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Abstract. We study the complexity of the quantified and valued exten-
sion of the constraint satisfaction problem (QVCSP) for certain classes
of languages. This problem is also known as the weighted constraint sat-
isfaction problem with min-max quantifiers [1].

The multimorphisms that preserve a language is the starting point of
our analysis. We establish some situations where a QVCSP is solvable
in polynomial time by formulating new algorithms or by extending the
usage of collapsibility, a property well known for reducing the complex-
ity of the quantified CSP (QCSP) from Pspace to NP. In contrast, we
identify some classes of problems for which the VCSP is tractable but
the QVCSP is Pspace-hard.

As a main Corollary, we derive an analogue of Shaeffer’s dichotomy
between P and Pspace for QCSP on Boolean languages and Cohen et al.
dichotomy between P and NP-complete for VCSP on Boolean valued
languages: we prove that the QVCSP follows a dichotomy between P
and Pspace-complete.

Finally, we exhibit examples of NP-complete QVCSP for domains of
size 3 and more, which suggest at best a trichotomy between P, NP-
complete and Pspace-complete for the QVCSP.

Keywords: Complexity classification · Valued CSP
Quantified CSP · Polymorphisms · Multimorphisms · Collapsibility

1 Introduction

Modern SAT and CSP solvers are quite efficient on industrial instances, so much
so that there is a current impetus in the community towards solvers that tackle
computational problems that lie beyond NP [2]. Meanwhile on the theoretical
front, several proofs [3,4] have just been proposed for Feder and Vardi celebrated
dichotomy conjecture for the CSP [5]. There has been some advances for its
quantified counterpart the QCSP that seems to follow a trichotomy between P,
NP-complete and Pspace-complete [6–9]. Its optimisation counterpart the VCSP

Supported by Université Clermont Auvergne, CNRS, LIMOS and Université Caen
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has been classified, first for finite valued cost functions [10] then for arbitrary
cost function assuming the dichotomy conjecture holds [11]. The reader may also
consult these recent surveys on QCSP [12] and VCSP [13].

It is now well established that the presence or absence of certain well behaved
polymorphisms of a constraint language characterises the complexity of the cor-
responding CSP. Schaefer proved a dichotomy in the Boolean case [14], which
may be reformulated as follows.

Theorem 1 [15]. Let Γ be a constraint language over D = {0, 1}.
CSP(Γ) is in P if Γ admits one of the following six good polymorphisms and
NP-complete otherwise.
Good polymorphisms: {Mjrty,Mnrty,Max,Min,Const0,Const1}.
Here, Mjrty denotes the ternary operation that returns its repeated argument,
while Mnrty is the ternary minority operation; Max and Min are binary opera-
tions that returns the maximum and minimum, respectively; Const0 and Const1
are the unary constant operations that sends their argument to 0 and 1 respec-
tively. We delay further formal definitions to the next section.

For the QCSP and VCSP, surjective polymorphisms and fractional polymor-
phisms play the same role as polymorphisms for the CSP. As an illustration,
let us state two classification results in the Boolean case. For the QCSP, the
following dichotomy was announced by Schaefer [14].

Theorem 2 [15,16]. Let Γ be a constraint language over D = {0, 1}.
QCSP(Γ) is in P if Γ admits one of the following four good surjective polymor-
phisms and Pspace-complete otherwise.
Good surjective polymorphisms: {Mjrty,Mnrty,Max,Min}.

For the Boolean VCSP, the good multimorphisms must combine good poly-
morphisms from Theorem 1, as otherwise the feasibility of the VCSP would read-
ily allow to solve a hard CSP.

Theorem 3 [17]. Let Γ be a valued constraint language on D = {0, 1}.
VCSP(Γ) is in P if it admits at least one of the following eight good multimor-
phisms. Otherwise, the problem is NP-hard.
Good multimorphisms for VCSP:
{3Mjrty, 3Mnrty, 2Mjrty + Mnrty, 2Max, 2Min,Max + Min,Const0,Const1}.

In this paper, we combine universal quantification (QCSP) and valued con-
straints (VCSP) and work in the framework of the Quantified Valued Constraint
Satisfaction Problem (QVCSP). Unbeknownst to us until the reviewers pointed
it out, this problem was in fact already introduced in [1] as the weighted CSPs
with min-max quantifiers and studied from an experimental perspective in the
context of solver designs: the authors showed that alpha-beta pruning can be
adapted in this context in a relevant fashion. While their name for the problem
is very natural in their context, we will stick to our terminology which makes
more apparent that we merge the QCSP and the VCSP frameworks. A natural
way of building a QCSP instance from a CSP instance consists in assuming that
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a malicious opponent or uncertainty with respect to the environment is limiting
certain resources or strengthening some constraints after some decisions have
been made (see for example [18] for examples of scheduling with opponents).
In the same manner, we could build natural example of QVCSP from natural
instances of the VCSP.

