare with state-of-the-art solvers used
in the competition. Overall, the results demonstrate that the approach is
highly effective, improving the results for the highest scoring solver Chuffed.

– We discuss the relationship of our approach, as a contribution to search and
black-box solvers, to large neighbourhood search.

2 Preliminaries

Constraint Programming. A constraint satisfaction problem (CSP) is a tuple
P ≡ (V,D,C), where V is a set of variables, D is a mapping from variable v ∈ V
to a set of values D(v), and C is a set of constraints. An assignment θ assigns
each v ∈ V to an element θ(v) ∈ D(v). A solution is an assignment that satisfies
all constraints in C. A constraint optimization problem (COP) is CSP augmented
by an objective function f that maps each assignment to a value. The aim is to
compute the optimal solution θ∗ such that ∀θ′ : f(θ∗) ≤ f(θ′).

Nogood Learning. Upon reaching a conflict, nogood learning solvers analyse
conflicts to determine the assignments responsible for its cause. The reason for
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failure is recorded in the form of a clause and added to the database. The mech-
anism allows nonchronological backtracking, where backjumps can take place
several decision levels above the current level.

Restarts. To avoid searching extensively around local optima, solvers perform
restarts after reaching a certain number of conflicts. The key is to strike a bal-
ance between diversification (frequent restarts) and intensification (infrequent
restarts). Luby restarts [7] are widely used in SAT/CP solvers and aim to intro-
duce a variety of restart frequencies, with smaller restarts being significantly
more common, i.e. a partial Luby sequence is as follows: 1, 1, 2, 1, 1, 2, 4, 1, 1,
2, 1, 1, 2, 4, 8...

Dynamic Search. The search algorithm repeatedly decides on the branching
variables. A common approach is to select variable based on their recent activ-
ity in conflicts (VSIDS scheme [8]). After a conflict is detected, the activity of
involved variables is increased and periodically a decay on all activities is applied.
Thus, variables that we the cause of recent conflicts have priority. Other methods
include first fail [5], dom/wdeg [2], and impact-based search [13].

Phase Saving [11]. As explained previously, when branching solvers must decide
on a value assignment. A wide-spread approach for value selection, originally
used in SAT solvers, is to choose the value used most recently for the variable.
Therefore, after backtracking, the solver aims to return to its previous state as
closely as possible. This behaviour is particularly well suited for restarts, as the
solver can continue using the previous assignments instead of searching again. In
addition, the information learned about its previous region of the search space
through clause learning will still be relevant.

Large Neighbourhood Search [14]. The assignments of a subset of variables
is fixed with respect to a given solution and a search algorithm, either local
search or an exhaustive technique, is used to determine the best assignment
for the remaining variables. The number of fixed variables is typically chosen
adaptively: initially the algorithm selects a large number of variables to intensify
the search and gradually diversifies by decreases the number of selected variables
over the course of the algorithm.

3 Experiments

Solvers. We implemented solution-based phase saving for the value-selection
strategy in the CP solver Chuffed [4]. In the experimentation, we compare with
seventeen state-of-the-art solvers and their variants which were submitted to the
MiniZinc Challenge 2017. For the sake of brevity we do not reference each solver
individually but refer the interested reader to the competition.

Benchmarks. We used the 20 benchmarks with five instances of the competi-
tion. They encompass a wide range of problems.

Hardware, Time Limits, and Experimental Setup. We run the experi-
ments using the same hardware and setting as in the free search category from
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Table 1. Comparison of our approaches with Chuffed as the baseline solver.

Solver score iscore area

chuffed-free 94.25 98.58 25887171

chuffed-random-free 76.63 77.17 40247361

chuffed-sbps-free 126.12 121.25 23332231

the MiniZinc Challenge 2017, where no restrictions are imposed on the solvers
regarding search strategies. By doing so, we can position the approach directly
to all solvers that participated in the competition.

Evaluation Metrics. We used the evaluation metrics of the Challenge. In short,
score treats each benchmark instance as a vote between two solvers. It awards
one point to the solver that found the better result and zero points for the other.
If they perform equally well, the point is split in inverse proportion to their run
times. The score for a solver is defined as the sum over all benchmark instances
and considered solvers. The variation for incomplete solvers, iscore, ignores proof
of optimality when comparing the performance of solvers.

