)

Check for
updates

Automatic Generation and Selection
of Streamlined Constraint Models via
Monte Carlo Search on a Model Lattice

Patrick Spracklen, Ozgiir Akgiin®, and Tan Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jlps,ozgur.akgun,ijm}@st-andrews.ac.uk

Abstract. Streamlined constraint reasoning is the addition of unin-
ferred constraints to a constraint model to reduce the search space, while
retaining at least one solution. Previously it has been established that it is
possible to generate streamliners automatically from abstract constraint
specifications in ESSENCE and that effective combinations of streamliners
can allow instances of much larger scale to be solved. A shortcoming of
the previous approach was the crude exploration of the power set of all
combinations using depth and breadth first search. We present a new
approach based on Monte Carlo search over the lattice of streamlined
models, which efficiently identifies effective streamliner combinations.

1 Introduction and Background

If the performance of a constraint model is found to be inadequate, a natural step
is to consider adding constraints to the model in order to assist the constraint
solver in detecting dead ends in search and therefore reducing overall search
effort. One approach is to add implied constraints, which can be inferred from
the initial model and are therefore guaranteed to be sound. Effective implied
constraints have been found both by hand [17,18] and via automated methods
[10,11,19]. If implied constraints cannot be found, or improve performance insuf-
ficiently, for satisfiable problems! a more aggressive step is to add streamliner
constraints [22], which are not guaranteed to be sound but are designed to reduce
significantly the search space while permitting at least one solution. For several
problem classes, effective streamliners have been found by hand by looking for
patterns in the solutions of small instances of those classes [22,24,26,27].
Wetter et al. [40] demonstrated how to generate effective streamliners auto-
matically from the specification of a constraint problem class in the abstract con-
straint specification language ESSENCE [14—-16]. This method, which we expand
upon, exploits the structure apparent in an ESSENCE specification, such as that
of the Progressive Party Problem (Fig. 1), to produce candidate streamliners via

! Streamlining is unsuitable for unsatisfiable problems: streamliners are not necessarily
sound, so exhausting the search space does not prove unsatisfiability (a case split
approach is possible: a sub-problem with a streamliner, another with its negation).

© Springer Nature Switzerland AG 2018

J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 362-372, 2018.
https://doi.org/10.1007/978-3-319-98334-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_24&domain=pdf

Automatic Generation and Selection of Streamlined Constraint Models 363

language Essence 1.3
given n_boats, n_periods : int(1l..)
letting Boat be domain int (1..n_boats)

find hosts : set (minSize 1) of Boat,
sched : set (size n_periods) of function (total) Boat --> Boat
minimising |hosts|

0~ O Ut kW

9 | such that

10 | $§ Hosts remain the same throughout the schedule

11 | forAll p in sched . range(p) = hosts,

12 | $§ Hosts stay on their own boat

13 | forAll p in sched . forAll h in hosts . p(h) = h,

14 | $ Hosts have the capacity to support the visiting crews
15 | forAll p in sched . forAll h in hosts

16 (sum b in preImage (p,h) . crew(b)) <= capacity (h),

17| § No two crews are at the same party more than once

18 | forAll bl,b2 : Boat

19 bl < b2 -> (sum p in sched . toInt(p(bl) = p(b2))) <=1

Fig. 1. The Progressive Party Problem [36] in ESSENCE. There are two abstract decision
variables, a set of host boats, and a set of functions from boats to boats representing
the assignment of guests to hosts in each period. From this very concise, structured
statement of the problem, 160 candidate streamliners can be generated by our system.

a set of streamliner generation rules. An effective streamliner that we automati-
cally generate for this problem class constrains approximately half of the entries
in the sched set variable to be monotonically increasing functions.

Using training instances drawn from the problem class under consideration,
streamliner candidates are evaluated via a toolchain consisting of the automated
constraint modelling tools CONJURE [1-4] and SAVILE Row [31-33], and the
constraint solver MINION [21]. Promising candidates, which retain at least one
solution to the training instances while significantly reducing search, are used to
solve more difficult instances from the same problem class. Candidate stream-
liners are often most effectively used in combination. For example, Wetter et al.
presented an effective combination of three streamliners for the Van der Waer-
den numbers problem. Hence, the space of streamlined models forms a lattice
where the root is the original ESSENCE specification and an edge represents the
addition of a streamliner to the combination associated with the parent node.