Note that some of the tractable languages for the VCSP are in fact not
genuine valued languages since the costs are the same for all feasible tuples. This
is the case for the multimorphisms 3Mjrty and 3Mnrty in Theorem3 (actually
this is the case for any finite domain size). For such so called essentially crisp
languages, one can therefore deduce immediately the complexity of their QVCSP
from the QCSP classification: they are both collapsible (so in NP) and reduce
in fact to a CSP in P.

For the QCSP, the fact that the complexity drops from Pspace to NP is
explained by a property known as switchability [19–22]. Here we will only con-
sider a restricted form of this property known as collapsibility, which asserts that
a language is k-collapsible, whenever to satisfy an input sentence, it suffices to
satisfy all sentences induced from this input sentence by fixing all but a bounded
number of universal variables to take the same value. This is true in particular
for the languages preserved by Max or Min for k = 1. We will show that this
approach can be applied in some cases to QVCSP as well, which will in turn
lead to tractability in some cases.

In particular, we obtain a complete classification of the complexity of the
QVCSP in the Boolean case.

Theorem 4 (main result). Let Γ be a valued constraint language on D =
{0, 1}. If Γ has one of the following good multimorphism then QVCSP(Γ) is
tractable, otherwise it is Pspace-hard.
Good multimorphisms for QVCSP:
{3Mjrty, 3Mnrty, 2Mjrty + Mnrty, 2Max, 2Min}.
The hardness part of our proof relies on a fairly non trivial case analysis of
tractable languages from Theorem 3 that are not tractable according to Theo-
rem 4. We show that we can always express in this case a cost function that is
hard for the QVCSP (and was of course not hard for the VCSP). Among other,
we borrow and adapt the technique of compression used in [17] for the proof of
Theorem 3.

The paper is organised as follows. In the next section we recall definitions and
notations. In Sect. 3, we introduce the QVCSP and provide some examples of
Pspace-hard Boolean QVCSP. In Sect. 4, we show that some valued constraint
languages are tractable for essentially trivial reasons: either because they are
crisp or because they are non crisp but any instance with “too many” universal
quantifiers must be rejected. In Sect. 5, we extend the notion of collapsibility
from the QCSP to the valued setting of QVCSP and use it to obtain tractability
results for the QVCSP. In Sect. 6, we finish the proof of Theorem4. Finally we
conclude with some remarks.
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2 Preliminaries

A VCSP instance φ is a finite collection of valued constraints over some finite
variable set X ranging over a label set D with value in the rationals augmented
with the non feasible ∞. Here a valued constraint is given by a so-called cost
function ρ from Dn to Q∪{∞} for some positive integer n (the arity) and an n-
tuple of elements of X (the scope). Given the assignment α := {σx ∈ D|x ∈ X},
we write obj(φ, α) as a short hand for

∑
ρ(x̄) in φ ρ(α(x̄)) where by α(x̄) we mean

that the value of each variable x from the scope x̄ is replaced by its assigned
label σx. The VCSP is an optimisation problem, the aim of which is to compute
an α such that obj(φ, α) is minimum. There are two other problems that arise
in the context of VCSP.

– decision: given an additional input k in Q, is there an α such that obj(φ, α)
is at most k?

– feasibility: is there an α such that obj(φ, α) is finite?

All these problems are NP-hard in general, and a standard way of better
understanding the complexity is to study language restrictions, that is restricts
costs functions to come from a certain set Γ . A valued constraint language is
NP-hard (for the VCSP), iff it contains a finite language for which the VCSP
is NP-hard. A cost function is crisp (resp., essentially crisp) if it ranges over
{0,∞} (resp., over {c,∞} for some c in Q). A language is (essentially) crisp if
it contains only (essentially) crisp cost functions. The crisp language associated
with a valued constraint language Γ denoted by crisp(Γ ) consists of the set of
corresponding relations, where crisp(ρ)(t) := 0 iff ρ(t) < ∞.

An m-ary operation on D is a function g : Dm → D. Let O(m)
D denote the set

of all m-ary operations on D. An m-ary fractional operation is a function ω from
O(m)

D to the positive rationals such that
∑

g ω(g) = 1. The set {g | ω(g) > 0} of
operations is called the support of ω and is denoted by supp(ω).