The area score gives a measure of anytime performance of the solver. It
computes the area under the curve defined by the function: 5000 if no solution
found, 2500 × (s − best)(worst − best) + 1250 for a solution of value s where
worst and best are the worst and best solutions found by any solver, and zero for
proving optimality. This function effectively combines 25% of points for finding
a solution, 50% for finding good solutions and 25% for proving optimality. It
represents the area under the score curve over the twenty minutes run time,
averaged across all benchmarks.

3.1 Comparison

A detailed breakdown of the results, in the style of the MiniZinc chal-
lenge results (minizinc.org/challenge2017/results2017.html), is available online:
emirdemirovic.com/misc/cp18-sbps-comparison/.

Comparison with Chuffed: The first experiment compares variants of chuffed:
chuffed-free is the competition version with Luby restarts and alternating free
(activity-based) and fixed search; chuffed-sbps-free simply add solution-based
phase saving to this; chuffed-random-free adds solution-based phase saving while
using random variable selection in the free search; thus effectively mimicking
random neighbourhoods (see Sect. 4).

We show the results in Table 1. Clearly, the use of solution-based phase saving
significantly improves the performance over the baseline. Random neighbour-
hoods are not beneficial, as the advantages of solution-based phase saving are
defeated by the random variable selection.

Looking more closely at the individual benchmarks: chuffed-sbps-free
improves on all 20 benchmarks except opt-cryptanalysis where they are iden-
tical, and cargo, crosswords, hrc and rc-graph-coloring. The reason why

http://minizinc.org/challenge2017/results2017.html
http://emirdemirovic.com/misc/cp18-sbps-comparison/
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it underperforms is that the baseline approach can prove optimality of one or
more instances where solution-based phase saving cannot. Clearly, solution-based
phase saving is not as effective in proving optimality.

Interestingly, random neighbourhoods are preferable to activity-based ones
on benchmarks mario, opd, and rcpsp-wet, showing its effectiveness for these
particular situations. On other benchmarks the performance can be poor.

Comparison with All Solvers. chuffed-free was the highest points scorer in
the free category of the Challenge. Comparing our variants, we find chuffed-
sbps-free is clearly better than all other solvers and it reduces the area under
the curve with respect to the baseline by 10%. Surprisingly, the use of random
neighbourhoods is still ahead of all solvers except three, showing that solution-
based phase saving is still powerful, even with a poor neighbourhood strategy.

Comparison with Local Search Solvers. Since LNS and local search perform
well on the same problems, we compare the use of solution-based-phase-saving
against the local search solvers in the competition, in particular on the problems
where local search provided good results.

The results shown in Table 2 restrict the comparison to eight benchmarks
where a local search solver ranked in the top three. Solution-based phase saving
provides a substantial difference, pushing chuffed from below the performance
of all local search solvers, to better than all of them. Interestingly, the low area
suggests that chuffed-free finds good solutions early, but then gets stuck, where
the local search solvers continue to improve. Solution-based phase saving is much
better at continuing to improve solutions.

If we restrict our attention to the two problems where a local search solver
was the best solver (oscar-free in both cases), we see that for these benchmarks
even random neighbourhoods can improve on the baseline performance. Solution
based phase-saving is not able to compete with the best local search in this case,
but certainly markedly enhances the performance over the baseline (Table 3).

Table 2. Comparison of our approaches and local search solvers on benchmarks where
local search solvers scored in the top three ranks.

Solver score iscore area

chuffed-free 69.53 71.00 11043751

chuffed-random-free 49.42 51.00 17323701

chuffed-sbps-free 99.70 93.00 8198639

izplus-par 81.67 84.50 11368249

oscar-free 74.83 74.50 14734476

yuck-free 71.85 73.00 13638341
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Table 3. Comparison of our approaches and local search solvers on the two benchmarks
sets, road-cons and opd, where local search was the most effective method.

