
John Hooker (Ed.)

 123

LN
CS

 1
10

08

24th International Conference, CP 2018
Lille, France, August 27–31, 2018
Proceedings

Principles and Practice
of Constraint Programming

Lecture Notes in Computer Science 11008

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

John Hooker (Ed.)

Principles and Practice
of Constraint Programming
24th International Conference, CP 2018
Lille, France, August 27–31, 2018
Proceedings

123

Editor
John Hooker
Carnegie Mellon University
Pittsburgh, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-98333-2 ISBN 978-3-319-98334-9 (eBook)
https://doi.org/10.1007/978-3-319-98334-9

Library of Congress Control Number: 2018950526

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018, corrected publication 2018, 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-3169-1871

Preface

This volume contains the proceedings of the 24th International Conference on the
Principles and Practice of Constraint Programming (CP 2018) held August 27–31,
2018, in Lille, France. Detailed information about the CP 2018 conference can be
found at http://cp2018.a4cp.org.

The CP conference is the annual international conference on all aspects of com-
puting with constraints including theory, algorithms, environments, languages, models,
systems, and applications such as decision-making, resource allocation, scheduling,
configuration, and planning. The organizers of CP 2018 made a particular effort to
build bridges to related fields that may provide new applications for CP. This theme
was reflected in invited plenary talks, tutorials, a panel session, and seven themed
tracks in addition to the main technical track: Applications; CP and Data Science; CP
and Music; CP and Operations Research; CP, Optimization, and Power System
Management; Multiagent and Parallel CP; and Testing and Verification. Each track had
its own track chair(s) and Program Committee to ensure that the papers would be peer
reviewed by experts in the relevant field.

The 114 submitted papers were allocated to tracks specified by the author(s). Each
paper received at least three reviews. A total of 395 reviews were provided by Program
Committee members, and 44 by external reviewers. The review process in each themed
track was managed by the respective track chair, while papers submitted to the Main
Technical Track were assigned to a senior Program Committee member, who con-
ducted the discussion for that paper. The senior Program Committee consisted of seven
prominent researchers from the CP community as well as the 11 track chairs and the
conference program chair. Authors had an opportunity to respond to the initial reviews.
Following this, the senior Program Committee conducted an intense asynchronous
online discussion of the papers via EasyChair over an 11-day period, involving the
regular Program Committee members as needed.

The reviewing process was double blind, meaning that authors and reviewers were
anonymous to each other throughout the review process. In addition, Program Com-
mittee members indicated potential conflicts of interest by selecting from a list of
submitting authors those with whom they had professional relationships. This pre-
vented members from seeing the reviews or participating in the discussion of any
papers with which they had a conflict of interest. In addition, papers submitted by track
chairs to their own track were transferred to other track chairs, who managed the review
process and obtained reviewers as necessary from the relevant Program Committees.
The final deliberations of the senior Program Committee were conducted so as to
respect all conflict-of-interest restrictions.

The senior Program Committee selected 50 papers for presentation at the confer-
ence, resulting in an acceptance rate of 44%. The committee also awarded the Best
Paper Prize to Emmanuel Hebrard and George Katsirelos for their paper, “Clause
Learning and New Bounds for Graph Coloring.” This paper was presented in a plenary

http://cp2018.a4cp.org

session, along with a presentation by the recipient of the ACP Doctoral Research
Award. In addition, the authors of six outstanding papers were offered an opportunity
to publish a longer version in Constraints rather than in the conference proceedings,
and three accepted this offer. Because the longer versions would not appear in time for
the conference, the original conference versions of the papers were posted on the
conference website along with this proceedings volume. Abstracts of these papers
appear at the end of the volume.

The first day of the conference was allocated to four workshops and the Doctoral
Program. The workshops were the International Workshop on Graphs and Constraints,
the Second Workshop on Progress Towards the Holy Grail, Constraints and AI
Planning, and the 17th International Workshop on Constraint Modelling and Refor-
mulation. The Doctoral Program afforded 26 participating students an opportunity to
present their work, meet one-on-one with a senior researcher, and attend invited talks
targeted to the experiences of a PhD student.

The main conference program featured three invited talks that described opportu-
nities to apply CP technology in related fields. Srinivas Bollapragada, Chief Scientist at
General Electric’s Global Research Center, presented industrial scheduling problems
that have heretofore been addressed by operations research methods. James Cussens,
Senior Lecturer in Computer Science at the University of York, showed how CP can
contribute to machine learning. Malte Helmert, Head of the AI Research Group at the
University of Basel, discussed the role of constraints in automated planning. In addi-
tion, the program included several hour-long tutorials that showed how to formulate
problems for modelling and solution software systems in related fields. Finally, a
plenary panel session discussed opportunities for collaboration between the CP and
automated planning communities.

A conference is a more complicated affair than is often thought, presenting literally
hundreds of issues that must be resolved for a successful event. Our thanks go to
Conference Chairs Gilles Audemard and Christophe Lecoutre for securing financial
support and making the many necessary arrangements. In addition, we thank Publicity
Chair George Katsirelos, Workshop Chair Sébastien Tabary, and Doctoral Program
Chairs Anastasia Paparrizou and Nadjib Lazaar for their service.

The quality of a conference program relies on the hard work of many reviewers. CP
2018 is indebted to 117 members of eight Program Committees, some of whom served
on multiple committees. We also thank the track chairs for recruiting their Program
Committees and managing the review process in their tracks; they include Meinolf
Sellmann (Applications), Michele Lombardi and Tias Guns (CP and Data Science),
Charlotte Truchet (CP and Music), David Bergman and Andé Ciré (CP and Operations
Research), Bhagyesh Patil (CP, Optimization, and Power System Management), Fer-
dinando Fioretto and William Yeoh (Multiagent and Parallel CP), and Arnaud Gotlieb
and Nadjib Lazaar (Testing and Verification). Special thanks go to the senior Program
Committee for moderating discussions and making the tough final decisions.

Finally, we are grateful to our financial sponsors, which include Artifical Intelli-
gence, Association for Constraint Programming, Association Française pour la Pro-
grammation par Contraintes, Centre de Recherche en Informatique de Lens, Centre

VI Preface

National de la Recherche Scientifique, Cosling, European Association for Artificial
Intelligence, Horizontal Software, Huewei, N-SIDE, ROADEF, Siemens, and
Université d’Artois.

June 2018 John Hooker

Preface VII

Workshops and Tutorials

Workshops

Constraints and AI Planning

Christopher Beck University of Toronto, Canada
Michael Cashmore King’s College, London, UK
Malte Helmert University of Basel, Switzerland
Gilles Pesant École Polytechnique de Monréal, Canada

International Workshop on Graphs and Constraints

Stefan Mengel CRIL, Université d’Artois, France
Florent Capelli Université de Lille

Second Workshop on Progress Towards the Holy Grail

Eugene Freuder University College Cork, Ireland

17th International Workshop on Constraint Modelling and Reformulation

Kevin Leo Monash University, Australia
Alan Frisch University of York, UK

Tutorials

Xpress Mosel Tutorial: Modelling and Solving Optimization Problems
with Various Solvers

Sébastien Lannez FICO, France

Automated Modeling with Conjure and Savile Row

Özgür Akgün University of St. Andrews, UK
Peter Nightingale University of St. Andrews, UK

MiniZinc: An Expressive Extensible Modelling Language

Peter Stuckey University of Melbourne, Australia
Guido Tack Monash University, Australia

Model-Based Optimization: Principles and Trends

Robert Fourer Northwestern University, USA

Machine Learning for SAT Solvers

Jia Hui Liang University of Waterloo, Canada

Conference Organization

Program Chair

John Hooker Carnegie Mellon University, USA

Conference Chairs

Gilles Audemard CRIL, Université d’Artois, France
Christophe Lecoutre CRIL, Université d’Artois, France

Track Chairs

Applications

Meinolf Sellmann General Electric Global Research Center, USA

CP and Data Science

Michele Lombardi Università di Bologna, Italy
Tias Guns Vrije Universiteit Brussel, Belgium

CP and Music

Charlotte Truchet Université de Nantes, France

CP and Operations Research

David Bergman University of Connecticut, USA
André Ciré University of Toronto, Canada

CP, Optimization, and Power System Management

Bhagyesh Patil Cambridge Centre for Advanced Research
and Education in Singapore

Multiagent and Parallel CP

Ferdinando Fioretto University of Michigan, USA
William Yeoh Washington University in St. Louis, USA

Testing and Verification

Arnaud Gotlieb SIMULA Research Laboratory, Norway
Nadjib Lazaar LIRMM Montpellier, France

Workshop Chair

Sébastien Tabary CRIL, Université d’Artois, France

Doctoral Program Chairs

Nadjib Lazaar LIRMM Montpellier, France
Anastasia Paparrizou CRIL, Université d’Artois, France

Publicity Chair

George Katsirelos INRA Toulouse, France

Senior Program Committee

Maria Garcia de la Banda Monash University, Australia
Laurent Michel University of Connecticut, USA
Gilles Pesant Polytechnique Montréal, Canada
Louis-Martin Rousseau Polytechnique Montréal, Canada
Peter Stuckey University of Melbourne, Australia
Pascal Van Hentenryck Georgia Institute Of Technology, USA
Roland Yap National University of Singapore
Track chairs (ex officio)

Main Technical Track Program Committee

Carlos Ansótegui Universitat de Lleida, Spain
Fahiem Bacchus University of Toronto, Canada
Roman Barták Charles University, Czech Republic
Chris Beck University of Toronto, Canada
Nicolas Beldiceanu IMT Atlantique (LS2N), France
Clément Carbonnel University of Oxford, UK
Mats Carlsson RISE, Sweden
David Cohen Royal Holloway, University of London, UK
Simon De Givry INRA, France
Sophie Demassey CMA, MINES ParisTech, France
Agostino Dovier Università degli Studi di Udine, Italy
Pierre Flener Uppsala University, Sweden
Carmen Gervet Université de Montpellier, France
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Emmanuel Hebrard LAAS, CNRS, France
Matthias Heizmann Universität Freiburg, Germany
Hiroshi Hosobe Hosei University, Japan
Said Jabbour Université d’Artois, France
Peter Jeavons University of Oxford, UK
Philip Kilby NICTA, Australia

Conference Organization XI

Zeynep Kiziltan Universitá di Bologna, Italy
Philippe Laborie IBM France
Jimmy Lee The Chinese University of Hong Kong, SAR China
Boonping Lim Australian National University
Andrea Lodi École Polytechnique de Montréal, Canada
Samir Loudni Université de Caen Normandie, France
Ines Lynce Ténico Lisboa, Portugal
Arnaud Malapert Université Nice Sophia Antipolis, France
Ciaran McCreesh University of Glasgow, UK
Kuldeep S. Meel National University of Singapore
Claude Michel Université Nice Sophia Antipolis, France
Ian Miguel University of St. Andrews, UK
Peter Nightingale University of St. Andrews, UK
Barry O’Sullivan University College Cork, Ireland
Justin Pearson Uppsala Universitet, Sweden
Laurent Perron Google France
Thierry Petit Worcester Polytechnic Institute, USA
Patrick Prosser University of Glasgow, UK
Claude-Guy Quimper Université Laval, Canada
Jean-Charles Régin Université Nice-Sophia Antipolis, France
Andrea Rendl Satalia, UK
Emma Rollon Universitat Politècnica de Catalunya, Spain
Francesca Rossi Università di Padova, Italy
Pierre Schaus Université catholique de Louvain, Belgium
Thomas Schiex INRA, France
Christian Schulte KTH Royal Institute of Technology, Sweden
Paul Shaw IBM France
Mohamed Siala Insight Centre for Data Analytics, Ireland
Helmut Simonis Insight Centre for Data Analytics, Ireland
Christine Solnon INSA, France
Peter J. Stuckey University of Melbourne, Australia
Guido Tack Monash University, Australia
Michael Trick Carnegie Mellon University, USA
Christel Vrain Université de Orléans, France
Mohamed Wahbi Insight Centre for Data Analytics, Ireland
William Yeoh Washington University in St. Louis, USA
Alessandro Zanarini Université de Montréal, Canada
Roie Zivan Ben Gurion University of the Negev, Israel

Track Program Committees

Applications

Carlos Ansótegui Universitat de Lleida, Spain
David Bergman University of Connecticut, USA
André Ciré University of Toronto, Canada

XII Conference Organization

Willem-Jan Van Hoeve Carnegie Mellon University, USA
Serdar Kadioğlu Fidelity Investments, USA
George Katsirelos INRA, France
Yuri Malitsky J. P. Morgan, USA
Louis-Martin Rousseau École Polytechnique de Montréal, Canada
Kevin Tierney Universität Paderborn, Germany
Petr Vilim IBM Czech Republic
Markus Wagner University of Adelaide, Australia

CP and Data Science

Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium
Georgiana Ifrim University College Dublin, Ireland
Kristian Kersting TU Darmstadt, Germany
Lars Kotthoff University of Wyoming, USA
Nadjib Lazaar Université de Montpellier, France
Michela Milano Università di Bologna, Italy
Pascal Van Hentenryck University of Michigan, USA
Christel Vrain Université de Orléans, France
Yingqian Zhang Eindhoven University of Technology, The Netherlands

CP and Music

Gerard Assayag IRCAM, France
Elaine Chew Queen Mary University of London, UK
Tim Dwyer Monash University, Australia
Mathieu Giraud CNRS, CRIStAL and Université de Lille, France
Dorien Herremans Singapore University of Technology and Design
Camilo Rueda Pontificia Universidad Javeriana–Cali, Colombia

CP and Operations Research

Serdar Kadioğlu Fidelity Investments, USA
Jimmy Lee Chinese University of Hong Kong, SAR China
Laurent Perron Google France
Dominico Salvagnin Università di Padova, Italy
Petr Vilim IBM, Czech Republic

CP, Optimization, and Power System Management

Bruno François École Centrale de Lille, France
Nandha Kandaswamy Singapore University of Technology and Design
Seshadri Kumar IIT Hyderabad, India
Rémy Rigo-Mariani Cambridge Centre for Advanced Research

and Education in Singapore
P. S. V. Nataraj IIT Bombay, India

Conference Organization XIII

Pascal Van Hentenryck University of Michigan, USA
Ahmed Zidna Université de Lorraine, France

Multiagent and Parallel CP

Roberto Amadini University of Melbourne, Australia
Filippo Bistaffa IIIA-CSIC, Spain
Agostino Dovier Università di Udine, Italy
Andrea Formisano Università di Perugia, Italy
Tal Grinshpoun Ariel University, Israel
T. K. Satish Kumar University of Southern California, USA
Tiep Le New Mexico State University, USA
Amnon Meisels Ben Gurion University of the Negev, Israel
Gauthier Picard MINES Saint-Etienne, France
Enrico Pontelli New Mexico State University, USA
Mohamed Wahbi University College Cork, Ireland
Makoto Yokoo Kyushu University, Japan
Roie Zivan Ben Gurion University of the Negev, Israel

Testing and Verification

Sébastien Bardin CEA LIST, France
Catherine Dubois ENSIIE-Samovar, France
Vijay Ganesh University of Waterloo, Canada
Matthias Heizmann Universität Freiburg, Germany
Roberto Castaneda Lozano SICS, Sweden
Mehdi Maamar CRIL Lens, France
Marie Pelleau Université Cote d’Azur, France
Pascal Van Hentenryck University of Michigan, USA
Lebbah Yahia Université d’Oran 1, Algeria

Additional Reviewers

Özgür Akgün
Ekaterina Arafailova
Arthur Bit-Monnot
Guillaume Burel
Sara Ceschia
Supratik Chakraborty
Eldan Cohen
Yves Crama
Nguyen Dang
Alban Derrien
Daniel Dietsch
Daniel J. Fremont
Alexandre Goldsztejn

Vitor Hama
Hassan Hijazi
Alexey Ignatiev
Mikolas Janota
Christopher Jefferson
Amina Kemmar
Javier Larrosa
Alexandre Lemos
Kevin Leo
Olivier Lhomme
Tong Liu
Samba Ndojh Ndiaye
Saeed Nejati

Bertrand Neveu
Alexandre Papadopoulos
Alberto Policriti
Badran Raddaoui
Philippe Refalo
Lakhdar Sais
Domenico Salvagnin
Vaskar Sarkar
Joe Scott
Claudio Sole
James Trimble
Sicco Verwer
Hong Xu

XIV Conference Organization

Local Organizing Committee

Yazid Boumarafi
Zied Bouraoui
Frédéric Boussemart
Guillaume Cavory
Gael Glorian
Fred Hemery

Yacine Izza
Jerry Lonlac
Mehdi Maamar
Valentin Montmirail
Sylvain Merchez
Anastasia Paparrizou

Cédric Piette
Nicolas Szczepanski
Sébastien Tabary
Hélène Verhaeghe
Hugues Wattez

Conference Organization XV

Abstracts of Invited Talks

Potential Applications of CP
in Industrial Scheduling

Srinivas Bollapragada

General Electric Global Research Center, USA
bollapragada@research.ge.com

Abstract. Scheduling and planning algorithms have the potential to realize
significant gains in key industrial sectors such as rail, aviation, power, oil & gas,
and healthcare. Improving system level efficiencies even by one percent can
save billions of dollars per year in each of these sectors. For example, increasing
the average speed of trains by one mile per hour saves the rail industry $2.5
billion per year. This talk will describe some of our optimization algorithms
based industrial applications that saved hundreds of millions of dollars for our
customers.

Towards the Holy Grail in Machine Learning

James Cussens

University of York, UK
james.cussens@york.ac.uk

Abstract. The holy grail in machine learning—like that in CP—is that the user
merely states the (machine learning) problem and the “system” solves it for
them. In the Bayesian approach the user would state what they know as a prior
distribution and then a posterior distribution is “learned” by conditioning on the
observed data. Point estimates, expectations, predicted values and so on can then
be extracted from this posterior.
The reality of machine learning is rather different (witness “gradient descent

by grad student” in deep learning!) but progress towards this holy grail is
happening right now with the development of probabilistic programming lan-
guages like stan. I will argue that the CP community has a contribution to make
here. In particular, where the discrete structure of probabilistic model has to be
learned (rather than just the continuous parameters of a given model) CP has
much to offer. Constraints are also the natural choice when we wish to provide
the user with a flexible and expressive language in which to declare any domain
knowledge. I will use a number of examples of how CP is already being used in
machine learning, including (but not restricted to) my own work on using
integer programming to learn the structure of Bayesian networks.

Constraints at the Heart of Classical Planning

Malte Helmert

University of Basel, Switzerland
malte.helmert@unibas.ch

Abstract. The last two decades have seen significant advances in domain-
independent planning. Besides improved scalability through better planning
algorithms, several breakthroughs have been made in the theoretical under-
standing of classical planning heuristics. This talk discusses the critical role that
constraints play in the modern theory of classical planning heuristics and pre-
sents the new opportunities and challenges brought about by a constraint-based
view of classical planning.

Contents

Main Technical Track

Automatic Discovery and Exploitation of Promising Subproblems
for Tabulation. 3

Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel,
Peter Nightingale, and András Z. Salamon

Propagating Regular Membership with Dashed Strings 13
Roberto Amadini, Graeme Gange, and Peter J. Stuckey

A Constraint-Based Encoding for Domain-Independent Temporal Planning. . . . 30
Arthur Bit-Monnot

Decremental Consistency Checking of Temporal Constraints:
Algorithms for the Point Algebra and the ORD-Horn Class 47

Massimo Bono and Alfonso Emilio Gerevini

Domain Reduction for Valued Constraints by Generalising Methods
from CSP. 64

Martin C. Cooper, Wafa Jguirim, and David A. Cohen

Solver-Independent Large Neighbourhood Search . 81
Jip J. Dekker, Maria Garcia de la Banda, Andreas Schutt,
Peter J. Stuckey, and Guido Tack

Solution-Based Phase Saving for CP: A Value-Selection Heuristic
to Simulate Local Search Behavior in Complete Solvers 99

Emir Demirović, Geoffrey Chu, and Peter J. Stuckey

An SMT Approach to Fractional Hypertree Width. 109
Johannes K. Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced
by SAT Solvers . 128

Rohan Fossé and Laurent Simon

Sequential Precede Chain for Value Symmetry Elimination 144
Graeme Gange and Peter J. Stuckey

An Incremental SAT-Based Approach to Reason Efficiently
on Qualitative Constraint Networks . 160

Gael Glorian, Jean-Marie Lagniez, Valentin Montmirail,
and Michael Sioutis

Clause Learning and New Bounds for Graph Coloring. 179
Emmanuel Hebrard and George Katsirelos

Portfolio-Based Algorithm Selection for Circuit QBFs 195
Holger H. Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Making Compact-Table Compact . 210
Linnea Ingmar and Christian Schulte

Approximation Strategies for Incomplete MaxSAT 219
Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao

A Novel Graph-Based Heuristic Approach for Solving Sport
Scheduling Problem. 229

Meriem Khelifa, Dalila Boughaci, and Esma Aïmeur

Augmenting Stream Constraint Programming with Eventuality Conditions . . . 242
Jasper C. H. Lee, Jimmy H. M. Lee, and Allen Z. Zhong

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 259
Fanghui Liu, Waldemar Cruz, and Laurent Michel

Evaluating QBF Solvers: Quantifier Alternations Matter. 276
Florian Lonsing and Uwe Egly

Quantified Valued Constraint Satisfaction Problem 295
Florent Madelaine and Stéphane Secouard

MLIC: A MaxSAT-Based Framework for Learning Interpretable
Classification Rules . 312

Dmitry Malioutov and Kuldeep S. Meel

Objective as a Feature for Robust Search Strategies. 328
Anthony Palmieri and Guillaume Perez

PW-CT: Extending Compact-Table to Enforce Pairwise Consistency
on Table Constraints . 345

Anthony Schneider and Berthe Y. Choueiry

Automatic Generation and Selection of Streamlined Constraint Models
via Monte Carlo Search on a Model Lattice . 362

Patrick Spracklen, Özgür Akgün, and Ian Miguel

Efficient Methods for Constraint Acquisition . 373
Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis

A Circuit Constraint for Multiple Tours Problems . 389
Philippe Vismara and Nicolas Briot

XXIV Contents

Towards Semi-Automatic Learning-Based Model Transformation 403
Kiana Zeighami, Kevin Leo, Guido Tack, and Maria Garcia de la Banda

Finding Solutions by Finding Inconsistencies . 420
Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

The Effect of Structural Measures and Merges on SAT Solver Performance . . . 436
Edward Zulkoski, Ruben Martins, Christoph M. Wintersteiger,
Jia Hui Liang, Krzysztof Czarnecki, and Vijay Ganesh

Learning-Sensitive Backdoors with Restarts . 453
Edward Zulkoski, Ruben Martins, Christoph M. Wintersteiger,
Robert Robere, Jia Hui Liang, Krzysztof Czarnecki, and Vijay Ganesh

Applications Track

Process Plant Layout Optimization: Equipment Allocation 473
Gleb Belov, Tobias Czauderna, Maria Garcia de la Banda,
Matthias Klapperstueck, Ilankaikone Senthooran, Mitch Smith,
Michael Wybrow, and Mark Wallace

A Constraint Programming Approach for Solving Patient
Transportation Problems. 490

Quentin Cappart, Charles Thomas, Pierre Schaus,
and Louis-Martin Rousseau

Unifying Reserve Design Strategies with Graph Theory
and Constraint Programming . 507

Dimitri Justeau-Allaire, Philippe Birnbaum, and Xavier Lorca

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 524
Carlos Ansotegui, Meinolf Sellmann, and Kevin Tierney

CP and Data Science Track

User’s Constraints in Itemset Mining . 537
Christian Bessiere, Nadjib Lazaar, and Mehdi Maamar

On Maximal Frequent Itemsets Mining with Constraints 554
Said Jabbour, Fatima Ezzahra Mana, Imen Ouled Dlala,
Badran Raddaoui, and Lakhdar Sais

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 570
Imen Ouled Dlala, Said Jabbour, Badran Raddaoui, and Lakhdar Sais

Towards Effective Deep Learning for Constraint Satisfaction Problems 588
Hong Xu, Sven Koenig, and T. K. Satish Kumar

Contents XXV

CP and Music Track

Extending the Capacity of 1 / f Noise Generation . 601
Guillaume Perez, Brendan Rappazzo, and Carla Gomes

CP and Operations Research Track

Securely and Automatically Deploying Micro-services in an Hybrid
Cloud Infrastructure. 613

Waldemar Cruz, Fanghui Liu, and Laurent Michel

Improving Energetic Propagations for Cumulative Scheduling. 629
Alexander Tesch

CP, Optimization, and Power System Management Track

A Fast and Scalable Algorithm for Scheduling Large Numbers
of Devices Under Real-Time Pricing . 649

Shan He, Mark Wallace, Graeme Gange, Ariel Liebman,
and Campbell Wilson

Multiagent and Parallel CP Track

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs. . . . 669
Liel Cohen and Roie Zivan

A Large Neighboring Search Schema for Multi-agent Optimization 688
Khoi D. Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli,
and Roie Zivan

Distributed Constrained Search by Selfish Agents for Efficient Equilibria. . . . 707
Vadim Levit and Amnon Meisels

Testing and Verification Track

Metamorphic Testing of Constraint Solvers . 727
Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel,
and Peter Nightingale

Algebraic Fault Attack on SHA Hash Functions Using Programmatic
SAT Solvers. 737

Saeed Nejati, Jan Horáček, Catherine Gebotys, and Vijay Ganesh

Correction To: PW-CT: Extending Compact-Table to Enforce Pairwise
Consistency on Table Constraints . E1

Anthony Schneider and Berthe Y. Choueiry

XXVI Contents

Correction to: MLIC: A MaxSAT-Based Framework for Learning
Interpretable Classification Rules. C1

Dmitry Malioutov and Kuldeep S. Meel

Abstracts

Encoding Cardinality Constraints Using Multiway Merge
Selection Networks . 757

Michał Karpiński and Marek Piotrów

Not All FPRASs Are Equal: Demystifying FPRASs for DNF-Counting
(Extended Abstract) . 759

Kuldeep S. Meel, Aditya A. Shrotri, and Moshe Y. Vardi

Constraint Games for Stable and Optimal Allocation of Demands in SDN . . . 760
Anthony Palmieri, Arnaud Lallouet, and Luc Pons

Author Index . 763

Contents XXVII

Main Technical Track

Automatic Discovery and Exploitation
of Promising Subproblems for Tabulation

Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel,
Peter Nightingale(B), and András Z. Salamon

School of Computer Science, University of St Andrews, St Andrews, UK
{ozgur.akgun,ian.gent,caj21,ijm,pwn1,Andras.Salamon}@st-andrews.ac.uk

Abstract. The performance of a constraint model can often be
improved by converting a subproblem into a single table constraint. In
this paper we study heuristics for identifying promising subproblems.
We propose a small set of heuristics to identify common cases such
as expressions that will propagate weakly. The process of discovering
promising subproblems and tabulating them is entirely automated in the
tool Savile Row. A cache is implemented to avoid tabulating equiva-
lent subproblems many times. We give a simple algorithm to generate
table constraints directly from a constraint expression in Savile Row.
We demonstrate good performance on the benchmark problems used in
earlier work on tabulation, and also for several new problem classes.

1 Introduction

In order to improve the performance of a constraint model, a common step is
to reformulate the expression of a subset of the problem constraints, either to
strengthen the inferences made during search by the constraint solver by increas-
ing constraint propagation, or to maintain the level of propagation while reduc-
ing the cost of propagating the constraints. One such method is tabulation: to
aggregate a set of constraint expressions into a single table constraint [1–3],
which explicitly lists the allowed tuples of values for the decision variables
involved. This allows us to exploit efficient table constraint propagators that
enforce generalised arc consistency [4], typically a stronger level of inference
than is achieved for a logically equivalent collection of separate constraints. Suc-
cessful examples of this approach where the reformulation has been performed
by hand include Black Hole patience [5] and Steel Mill Slab Design [6].

Recently, Dekker et al. [7] presented a method for the partial automation of
tabulation. In their approach a predicate (a Boolean function) expressed in the
MiniZinc language [8] may be annotated to be converted automatically into a
table constraint. In the same vein, the IBM ILOG CPLEX Optimization Stu-
dio software supports strong annotations to indicate that the solver should
find a precomputed table constraint corresponding to a specified set of vari-
ables; the resulting table constraint is then added to the model as an implied
constraint [9]. The Propia library performed a similar step for an annotated goal
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-98334-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_1&domain=pdf

4 Ö. Akgün et al.

in ECLiPSe [10]. In all of these approaches, the crucial first step of identifying
promising parts of a given model for tabulation is left to the human modeller.

In this work we present an entirely automatic tabulation method situated in
the automated constraint modelling tool Savile Row [11–13]. A set of heuris-
tics is employed to identify in an Essence Prime [14] model candidate sets of
constraints for tabulation, which are then tabulated automatically. In order to
demonstrate the effectiveness of our approach, we first examine the same four
case studies used by Dekker et al. to demonstrate the utility of tabulation from
manual model annotations. We show that our automated approach can iden-
tify the same opportunities to improve the model by tabulation. We also study
four additional problem classes that show that our tabulation heuristics remain
effective on a wider range of problems.

Preliminaries. A constraint satisfaction problem (CSP) is defined as a set of
variables X, a function that maps each variable to its domain, D : X → 2Z

where each domain is a finite set, and a set of constraints C. A constraint c ∈ C
is a relation over a subset of the variables X. The scope of a constraint c, named
scope(c), is the sequence of variables that c constrains. The scope has an order
and may contain a decision variable more than once. During a systematic search
for a solution to a CSP, values are progressively removed from the domains D.
A literal is a variable-value pair (written x �→ v). A literal x �→ v is valid iff
v ∈ D(x). For a constraint c we use r for the size of scope(c). A constraint c is
Generalised Arc Consistent (GAC) if and only if there exists a support containing
every valid literal of every variable in scope(c). GAC is established by identifying
all literals x �→ v for which no support exists and removing v from the domain of
x. A support of constraint c is a set of literals containing exactly one literal for
each variable in scope(c), such that c is satisfied by the assignment represented
by these literals. In a table constraint the set of supports are explicitly listed.

2 Identifying Promising Subproblems for Tabulation

We have designed four heuristics to identify cases where expert modellers might
experiment with tabulation to improve the performance of a CP solver. The
heuristics and tabulation operate on the abstract syntax tree (AST) of a model,
once all problem class parameters have been substituted in, all quantifiers and
comprehensions have been unrolled, and matrices of variables have been replaced
by individual variables. Tabulation is applied before common subexpression elim-
ination and general flattening. Details of the tailoring process of Savile Row
are given elsewhere [13]. Our heuristics are:

Duplicate Variables identifies a constraint containing at most 10 distinct vari-
ables, with at least one variable occurring more than once in the scope.

Large AST identifies a constraint where the number of nodes in the AST is
greater than 5 times the number of distinct decision variables in scope.

Weak Propagation identifies a constraint c1 that is likely to propagate weakly
(i.e. less than GAC), such that there is another constraint c2 that propagates
strongly, with at least one variable in the scope of both c1 and c2.

Automatic Discovery of Promising Subproblems for Tabulation 5

Identical Scopes identifies sets of two or more constraints whose scopes
contain the same set of decision variables.

Each of the four heuristics is based on a simple rationale regarding either
propagation strength or propagation speed of the constraint(s). The Duplicate
Variables heuristic identifies constraints that are likely to propagate weakly even
when the target solver has a strong propagator for the constraint type. In most
cases a GAC propagator will enforce GAC only when there are no duplicate
variables. For example, enforcing GAC on the Global Cardinality Constraint
(GCC) is known to be NP-hard with duplicate variables [15], therefore Régin’s
polynomial-time GAC propagator [16] achieves GAC only when there are no
duplicate variables. The replacement table constraint will not have duplicate
variables in scope and will therefore achieve GAC.

The Large AST heuristic identifies constraints that are not compactly repre-
sented in the AST. A typical example would be an element constraint M [x] = y
with a large constant matrix M . The rationale behind it is that a table propa-
gator may be more efficient while achieving the same or stronger propagation.

The Weak Propagation heuristic is intended to catch cases where the weak
propagation of one constraint is hindering strong propagation of another.
For example, suppose we have the constraints allDifferent(x1, x2, x3) and
x1 = 10x4 + x5, a GAC propagator is used for allDifferent, and a bound con-
sistency propagator is used for sum equality. Tabulating the sum equality con-
straint and therefore potentially pruning more values from x1 may strengthen
propagation of the allDifferent onto x2 and x3. To implement the Weak Prop-
agation heuristic we need to define which constraint expressions are expected
to propagate strongly. The definition is recursive on the AST representing the
expression. Each type of AST node is defined to be either weak, or strong iff
all its children are strong. At the leaves of the AST, constants and references
to variables are defined to be strong. For example, the allDifferent constraint
often has a GAC propagator so it is defined to be strong iff all its children are
strong. The constraint allDifferent(x1, x2, x3) is strong. Sums are defined to be
weak because they are often implemented with bound consistency propagators.
The constraint allDifferent(x1 − x2, x3 − x4, x5 − x6) is therefore defined to be
weak. Its eventual representation in the CP solver is unlikely to enforce GAC.

Finally we consider the Identical Scopes heuristic. It is well known that mul-
tiple constraints on the same scope may not propagate strongly together, even
if each constraint individually does propagate strongly. The Identical Scopes
heuristic is intended to collect such sets of constraints into a single table con-
straint that may propagate more strongly and also may be faster.

Each heuristic fires on at least one of the case studies in Sects. 3 and 4. We
discuss the expressions that trigger the heuristics, and the benefits of tabulation.

Caching. We use caches to avoid generating identical tables many times for
similar constraints. To store or retrieve a table for an expression e, we first
place e into a normal form: the expression is simplified and placed into negation
normal form [13, Sec. 3.3]. Then all associative and commutative k-ary expres-
sions (such as sums) and commutative binary operators (e.g. =) within e are

6 Ö. Akgün et al.

sorted. Alphabetical order is used because it will group together references to
the same matrix (all else being equal) and place references to different matrices
in a consistent order regardless of the indices. The expression is traversed in
left-first order to collect a sequence of decision variables (without duplication),
and the variables in the sequence are then renamed to a canonical sequence of
names to create e′. Thus the actual variable names in e do not affect e′, only
their relative positions. e′ and the variable domains together are used as a key
to store and retrieve tables in the caches. We have a persistent cache stored on
disk containing tables, and two memory caches: the first contains tables, and the
second stores cases where tabulation failed because the tabulator reached one of
its limits. When an expression is identified by a heuristic to tabulate, we look it
up in the memory caches then the disk cache. In our experiments we disabled
the disk cache because it would cause timings to change depending on the order
of processes.