A fractional operation ω is called an m-ary fractional polymorphism of a
r-ary valued constraint ρ if for any tuples t1, t2, . . . , tm in Dr, it holds that

1
m

(ρ(t1) + ρ(t2) + . . . + ρ(tm)) ≥
∑

g∈O(m)
D

ω(g)ρ(g(t1, t2, . . . , tm)) (1)

where the operations g are applied component-wise. We will alternatively say
that a fractional operation improves a cost function. A multimorphism is a frac-
tional polymorphism with integral weights1. If ω is a fractional polymorphism
of every cost function in a constraint language Γ , then ω is called a fractional
polymorphism of Γ . A fractional polymorphism of a crisp language is a collec-
tion of polymorphisms (one identifies a crisp cost function ρ with the relation

1 We deviate marginally from the standard definition, which would require to rescale
by the arity.
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{t|ρ(t) < ∞}). If ω is a fractional polymorphism of Γ , any g in supp(ω) is a
polymorphism of crisp(Γ ). Rewriting (1) as

ρ(t1) + ρ(t2) + . . . + ρ(tm) ≥
∑

g∈O(m)
D

m.ω(g)ρ(g(t1, t2, . . . , tm)) (2)

we will mildly abuse the notation of m-ary fractional polymorphisms in this
paper, and write them as a weighted sum of operations of arity m, such that the
sum of weights equals m. This explains the notation used in the statement of
Theorems 3 and 4, where we listed several examples including ternary fractional
operations such as 3Mjrty and 2Mjrty + Mnrty, binary ones such as 2Max and
Max + Min and, unary ones Const0,Const1.

We recall some operation of importance. For a constant c in D, let Constc

denote the unary operation that always return c. Given a total order over D, let
Max (resp, Min) denote the binary operation that returns the largest argument.
Over the Boolean domain, we shall consider the usual order 0 < 1. More gen-
erally, any partial order over D such that the greatest lower bound of any pair
of elements exist, induces naturally a semi-lattice operation, which is a binary
operation ∧ that is idempotent (x ∧ x = x), associative and commutative. The
element ⊥ :=

∧
d∈D d satisfies for any x in D, ⊥∧x = ⊥. If there is a constant 	

such that for any x in D, 	 ∧ x = x, then we say that 	 is a unit and ∧ a semi-
lattice with unit. For 1 ≤ i ≤ 3, let Mjrtyi denote the ternary operation that
returns the argument that occurs the most if some are equal, and its ith argument
otherwise. When the domain is Boolean, we drop the unnecessary subscript. We
define similarly Mnrtyi, which returns the least frequent argument if some are
equal. A k-ary Hubie operation2 f over D with respect to a constant c in D is
a surjective operation that remains surjective even when any coordinate is fixed
to c. That is, f(c,D, . . . , D) = f(D, c,D, . . . ,D) = . . . = f(D, . . . ,D, c) = D.
We say that a cost function φ(x1, . . . , xm) can be expressed by Γ if there is an
instance I of VCSP(Γ ) with objective function φI(x1, . . . , xm, xm+1, . . . , xn),
such that

φ(x1, . . . , xm) = Min
xm+1,...,xn

φI(x1, . . . , xm, xm+1, . . . , xn).

We can also easily implement cost functions by scaling and translating that is
a cost function a.φ + b, for any φ ∈ Γ , any a ∈ Q+ and any b ∈ Q. Let Γ ∗

be the closure of Γ under expressibility, scaling and translation. It is known
that this closure preserve (in)tractability and that Γ ∗ is the same as the set of
cost functions that are invariant under the fractional polymorphisms of Γ [13,
Theorem 35].

3 Definition and Examples of QVCSP

An instance of the quantified valued constraint satisfaction problem (QVCSP)
is defined as above with the addition of a prefix of quantification P applying
2 It was anonymous in [23] and the term was coined in [21].
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to all variables: that is, P is a strict linear order over variables where variables
are either existential or universal. For convenience, we will denote the set of
existential variables by XP and universal variables by Y P . Given an existential
variable x of XP , we denote by Y P

x the set of universal variables that precede
x in the prefix order given by P. When the prefix of quantification is clear from
context, we feel free to drop the superscript from our notation.

A Skolem function σx for the variable x is a D ranging function that takes as
input values corresponding to the values of the universal variables that precedes
it in P, that is from D|Yx| to D. If β is a family of Skolem functions for our
instance β = {σx : D|Yx| → D|x ∈ X} (we will call such a family a strategy for
our instance) and π : Y → D an assignment of the universal variables, we write
β ◦ π for the assignment to the variables which assigns a universal variable y in
Y to π(y) and an existential variable x in X to σx(π�Yx

), where π�Yx
denotes

the restriction to Yx of π.
We are now in a game setting pitching a universal player (male) and an

existential player (female). Informally, she is trying to give a label to existential
variables with the long term view of optimising the objective function, while
he is a malicious opponent trying to prevent her from doing so. She tries to
minimise the objective no matter what her opponent plays. This is reasonable if
she knows that he is maliciously trying to make sure that after play her objective
is as large as possible. We extend therefore the objective function to quantified
valued constraints and let obj(φ, β) := maxπ:Y →D obj(φ, β ◦π). We will consider
the QVCSP to be the optimisation problem, the aim of which is to compute a
β such that obj(φ, β) is minimum. We will not as such request that β be given
in full as it would be of size at least Dm where m is the number of universal
variables. Instead, we will ask for a procedure that can play the underlying game
according to the strategy β. Like for the VCSP, there are again two natural
decision problems that arise:

– decision: given an additional input k in Q, is there a β such that obj(φ, β) is
at most k?