Solver score iscore area

chuffed-free 19.88 23.00 3684082

chuffed-random-free 22.81 24.50 2831003

chuffed-sbps-free 26.45 27.00 2710511

izplus-par 8.80 11.50 6040284

oscar-free 45.40 40.00 795009

yuck-free 23.67 21.00 5853594

4 Relationship with Large Neighbourhood Search

We now contrast a modern CP solver using restarts, dynamic variable selection,
and solution-based phase saving versus large neighbourhood search. We shall see
that there are striking similarities between the two.

4.1 Restarts Versus Neighbourhood Size

Most uses of CP incorporate restarts to avoid being trapped in large useless
parts of the search space. Restarts are managed by limiting some resource, such
as time or number of conflicts. Once the limit is reached, the search is restarted.
Limits usually increase over time to maintain completeness, e.g. using either
geometric [15] or Luby [7] sequences. Restarting requires either nogoods [9] or
randomisation in search to avoid repeating previous work.

LNS usually defines neighbourhoods by fixing a set of variables to their value
in the best solution. The search of the neighbourhood continues until it finds a
better solution or it thoroughly explores the neighbourhood. The size of the
neighbourhood gives an implicit limit on the computation of this subsolve. In
addition, LNS often explicitly restricts resource usage for the subsolve, to avoid
cases where the neighbourhood defined is too large to explore exhaustively. Sim-
ilarly, as for restarts, the limits are typically increased with time and randomi-
sation in used to avoid searching through the same neighbourhood.

Therefore, both restarts and LNS tackle a series of subproblems while using
randomisation and imposing limits on the computation for each subproblem.

Luby Restarts for Neighbourhood Size. Using small neighbourhoods can
provide quick improvements but cannot escape local optima effectively, while
large neighbourhoods provide the reverse effect. Thus, a balance between the
two is often sought for, and many LNS algorithms adopt adaptive strategies to
determine the size of the neighbourhoods. In CP solvers, the Luby [7] sequence
can be used to determine the restart limits, and it achieves the desired behaviour:
a balance between frequent and extended restarts. It simulates the adaptive
strategies often seen in LNS.
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4.2 Dynamic Search and Phase Saving Versus Neighbourhoods

In LNS, a significant subset of variables is selected, and the variables are assigned
values according to an incumbent solution while leaving the remaining variables
to the search strategy to explore. In CP solvers with dynamic variable ordering
and solution-based phase saving, the search selects variables according to the
variable-selection strategy and sets them to their value in the current best solu-
tion. Hence, the search will not fail until it fixes most variables since only the
requirement for finding a better solution can invalidate the current best solution.

Thus, a similarity can be seen between the two approaches. The CP approach
will fix almost all variables to their current best solution value, and afterwards,
explore around this selection. Given the computation limits, it will backtrack
only a subset of these decisions. Hence, it implicitly defines a neighbourhood
given by the set of variables that are never reached during backtracking.

The first effective difference is that LNS may exhaust the neighbourhood
before reaching its search limits, after which it terminates the search. In contrast,
the CP approach will in effect expand the neighbourhood it explores, until hitting
the restart limit. The second difference is that solution-based phase saving will
always set a variable to its value in the best solution if possible, whereas in LNS
this is not necessarily the case.

VSIDS as an Implicit Neighbourhood Selection Strategy. In LNS, it is
crucial to select strongly related variables to avoid defining highly restrictive
neighbourhoods with few solutions. In CP, activity-based search (VSIDS) tends
to select connected variables as well, and when coupled with solution-based phase
saving, we claim it implicitly builds “neighbourhoods”.

We make the following observation to show the type of neighbourhoods gen-
erated by VSIDS. When conflicts occur during the search, activities of involved
variables will be increased. As VSIDS prioritises variables with high activities
for branching, this will create a positive feedback loop as more conflicts among
related variables will be generated, hence further increasing their activity. More-
over, the exponential decay rate in VSIDS ensures that a variable’s activity is
largely determined by its most recent involvement in failure. Therefore, variables
with similar activity values have been active at similar times. Conversely, related
variables are likely to be active at the same time. Thus, as VSIDS branches on
variables based on their activity, when coupled with solution-based phase sav-
ing, the resulting neighbourhood will consist of strongly connected variables with
their values assigned as in the best solution found so far. This can be seen as
emergent LNS behavior.