A shortcoming of Wetter et al.’s work is the uninformed manner in which the
streamliner lattice is explored using depth- or breadth-first search. Our princi-
pal contribution is a new method for exploring the lattice via Monte Carlo-style
search, allowing more effective streamlined models to be found in a time budget.
A second contribution is a set of new streamliner generator rules for sequence and
matrix ESSENCE type constructors to complement those presented by Wetter
et al. Finally, we demonstrate the efficacy of our approach on a variety of
problems.

364 P. Spracklen et al.

2 Essence Specifications and Streamliner Generators

An ESSENCE specification such as that presented in Fig.1 identifies: the input
parameters of the problem class (given), whose values define an instance; the
combinatorial objects to be found (£find); the constraints the objects must satisfy
(such that); identifiers declared (letting); and an (optional) objective function
(min/maximising). The key feature of the language is its support for abstract
decision variables, such as set, multiset, relation and function, as well as nested
types, such as the set of functions found in Fig. 1.

A concise, structured specification of a problem class directly supports the
generation of powerful candidate streamliners: in the example, it is readily appar-
ent that the problem requires us to find a set of boats and a set of functions
assigning guest boat crews to hosts. Hence, streamliners related to sets and
functions, such as that given in the introduction, can be generated straightfor-
wardly. In contrast an equivalent constraint model in, for example, MiniZinc [30]
or ESSENCE PRIME [32] has to represent these abstract decision variables with
constrained collections of more primitive (e.g. integer domain) variables, such
as the matrix model [12,13] proposed by Smith et al. [36]. In this context, it
is significantly more difficult to recognise the structure (i.e. the set and set of
functions) in the problem and generate the equivalent streamliners.

Wetter et al. present a set of streamliner generation rules for the ESSENCE
type constructors set, function and partition, as well as simple integer domains
[40]. Our first contribution is to extend this set also to cover sequence and matrix
type constructors. These are summarised in Fig.2. For decision variables with

Name matrix all

Param R (another rule)

Input X: matrix indexed by [I] of
Output forAll i : I . R(X[i])

Name matrix most (similarly for matrix half and matrix approximately half)
Param R (another rule)

Input X: matrix indexed by [I] of _

Output |I| / 2 <= sum i : I . toInt(R(X[1]))

Name sequence monotonically increasing (similarly for monotonically decreasing)
Input X: sequence of _
Output forAll i,j in defined(X). i < j —-> X (i)<= X (7)

Name sequence smallest first (similarly for largest first)
Input X: sequence of _
Output forAll i in defined (X). X (min (defined(X)))<= X (i)

Name sequence on defined (similarly for range)
Param R (another rule)

Input X: sequence of _

Output R (defined (X))

Fig. 2. Streamliner generators for sequence and matrix domains.

Automatic Generation and Selection of Streamlined Constraint Models 365

matrix domains, one generator (matrix all) takes another streamliner generator
as a parameter (R, as a simple example: constrain an integer variable to take
an even value) and lifts it to operate on all entries in a matrix. This rule can
be applied to higher dimensional matrix domains as well, in which case the
multi-dimensional matrix domain is interpreted in the same way as a series
of nested one-dimensional matrix domains. The generators matrix most (and
matrix half and matrix approximately half) operate in a similar way. In contrast
to the matrix all streamliner generator, these generators first reify the result of
applying R, and then restrict the number of places the constraint must hold.

For sequence domains, we present two sets of first-order streamliner gen-
erators: monotonically increasing (or decreasing) and smallest (or largest) first.
These do not take another generator as a parameter but directly post constraints
on the sequence decision variable. The sequence on range and sequence on defined
generators take an existing streamliner generator as a parameter and lift it to
work on the range or the defined set of the sequence domain respectively.