– feasibility: is there a β such that obj(φ, β) is finite?

Note that this definition extends naturally the usual semantic of the QCSP
and the feasibility question for the QVCSP amounts to solving the QCSP for
the underlying crisp language. This means that the above three problems are
Pspace-hard in general, and we study in this paper their restrictions to a valued
constraint language Γ .

Example 1. Let Γnae be the boolean constraint language that consists of the cost
function.

ρnae(x, y, z) =
{∞ if x = y = z

0 otherwise

This language is crisp and we know that the complexity for the VCSP is that
of the corresponding CSP, namely NP-complete, and that for the QVCSP, we
should look at the QCSP, well known to be Pspace-complete [12].
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Example 2. Let Γneq be the boolean constraint language that consists of the cost
function

ρneq(x, y) =
{

0 if x �= y
1 otherwise

For this non crisp language, we again get an NP-hard VCSP but not because of
the feasibility which is tractable, but because of the optimisation, by reduction
from MAX Sat for XOR [17]. Alternatively, one can simulate a variant of ρnae:

ρ′
nae(x, y, z) := ρneq(x, y) + ρneq(x, z) + ρneq(y, z) − 1 =

{
2 if x = y = z
0 otherwise

We can reduce VCSP(Γnae) to VCSP(Γneq) by replacing every occurrence of the
cost function by ρ′

nae. The former instance holds iff the latter has a solution
reaching an objective of 0. The same reduction applies for the QVCSP, whose
decision version is therefore Pspace-complete.

Example 3. The following boolean cost function

ρeq(x, y) =
{

0 if x = y
1 otherwise

together with two unary crisp cost functions that encodes the constants 0 and
1 forms the boolean language Γcut, whose VCSP corresponds essentially to the
problem MIN-CUT and is tractable [17]. In contrast we will show below that
the language Γeq = {ρeq} has already a QVCSP that is Pspace-hard.

Proposition 1. The QVCSP for the constraint language Γeq is Pspace-hard.

Proof. We reduce the decision version of QVCSP for Γneq (see example above)
to that of Γeq as follows.

Given an instance φ of the former with a quantifier prefix P, we reduce to
the instance φ̃ obtained by replacing every occurrence of the cost function ρneq
by ρeq in φ and picking the dual quantifier prefix P̃ (that is turn existential
variables to universal and vice versa).

Let N be the number of occurrences of the ρneq cost function in φ. We claim
that the objective for φ̃ must be more than N − k, iff the objective for φ is less
then k.

Indeed, otherwise pitting a strategy β̃ for φ̃ that would attain an objective of
less than N minus k, against any strategy β for φ in the game for φ, we would
obtain a final objective of more than k.

The dual argument applies for the other direction, which proves our claim.
The claim gives us the (Turing) reduction. We answer the opposite answer

of that for φ̃ with the threshold N − k. �
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4 Some Tractable Languages

4.1 Essentially Crisp Languages

We can deduce the complexity of such languages from the complexity of the
associated QCSP.

Proposition 2. Let Γ be a valued constraint language over some finite set D.
If Γ admits 3Mjrty or 3Mnrty as a multimorphism, where Mjrty (respectively,
Mnrty) is any majority (respectively, minority) operation, then QVCSP(Γ ) is
tractable.

Proof. By Proposition 6.20 (majority) and 6.22 (minority) in [17], Γ is an essen-
tially crisp language. Thus the problem QVCSP(Γ ) is the same as QCSP(Γ ′)
where Γ ′ = crisp(Γ ). By construction, Γ ′ admits Mjrty or Mnrty as a poly-
morphism, which are known to be tractable by Theorem 4.2 (mal’tsev) and 4.5
(near-unanimity) in [6]. �
Remark 1. The above can be generalised to a language that admits a multi-
morphism 3f where f is Mal’tsev or a multimorphism k.f where f is a k-ary
near-unanimity operation.

4.2 Permutations and Unary

The proof principle used to discard universal quantifiers for the language of the
following result is reminiscent of the case of a language that consists of a single
bipartite or a single disconnected graph for the QCSP [24]. In a nutshell, an
instance boils down to a collection (conjunction) of instances with a prefix of
quantification with at most one leading universal variable or it must be rejected.

Theorem 5. Let Γ be a valued constraint language over some finite set D. If
Γ admits Mjrty1 + Mjrty2 + Mnrty3 as a multimorphism, then QVCSP(Γ ) is
tractable.

Proof. By Theorem 6.25 in [17], any cost function from Γ can be expressed as a
sum of unary cost functions and binary permutation restrictions. The latter are
crisp cost functions with costs ranging in {0,∞}, that amount to a restricted
permutation in the sense that for any x, there is at most one y2 such that φ(x, y2)
holds (has non ∞ weight) and at most one y1 such that φ(y1, x) holds.