We note that solution-based phase saving with VSIDS has built-in diversifi-
cation. Upon restart, variables that were previously selected first will have low
activity values since they are unlikely to take part in many conflicts directly.
Hence, they will not be selected early again, while the most active variables
from the previous restart will now be placed at the top of the search tree. Thus,
the variable-selection strategy will cycle through variables.
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4.3 Further Differences

Large neighbourhood search has many variations, and not all of these are eas-
ily captured by solution-based phase saving, dynamic variable ordering, and
restarts. We discuss this in the following text.

Local Objectives. While using the global objective within a neighbourhood is
often appropriate, in some cases each LNS subsolve uses a different objective.
This variation is particularly important when the global objective is likely to be
fixed by variables outside the neighbourhood. The CP approach uses a single
global objective and note that it cannot be “fixed” by the variable-selection
procedure since that will cause failure, but this effectively means that some
variables high in the dynamic ordering will be fixed to a different value than in
the best solution.

Adaptive LNS. Often a set of different neighbourhoods are defined in LNS, which
are used adaptively, biasing choices to those that lead to improvements during
the search. However, while it would be possible to generate a dynamic variable
ordering strategy that acts similarly, it is not standard.

Acceptance Heuristics. Variants of LNS will accept equally good solutions, so-
called side moves, or slightly worse solutions (e.g. using a simulated annealing
approach) to give more diversification to the search. Merely changing the variable
ordering cannot achieve this.

5 Related Work and Conclusion

Solution-based phase saving can be used to mimic a local search strategy in
CP solvers. While it is merely a value-selection heuristic, when combined with
activity-based search and restarts, it is very similar to LNS. There are a number
of other approaches to automatic neighbourhood generation.

In [10] neighbourhoods are created based on the propagation between vari-
ables. Neighbourhoods are built in two ways: by reduction or expansion. The
first reduction approach iteratively selects a variable from a list of fixed size if
possible and random otherwise. It is assigned its value in the best solution and
variables whose domain was reduced by propagation of the assignment are added
to the list. The next variable is chosen as that in the list with the most significant
domain reduction. The process continues until the remaining problem is deemed
small enough. The expansion approach works in the reverse direction.

The approach of [6] selects neighbourhood variables randomly with a bias
towards those with high impact on the objective function. The rationale is that
these variables are responsible for the current value of the solution. By chang-
ing their assignments, it can presumably obtain better solutions. The effec-
tiveness of the approach is further improved by considering a combination of
impact and proximity, where proximity follows a similar idea as closeness in [10].
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The intuition is that impactful variables should be accompanied by related vari-
ables as otherwise the neighbourhood might be too restrictive.

In [12] neighbourhoods based on explanations arising from conflicts are inves-
tigated. The reasoning is that variables involved in conflicts are related, and
hence form a suitable neighbourhood. This method is similar to VSIDS-based
neighbourhoods, but here explanations are restricted to decisions, and they
choose neighbourhoods based on the variables that lead to most conflicts, which
is in some sense the opposite of the VSIDS approach.

A methodology for devising large neighbourhood search algorithms was pre-
sented in [3]. Unlike the previously discussed methods, it is not fully auto-
mated but instead offers guidelines for the design of large neighbourhood search
algorithms. The authors suggest the following three principles: neighbourhood
design should focus around the part of the problem that contributes the cost
to the objective, several different adaptive neighbourhoods should be consid-
ered to ensure completeness of the approach, and learning techniques should
be employed to determine the most effective combination of neighbourhoods
and their resource limitations. The approach can be applied to a wide range of
problems, and the authors demonstrate its effectiveness on job-shop scheduling.

Solution-based phase saving is a straightforward addition to a CP solver. It
offers a substantial improvement on a wide range of benchmarks, significantly
improving the best performing solver in the free category of the MiniZinc Chal-
lenge 2017, Chuffed. We expect other solvers to adopt solution-based phase sav-
ing as a powerful yet simple value selection strategy.
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