Generating Tables. Given a boolean expression e to tabulate, we first sort
e and collect a list of its variables (without duplicates) in the order used by
the cache. This ensures that the columns of the table are in the right order
for it to be stored in the cache. A table is generated by depth-first search with
a static variable ordering and d-way branching. At each node the expression
is simplified [13]; if it evaluates to false then the search backtracks. At each
leaf that evaluates to true, we store the assignment as a tuple in the table. In
some cases a heuristic will identify a constraint that is simply too large to be
tabulated. To deal with these cases we limit the depth-first search to generate
at most 10,000 tuples, and to fail and backtrack at most 100,000 times.

3 Experimental Evaluation: Baseline

Tabulation (whether performed manually or with tool support) is a well-estab-
lished technique. Therefore, instead of examining whether tabulation is effective,
we consider whether we can automatically identify subproblems that can be
usefully tabulated. Our first four case studies are the four problems presented
by Dekker et al. [7]. In each case we show that our heuristics can automatically
identify the same subproblems that Dekker et al. identified by hand, to then
yield comparable performance improvements.

Black Hole. Black Hole is a patience card game where cards are played one by
one into the ‘black hole’ from seventeen face-up fans of three cards. All cards can
be seen at all times. A card may be played into the ‘black hole’ if it is adjacent
in rank to the previous card. Black Hole was modelled for a variety of solvers
by Gent et al. [5] and a table constraint was used in the CP model. We use the
simplest and most declarative model of Dekker et al. [7] where two variables a and
b represent adjacent cards iff |a-b| % 13 in {1,12}. The adjacency constraint
triggers the Weak Propagation heuristic because it overlaps with an allDifferent
constraint. No other constraint triggers any heuristic, so our set of constraints
to tabulate exactly match those identified by hand, first by Gent et al. and later
by Dekker et al.

Automatic Discovery of Promising Subproblems for Tabulation 7

Block Party Metacube Problem. The Block Party Metacube Problem is
a puzzle in which eight small cubes are arranged into a larger metacube, such
that the visible faces on each of the six sides of the metacube form a “party”.
Each small cube has a symbol at each corner of each of its faces (24 symbols
per cube in total), and each symbol has three attributes, with each attribute in
turn taking one of four values. To form a valid party (the party constraint), the
four small cubes forming a visible face of the large cube must be arranged so
that the four symbols in the middle of the visible face are either all different, or
all the same, for each of the three attributes. We use the model and instances of
Dekker et al. [7].

Dekker et al. tabulated a channelling constraint linking cubes and icons. The
Duplicate Variables heuristic identifies the same channelling constraint and it
is successfully tabulated. The party constraint as a whole triggers the Identical
Scopes heuristic, and the Duplicate Variables heuristic is triggered by each of
the four conjuncts of the party constraint, however these constraints are not
tabulated because the tabulator reaches a limit. Overall our system tabulates
exactly the same set of constraints as Dekker et al.

Handball Tournament Scheduling. Handball Tournament Scheduling
requires scheduling matches of a tournament, while respecting the rules govern-
ing the tournament, and minimising a cost function related to the availability
of venues. We use the simplified 7+7 team model and 20 instances (all of the
same size) used by Dekker et al. [7] with a standard decomposition of the regular
constraint because Savile Row and Minion do not currently implement regular.

Dekker et al. experimented with tabulating two types of subproblem, the sec-
ond of which provided a significant performance improvement. The second type
of subproblem is a part of the objective function that calculates the cost of one
row of the schedule. The Large AST heuristic triggers for this type of constraint,
however one of the limits described in Sect. 2 prevents these constraints being
tabulated. It seems that fixed limits may be too coarse, and a more sophisti-
cated cost-benefit calculation may be required. The Large AST heuristic also
triggers for a small number of element constraints containing constant matrices.
Tabulation creates a unary table which is absorbed into the variable’s domain.

JP Encoding Problem. The JP Encoding problem was introduced in the
MiniZinc Challenge 2014. In brief, the problem is to find the most likely encoding
of each byte of a stream of Japanese text where multiple encodings may be mixed.
The encodings considered are ASCII, EUC-JP, SJIS, UTF-8 or unknown (with
a large penalty). Once again our model closely follows that of Dekker et al. [7].
We use all 10 instances in the MiniZinc benchmark repository. The instances are
from 100 to 1900 bytes in length. Each byte has four variables: the encoding, a
‘byte status’ variable that combines the encoding with the byte’s position within
a multibyte character, a ‘char start’ variable indicating whether the byte begins
a new multibyte character, and the score which contributes to the objective.

Dekker et al. tabulate three subproblems. The first connects two adjacent
status variables, and the Identical Scopes heuristic triggers on this. The sec-
ond links status, encoding, and char start, and we found that the Identical

8 Ö. Akgün et al.

Scopes heuristic separately links status to encoding, and status to char start.
The encoding and char start variables are both functionally defined by status
so no propagation is lost with two binary table constraints compared to one
ternary table. Thirdly Dekker et al. tabulate the constraint linking the score to
the encoding. The Duplicate Variables heuristic triggers on this. In summary,
the heuristics identify almost the same set of constraints to tabulate as Dekker
et al. did manually, and all identified constraints are successfully tabulated.

4 Experimental Evaluation: New Case Studies

In this section we present four case studies that were not featured in Dekker
et al. [7]. In each case we briefly describe the model and discuss the expressions
that trigger our heuristics. We evaluate tabulation with three CP solvers:

Minion-Static Minion 1.8 [17], ascending value and static variable orderings.
Minion-Conflict Same as the above with Conflict variable ordering [18].
Chuffed Current version of the learning CP solver Chuffed [19] with free search.

Each reported time is the median of five runs on a 64-core AMD Opteron
6376 (32 processes in parallel, 6 hour time limit). Times include the time taken
by Savile Row to tailor the instance and (if activated) to tabulate. Software,
models and parameter files for the experiment are available online [20], with some
additional analysis of experimental results. The results are plotted in Fig. 1.

Sports Scheduling Completion. The Sports Scheduling problem is to con-
struct a schedule of n(n − 1)/2 games among n teams where each team plays
every other team once with some other constraints. In Sports Scheduling Com-
pletion we start with a partial schedule. 10 instances were generated with n = 12
and 10 slots assigned uniformly at random. Trivially unsatisfiable instances were
excluded. Each game between a pair of teams is represented as a pair of variables
a and b and also a single variable c, with the channelling constraint n*(a-1)+b=c.
The Weak Propagation heuristic identifies the channelling constraint, and tabu-
lating it proves to be highly beneficial for the two Minion configurations. With
Chuffed the picture is mixed. Some instances are slowed by tabulation, partic-
ularly the easiest four, while some of the more difficult instances benefit from
it. Van Hentenryck et al. manually tabulated the same constraint in their OPL
model of Sports Scheduling [21].

Langford’s Problem. Langford’s problem (CSPLib problem 24 [22]) with
parameters n and k is to find a sequence of length nk which contains k copies
of each number in the set {1, . . . , n}. The sequence must satisfy the constraint
that if the first occurrence of x is at position p, then the other occurrences
appear at p + (x + 1)i, for i ∈ {1, . . . , k − 1}. We model Langfords as an n × k
2D matrix P , where row i represents the positions of the k occurrences of i.
The constraints are P [i, j] = P [i, j − 1] + i + 1 and all the positions P [i, j]
are different. We also break the symmetry that the entire sequence can be
reversed by requiring (P [1, 1] − 1) ≤ (nk − P [1, k]). We use all 80 instances

Automatic Discovery of Promising Subproblems for Tabulation 9

Fig. 1. Tabulate vs Default, total time with Minion solver and static variable order-
ing (top), Minion solver and Conflict variable ordering (middle), and Chuffed solver
with free search (bottom). The x-axis indicates time taken by the default configura-
tion (including both Savile Row and the solver). The y-axis indicates the speed-up
obtained by tabulation. Instances that time out are reported as if they completed in 6
hours. The dotted line indicates the time limit of 6 hours; points appearing on the line
timed out with the default configuration.

10 Ö. Akgün et al.

where n ∈ {2 . . . 17} and k ∈ {2 . . . 6}. The Weak Propagation heuristic triggers
on the P [i, j] = P [i, j − 1] + i + 1 constraints (because they overlap with the
global allDifferent). Tabulation of these constraints improves propagation and
results in improvements for all three solvers.

Coprime Sets. Erdos and Sárközy [23] studied a range of problems involv-
ing coprime sets. A pair of numbers a and b are coprime if there is no integer
n > 1 which is a factor of both a and b. The Coprime Sets problem of size k
is to find the smallest m such that there is a set of k numbers in {m/2 . . .m}
that are pairwise coprime. In our model the set is represented as a sequence
of integer variables. Each pair of variables a and b has a set of coprime con-
straints: ∀d ∈ {2 . . .m} (a �≡ 0 (mod d)) ∨ (b �≡ 0 (mod d)). Adjacent variables
are ordered to break symmetry. We use the instances k ∈ {8 . . . 16}. The Iden-
tical Scopes heuristic triggers on the coprime constraints (and any symmetry
breaking constraint) for each pair of variables. All the original constraints are
tabulated.

Static variable ordering follows the sequence from smallest to largest number,
so would appear to be a natural choice. However, Minion-Static performs poorly
compared to the other two solvers. In this case, tabulation makes the model
more robust to the poor variable ordering, speeding it up by over 1000 times in
some cases. Tabulation provides no benefit for the other two solvers that already
solve the instances relatively well.

Knight’s Tour Problem. The Knight’s Tour Problem on an n×n chessboard
is to visit every square of the board exactly once while making only knight’s
moves. We use a model where the location of the knight is encoded as a single
integer (nx+y), we start at location (0,0) and search for a sequence of n2 distinct
locations. We use instances n ∈ {6 . . . 10}. The knight’s move constraint contains
two location variables and uses integer division and modulo to obtain the x
and y coordinates. The coordinates are used multiple times in the expression.
Identical common subexpression elimination (CSE) substantially improves the
model by adding auxiliary variables for the x and y coordinates among others.
The default configuration includes identical CSE. The knight’s move constraint
triggers the Duplicate Variables, Large AST and Weak Propagation heuristics.
Tabulation produces a quite different model with no auxiliary variables, much
stronger propagation and far better performance with all three solvers.

5 Conclusions

In this paper we have demonstrated that a small set of heuristics can success-
fully and automatically identify promising subproblems in a constraint model for
tabulation, and that these opportunities can be effectively exploited through an
automated tabulation method incorporated into the automated constraint mod-
elling system Savile Row. Our heuristics identify the same tabulation oppor-
tunities as recent work by Dekker et al. using manual annotations of a MiniZinc
model [7]. In addition we have presented four new case studies demonstrating
the efficacy of our heuristics and automated tabulation.

Automatic Discovery of Promising Subproblems for Tabulation 11

Acknowledgements. We thank EPSRC for grants EP/P015638/1 and EP/P-
026842/1. Dr Jefferson holds a Royal Society University Research Fellowship.

References

1. Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988,
pp. 651–656. Pitman Publishing (1988)

2. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised
arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp. 191–
197. AAAI Press (2007). http://www.aaai.org/Papers/AAAI/2007/AAAI07-029.
pdf

3. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011). https://doi.org/10.1007/s10601-011-9107-6

4. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming,
pp. 29–83. Elsevier (2006)

5. Gent, I.P., Jefferson, C., Kelsey, T., Lynce, I., Miguel, I., Nightingale, P., Smith,
B.M., Tarim, S.A.: Search in the patience game ‘Black Hole’. AI Communications
20(3), 211–226 (2007). https://content.iospress.com/articles/ai-communications/
aic405

6. Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design
problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 8

7. Dekker, J.J., Björdal, G., Carlsson, M., Flener, P., Monette, J.N.: Auto-tabling for
subproblem presolving in MiniZinc. Constraints 22(4), 512–529 (2017). https://
doi.org/10.1007/s10601-017-9270-5

8. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard cp modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

9. IBM Knowledge Center: The strong constraint (2017). https://www.ibm.
com/support/knowledgecenter/SSSA5P 12.8.0/ilog.odms.ide.help/OPL Studio/
opllang quickref/topics/tlr oplsch strong.html

10. Le Provost, T., Wallace, M.: Domain independent propagation. In: Proceedings of
FGCS: International Conference on Fifth Generation Computer Systems, pp. 1004–
1011. IOS Press (1992). http://www.webmail.eclipseclp.org/reports/corefgcs.pdf

11. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically
improving constraint models in Savile Row through associative-commutative com-
mon subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 590–605. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-
7 43

12. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in savile row.
In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23219-5 23

13. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35–
61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

14. Nightingale, P., Rendl, A.: Essence’ description (2016). arXiv:1601.02865 [cs.AI]

http://www.aaai.org/Papers/AAAI/2007/AAAI07-029.pdf
http://www.aaai.org/Papers/AAAI/2007/AAAI07-029.pdf
https://doi.org/10.1007/s10601-011-9107-6
https://content.iospress.com/articles/ai-communications/aic405
https://content.iospress.com/articles/ai-communications/aic405
https://doi.org/10.1007/978-3-540-74970-7_8
https://doi.org/10.1007/s10601-017-9270-5
https://doi.org/10.1007/s10601-017-9270-5
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.ide.help/OPL_Studio/opllang_quickref/topics/tlr_oplsch_strong.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.ide.help/OPL_Studio/opllang_quickref/topics/tlr_oplsch_strong.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.ide.help/OPL_Studio/opllang_quickref/topics/tlr_oplsch_strong.html
http://www.webmail.eclipseclp.org/reports/corefgcs.pdf
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1007/978-3-319-23219-5_23
https://doi.org/10.1016/j.artint.2017.07.001
http://arxiv.org/abs/1601.02865

12 Ö. Akgün et al.

15. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of reasoning with
global constraints. Constraints 12(2), 239–259 (2007). https://doi.org/10.1007/
s10601-006-9007-3

16. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of AAAI 1996, pp. 209–215. AAAI Press (1996). http://www.aaai.org/
Papers/AAAI/1996/AAAI96-031.pdf

17. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Proceedings of ECAI 2006, pp. 98–102. IOS Press (2006). http://ebooks.iospress.
nl/volumearticle/2658

18. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In:
Proceedings of ECAI 2006, pp. 133–137. IOS Press (2006). http://ebooks.iospress.
nl/volumearticle/2665

19. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed
(2018). https://github.com/chuffed/chuffed/

20. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.:
Tabulation experimental software and additional results (2018). https://doi.org/
10.5281/zenodo.1290656, https://github.com/stacs-cp/cp2018-tabulation

21. Van Hentenryck, P., Michel, L., Perron, L., Régin, J.-C.: Constraint programming
in OPL. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 98–116. Springer,
Heidelberg (1999). https://doi.org/10.1007/10704567 6

22. CSPLib: A problem library for constraints (1999). http://www.csplib.org
23. Erdos, P., Sárközy, A.: On sets of coprime integers in intervals. Hardy-Ramanujan

J. 16, 1–20 (1993). https://hal.archives-ouvertes.fr/hal-01108688

https://doi.org/10.1007/s10601-006-9007-3
https://doi.org/10.1007/s10601-006-9007-3
http://www.aaai.org/Papers/AAAI/1996/AAAI96-031.pdf
http://www.aaai.org/Papers/AAAI/1996/AAAI96-031.pdf
http://ebooks.iospress.nl/volumearticle/2658
http://ebooks.iospress.nl/volumearticle/2658
http://ebooks.iospress.nl/volumearticle/2665
http://ebooks.iospress.nl/volumearticle/2665
https://github.com/chuffed/chuffed/
https://doi.org/10.5281/zenodo.1290656
https://doi.org/10.5281/zenodo.1290656
https://github.com/stacs-cp/cp2018-tabulation
https://doi.org/10.1007/10704567_6
http://www.csplib.org
https://hal.archives-ouvertes.fr/hal-01108688

Propagating Regular Membership with
Dashed Strings

Roberto Amadini1(B), Graeme Gange2, and Peter J. Stuckey1

1 University of Melbourne, Victoria, Australia
roberto.amadini@unimelb.edu.au

2 Monash University, Melbourne, Victoria, Australia

Abstract. Using dashed strings is an approach recently introduced in
Constraint Programming (CP) to represent the domain of string vari-
ables, when solving combinatorial problems with string constraints. One
of the most important string constraints is that of regular membership:
regular(x, R) imposes string x to be a member of the regular language
defined by automaton R. The regular constraint is useful for specify-
ing complex constraints on fixed length finite sequences, and regularly
appears in CP models. Dealing with regular is also desirable in soft-
ware testing and verification, because regular expressions are often used
in modern programming languages for pattern matching. In this paper,
we define a regular propagator for dashed string solvers. We show
that this propagator, implemented in the G-Strings solver, is substan-
tially better than the current state-of-the-art. We also demonstrate that
many regular constraints appearing in string solving benchmarks can
actually be tackled by dashed strings solvers without explicitly using
regular.

1 Introduction

String constraint solving is an emerging topic that bases its motivation in fields
like web security and software analysis and verification. Suitable solvers have
been introduced over the last years for solving combinatorial problems involving
string variables and constraints [1,9,12,14,18–21].

Recent works [6] introduced the dashed-string representation for string vari-
ables in constraint programming (CP), and described propagation algorithms for
equality and related constraints [5], lexicographic ordering and find/replace [4]. A
key advantage of this representation is the ability to efficiently represent strings
of uncertain – but possibly very large – length by dividing similarly behaved
regions of a partially specified string into a sequence of concatenated blocks.

A common element of string constraint problems which has not yet been con-
sidered by dashed string solvers is the regular language membership constraint
regular(x,R), whose semantics is x ∈ L(R) where x is a string variable and
L(R) is the regular language denoted by the finite state automaton R.

Constraint programming treatments of regular typically act on a fixed-
length sequence of integer variables, and require that running the automaton on
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 13–29, 2018.
https://doi.org/10.1007/978-3-319-98334-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_2&domain=pdf

14 R. Amadini et al.

this sequence finishes in an accepting state. Sequences of non-fixed (but bounded)
length are typically padded with a special character to a maximum length in
order to use the fixed-length regular propagator. We do not want to adopt this
strategy for dashed-strings, as it would totally defeat the advantage of dashed
strings that operate effectively on strings whose length bound is large. Instead,
we must develop a new propagation algorithm, which operates at the level of
blocks of characters, rather than individual characters.

In this paper we present such an algorithm and integrate it into G-Strings, a
constraint programming solver using the dashed-string representation. We eval-
uate its effectiveness on a range of real-world benchmarks containing regular
language constraints, and find that it significantly outperforms existing CP and
SMT approaches. We also identify a frequently-occurring subclass of regular lan-
guages which can be reformulated as basic string constraints, and evaluate the
effect of this substitution.

2 Preliminaries

In this Section we give background notions about dashed strings representation,
G-Strings solver, automata and regular expressions.

2.1 Dashed Strings

We assume a finite alphabet of symbols Σ. A string w ∈ Σ∗ is either the empty
string ε or of the form cw′ where c ∈ Σ is a symbol and w′ ∈ Σ∗ is a string.
Typewriter font is used to denote constant characters c ∈ Σ. The length |w|
of string w is the number of symbols appearing in w. We use array notation to
lookup the symbols in a string: w[i] is the ith symbol of string w, with 1 ≤ i ≤ |w|.

Let us fix a maximum string length λ ∈ N and a universe S =
⋃λ

i=0 Σi.
A dashed string of length k is defined by a concatenation of k > 0 blocks
Sl1,u1
1 Sl2,u2

2 · · · Slk,uk

k , where Si ⊆ Σ and 0 ≤ li ≤ ui ≤ λ for i = 1, . . . , k
and Σk

i=1li ≤ λ. Note that the latter condition does not pose any upper bound
to the dashed string length: we might have both Σk

i=1li ≤ λ and k > λ.
For each block Sl,u, we call S the base and (l, u) the cardinality. The i-th

block of a dashed string X is denoted by X[i], and |X| is the length of X. We
do not distinguish blocks from dashed strings of unary length and we consider
only normalised dashed strings, where the adjacent blocks have distinct bases
and the null block ∅0,0 occurs only to denote the empty string. In this way we
provide an unique representation for each concrete string w ∈ Σ∗.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the language denoted by block Sl,u.
We extend γ to dashed strings: γ(Sl1,u1

1 · · · Slk,uk

k) = (γ(Sl1,u1
1) · · · γ(Slk,uk

k)) ∩ S

(intersection with S excludes the strings with length greater than λ). A dashed
string X is known if it denotes a single string: |γ(X)| = 1. Normalisation entails
that each string w ∈ S has a unique known dashed string X such that w = γ(X).

A block of the form S0,u is called nullable, i.e. ε ∈ γ(S0,u). There is no upper
bound on the length of a dashed string since an arbitrary number of nullable
blocks may occur.

Propagating Regular Membership with Dashed Strings 15

B, b o o o o m ! ! !

Fig. 1. Graphical representation of X = {B,b}1,1{o}2,4{m}1,1{!}0,3.

The size ‖Sl,u‖ of a block is the number of concrete strings it denotes, i.e.,
‖Sl,u‖ = |γ(Sl,u)|. The size of dashed string X = Sl1,u1

1 Sl2,u2
2 · · · Slk,uk

k is an
overestimate of |γ(X)|, given by ‖X‖ = Πk

i=1‖Sli,ui

i ‖.
Given dashed strings X and Y we define the relation X � Y ⇔ γ(X) ⊆ γ(Y).

Intuitively, � denotes the relation “is more precise than” between dashed strings.
Unfortunately, the set of dashed strings does not form a lattice according to � [6].
For example, there is not a “best” dashed string denoting {ab, ba} ⊆ Σ∗. This
implies that some workarounds have to be used to preserve the soundness of
propagation. For more details, we refer the reader to [5,6].

Intuitively, we can imagine each block Sli,ui

i of X = Sl1,u1
1 Sl2,u2

2 · · · Slk,uk

k

as a continuous segment of length li followed by a dashed segment of length
ui − li. The continuous segment indicates that exactly li characters of Si must
occur in each concrete string of γ(X), and defines the mandatory part Sli,li .
The dashed segment indicates that n characters of Si, with 0 ≤ n ≤ ui − li, may
occur and defines the optional part S0,ui−li

i . Consider, for example, the graphical
representation of dashed string X = {B,b}1,1{o}2,4{m}1,1{!}0,3 in Fig. 1. Each
string of γ(X) starts with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.

2.2 G-Strings Solver

Dashed string solving is implemented in G-Strings, an extension of Gecode
solver [11]. It implements the domain D(x) of every string variable x with a
dashed string, and defines a propagator for each string constraint.

Most of the propagators refine the domains of the string variables based on
the notion of dashed string equation. Equating dashed string X and Y means
determining two dashed strings X ′ and Y ′ such that: (i) X ′ � X, Y ′ � Y ; and
(ii) γ(X ′) ∩ γ(Y ′) = γ(X) ∩ γ(Y). Informally, we can see this problem as a
semantic unification where we want to find a refinement of X and Y including
all the strings of γ(X) ∩ γ(Y) and removing the most values not belonging to
γ(X) ∩ γ(Y) (there may not exist a greatest lower bound for X, Y according to
�). G-Strings uses the sweep-based algorithm of [5] to propagate dashed strings
equality. For example, string equality x = y is simply propagated by equating
the domains D(x) and D(y); the propagator for z = x · y is implemented by
equating D(z) and the concatenation of blocks D(x) · D(y).

G-Strings implements string (dis-)equality, (half-)reified equality, (iterated)
concatenation, string domain, length, reverse, substring selection, global cardi-
nality, channeling with integers, lexicographic ordering, find and replace. Since
propagation is in general not complete, G-Strings also defines strategies for
branching on variables (e.g., the one with smallest domain size or having the
domain with the minimum number of blocks) and domain values (by heuristi-
cally selecting first a block, and then a character of its base).

16 R. Amadini et al.

2.3 Automata and Regular Expressions

A finite-state automaton (or simply automaton) is a tuple R = 〈Q,Σ, δ, q0, F 〉
where Σ is the alphabet ; Q is a finite set of states including the initial state q0
and a set F of accepting states ; and δ ⊆ Q × Σ × Q is a set of transitions. A
transition (q, c, q′) ∈ δ from state q to q′ is also written as q → q′. A computation
of length l for string w is a sequence of l transitions s0 → s1 → · · · → sl where
(si−1, w[i], si) ∈ δ for i = 1, . . . , l. The string w is accepted by automaton R when
|w| = l, s0 = q0 and sl ∈ F . The language L(R) of automaton R is the regular
language consisting of all the strings of Σ∗ accepted by R. If it does not exist
an automaton R′ = 〈Q′, Σ′, δ′, q′

0, F
′〉 such that L(R′) = L(R) and |Q′| < |Q|,

then R is minimal.
An automaton is deterministic (DFA) if δ is a (partial) function Q×Σ → Q.

In this case, we can use the notation δ(q, c) = q′ if (q, c, q′) ∈ δ; otherwise,
δ(q, c) = ⊥ if undefined. A DFA is trim if for each q ∈ Q there exists a compu-
tation q0 → · · · → q and a computation q → · · · → q′ ∈ F .

If δ is a total function, then the DFA is complete. If a DFA 〈Q,Σ, δ, q0, F 〉 is
not complete, we can extend Q to Q′ = Q ∪ {q⊥}, and δ to δ′ = δ ∪ {(q, c, q⊥) |
q ∈ Q′, c ∈ Σ, δ(q, c) = ⊥} in order to have a complete DFA 〈Q′, Σ, δ′, q0, F 〉.
Given an automata R, the complement automaton R is an automata such that
L(R) = Σ∗ − L(R). Given a complete DFA R = 〈Q,Σ, δ, q0, F 〉, we can easily
compute R = 〈Q,Σ, δ, q0, Q − F 〉 by complementing the final states.

Given a complete automaton R = 〈Q,Σ, δ, q0, F 〉, a state q ∈ F is said
universally accepting if all computations from q bring to a state q′ ∈ F (i.e.,
any computation reaching q will be accepted). Dually, a state q ∈ Q − F is said
universally rejecting if all computations from q bring to a state q′ ∈ Q − F (i.e.,
any computation reaching q will be rejected).

Let acc(R) and rej (R) be the set of universally accepting and rejecting states
of R respectively. If R is minimal, then |acc(R)|, |rej (R)| ≤ 1. We can effi-
ciently compute the minimum and the maximum length string accepted by R,
minl(R) = min{|w| | w ∈ L(R)} and maxl(R) = max{|w| | w ∈ L(R)}1. Note
that maxl(R) may be +∞ (if loops occur) but for our purposes can be at most
λ (the maximum allowed string length).

An alternative yet equivalent way to denote a regular language is by means
of regular expressions. We define inductively the set RE of regular expressions
(over alphabet Σ), as well as the language L(r) denoted by each r ∈ RE , as:
(i) ∅ ∈ RE , denoting L(∅) = ∅; (ii) if c ∈ Σ ∪ {ε}, then c ∈ RE denoting
L(c) = {c}; (iii) if r, r′ ∈ RE , then r · r′ ∈ RE denoting L(r · r′) = L(r)L(r′),
and r|r′ ∈ RE denoting L(r|r′) = L(r) ∪ L(r′); (iv) if r ∈ RE then r∗ ∈ RE
denoting L(r∗) = L(r)∗; (v) nothing else belongs to RE .

Given a regular expression r ∈ RE , we indicate with dfa the function such
that R = dfa(r) is the minimal automaton such that L(r) = L(R). Note that
in our case we actually consider the finite language L(r)∩S, having strings with
length smaller or equal to λ.
1 Note that maxl(R) �= max{|w| | w ∈ L(R), |w| ≤ λ}, which is less easy to compute.

If maxl(R) > λ, we set maxl(R) = λ: this is a correct but not optimal upper bound.

Propagating Regular Membership with Dashed Strings 17

3 Propagating regular on Dashed Strings

The regular constraint arises fairly frequently in constraint programming prob-
lems. The usual CP constraint regular(x,R) constraint takes a fixed descrip-
tion of an automata R, a fixed length sequence x of integer variables, and con-
strains x ∈ L(R). This form of regular was introduced in [7] and several prop-
agation algorithms have been developed [10,16,17]. These algorithms unfold the
regular automaton into a layered graph – creating a copy of each automaton state
for each variable – which is incrementally updated during search; propagation
occurs when there is no longer a viable edge for some value k at some level.

For unfolding-based string constraint solvers like [18], these regular prop-
agators may be used directly. Given automaton 〈Q,Σ, q0, δ, F 〉, if ε is the null
symbol used to pad strings of length smaller than λ, it is enough to introduce a
fresh state qε, such that δ(qε, c) = qε, for each c ∈ Σ, q ∈ F ∪ {qε}. But dashed
strings solvers represent a much richer sequence variable x, where crucially we
do not know the length of various components. While we could use the unfolding
approach for dashed strings, this would defeat their main purpose which is to
reason about potentially long strings efficiently by means of a lazy approach.

In this paper we also consider the reified form of the regular constraint,
which is rare in CP but frequent in SMT benchmarks derived, e.g. from security
analysis and model checking. This is not surprising since we want also to express
more complex constraints like x /∈ L(R) or if x ∈ L(R) then A(x) else B(x).

We then implemented the reified constraint b ⇔ regular(x,R), where b is a
Boolean variable. While in the general case we restrict R to be a complete DFA,
if b = true, i.e. we just have the positive constraint regular(x,R), the propa-
gation algorithms work for any non-deterministic and non-complete automaton.

3.1 Propagation

Let us propagate b ⇔ regular(x,R), where R = 〈Q,Σ, q0, δ, F 〉 is a complete
DFA and x is a string variable. We take inspiration from the propagation of the
regular global constraint for integer variables.

Before posting the regular constraint itself, we post some bound constraints
on the length of x by taking advantage of minl and maxl functions (see Fig. 2).
These constraints may detect early failures or provide additional information.
For example, consider D(x) = {a}0,1{b}0,1 and L(R) = {a, b}. If b = true, then
we get |x| = 1; otherwise, nothing can be inferred: 0 ≤ |x| ≤ 2.

The reified regular constraint propagator, summarised in Fig. 3, takes the
current domain B = D(b) of Boolean variable b, the current domain X = D(x)
of string variable x, the automata R, and returns a triple 〈B′,X ′, s〉, where B′

(resp., X ′) is an updated domain for b (resp., x) and s is a Boolean value which
determines if the constraint is subsumed (i.e, we cannot propagate further).
Although we assume R is complete, the pseudo code is also correct for arbitrary
automata if we omit the greyed out parts.

18 R. Amadini et al.

function post-reified-regular(b, x, R)
if D(b) = {true} then � positive regular constraint

post(minl(R) ≤ |x| ≤ maxl(R))
post(true ⇔ regular(x, R))

else if D(b) = {false} then � complemented regular constraint
post(minl(R) ≤ |x| ≤ maxl(R))
post(true ⇔ regular(x, R))

else � general form
post(b ⇔ regular(x, R))

Fig. 2. Pre-checks before actually posting b ⇔ x ∈ L(R).

function prop-reified-regular(B, X = Sl1,u1
1 , . . . , Sln,un

n , R = 〈Σ, Q, q0, δ, F 〉)
F0 ← [{q0}]
for i ∈ 1, 2, . . . , n do � forward pass.

Fi ← reach-fwd(B, Q, δ, last(Fi−1), Sli,ui
i)

if last(Fi) ⊆ rej (R) then � x surely rejected
return B ∩ {false}, X, true

if last(Fi) ⊆ acc(R) then � x surely accepted
return B ∩ {true}, X, true

if last(Fn) ⊆ F then � x surely accepted
return B ∩ {true}, X, true

if last(Fn) ⊆ Q − F then � x surely rejected
return B ∩ {false}, X, true

if B = {true} then � positive regular constraint
E ← last(Fn) ∩ F

else if B = {false} then � complemented regular constraint
E ← last(Fn) ∩ (Q − F)

else � nothing to propagate
return B, X, false

if E = ∅ then � E is the set of feasible ending states.
return ∅, ∅, true

for i ∈ n, n − 1, . . . , 1 do � backward pass.
E, X ′

i ← reach-bwd(Q, δ, Fi, E, Sli,ui
i)

return B,norm([X ′
1, . . . , X

′
n]), false

Fig. 3. Propagation algorithm for b ⇔ x ∈ L(R).

The propagation algorithm essentially works in two steps: (i) a forward pass,
where we compute a set of reachable states, potentially detecting inconsistency;
(ii) a backward pass, where only feasible end-states are considered and the
domains of the variables are possibly pruned.

The forward pass keeps track of the sets of states Fi reachable by any concrete
string in γ(X) after consuming block X[i]. reach-fwd returns in particular a
sequence Fi = [Qi,0, . . . , Qi,li , Qi,li+1] of sets of states where, for j = 0, . . . , li,

Propagating Regular Membership with Dashed Strings 19

Qi,j is the set of states reachable after consuming exactly j characters of X[i]
(corresponding to the mandatory part of the block), while Qi,li+1 is the set of
states reachable after consuming an arbitrary number k ∈ [li, ui] of characters
of X[i] (corresponding to the optional part of the block). The last set of states
last(Fi) (we assume that last is a function returning the last element of a
sequence) is used to possibly detect when the constraint is subsumed.

After the loop, if all the states of last(Fn) are accepting, then the constraint
must hold (i.e., it is subsumed) and we can propagate b = true (similarly, if
they are all rejecting we can propagate b = false). We then calculate the set
of accepting final states E, and if b is not fixed we return since no propagation
is possible. If E is empty we detect unsatisfiability, and return. Otherwise, we
iterate backward over the blocks of X and we use reach-bwd to compute the
sets of states that are both reachable and may lead to an accepting state.