Our algorithm will apply some simple preprocessing and detect that the
instance is not feasible or it will deduce that each connected component of the
constraint graph contains at most one universal variable and by some simple case
analysis deduce the (worst) cost for these components. In effect this reduces the
instance to a VCSP instance for which a simple algorithm is already known.

Let φ be a permutation restriction occurring in the instance.
If ∃x∀yφ(x, y) occurs in the instance then it is not feasible since any but at

most one value for y will yield an objective of ∞ for a given value of x. In this
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case, we may answer ∞. Of course, the symmetric case of ∃x∀yφ(y, x) is dealt
with in the same way. We ignore symmetric cases from now on.

Similarly, if ∀y1∀y2φ(y1, y2) occurs in the instance, then we may answer ∞.
In the degenerate case of ∀yφ(y, y), we may also answer ∞ unless φ is the

crisp function for equality over D, in which case, we may simply discard φ(y, y)
from the sum.

So we may assume from now on that any occurrence of a permutation restric-
tion is of the form ∀y∃xφ(x, y). If there is one y0 such that |{x|φ(x, y0) = 0}| = 0
then we may answer ∞. Otherwise, let ζ(y) be the unique x such that φ(x, y) = 0.
The only Skolem function for x that yields feasibility is essentially unary and
depends only of y : σx(y) = ζ(y).

If there is a path y1, x1, x2, . . . , xn where y1 is universal and x1, x2, . . . , xn

are existential variables in the constraint graph then there are some permuta-
tions ζi on D such that the only Skolem functions for these existential vari-
ables that could possibly yield feasibility are of the form σx1(y) = ζ1(y1),
σx2(y) = ζ2(ζ1(y1)) . . . σxn

(y) = ζn(. . . ζ2(ζ1(y1)) . . .). If there is an edge from
xn to some universal variable y2 then the instance is necessarily unfeasible since
any but one value for y2 will yield an objective of ∞ for a given value of xn.

We can solve in parallel the part of the instance induced by each connected
component of the constraint graph, and we may assume that a connected com-
ponent of this graph contains at most one universal variable that is quantified
ahead of the existential variables of this connected component.

A connected component that does not contain any universal variable can be
solved efficiently by some simple propagation (see [17]).

If a universal variable y occurs only within the scope of unary constraints
then we simply assume that y takes the value yielding the worst cost.

More generally, for each connected component that contains one universal
variable y, we can check in parallel for all values d of y, the corresponding
cost My=d for the component (all other variables are now fixed). Let M be the
maximum combined cost among My=d. �
Remark 2. The tractable languages for the QCSP from [24] mentioned above
can be shown to exhibit collapsibility thanks to specific polymorphisms (see
examples 2 and 3 in [23]). While we shall proceed similarly for the valued lan-
guages of the next section with a suitable multimorphism, we do not yet know
of a multimorphism that witnesses directly “collapsibility” for the language of
Theorem 5.

5 Collapsibility in the Valued Settings

Following Chen [20], for an input of the QVCSP with m universal variables, we
restrict the universal opponent to play universal variables from a specific set
of tuples, and investigate the interpolation of unrestricted game from restricted
(small sized) ones in the presence of good multimorphisms.

As a concrete application, we will see the case of a language closed under
the multimorphism 2.g (2 times g) where g is a semi-lattice with unit 	. On
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an instance involving cost functions improved by this multimorphism, we may
interpolate a winning strategy from winning strategies for all instances induced
by replacing all but one universal variable by 	.

The necessary definitions and notations to discuss such an interpolation in
general can be a bit off-putting, and the keen reader may refer to the appendix.
Here, we will only eventually state our tractability result and give first a detailed
and concrete example to illustrate it.

Example 4. Consider the instance ∀y1∃x1∀y2∀y3∃x2 φ(y1, x1, y2, y3, x2), where
φ is the 5-ary Boolean cost function such that the cost of (0, 0, 0, 0, 0) is 51, that
of (0, 0, 0, 0, 1) and (0, 0, 0, 1, 0) is ∞, that of (0, 0, 0, 1, 1) is 21, etc. This instance
is depicted on Fig. 1. It can be checked that the cost function admits 2Max as a
multimorphism: that is, the sum of the costs of any two tuples dominates twice
the cost of their max taken component-wise. For example, when t1 = (0, 0, 1, 0, 1)
and t2 = (1, 0, 0, 1, 1); their max is t3 = (1, 0, 1, 1, 1); the costs are φ(t1) = 51,
φ(t2) = 13 and φ(t3) = 5; it is indeed the case that 10 = 2 × 5 ≤ 51 + 13 = 64.

We replace all but one universal variable by 0 (the value of the unit 	 for the
specific case of Max) and derive three restricted games, which amounts to solve
the instances that are depicted on Fig. 2. Of course, each restricted game is a
relaxation of the original instance. Thus, if one of them is not feasible then the
original instance is also not feasible. The same argument applies to the objective
reached by feasible instances.