3 Monte Carlo Search for Streamliner Combinations

Le Bras et al. [25] and Wetter et al. [40] both observed that by applying sev-
eral streamlining constraints to a model simultaneously the search required for
finding the first solution can be reduced further than by applying the streamlin-
ers in isolation. Finding an effective streamliner combination involves searching
the streamliner lattice, the size of which is determined by the power set of all
candidate streamliners for a given problem class. Table 1 presents the number of
candidate streamliners our current set of generation rules produces for a number
of problem classes. In some cases the number of candidates generated is small.
However, the cost of evaluating each combination on a set of test instances means
that it is typically not feasible to evaluate all possible streamliner combinations.

Wetter et al. employed breadth-first and depth-first search to explore the
streamliner lattice in an uninformed manner. The motivation for our work is the
hypothesis that a best-first search can allow more effective streamliner combi-
nations to be discovered within a given time budget. Our approach is to focus
the search onto areas of the lattice where the streamliners combine to give the
greatest reduction in search while retaining at least one solution.

For a given problem class, we have no prior knowledge of the performance
of the set of candidate streamliners, either individually or in combination. This
raises the issue of the exploration/exploitation problem: if we can identify a
combination of streamliners that performs well, should we try and exploit that
combination further by evaluating the addition of further streamliners, or should
we explore other parts of the lattice that may at present seem less promising?

The exploration/exploitation tradeoff can be formalised in several reinforce-
ment learning variants, including via markov decision processes [7]. We model
this situation as a multi-armed bandit problem [5], which allows us to employ
regret minimising algorithms to deal with the exploration/exploitation dilemma.
The multi-armed bandit can be seen as a set of real distributions, each dis-
tribution being associated with the rewards delivered by one of the K levers.

366 P. Spracklen et al.

Since the multi-armed bandit problem assumes that each lever corresponds to
an independent action, in order to use it directly we would have to associate a
lever with each point in the streamliner lattice, which is infeasible in general.
Instead, we use the bandit algorithm to guide the exploration of the lattice in a
process reminiscent of Monte Carlo Tree Search (MCTS) [8], as described below.

3.1 Algorithm Outline

Our algorithm has the same four basic steps as MCTS. It uses Upper Confidence
bound applied to Trees (UCT) [8] to balance exploration and exploitation.

1. Selection: Starting at the root node, the UCT policy is recursively applied to
traverse the explored part of the lattice until an unexpanded, but expandable
node is reached. A node is expandable if it has at least one child that is not
marked as pruned (Sect. 3.5). A child node is selected to maximise:

21
UCT = X, + 20, | —~

n;j

where n is the number of times the current (parent) node in the lattice has
been visited, n; the number of times child j has been visited, X; is the mean
reward associated with child j and C, > 0 is a constant [8].

2. Expansion: Enumerate the children of the Selected node and choose one to
expand according to the heuristic explained in Sect. 3.4.

3. Simulation: The collection of streamliners associated with the expanded
node are evaluated using the CONJURE, SAVILE Row, and MINION toolchain.

4. BackPropagation: The result of the evaluation is propagated back up
through the lattice to update reward values, as explained below.

3.2 Back Propagation

Since our search is operating over a lattice, a node may have multiple parents.
This requires an alteration to the back propagation employed in MCTS: when we
perform back propagation that reward value is back propagated up all paths from
that node to the root. To illustrate consider a problem with two streamliners
{A,B} and we are back propagating from a node in the lattice representing the
combination {AB}. There are two paths by which this node could have been
reached, {root — A — B} and {root — B — A}. Although the algorithm
will have only descended one of these paths, because the reward value of a
node in the lattice is representative of the ability of the streamliner combination
represented by that node to combine and produce effective reductions in search,
the node in the lattice that represents streamliner combination {B} should also
receive this reward. For this reason both paths are rewarded accordingly and the
reward generated is back propagated up all paths from that node to the root.
We also ensure that a node that lies on more than one such path is rewarded
only once. The cost of back propagation thus grows exponentially with depth.