At the end of the function, we return the possibly refined domains for vari-
ables b and x. Note that, for the latter, we use the norm function to make
the sequence of blocks [X ′

1, . . . , X
′
n] a normalised dashed string. For example,

norm([{a, b}0,2, ∅0,0, {a, b}1,1]) = {a, b}1,3. In the following we shall explain the
forward and backward phases in more details.

function reach-fwd(B, δ, Q, QF , Sl,u)
δfwd ← {q {→� δ(q, c) | c ∈ S} | q ∈ Q} � Feasible forward transitions.
Q0 ← QF

for i ∈ 1, 2, . . . , l do � Mandatory region
Qi ← ⋃

q∈Qi−1
δfwd(q)

if Qi = Qi−1 then � Fixpoint
Ql ← · · · ← Qi+1 ← Qi

return [Q0, . . . , Ql, Ql]
if Qi ⊆ rej (R) ∨ Qi ⊆ acc(R) then � Constraint subsumed

return [Qi]
Qbfs ← queue(Ql)

dist ←
{

q �→ l if q ∈ Ql

+∞ if q ∈ Q − Ql

}

while Qbfs �= [] do � BFS over optional region.
q ← pop(Qbfs)
d ← dist[q] + 1
if d ≤ u then

for q′ ∈ δfwd(q) where dist[q′] > d do
push(Qbfs , q

′)
dist[q′] = d

return [Q0, . . . , Ql, {q ∈ Q | dist[q] ≤ u}]

Fig. 4. Forward pass of the algorithm. Returns reachable end-states, plus intermediate
states needed for the backward pass.

20 R. Amadini et al.

Forward Pass. The forward pass is implemented by reach-fwd (see Fig. 4).
It computes a sequence of sets of states [Q0, Q1, . . . , Ql, Ql+1] that are reachable
after consuming characters in the block Sl,u. In particular, for 0 ≤ i ≤ l, sets
Qi are those after consuming exactly i characters, while Ql+1 collects any states
possible after consuming a number of characters between l and u inclusive.

The mandatory part is straightforward. If we find a set of states always
rejecting (or accepting in the positive case) we can return since the constraint is
subsumed. If instead a set of states Qi is identical to the previous set Qi−1, then
we have reached a fixpoint : we are finished since Qj = Qj−1 for j = i, . . . , l.

The optional part proceeds by breadth first search (BFS) finding new states
reachable in at most u−l characters. We store in dist dictionary the least distance
to reach any state starting from the states in Q0. The queue of states Qbfs to
expand consists initially of the states of Ql, i.e. all the states reachable after
consuming all the l characters of the mandatory part of Sl,u.

Note that queue is a function returning a queue containing all the elements
of a given set (the order of the element does not matter here). Functions push
and pop have the usual semantics. We pop states from Qbfs and if they are less
than u distance we push their neighbors onto the queue as long we have found
a shorter route to them, updating their distance.

The complexity of reach-fwd is O(|δ| × (l + 1)), that for a complete DFA
corresponds to O(|Q| × |Σ| × (l + 1)), since we consider each transition at most
once in each iteration of the mandatory region, and at most once in the BFS
over the optional region. However, in the case where b = true we could consider
a trim DFA δ′ with |δ′| typically far smaller than |Q| × |Σ|.

Backward Pass. The backward pass of the algorithm calculates the states
which can both reach a final state, and be reached from the start state. The
approach of reach-bwd (see Fig. 5) is analogous to a reversed forward pass,
but uses the stored reachability vectors Fi to compute the intersection.

The first step simulates characters in the optional part of the block. It con-
siders all possible ending states QE and adds them to a queue. It maintains the
least distance to reach each state in dist. When it pops a state in q ∈ Ql it
updates the least possible distance l′ required to reach q. If such a distance is at
most u − l we collect the characters of the usable transitions into Sopt.

If we have reached a state for the first time, we push it onto the BFS queue
Qbfs , and update its distance. This creates the optional block with length at
least l′ and at most u − l, with all characters met in Sopt.

The remainder is simpler. Given set of states E we could reach after exactly
l characters (and can reach a final state) we collect characters c that might reach
these states in Sman, and the states q′ that we could reach this state from, to
initialise E for the next iteration. For this step we create a block of unary length
with characters in Sman. Finally we return the (normalised) dashed string of
these l + 1 blocks.

The complexity of reach-bwd is similarly O(|δ| × (l + 1)), so the overall
worst-case complexity of prop-reified-regular is O(|δ|×Σn

i=1li). This means

Propagating Regular Membership with Dashed Strings 21

function reach-bwd(δ, Q, [Q0, . . . , Ql, Ql+1], QE , Sl,u)
δbwd ← {q ← {(c, q′) | (q′, c, q) ∈ δ, c ∈ S} | q ∈ Q} � Backward transitions
Sopt ← ∅
Qbfs ← queue(QE)
l′ ← +∞
dist ←

{
q �→ 0 if q ∈ QE

+∞ if q ∈ Q − QE

}

while Qbfs �= [] do � BFS over optional region.
q ← pop(Qbfs)
if q ∈ Ql then

l′ ← min(l′, dist[q])
d ← dist[q] + 1
if d ≤ u − l then

for (c, q′) ∈ δbwd(q) where q′ ∈ Ql+1 do
Sopt ← Sopt ∪ {c}
if dist[q′] > d then

push(Qbfs , q
′)

QE ← QE ∪ {q′}
dist[q′] ← d

Xl+1 = Sl′,u−l
opt

E ← QE ∩ Ql

for i ∈ l, l − 1, . . . , 1 do � Mandatory region
E′ ← Sman ← ∅
for q ∈ E do

for (c, q′) ∈ δbwd(q), q′ ∈ Qi−1 do
Sman ← Sman ∪ {c}
E′ ← E′ ∪ {q′}

E ← E′

Xi ← S1,1
man

return E,norm([X1, . . . , Xl+1])

Fig. 5. Backward pass of the algorithm. Returns the feasible starting states, and a
dashed string corresponding to the refined block.

that, apart from |δ|, the complexity of the propagation asymptotically depends
on the characters that must occur in the string, and not on those that may
appear. This makes a big difference when λ is big.

As mentioned in Sect. 2, for some set of strings we cannot define a best dashed
string representation. It is therefore unlikely to have propagators maintaining
consistency notions like, e.g., Generalised Arc Consistency.

If the domain of x has no optional parts, i.e., D(x) = Sl1,l1
1 · · · Sln,ln

n , then
our approach is equivalent to the “standard” CP propagation of [17], where x
corresponds to a vector of l1+. . .+ln integer variables xi,j such that D(xi,j) = Si

for i = 1, . . . , n and j = 1, . . . , li. This is however not very interesting for string
solving, where typically lengths are unknown and potentially very long.

22 R. Amadini et al.

Reverse Propagation. We can run the regular propagator in reverse, assuming
we know b = true. In practice, we run prop-reified-regular(true,X−1, R−1)
by reversing the dashed string X−1 = Sln,un

n · · · Sl1,u1
1 and the automaton R−1 =

〈Σ,Q,F, {(q′, c, q) | (q, c, q′) ∈ δ}, {q0}〉. This has a set of initial states F rather
than a single state q0, but this only requires to initialize F0 with [F].

The reversed automaton is not a DFA hence we must omit the greyed out
code. The advantage of the reversed automaton is that because the propaga-
tor is directional it may propagate where the other direction does not. Using
the reversed automaton effectively doubles the time for propagation, but if it
generates more propagation this can substantially reduce the total solving time,
hence we leave it on by default in G-Strings (however the user can override
this option).

Fig. 6. Example automata R for propagating in Example 1.

Example 1. Consider the propagation of the positive constraint (b = true) when
D(x) = {a, b}0,4{c, d}2,5{a, b}0,5 and automata given by the DFA shown in
Fig. 6. The forward propagation determines sets of states F1 = [{0}, {0, 1, 4}],
F2 = [{0, 1, 4}, {2, 5}, {3}, {3, 6}], and F3 = [{3, 6}, {3, 6}].

The backwards pass for block 3 starts from state {6} and determines it can
reach only set of states {6} using {b}. It returns {6}, {b}0,5.

The backwards pass for block 2 starts from state {6}, It sets dist[6] = 0 and
the rest to infinity. It then determines it can reach 3 at distance 1, 2 at distance 2,
and 1 at distance 3 (node 0 at distance 4 is not considered since 4 > 5−2). Since
3 ∈ Q2 = {3} is only reachable at distance 1, we find l′ = 1. This creates the
optional block {c, d}1,3. We then consider one step backwards from {3} which
reaches {2} and creates block {c}1,1, then one step backwards from {2}, which
reaches {1} and creates block {c}1,1. The function returns {1}, {c}2,2{c, d}1,3.

The backwards pass for block 1 starts from state {1} and determines it can
reach {0, 4} at distance 1 and {1} at distance 2. We find l′ = 1 and the function
returns {0}, {a, b}1,4. So, D(x) becomes {a, b}1,4{c}2,2{c, d}1,3{b}0,5.

Note the propagator is not idempotent. Running it again will determine the
finer domain {a, b}1,4{c}2,2{d}1,1{c}0,2{b}0,5. Running the reverse propagator
will split the first block into {a, b}0,3{a}1,1. We can thus infer that substring
accd must occur in x.

��

Propagating Regular Membership with Dashed Strings 23

4 Regular Expressions Decomposition

A natural way to express a constraint of the form x ∈ L(R), where R is an
automaton, is to give an equivalent formulation x ∈ L(r) in terms of an equiva-
lent regular expression r ∈ RE . We observed that these kind of constraints often
occur in SMTLIB instances derived from real-world program analysis.

We can easily deal with constraints of the form b ⇔ x ∈ L(r) by simply
propagating b = regular(x,dfa(r)), where dfa is the function introduced
in Sect. 2.3 for converting a given regular expression into a DFA. However, if
b = true, we could avoid instantiating a propagator entirely.

First, we observe that dashed strings are themselves a particular class of
regular expressions: the language γ(X) denoted by X = Sl1,u1

1 · · · Slk,uk

k actu-
ally corresponds to L(r) ∩ S where r = rl1,u1

1 · · · rlk,uk

k with ri = (ci,1| . . . |ci,ni
),

Si = {ci,1, . . . , ci,ni
}, and rl,u

i is a shorthand for

l times
︷ ︸︸ ︷
(ri · · · ri)

u−l times
︷ ︸︸ ︷
((ri|ε) · · · (ri|ε)) for

i = 1, . . . , k. Hence we can directly encode some classes of regular constraints
as domain constraints on dashed strings (e.g., the occurrence of characters or
substrings in a given string). Moreover, with the help of auxiliary string con-
straints we can also encode more complex regular expressions. For example,
x ∈ L((fee|foo)bar) can be reformulated into x = yz∧y ∈ {fee, foo}∧z = bar.

Unfortunately, not all regular expressions are easily decomposable into basic
string constraints. For example, we can easily map x ∈ L((a|b|c)∗) into the
domain constraint x :: {a, b, c}0,λ but we cannot do the same for the constraint
x ∈ L((a|bc)∗) because this would require to have a propagator for the iterated
concatenation of sets of strings {a, bc}n, n ≥ 0.2

Hence, we use simple syntactic pre-checks to identify opportunities for decom-
posing a constraint true ⇔ x ∈ L(r) into a conjunction C1∧. . .∧Ck of basic string
constraints (if D(b) �= {true}, we simply propagate b = regular(x,dfa(r))).
We indicate with x ∈ L(r) |= C1 ∧ . . . ∧ Ck such a decomposition.

x ∈ L(∅) |= false x ∈ L(c) |= x = c if c ∈ Σ ∪ {ε} (1)

x ∈ L(r1 · r2) |= x1 ∈ L(r1) ∧ x2 ∈ L(r2) ∧ x = x1 · x2 (2)

x ∈ L(r1 | r2) |= x1 ∈ L(r1) ∧ x2 ∈ L(r2) ∧ n ∈ {1, 2} ∧ x = [x1, x2][n] (3)

x ∈ L((r1| . . . |rk)∗) |= x :: {c1, . . . , ck}0,λ if L(ri) = {ci} ⊆ Σ for i = 1, . . . , k (4)

x ∈ L(r∗) |= n ∈ [0, λ] ∧ x = wn if L(r) = {w} ⊆ Σ∗ (5)

Fig. 7. Decomposition rules. Variables x1, x2 are new string variables, n a new integer
variable, and r, r1, r2, . . . , rk are regular expressions.

2 Note this is different from the iterated concatenation of strings. For example, encod-
ing x ∈ L((a|bc)∗) with x = yn∧n ≥ 0∧y ∈ {a, bc} is unsound because this actually
encodes the constraint x ∈ L(a∗|(bc)∗) (e.g., abc ∈ L((a|bc)∗) − L(a∗|(bc)∗)).

24 R. Amadini et al.

Figure 7 summarises the decomposition rules we implemented. Rules 1–2 are
straight rewritings into equality/concatenation. Rule 3 encodes the construct
x ∈ {x1, x2} by means of the element global constraint [8]. Rule 4 decomposes
into a domain constraint when a regular expression ri denotes a single character
ci, while rule 5 takes advantage of iterated concatenation when r denotes a
single string w. In addition to these rules, we also implemented a number of
other rules to cope with SMTLIB syntax (e.g., we also decompose x ∈ L([a, b])
and x ∈ L([a, b]∗), where [a, b] is the range of characters denoted by (a| . . . |b).

Note that this reformulation does not detect all opportunities for reformula-
tion. Indeed, deciding DFA primality – that is, whether there exist non-trivial
L1, L2 such that L(R) = L1L2 for a given DFA R – is PSPACE-hard [15], so an
efficient complete method is vanishingly unlikely. Nevertheless, devising a ‘good
enough’ decomposition method remains an interesting challenge.

As we shall see in Sect. 5, decomposing a regular expression r can be advanta-
geous since it can significantly reduce the number of states of dfa(r), especially
when dealing with expressions involving very long fixed strings, and the number
of propagations performed. Let us clarify this by providing an example extracted
from the empirical evaluation of Sect. 5.

Example 2. Consider the constraint x ∈ L(a∗bb∗)∧x ∈ L((a|b)∗ba(a|b)∗), which
is clearly unsatisfiable since the ba sub-string in the second expression conflicts
with the first expression, imposing each character b to be followed by only b’s.

If we do not decompose the regular expressions, the propagation algorithm is
only able to infer that x :: {a, b}2,λ−1{b}1,1 from the corresponding DFAs. This
entails that we have to branch on x and explore all the possible alternatives to
detect the unsatisfiability: the solving time clearly depends on λ.

Conversely, by decomposing the expressions into basic string constraints we
can infer that x :: {a}0,λ−1{b}1,λ ∧ x :: {a, b}0,λ−2{b}1,1{a}1,1{a, b}0,λ−2. In this
case, no search is performed because the sweep-based equate algorithm [5] imple-
mented in G-Strings instantaneously triggers a failure since the two dashed
strings are not equatable.

��

5 Evaluation

We implemented the regular propagator in the G-Strings solver, and we
also implemented a MiniZinc/FlatZinc interface for it [3]. The user can either
specify a (reified) regular constraint in terms of a regular expression or a
finite state automaton. We tested G-Strings on three well-known SMTLIB
string benchmarks containing regular expressions:

– AppScan: 8 satisfiable instances derived from security analysis performed by
IBM AppScan tool [13]. We discarded two of them (namely, t01 and t06)
since they do not contain regular. The remaining 6 instances contain only
decomposable and non-reified regular expressions.

Propagating Regular Membership with Dashed Strings 25

– Stranger: 3392 instances derived by Stranger [22] tool from real-world PhP
programs. These instances are not publicly available and the authors sent
them to us privately, but 56 of them were malformed. We thus ended up
with 3336 SMTLIB instances, containing only decomposable and non-reified
regular expressions.

– Norn: 1027 instances generated by a model checker based on CEGAR
refinement [2], from which we discarded 24 instances not containing regu-
lar expressions. In the remaining 1003 instances, 942 contain at least a non-
decomposable expression and 870 contain at least a reified regular expressions
(all of these are negated expressions of the form false ⇔ x ∈ L(r)).

We compared G-Decomp (the version of G-Strings that always unfolds
decomposable, not-reified regular expressions using the method of Sect. 4) and
G-NotDec (the version that never unfolds them) against three state-of-the-
art string solvers: two SMT solvers supporting the theory of strings (namely,
Z3str3 [9] and CVC4 [14]), and a CP solver that extends Gecode for sup-
porting bounded-length string variables, i.e., Gecode+S [18].3

Note that Gecode+S is no longer actively developed. So, since its FlatZinc
support is incomplete, we used a compiler from SMTLIB to C++ that the authors
used for their previous experiments (here we call it smt2cpp). For G-Decomp
and G-NotDec we instead took advantage of the SMTLIB to MiniZinc compiler
introduced in [4]. We run all the experiments on a Ubuntu 15.10 machine with
16 GB of RAM and 2.60 GHz Intel R© i7 CPU by setting a solving timeout of
T = 300 s and varying λ ∈ {500, 1000, 10000}.

Table 1. AppScan results. Times are in seconds.

Instances t02 t03 t04 t05 t07 t08

G-Strings 0.00 0.00 0.00 0.00 0.00 0.00

Z3str3 0.10 0.29 0.38 0.97 2.09 0.02

CVC4 0.01 6.12 T 5.75 0.00 0.27

5.1 AppScan and Stranger Benchmarks

Results on AppScan benchmark are shown in Table 1. Gecode+S is not
included in the comparison since smt2cpp could not process these instances
(statements like logical implication and if-then-else are not supported).

AppScan is not a challenging benchmark: SMT solvers can solve most of the
problems in a short time, while G-Strings resolution is instantaneous. Here we
do not discriminate between G-Decomp and G-NotDec since they both find
a solution in 0 s, regardless of maximum length λ.

3 We used Z3str3 4.6.2 and CVC4 1.5. The source code of the experiments is publicly
available at: https://bitbucket.org/robama/exp cp 2018.

https://bitbucket.org/robama/exp_cp_2018

26 R. Amadini et al.

Table 2. Stranger results. Times are in seconds.

SAT UNS TOT
Solved Runtime Solved Runtime Solved Runtime

G-Decomp 1254 0.20 2082 0.00 3336 0.08

G-NotDec 1254 0.65 2082 0.01 3336 0.25

CVC4 1247 2.19 2082 0.01 3329 0.88

Z3str3 936 76.27 2082 0.09 3018 28.68

Results on the Stranger benchmark are shown in Table 2. Solving time is
set to T when a solver can not solve an instance. Note that we are considering
the simplified instances used also in [12], where the str.replaceall operation
is replaced by str.replace. Gecode+S is not included in the results because
of unsupported constraints (e.g., string replacement) and characters (all the
Stranger instances contain extended ASCII characters, while the alphabet
size of Gecode+S is limited to 64 characters).

For G-Decomp and G-NotDec, only the results with λ = 10000 are pre-
sented: here strings can be very long, so with λ = 500 we have 107 unsound
results: we instantaneously detect the unsatisfiability because at least one string
has length greater than 500. With λ = 1000, we have 50 unsound results. For
both G-Decomp and G-NotDec, we branched on binary variables first.

The two versions of G-Strings outperform the SMT solvers, especially on
the satisfiable instances (the unsatisfiable ones appear very easy to solve). We
can also observe the benefits of decomposition (all the regular constraints of
this benchmark can be rewritten into concatenation constraints). On average,
G-Decomp is more than three times faster than G-NotDec.

5.2 Norn Benchmark

Results on the 1003 instances of the Norn benchmark are shown in Table 3. Note
that smt2cpp can process only 150 of them, mainly because Gecode+S does
not support negated regular expressions. CVC4 and Z3str3 work on unbounded
strings, so they do not use a maximum string size.

The results clearly show that G-Strings is faster and more powerful than
alternative approaches. The advantages of decomposition are also illustrated,
although the performance of G-NotDec and G-Decomp is not so different (in
particular on satisfiable instances they are equivalent).

Conversely to the Stranger benchmark here satisfiable instances are trivial,
while unsatisfiable ones are harder to solve. This is in general not surprising for
CP solvers – especially those like Gecode not employing nogood learning –
and this in particular holds for G-Strings, which is based on Gecode and
for which the resolution is obviously influenced by λ size. As an example, let us

Propagating Regular Membership with Dashed Strings 27

consider the only instance that no solver can solve within the time limit T .4 This
unsatisfiable instance is hard to solve since it contains a pattern of the form:

x, y :: {b}1,λ ∧ x · z · y ∈ L((bz∗b)∗) ∧ x · z · y · b /∈ L((bz∗b)∗b)

with x, y string variables and b, z characters of Σ. Unfortunately, our propaga-
tion algorithms cannot further narrow the domains of x and y, and thus we have
to rely on branching. This means that O(|D(x) × D(y)|) = O(λ2) nodes must
be explored to detect the inconsistency.

Table 3. Norn results. Times are in seconds.

Solver G-Decomp G-NotDec CVC4 Z3str3 Gecode+S

λ 500 1000 10000 500 1000 10000 500 1000 10000

SAT Solved 688 688 688 688 688 688 627 178 75 75 43

Runtime 0.00 0.00 0.00 0.00 0.00 0.00 29.82 223.10 267.65 268.43 283.90

UNS Solved 314 314 312 312 309 307 182 89 41 41 25

Runtime 0.96 1.00 3.81 4.82 5.75 7.62 123.64 214.02 260.3 261.54 276.88

TOT Solved 1002 1002 1000 1000 997 995 809 267 116 116 68

Runtime 0.30 0.31 1.20 1.51 1.81 2.39 58.72 265.38 266.31 248.31 281.74

Table 4. Norn results on the 116 instances that Gecode+S can solve.

Solver G-Decomp G-NotDec Gecode+S CVC4 Z3str3

λ 500 1000 10000 500 1000 10000 500 1000 10000

Solved 116 116 116 116 115 115 116 116 68 104 46

Runtime 0.00 0.00 0.00 1.20 2.59 2.59 0.69 8.69 142.09 32.72 181.41

Gecode+S is the closest approach to G-Strings. It implements the CP
approach of [17] with a termination character for strings with length less than
λ. If we consider only the 116 instances that Gecode+S can correctly solve (see
Table 4) G-Strings is on average still faster and, as already observed in [5,6],
its performance decay is less pronounced as λ grows.

6 Conclusion

We have presented a propagation algorithm for enforcing regular constraints
over dashed strings. Unlike existing propagators for regular, the algorithm
runs in time independent of the upper bound on the string length. We have also
identified a sub-class of regular expressions which may be translated directly
into dashed string domain constraints.
4 Precisely, this is the instance 489 of the HammingDistance class. G-Decomp with

λ = 500 takes 454.6 s to detect the unsatisfiability. Clearly, we can only prove that
there is no solution where all string variables x have length |x| ≤ λ.

28 R. Amadini et al.

We have demonstrated the effectiveness of the propagator on three sets of
existing string constraint problems. On these benchmarks, G-Strings is con-
siderably faster and more robust than existing solvers.

We also defined the first propagator we are aware of for reified regular. The
same modifications we use here could be adapted to create a reified regular
propagator on fixed length arrays, as is standard in CP.

Acknowledgments. This work is supported by the Australian Research Council
(ARC) through Linkage Project Grant LP140100437 and Discovery Early Career
Researcher Award DE160100568.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Hoĺık, L., Rezine, A., Rümmer,
P.: Flatten and conquer: a framework for efficient analysis of string constraints. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation PLDI 2017, pp. 602–617, Barcelona, Spain, 18–23 June
2017 (2017)

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P., Sten-
man, J.: Norn: an SMT solver for string constraints. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 29

3. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZinc
with Strings. In: Logic-Based Program Synthesis and Transformation - 25th Inter-
national Symposium LOPSTR 2016 (2016). https://arxiv.org/abs/1608.03650

4. Amadini, R., Gange, G., Stuckey, P.J.: Propagating lex, find and replace with
dashed strings. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp.
18–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 2

5. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string cos-
ntraint solving. In: To appear in AAAI 2018 (2018)

6. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 3–20. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 1

7. Barták, R.: Modelling resource transitions in constraint-based scheduling. In:
Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 186–194.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36137-5 13

8. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint
catalogue: past, present and future. Constraints 12(1), 21–62 (2007).
http://sofdem.github.io/gccat/

9. Berzish, M., Zheng, Y., Ganesh, V.: Z3str3: A string solver with theory-aware
branching. CoRR abs/1704.07935 (2017). http://arxiv.org/abs/1704.07935

10. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on Ad Hoc
r -ary constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1 34

11. Gecode Team: Gecode: Generic constraint development environment (2016).
http://www.gecode.org

12. Hoĺık, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1–4:32
(2018)

https://doi.org/10.1007/978-3-319-21690-4_29
https://arxiv.org/abs/1608.03650
https://doi.org/10.1007/978-3-319-93031-2_2
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/3-540-36137-5_13
http://sofdem.github.io/gccat/
http://arxiv.org/abs/1704.07935
https://doi.org/10.1007/978-3-540-85958-1_34
http://www.gecode.org

Propagating Regular Membership with Dashed Strings 29

13. IBM: Security AppScan (2018). https://www.ibm.com/security/application-
security/appscan

14. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

15. Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories:
complexity and tractability. In: Paredaens, J., Gucht, D.V. (eds.) Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, Indianapolis, Indiana, USA, pp. 239–250. ACM,
6–11 June 2010 (2010)

16. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 44

17. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

18. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 5

19. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4), 33
(2013)

20. Thomé, J., Shar, L.K., Bianculli, D., Briand, L.C.: Search-driven string constraint
solving for vulnerability detection. In: Proceedings of the 39th International Con-
ference on Software Engineering ICSE 2017, Buenos Aires, Argentina, pp. 198–208,
20–28 May 2017 (2017)

21. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection
in web applications. In: SIGSAC, pp. 1232–1243. ACM (2014)

22. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

https://www.ibm.com/security/application-security/appscan
https://www.ibm.com/security/application-security/appscan
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-10428-7_44
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13

A Constraint-Based Encoding
for Domain-Independent Temporal

Planning

Arthur Bit-Monnot1,2(B)

1 University of Genoa, Genoa, Italy
afbit@uniss.it

2 University of Sassari, Sassari, Italy

Abstract. We present a general constraint-based encoding for domain-
independent task planning. Task planning is characterized by causal rela-
tionships expressed as conditions and effects of optional actions. Possible
actions are typically represented by templates, where each template can
be instantiated into a number of primitive actions.

While most previous work for domain-independent task planning has
focused on primitive actions in a state-oriented view, our encoding uses
a fully lifted representation at the level of action templates. It follows
a time-oriented view in the spirit of previous work in constraint-based
scheduling.

As a result, the proposed encoding is simple and compact as it grows
with the number of actions in a solution plan rather than the number
of possible primitive actions. When solved with an SMT solver, we show
that the proposed encoding is slightly more efficient than state-of-the-art
methods on temporally constrained planning benchmarks while clearly
outperforming other fully constraint-based approaches.

1 Introduction

Task planning is a field of Artificial Intelligence concerned with finding a set of
actions that would result in desirable state. Its key difficulty lies in the handling
of causal relationships between a large number of potential actions. Research in
the field has focused primarily on the definition of relaxations of the classical
planning problem in order to define accurate heuristic functions to guide tree
search algorithms. Those heuristics have proved to be highly effective for rea-
soning on the causal relationships that occur in task planning and have driven
most research to focus on state-based heuristic search.

Despite their success in classical planning, they have proved to be difficult
to extend to more expressive models including time, resources or continuous
changes. This led to a renewal of interest into constraint-based models and search
as a way to increase the expressiveness of domain-independent task planners
[10,18,31].

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 30–46, 2018.
https://doi.org/10.1007/978-3-319-98334-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_3&domain=pdf

A Constraint-Based Encoding for Domain-Independent Temporal Planning 31

In this paper, we propose an encoding for the causal relationships that are at
the core of domain-independent planning. Unlike the most recent work proposing
compilations of domain-independent temporal planning to Constraint Satisfac-
tion Problems (CSPs) which follow a state-oriented view [9,10], we use a time-
oriented view inspired by the work in the field of constraint-based planning and
scheduling [11,23,24,26]. The key benefit of this encoding is its simplicity and
its good fit for integration into more general constraint satisfaction problems,
going one step closer to bridging the gap between planning and scheduling.

We start by giving a background on task planning and the representation
of temporal planning problems as chronicles. We then show how such planning
problems can be concisely encoded into CSPs, using a fully lifted representation
based on chronicles. The resulting encoding is leveraged in a domain-independent
planner for ANML, an expressive language for the specification of planning prob-
lems [32]. Using an off-the-shelf SMT solver as a backend, the planner is shown to
outperform state-of-the-art temporal planners on temporally constrained plan-
ning benchmarks. Last, we discuss the related work in constraint-based planning
and scheduling, especially analyzing other domain-independent planners that
rely on SMT.

2 Background

2.1 A Distilled Planning Problem

In its simplest formulation, a planning problem is composed of (i) an initial
state, (ii) a goal state and (iii) a set of primitive actions.

A state is an assignment to a set of state variables, each denoting one par-
ticular feature of the environment (e.g. the location of a truck). We denote as S
the set of possible states.

A primitive action a is composed of:

– a set of conditions over state variables. It characterizes the set of states Sapp
a ⊆

S in which the action is applicable.
– a set of effects from which one can construct a state transition function fa :

Sapp
a → S.

Given an initial state s0 ∈ S, a goal state sg ∈ S and a set of primitive actions,
a plan is a sequence of primitive actions 〈a1, . . . , an〉. For a given plan, one can
build the resulting sequence of states 〈s1, . . . , sn〉 such that si = fai

(si−1). A plan
is a solution to a planning problem if all actions are applicable in the previous
state (∀i∈[1,n]si−1 ∈ Sapp

ai
) and the final state is the goal state (sn = sg).

This formulation of planning as a state transition system has been at the
core of domain-independent planning research, and of PDDL, the de-facto stan-
dard language for describing planning problems [29]. Several extensions have
been devised for extending the expressiveness of PDDL, most notably to handle
a limited form of temporal constructs and numeric variables [19,21]. Neverthe-
less, the focus of the language and the benchmarks of the International Plan-
ning Competition remains heavily focused on handling the causal relationships
derived from the conditions and effects of primitive actions.

32 A. Bit-Monnot

2.2 Temporal Planning as Chronicles

An other notable representation for planning follows a time-oriented view as
opposed to the state-oriented view above. We here detail the representation of
planning problems as chronicles [25], which was first introduced in the IxTeT
planner [24]. This representation avoids direct references to states and instead
describes the evolution of the environment through temporally qualified asser-
tions over the state variables.

A type is defined by a set of values. A type is either (i) a set of domain
constants (e.g. the type Truck = { R1, R2 } defines two truck objects R1 and R2

in the planning problem), (ii) a discrete or continuous set of numeric values, or
(iii) a representation of temporal instants, for which we typically consider the
set of natural numbers.1

A (decision) variable is associated with a type that defines its initial domain.
We denote as timepoints the subset of variables that represent a temporal instant.

A state variable denotes the evolution of a particular state feature over time.
A state variable is typically parameterized by one or multiple domain objects
to represent the state of a particular object in a planning problem. For instance
loc(R1) denotes the evolution of the location of the truck R1 over time. A state
variable expression can be parameterized by decision variables, in which case the
actual state variable it refers to depends on the value taken by its parameters,
e.g., loc(r) will refer to loc(R1) or loc(R2) depending on the value taken by the
variable r of type Truck .

Chronicle. In line with previous work in temporal planning, we represent the
core constructs of a planning problem with chronicles [25]. A chronicle is a tuple
(V,X,C,E) where:

– V is a set of variables.
– X is a set of constraints over the variables in V .
– C is a set of conditions. Each condition is of the form [s, e] sv(p1, . . . , pn) = v

where s and e are timepoints in V , sv(p1, . . . , pn) is a parameterized state
variable (with each pi ∈ V) and v ∈ V is a variable. A condition states that
the state variable sv(p1, . . . , pn) must have the value v over the temporal
interval [s, e].

– E is a set of effects. Each effect is of the form [s, e] sv(p1, . . . , pn) ← v where
s and e are timepoints, sv(p1, . . . , pn) is a parameterized state variable (with
each pi ∈ V) and v ∈ V is a variable. Such an effect states that the state
variable sv(p1, . . . , pn) will take the value v at time e. Over the temporal
interval]s, e[the state variable is transitioning from its previous value to v:
it has an undefined value and cannot be further constrained.

1 Note that this integer based representation of time is no less expressive than a
real-valued representation when forbidding instantaneous changes, as common in
temporal planning [15].

A Constraint-Based Encoding for Domain-Independent Temporal Planning 33

A chronicle is thus a constraint satisfaction problem (V,X) extended with addi-
tional constructs to represent the conditions and effects that are at the core of
planning problems.2

Action Chronicle. A planning problem defines a set of action templates T where
each action template can be instantiated into chronicles. We denote as Ci

a a
chronicle instantiated from an action template a ∈ T , where i distinguishes
chronicles instantiated from the same template.

Considering an action template Go ∈ T that moves a truck r from a location
�s to a location �e, its instantiation as a chronicle CGo could have the following
components:

– V = { r, �s, �e, ts, te } where r, �s, �e are variables representing the parame-
ters of the action (truck, start location and end location) and ts and te are
timepoints representing the start and end times of the action.

– X = { te = ts +10, �s 	= �e }, constraints stating that the action takes 10 time
units and that the origin �s and destination �e must be different.

– C = { [ts, ts] loc(r) = �s }, i.e., the truck r must be in location �s at the
action’ start ts.

– E = {[ts, te] loc(r) ← �e}, i.e., the truck r will be in location �e at the action’s
end te. Its location is undefined for the duration of the action]ts, te[.

Such a chronicle is called an action chronicle.

Initial Chronicle. We distinguish action chronicles from the initial chronicle C0

that represents the initial state and the planning objectives. In addition, the
initial chronicle might provide a partial view of the expected state evolution,
e.g., that a cargo ship (outside the control of the planner) will arrive at 5pm.