The important point is that the converse holds since we can interpolate a
strategy for the original instance from three strategies for the restricted games,
in a way that can only improve them.

In what follows, we will assume that we have at our disposal the three strate-
gies that are optimal for each restricted game.

Imagine that the first universal quantifier takes value 1, that is y1 = 1. We
will play also y1 = 1 in the first restricted game and y1 = 0 in the other two
restricted games (we may not do otherwise). Observe that the max of the triple
(1, 0, 0) is 1. Next, we look up where the subsequent existential variable x1 is
played in each restricted game. For example, we must have x1 = 1 in the first
restricted game, and x1 = 0 in the two other games (otherwise, we would end
up being necessarily unfeasible). We apply max to this triple (1, 0, 0) and play
x1 = 1 in the original game. We proceed in this fashion going back and forth
taking antecedent and image under max. For example, y2 = 0 brings us back to
y2 being played on (0, 0, 0) in the three games, and y3 = 1 brings us back to y3
being played on (0, 0, 1) in the three games. In these three games x2 must be
played on 1,0, and 1, respectively. We play x2 on their maximum which is 1. The
“branches” of play in the four games alluded to above are highlighted on Figs. 1
and 2.

The fact that Max is surjective means that we can always go back. The fact
that 2Max is a multimorphism means (with a little bit of work) that the strategy
we have interpolated from those for the restricted games can only improve them.

In the previous example, we have explained how a general strategy can be
interpolated from a set of strategies applying to restricted games, where we



Quantified Valued CSP 305

Fig. 1. An instance of the QVCSP

Fig. 2. Restricted Games: from left to right, we keep the first, second and third uni-
versal quantifier. The other universal variables are assumed to take value 0 (we write
a • to denote that they are pinned to a constant).

are left with a single universal quantifier. Each such strategy can be computed
by an adaptation of Generalized Arc Consistency that runs also in polynomial
time, and there are linearly many such strategies to compute. Thus, we have a
tractable QVCSP in this case.

Theorem 6. Let Γ be a valued constraint language. Let g be a semi-lattice with
unit 	. If Γ admits 2 times g (2.g) as a multimorphism the QVCSP(Γ ) is
tractable.

6 Proof of Theorem4

We have proved in Sect. 4 that any valued Boolean constraint language that
admits one of the good multimorphism from the statement is tractable: for
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3Mjrty and 3Mnrty by Proposition 2, for 2Mjrty + Mnrty by Theorem5, for
2Max and 2Min by Theorem6. So, we are left with the hardness part of the
statement.

If a constraint language does not admit any of these multimorphisms, and
is essentially crisp it must be hard by Theorem 2. If a constraint language does
not admit any of the multimorphisms of Theorem3, and is not essentially crisp,
then by Lemma 7.10 in [17] Γ ∗ contains ρneq which has a Pspace hard QVCSP
as seen in Example 2.

The next lemma concludes the proof, as we show that even if a language must
admit all multimorphisms from Theorem 3 that are not in Theorem4, then it
can simulate a cut function.

A language Γ ′ that admits less multimorphisms than Γ can express any finite
subset of Γ ∗. So any such Γ ′ would also simulate a cut function.

A cut function is a binary function from {0, 1}2 in Q ∪ {∞} of the following

form φcutβ
α
(x, y) =

{
α if x = y,
β otherwise where α, β ∈ Q ∪ {∞} with α < β < ∞.

The QVCSP of a cut function is Pspace-hard by Proposition 1, since ρeq can be
simulated by scaling and translating from any cut function.

Since we are in a quantified and valued setting, we will be able to use expres-
sivity, scaling and translating as for the VCSP but also universal quantifiers as
for the QCSP. We will call this simulation with some universal quantifiers in
what follows to stress that we go beyond the ∗ closure from the VCSP.

Lemma 1. Let Γ be a valued Boolean constraint language. If Γ admits Const1,
Const0 and Max + Min as multimorphism but no multimorphism from {3Mjrty,
3Mnrty, 2Mjrty+Mnrty, 2Max, 2Min} then Γ can simulate with some universal
quantifiers a cut function.

Consequently, the decision problem of the QVCSP of Γ is Pspace-complete.

The rest of this section is devoted to a proof of this Lemma.

Fact 1. If Γ admits Max+Min as a multimorphism then crisp(Γ ) admits Mjrty
as a polymorphism.

Proof. crisp(Γ ) admits both Max and Min as polymorphisms and the majority
can be defined as follows:

Mjrty(a, b, c) := Max[Max(Min(a, b),Min(a, c)),Min(b, c)].

Fact 2. If Γ does not admit 3Mjrty as a multimorphism and crisp(Γ ) does admit
Mjrty as a polymorphism then Γ is not essentially crisp.