Automatic Generation and Selection of Streamlined Constraint Models 367

However, since each level of the lattice represents an additional constraint it
is unlikely that satisfiability is maintained at great enough depths for this to
become an issue. Empirically, the cost is insignificant relative to solving the
training instances.

We must also consider the situation where a node in a path back to the root
has not yet been expanded. If we ignore such nodes, their true reward is not
reflected in their reward values because all reward values back propagated from
child nodes prior to their creation are lost. Our approach is that when a node is
expanded, it absorbs the reward value and visit count of its immediate children
that have already been expanded. This avoids caching a potentially large set of
values while maintaining reward values for nodes around the focus of our search.

3.3 Simulation Reward

The performance of our best first search algorithm is heavily reliant on how the
reward is produced from the simulation step. Initially we assigned rewards as
follows: if the majority of the instances evaluated are unsatisfiable a reward of
—1 is back-propagated, otherwise a reward of one minus the average reduction
in search space (expressed in search nodes) is returned. While this is valid, our
initial experiments revealed that its effect was to produce a search strategy
similar to breadth-first search - i.e. too strong a bias towards exploration.

The reason for this is that the penalty value is too punitive when evaluating
larger streamliner combinations. Intuitively, the penalty should be sensitive to
the depth we have travelled into the lattice: as we add streamliners we reduce
the search space and we expect the probability of such failure to rise. Therefore
we divide the penalty value by the depth of the node being evaluated, allowing
the prolonged exploration of promising paths.

3.4 Expansion Heuristic

The order of expansion of child nodes is an important factor in performance. An
expanded child consumes time to perform simulation and, because the simulation
reward is back propagated, if a penalty is awarded it can affect the likelihood
of the parent node being selected on the next iteration. During the expansion
phase of our algorithm child nodes are expanded in descending likelihood of the
application of the associated streamliner combination resulting in a satisfiable
problem. In order to facilitate this, when a successful simulation is performed, for
a representative instance the solution found is stored, along with the approximate
size of its search space (via the product of the domains of the decision variables
in the model) and the proportion of the space explored to find the solution.

368 P. Spracklen et al.

Upon expansion all potential children are enumerated and for each we check
whether the additional associated streamliner invalidates the solution stored at
the expanding parent. If the solution remains valid then the child is preferred
for expansion because we know pre-simulation that the associated streamliner
combination satisfies at least one instance and the additional streamliner might
reduce search. If the solution is invalidated then the search space explored by the
child is smaller than the expanding parent. We use the proportion of search space
explored to find the solution associated with the expanding parent to estimate
the likelihood of a solution existing in that subspace. Intuitively, if the parent
explored a large fraction of the space then it is less likely that a solution will be
found when adding the streamliner associated with the child node.

3.5 Pruning the Streamliner Lattice

As per Sect. 3.2, when a simulation for a streamliner combination reveals that
the majority of training instances are unsatisfiable, a penalty is back propagated
up the lattice. We also mark the node associated with the simulation as pruned
and never consider any of its children for expansion. In addition, we prune nodes
whose additional streamliner is determined to be redundant in combination with
those inherited from the expanding parent, in the sense that it causes no further
reduction in search on the evaluated instances. Pruning the lattice by these two
methods typically reduces the number of nodes to be expanded very significantly.

4 Empirical Evaluation

We evaluate two hypotheses empirically. First, that the best-first search is more
effective in exploring the streamliner lattice than the simpler depth- and breadth-
first search methods employed in [40]. Second, that our method is able to auto-
matically find streamliner combinations that drastically reduce the search space
across a variety of problem classes.

We experiment with thirteen problem classes, eight from Wetter et al. and the
remainder selected for variety, particularly problem classes requiring significantly
more instance data such as SONET [28]. Streamlining can aid in the search
for feasible solutions of optimisation problems, but not the proof of optimality.
Hence, in our experiments we transformed optimisation into decision problems
by the standard method of bounding the objective and searching for a satisfying
solution. The results we obtain are very positive, as presented in Table 1.