Specifying a problem where the truck R1 is initially in location L0 and
must be in location L2 or L3 before time 100 is encoded with the chronicle
C0 = (V0,X0, C0, E0) where:

– V0 = { t, � }.
– X0 = { t < 100, � = L2 ∨ � = L3 }, constraints restricting the solution set.
– C0 = { [t, t] loc(R1) = � }, condition specifying the goal.
– E0 = { [0, 0] loc(R1) ← L0 }, effect defining the initial state: the truck R1 is

in L0 at the initial time.

A planning problem can be represented as a pair (C0, T) where C0 defines
the initial state and objectives and T is a set of action templates that can be
instantiated into action chronicles.

2 The original chronicle model used transitions instead of effects. We use effects to
more closely match the classical definition of planning problems and simplify the
presentation. Note that transitions can still be straightforwardly encoded by com-
bining a condition and an effect.

34 A. Bit-Monnot

3 Planning as a Constraint Satisfaction Problem

One of the difficulty that arises in planning is that the number of actions is not
known beforehand nor can it be given tight bounds. As a first step, we consider
a bounded planning problem composed of an initial chronicle C0 and finite set of
optional action chronicles AC. An optional action chronicle Ci

a ∈ AC is a action
chronicle associated to a boolean variable oi

a that is true (�) if Ci
a is part of the

solution plan and false (⊥) otherwise.
Consider the planning problem of moving the truck R to either L2 or L3 from

the previous section. Considering a set of optional action chronicles {C1
Go , C2

Go },
we can represent all the plans composed of 0, 1 or 2 instances of the Go action.
The actual plan depends on the instantiation of the decision variables. One
could build a satisfying solution from the partial assignment { o1

Go ← �, r1 ←
R1, �1s ← L0, �1e ← L2, o2

Go ← ⊥ } where r1, �1s and �2e are the eponymous
variables in C1

Go . Such an assignment states that only the first action would be
present and would move the truck R1 from L0 to L2. Note that this only partially
defines the solution plan and other assignments would need to be made, notably
to the action timepoints and to the variables of C0.

A bounded planning problem Π is the set of chronicles {C0}∪AC where each
C ∈ Π is associated to a boolean variable present(C) that is: oi

a if C is an action
chronicle Ci

a ∈ AC; or � if C = C0. This planning problem is called bounded as
there is an upper limit on the number of actions in a solution plan defined by
the number of action chronicles.

3.1 Building Blocks

Given a bounded planning problem Π, we now describe the core structures for
compiling it to a constraint satisfaction problem.

Condition Token. Given a chronicle C ∈ Π, each condition [s, e]
sv(p1, . . . , pn) = v in C is associated to a condition token:

present(C) : [s, e] sv(p1, . . . , pn) = v

This token represents that, if C is part of the solution (present(C) = �), then
the state variable sv(p1, . . . , pn) must have the value v over the temporal interval
[s, e].

We denote as CΠ the set of condition tokens in Π.

Effect Token. Given a chronicle C ∈ Π, we associate to each effect
[s, e] sv(p1, . . . , pn) ← v in C an effect token:

present(C) : [s, e, t] sv(p1, . . . , pn) ← v

where t is a new timepoint variable. This token states that, if C is part of the
solution (present(C) = �), then the state variable sv(p1, . . . , pn) is undefined

A Constraint-Based Encoding for Domain-Independent Temporal Planning 35

over the temporal interval]s, e[and has the value v over the temporal interval
[e, t]. The introduction of the new decision variable t allows us to encode a
minimal time for which the effect will persist.

We denote as EΠ the set of effect tokens in Π.

Characteristics of Tokens. Effect tokens here represent the evolution of state
variables over time. Each (present) effect token imposes a new value to its state
variable. This value is constrained to be maintained on a given temporal inter-
val. Effect tokens thus encode the state evolution. On the other hand, condition
tokens place constraints on the state evolution by requesting a given state vari-
able to have a given value over a temporal interval. Intuitively, such a condition
is achieved if there is a corresponding effect token that imposes the appropriate
value.

For a given token, the variables involved allow four degrees of freedom on
which a solver might play to build a consistent plan:

– the presence of the token (variable present(·)).
– the temporal interval on which it applies, (variables s, e and t).
– the state variable on which it applies (variables p1, . . . , pn).
– the value taken by the state variable (variable v).

Those variables are typically shared with other tokens from the same action
chronicle. These interdependencies between tokens are at the core of the hard-
ness of planning as having an effect token to establish a condition requires the
presence of all other tokens from the same chronicle. This in turn requires new
conditions to be established as well as new effect tokens that might interact with
the existing ones.

3.2 Constraints for Plan Consistency

Given a bounded planning problem Π, we define a set of constraints that encode
the requirements for a plan to be consistent.

Coherence Constraint. State variables are similar to unary resources in that
they can only take a single value at a given time. Any two distinct effect tokens
α and α′ in EΠ must be coherent: they may not concurrently impose a value to
the same state variable.

Given α = 〈o : [s, e, t] sv(p1, . . . , pn) ← v〉 ∈ EΠ

α′ = 〈o′ : [s′, e′, t′] sv(p′
1, . . . , p

′
n) ← v′〉 ∈ EΠ

then the constraint coherent(α, α′) is defined as:

o ∧∧∧∧ o′ =⇒ t ≤ s′ ∨∨∨∨ t′ ≤ s ∨∨∨∨ p1 	= p′
1 ∨∨∨∨ · · · ∨∨∨∨ pn 	= p′

n

The coherence constraint enforces that a given state variable has at most one
value at any point in time. It is done by forcing two effect tokens to be non
overlapping which can be enforced along three axes: presence (o), time (]s, t])
and state variable (sv(p1, . . . , pn)).

36 A. Bit-Monnot

Support Constraint. We say that a condition token β ∈ CΠ , is supported by
an effect token α′ ∈ EΠ if α′ establishes the value required by β and that this
value persists for the duration of β.

Given β = 〈o : [s, e] sv(p1, . . . , pn) = v〉 ∈ CΠ

α′ = 〈o′ : [s′, e′, t′] sv(p′
1, . . . , p

′
n) ← v′〉 ∈ EΠ

then supported-by(β, α′) is defined as:

o′ ∧∧∧∧ e′ ≤ s ∧∧∧∧ e ≤ t′ ∧∧∧∧ p1 = p′
1 ∧∧∧∧ · · · ∧∧∧∧ pn = p′

n ∧∧∧∧ v = v′

Less formally, it means that β is supported by α′ if (i) α′ is present, (ii) β is
contained in the interval [e′, t′] over which the effect of α′ persists, and (iii) α′

establishes the right value on the right state variable.
The fact that a condition token β ∈ CΠ must be supported by at least one

effect token if it is present is encoded by the constraint supported(β):

present(β) =⇒
∨

α∈EΠ

supported-by(β, α)

Internal Chronicle Consistency. Given an optional chronicle C =
(V,X,C,E), if it is part of the solution then all its internal constraints must
hold, which is represented by the constraint consistent(C):

present(C) =⇒
∧

c∈X

c

Formulation as a CSP. A bounded planning problem Π is encoded as a
Constraint Satisfaction Problem (VΠ ,XΠ) where:

VΠ = { V |||| (V,X,C,E) ∈ Π }
∪ { present(C) |||| C ∈ Π }

XΠ = { coherent(α, α′) |||| α, α′ ∈ EΠ , α 	= α′ }
∪ { supported(β) |||| β ∈ CΠ }
∪ { consistent(C) |||| C ∈ Π }

3.3 Symmetry Breaking Constraints

A given bounded planning problem Π might contain several action chronicles
of the same action template, e.g., several chronicles being instantiations of the
Go action template. In the current formulation, nothing distinguishes two action
chronicles of the same template and any satisfying assignment can be made into
a new one by exchanging the variables of the two chronicles.

Given the set of action templates T , for any action template a ∈ T , we refer
to all action chronicles of the template a in Π as 〈C1

a, . . . , Cn
a 〉, in an arbitrary

order.

A Constraint-Based Encoding for Domain-Independent Temporal Planning 37

From this ordering, we define two symmetry breaking constraints. The first
one requires that, if a given chronicle is present, then all its predecessors in the
ordering are present as well:

∧

a∈T

∧

i∈[1,n−1]

present(Ci+1
a) =⇒ present(Ci

a)

The second one requires the ordering on chronicles to match the ordering of
actions in the solution plan:

∧

a∈T

∧

i∈[1,n−1]

start(Ci+1
a) ≥ start(Ci

a)

where start(C) is the start timepoint of the action chronicle C.

4 Instantiation in a Domain-Independent Planner

We now describe how the presented encoding can be leveraged in a fully domain-
independent temporal planner. We present LCP (Lifted Constraint Planner), a
planner that solves ANML planning problems using an SMT solver as a backend.
Rather than providing a fully fledged temporal planner, LCP aims at validating
the effectiveness of our encoding on standard temporal planning benchmarks.

4.1 The ANML Language

The Action Notation Modeling Language (ANML) is a proposal by NASA Ames
Research Center to represent rich temporal planning and scheduling problems
[32]. ANML features a clear notion of actions with conditions and effects inte-
grated with a rich representation of time.

Compared to the temporal variants of PDDL, the ANML language has two
important features. The support of multi-valued states variables, as opposed to
the boolean state variables of PDDL, allows for a more compact representation
of the state. In addition, ANML supports referencing timepoints other than
the start and end of an action, thus increasing the capabilities to model complex
temporal actions. Temporal PDDL planning problems are usually easy to express
in ANML, with some recent work to provide an automated translation [3,5].

Translation of ANML planning problems into chronicles is straightforward
as all constructs we are interested in have a one to one mapping [6].3 We parse
an ANML problem file into the initial chronicle C0 and a set of action templates
T that can be instantiated into action chronicles.

3 Omitted in our translations are the hierarchical and resource constructs of ANML
that are beyond the scope of this paper.

38 A. Bit-Monnot

4.2 Solving with SMT

Our solving procedure works by incrementally generating bounded planning
problems Πk with an increasing number of optional actions. For each problem,
an SMT solver is used to either prove the consistency of Πk or the absence of
a satisfying assignment. If Πk is consistent, the solution plan is extracted from
the found satisfying assignment. Otherwise the process continues with the next
bounded problem Πk+1.

The overall procedure is given in Algorithm 1. The planner iteratively gener-
ates bounded planning problems of increasing depth k until a solution is found or
a depth kmax is reached. Given an input planning problem (C0, T), we generate
a bounded problem Πk using the procedure GenProblem(C0, T , k) as follows:

Πk = { C0 } ∪
⋃

a∈T
{ Ci

a |||| i ∈ [1, k] }

For a problem Πk, this formulation allows the presence of k instances of each
action template a ∈ T . The CheckSMT(Πk) function encodes Πk as a CSP
using the encoding we presented. The consistency of the resulting CSP is checked
with the Z3 SMT solver [16].

Algorithm 1. Planning procedure of LCP (Lifted Constraint Planner) for an
input problem (C0, T) and maximum depth kmax.

function LCP(C0, T , kmax)
k ← 0
while k ≤ kmax do

Πk ← GenProblem(C0, T , k)
model ← CheckSMT(Πk)
if model is a consistent model then

return ExtractSolution(model)
end if
k ← k + 1

end while
return failure

end function

4.3 Limitations

As it stands, LCP is a rather näıve instantiation of the proposed encoding into a
domain-independent planner. One of the limitation is the absence of reuse of the
inconsistent models of previous steps when generating a new bounded planning
problem. At the very least, one could analyze the unsatisfiable core provided by
SMT solvers to infer which actions must be added to the next bounded planning
problem.

A Constraint-Based Encoding for Domain-Independent Temporal Planning 39

More importantly, the use of SMT is certainly suboptimal given the progress
made in constraint-based scheduling solvers in tackling closely related problems.
Indeed, solvers such as CP Optimizer provide constructs for optional tempo-
ral intervals and state functions that closely relate to the building blocks of
our encoding [26,27]. However, as we further discuss in Sect. 6, there is still a
mismatch between the available global constraints and the needs for domain-
independent planning. In the absence of global constraints for CP solvers, SMT
solvers provide a good backup solution for our encoding that features many
disjunctive constraints.

LCP here simply aims at a preliminary evaluation of the proposed encoding
against existing planners.

5 Experiments

5.1 Comparison with State of the Art Temporal Planners

We evaluate our approach against several state of the art temporal planners on
benchmarks from the International Planning Competition (IPC). We focus on
problems where time plays an important role in the solution: planning problems
that have deadlines or time windows that constrain the occurrence time of actions
in the plan. The rationale for doing so is that planning problems without such
features can be solved without any explicit handling of time (with the exception
of some problem with required concurrency [14]).

We compare ourselves to Temporal Fast Downward (TFD) [20], OPTIC [2],
FAPE [6,18] and SMTPlan+ [10]. TFD is a forward-search state-space planner
that ranked second in the last temporal track of the IPC [33]. Its search is based
on the addition of new primitives actions at the end of an existing plan and
heavily relies on heuristics for guidance. OPTIC is similar in its use of forward-
search but uses a different heuristic and a lifted temporal representation handled
in an STN. It is an improved version of POPF [13], runner up in the temporal
track of the penultimate IPC.

FAPE represents another line of temporal planners that uses a constraint-
based representation. FAPE plans in the space of lifted partial plans, where each
plan is composed of a set of partially instantiated actions whose variables are
embedded in a CSP. Search proceeds by either imposing values on variables or
extending the partial plan with additional actions, thus extending the CSP with
new constraints, variables and values in previous domains. FAPE is the first
planner in this line of work to show good performance in a domain-independent
setting [6].

SMTPlan+ [10] is a recent planner that supports the full range of PDDL+
[22] through a compilation to SMT. Unlike LCP, its encoding is state-oriented
with additional constructs to support non-linear continuous change. Given SMT-
Plan+’s usage of SMT to solve a constraint-based encoding, an additional, more
detailed, comparison will be made in the next subsection.

40 A. Bit-Monnot

We use the airport-timewindows, satellite-timewindows and pipesworld-
deadlines domains from IPC4 which feature durative actions and temporal con-
straints on the plan in the form of deadlines and time-windows in which actions
can be performed. The airport-timewindows domain focuses on planning the
takeoff and landing of several planes in an airport, the movement of planes being
temporally constrained by the arrival of other planes. The satellite-timewindows
domain plans observations and data transmission of a fleet of satellites subject
to visibility windows. The pipesworld-deadlines domain focuses on planning the
transportation of products through pipes, subject to delivery deadlines. TFD,
OPTIC and SMTPlan+ use the original PDDL domains while LCP and FAPE
use their translation to ANML from FAPE’s benchmark problems.4

As standard in the IPC, we evaluate the planners on the number of prob-
lems solved with a 30 min timeout. Benchmarks are run on an Intel i5-7200U @
2.50 GHz CPU with 8 Gb of RAM. LCP and SMTPlan+ use Z3 [16] in version
4.6.3 as a black-box SMT solver.

Results are given in Table 1. It can be seen that, on temporally constrained
problems, LCP is slightly ahead of both FAPE and OPTIC in terms of number
of problems solved. TFD performs poorly on such problems while SMTPlan+
fails to solve any problem.

LCP performs best in the pipesworld-deadlines domain which is characterized
by much interference between the available actions, reducing the ability to reason
independently on goals. Its worst performance is on the satellite-timewindows
domain whose difficulty lies in the number of mostly independent goals requiring
a large number of actions. In this setting, LCP fails to prove the absence of
solution before reaching the subproblem that actually contains one. The airport-
timewindows domain is an intermediate between those two domains making LCP
performs only slightly better than other planners.

Table 1. Number of problems solved by the considered planners within 30 min. Best
result is given in boldface.

LCP FAPE OPTIC TFD SMTPlan+

airport-timewindows 8 7 7 1 0

satellite-timewindows 4 10 4 0 0

pipesworld-deadlines 17 6 13 2 0

Total 29 23 24 3 0

Note on Expressiveness. Unlike PDDL temporal planners, LCP supports
rich temporal constructs, including actions with conditions and effects besides
the start and end timepoints of actions. It leverages ANML’s multi-valued state
variables (as opposed to the boolean state variables of PDDL) to provide a more

4 https://github.com/laas/fape/tree/master/planning/domains.

https://github.com/laas/fape/tree/master/planning/domains

A Constraint-Based Encoding for Domain-Independent Temporal Planning 41

compact representation. Note that FAPE, which also uses the ANML language
as input, has the same characteristics.

In addition, LCP readily supports numeric variables both as action param-
eters and state variables. State of the art temporal planners do not support
numeric parameters due to their need to ground the problem to derive heuris-
tics, even though some recent work was done in this direction for forward-search
planners [30].

Note on Performance in Non-temporal Domains. We also tested the
performance of LCP on non-temporal domains, i.e., domains where time is either
absent or limited to the duration of actions and can soundly be omitted [14].
On the domains tested (blocks, logistics and rovers from the IPC), LCP solved
around two thirds of the problems solved by FAPE, OPTIC and TFD who all had
similar performance. As could be expected, LCP does not reach the performance
of state of the art planners on non-temporal problems. It nevertheless showed
consistent performance in its handling of causal relationships.

5.2 Comparison with SMTPlan+

Our work was motivated by the recent developments in the planning community
to extend the expressiveness of task planners. Research in domain-independent
planning has been mostly focused on ground state-based heuristic search. Such
planners deliberately choose to cope with very large search spaces because it
enables the definition of very effective heuristic functions to guide their explo-
ration.

The will to support more realistic problems through extensions to PDDL
is however problematic. Indeed extensions affect the performance of heuristics
that become less informative, with dramatic effects on search performance. This
state of affairs has motivated the introduction of new planners that rely on SMT
solvers to deal with the most expressive extensions of PDDL. Most notably,
the most effective approaches for planning with PDDL+ rely on compilations to
SMT [9,10].

SMTPlan+ [10] appears to be the most effective of those planners. It sup-
ports planning with continuous non-linear change and processes and the authors
showed that those can be efficiently accounted for in an SMT representation.

Of all the planning benchmarks we tested it on, SMTPlan+ was only able
to solve the two simplest instances of the (non-temporal) blocks domain. Its
performance on domain-independent temporal or non-temporal planning is thus
largely below the ones of LCP and state-of-the-art planners.

SMTPlan+ uses a state-oriented representation where each state is associated
to a given happening that alters the state (corresponding to the start or end of
an action). Each state is represented by a set of boolean variables. To each
happening is associated the choice of a primitive action that implies constraints
on the happening’s state variables.

42 A. Bit-Monnot

To understand the implication of this representation, we compare the encod-
ing of both LCP and SMTPlan+ on two problems of the rovers domains. The two
problems mainly differ by the number of objects in the domain, with a direct
impact on the number of primitive actions. The first instance (p01) has only
63 primitive actions while the second instance considered (p10) has 382. Note
that these numbers are low compared to standard planning benchmarks (e.g.
the most difficult problem of the rovers domain has 32,437 reachable primitive
actions).

The number of disjunctive constraints (i.e. clauses in the SMT formula) as
well as the number of variables is given in Table 2 for both LCP and SMT-
Plan+. It can be seen that the size of the SMT formula at a given depth in
SMTPlan+ is directly impacted by the number of primitive actions, making it
quickly untractable even on problems of modest size. The size of the encoding
grows linearly with the number of happenings (depth). On the other hand, LCP
is mostly unaffected by the growth in problem size thanks to its use of partially
instantiated actions. On the down side, the encoding of LCP grows quadrati-
cally with the depth. Note that, in the case of LCP, a depth of 4 means that
each action template might be duplicated 4 times (in the rovers domain, which
has 9 action templates, the plan at depth 4 might contain up to 36 actions).
On the other hand, a durative action requires two happenings in SMTPlan+’s
representation, i.e., a depth of 4 would only allow two sequenced actions.

Table 2. Number of disjunctive constraints (left) and variables (right) in the SMT
formulas of LCP and SMTPlan+ at various depths. Depth is the number k of duplicated
actions in LCP and the number of happenings in SMTPlan+.

Depth Rovers p01 Rovers p10

LCP SMTPlan+ LCP SMTPlan+

1 109/115 1 987/332 165/132 28 760/1 828

2 295/218 3 987/664 399/235 59 293/3 656

3 561/321 6 161/996 713/338 89 196/5 484

4 907/424 8 248/1 328 1 107/441 119 099/7 312

6 Related Work

Encodings for Graph-Plan. A historical application of CP solvers to planning
has been based on the graph-plan framework [8]. Such planners build a synthetic
data structure that captures causal relationships between primitive actions up to
a given plan length. While building such a data structure can be done in poly-
nomial time, extracting a solution (or proving its absence) is combinatorial. CP
solvers have been leveraged to perform the plan extraction step in planners such
as GP-CSP [17] and CSP-PLAN [28]. Both planners use a grounded state-based
encoding where the value of variables in each state is related to the previous state

A Constraint-Based Encoding for Domain-Independent Temporal Planning 43

and primitive actions through a set of constraints. Despite work on improving
the encoding of the CSP with table constraints [1], the performance of such
planners has been superseded by forward search planners.

Plan-Space and Timeline-Based Planners. Another line of research is the
work on timeline-based planners [11,12,23] and lifted plan-space planners [6,24].
Both kind of planners use a time-oriented representation, and the chronicle model
that we use originated in lifted plan-space planners [24]. Those planners search
in the space of partial plans where the current partial plan is extended with new
actions during search. Key aspects of the partial plan are represented in a CSP,
including the actions’ parameters and timepoints.

One difficulty is that the CSP is constructed online – both constraints and
variables are added to the CSP – limiting the ability to use existing constraint
solvers. More problematic is that the set of effects that can be used to support
a given condition is not fixed a priori as new actions can be inserted in the
partial plan. As a result, the equivalent of our supported-by constraints are often
implemented in an ad hoc way, outside of the main constraint engine.

The internal representation of those planners is however closely related to
the encoding proposed in this paper. One important difference is that plan-space
planners use threats to encode the consistency between support decisions. We
avoid the explicit handling of threats by the introduction of a new timepoint in
effect tokens to represent the minimal persistence of an effect which is accounted
for directly in the coherence constraint. This is important to limit the size of the
CSP, as an explicit encoding of threats would be cubic in the number of possible
actions.

The proximity with those planners might make it possible to adapt the
relaxations, heuristics and propagators developed into global constraints to our
setting, such as the one tailored to reason on causal relationships in EUROPA
and FAPE [4,7].

SMT-based Planners. The development of SMT encodings for task planning
in the last years has been motivated by the need to support richer planning prob-
lems, notably involving continuous change on numeric state variables in planners
such as dReach [9] and SMTPlan+ [10]. As highlighted in Subsection 5.2, it is our
feeling that the support of more complex problems has been done at the detri-
ment of those planners scalability. Our objective with this paper is precisely
to propose an alternative encoding that can (i) be used to efficiently represent
planning problems and (ii) does not prevent its extension to problems with con-
tinuous change. Our encoding already supports continuous state variables and –
unlike dReach and SMTPlan+ – action parameters with continuous domains. As
for SMTPlan+ and dReach, our use of an SMT solver with non-linear arithmetic
theories opens up the possibility of reasoning with non-linear continuous changes
and processes.

44 A. Bit-Monnot

Constraint-Based Scheduling. The consideration of optional activities in
constraint solvers slowly narrows the gap that existed between planning and
scheduling. Our formulation of a bounded planning problem is indeed very close
to a scheduling problem with optional activities over given temporal intervals,
in the spirit of those in CP Optimizer [26].

Achieving good, domain-independent, performance in a such a setting would
certainly require specialized global constraints. This is a promising direction
to tackle the current quadratic growth in the number of constraints of our
representation.

Our coherence constraints are closely related to scheduling optional activities
on unary resources and state-functions for which existing techniques could be
easily adapted [26,27,35]. The main difference here being the implicit choice
of the state variable that is governed by several variables. Support constraints
are more challenging and to our knowledge have no straightforward mapping to
global constraints in scheduling. Indeed, the closest equivalent (state-functions
in CP Optimizer) lack the notions of conditions and effects. While plan-space
planners do provide propagators for such support constraints [7,34], those are
highly tailored to their search mechanism and adapting them would require more
work.

7 Conclusion

In this paper, we presented a constraint-based encoding for temporal planning.
The encoding is focused on handling the conditions and effects appearing in
typical planning problems. It leverages a fully lifted representation and allows
the addition of arbitrary constraints. These characteristics make it a good fit for
a usage at the core of more general constraint-based planners or for embedding
planning subproblems in CSPs.

Its usage in a simple planner, using an off-the-shelf SMT solver, shows
improved performance with respect to state of the art temporal planners on plan-
ning problems with deadlines and time-windows. The resulting planner largely
outperforms existing SMT-based temporal planners on planning benchmarks.

One important contribution is the identification the small discrepancies that
remain between the available global constraints in constraint-based scheduling
and the requirements for efficiently handling task planning problems; going one
step closer to closing the long standing gap between planning and scheduling.

References

1. Barták, R., Toropila, D.: Reformulating constraint models for classical planning. In:
International Florida Artificial Intelligence Research Society Conference (FLAIRS)
(2008)

2. Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-
dependent continuous costs. In: International Conference on Automated Planning
and Scheduling (ICAPS) (2012)

3. Bernardini, S., Fagnani, F., Smith, D.E.: Extracting lifted mutual exclusion invari-
ants from temporal planning domains. Artif. Intell. 258, 1–65 (2018)

A Constraint-Based Encoding for Domain-Independent Temporal Planning 45

4. Bernardini, S., Smith, D.E.: Developing Lfor EUROPA2. In: ICAPS Workshop on
Heuristics and Search for Domain-Independent Planning (HSDIP) (2007)

5. Bernardini, S., Smith, D.E.: Automatic synthesis of temporal invariants. In: Sym-
posium on Abstraction, Reformulation and Approximation (SARA) (2011)

6. Bit-Monnot, A.: Temporal and hierarchical models for planning and acting in
robotics. Ph.D. thesis, Université de Toulouse (2016)

7. Bit-Monnot, A., Smith, D.E., Do, M.B.: Delete-free reachability analysis for tem-
poral and hierarchical planning. In: European Conference on Artificial Intelligence
(ECAI) (2016)

8. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1–2) (1997)

9. Bryce, D., Gao, S., Musliner, D., Goldman, R.: SMT-based nonlinear PDDL+
Planning. In: AAAI Conference on Artificial Intelligence (2015)

10. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+
language into SMT. In: International Conference on Automated Planning and
Scheduling (ICAPS) (2016)

11. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an end-to-end planning
application from a timeline representation framework. In: Innovative Applications
of Artificial Intelligence Conference (IAAI) (2009)

12. Chien, S., et al.: ASPEN: automated planning and scheduling for space mission
operations. In: International Conference on Space Operations (SpaceOps) (2000)

13. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning.
In: International Conference on Automated Planning and Scheduling (ICAPS)
(2010)

14. Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is temporal plan-
ning really temporal? In: International Joint Conference on Artificial Intelligence
(IJCAI) (2007)

15. Cushing, W.A.: When is temporal planning really temporal? Ph.D. thesis, Arizona
State University (2012)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Do, M.B., Kambhampati, S.: Solving planning-graph by compiling it into CSP. In:
International Conference on Automated Planning and Scheduling (ICAPS) (2000)

18. Dvorák, F., Barták, R., Bit-Monnot, A., Ingrand, F., Ghallab, M.: Planning and
acting with temporal and hierarchical decomposition models. In: IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI) (2014)

19. Edelkamp, S., Hoffmann, J.: PDDL2.2: the language for the classical part of the
4th international planning competition. In: International Planning Competition
(IPC-2004) (2004)

20. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In: Prassler, E., et al. (eds.) Springer Tracts
in Advanced Robotics (STAR), pp. 49–64. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25116-0 6

21. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20 (2003)

22. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning.
J. Artif. Intell. Res. (JAIR) 27 (2006)

23. Frank, J., Jónsson, A.: Constraint-based attribute and interval planning. Con-
straints 8(4) (2003)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-25116-0_6
https://doi.org/10.1007/978-3-642-25116-0_6

46 A. Bit-Monnot

24. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal plan-
ner. In: International Conference on Artificial Intelligence Planning and Scheduling
(AIPS) (1994)

25. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice
(2004)

26. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Interna-
tional Florida Artificial Intelligence Research Society Conference (FLAIRS) (2008)

27. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Reasoning with conditional time-
intervals. Part II: an algebraical model for resources. In: International Florida
Artificial Intelligence Research Society Conference (FLAIRS) (2009)

28. Lopez, A., Bacchus, F.: Generalizing graphplan by formulating planning as a CSP.
In: International Joint Conference on Artificial Intelligence (IJCAI) (2003)

29. McDermott, D., et al.: PDDL: the Planning Domain Definition Language. Techni-
cal report (1998)

30. Savas, E., Fox, M., Long, D., Magazzeni, D.: Planning using actions with control
parameters. In: European Conference on Artificial Intelligence (ECAI) (2016)

31. Scala, E., Ramirez, M., Haslum, P., Thiebaux, S.: Numeric planning with dis-
junctive global constraints via SMT. In: International Conference on Automated
Planning and Scheduling (ICAPS) (2016)

32. Smith, D.E., Frank, J., Cushing, W.: The ANML language. In: International Con-
ference on Automated Planning and Scheduling (ICAPS) (2008)

33. Vallati, M., Chrpa, L., Grześ, M., McCluskey, T.L., Roberts, M., Sanner, S., Man-
aging Editor: The 2014 international planning competition: progress and trends.
AI Mag 36(3) (2015)

34. Vidal, V., Geffner, H.: Branching and pruning: an optimal temporal POCL planner
based on constraint programming. Artif. Intell. 170(3) (2006)

35. Viĺım, P., Barták, R., Čepek, O.: Extension of O(n log n) filtering algorithms for
the unary resource constraint to optional activities. Constraints 10(4) (2005)

Decremental Consistency Checking
of Temporal Constraints: Algorithms

for the Point Algebra and the ORD-Horn
Class

Massimo Bono and Alfonso Emilio Gerevini(B)

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia,
Via Branze 38, 25123 Brescia, Italy

{mbono,alfonso.gerevini}@unibs.it

Abstract. Deciding consistency of a set of temporal constraints (CSP)
over either the Point Algebra (PA) or the Interval Algebra (IA) is
a fundamental problem in qualitative temporal reasoning. Given an
inconsistent temporal CSP and a sequence of constraint relaxations to
perform, incrementally decided by the user or an application, decremen-
tal consistency checking is the problem of determining if the revised CSP
becomes consistent after each relaxation. We propose new algorithms for
decremental consistency checking of a CSP over either PA or the ORD-
Horn subalgebra of IA. These techniques exploit a graph representation
of the CSP and some data structures that are maintained at each relax-
ation. An experimental analysis shows that solving decremental consis-
tency checking using our algorithms can be significantly faster than using
existing static algorithms.

1 Introduction

Constraint-based qualitative temporal reasoning is a widely studied area of AI
in which the most prominent approaches are Allen’s Interval Algebra (IA) [1],
Vilain and Kautz’s Point Algebra (PA) [30]. PA and (the full or fragments of)
IA are used in many contexts, including temporal reasoning, knowledge repre-
sentation, planning, diagnosis, and spatial reasoning. Given a CSP of temporal
constraints over either PA or IA, a fundamental reasoning problem is deciding
its satisfiability, also called consistency checking of the CSP. This problem is NP-
hard for the full IA, while it is polynomial for PA and for several fragments of
IA, such as Nebel and Bürckert [26] ORD-Horn subalgebra, the unique maximal
tractable subclass of IA containing all the basic relations.

In many applications of temporal reasoning, and constraint-based reasoning
in general, we need to deal with an inconsistent (over-constrained) CSP (e.g.,
[12]) by performing some constraint relaxations in order to make the CSP consis-
tent. For instance, an inconsistent CSP can be generated when merging qualita-
tive temporal constraints that express beliefs, preferences or possibly noisy infor-
mation from different sources (e.g., [6]), or that represent the temporal structure
of different partially ordered plans in the context of plan merging (e.g., [32]).
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 47–63, 2018.
https://doi.org/10.1007/978-3-319-98334-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_4&domain=pdf

48 M. Bono and A. E. Gerevini

As shown in our paper, finding a minimal set of constraints to relax in order to
make an inconsistent temporal CSP consistent is NP-hard even for PA restricted
to contain only the ‘<’ relation.

In the decremental version of consistency checking, we start from a non-
empty inconsistent temporal CSP, and we iteratively relax (weaken) one of its
constraints, possibly decided by the user or an application. After each constraint
relaxation, we want to check if the revised CSP remains inconsistent, which is
polynomial for CSPs over either PA or ORD-Horn. This process can be repeated
until the temporal CSP becomes consistent. The incremental version of consis-
tency checking is similar; starting from a consistent temporal CSP, we want to
check if it remains consistent when constraints are made stronger. These decre-
mental/incremental versions can be seen as dynamic polynomial problems, that
have been largely investigated in the context of graph algorithms in order to
efficiently maintain certain graph properties when edges are added/removed to
the graph (e.g., [11,14,23]). Instead of applying a static algorithm to recompute
the property at each graph revision, specialized algorithms and data structures
are used to reduce the total computational effort of maintaining the property
over a sequence of revisions. Dynamic polynomial algorithms have been studied
also for some special classes of tractable binary CSPs over discrete variables [13].

While the static (e.g., [4,9,19,22,26]) and incremental (e.g., [8,17]) versions
of consistency checking have been widely studied for PA and tractable fragments
of IA, efficient decremental consistency checking for these classes of constraints
has not been addressed yet. In this paper, we study decremental consistency
checking for CSPs over either PA or ORD-Horn. First we propose new decre-
mental algorithms that exploit a graph representation of the CSP and some
metadata that are maintained at each performed relaxation. Then our algo-
rithms and the existing static algorithms, used in the context of decremental
consistency checking, are experimentally evaluated. The results of this analysis
show that substantial performance gains can be obtained by the new algorithms.

2 Background, Terminology and Notation

Vilain and Kautz’s Point Algebra (PA) [30] consists of three base relations
between time points (<, >, =), all possible unions of them (≤, ≥, �=, �, where
� is the universal relation), and of the empty relation (⊥). Allen’s Interval Alge-
bra (IA) [1] consists of thirteen base relations between temporal intervals, all
possible unions of these relations, and ⊥.