Proof. Let ρ be a cost function in Γ and u, v, w such that ρ(u), ρ(v), ρ(w) < ∞.
Since Mjrty is a polymorphism of crisp(Γ ) then ρ(Mjrty(u, v, w)) < ∞. If ρ is
essentially crisp then 3ρ(Mjrty(u, v, w) = 3ρ(u) = ρ(u) + ρ(v) + ρ(w). If Γ was
essentially crisp then it would admit 3Mjrty as a multimorphism which would
contradict our assumption.
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Recall that ρ is finitely modular, whenever for all tuples s, t such that φ(s),
φ(t), φ(Max(s, t)), and φ(Min(s, t)) have finite costs, we have that φ(s)+φ(t) =
φ(Max(s, t)) + φ(Min(s, t)).

Fact 3. If Γ does not admit 2Mjrty + Mnrty as a multimorphism and crisp(Γ )
does admit Mjrty as a polymorphism then there exist a cost function in ρ that is
not finitely modular or crisp(ρ) does not admit Mnrty as a polymorphism.

Proof. Corollary 6.26 in [17] establishes that a cost function ρ does admit
2Mjrty + Mnrty as a multimorphism iff it is both finitely modular and crisp(ρ)
admits as polymorphisms both Mjrty and Mnrty.

Fact 4. If Γ is not essentially crisp, and it admits Const0 and Const1 as mul-
timorphisms, and crisp(Γ ) admits Mjrty but does not admit Mnrty then Γ ∗

contains a cut function.

Before proving this, let us point out that this means that we are only left with
the case when there is a ρ that is not finitely modular, a case that we will settle
in the last Fact.

Proof. We follow the same argument as in case 3 of the proof of Theorem 6.27
from [17] and establish that Γ contains a binary cost function ρ such that for
exactly one (a, b) ∈ D2 there is ρ(a, b) = ∞ (other values being finite). Since Γ
admits Const0 and Const1 as multimorphisms, we know that ρ(0, 0) = ρ(1, 1) �
ρ(b, a) < ρ(a, b) = ∞. W.l.o.g. up to symmetry, we can suppose that a = 0 and
b = 1 and we have ρ(0, 0) = ρ(1, 1) � ρ(1, 0) < ρ(0, 1) = ∞.

We must ensure ρ(1, 0) > ρ(0, 0) for our next construction to work. If it is
not the case, then since Γ is not essentially crisp and has the multimorphisms
Const0 and Const1, there is a cost function ρm (of arity m) and a m-tuple u such
that ρm(0, . . . , 0) = ρm(1, . . . , 1) < ρm(u) < ∞. Let ρ2 be the binary function
obtained by ρ2(x1, x0) = ρm(xu[1], . . . , xu[m]). We do not know for sure the value
of ρ2(0, 1) but we know that ρ2(0, 0) = ρ2(1, 1) < ρ2(1, 0) = ρm(u) < ∞.

Let ρ3(x, y) := ρ(x, y) + ρ2(x, y). By construction, ρ3(0, 0) = ρ3(1, 1) <
ρ3(1, 0) < ρ3(0, 1) = ∞.

The last function which is the desired cut function is created by expressibility
as follows:

ρ4(x, y) := Min
z,t

[ρ3(x, t) + ρ3(z, t) + ρ3(z, y) + ρ3(y, z) − 4ρ3(0, 0)]. �

The next step will rely heavily on the technique of compression from [17], which
we shall adapt to our purpose. Given an m-ary cost function ρm and two m-
tuples u and v, let the compression ρ4 of ρm w.r.t. u and v is defined as:
ρ4(x00, x01, x10, x11) = ρ(xu[1]v[1], xu[2],v[2], . . . , xu[m]v[m]). One can verify that
ρ4(0, 0, 0, 1) = ρm(Min(u, v)), ρ4(0, 0, 1, 1) = ρm(u), ρ4(0, 1, 0, 1) = ρm(v) and
ρ4(0, 1, 1, 1) = ρm(Max(u, v)).

Next, we want to ensure that the first and last coordinate of ρ4 must take
values 0 and 1 in order to simulate the binary cost function ρ4(0, x1, x2, 1).
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Fact 5. If Γ is not essentially crisp and admits Const1 and Const0 as multimor-
phisms, then Γ ∗ contains a cut function or a small quantified instance with 2 free
variables x1 and x2 and two universal variables built from cost functions from Γ
together with ρ4 allows to simulates the binary cost function ρ4(0, x1, x2, 1) for
any m-ary cost function ρm from Γ .

Proof. Let ρ2(0, 0) = ρ2(1, 1) < ρ2(1, 0) = ρm(u) < ∞ be defined as in the proof
of the previous fact (we only need the assumptions that Γ is not essentially crisp
and admits Const1 and Const0 as multimorphisms). If ρ2(0, 1) is also finite then
ρ2(x, y) + ρ2(y, x) expresses a cut function and we are done.