369

Automatic Generation and Selection of Streamlined Constraint Models

%1°¥8 %0°€6 I %0°€6 1 %0°€6 1 L18 78 log] d¥AD
%8°G6 %9°76 3 %z L8 4 %0°TL 1 8L9 79 [22] LENOS
%L°G8 %198 1 %1°98 1 %1798 1 1€¢ 4! [ce] vdada
%6°L€ %6°1€ 1 %6°1€ 1 %6°1€ 1 [z 9¢ [eg] Surousenbog 1ep
%8°08 %€°88 2 %V L9 4 %G"69 4 z1 cL [61] syderp paym [ngesern
%T°LS %816 € %9°08 4 %V'G8 4 86¢ Tl [9] swoy [nyeoern
%168 %866 4 %6 %8 14 %9°%9 4 €67 TL [8g] steop [myeoern
%06 %T V6 2 %0°18 € %9°G9 4 Tl zL [og] sydein ooy d[quoq [nyoedern
%L°G6 %Z°96 v %828 4 %V¥8 3 [4a g9 [Lg] sToquInN uoplovp 1o UBA
%V L8 %0°€8 1 %0°€8 1 %0°€8 1 Le€ LT [pg] eoueysxy dnoisisendy
%8°68 %€°26 € %V 18 1 %% 6€ 1 732 g9 [8¢] ewwory s anyog
%G°€6 %296 3 %1°€8 4 %L°TL 4 vg 9L [8] gam
%L 16 %2 €6 ¥ %G T 14 %T ¥ 1 9. 091 [gg] Lyreq oarssorSorg
ouwIlT, SOPON SOPON SOPON Awﬁﬁouwmv mhwﬁ:—gdwgum

[oaeog Ul YoIrOG Ul 9718 yoreog ur 9ZIS yoaeog ut 9718 sl T, : .

uorponpay UOIONPaY UOIRUIGUIO)) | UOIONPIY UOIJRUIGUIO)) | UOIONPIY UOIjeUIqUIO)) | oduerjsu] SYEPIPUED SSELD werqotd
UeSIN URIIN TR LR URIIN JO 1equmN

o[ae) ojuoIN sad Saa

Sururrureans-gTgdo/do-soeys /oo qnyi8/ /:d4)] :oI] popRO[UMOp 9 URD 9POD 9IINOS PUE ‘SINSSI MBI ‘S[PPOU ‘Bjep [RIUeWLIadXS]
‘aulryorwW S[SUIS ® UO UNI dIom SSe[o ws[qold [enprarpur ue

10] syuewtodxo [V “ZHD 06°C 1% OHOG69-L! 910)) [9IU] 9100 § UR PUR ZHX) ['g 1% gLg9 U0101d() (JINV ©100-g¢ © UO UNI oIom sjuswliodxo
[euorjeIndwon [y oW} pue S8pou [DIess 10 Ul UOIIONPAI)SeA AJULIOJIUN © UIR)O dM SIUTRIISUOD SUTUI[WUIRSIIS JO UOIIIPPR) YSNOoIyJ,
'Se0URISUI 1597 [[@ U0 AN[Iqeysijes paurejal sse[d wo[qold yoes 10J SISUI[WRAI)S PaJda[es Y], ‘POYILSW YdIeas aAljoadsal oY) Suisn punoj
UOIIRUIQUIOD IOUI[WIRAIIS OATI09[O ISOW o1 (M DOUI[UIRII)S [9POW oY1 UM [oPOUWl POUI[WIRAIIS-UOU 9} UO UOIN[OS ISIY oY) puy 01
paambax yoaess o) Surreduwrod AQq paInsesw SI SOPOU YOIRIS PUR SUWIT} [0 JI0J UOIIONPAI URSJN "SUOIIRUIGUIOD ISUI[UIRSI)S [[@ JO 2oeds
o1} YoIeas A[PAIISNRYXS 09 o[e oIom om (G'¢ *100g) Surunid ySnoiyy se ‘oarjoapje A[[enbo oIe Spo1oU [[@ AI}IL]J0 1SOUI dY) 9 0} PUNO]
SeM IOUITUIROIIS O[3UIS © oIoym sosse[o we[qold oy} 104 "s3nsol 1o1edns pord 1ey) SUORUIqUIOD J9SIR] IOAODSIP 01 9[]R ST POYIOW [IIeds
O[Ie)) SJUOJN S} SISRD IS} U] "Q PUR g ‘F SUWN[OD Ul Pajussald se ‘SJureI)suod SUIUIUIesal)s [eNPIAIPUL JO UOIIRUIGUIOD © JO pasoduwod st
POISA0DSID IOUI[UIRDIIS SATIDR]JO 1SOW 9} sosse[d wa[qod oY) Jo Ajrioleur [e1juR)sqNs 8y} 10 "¢ PUR g SUWN[OD Ul S[9POUWl PIUI[UIERSIIS-UOU
Sursn seouwISUT 1599 YY) I0] UOIIN[OS 0) SUWIT) URIW Y} PUR SIQUI[WRAIIS 9IRPIPURD JO IOUINU 9] PI0JDI dA\ -d[qedridde ore siouryuresi)s
9} YOIYM I0J Sse[d WS[OoId SI1IUd 97} ISAO POSIJIOWR ST YDIYM 1800 ® ‘ssed we[qord 1od SInoy XIS JO 103pNg SUrurel) suIes o) POATeDal
Spoyjeul 9aIY) [y 'Sos 959} pue 3ururer) ojur (0g/0L M[ds oIom SedURISUT U9DYY ‘Sosse[d wo[qoid UealIIy) oY) Jo Yord Ioq T 9[qe],