In our context, a temporal constraint satisfaction problem (or briefly temporal
CSP) is a set of constraints of the kind xRy, where x and y are either point
variables or interval variables, and R is either a PA relation (if x and y are point
variables) or an IA relation (otherwise). A temporal CSP will be denoted by Σ,
if its constraints are over PA, by Ω if they are over IA, and by Θ if they are all
over either PA or IA. Without loss of generality we assume that if xRy ∈ Θ then
yR�x ∈ Θ, with R� inverse of R, and that � and ⊥ are not explicitly used in
an input constraint.

Decremental Consistency Checking of Qualitative Temporal Constraints 49

Given a temporal CSP Θ over either PA or IA, a fundamental reasoning
problem is deciding the satisfiability (or consistency) of Θ, where Θ is satisfiable
(consistent) if and only if there exists an assignment of temporal values to the
variables of Θ (rational numbers for point variables, pairs of rational numbers
for interval variables) such that all the constraints in Θ are satisfied. In [17] the
problem of deciding the satisfiability of Θ is called PSAT, if Θ is over PA, and
ISAT if Θ is over IA.

While ISAT is NP-complete [30], PSAT can be solved in O(n + c) time using
van Beek’s method [4], where n is the number of variables in the temporal CSP
and c is the number of PA-constraints. Van Beek’s techniques for PA uses a
graph-based representation of the temporal CSP that in [16] is called temporally
labeled graph (TL-graph).

A TL-graph G = (V,E) is a graph where each vertex in V represents a
variable of the temporal CSP, and each edge in E represents a PA constraint
in the CSP. Edges are either directed and labeled ‘≤’ or ‘<’, or undirected and
labeled ‘�=’. An edge between v and w labeled R is denoted by (v,R,w). Every
constraint x = y is represented by the pair of edges (x,≤, y) and (y,≤, x).

Given a temporal CSP Σ over PA represented by a TL-graph G , van Beek’s
method solves PSAT for Σ by first computing the strongly connected components
(SCCs) of G considering only the directed edges in E. Σ is satisfiable if and only
if G has no edge labeled ‘�=’ or ‘<’ connecting two vertices in the same SCC [4].

A strongly connected component (SCC) of G is a maximal subset of vertices σ
in G such that I(σ,G) is strongly connected, where: I(σ,G) is the graph induced
by σ in G , i.e., the subgraph of G with vertices σ and the subset of its directed
edges connecting vertices in σ; a directed graph is strongly connected if for each
pair v, w of vertices it has a directed path from v to w [7]. The SCCs of G can
be computed in O(|V | + |E|) time [29].

Given a TL-graph G and an edge (v,R,w) ∈ G such that R ∈ {‘<’, ‘�=’},
we say that (v,R,w) is a flaw in G if v and w belong to the same SCC of G ,
and that a SCC σ of G is flawed (valid) if I(σ,G) contains (does not contain)
a flawed edge, i.e., an edge labeled either ‘<’ or ‘�=’. The flawed SCCs of a TL-
graph can be computed in O(|V | + |E|) time [4]. A valid SCC in G represents
an equivalence class of vertices (CSP variables) that should be interpreted with
the same value (because the constraints between the variables of the SCC imply
their equality [4]).

A TL-graph is inconsistent if it contains a flawed SCC. The CSP represented
by a TL-graph G is inconsistent if and only if G is inconsistent [4,16].

Several tractable fragments of IA have been identified [4,10,19,21,22], of
which the most interesting and popular are the Simple Interval Algebra (SIA)
[3,22] and Nebel and Bürckert’s ORD-Horn class [26]. SIA consists of the IA-
relations that can be translated into a conjunction of PA-constraints between
interval endpoints. Hence, ISAT for a temporal CSP over SIA can be reduced to
PSAT for the PA-translation of the CSP. ORD-Horn subsumes SIA and is the
unique maximal tractable sub-algebra of IA containing all the basic relations.
Each constraint over ORD-Horn can be translated in constant time into an

50 M. Bono and A. E. Gerevini

equivalent set of disjunctions of PA-constraints called ORD-Horn clauses [26],
where (1) each literal is of the form p = q, p ≤ q or p �= q (with p and q endpoints
of an interval mentioned by the ORD-Horn constraint); (2) at most one literal
is of type ‘=’ or ‘≤’; (3) each disjunction is at most binary. π(Ω) denotes a
set of ORD-Horn clauses translating Ω, called a ORD-Horn clause translation
of Ω (this translation is not unique); π1(Ω) denotes the CSP of PA-constraints
formed by the unary clauses in π(Ω); finally, π2(Ω) denotes the set of the binary
clauses in π(Ω) (π(Ω) = π1(Ω) ∪ π2(Ω)).

An example of relation in ORD-Horn and not in SIA is the inequality of
two intervals (i.e., all 13 base relations except ‘equal’ are possible). ISAT for
a temporal CSP Ω over ORD-Horn can be decided in cubic time by using a
path-consistency algorithm [26] and, when Ω is sparse, in quadratic time [17].

A relaxation of xRy is a constraint xR′y such that R′ ⊃ R.

3 Decremental Consistency Checking

An inconsistent temporal CSP can be made consistent by relaxing one or more
constraints, but identifying a minimal set of relaxations making the CSP consis-
tent is NP-hard. As shown in the proof of Theorem 1, NP-hardness holds even
if every CSP constraint is of type either ‘<’ (for PA) or “before” (for IA).

Theorem 1. Given a temporal CSP Θ over either PA, SIA or ORD-Horn, com-
puting a minimal set of relaxations making Θ consistent is NP-hard.

Proof. Reduction from the Minimum Feedback Arc Set problem [20]. Given a
directed graph G = (V,E) we build a CSP Θ = {(v < w)|(v, w) ∈ E} and a
TL-graph G with vertices V and edges {(v,<,w)|(v, w) ∈ E}. If we remove an
edge from G, then we relax v < w to v�w and we remove edge (v,<,w) from G .
Since Θ is consistent iff G has no cycles [4], it is easy to see that G has a feedback
arc set S of size k (i.e., G becomes acyclic without S) iff removing k edges from
G (relaxing k constraints in Θ) makes G (Θ) consistent. A similar reduction can
be constructed with Θ formed by constraints {Iv before Iw|(v, w) ∈ E} and G
constructed from π1(Θ).NP-hardness follows.

Decremental consistency checking can be seen as a complementary approach
to finding optimal relaxation sets, in which the user(s) or the application (e.g., a
planner dealing with plan merging, or a system that searches for minimal conflict
sets by iteratively relaxing constraints from a non minimal one [2]) specifies the
relaxations to perform, and the system checks the consistency of the revised CSP
after each relaxation.
Example. As a very simple example (illustrated in Fig. 1), consider organising
the touristic activities for a trip of three tourists T1, T2 and T3. Some site visits
can be performed only in the morning (Tower, Church and Museum), some only
in the afternoon (Temple and Castle), and the others during all the day (Botanic
Gardens). Some activities have a predefined order, such as Lunch, that should be
in between the morning and the afternoon activities. Each tourist specifies a set
of preferences about the order of some activities (not necessarily the same ones):

Decremental Consistency Checking of Qualitative Temporal Constraints 51

Tw

Mu

Ch

Lu

Ca

Te

Ga

All

All

All

All

All

T1

T1

T1

T2

T2

T2

T3

T3
time

Mu Ch Tw Lu Te Ga Ca

Fig. 1. CSP of precedence constraints for the touristic example and corresponding
possible solution of the relaxed CSP. Graph vertices are activities to perform, and edges
are precedence (‘<’) constraints. Edges are labeled by the tourist(s) expressing the
corresponding constraint (“All” for all tourists). Dashed edges indicate the relaxations
specified by the three tourists.

T1: Tower before Garden, Garden before Castle, Castle before Temple;
T2: Tower before Museum, Museum before Church, Temple before Gardens;
T3: Gardens before Church, Church before Tower.

Although the set of constraints of every tourist is consistent, their union leads to
an inconsistent CSP. In order to make it consistent, we can solve a decremental
consistency checking problem where the relaxations are obtained by asking, in
turn, each tourist to relax one of their personal constraints until the CSP becomes
consistent. E.g., if T1 decides to remove “Castle before Temple”, then T2 removes
“Tower before Museum”, and finally T3 removes “Gardens before Church”, a
sequence of three relaxed CSPs is generated, the last of which is consistent.

More formally, we define the (dynamic) decremental version of consistency
checking for a temporal CSP as follows:

Definition 1. Given an inconsistent temporal CSP Θ over a class of constraints
C and a sequence Θ0, ..., Θk of CSPs over C such that Θ = Θ0 and Θi is obtained
from Θi−1 by making one constraint relaxation in Θi−1, for i = 1, ..., k, decre-
mental consistency checking is the problem of iteratively deciding the satis-
fiability of every Θi starting from Θ1 until i = k or Θi becomes consistent.1

We call this problem D-PSAT, if the CSP is over PA, and D-OHSAT if it is
over ORD-Horn.

3.1 An Algorithm for D-PSAT: Dpasat

Table 1 shows all possible kinds of relaxation in PA. Note that in the CSP x > y
and x ≥ y are assumed to be specified as y < x and y ≤ x, respectively, while
x = y as the pair x ≤ y and y ≤ x. Without loss of generality, we also assume
that every CSP Σi (i > 0) in the relaxed CSP sequence is represented by the
corresponding TL-graph G i = G i−1 − {(v,R,w)} ∪ {(v,R′, w)} where vR′w is
the relaxation made in CSP Σi−1.
1 If Θi become consistent all successor CSPs are consistent.

52 M. Bono and A. E. Gerevini

Table 1. Possible relaxations xR′y of a constraint xRy in a CSP over PA with R ∈
{‘<’, ‘≤’, ‘ �=’}. Relaxing x = y corresponds to relaxing x ≤ y, y ≤ x or both.

R ≤ < < < �=
R′ � ≤ �= � �

For every relaxed CSP Σi, the performed relaxation vR′w can make Σi (G i)
consistent only if v and w belong to the same flawed SCC of the TL-graph of
Σi−1. This important property is a direct consequence of the following lemmas.

Lemma 1. Given an inconsistent TL-graph G , revising the label of an edge
contained in no induced graph of a SCC in G leaves the revised TL-graph incon-
sistent.

Proof. Since G is inconsistent it contains at least a flawed SCC that is not altered
by the revision. Inconsistency follows.

Lemma 2. Given an inconsistent TL-graph G and two vertices v, w in a valid
SCC of G , revising the label R of edge (v,R,w) in G from R to R′ with R′ ⊃ R
leaves the revised TL-graph inconsistent.

Proof. Same arguments as in the proof of Lemma 1.

Figure 2 shows the pseudocode of our algorithm for D-PSAT (Dpasat). The
input is the TL-graph G of the current (inconsistent) CSP Σ, the set S of flawed
SCCs in G , and a relaxation vR′w of a constraint vRw ∈ Σ; the output is the
TL-graph G ′ of the revised input CSP and its flawed SCC set S′ (possibly equal
to S), if the revised CSP is inconsistent, true otherwise. The SCCs of the initial
TL-graph G 0 (input of the first run of Dpasat) can be computed by Tarjan’s
[29] or Sharir’s [28] algorithms.

Algorithm Dpasat exploits Lemmas 1–2 and a simple data structure, that
is maintained by the algorithm, storing for each flawed SCC σ the sets of pairs
of its vertices that in G are connected by edges labeled either ‘<’ or ‘�=’:

E< [σ] = {〈v, w〉 : v, w ∈ σ and (v,<,w) ∈ G }
E �= [σ] = {〈v, w〉 : v, w ∈ σ and (v, �=, w) ∈ G }.

Clearly a SCC σ is flawed iff |E< [σ] | + |E �= [σ] | > 0, and G ′ is inconsistent iff
|S′| > 0.

After revising edge (v,R,w) in G ′ according to relaxation vR′w, Dpasat
checks if v and w belongs to the same SCC σ in S. If this is not the case,
by Lemmas 1–2, G ′ remains inconsistent and Dpasat outputs 〈G ′, S〉 (line 3);
otherwise S′ is initialized to S, and each possible kind of relaxation is considered
(see Table 1).

In every relaxation case, sets S′, E< and E �= are updated according to
the kind of performed relaxation (lines 5–18). In some cases, this update (and

Decremental Consistency Checking of Qualitative Temporal Constraints 53

Fig. 2. Pseudocode of algorithm Dpasat. We assume that every vertex of G is marked
with the SCC it belongs to, and every set E< [σ] and E�= [σ] is decorated with its
cardinality.

Dpasat) has constant time cost; other cases require more elaborated processing,
since in G ′ σ may be broken into multiple, smaller SCCs (see Fig. 4 for an exam-
ple). After updating the algorithm metadata, consistency is decided by checking
if |S′| > 0 holds (line 19). We now consider each relaxation case in turn.

R = ‘≤’ and R′ = ‘�’ (lines 5–6). Since I(σ,G ′) may not be strongly con-
nected anymore, we need to compute the possibly new SCCs in I(σ,G ′). If σ
remains integral, we need to do nothing; otherwise we need to compute the E<

and E �= sets of each flawed SCC in I(σ,G ′), remove σ from S′, and add the new
flawed SCCs in I(σ,G ′) to S′. The computation of such SCCs and of the rela-
tive E< and E �= sets is performed by function FlawedSCCs (Fig. 3). This function
first checks (line 2) if there is a directed path from v to w; if this is the case,
I(σ,G ′) is still strongly connected and σ is integral; so FlawedSCCs returns {σ}

54 M. Bono and A. E. Gerevini

Fig. 3. Pseudocode of FlawedSCCs. Step 6 can be efficiently computed by iterating over
the vertex pairs 〈x, y〉 in sets E< [σ′] and E�= [σ′] as follows: we add 〈x, y〉 to E< [σF]
if (x, <, y) ∈ I(σF ,F); we add it to E�= [σF] if (x, �=, y) ∈ I(σF ,F).

and Dpasat algorithm does not change S′. Otherwise the metadata of Dpasat
needs to be updated: FlawedSCCs computes the set Snew of new flawed SCCs and
the E< and E �= sets for each of them (lines 5–8).2 Then Dpasat discards σ from
S′ and it adds the SCCs of Snew to S′.

R = ‘<’ and R′ = ‘≤’ (lines 7–8, 11–12). Since I(σ,G ′) is still strongly con-
nected, it suffices to remove 〈v, w〉 from E< [σ] and check if σ becomes a valid
SCC, removing σ from S′ if this is the case.

R = ‘<’ and R′ = ‘�’ (lines 8, 11–14). After relaxation, I(σ,G ′) may not
be strongly connected anymore. First 〈v, w〉 is removed from E< [σ]. Then, if edge
(v,<,w) was the only flaw in I(σ,G), σ is removed from S′ without checking
if it has been broken or not, since there cannot be a flawed SCC in I(σ,G ′);
otherwise, Dpasat’s metadata are repaired as for case R = ‘≤’, R′ = ‘�’.

R = ‘<’ and R′ = ‘ �=’ (lines 7–10, 13–14). First 〈v, w〉 is moved from
E< [σ] to E �= [σ]. Then, since I(σ,G ′) may not be strongly connected anymore,
Dpasat’s metadata are repaired as for case R = ‘≤’, R′ = ‘�’.

R = ‘ �=’ and R′ = ‘�’ (lines 16–18). I(σ,G ′) remains strongly connected,
but we need to check if σ is still flawed: 〈v, w〉 is removed from E�= [σ] and, if it
was the only flaw of σ, σ becomes a valid SCC and it is removed from S′.

Theorem 2. Dpasat solves D-PSAT.

Proof. (Sketch) By case analysis of every kind of relaxations we can show that
Dpasat correctly updates its metadata (the set of flawed SCCs and all sets E<

and E �=). Hence by Lemmas 1–2 and the fact that a CSP over PA is inconsistent
iff its TL-graph contains a flawed SCC, at each run of Dpasat with input a CSP
in the sequence of a D-PSAT instance, true is returned iff the CSP is consistent.
2 Steps 2–3 of FlawedSCCs can be efficiently computed by a variant of Tarjan’s algo-

rithm for SCCs in which the first DFS starts from vertex v; if during this search w is
reached termination is forced; otherwise the algorithm continues in its normal way.

Decremental Consistency Checking of Qualitative Temporal Constraints 55

S={σ} σ={v1, v2, v3, v4, v5, v6, v7, v8, v9}
E< [σ] {〈v1, v3〉, 〈v7, v8〉, 〈v6, v1〉}
E �= [σ] {〈v6, v7〉}

12

3 4

56

7 8

9

≤

≤

≤

≤
<

≤

≤

<
≤≤

<

≤

�= ≤

S={σ1, σ3}
σ1={v1, v2, v3, v4}
E< [σ1] {〈v1, v3〉}
E �= [σ1] ∅

12

3 4

σ2={v5, v6}
σ3={v7, v8, v9}
E< [σ3] {〈v7, v8〉}
E �= [σ3] ∅

56

7 8

9

≤

≤

≤

≤
<

≤

≤

<
≤≤

<

�= ≤

Fig. 4. An example where a flawed SCC σ of the TL-graph breaks due to relaxation
v4�v7. In the left/right, the graph and its metadata before/after relaxation. After
relaxation 3 new SCCs are created (σ1 and σ3 are flawed, σ2 is valid) and the metadata
are accordingly updated.

The worst-case time complexity of Dpasat is linear in the maximal-size
subgraph of G forming a flawed SCC. Depending on the SCC structure of the
CSP (TL-graph G), Dpasat’s complexity is better than the complexity of van
Beek’s algorithm for the relaxed CSP (G ′), which is linear in the full G ′, i.e.,
O(c + n) for c constraints and n variables in the CSP.

Theorem 3. The time complexity of Dpasat is O(cf + nf), where cf/nf is
the number of constraints/variables represented by the largest induced graph of
a flawed SCC in G ; the space complexity of Dpasat is O(c + n).

Proof. (Sketch) For Dpasat the most expensive relaxations to process in the
sequence of a D-PSAT instance are those requiring to run FlawedSCCs, whose
complexity can be shown to be O(ef + nf) by using Tarjan’s algorithm [29] for
computing the SCCs of the the input graph F , with ef edges and nf vertices,
and computing the E< and E �= sets as described in Fig. 3. It is easy to see that
Dpasat’s data structured require O(c + n) space.

Moreover, Dpasat handles in constant time all relaxations xR′y where (1) both
the involved variables are not in the same flawed SCC, (2) R is ‘�=’ and R′ is
‘�’, and (3) R is ‘<’ and R′ is ‘≤’. Let k0 the number of such relaxations in a
D-PSAT instance. The complexity of using Dpasat for D-PSAT is as follows:

Theorem 4. The time complexity of Dpasat for a sequence of k constraint
relaxations is O(k0 + (k − k0) · (cf + nf)), where cf/nf is the number of con-
straints/variables represented by the largest induced graph of a flawed SCC in G .

3.2 An Algorithm for D-OHSAT: Dohsat

Our algorithm for D-OHSAT, Dohsat, is an extension of a static method for
ISAT over ORD-Horn called OrdHorn-Sat [17], which has O(c · n) time com-
plexity for c constraints and n variables in the CSP. For lack of space the revised
algorithm is described without detailed pseudocode.3

3 More details and pseudocode are available in a technical report.

56 M. Bono and A. E. Gerevini

Fig. 5. Pseudocode of OrdHorn-Sat.

Given a CSP Ω over ORD-Horn, OrdHorn-Sat processes the clause trans-
lation of Ω as described in Fig. 5. After checking the satisfability of π1(Ω), for
each disjunct p �= q of each clause δ ∈ π2(Ω), if p and q both belong to a SCC of
the TL-graph of Σ1 (initially π1(Ω)), then δ is reduced by removing p �= q from
the clause. If there is a clause that is reduced to the empty clause, then Ω is
inconsistent. Otherwise Σ1 is extended with the unary clauses (PA constraints)
that have been generated, and the clauses that have been reduced are eliminated
from Σ2 (initialized with π2(Ω)). This reduction process (lines 3–12), that we
call reduction epoch, is repeated until either an empty clause is generated, or no
new unary clause is generated.

Each generated SCC is associated with an id (an integer). Each reduction
epoch ρ can be represented by a pair 〈D,Δ〉, where D is the set of the unary
clauses (disjuncts) generated by ρ, and Δ is the set of ids of SCCs used to
make the disjunction reductions. We call reduction chain the sequence of epochs
generated by OrdHorn-Sat, and we denote it with C(Ω). For any CSP Ω over
ORD-Horn, it can be proved that the length of C(Ω) is O(n) [17].

The relaxation of a ORD-Horn relation into a relation in the same class
corresponds to relaxing one or more PA constraints in π1(Ω), either adding
or removing one or more disjunctions in π2(Ω), or performing a mix of these
changes.4

Let Ω′ be the CSP obtained by relaxing xRy into xR′y in Ω. The two changes
that we make to OrdHorn-Sat to use it for efficiently solving D-OHSAT are

4 We remind that every equality x = y in Σ1 is replaced by x ≤ y and y ≤ x, and so
relaxing x = y to, e.g., x ≤ y corresponds to relax y ≤ x to y�x. Moreover, if x = y
appears in a disjunction d of Σ2, d is replaced by two disjunctions where instead of
x = y we have x ≤ y and y ≤ x, respectively.

Decremental Consistency Checking of Qualitative Temporal Constraints 57

(1) using algorithm Dpasat to deal with the relaxations to perform in
π1(Ω), and

(2) accelerating the computation of C(Ω′) by reusing C(Ω).

In the following we focus on (2), assuming that π1(Ω′) is consistent (oth-
erwise C(Ω′) is not computed). Let μ = ρ1, ..., ρ|C(Ω)| the sequence of epochs
forming C(Ω), where ρj = 〈Dj ,Δj〉 (j = 1, ..., |C(Ω)|). The main idea is to
quickly identify a subchain μ′ = ρ1, ..., ρh of μ that would be generated also
for C(Ω′). If μ′ exists, Σ1 is extended with

⋃j=h
j=1 Dj and the corresponding dis-

junctions in π2(Ω) are removed from Σ2. All new disjunctions generated by the
relaxation, if any, are then added in Σ2. Then the algorithm continues from line
2 of OrdHorn-Sat building the reduction chain for Ω′.
There are only two kinds of relaxation xR′y that can make an epoch ρ invalid
for reuse in π(Ω′), i.e., there is no guarantee that for π(Ω′) the same SCCs used
in ρ will be generated:

(a) π(xR′y) revises a constraint p ≤ q of π(xRy) into p�q;
(b) π(xR′y) removes a disjunction δ of π(xRy) that is reduced in C(Ω) (δ /∈

π2(Ω′)).

The first case may invalidate ρ when it uses a SCC containing p and q; the second
case may invalidate ρ if the reduction of δ added a ‘≤’ constraint to Σ1 generating
in the TL-graph of Σ1 a SCC used to make additional reductions in C(Ω).

Let ρinv be the earliest invalid epoch of C(Ω) among the invalid epochs deter-
mined by each relaxation in π(xR′y) w.r.t. π(xRy). We define μ′ as the initial
subchain of C(Ω) up to ρinv (excluded). In order to efficiently represent C(Ω)
and quickly identify ρinv, we use and maintain at each relaxation a O(n2) space
data structure called SCCFusionMatrix (abbreviated SFM). SFM represents the set
of SCCs (C ′ in OrdHorn-Sat(Ω)) at each chain epoch. Its rows are indexed
by the epochs of C(Ω) and its columns by the graph vertices. SFM[i, j] is the id
of the SCC to which vertex vj belongs at epoch i − 1 (considering the TL-graph
of π1(Ω) for i = 1). Figure 6 shows an example of SFM.

For case (a), if v ≤ w is relaxed to v�w in π1(Ω), the invalidated epoch is
the first epoch ρ (if any) s.t. SFM[ρ, v] = SFM[ρ,w] (v and w are in the same SCC)
and SCC SFM[ρ, v] is used in ρ (SFM[ρ, v] ∈ Δρ).5 For case (b), if the disjunction
that the current relaxation in Ω removes was reduced at an epoch ρ′, generating
a disjunct v′ ≤ w′ added to Σ1, then we consider invalid the first epoch after ρ′

(if any) where v′ and w′ are in the same SCC σ, and σ is used in such an epoch.
Dohsat’s complexity for D-OHSAT can be stated taking account of the struc-

ture of the input CSP and of the type of relaxations. Let p0 be the number of
relaxations not modifying π1(Ω) and p1 the number of relaxations modifying it,
if π1(Ω) is inconsistent, and p0, p1 = 0 otherwise. The complexity is as follows:

Theorem 5. Dohsat solves D-OHSAT in O(p0+p1 ·(cf ·nf)+(k−p0−p1)·(c·n))
time and O(n2) space, where c is the number of constraints, n the number of
variables, k the number of constraint relaxations.

5 The second condition can be decided in constant time by storing for each epoch a
binary hash table indexed by the SCC ids.

58 M. Bono and A. E. Gerevini

Fig. 6. Example of SFM. The revision v1�v6 invalidates no epoch; v2�v3 invalidates ρ2

since ρ2 is the first epoch where v2 and v3 belong to the same SCC and Δ2 contains
the id of such SCC.

4 Experimental Results

We experimentally evaluated the performance of our algorithms using the exist-
ing static algorithms for PA and ORD-Horn as a baseline. All algorithms are
implemented in C, and they share the same data structures as much as possible.
All experiments were conducted on a 2.00GHz Core Intel(R) Xeon(R) CPU E5-
2620. Each instance of D-PSAT and D-OHSAT in the used data sets (expect those
derived from plans) consists of a randomly generated inconsistent CSP and a
sequence of random relaxations leaving every relaxed CSP, possibly except the
last one, inconsistent. We considered different data sets according to the con-
straint density of the initial CSP and the policy defining the relaxations. Each
dense CSP has a constraint for every pair of variables; each sparse CSP has
�n · log2n constraints in total, where n is the number of variables. We consid-
ered two relaxation policies (the second only for D-PSAT):

RR: each relaxation involves randomly chosen variables;
RFSCC: each relaxation involves variables belonging to the same flawed SCC

of the TL-graph representing the CSP.

The former is Dpasat/Dohsat agnostic, the latter produces more challenging
relaxations for Dpasat since the policy has no relaxation that is trivial to process
for Dpasat. In the initial CSPs of the generated D-PSAT (D-OHSAT) instances,
each constraint consists of a random PA (ORD-Horn) relation.

The compared algorithms are evaluated in terms of total CPU time over the
full relaxation sequence and cumulative CPU time after each relaxation in the
instance sequence. The data used to plot the results on the curves (in logarithmic
scale with E-notation for Figures 7 and 8, in linear scale for Figs. 9 and 10) are
always average values over 30 instances of D-PSAT or D-OHSAT.

As shown in Fig. 7, for every kind of considered benchmark, Dpasat clearly
outperforms van Beek’s static algorithm (VB). While VB needs to compute the
SCCs at every relaxation, Dpasat generates the SCCs from scratch only once,
and then repairs the flawed ones when needed, which makes Dpasat about one
order of magnitude faster than VB. Dpasat requires additional time (included
in our results) for the first relaxation to initialize its metadata. However, such
time is then regained when processing the remainder of the relaxation sequence.

Figures 8a.1 and a.2 compare Dohsat, OrdHorn-Sat, and an efficient path
consistency algorithm (PC) for solving D-OHSAT.6 Dohsat is always signifi-
6 We tested Vilain et al.’s algorithm [31] optimized by using the full (precomputed)

composition table of every IA relations.

Decremental Consistency Checking of Qualitative Temporal Constraints 59

Fig. 7. Performance of Dpasat and van Beek’s algorithm (VB) for D-PSAT instances
with sparse and dense CSPs, and relaxation policies RR and RFSCC. Top plots: aver-
age total time for processing instances with increasing number of variables; bottom
plots: average cumulative time after processing each relaxation for instances with 300
variables.

Fig. 8. Performance of Dohsat and static algorithms for D-OHSAT instances. Columns
(a.1)–(a.2) show results with dense and sparse CSPs, and relaxation policy RR; Column
b) show results for the benchmark with forced non-empty reduction chains. Top plots:
average total time for processing instances with increasing number of variables; bottom
plots: average cumulative time after each relaxation for instances with 100 variables
for sparse and dense CSPs, with 300 variables for non-empty reduction chains.

60 M. Bono and A. E. Gerevini

cantly faster than the other algorithms and, except for small CSPs, it performs
between one and two orders of magnitude better. PC performs generally bet-
ter than OrdHorn-Sat for dense CSPs, while OrdHorn-Sat performs better
than PC for sparse CSPs (except for small ones).

By analyzing Dohsat’s behaviour in the used benchmarks, we noticed that
often either the inconsistency of a relaxed CSP Ω′ is detected in π1(Ω′) by
Dpasat, or π1(Ω′) is consistent but the generated reduction chain is very short.
To better evaluate the usefulness of the reduction chains in Dohsat and use D-

OHSAT instances that are more challenging for our algorithm, we built an ad-hoc
set of D-OHSAT instances in which: the initial CSPs are sparse, π1(Ω′) is always
consistent, inconsistency of Ω′ is always detected by Dohsat at some epoch of
C(Ω′), and every relaxation invalidates the reduction chain C(Ω). The results for
this benchmark are in Fig. 8b. The good performance of Dohsat was confirmed
also for this data set, obtaining improvements of almost one and three orders of
magnitude relative to OrdHorn-Sat and PC, respectively.

When the CSP relaxations are performed “online” by users, it is likely that
the relaxation sequence is relatively be short. Thus, we have tested our algo-
rithms also using datasets with short relaxation sequences. In these benchmarks,
for each sparse CSP at most 0.5% of the constraints are relaxed, while for each
dense CSP the relaxations are at most 0.1% (less relaxations for dense CSPs
because they have more constraints). As shown in the top plots of Fig. 9 and in
Fig. 10, Dpasat and Dohsat still perform very well with respect to the com-
pared static algorithms.

Fig. 9. Performance of Dpasat and van Beek’s algorithm (VB) for D-PSAT instances
with short relaxation sequences. Top plots: random sparse and dense CSPs with relax-
ation policies RFSCC and RR. Bottom-left plots: chain-structured CSPs. Bottom-right
plots: CSPs from the temporal structure of plans in domain ZenoTravel. The plots show
average total time (over 30 instances) for instances with increasing number of variables.

Finally, since real-world CSPs may have a structure that is missing in com-
pletely random CSPs, we considered two known benchmarks for structured (con-
sistent) CSPs over PA: random CSPs with chain structure, used in [9], and CSPs

Decremental Consistency Checking of Qualitative Temporal Constraints 61

Fig. 10. Performance of Dohsat and static algorithms for D-OHSAT instances (sparse
and dense CSPs) with short relaxations sequences using relaxation policy RR. All
plots show average total time (over 30 instances) for instances with increasing number
of variables. The OrdHorn-Sat curve is pruned due to its very poor performances.

obtained from the action ordering constraints (of type ‘<’ and ‘≤’) of plans for
the ZenoTravel domain [24,27], used in [18].7 Each CSP of these benchmarks
has been made inconsistent by adding a number of < constraints equal to 2%
of the original CSP constraints generating flawed SCCs in the TL-graph of the
extended CSP. These CSPs are very sparse, and so we used relaxation sequences
of size at most 1% of the constraints, corresponding to at most 15 relaxations for
the largest chain-structured CSPs (1000 variables), and at most 12 relaxations
for the largest ZenoTravel CSPs.

As shown by the plots at the bottom-right of Fig. 9, Dpasat performs sig-
nificantly better than the compared static algorithm also for the considered
structured CSPs with short relaxation sequences.

5 Conclusions and Future Work

The ability of handling inconsistent (over-constrained) CSPs by making con-
straint relaxations is an important task in applications using constraint-based
reasoning. After showing that finding a minimal set of constraints to relax for
making a temporal CSP consistent is NP-hard even when the CSP contains
only <-constraints, we have introduced and addressed the decremental consis-
tency checking problem for inconsistent temporal CSPs, proposing two new algo-
rithms specialized for the well-known Point Algebra and ORD-Horn class. An
experimental analysis shows that, for the considered benchmarks, our algorithms
perform generally very well compared to the use of standard static algorithms.

Current and future work concern additional experiments and the study of
decremental consistency for other classes of constraints in qualitative temporal
reasoning, as well as in the context of qualitative spatial reasoning [5], where PA
can be used for modelling constraints on the relative region sizes [15].
7 As in [9], Each chain-structured CSP corresponds to a random graph with 5 chains,

each with n/5 vertices, n/5 transitive ‘<’ edges for the whole graph, n/5 cross-chain
edges, and 10% of the input constraints are �= constraints. The ZenoTravel plans
were computed using planner SHOP2 [25].