Otherwise, ∃x1∃x2∀y1∀y2 ρ2(x1, y1) + ρ2(y2, x2) − 2ρ2(1, 0) forces x1 = 0
and x2 = 1 (because this is the only way to avoid an infinite cost).

So for any cost function ρm from Γ and its compression ρ4, if we insert at
the beginning of an instance ∃x1∃x2∀y1∀y2 ρ2(x1, y1) + ρ2(y2, x2) − 2ρ2(0, 1),
all subsequent constraint of the form ρ4(x1, x, y, x2) plays the same role as
ρ4(0, x1, x2, 1).

Fact 6. If there exists a cost function which is not finitely modular in Γ , which
does admit Min + Max as a multimorphism but does not admit either 2Max or
2Min as a multimorphism then Γ can simulate with some universal variables a
cut function.

Proof. Since 2Max is not a multimorphism there is a function ρNMax and u, v
such that 2ρNMax(Max(u, v)) > ρNMax(u)+ρNMax(v). Both ρNMax(Max(u, v)) <
∞ and ρNMax(Min(u, v)) < ∞ because Min + Max is a multimorphism and so
both Min and Max are polymorphisms of crisp(Γ ).

By the binarisation method of the compression from the previous fact, either
we have a cut function and we are done or we can simulate the binary function
ρ2NMax and let ρM (x, y) = ρ2NMax(x, y) + ρ2NMax(y, x) − 2ρ2NMax(0, 0).

We have ρM :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ A + ε1 with 0 < ε1 � A
1, 0 �→ A with A > 0
0, 1 �→ A
0, 0 �→ 0

0 < ε1 because ρNMAX does not have the multimorphism 2Max and ε1 � A
because ρNMAX has the multimorphism Min + Max.

There is a function ρNMod which is not finitely modular and admits Min +
Max as a multimorphism. So there are u, v such that ρNMod(Max(u, v)) +
ρNMod(Min(u, v)) < ρNMod(u)+ρNMod(v) < ∞. By the binarisation method from
the previous fact, either we have a cut function and we are done or we can sim-
ulate ρ2NMod and define ρs(x, y) := ρ2NMod(x, y)+ρ2NMod(y, x)−2ρ2NMod(0, 0).

By construction, we have, ρs :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ b0 < 2b
1, 0 �→ b
0, 1 �→ b
0, 0 �→ 0

.
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Let α be a positive integer such that α > b−b0
ε1

and ϕM := αρM + ρs

– ϕM (1, 1) = αA + αε1 + b0 > αA + b − b0 + b0 = ϕM (1, 0)
– ϕM (1, 1) = (A + ε1)α + b0 < 2Aα + 2b = 2(αA + b) = 2ϕM (1, 0)
– ϕM (1, 0) = ϕM (0, 1) = b + αA � b + αε1 > b + b − b0 > 0
– ϕM (0, 0) = 0

We have ϕM :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ M + εM with 0 < εM < M
1, 0 �→ M with M > 0
0, 1 �→ M
0, 0 �→ 0

A similar proof with 2Min instead of 2Max can be used to construct the

binary function ρm such that, ϕm :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ 0
1, 0 �→ m with m > 0
0, 1 �→ m
0, 0 �→ m + εm with 0 < εm < m

We define the function ρ(x, y) = (m + εm)ρM + (M + εM )ρm and we have:

– ρ(1, 1) = ρ(0, 0) = mM + mεM + Mεm + εM εm

– ρ(1, 0) = ρ(0, 1) = mM + mεM + Mεm + mM
– εM εm < mM

So ρ is a cut function as required. �

7 Conclusion

We have studied the quantified valued constraint satisfaction problem, also
known as the weighted CSPs with min-max quantifiers, and established pre-
liminary results regarding its complexity when restricted by a valued language.

Without introducing any new Galois connection and using only the tools
for the VCSP, and only adapting collapsibility from the QCSP, we get several
tractability and intractability results, which allows us to derive in particular a
dichotomy for the Boolean case. The proof is somewhat complex, and we plan
to introduce the correct Galois connection for the QVCSP in the hope that it
will allow to streamline this proof, and extend this result to larger domains.

Another line of enquiry would be to better understand collapsibility in the
context of valued constraints. Our current attempt does not seem to provide us
with transitivity as it does in the non valued case.

Finally, let us note that any attempt at classifying the QVCSP for 3 or more
elements might hit the same hurdle as in the case of the QCSP. We can easily
build problems that fall in NPO and are NP-hard. For example consider

ρ :

⎧
⎨

⎩

{0, 1, 2} → Q ∪ {∞}
(x, y) �→

{
ρneq(x, y) if (x, y) ∈ {0, 1}
∞ otherwise
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Every instance with a universal quantifier y can be trivially answered as the
objective is ∞ as soon as y is 2. We are left with existential instances which
likewise must play on {0, 1}. Consequently, QVCSP has the same complexity as
the VCSP on ρneq, namely it is NP-hard and in NPO.
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