http://github.com/stacs-cp/cp2018-streamlining

370 P. Spracklen et al.

5 Conclusion

We have presented a new method for the automated generation of streamlined
constraint models from a large set of candidates via Monte Carlo search. Our
method is efficient in searching the space of candidates, producing more effective
streamlined models in less time than less informed approaches. Our empirical
results demonstrate a vast reduction in search across a variety of benchmarks.

As part of future work we plan to explore the generation of streamlined
versions of alternative models generated by CONJURE. We expect the utility of
particular streamlining constraints to vary depending on the model.

Acknowledgements. This work was supported via EPSRC EP/P015638/1. We
thank our anonymous reviewers for helpful comments.

References

1. Akgiin, O.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in
CONJURE. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107-116. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0-11

3. Akgiin, O., Gent, L.P., Jefferson, C., Miguel, I., Nightingale, P.: Breaking condi-
tional symmetry in automated constraint modelling with Conjure. In: ECAI, pp.
3-8 (2014)

4. Akgiin, O., Miguel, L., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, pp. 4-11. AAAI Press (2011)

5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235-256 (2002). https://doi.org/10.1023/A:
1013689704352

6. Ayel, J., Favaron, O.: Helms are graceful. In: Progress in Graph Theory (Waterloo,

Ont., 1982), pp. 89-92. Academic Press, Toronto (1984)

Bellman, R.: Dynamic Programming and Markov Processes. JSTOR (1961)

8. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Tavener, S.,
Perez, D., Samothrakis, S., Colton, S., et al.: A survey of Monte Carlo tree search
methods. IEEE Trans. Comput. Intell. AT 4(1), 1-43 (2012)

9. Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: Np-completeness and distribution issues. In: Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking, pp. 172-182.
ACM (2002)

10. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
ECAT 141, 73-77 (2006)

11. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 575-579. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45578-7_42

12. Flener, P.; Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling. In: Proceedings of the CP-01 Workshop on Modelling and Problem Formu-
lation, p. 223 (2001)

=

https://doi.org/10.1007/978-3-642-40627-0_11
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/3-540-45578-7_42

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Automatic Generation and Selection of Streamlined Constraint Models 371

Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., Walsh, T.: Matrix
modelling: exploiting common patterns in constraint programming. In: Proceedings
of the International Workshop on Reformulating Constraint Satisfaction Problems,
pp. 27-41 (2002)

Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The essence
of essence. In: Modelling and Reformulating Constraint Satisfaction Problems, p.
73 (2005)

Frisch, A.M., Grum, M., Jefferson, C., Herndndez, B.M., Miguel, I.: The design
of essence: a constraint language for specifying combinatorial problems. IJCAI 7,
80-87 (2007)

Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Herndndez, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268-306 (2008)

Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied
constraints: a constraint modelling pattern. In: ECAI, vol. 16, p. 171 (2004)
Frisch, A.M., Miguel, 1., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Proceedings of CP01 Workshop on Modelling and
Problem Formulation (2001)

Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: a system for transforming constraint
satisfaction problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS, vol. 2627, pp.
15-30. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36607-5_2
Frucht, R.: Graceful numbering of wheels and related graphs. Ann. N. Y. Acad.
Sci. 319(1), 219229 (1979)

Gent, L.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. ECAI
141, 98-102 (2006)

Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274-289. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8_22

Huczynska, S., McKay, P., Miguel, 1., Nightingale, P.: Modelling equidistant fre-
quency permutation arrays: an application of constraints to mathematics. In: Gent,
LP. (ed.) CP 2009. LNCS, vol. 5732, pp. 50-64. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04244-7_7

Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143-157. Springer,
Heidelberg (2005). https://doi.org/10.1007,/11499107_-11

Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Pro-
ceedings of the Twenty-Third International Joint Conference on Artificial Intelli-
gence, IJCAT 2013, pp. 587-593. AAAI Press (2013). http://dl.acm.org/citation.
cfm?id=2540128.2540214

Le Bras, R., Gomes, C.P., Selman, B.: On the Erdés discrepancy problem. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 440-448. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7_33

LeBras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: IJCAI,
pp. 587593 (2013)

Lee, Y., Sherali, H.D., Han, J., Kim, S.I.: A branch-and-cut algorithm for solving
an intraring synchronous optical network design problem. Networks 35(3), 223232
(2000)

Ma, K., Feng, C.: On the gracefulness of gear graphs. Math. Pract. Theor. 4, 72-73
(1984)

https://doi.org/10.1007/3-540-36607-5_2
https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/978-3-642-04244-7_7
https://doi.org/10.1007/11499107_11
http://dl.acm.org/citation.cfm?id=2540128.2540214
http://dl.acm.org/citation.cfm?id=2540128.2540214
https://doi.org/10.1007/978-3-319-10428-7_33

372

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

P. Spracklen et al.

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529-543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

Nightingale, P., Akgiin, 0., Gent, I.P., Jefferson, C., Miguel, I.: Automatically
improving constraint models in Savile Row through associative-commutative com-
mon subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 590-605. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-
743

Nightingale, P., Akgiin, O., Gent, I.P., Jefferson, C., Miguel, 1., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35—
61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in Savile Row.
In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330-340. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23219-5_23

Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated rea-
soning: a case study of the car-sequencing problem. J. Autom. Reason. 2(1), 1-42
(1986)

Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
quasigroup existence problems. Comput. Math. Appl. 29(2), 115-132 (1995)
Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive
party problem: integer linear programming and constraint programming compared.
Constraints 1(1-2), 119-138 (1996)

Toth, P., Vigo, D.: The vehicle routing problem. In: STAM (2002)

van der Waerden, B.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.
19, 212-216 (1927)

Walsh, T.: CSPLib problem 015: Schur’s lemma. http://www.csplib.org/Problems/
prob015

Wetter, J., Akgiin, O., Miguel, I.: Automatically generating streamlined constraint
models with ESSENCE and CONJURE. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 480-496. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5.34

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-319-23219-5_23
http://www.csplib.org/Problems/prob015
http://www.csplib.org/Problems/prob015
https://doi.org/10.1007/978-3-319-23219-5_34
https://doi.org/10.1007/978-3-319-23219-5_34

	Automatic Generation and Selection of Streamlined Constraint Models via Monte Carlo Search on a Model Lattice
	1 Introduction and Background
	2 Essence Specifications and Streamliner Generators
	3 Monte Carlo Search for Streamliner Combinations
	3.1 Algorithm Outline
	3.2 Back Propagation
	3.3 Simulation Reward
	3.4 Expansion Heuristic
	3.5 Pruning the Streamliner Lattice

	4 Empirical Evaluation
	5 Conclusion
	References