62 M. Bono and A. E. Gerevini

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(1),
832–843 (1983)

2. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. IJCAI 93, 276–281 (1993)

3. van Beek, P.: Reasoning about qualitative temporal information. In: Proceedings
of the Eighth National Conference of the American Association for Artificial Intel-
ligence (AAAI-1990), Boston, MA, pp. 728–734 (1990)

4. van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell. 58(1–
3), 297–321 (1992)

5. Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: Hand-
book of Knowledge Representation, pp. 551–596 (2008)

6. Condotta, J., Kaci, S., Schwind, N.: A framework for merging qualitative con-
straints networks. In: Proceedings of the Twenty-First International Florida Arti-
ficial Intelligence, pp. 586–591 (2008)

7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press,
Cambridge (1990)

8. Delgrande, J., Gupta, A.: Updating < =, <-chains. Inf. Process. Lett. 83(5), 261–
268 (2002)

9. Delgrande, J., Gupta, A., Allen, T.: A comparison of point-based approaches to
qualitative temporal reasoning. Artif. Intell. 131(1–2), 135–170 (2001)

10. Drakengren, T., Jonsson, P.: Twenty-one large tractable subclasses of Allen’s alge-
bra. Artif. Intell. 93(1–2), 297–319 (1997)

11. Eppstein, D., Galil, Z., Italiano, G.: Dynamic graph algorithms. In: Atallah, M.
(ed.) Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton
(1999)

12. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artif. Intell. 58(1–3),
21–70 (1992)

13. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Dynamic algorithms for classes
of constraint satisfaction problems. Theor. Comput. Sci. 259(1–2), 287–305 (2001)

14. Georgiadis, L., Hansen, T.D., Italiano, G.F., Krinninger, S., Parotsidis, N.: Decre-
mental data structures for connectivity and dominators in directed graphs. In: 44th
International Colloquium on Automata, Languages, and Programming, ICALP
2017, pp. 42:1–42:15 (2017)

15. Gerevini, A., Renz, J.: Combining topological and size information for spatial rea-
soning. Artif. Intell. 137, 1–42 (2002)

16. Gerevini, A., Schubert, L.: Efficient algorithms for qualitative reasoning about
time. Artif. Intell. 74, 207–248 (1995)

17. Gerevini, A.E.: Incremental qualitative temporal reasoning: algorithms for the
point algebra and the ORD-Horn class. Artif. Intell. 166(1–2), 37–80 (2005)

18. Gerevini, A.E., Saetti, A.: Computing the minimal relations in point-based qualita-
tive temporal reasoning through metagraph closure. Artif. Intell. 175(2), 556–585
(2011)

19. Golumbic, C., Shamir, R.: Complexity and algorithms for reasoning about time:
a graph-theoretic approach. J. Assoc. Comput. Mach. (ACM) 40(5), 1108–1133
(1993)

20. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9. Plenum

https://doi.org/10.1007/978-1-4684-2001-2_9

Decremental Consistency Checking of Qualitative Temporal Constraints 63

21. Krokhin, A., Jeavons, P., Jonsson, P.: The tractable subalgebras of Allen’s interval
algebra. J. Assoc. Comput. Mach. (ACM) 50(5), 591–640 (2003)

22. Ladkin, P., Maddux, R.: On binary constraint problems. J. Assoc. Comput. Mach.
(ACM) 41(3), 435–469 (1994)

23. �L ↪acki, J.: Improved deterministic algorithms for decremental reachability and
strongly connected components. ACM Trans. Algorithms 9(3), 27:1–27:15 (2013)

24. Long, D., Fox, M.: The 3rd international planning competition: results and anal-
ysis. J. Artif. Intell. Res. 20, 1–59 (2003)

25. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
Shop2: an htn planning system. J. Artif. Intell. Res. 20, 379–404 (2003)

26. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: a maximal tractable
subclass of Allen’s interval algebra. J. Assoc. Comput. Mach. (ACM) 42(1), 43–66
(1995)

27. Penberthy, J.S.: Planning with continuous change (1993), Technical report UW-
CSE-93-12-01

28. Sharir, M.: A strong-connectivity algorithm and its applications in data flow anal-
ysis. Comput. Math. Appl. 7(1), 67–72 (1981)

29. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2),
215–225 (1972)

30. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning.
In: Proceedings of the Fifth National Conference of the American Association for
Artificial Intelligence (AAAI-1986), pp. 377–382. Morgan Kaufmann (1986)

31. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for tem-
poral reasoning: a revised report. In: Readings in Qualitative Reasoning about
Physical Systems, pp. 373–381. Morgan Kaufman, San Mateo (1990)

32. Yang, Q.: Intelligent Planning. Springer, Heidelberg (1997). https://doi.org/10.
1007/978-3-642-60618-2

https://doi.org/10.1007/978-3-642-60618-2
https://doi.org/10.1007/978-3-642-60618-2

Domain Reduction for Valued Constraints
by Generalising Methods from CSP

Martin C. Cooper1(B), Wafa Jguirim1,2, and David A. Cohen3

1 IRIT, University of Toulouse III, Toulouse, France
{cooper,Wafa.Jguirim}@irit.fr

2 National School of Computer Science, University of Manouba, Manouba, Tunisia
3 Department of Computer Science, Royal Holloway, University of London,

Egham, UK
d.cohen@rhul.ac.uk

Abstract. For classical CSPs, the absence of broken triangles on a pair
of values allows the merging of these values without changing the satisfi-
ability of the instance, giving experimentally verified reduction in search
time. We generalise the notion of broken triangles to VCSPs to obtain a
tractable value-merging rule which preserves the cost of a solution.

We then strengthen this value merging rule by using soft arc consis-
tency to remove soft broken triangles and we show that the combined
rule generalises known notions of domain value substitutability and inter-
changeability. Unfortunately the combined rules are no longer tractable
to apply, but can still have applications as heuristics for reducing the
search space.

Finally we consider the generalisation of another value-elimination
rule for CSPs to binary VCSPs. This new rule properly generalises neigh-
bourhood substitutability and so we expect it will also have practical
applications.

Keywords: Valued Constraint Satisfaction Problem · Value merging
Value elimination · Tractability

1 Introduction, Notation and Definitions

Constraint Satisfaction (CSP) has had a significant impact on our ability to
solve large and practical declarative problems, for example crew scheduling [14],
and online workflow allocation [20]. However, in such complex problem domains,
it has been restricted in its applicability by not being able to express degrees
of satisfaction. The natural extension, valued constraint satisfaction (VCSP),
allows us to express preferences amongst assignments and so forms a useful
paradigm, extending the CSP to optimisation, whilst maintaining the declarative
feel, allowing us to reason directly in problem domains.

Partially supported by ANR-11-LABX-0040-CIMI within the French Agence
Nationale de la Recherche program ANR-11-IDEX-0002-02.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 64–80, 2018.
https://doi.org/10.1007/978-3-319-98334-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_5&domain=pdf

Domain Reduction for Valued Constraints 65

Since these problems are NP-hard much effort has been applied to find
algorithms and techniques to reduce the search space. Such techniques are most
effective if they do not change the set of possible solutions, but simply avoid
exploring search avenues that we know cannot be productive. Key amongst these
techniques are propagation and symmetry reduction, which can both be applied
either before or during search. Search-space reduction has been approached in
two ways: by the application of group theory [1,3,11,19,21] to identify equiv-
alent branches of the search tree, or by using local structure to prune values
or variables from the search [2,6,7,9,16,18]. It is the latter approach that we
continue to develop in this paper, extending domain reduction results from con-
straint satisfaction to valued constraint satisfaction [5,17]. Indeed we will be
combining domain reduction methods from consistency approaches [4,8] which
have been essential in making global constraints effective [15] with local pattern
based value merging to make our techniques more widely applicable.

We observe that there are often several ways to extend reduction techniques
from CSP to VCSP. This is most notably the case for arc consistency, which
has been generalised to distinct techniques, FDAC, EDAC and VAC, which all
coincide with CSP arc consistency when applied directly to the classical CSP,
but correspond to distinct levels of soft consistency on the VCSP [8].

Similarly, different generalisations of neighbourhood substitution have been
proposed for VCSPs [5,13,17], including a stronger condition for substitutability
taking into account the current lower and upper bounds [12]. In this paper we
consider generalisations from CSPs to VCSPs of value-elimination rules based
on the merging of values [7,18].

1.1 Definitions

A VCSP instance is a collection of cost functions applied to sets of variables [8].
For simplicity of presentation, in this paper we assume that costs are taken

from the non-negative rationals together with the special cost infinity (∞). Of
course, such instances are precisely equivalent to classical (crisp) CSP instances
when the costs happen to all be either 0 or ∞. For simplicity of notation we
always assume that the set of variables of the instance I is V (I) = {XI

1 , . . . , XI
n},

allowing us to use indexes to refer to variables. The domain of possible values
for the variable XI

i is denoted by DI
i .

A subset of the variables is called a scope. An assignment to scope σ maps
each XI

i ∈ σ to an element of its domain, DI
i . The instance I includes a set of

cost functions C(I) = {φI
σ | σ ∈ S(I)} where S(I) is a set of scopes and each

φI
σ ∈ C(I) maps assignments (to the variables σ) to costs. When we refer to a

cost function φI
σ for which σ �∈ S(I) we always mean the cost function that is

identically zero.
The cost of an assignment s to a set of variables Y ⊆ V (I) is given by

costIY (s) =
∑

σ⊆Y

φI
σ(s|σ).

A solution is an assignment to V (I) that minimizes cost.

66 M. C. Cooper et al.

Where it improves readability we omit the name of the instance when refer-
ring to domains and costs. We simplify notation by using φi, φij to denote
φ{Xi} and φ{Xi,Xj} respectively. Furthermore, for single variables Xi we use the
assignment on {Xi} mapping Xi to a interchangeably with the value a, since
the meaning is always clear from the context.

Analogously to consistency propagation in the CSP, any soft consistency
operation on a VCSP instance [8] alters the cost functions while preserving all
solutions. A soft arc consistency (SAC) operation at variable Xi replaces the
unary cost φi with φ′

i different only at domain value d ∈ Di where φ′
i(d) =

φi(d)+α, (α may be negative). To compensate, it replaces one other cost function
φσ for which Xi ∈ σ with φ′

σ where φ′
σ(s) = φσ(s) except when s(Xi) = d in

which case φ′
σ(s) = φσ(s) − α. In order to be well defined the result of this

SAC operation must leave all costs non-negative: we are not allowed to subtract
a larger cost from any existing cost. To make this definition subsume (crisp)
arc-consistency we extend the definition of subtraction so that ∞ − ∞ = ∞.

This is illustrated in Fig. 1, where as usual, variables are (grey) ellipses con-
taining domain value: cost pairs and non-zero (binary) costs are shown with
labelled arcs. A solution to this instance assigns c to X1, e to X2 and f to X3

and has cost 4.

X1
X2 X3 X1

X2 X3

a:1

b:2

c:1

d:3

e:2

f :1

g:3

4
3

5
1

4

Move (cost) 1
from X2 = d

b:2

a:1

c:1

d:2

e:2

f :1

g:3

5
4

1

1
5

4

Fig. 1. SAC: moving cost 1 from X2 = d to φ1,2. Changed costs are highlighted.

Definition 1. In a VCSP instance, a GASBT (general-arity soft broken trian-
gle) on values a, b for Xi is an assignment s to the union of distinct non-empty
scopes σ and ρ, where Xi /∈ σ ∪ ρ, such that

φσ∪{Xi}(s|σ ∪ a) < φρ∪{Xi}(s|ρ ∪ b)
φρ∪{Xi}(s|ρ ∪ a) > φσ∪{Xi}(s|σ ∪ b)

costσ∪ρ(s) < ∞
For binary CSP instances (where the costs lie in {0,∞}), the notion of a gen-

eral arity soft broken triangle coincides precisely with the classical CSP notion
of broken triangle [7]. This correspondence is shown graphically in Fig. 2. In
this figure the crisp CSP instance has dashed arcs to indicate disallowed tuples
(cost = ∞) and solid arcs to indicate permitted tuples (cost = 0). Hence when
σ and ρ each contain just one variable we say that a GASBT is a soft broken
triangle (SBT).

Domain Reduction for Valued Constraints 67

Although the definition of a GASBT is independent of the unary costs
φi(a), φi(b), these costs will be critical in the definition of a value-merging rule.

Xi

Xj

Xk

Xi

Xj

Xk

a

b

c

d

α

β

δ

γμ
α < β
γ > δ
μ < ∞

a

b

c

d

Fig. 2. A soft broken triangle and the corresponding crisp BTP pattern.

Definition 2. The VCSP instance J obtained from I by merging a value pair
a, b ∈ Di to produce a new value c has the same variables and domains as I
except that DJ

i =
(
DI

i − {a, b}) ∪ {c}.
The cost functions in J are defined as follows:

φJ
σ(t) =

{
φI

σ(t) If Xi /∈ σ, or t(Xi) �= c

min{φI
σ(t ∪ a), φI

σ(t ∪ b)} Otherwise.

2 Value-Merging Rules

We say that a, b ∈ Di are mergeable in a VCSP instance if the cost of a solution
to the new instance (after the merging of a and b) is identical to the cost of a
solution to the original instance. We have the following rule.

Proposition 1. Whenever φi(a) = φi(b) and there is no general arity soft
broken triangle on a, b, then a, b ∈ Di are mergeable. Furthermore, given a solu-
tion to the instance resulting from the merging of two values, we can find a
solution to the original instance in linear time.

Proof. Suppose that there is no GASBT on a, b ∈ Di in I, and let J be identical
to I except that a, b have been merged to produce the value c. If a solution to J
does not have value c at XJ

i then it is also a solution to I and we have nothing
to prove. So, let s be a solution to J which assigns c to XJ

i . Denote by sa, sb

the assignments in I which are identical to s except that XI
i is assigned a or b

(respectively).
It is clear from the definition of the cost functions in the merged instance

that the cost of s in J is at most the minimum of the costs of sa and sb in I. If
the cost of s is infinite, we have nothing to prove, so we assume it is finite.

68 M. C. Cooper et al.

Since there is no GASBT on a, b, and this is true for every pair of scopes σ
and ρ, we must have either

∀σ, ρ where XI
i /∈ σ ∪ ρ, φI

σ∪{XI
i }(s|σ ∪ a) ≤ φI

ρ∪{XI
i }(s|ρ ∪ b)

or
∀σ, ρ where XI

i /∈ σ ∪ ρ, φI
ρ∪{XI

i }(s|ρ ∪ a) ≥ φI
σ∪{XI

i }(s|σ ∪ b)

Without loss of generality, suppose it is the former. Then

∀σ,where XJ
i /∈ σ, φJ

σ∪{XJ
i }(s|σ ∪ c) = φI

σ∪{Xi}(s|σ ∪ a)

Now, since φI
i (a) = φI

i (b) we can replace c by a in s to obtain a solution to
the original instance with the same global cost as s.

So, reconstructing a solution to I simply requires checking which of sa or sb

is a solution to I. This can be achieved in time which is linear in the size of I.

We use the term SBT-merging (Soft Broken Triangle merging) for the
merging of two values in a binary VCSP instance, allowed by the premise of
Proposition 1.

2.1 Applying GASBTP Value Merging

For any k ≥ 1, applying k-consistency operations until convergence to a CSP
instance produces a unique closure [4]. Similarly, applying neighbourhood sub-
stitution operations [9] until convergence to a CSP instance produces a unique
closure modulo isomorphism [5]. For VCSPs, finding the closure by soft arc con-
sistency operation is not unique, but the problem of finding the best closure can
be solved in polynomial time by linear programming [8]. It is therefore natural
to ask the question of the uniqueness of and the complexity of finding the best
closure of a VCSP instance under SBT merging operations. It turns out that the
answer depends on whether the VCSP instance has infinite costs or not.

Theorem 1. For a finite-valued VCSP (i.e. with no infinite costs), closure
under GASBT-merging is unique up to value renaming. This closure can be
found in polynomial time if the scopes are of bounded size. For general-valued
VCSPs, maximizing the number of SBT-merges is NP-hard.

Proof. For finite-valued VCSPs, it suffices to notice that GASBT-merging is
equivalent to eliminating values a ∈ Di if ∃b ∈ Di such that ∀σ,Xi /∈ σ and
for all assignments t to σ ∪ {Xi} we have that φσ∪{Xi}(t ∪ a) ≥ φσ∪{Xi}(t ∪ b).
Clearly, elimination of such a value a cannot prevent eliminations at the same
or other variables by the same rule. Of course we are free to name new domain
values in any way that we choose, so we cannot guarantee that value merging
ends up with precisely the same VCSP instance. However, it does not matter in
which order we apply GASBT value merges to a finite-valued VCSP instance:
we always converge to isomorphic instances.

Domain Reduction for Valued Constraints 69

Testing whether there is a GASBT on a pair of values at Xi for a given pair
of scopes σ and ρ requires testing that a VCSP on σ ∪ ρ has finite value. In a
finite valued VCSP this test is trivial. If either σ∪{Xi} or ρ∪{Xi} contains more
variables than the bound on the size of a scope then the associated cost function
is identically zero, so cannot satisfy the conditions required for a GASBT.

So, the existence of a GASBT value merge can be tested in polynomial time
if we bound the arity of cost functions. Hence, the closure is unique modulo
isomorphism and can be found in polynomial time by a greedy algorithm.

To show NP-hardness of optimal value merging when infinite costs are
allowed observe that crisp binary CSP instances are precisely those binary VCSP
instances with costs restricted to {0,∞}. Since an SBT in such a binary VCSP
is precisely a crisp broken triangle, SBT value merging is simply BT-merging in
the corresponding CSP instance. It is known that finding the maximum number
of BT-merges in a CSP instance is NP-hard (even for domains of size 3) [7]. It
follows that finding the maximum number of SBT-merges in VCSPs is NP-hard,
even if all costs belong to {0,∞}, domains are of size 3, and scopes are binary.

3 Combining Soft Arc Consistency and SBT-Merging

GASBT value merging can only be performed when we have two domain values
with identical unary costs. However, SAC operations allow us to move costs
away from domain values. It is therefore possible that we can merge values, but
only after performing the correct sequence of SAC operations. We will show two
practical examples (with low complexity) where this does indeed occur and then
show that, in general it is NP-hard to find such a sequence of SAC operations.
In fact we will show, in the first result, that SAC followed by value merging
subsumes a (natural but weak) form of valued neighbourhood substitution [5,17].

Definition 3. We say that a is weak neighbourhood substitutable for b at
variable Xi if every cost associated with a tuple assigning value b to Xi is not
made worse by substituting value a. That is,

For all σ, Xi /∈ σ for all assignments t to σ we have

φσ∪{Xi}(t ∪ a) ≤ φσ∪{Xi}(t ∪ b).

Example 1. Consider again the binary VCSP instance in Fig. 1. Before the SAC
operation the two values for variable X2 cannot be GASBT value merged as they
have different unary costs. On the other hand, even before the SAC operation,
e is weak neighbourhood substitutable for d.

Since there are no infinite costs in this VCSP, testing for value merging here
amounts to checking that the costs associated with value d are always at least
as high as those associated with value e.

Now consider the binary VCSP instance shown in Fig. 3. Since the value
φ12(a, c) < φ12(b, c) but φ12(a, e) > φ12(b, e) neither a nor b can be weak neigh-
bourhood substituted for the other. On the other hand a and b can be GASBT
value merged since φ23(c, e) = ∞.

70 M. C. Cooper et al.

X1

X2 X3

a:0

b:0

c:0 e:0

d:0 f :0
0

1 0

1

∞

Fig. 3. In this binary VCSP instance a and b can be GASBT value merged, but they
are not weak neighbourhood substitutable.

Notice that after the SAC operation the two values e and d in Fig. 1 can be
GASBT merged. We now prove that this holds in general: weak substitutable
values can always be GASBT merged after precisely one SAC operation.

Theorem 2. If a is weak neighbourhood substitutable for b then, in polynomial
time, we can find a SAC operation after which a and b can be GASBT value
merged.

Proof. Suppose that a is weak neighbourhood substitutable for b and that
φi(a) < φi(b). Choose any scope ρ and use a SAC operation to move the cost
α = φi(b) − φi(a) from b to φρ, where Xi ∈ ρ, replacing φi with φ′

i and φρ with
φ′

ρ and leaving all other cost functions unchanged.
Before the SAC operation we have, for all σ, Xi /∈ σ and for all assignments

t to σ:
φσ∪{Xi}(t ∪ a) ≤ φσ∪{Xi}(t ∪ b).

So, after the SAC operation, for all assignments t to ρ − {Xi}:

φ′
ρ(t ∪ b) = φρ(t ∪ b) + α theSAC operation

> φσ(t ∪ b) since φi(a) < φi(b)
≥ φσ(t ∪ a) since a is substitutable for b
= φ′

σ(t ∪ a).

So the SAC operation preserves the weak neighbourhood substitutability, but
now both a and b have equal unary cost at Xi.

We complete the proof by showing that if a is weak neighbourhood substi-
tutable for b then there cannot be any GASBT on a and b. In fact this is trivially
true since it can never occur for any scope ρ and assignment s that:

φρ∪{Xi}(s|ρ ∪ a) > φσ∪{Xi}(s|σ ∪ b)

Since the SAC operation was entirely determined by the unary costs of a and
b and σ was arbitrary this is polynomial time.

In fact we can identify another simple case in which we can immediately find
a soft arc consistency operation which leads to GASBT-merging.

Domain Reduction for Valued Constraints 71

Definition 4. We say that a, b ∈ Di are almost interchangeable if there is a
scope σ with Xi /∈ σ such that for all scopes ρ �= σ with Xi /∈ ρ we have, for
every assignment t to ρ, φρ(t ∪ a) = φρ(t ∪ b).

This definition of almost interchangeability is independent of the unary
cost functions but still allows GASBT value merging after an appropriate SAC
operation.

Proposition 2. If a, b ∈ Di are almost interchangeable, then, in polynomial
time, we can find a SAC operation after which a and b can be GASBT merged.

Proof. We can simply make φi(a) = φi(b) using a SAC operation which sends
the difference in their cost to the cost function φσ. This leaves a and b almost
interchangeable.

Since there is only one scope for which the cost functions can differ when a
is replaced by b at Xi there can be no GASBT on a and b and they can now be
merged.

When the costs lie in {0,∞}, the notion of almost interchangeability coincides
with the notion of virtual interchangeability [18].

Corollary 1. In a binary VCSP, suppose there is a variable Xj (j �= i) such
that ∀k /∈ {i, j}, ∀c ∈ Dk, φik(a, c) = φik(b, c) then a and b are almost inter-
changeable and can be merged.

Having shown the usefulness of applying SAC operations to remove any
occurrences of GASBT we conclude the section with a proof that it is in general
NP-hard to determine whether such SAC operations can be found.

Suppose that we have a binary VCSP instance I with a unary cost function
φi for which φi(a) > φi(b). Our problem is to find a set of costs {qj | j �= i}, one
cost for each (other) variable Xj , such that by sending each cost qj from φi(a)
to the cost function φij , we obtain an instance with φi(a) = φi(b) that has no
soft broken triangle on a and b at Xi.

We now prove that this problem is NP-hard.

Theorem 3. Given a VCSP instance I and variable X with domain values
a and b, it is NP-hard to determine whether there are soft arc consistency
operations on a and b which make the unary costs of a and b equal whilst also
eliminating all SBT occurrences on a and b.

Proof. We provide a polynomial reduction from the problem SubsetSum which
is well known to be NP-complete [1,10]. An instance 〈S,M〉 of SubsetSum
consists of a set S of positive integers and an integer M . The corresponding
question is whether there exists a subset T ⊆ S whose elements sum to M , i.e.

∑

s∈T

s = M.

72 M. C. Cooper et al.

Given an instance R = 〈S,M〉 of SubsetSum we will construct a binary
VCSP instance IR such that there exists a set of SAC operations on two values
a and b for variable X eliminating all SBT occurrences on a and b at X if and
only if R is a yes instance.

Let S = {a1, . . . , an}. Since we are showing hardness we need only reduce
instances for which n > 1. The VCSP IR has 2n + 1 variables. The domain
D2n+1 = {a, b}. All other domains are {0, . . . , 4}. The only non-trivial unary
constraint is φ2n+1 where φ2n+1(a) = M and φ2n+1(b) = 0.

The binary cost function between X2n+1 and any other variable depends on
whether the index of that variable is even or odd. In all cases there is zero cost
if X2n+1 is assigned value a. The full table of costs follows. For i = 1, . . . , n,
u ∈ {0, . . . , 4}:

φ2i−1,2n+1(u, a) = 0 φ2i,2n+1(u, a) = 0
φ2i−1,2n+1(0, b) = 0 φ2i,2n+1(0, b) = 0
φ2i−1,2n+1(1, b) = 0 φ2i,2n+1(1, b) = ai/2
φ2i−1,2n+1(2, b) = ai/2 φ2i,2n+1(2, b) = 0
φ2i−1,2n+1(3, b) = ai/2 φ2i,2n+1(3, b) = M + 1
φ2i−1,2n+1(4, b) = M + 1 φ2i,2n+1(4, b) = ai/2

For i = 1, . . . , n the cost function φ2i−1,2i is (crisp) equality. That is:

∀u, v ∈ {0, . . . , 4}, φ2i−1,2i(u, v) =

{
0 if u = v

∞ otherwise

All other (binary) cost functions only allow both variables to be zero. That is:

∀u, v ∈ {0, . . . , 4}, φ(u, v) =

{
0 if u = v = 0
∞ otherwise

Having defined the instance IR we need to determine each cost qi to move
from the unary cost φ2n+1(a) to the binary cost function between X2n+1 and
Xi. After these SAC operations we require that there be no SBT on a and b at
X2n+1. We also require that the resultant unary costs of a and b at X2n+1 are
equal. Hence

∑2n
i=1 qi = M .

This latter condition induces a constraint on the allowed values of qi and qj

for every non-infinite allowed pair of values on variables Xi and Xj .
Consider first the crisp constraints which force both Xj and Xk to have

value 0. With this Xj and Xk a soft broken triangle can only occur for values
Xj = Xk = 0. In this case we consider the four costs between values 0 at Xj and
Xk and values a and b for X2n+1. A broken triangle does not appear involving
Xj and Xk precisely when:

(qj ≥ 0 ∧ qk ≥ 0) ∨ (qj ≤ 0 ∧ qk ≤ 0) (1)

Domain Reduction for Valued Constraints 73

Since n > 2 these constraints connect every variable except X2n+1. It follows
from Eq. (1) and the fact that

∑2n
i=1 qi = M > 0, that each qi, i = 1 . . . , q2n is

non-negative and strictly less than M + 1.
Every other constraint that might be involved in a soft broken triangle is

a strict equality between a pair of variables X2i−1 and X2i. The five non-zero
allowed pairs of values in each such constraint give the five following disjunctions.

(q2i−1 ≥ 0 ∧ q2i ≥ 0) ∨ (q2i−1 ≤ 0 ∧ q2i ≤ 0) (2)
(q2i−1 ≥ 0 ∧ q2i ≥ ai/2) ∨ (q2i−1 ≤ 0 ∧ q2i ≤ ai/2) (3)
(q2i−1 ≥ ai/2 ∧ q2i ≥ 0) ∨ (q2i−1 ≤ ai/2 ∧ q2i ≤ 0) (4)

(q2i−1 ≥ ai/2 ∧ q2i ≥ M + 1) ∨ (q2i−1 ≤ ai/2 ∧ q2i ≤ M + 1) (5)
(q2i−1 ≥ M + 1 ∧ q2i ≥ ai/2) ∨ (q2i−1 ≤ M + 1 ∧ q2i ≤ ai/2) (6)

Equation 2 is redundant. Equations 3–6 are equivalent to

For i = 1, . . . , n, (q2i−1 = q2i = 0) ∨ (q2i−1 = q2i = ai/2) (7)

Setting ai = q2i−1 + q2i, we can see that there exist q1, . . . , q2n satisfying the
above equations if and only if there is a solution a1, . . . , an to the SubsetSum
instance R.

This reduction is clearly polynomial. Since SubsetSum is NP-complete, we
can deduce that testing the existence of a set of soft arc consistency operations
on a and b which makes their unary costs equal and eliminates all soft broken
triangles, allowing us to apply Proposition 1 and merge a and b, is itself NP-hard.

4 Effect on Search-Tree Size of Merging

It has been shown [7] that in CSPs, BT-merging can increase the number of
nodes in the search tree, when arc consistency is maintained during search.

Example 2. Consider an instance I with four boolean variables X1, X2, X3,
X4 and the following constraints X1 ⇒ X2, X1 ⇒ X3, X2 �= X3, X2 �= X4,
X3 �= X4. The two domain values for X1 can be merged.

A search which assigns X1 = 0 and maintains arc consistency will detect
inconsistency:

X1 = 0 → X3 = 1 → X2 = 0 → X4 = 1

which wipes out the domain for X3.
On the other hand, after value merging there are no constraints involving X1

and inconsistency will only be detected after another variable is instantiated.

However, it has been demonstrated experimentally that BT-merging applied
during preprocessing reduces the average number of search-tree nodes by 27% [7].

We can make the following theoretical observation concerning naive
(chronological) backtracking.

74 M. C. Cooper et al.

Proposition 3. If a search algorithm is used which only prunes nodes based
on the cost of the corresponding partial solution and instantiates variables in a
fixed order, then merging values due to absence of GASBTs cannot increase the
number of nodes visited.

Proof. Suppose that there is no GASBT on a, b ∈ Di and that a, b have been
merged to produce a new instance I ′ in which c is the result of the merge of a and
b. Let Y be the variables assigned at some given node of the search tree, where
Xi ∈ Y . Consider any assignment sc to variables Y ⊆ X in I ′ which assigns c to
Xi. Denote by sa, sb the assignments which are identical to sc except that Xi is
now assigned a or b (respectively). There were no GASBTs on values a, b in the
sub-problem on variables Y . So, from the proof of Proposition 1, we know that
the cost of sc on variables Y is min{costY (sa), costY (sb)}. Hence, if pruning only
depends on this cost, then sc will only survive (i.e. the corresponding node will
not be pruned) in I ′ if sa or sb survives in I. Thus, the total number of nodes
cannot increase.

In the special case of binary CSPs, GASBTs are simply broken triangles,
which gives us the following corollary.

Corollary 2. If BT-merging is applied to a CSP then the number of nodes in
the search tree cannot increase in a naive backtracking search.

Of course we can expect that value merging due to the absence of
GASBTs will often significantly reduce the number of search nodes visited as it
is analogous to BT merging in the CSP, and hence the earlier experiments apply
directly.

5 Soft Snakes

The broken triangle is just one example of a forbidden pattern which allows
domain reduction. The general notion of forbidden pattern has led to the dis-
covery of several novel value-elimination rules in binary CSPs [2,6].

In this section we generalise the CSP pattern ∃2snake [2] to VCSPs. This is a
further step towards identifying and classifying the generalisation of CSP value-
elimination patterns to VCSPS. For simplicity, we concentrate on binary VCSPs,
since no general-arity version of ∃2snake has yet been proposed for CSPs.

However, we are very pleased to be able to generalise the snake pattern
since it is significantly stronger than GASBT value merging: snake-substitution
is a generalisation of a strong form of soft neighbourhood substitution (and
hence of weak neighbourhood substitution). Given its relatively low complexity
(See Proposition 5) we expect that value merging due the absence of the valued
snake pattern will be even more effective than that obtained by the absence
of (soft) broken triangles. We first give the definition of soft neighbourhood
substitution [5,13,17].

Domain Reduction for Valued Constraints 75

Definition 5. In a binary VCSP instance I, value a ∈ Di is soft neighbourhood
substitutable for b ∈ Di if

φi(b) − φi(a) +
∑

j �=i

min
c∈Dj

(φij(b, c) − φij(a, c)) ≥ 0.

Soft neighbourhood substitutability of a ∈ Di for b ∈ Di implies that b can
be replaced in any solution by a. It depends on the costs φij(a, c) and φij(b, c)
for all variables Xj . Snake-substitutability extends this by looking at a third
variable Xk while allowing a substitution of value c ∈ Dj by a value d ∈ Dk.

Definition 6. In a binary VCSP instance I, value a ∈ Di is snake-substitutable
for b ∈ Di if

φi(b) − φi(a) +
∑

j �=i

min
c∈Dj

(max
d∈Dj

fij(a, b, c, d)) ≥ 0

where

fij(a, b, c, d) = φij(b, c) − φij(a, d) + φj(c) − φj(d)

+
∑

k �=i,j

min
e∈Dk

(φjk(c, e) − φjk(d, e)).

The sum in the definition of fij(a, b, c, d) is the minimum reduction in cost
we obtain by replacing c by d (as assignments to variable Xj) in the sub-instance
on variables X1, . . . , Xi−1,Xi+1, . . . , Xn. We can see that snake-substitutability
subsumes soft neighbourhood substitutability by setting c = d in Definition 6.

Example 3. Consider a 2-variable instance of MAX-CSP over boolean domains
{0, 1} with a single constraint X1 �= X2. In this case, the sum in the definition
of f12(a, b, c, d) is zero since there is no third variable Xk such that k �= 1, 2.
No values are soft neighbourhood substitutable in this instance, but 1 is snake-
substitutable for 0 in the domain of X1 since for any assignment (0, c) to (X1,X2)
there is an assignment (1, d) of no greater cost.

Proposition 4. Snake-substitutability is a valid value-elimination rule in binary
VCSPs.

Proof. Consider a binary VCSP instance I in which a �= b ∈ Dn and a is snake-
substitutable for b. We can assume that I has a solution sb with sb[Xn] = b and
cost(sb) �= ∞ otherwise there is nothing to prove.

For each j �= n let

dj = arg max
d

(fnj(a, b, sb[Xj], d)) .

Thus, dj is, in some sense, the best replacement for sb[Xj] when we replace
b with a at Xn.

76 M. C. Cooper et al.

Now substitute b for a at Xn in the solution sb, while also changing assign-
ments to each variable Xj to dj (j �= n), to obtain the assignment sa. We only
need to show that cost(sa) ≤ cost(sb), since then sa is a solution.

Since a is snake substitutable for b at Xn we can use the positivity and
finiteness of the expression in Definition 6 to establish that some terms are finite.
Finiteness will allow us to use simple subtraction later in the proof.

In Definition 6 we could choose c and e to be the values assigned by sb to
variables Xj and Xk. Finiteness of cost(sb) then implies that all terms occurring
positively in Definition 6 are finite. This in turn implies that all terms occurring
negatively in Definition 6 are also finite. So we can see that, for each j �= n and
for each k �= n, j, the following are all finite:

φn(a), φnj(a, dj), φj(dj), φjk(dj , sb[Xk])

We now define n intermediate solutions sr between sb and sa. For
r = 0, . . . , n − 1,

sr[Xj] = dj (j = 1, . . . , r)
sr[Xj] = sb[Xj] (j = r + 1, . . . , n − 1)
sr[Xn] = a

Thus, in particular, sn−1 = sa and s0 is identical to sb except that variable Xn

is assigned the value a.
Let costn−1(s) denote the cost of assignment s on variables X1, . . . , Xn−1:

costn−1(s) =
n−1∑

j=1

φj(s[Xj]) +
n−1∑

j=1

n−1∑

k=j+1

φjk(s[Xj], s[Xk]).

From the definition of costn−1, we have:

cost(sb) = costn−1(s0) + φn(b) +
n−1∑

r=1

φrn(sb[Xr], b) (8)

Then, from the definition of costn−1 and sr (r = 0, . . . , n − 1), and using the
finiteness of φrk(dr, sr[Xk]) for k �= r, n and φr(dr), we have: for r = 1, . . . , n−1:

costn−1(sr−1) = costn−1(sr) +
∑

k �=n,r

(φrk(sb[Xr], sr[Xk]) − φrk(dr, sr[Xk]))

+ φr(sb[Xr]) − φr(dr) (9)

We also have

cost(sa) = cost(sn−1) = costn−1(sn−1) + φn(a) +
n−1∑

r=1

φrn(dr, a). (10)

Domain Reduction for Valued Constraints 77

We also know that φn(a) +
∑n−1

r=1 φrn(dr, a) is finite. This allows us to rewrite
Eq. (10) as

costn−1(sn−1) = cost(sa) − φn(a) −
n−1∑

r=1

φrn(dr, a) (11)

By successive substitutions of Eq. (9) (r = 1, . . . , n − 1) and then Eq. (11) in
Eq. (8), we obtain

cost(sb) = cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

{φrn(sb[Xr], b) − φrn(dr, a)

+φr(sb[Xr]) − φr(dr) +
∑

k �=n,r

(φrk(sb[Xr], sr[Xk]) − φrk(dr, sr[Xk]))}

≥ cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

{φrn(sb[Xr], b) − φrn(dr, a)

+φr(sb[Xr]) − φr(dr) +
∑

k �=n,r

min
e∈Dk

(φrk(sb[Xr], e) − φrk(dr, e))}

= cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

fnr(a, b, sb[Xr], dr)

= cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

max
d∈Dr

fnr(a, b, sb[Xr], d)

≥ cost(sa) + φn(b) − φn(a) +

n−1∑

r=1

min
c∈Dr

max
d∈Dr

fnr(a, b, c, d)

≥ cost(sa)

by definition of snake substitutability. Hence, given any solution which assigns
b to Xn, we can find a solution which assigns a to Xn.

Example 4. Consider a binary VCSP instance I in which there is a crisp equality
constraint Xh = Xi between variables Xh and Xi which have identical domains
and |Di| > 1. Clearly, we could merge these two variables to form a single
variable Y . Suppose that a is (weak) neighbourhood substitutable for b at Y
in this new variable-merged instance I. However, because of the crisp equality
constraint, a is not (weak) neighbourhood substitutable for b in I. Nonetheless,
a is snake-substitutable for b in I. To see this, for all j �= i, h, set d = c and for
j = h, set d = a in Definition 6. Then the snake-substitutability of a for b in I
follows from the (weak) neighbourhood substitutability of a for b in I.

We now analyse the computational complexity of checking that no values
are snake substitutable (according to Definition 6). Direct application of the
definition leads to a time complexity of O(n3d3 + n2d4) and a space complexity
of O(n2d2). However, we can improve this complexity in the case of finite costs.

78 M. C. Cooper et al.

In this case, we can rewrite the definition of fij(a, b, c, d) as follows:

fij(a, b, c, d) = φij(b, c) − φij(a, d) + φr(c) − φr(d)

+
∑

k �=i,j

min
e∈Dk

(φjk(c, e) − φjk(d, e))

= φij(b, c) − φij(a, d) + φr(c) − φr(d)

− min
e∈Di

(φji(c, e) − φji(d, e)) +
∑

k �=j

min
e∈Dk

(φjk(c, e) − φjk(d, e))

which allows us to check that no values are snake substitutable in time complex-
ity O(n2d4).

Proposition 5. In finite-valued VCSPs, snake substitutable values can be found
in time complexity O(n2d4).

It is worth pointing out that this is only a factor of d greater than the
complexity of checking that no soft neighbourhood substitutions are possible [5].

6 Conclusion

We have extended the notion of broken triangle from CSPs to VCSPs. This
has allowed us to define a valid domain-reduction operation based on value-
merging. We have extended the usefulness of this pattern by considering SAC
operations that might enable us to perform extra reductions. In each case we
have briefly considered the complexity of the reduction. We have shown that it is
NP-hard to determine whether there exists some set of SAC operations that can
allow us to perform extra GASBT reductions. However this is a reduction from
SubsetSum and it is well known that there are pseudo-polynomial algorithms
that solve this problem. It is an open question to determine whether there is a
pseudo-polynomial algorithm for finding a set of SAC operations that allow us to
merge values. It seems unlikely as this problem is in fact a quadratic optimisation
problem.

In the final section we considered another domain-reduction operation
called snake-substitutability which is a strong generalisation of neighbourhood
substitutability in the case of binary VCSPs. From a theoretical point of
view, SBT-merging and snake-substitutability are incomparable, since there are
instances where one can be applied but not the other, even if on binary finite-
valued instances, snake-substitutability subsumes SBT-merging. It is an ongoing
research program to discover a general rule or classification of all domain reduc-
tion patterns for the VCSP.

Acknowledgements. We would like to thank Wady Naanaa for useful discussion
concerning the generalisation to the general-arity case.

Domain Reduction for Valued Constraints 79

References

1. Alfonśın, J.L.R.: On variations of the subset sum problem. Discrete Appl. Math.
81(1–3), 1–7 (1998)

2. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S.: Variable and value elim-
ination in binary constraint satisfaction via forbidden patterns. J. Comput. Syst.
Sci. 81(7), 1127–1143 (2015)

3. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry def-
initions for constraint satisfaction problems. Constraints 11(2–3), 115–137 (2006)

4. Cooper, M.C.: An optimal k-consistency algorithm. Artif. Intell. 41(1), 89–95
(1989)

5. Cooper, M.C.: Reduction operations in fuzzy or valued constraint satisfaction.
Fuzzy Sets Syst. 134(3), 311–342 (2003)

6. Cooper, M.C.: Beyond consistency and substitutability. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 256–271. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10428-7 20

7. Cooper, M.C., Duchein, A., Mouelhi, A.E., Escamocher, G., Terrioux, C., Zanut-
tini, B.: Broken triangles: from value merging to a tractable class of general-arity
constraint satisfaction problems. Artif. Intell. 234, 196–218 (2016)

8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7), 449–478 (2010)

9. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Dean, T.L., McKeown, K. (eds.) Proceedings of the 9th National Con-
ference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991, vol. 1, pp.
227–233. AAAI Press/The MIT Press (1991)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

11. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2, pp. 329–376. Elsevier (2006)

12. de Givry, S., Prestwich, S.D., O’Sullivan, B.: Dead-end elimination for weighted
CSP. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 263–272. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40627-0 22

13. Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophys. J. 66(5), 1335–1340 (1994)

14. Guerinik, N., Van Caneghem, M.: Solving crew scheduling problems by constraint
programming. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp.
481–498. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60299-2 29

15. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelli-
gence, vol. 2, pp. 169–208. Elsevier (2006)

16. Jeavons, P., Cohen, D., Cooper, M.: A substitution operation for constraints. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 1–9. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58601-6 85

17. Lecoutre, C., Roussel, O., Dehani, D.E.: WCSP integration of soft neighborhood
substitutability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 406–421. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 31

18. Likitvivatanavong, C., Yap, R.H.C.: Eliminating redundancy in CSPs through
merging and subsumption of domain values. SIGAPP Appl. Comput. Rev. 13(2),
20–29 (2013)

https://doi.org/10.1007/978-3-319-10428-7_20
https://doi.org/10.1007/978-3-319-10428-7_20
https://doi.org/10.1007/978-3-642-40627-0_22
https://doi.org/10.1007/3-540-60299-2_29
https://doi.org/10.1007/3-540-58601-6_85
https://doi.org/10.1007/978-3-642-33558-7_31

80 M. C. Cooper et al.

19. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry break-
ing using restricted search trees. In: Proceedings of the 16th European Conference
on Artificial Intelligence, ECAI 2004, pp. 211–215 (2004)

20. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource
allocation constraints. Inf. Syst. 30(5), 399–422 (2005)

21. Smith, B.M., Bistarelli, S., O’Sullivan, B.: Constraint symmetry for the soft CSP.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 872–879. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 66

https://doi.org/10.1007/978-3-540-74970-7_66

Solver-Independent Large Neighbourhood
Search

Jip J. Dekker1,2(B) , Maria Garcia de la Banda1 , Andreas Schutt2 ,
Peter J. Stuckey1,2 , and Guido Tack1,2

1 Monash University, Melbourne, Australia
{jip.dekker,maria.garciadelabanda,maria.garciadelabanda,

peter.stuckey,guido.tack}@monash.edu
2 Data61, CSIRO, Melbourne, Australia

andreas.schutt@data61.csiro.au

Abstract. The combination of large neighbourhood search (LNS) meth-
ods with complete search methods has proved to be very effective. By
restricting the search to (small) areas around an existing solution, the
complete method is often able to quickly improve its solutions. However,
developing such a combined method can be time-consuming: While the
model of a problem can be expressed in a high-level solver-independent
language, the LNS search strategies typically need to be implemented
in the search language of the target constraint solvers. In this paper we
show how we can simplify this process by (a) extending constraint mod-
elling languages to support solver-independent LNS search definitions,
and (b) defining small solver extensions that allow solvers to implement
these solver-independent LNS searches. Modellers can then implement
an LNS search to be executed in any extended solver, by simply using
the modelling language constructs. Experiments show that the result-
ing LNS searches only introduce a small overhead compared to direct
implementations in the search language of the underlying solvers.

1 Introduction

Large neighbourhood search (LNS [20]) is a meta-search that has proved to be
very successful for scaling complete search methods, such as Constraint Pro-
gramming (CP), to large optimisation problem sizes. LNS iteratively applies a
particular search method to a neighbourhood surrounding a given solution. The
neighbourhoods are chosen to be as large as possible, while being small enough
for the search to quickly find a higher quality solution. The LNS meta-search
then selects a new neighbourhood around this new solution and repeats the
process.

The combination of LNS and CP has proven to be crucial for improving
solving performance in a range of hard optimisation problems. While simple,
unstructured neighbourhoods often work surprisingly well, the performance of
many problems can be further improved if the neighbourhoods exploit the prob-
lem structure [4]. For example, in Vehicle Routing Problems, Shaw [20] proposes
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 81–98, 2018.
https://doi.org/10.1007/978-3-319-98334-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_6&domain=pdf
http://orcid.org/0000-0002-0053-6724
http://orcid.org/0000-0002-6666-514X
http://orcid.org/0000-0001-5452-4086
http://orcid.org/0000-0003-2186-0459
http://orcid.org/0000-0003-3357-6498

82 J. J. Dekker et al.

to remove related customer visits (such as those assigned to the same vehicle)
from the tours of a given solution, and then re-insert them using a CP solver.
Pacino and Van Hentenryck [12] solve Job Shop Scheduling problems by repeat-
edly re-scheduling all activities on a single machine, or in a particular time
window. See [15] for a good overview of LNS and its applications.

All these combinations of LNS and CP have been either implemented from
scratch, or within a particular CP system, in order to be able to program
the interaction between the meta-search, the CP search and the constraint
model. This close coupling makes it difficult to experiment with different solvers
as backends for LNS, and it either precludes the use of high-level solver-
independent modelling languages, or it introduces a gap between the problem
model (expressed in a high-level language) and the definition of the neighbour-
hoods (expressed at the solver level).

The aim of this paper is to lift LNS from the solver level to the
modelling level. Our main contribution is to show that many problem-specific
neighbourhoods can be (a) expressed in a very natural way in a high-level,
solver-independent constraint modelling language; and (b) compiled into effi-
cient solver-level specifications that only require a small extension of existing
solvers. The new approach has been implemented for the MiniZinc [10] mod-
elling language and solvers Gecode [7] and Chuffed [2]. Our experiments show
that the approach is expressive, efficient and effective.

2 Background

Constraint Optimisation Problems. A Constraint Optimisation Problem
(COP) is defined as a tuple P = (C, X,D, f), with X a set of variables, C a
set of constraints over subsets of X, D a domain such that for each x ∈ X, D(x)
is the set of values x may assume, and f an objective function. A solution of P is
an assignment a such that a(x) ∈ D(x) for all x ∈ X, and a satisfies all c ∈ C. An
optimal solution is a solution a such that f (a) is minimal. Usually, we are not
just interested in solving one particular COP, but rather a whole parameterised
family of COPs. We usually call these models, and an individual COP with fixed
parameters, an instance of a model.

A CP solver starts from an instance (C, X,D, f) and performs constraint
propagation of all constraints, pruning inconsistent values from D until it reaches
a fixpoint D′. If at this point propagation has emptied the domain D′ for any
variable, the problem is failed. It is a solution if there is exactly one value left
in D(x) for each x ∈ X. Otherwise, the solver splits the instance into smaller
sub-instances (C ∪ c1, X,D′, f) . . . (C ∪ ck, X,D′, f) by adding new constraints
c1 . . . ck, and recursively solves each of them. When the solver finds a solution,
it evaluates its quality using f and adds a constraint to the remainder of the
search to only allow solutions better than the current one.

Constraint Modelling Languages. Most CP solvers take as input a flat list of
variables and constraints. While the facilities of the host programming language
(e.g., loops and overloading) can be used to make modelling more comfortable,

Solver-Independent Large Neighbourhood Search 83

Algorithm 1. Large Neighbourhood Search
1: procedure LNS(P = (C, X,D, f))
2: a ← findsolution(P)
3: while ¬timeout() do
4: P′ = (C ∪ nbh(a) ∪ obj (a), X,D, f)
5: a′ ← findsolution(P′)
6: if a′ is a solution then a ← a′

7: return a

dedicated Constraint Modelling Languages have become popular (e.g., OPL [24],
AMPL [5], Essence [6], and MiniZinc [10]), as they support problem specifica-
tion at a higher level of abstraction, and in a solver-independent way. We use
MiniZinc due to its widespread use and support for over 20 different solvers.
MiniZinc supports high-level features, such as different variable types, complex
Boolean and arithmetic expressions, user-defined functions and predicates, and
a comprehensive library of predefined global constraints. A (solver-independent)
MiniZinc model is translated by the MiniZinc compiler into (solver-specific)
FlatZinc, which is then interpreted by the target solver. The compiler uses a
library of predicate and function definitions, written in MiniZinc specifically
for the target solver, to generate FlatZinc code that only contains constraints
and variable types supported by the target solver. This cleanly de-couples the
MiniZinc compiler from the solver.

Large Neighbourhood Search. LNS is usually described as a meta-search
that starts from a solution to a COP, relaxes part of the solution, and then
re-optimises that part. This process is iterated using a meta-heuristic (e.g.,
hill-climbing or simulated annealing) to improve the solution, until some stop-
ping criterion is met, such as a time limit or a solution quality. The relaxation
step is also described as freeing up, destroying or thawing certain variables in the
solution to their original domain. Formally, consider a problem P = (C, X,D, f),
a solution a of P, and a domain D′ built by selecting a subset of the variables
Y ⊂ X such that D′(x) is set to a(x) for x ∈ Y, and to D(x) otherwise. A
neighbourhood of a is defined as (C, X,D′, f). Depending on the size of Y, this
problem is significantly smaller than P, and can thus be solved efficiently using
e.g. a CP solver. A more flexible and expressive definition of neighbourhood is
(C ∪ nbh(a), X,D, f), where given solution a, nbh(a) returns a set of constraints
to be added to P for the next iteration of the LNS. This definition subsumes the
one above, and allows neighbourhoods that instead of fixing variables, constrain
them to take values close to the last solution.

Algorithm 1 shows a simple version of LNS, where findsolution(P) invokes a
complete solver to compute a new solution of problem P, and function obj (a)
adds constraints to ensure that only solutions better than a (according to f)
are returned. Thus, the algorithm implements a simple hill-climbing that is
terminated after a timeout. Real implementations would also terminate the
complete solver in line 5 after a timeout (in order to balance intensification

84 J. J. Dekker et al.

and exploration). Note that if P′ does not lead to an improved solution, the
algorithm computes a new neighbourhood nbh(a) for the previous solution.
Therefore, function nbh is typically non-deterministic (via random number
generators) and impure (in programming language terms). More sophisticated
versions of this algorithm implement other meta-heuristics, such as simulated
annealing, or automatically switch between neighbourhood definitions (as in
Adaptive LNS [19]).

3 Modelling of Neighbourhoods and Meta-Heuristics

This section introduces a MiniZinc extension that enables modellers to define
neighbourhoods using the nbh(a) approach described above. This extension is
based on the constructs introduced in MiniSearch [18], as summarised below.

3.1 LNS in MiniSearch

MiniSearch introduced a MiniZinc extension that enables modellers to express
meta-searches inside a MiniZinc model. A meta-search in MiniSearch typically
solves a given MiniZinc model, performs some calculations on the solution, adds
new constraints and then solves again. An LNS definition in MiniSearch con-
sists of two parts. The first part is a declarative definition of a neighbour-
hood as a MiniZinc predicate that posts the constraints that should be added
with respect to a previous solution. This makes use of the MiniSearch func-
tion: , which returns the value that variable x was
assigned to in the previous solution (similar functions are defined for Boolean,
float and set variables). In addition, a neighbourhood predicate will typically
make use of the random number generators available in the MiniZinc standard
library. Listing 1 shows a simple random neighbourhood. For each decision vari-
able x[i], it draws a random number from a uniform distribution and, if it
exceeds threshold destrRate, posts constraints forcing x[i] to take the same
value as in the previous solution. For example, uniformNeighbourhood(x,0.2)
would result in each variable in the array x having a 20% chance of being

1 predicate uniformNeighbourhood(array[int] of var int: x, float: destrRate) =

2 forall(i in index_set(x))

3 (if uniform(0.0,1.0) > destrRate then x[i] = sol(x[i]) else true endif);

1 function ann: lns(var int: obj, array[int] of var int: vars,

2 int: iterations, float: destrRate, int: exploreTime) =

3 repeat (i in 1..iterations) (scope(

4 if has_sol() then post(uniformNeighbourhood(vars,destrRate))

5 else true endif /\

6 time_limit(exploreTime, minimize_bab(obj)) /\

7 commit() /\ print()

8) /\ post(obj < sol(obj)));

Listing 1: A simple random LNS predicate implemented in MiniSearch

Solver-Independent Large Neighbourhood Search 85

unconstrained, and an 80% chance of being assigned to the value it had in the
previous solution.

The second part of a MiniSearch LNS is the meta-search itself. The most
basic example is that of function lns in Listing 2. It performs a fixed number of
iterations, each invoking the neighbourhood predicate uniformNeighbourhood

in a fresh scope (so that the constraints only affect the current loop iteration).
It then searches for a solution (minimize bab) with a given timeout, and if the
search does return a new solution, it commits to that solution (so that it becomes
available to the sol function in subsequent iterations). The lns function also
posts the constraint obj < sol(obj), ensuring the objective value in the next
iteration is strictly better than that of the current solution.

Limitations of the MiniSearch Approach. Although MiniSearch enables the mod-
eller to express neighbourhoods in a declarative way, the definition of the meta-
search is rather unintuitive and difficult to debug, leading to unwieldy code for
defining simple restarting strategies. Furthermore, the MiniSearch implementa-
tion requires either a close integration of the backend solver into the MiniSearch
system, or it drives the solver through the regular text-file based FlatZinc inter-
face, leading to a significant communication overhead. To address these two issues
for LNS, we propose to keep modelling neighbourhoods as predicates, but define
a small number of additional MiniZinc built-in annotations and functions that (a)
allow us to express important aspects of the meta-search in a more convenient way,
and (b) enable a simple compilation scheme that requires no additional commu-
nication with and only small, simple extensions of the backend solver.

3.2 Restart Annotations

Instead of the complex MiniSearch definitions, we propose to add support for
simple meta-searches that are purely based on the notion of restarts. A restart
happens when a solver abandons its current search efforts, returns to the root
node of the search tree, and begins a new exploration. Many CP solvers already
provide support for controlling their restarting behaviour, e.g. they can periodi-
cally restart after a certain number of nodes, or restart for every solution. Typ-
ically, solvers also support posting additional constraints upon restarting (e.g.
Comet [9]) that are only valid for the particular restart (i.e., they are “retracted”
for the next restart). In its simplest form, we can therefore implement LNS by
specifying a neighbourhood predicate, and annotating the solve item to indicate
the predicate should be invoked upon each restart:

solve ::on restart(myNeighbourhood) minimize cost;

Note that MiniZinc currently does not support passing functions or predicates
as arguments. Calling the predicate, as in ::on restart(myNeighbourhood()),
would not have the correct semantics, since the predicate needs to be called for
each restart. As a workaround, we currently pass the name of the predicate to
be called for each restart as a string (see the definition of the new on restart

annotation in Listing 3).

86 J. J. Dekker et al.

The second component of our LNS definition is the restarting strategy, defin-
ing how much effort the solver should put into each neighbourhood (i.e., restart),
and when to stop the overall search. We propose adding new search annotations
to MiniZinc to control this behaviour (see Listing 3). The restart on solution

annotation tells the solver to restart immediately for each solution, rather than
looking for the best one in each restart, while restart without objective

tells it not to add branch-and-bound constraints on the objective. The other
restart X annotations define different strategies for restarting the search when
no solution is found. The timeout annotation gives an overall time limit for the
search, whereas restart limit stops the search after a fixed number of restarts.

3.3 Neighbourhood Selection

It is often beneficial to use several neighbourhood definitions for a problem.
Different neighbourhoods may be able to improve different aspects of a solution,
at different phases of the search. Adaptive LNS [14,19], which keeps track of the
neighbourhoods that led to improvements and favours them for future iterations,
is the prime example for this approach. A simpler scheme may apply several
neighbourhoods in a round-robin fashion.

In MiniSearch, adaptive or round-robin approaches can be implemented using
state variables, which support destructive update (overwriting the value they
store). In this way, the MiniSearch strategy can store values to be used in later
iterations. We use the solver state instead, i.e., normal decision variables, and
define two simple built-in functions to access the solver state of the previous
restart. This approach is sufficient for expressing neighbourhood selection strate-
gies, and its implementation is much simpler.

1 % post predicate "pred" whenever the solver restarts

2 annotation on_restart(string: pred);

3 % restart after fixed number of nodes

4 annotation restart_constant(int: nodes);

5 % restart with scaled Luby sequence

6 annotation restart_luby(int: scale);

7 % restart with scaled geometric sequence (scale*base^n in the n-th iteration)

8 annotation restart_geometric(float: base, int: scale);

9 % restart with linear sequence (scale*n in the n-th iteration)

10 annotation restart_linear(int: scale);

11 % restart on each solution

12 annotation restart_on_solution;

13 % restart without branch-and-bound constraints on the objective

14 annotation restart_without_objective;

15 % overall time limit for search

16 annotation timeout(int: seconds);

17 % overall limit on number of restarts

18 annotation restart_limit(int: n_restarts);

Solver-Independent Large Neighbourhood Search 87

State Access and Initialisation. The state access functions are defined in Listing
4. Function status returns the status of the previous restart, namely: START

(there has been no restart yet); UNSAT (the restart failed); SAT (the restart found
a solution); OPT (the restart found and proved an optimal solution); and UNKNOWN

(the restart did not fail or find a solution). Function lastval (which, like sol,
has versions for all basic variable types) allows modellers to access the last value
assigned to a variable (the value is undefined if status()=START. In order to be
able to initialise the variables used for state access, we reinterpret on restart so
that the predicate is also called for the initial search (i.e., before the first “real”
restart) with the same semantics, that is, any constraint posted by the predicate
will be retracted for the next restart.

Parametric Neighbourhood Selection Predicates. We define standard neighbour-
hood selection strategies as predicates that are parametric over the neighbour-
hoods they should apply. For example, since on restart now also includes the
initial search, we can define a strategy basic lns that applies a neighbourhood
only if the current status is not START:

In order to use this predicate with the on restart annotation, we cannot
simply pass basic lns(uniformNeighbourhood(x,0.2)). First of all, calling

1 % Report the status of the solver (before restarting).

2 enum STATUS = {START, UNKNOWN, UNSAT, SAT, OPT}

3 function STATUS: status();

4 % Provide access to the last assigned value of variable x.

5 function int: lastval(var int: x);

1 array[1..n] of var 1..n: x; % decision variables

2 var int: cost; % objective function

3 % ... some constraints defining the problem

4 % The user-defined LNS strategy

5 predicate my_lns() = basic_lns(uniformNeighbourhood(x,0.2));

6 % Solve using my_lns, restart every 500 nodes, overall timeout 120 seconds

7 solve ::on_restart("my_lns") ::restart_constant(500) ::timeout(120)

8 minimize cost;

1 predicate round_robin(array[int] of var bool: nbhs) =

2 let { int: N = length(nbhs);

3 var -1..N-1: select; % Neighbourhood selection

4 } in if status()=START then select= -1

5 else select= (lastval(select) + 1) mod N

6 endif /\

7 forall(i in 1..N) (select=i-1 -> nbhs[i]);

Listing 5: Complete LNS example

Listing 6: A predicate providing the round robin meta-heuristic

predicate basic_lns(var bool: nbh) = (status()!=START -> nbh);

88 J. J. Dekker et al.

uniformNeighbourhood like that would result in a single evaluation of the pred-
icate, since MiniZinc employs a call-by-value evaluation strategy. Furthermore,
the on restart annotation only accepts the name of a nullary predicate. There-
fore, users have to define their overall strategy in a new predicate. Listing 5
shows a complete example of a basic LNS model.

We can also define round-robin and adaptive strategies using these primi-
tives. Listing 6 defines a round-robin LNS meta-heuristic, which cycles through
a list of N neighbourhoods nbhs. To do this, it uses the decision variable select.
In the initialisation phase (status()=START), select is set to -1, which means
none of the neighbourhoods is activated. In any following restart, select is
incremented modulo N, by accessing the last value assigned in a previous restart
(lastval(select)). This will activate a different neighbourhood for each restart
(line 7). For adaptive LNS, a simple strategy is to change the size of the neigh-
bourhood depending on whether the previous size was successful or not. Listing
7 shows an adaptive version of the uniformNeighbourhood that increases the
number of free variables when the previous restart failed, and decreases it when
it succeeded, within the bounds [0.6, 0.95].

3.4 Meta-Heuristics

The LNS strategies we have seen so far rely on the default behaviour of Mini-
Zinc solvers to use branch-and-bound for optimisation: when a new solution
is found, the solver adds a constraint to the remainder of the search to only
accept better solutions, as defined by the objective function in the minimize or
maximize clause of the solve item. When combined with restarts and LNS, this
is equivalent to a simple hill-climbing meta-heuristic.

We can use the constructs introduced above to implement alterna-
tive meta-heuristics such as simulated annealing. In particular, we use
restart without objective to tell the solver not to add the branch-and-bound
constraint on restart. It will still use the declared objective to decide whether a
new solution is the globally best one seen so far, and only output those (to main-
tain the convention of MiniZinc solvers that the last solution printed at any point
in time is the currently best known one). With restart without objective, the
restart predicate is now responsible for constraining the objective function. Note

1 predicate adaptiveUniform(array[int] of var int: x, float: initialDestrRate) =

2 let { var float: rate; } in

3 if status() = START then rate = initialDestrRate

4 elseif status() = UNSAT then rate = min(lastval(rate)-0.02,0.6)

5 else rate = max(lastval(rate)+0.02,0.95)

6 endif /\

7 forall(i in index_set(x))

8 (if uniform(0.0,1.0) > rate then x[i] = sol(x[i]) else true endif);

Solver-Independent Large Neighbourhood Search 89

that a simple hill-climbing (for minimisation) can still be defined easily in this
context as:

It takes advantage of the fact that the declared objective function is available
through the built-in variable . A simulated annealing strategy is also
easy to express:

4 Compilation of Neighbourhoods

The neighbourhoods defined in the previous section can be executed with Mini-
Search by adding support for the status and lastval built-in functions, and by
defining the main restart loop. The MiniSearch evaluator will then call a solver
to produce a solution, and evaluate the neighbourhood predicate, incrementally
producing new FlatZinc to be added to the next round of solving. While this
is a viable approach, our goal is to keep the compiler and solver separate, by
embedding the entire LNS specification into the FlatZinc that is passed to the
solver. This section introduces such a compilation approach. It only requires
simple modifications of the MiniZinc compiler, and the compiled FlatZinc can
be executed by standard CP solvers with a small set of simple extensions.

4.1 Compilation Overview

The neighbourhood definitions from the previous section have an important
property that makes them easy to compile to standard FlatZinc: they are defined
in terms of standard MiniZinc expressions, with the exception of a few new
built-in functions. When the neighbourhood predicates are evaluated in the
MiniSearch way, the MiniSearch runtime implements those built-in functions,
computing the correct value whenever a predicate is evaluated. Instead, the
compilation scheme presented below uses a limited form of partial evaluation:
parameters known at compile time will be fully evaluated; those only known
during the solving, such as the result of a call to any of the new functions (sol,
status etc.), are replaced by decision variables. This essentially turns the new
built-in functions into constraints that have to be supported by the target
solver. The neighbourhood predicate can then be added as a constraint to the

1 predicate hill_climbing() =

2 if status()=START then true

3 else _objective < sol(_objective) endif;

1 predicate simulated_annealing(float: initTemp, float: coolingRate) =

2 let { var float: temp; } in

3 if status()=START then temp = initTemp

4 else

5 temp = lastval(temp)*(1-coolingRate) /\ % cool down

6 _objective < sol(_objective) - ceil(log(uniform(0.0,1.0)) * temp)

7 endif;

90 J. J. Dekker et al.

model. The evaluation is performed by hijacking the solver’s own capabilities: It
will automatically perform the evaluation of the new functions by propagating
the new constraints.

To compile an LNS specification to standard FlatZinc, the MiniZinc compiler
performs four simple steps:

1. Replace the annotation with a call to predicate X.
2. Inside predicate X and any other predicate called recursively from X: treat

any call to built-in functions sol, status, and lastval as returning a
instead of a value; and rename calls to random functions, e.g., uniform
to uniform nbh, in order to distinguish them from their standard library
versions.

3. Convert any expression containing a call from step 2 to to ensure the
functions are compiled as constraints, rather than statically evaluated by the
MiniZinc compiler.

4. Compile the resulting model using an extension of the MiniZinc standard
library that provides declarations for these built-in functions, as defined
below.

These transformations will not change the code of many neighbourhood def-
initions, since the built-in functions are often used in positions that accept both
parameters and variables. For example, the uniformNeighbourhood predicate
from Listing 1 uses uniform(0.0,1.0) in an if expression, and sol(x[i]) in
an equality constraint. Both expressions can be translated to FlatZinc when the
functions return a .

4.2 Compiling the New Built-Ins

We can compile models that contain the new built-ins by extending the MiniZinc
standard library as follows.

status. Listing 8 shows the definition of the status function. It simply
replaces the functional form by a predicate status (declared in line 1), which
constrains its local variable argument stat to take the status value.

sol and lastval. Since sol is overloaded for different variable types and
FlatZinc does not support overloading, we produce type-specific built-ins for
every type of solver variable (int sol(x, xi), bool sol(x, xi), etc.). The
resolving of the sol function into these specific built-ins is done using an
overloaded definition like the one shown in Listing 9 for integer variables. If
the value of the variable in question becomes known at compile time, we use
that value instead. Otherwise, we replace the function call with a type specific
int sol predicate, which is the constraint that will be executed by the solver.
To improve the compilation of the model further, we use the declared bounds of
the argument (lb(x)..ub(x)) to constrain the variable returned by sol. This
bounds information is important for the compiler to be able to generate the most
efficient FlatZinc code for expressions involving sol. The compilation of lastval
is similar to that for sol.

Solver-Independent Large Neighbourhood Search 91

Random Number Functions. Calls to the random number functions have
been renamed by appending nbh, so that the compiler does not simply evaluate
them statically. The definition of these new functions follows the same pattern
as for sol, status, and lastval. The MiniZinc definition of the uniform nbh

function is shown in Listing 10.1 Note that the function accepts variable argu-
ments l and u, so that it can be used in combination with other functions, such
as sol.

4.3 Solver Support for LNS FlatZinc

We will now show the minimal extensions required from a solver to interpret the
new FlatZinc constraints and, consequently, to execute LNS definitions expressed
in MiniZinc. First, the solver needs to parse and support the restart annotations
of Listing 3. Many solvers already support all this functionality. Second, the
solver needs to be able to parse the new constraints status, and all versions of
sol, lastval, and random number functions like float uniform. In addition,
for the new constraints the solver needs to:

– status(s): record the status of the previous restart, and fix s to the recorded
status.

– sol(x,sx) (variants): constrain sx to be equal to the value of x in the incum-
bent solution. If there is no incumbent solution, it has no effect.

1 Random number functions need to be marked as ::impure for the compiler not to
apply Common Subexpression Elimination (CSE) [23] if they are called multiple
times with the same arguments.

1 predicate status(var int: stat);

2 function var STATUS: status() =

3 let { var STATUS: stat;

4 constraint status(stat);

5 } in stat;

Listing 8: MiniZinc definition of the status function

1 predicate int_sol(var int: x, var int: xi);

2 function int: sol(var int: x) = if is_fixed(x) then fix(x)

3 else let { var lb(x)..ub(x): xi;

4 constraint int_sol(x,xi);

5 } in xi;

6 endif;

Listing 9: MiniZinc definition of the sol function for integer variables

1 predicate float_uniform(var float:l, var float: u, var float: r);

2 function var float: uniform_nbh(var float: l, var float: u) :: impure =

3 let { var lb(l)..ub(u): rnd;

4 constraint float_uniform(l,u,rnd):

5 } in rnd;

92 J. J. Dekker et al.

– lastval(x,lx) (variants): constrain lx to take the last value assigned to
x during search. If no value was ever assigned, it has no effect. Note that
many solvers (in particular SAT and LCG solvers) already track lastval

for their variables for use in search. To support LNS a solver must at least
track the lastval of each of the variables involved in such a constraint. This is
straightforward by using the lastval propagator itself. It wakes up whenever
the first argument is fixed, and updates the last value (a non-backtrackable
value).

– random number functions: fix their variable argument to a random number
in the appropriate probability distribution.

Importantly, these constraints need to be propagated in a way that their
effects can be undone for the next restart. Typically, this means the solver must
not propagate these constraints in the root node of the search.

Modifying a solver to support this functionality is straightforward if it already
has a mechanism for posting constraints during restarts. We have implemented
these extensions for both Gecode (110 new lines of code) and Chuffed (126 new
lines of code).

Example 1. Consider the model from Listing 5 again. Listing 11 shows a part
of the FlatZinc that arises from compiling basic lns(uniformNeighbourhood

(x,0.2)), assuming that index set(x) = 1..n. Lines 1–4 define a Boolean
variable b1 that is true iff the status is not START. The second
block of code (lines 6–15) represents the decomposition of the expres-
sion , which is the
result of merging the implication from the basic lns predicate with the if

expression from uniformNeighbourhood. The code first introduces and con-
strains a variable for the random number, then adds two Boolean variables:
b2 is constrained to be true iff the random number is greater than 0.2; while b3

is constrained to be the conjunction .
Line 13 constrains x1 to be the value of x[1] in the previous solution. Finally, the
half-reified constraint in line 15 implements b3 -> x[1]=sol(x[1]). We have
omitted the similar code generated for x[2] to x[n]. Note that the FlatZinc
shown here has been simplified for presentation.

The first time the solver is invoked, it sets s to 1 (START). Propagation
will fix b1 to false and b3 to false. Therefore, the implication in line 15 is
not activated, leaving x[1] unconstrained. The neighbourhood constraints are
effectively switched off.

When the solver restarts, all of the special propagators are re-executed. Now
s is not 1, and b1 will be set to true. The float random propagator assigns
rnd1 a new random value and, depending on whether it is greater than 0.2,
the Boolean variables b2, and consequently b3 will be assigned. If it is true,
the constraint in line 15 will become active and assign x[1] to its value in the
previous solution. ��

Solver-Independent Large Neighbourhood Search 93

5 Experiments

We will now show that a solver that evaluates the compiled FlatZinc LNS spec-
ifications can (a) be effective and (b) incur only a small overhead compared to
a dedicated implementation of the neighbourhoods.

To measure the overhead, we implemented our new approach in Gecode [7].
The resulting solver (gecode-fzn in the tables below) has been instrumented
to also output the domains of all model variables after propagating the new
special constraints. We implemented another extension to Gecode (gecode-replay)
that simply reads the stream of variable domains for each restart, essentially
replaying the LNS of gecode-fzn without incurring any overhead for evaluating
the neighbourhoods or handling the additional variables and constraints. Note
that this is a conservative estimate of the overhead: gecode-replay has to perform
less work than any real LNS implementation.

In addition, we also present benchmark results for the standard release of
Gecode 6.0 without LNS (gecode); as well as chuffed, the development version
of Chuffed; and chuffed-fzn, Chuffed performing LNS with FlatZinc neighbour-
hoods. These experiments illustrate that the LNS implementations indeed per-
form well compared to the standard solvers.2 All experiments were run on a single
core of an Intel Core i5 CPU @ 3.4 GHz with 4 cores and 16 GB RAM running
MacOS High Sierra. LNS benchmarks are repeated with 10 different random
seeds and the average is shown. The overall timeout for each run is 120 s.

We ran experiments for three models from the MiniZinc challenge [21,22]
(gbac, steelmillslab, and rcpsp-wet). The best objective found during the
MiniZinc Challenge is shown for every instance (best known). For each solving
method we measured the average integral of the model objective after finding
the initial solution (

∫
), the average best objective found (min), and the standard

2 Our implementations are available at https://github.com/Dekker1/{libminizinc,
gecode,chuffed} on branches containing the keyword on restart.

1 var 1..5: s;

2 constraint status(s);

3 var bool b1;

4 constraint int_ne_reif(s,1,b1); % b1 <-> status()!=START

5

6 var 0.0..1.0: rnd1;

7 constraint float_uniform(0.0,1.0,rnd1);

8 var bool: b2;

9 constraint float_gt_reif(rnd1,0.2,b2);

10 var bool: b3;

11 constraint bool_and(b1,b2,b3);

12 var 1..3: x1;

13 constraint int_sol(x[1],x1);

14 % (status()!=START /\ uniform(0.0,1.0)>0.2) -> x[1]=sol(x[1])

15 constraint int_eq_imp(x[1],x1,b3);

16 ...

94 J. J. Dekker et al.

Table 1. gbac benchmarks

best known gecode gecode-fzn gecode-replay chuffed chuffed-fzn

Instance min
∫

min
∫

min
∫

min
∫

min
∫

min

UD2-gbac 146 1502k 12515 93k 37616 92k 36215 1494k 12344 207k 59854

UD4-gbac 396 1517k 12645 121k 93224 120k 93224 1151k 9267 160k 11425

UD5-gbac 222 2765k 23028 283k 200739 281k 200739 2569k 21233 483k 257222

UD8-gbac 40 1195k 9611 21k 5326 20k 5326 1173k 9559 114k 7626

reduced UD4 949 629k 4917 114k 9500 114k 9500 715k 5491 117k 9500

deviation of the best objective found in percentage (%), which is shown as
the superscript on min when running LNS. The underlying search strategy
used is the fixed search strategy defined in the model. For each model we
use a round robin evaluation (Listing 6) of two neighbourhoods: a neighbour-
hood that destroys 20% of the main decision variables (Listing 1) and a struc-
tured neighbourhood for the model (described below). The restart strategy is
::restart constant(250) ::restart on solution.

gbac. The Generalised Balanced Academic Curriculum problem comprises
courses having a specified number of credits and lasting a certain number of
periods, load limits of courses for each period, prerequisites for courses, and pref-
erences of teaching periods for professors. A detailed description of the problem
is given in [1]. The main decisions are to assign courses to periods, which is done
via the variables period of in the model. Listing 12 shows the neighbourhood
chosen, which randomly picks one period and frees all courses that are assigned
to it.

The results for gbac in Table 1 show that the overhead introduced by gecode-
fzn w.r.t. gecode-replay is quite low, and both their results are much better than
the baseline gecode. Since learning is not very effective for gbac, the performance
of chuffed is inferior to Gecode. However, LNS again significantly improves over
standard Chuffed.

steelmillslab. The Steel Mill Slab design problem consists of cutting slabs
into smaller ones, so that all orders are fulfilled while minimising the wastage.
The steel mill only produces slabs of certain sizes, and orders have both a size
and a colour. We have to assign orders to slabs, with at most two different
colours on each slab. The model uses the variables assign for deciding which
order is assigned to which slab. Listing 13 shows a structured neighbourhood
that randomly selects a slab and frees the orders assigned to it in the incumbent
solution. These orders can then be freely reassigned to any other slab.

1 let { int: period = uniform(periods) } in

2 forall(i in courses where sol(period_of[i]) != period)

3 (period_of[i] = sol(period_of[i]));

Solver-Independent Large Neighbourhood Search 95

Table 2. steelmillslab benchmarks

best known gecode gecode-fzn gecode-replay chuffed chuffed-fzn

Instance min
∫

min
∫

min
∫

min
∫

min
∫

min

bench 13 0 0 3247 27 20 00 19 00 1315 9 50 00

bench 14 1 0 1248 0 32 00 31 00 72 0 79 00

bench 15 11 0 4458 30 27 00 26 00 143 0 65 00

bench 16 10 0 2446 0 19 00 19 00 122 0 51 00

bench 19 5 0 3380 28 12 00 11 00 3040 19 31 00

For this problem a solution with zero wastage is always optimal. The use
of LNS makes these instances easy, as all the LNS approaches find optimal
solutions. As Table 2 shows, gecode-fzn is again slightly slower than gecode-replay
(the integral is slightly larger). While chuffed significantly outperforms gecode on
this problem, once we use LNS, the learning in chuffed-fzn is not advantageous
compared to gecode-fzn or gecode-replay. Still, chuffed-fzn outperforms chuffed
by always finding an optimal solution.

rcpsp-wet. The Resource-Constrained Project Scheduling problem with
Weighted Earliness and Tardiness cost, is a classic scheduling problem in which
tasks need to be scheduled subject to precedence constraints and cumulative
resource restrictions. The objective is to find an optimal schedule that minimises
the weighted cost of the earliness and tardiness for tasks that are not completed
by their proposed deadline. The decision variables in array s represent the start
times of each task in the model. Listing 14 shows our structured neighbourhood
for this model. It randomly selects a time interval of one-tenth the length of the
planning horizon and frees all tasks starting in that time interval, which allows
a reshuffling of these tasks.

Table 3 shows that gecode-replay and gecode-fzn perform almost identically,
and substantially better than baseline gecode for these instances. The baseline
learning solver chuffed is best overall on the easy examples, but LNS makes it
much more robust. The poor performance of chuffed-fzn on the last instance is
due to the fixed search, which limits the usefulness of nogood learning.

1 predicate free_slab() =

2 let { int: slab = uniform(1, nbSlabs) } in

3 forall(i in 1..nbSlabs where slab != sol(assign[i]))

4 (assign[i] = sol(assign[i]));

96 J. J. Dekker et al.

Table 3. rcpsp-wet benchmarks

best known gecode gecode-fzn gecode-replay chuffed chuffed-fzn

Instance min
∫

min
∫

min
∫

min
∫

min
∫

min

j30 1 3-wet 93 20k 161 11k 930 11k 930 3k 93 13k 930

j30 43 10-wet 121 19k 158 15k 1210 14k 1210 10k 121 15k 1210

j60 19 6-wet 227 54k 441 29k 2353 29k 2353 63k 487 29k 2270

j60 28 3-wet 266 94k 770 33k 2730 33k 2730 79k 604 35k 2721

j90 48 4-wet 513 199k 1653 72k 5352 71k 5352 201k 1638 109k 5872

Summary. The results show that LNS outperforms the baseline solvers, except
for benchmarks where we can quickly find and prove optimality. However, the
main result from these experiments is that the overhead introduced by our Flat-
Zinc interface, when compared to an optimal LNS implementation, is relatively
small. We have additionally calculated the rate of search nodes explored per sec-
ond and, across all experiments, gecode-fzn achieves around 3% fewer nodes per
second than gecode-replay. This overhead is caused by propagating the additional
constraints in gecode-fzn. Overall, the experiments demonstrate that the compi-
lation approach is an effective and efficient way of adding LNS to a modelling
language with minimal changes to the solver.

6 Related Work and Conclusion

Large neighbourhood search is straightforward to implement using a script-
ing language and a separate modelling language. Scripting languages like
MiniSearch [18], OPL Script [25] and AMPL Script can be used transparently
with their underlying modelling language. However, this form of LNS requires
either the solver to be restarted from scratch for every solve, or the scripting
language to be tightly tied to a particular solver.

Many CP systems such as Choco [16], Comet [9], Objective CP [26],
OSCAR [11], or-tools [8] have an onRestart or onSolution event (or simi-
lar APIs) to which arbitrary code can be attached. This makes LNS easy to
implement, although it typically mixes declarative and procedural aspects. It is
also much more expressive than MiniSearch but relies on a tight relationship
with the underlying solvers. Support for our compiled LNS specifications will be
easy to implement for these solvers.

1 predicate free_timeslot() =

2 let { int: slot = max(Times) div 10;

3 int: time = uniform(min(Times), max(Times) - slot); } in

4 forall(t in Tasks)

5 ((sol(s[t]) < time \/ time+slot > sol(s[t])) -> s[t] = sol(s[t]));

Solver-Independent Large Neighbourhood Search 97

There are a number of approaches to automatically defining neighbourhoods,
such as random [3], propagation guided [13], and explanation based [17] neigh-
bourhoods. If the solver supports these then they can be used to build LNS solu-
tions using this strategy straightforwardly. They are orthogonal to user defined
neighbourhoods.

In this paper we have shown how we can take a high level model and LNS
definition and communicate that to a CP solver, which then completes the
LNS search. The additions to the CP solver are minor, by hijacking the use
of propagators to do expression evaluation, and adding a few simple (pseudo-)
propagators. The result is a solver independent approach to LNS that does not
rely on repeated calls to the solver. While we have concentrated on LNS, it seems
that more of MiniSearch [18] can be compiled into FlatZinc in the same way.
This opens up interesting possibilities for further research.

Acknowledgements. This research was partly sponsored by the Australian Research
Council grant DP180100151.

References

1. Chiarandini, M., Gaspero, L.D., Gualandi, S., Schaerf, A.: The balanced academic
curriculum problem revisited. J. Heuristics 18(1), 119–148 (2012)

2. Chu, G.: Improving Combinatorial Optimization. Department of Computing and
Information Systems, University of Melbourne (2011)

3. Cipriano, R., Di Gaspero, L., Dovier, A.: Gelato: a multi-paradigm tool for Large
Neighborhood Search. In: Talbi, E.-G. (ed.) Hybrid Metaheuristics, pp. 389–414.
Springer, Heidelberg (2013)

4. Danna, E., Perron, L.: Structured vs. Unstructured Large Neighborhood Search: A
Case Study on Job-Shop Scheduling Problems with Earliness and Tardiness Costs.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 817–821. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45193-8 59

5. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Mathematical Programming Lan-
guage. Manage. Sci. 36, 519–554 (1990)

6. Frisch, A.M., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268–306 (2008)

7. Gecode Team: Gecode: A Generic Constraint Development Environment (2016).
http://www.gecode.org

8. Google: or-tools (2017). https://developers.google.com/optimization/
9. Michel, L., Van Hentenryck, P.: The Comet Programming Language and System.

In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 881–881. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 119

10. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

11. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar

https://doi.org/10.1007/978-3-540-45193-8_59
http://www.gecode.org
https://developers.google.com/optimization/
https://doi.org/10.1007/11564751_119
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://bitbucket.org/oscarlib/oscar

98 J. J. Dekker et al.

12. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive random-
ized decompositions for flexible jobshop scheduling. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Three.
IJCAI 11, pp. 1997–2002. AAAI Press, Barcelona (2011)

13. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 35

14. Pisinger, D., and Ropke, S.: A general heuristic for vehicle routing problems. Com-
put. Oper. Res. 34(8), 2403–2435 (2007)

15. Pisinger, D., and Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics, pp. 399–419. Springer, Boston (2010).
ISBN: 978-1-4419-1665-5. https://doi.org/10.1007/978-1-4419-1665-5 13

16. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017). http://www.choco-solver.org

17. Prud’homme, C., Lorca, X., Jussien, N.: Explanation-Based Large Neighborhood
Search. Constraints 19(4), 339–379 (2014)

18. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent
meta-search language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 376–392. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 27

19. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

20. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

21. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Con-
straints 15(3), 307–316 (2010)

22. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

23. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38171-3 18

24. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

25. Van Hentenryck, P., Michel, L.: OPL script: composing and controlling models. In:
Apt, K.R., Monfroy, E., Kakas, A.C., Rossi, F. (eds.) WC 1999. LNCS (LNAI),
vol. 1865, pp. 75–90. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44654-0 4

26. Van Hentenryck, P., Michel, L.: The Objective-CP optimization system. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40627-0 5

https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-1-4419-1665-5_13
http://www.choco-solver.org
https://doi.org/10.1007/978-3-319-23219-5_27
https://doi.org/10.1007/978-3-319-23219-5_27
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-642-38171-3_18
https://doi.org/10.1007/3-540-44654-0_4
https://doi.org/10.1007/3-540-44654-0_4
https://doi.org/10.1007/978-3-642-40627-0_5

Solution-Based Phase Saving for CP:
A Value-Selection Heuristic to Simulate

Local Search Behavior in Complete
Solvers

Emir Demirović(B), Geoffrey Chu, and Peter J. Stuckey

School of Computing and Information Systems, University of Melbourne,
Melbourne, Australia

{emir.demirovic,pstuckey}@unimelb.edu.au

Abstract. Large neighbourhood search, a meta-heuristic, has proven to
be successful on a wide range of optimisation problems. The algorithm
repeatedly generates and searches through a neighbourhood around the
current best solution. Thus, it finds increasingly better solutions by solv-
ing a series of simplified problems, all of which are related to the current
best solution. In this paper, we show that significant benefits can be
obtained by simulating local-search behaviour in constraint program-
ming by using phase saving based on the best solution found so far dur-
ing the search, activity-based search (VSIDS), and nogood learning. The
approach is highly effective despite its simplicity, improving the highest
scoring solver, Chuffed, in the free category of the MiniZinc Challenge
2017, and can be easily integrated into modern constraint programming
solvers. We validated the results on a wide range of benchmarks from the
competition library, comparing against seventeen state-of-the-art solvers.

1 Introduction

Large neighbourhood search (LNS) [14] is a widely used metaheuristic for con-
strained optimisation. A neighbourhood of a given solution is the set of solutions
that can be obtained by performing perturbations on a target solution. The size
of the neighbourhood is determined by the used perturbations. Conventional
local search considers small neighbourhoods due to efficiency. However, since
the scope of the search is narrow, such methods are prone to be trapped in
local optima. In contrast, large neighbourhood search uses significantly larger
neighbourhoods. Thus, the optimisation algorithm has more options to escape
local optima, while retaining the advantages of local search. Different techniques
may be used to explore the neighbourhoods, including systematic search meth-
ods such as constraint programming or problem-specific heuristics. The use of
constraint programming for neighbourhood exploration is particularly suitable
for highly constrained optimisation problems where propagation and systematic
search are advantageous compared to heuristic algorithms.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 99–108, 2018.
https://doi.org/10.1007/978-3-319-98334-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_7&domain=pdf

100 E. Demirović et al.

Phase saving is an approach, originally from SAT solvers [11], where the last
value assigned for a variable in the search is given priority the next time the
variables is branched on. The advantage is that phase saving interacts well with
restarting since it was presumably nontrivial to find the value before the restart.

Solution-based phase saving is different, and not so commonly applied (see
e.g. [1]). It gives priority to the value the variable is assigned to in the last solution
found. For satisfaction problems, this is meaningless, as the search terminates
once a solution is found. In optimisation problems, however, this concentrates
the search around the current best solution, just as in LNS.

We use solution-based phase saving with activity-based search and nogood
learning as a means of focusing the search around the best solution, mimick-
ing typical local search behaviour. An advantage of this approach is that stan-
dard CP machinery can be used; hence it can be easily incorporated in most
CP solvers. The method bears similarities with large neighbourhood search, as
activity-based search and restarts can be seen as defining a “neighbourhood”.

Our experimental results on a wide range of benchmarks from the MiniZ-
inc Challenge 2017 demonstrate that by using the described approach, we can
achieve significant improvements over Chuffed [4]. Furthermore, our approach
can be easily integrated into modern constraint programming solvers, and it
does not introduce additional parameters. To summarise:

– We introduce solution-based phase saving in constraint programming as a
means to capture some of the benefits of LNS in a complete solving approach.

– We combine solution-based phase saving, activity-based search, Luby restarts,
and nogood learning to obtain a complete CP algorithm that focuses its
search around the best solution found so far. Our experiments show that
activity-based search, perhaps unsurprisingly, is better suited for this task
than random variable selection.

– We evaluate the proposed approach using benchmarks from the MiniZinc
Challenge 2017 competition and compare with state-of-the-art solvers used
in the competition. Overall, the results demonstrate that the approach is
highly effective, improving the results for the highest scoring solver Chuffed.

– We discuss the relationship of our approach, as a contribution to search and
black-box solvers, to large neighbourhood search.

2 Preliminaries

Constraint Programming. A constraint satisfaction problem (CSP) is a tuple
P ≡ (V,D,C), where V is a set of variables, D is a mapping from variable v ∈ V
to a set of values D(v), and C is a set of constraints. An assignment θ assigns
each v ∈ V to an element θ(v) ∈ D(v). A solution is an assignment that satisfies
all constraints in C. A constraint optimization problem (COP) is CSP augmented
by an objective function f that maps each assignment to a value. The aim is to
compute the optimal solution θ∗ such that ∀θ′ : f(θ∗) ≤ f(θ′).

Nogood Learning. Upon reaching a conflict, nogood learning solvers analyse
conflicts to determine the assignments responsible for its cause. The reason for

Solution-Based Phase Saving for CP 101

failure is recorded in the form of a clause and added to the database. The mech-
anism allows nonchronological backtracking, where backjumps can take place
several decision levels above the current level.

Restarts. To avoid searching extensively around local optima, solvers perform
restarts after reaching a certain number of conflicts. The key is to strike a bal-
ance between diversification (frequent restarts) and intensification (infrequent
restarts). Luby restarts [7] are widely used in SAT/CP solvers and aim to intro-
duce a variety of restart frequencies, with smaller restarts being significantly
more common, i.e. a partial Luby sequence is as follows: 1, 1, 2, 1, 1, 2, 4, 1, 1,
2, 1, 1, 2, 4, 8...

Dynamic Search. The search algorithm repeatedly decides on the branching
variables. A common approach is to select variable based on their recent activ-
ity in conflicts (VSIDS scheme [8]). After a conflict is detected, the activity of
involved variables is increased and periodically a decay on all activities is applied.
Thus, variables that we the cause of recent conflicts have priority. Other methods
include first fail [5], dom/wdeg [2], and impact-based search [13].

Phase Saving [11]. As explained previously, when branching solvers must decide
on a value assignment. A wide-spread approach for value selection, originally
used in SAT solvers, is to choose the value used most recently for the variable.
Therefore, after backtracking, the solver aims to return to its previous state as
closely as possible. This behaviour is particularly well suited for restarts, as the
solver can continue using the previous assignments instead of searching again. In
addition, the information learned about its previous region of the search space
through clause learning will still be relevant.

Large Neighbourhood Search [14]. The assignments of a subset of variables
is fixed with respect to a given solution and a search algorithm, either local
search or an exhaustive technique, is used to determine the best assignment
for the remaining variables. The number of fixed variables is typically chosen
adaptively: initially the algorithm selects a large number of variables to intensify
the search and gradually diversifies by decreases the number of selected variables
over the course of the algorithm.

3 Experiments

Solvers. We implemented solution-based phase saving for the value-selection
strategy in the CP solver Chuffed [4]. In the experimentation, we compare with
seventeen state-of-the-art solvers and their variants which were submitted to the
MiniZinc Challenge 2017. For the sake of brevity we do not reference each solver
individually but refer the interested reader to the competition.

Benchmarks. We used the 20 benchmarks with five instances of the competi-
tion. They encompass a wide range of problems.

Hardware, Time Limits, and Experimental Setup. We run the experi-
ments using the same hardware and setting as in the free search category from

102 E. Demirović et al.

Table 1. Comparison of our approaches with Chuffed as the baseline solver.

Solver score iscore area

chuffed-free 94.25 98.58 25887171

chuffed-random-free 76.63 77.17 40247361

chuffed-sbps-free 126.12 121.25 23332231

the MiniZinc Challenge 2017, where no restrictions are imposed on the solvers
regarding search strategies. By doing so, we can position the approach directly
to all solvers that participated in the competition.

Evaluation Metrics. We used the evaluation metrics of the Challenge. In short,
score treats each benchmark instance as a vote between two solvers. It awards
one point to the solver that found the better result and zero points for the other.
If they perform equally well, the point is split in inverse proportion to their run
times. The score for a solver is defined as the sum over all benchmark instances
and considered solvers. The variation for incomplete solvers, iscore, ignores proof
of optimality when comparing the performance of solvers.

The area score gives a measure of anytime performance of the solver. It
computes the area under the curve defined by the function: 5000 if no solution
found, 2500 × (s − best)(worst − best) + 1250 for a solution of value s where
worst and best are the worst and best solutions found by any solver, and zero for
proving optimality. This function effectively combines 25% of points for finding
a solution, 50% for finding good solutions and 25% for proving optimality. It
represents the area under the score curve over the twenty minutes run time,
averaged across all benchmarks.

3.1 Comparison

A detailed breakdown of the results, in the style of the MiniZinc chal-
lenge results (minizinc.org/challenge2017/results2017.html), is available online:
emirdemirovic.com/misc/cp18-sbps-comparison/.

Comparison with Chuffed: The first experiment compares variants of chuffed:
chuffed-free is the competition version with Luby restarts and alternating free
(activity-based) and fixed search; chuffed-sbps-free simply add solution-based
phase saving to this; chuffed-random-free adds solution-based phase saving while
using random variable selection in the free search; thus effectively mimicking
random neighbourhoods (see Sect. 4).

We show the results in Table 1. Clearly, the use of solution-based phase saving
significantly improves the performance over the baseline. Random neighbour-
hoods are not beneficial, as the advantages of solution-based phase saving are
defeated by the random variable selection.

Looking more closely at the individual benchmarks: chuffed-sbps-free
improves on all 20 benchmarks except opt-cryptanalysis where they are iden-
tical, and cargo, crosswords, hrc and rc-graph-coloring. The reason why

http://minizinc.org/challenge2017/results2017.html
http://emirdemirovic.com/misc/cp18-sbps-comparison/

Solution-Based Phase Saving for CP 103

it underperforms is that the baseline approach can prove optimality of one or
more instances where solution-based phase saving cannot. Clearly, solution-based
phase saving is not as effective in proving optimality.

Interestingly, random neighbourhoods are preferable to activity-based ones
on benchmarks mario, opd, and rcpsp-wet, showing its effectiveness for these
particular situations. On other benchmarks the performance can be poor.

Comparison with All Solvers. chuffed-free was the highest points scorer in
the free category of the Challenge. Comparing our variants, we find chuffed-
sbps-free is clearly better than all other solvers and it reduces the area under
the curve with respect to the baseline by 10%. Surprisingly, the use of random
neighbourhoods is still ahead of all solvers except three, showing that solution-
based phase saving is still powerful, even with a poor neighbourhood strategy.

Comparison with Local Search Solvers. Since LNS and local search perform
well on the same problems, we compare the use of solution-based-phase-saving
against the local search solvers in the competition, in particular on the problems
where local search provided good results.

The results shown in Table 2 restrict the comparison to eight benchmarks
where a local search solver ranked in the top three. Solution-based phase saving
provides a substantial difference, pushing chuffed from below the performance
of all local search solvers, to better than all of them. Interestingly, the low area
suggests that chuffed-free finds good solutions early, but then gets stuck, where
the local search solvers continue to improve. Solution-based phase saving is much
better at continuing to improve solutions.

If we restrict our attention to the two problems where a local search solver
was the best solver (oscar-free in both cases), we see that for these benchmarks
even random neighbourhoods can improve on the baseline performance. Solution
based phase-saving is not able to compete with the best local search in this case,
but certainly markedly enhances the performance over the baseline (Table 3).

Table 2. Comparison of our approaches and local search solvers on benchmarks where
local search solvers scored in the top three ranks.

Solver score iscore area

chuffed-free 69.53 71.00 11043751

chuffed-random-free 49.42 51.00 17323701

chuffed-sbps-free 99.70 93.00 8198639

izplus-par 81.67 84.50 11368249

oscar-free 74.83 74.50 14734476

yuck-free 71.85 73.00 13638341

104 E. Demirović et al.

Table 3. Comparison of our approaches and local search solvers on the two benchmarks
sets, road-cons and opd, where local search was the most effective method.

Solver score iscore area

chuffed-free 19.88 23.00 3684082

chuffed-random-free 22.81 24.50 2831003

chuffed-sbps-free 26.45 27.00 2710511

izplus-par 8.80 11.50 6040284

oscar-free 45.40 40.00 795009

yuck-free 23.67 21.00 5853594

4 Relationship with Large Neighbourhood Search

We now contrast a modern CP solver using restarts, dynamic variable selection,
and solution-based phase saving versus large neighbourhood search. We shall see
that there are striking similarities between the two.

4.1 Restarts Versus Neighbourhood Size

Most uses of CP incorporate restarts to avoid being trapped in large useless
parts of the search space. Restarts are managed by limiting some resource, such
as time or number of conflicts. Once the limit is reached, the search is restarted.
Limits usually increase over time to maintain completeness, e.g. using either
geometric [15] or Luby [7] sequences. Restarting requires either nogoods [9] or
randomisation in search to avoid repeating previous work.

LNS usually defines neighbourhoods by fixing a set of variables to their value
in the best solution. The search of the neighbourhood continues until it finds a
better solution or it thoroughly explores the neighbourhood. The size of the
neighbourhood gives an implicit limit on the computation of this subsolve. In
addition, LNS often explicitly restricts resource usage for the subsolve, to avoid
cases where the neighbourhood defined is too large to explore exhaustively. Sim-
ilarly, as for restarts, the limits are typically increased with time and randomi-
sation in used to avoid searching through the same neighbourhood.

Therefore, both restarts and LNS tackle a series of subproblems while using
randomisation and imposing limits on the computation for each subproblem.

Luby Restarts for Neighbourhood Size. Using small neighbourhoods can
provide quick improvements but cannot escape local optima effectively, while
large neighbourhoods provide the reverse effect. Thus, a balance between the
two is often sought for, and many LNS algorithms adopt adaptive strategies to
determine the size of the neighbourhoods. In CP solvers, the Luby [7] sequence
can be used to determine the restart limits, and it achieves the desired behaviour:
a balance between frequent and extended restarts. It simulates the adaptive
strategies often seen in LNS.

Solution-Based Phase Saving for CP 105

4.2 Dynamic Search and Phase Saving Versus Neighbourhoods

In LNS, a significant subset of variables is selected, and the variables are assigned
values according to an incumbent solution while leaving the remaining variables
to the search strategy to explore. In CP solvers with dynamic variable ordering
and solution-based phase saving, the search selects variables according to the
variable-selection strategy and sets them to their value in the current best solu-
tion. Hence, the search will not fail until it fixes most variables since only the
requirement for finding a better solution can invalidate the current best solution.

Thus, a similarity can be seen between the two approaches. The CP approach
will fix almost all variables to their current best solution value, and afterwards,
explore around this selection. Given the computation limits, it will backtrack
only a subset of these decisions. Hence, it implicitly defines a neighbourhood
given by the set of variables that are never reached during backtracking.

The first effective difference is that LNS may exhaust the neighbourhood
before reaching its search limits, after which it terminates the search. In contrast,
the CP approach will in effect expand the neighbourhood it explores, until hitting
the restart limit. The second difference is that solution-based phase saving will
always set a variable to its value in the best solution if possible, whereas in LNS
this is not necessarily the case.

VSIDS as an Implicit Neighbourhood Selection Strategy. In LNS, it is
crucial to select strongly related variables to avoid defining highly restrictive
neighbourhoods with few solutions. In CP, activity-based search (VSIDS) tends
to select connected variables as well, and when coupled with solution-based phase
saving, we claim it implicitly builds “neighbourhoods”.

We make the following observation to show the type of neighbourhoods gen-
erated by VSIDS. When conflicts occur during the search, activities of involved
variables will be increased. As VSIDS prioritises variables with high activities
for branching, this will create a positive feedback loop as more conflicts among
related variables will be generated, hence further increasing their activity. More-
over, the exponential decay rate in VSIDS ensures that a variable’s activity is
largely determined by its most recent involvement in failure. Therefore, variables
with similar activity values have been active at similar times. Conversely, related
variables are likely to be active at the same time. Thus, as VSIDS branches on
variables based on their activity, when coupled with solution-based phase sav-
ing, the resulting neighbourhood will consist of strongly connected variables with
their values assigned as in the best solution found so far. This can be seen as
emergent LNS behavior.

We note that solution-based phase saving with VSIDS has built-in diversifi-
cation. Upon restart, variables that were previously selected first will have low
activity values since they are unlikely to take part in many conflicts directly.
Hence, they will not be selected early again, while the most active variables
from the previous restart will now be placed at the top of the search tree. Thus,
the variable-selection strategy will cycle through variables.

106 E. Demirović et al.

4.3 Further Differences

Large neighbourhood search has many variations, and not all of these are eas-
ily captured by solution-based phase saving, dynamic variable ordering, and
restarts. We discuss this in the following text.

Local Objectives. While using the global objective within a neighbourhood is
often appropriate, in some cases each LNS subsolve uses a different objective.
This variation is particularly important when the global objective is likely to be
fixed by variables outside the neighbourhood. The CP approach uses a single
global objective and note that it cannot be “fixed” by the variable-selection
procedure since that will cause failure, but this effectively means that some
variables high in the dynamic ordering will be fixed to a different value than in
the best solution.

Adaptive LNS. Often a set of different neighbourhoods are defined in LNS, which
are used adaptively, biasing choices to those that lead to improvements during
the search. However, while it would be possible to generate a dynamic variable
ordering strategy that acts similarly, it is not standard.

Acceptance Heuristics. Variants of LNS will accept equally good solutions, so-
called side moves, or slightly worse solutions (e.g. using a simulated annealing
approach) to give more diversification to the search. Merely changing the variable
ordering cannot achieve this.

5 Related Work and Conclusion

Solution-based phase saving can be used to mimic a local search strategy in
CP solvers. While it is merely a value-selection heuristic, when combined with
activity-based search and restarts, it is very similar to LNS. There are a number
of other approaches to automatic neighbourhood generation.

In [10] neighbourhoods are created based on the propagation between vari-
ables. Neighbourhoods are built in two ways: by reduction or expansion. The
first reduction approach iteratively selects a variable from a list of fixed size if
possible and random otherwise. It is assigned its value in the best solution and
variables whose domain was reduced by propagation of the assignment are added
to the list. The next variable is chosen as that in the list with the most significant
domain reduction. The process continues until the remaining problem is deemed
small enough. The expansion approach works in the reverse direction.

The approach of [6] selects neighbourhood variables randomly with a bias
towards those with high impact on the objective function. The rationale is that
these variables are responsible for the current value of the solution. By chang-
ing their assignments, it can presumably obtain better solutions. The effec-
tiveness of the approach is further improved by considering a combination of
impact and proximity, where proximity follows a similar idea as closeness in [10].

Solution-Based Phase Saving for CP 107

The intuition is that impactful variables should be accompanied by related vari-
ables as otherwise the neighbourhood might be too restrictive.

In [12] neighbourhoods based on explanations arising from conflicts are inves-
tigated. The reasoning is that variables involved in conflicts are related, and
hence form a suitable neighbourhood. This method is similar to VSIDS-based
neighbourhoods, but here explanations are restricted to decisions, and they
choose neighbourhoods based on the variables that lead to most conflicts, which
is in some sense the opposite of the VSIDS approach.

A methodology for devising large neighbourhood search algorithms was pre-
sented in [3]. Unlike the previously discussed methods, it is not fully auto-
mated but instead offers guidelines for the design of large neighbourhood search
algorithms. The authors suggest the following three principles: neighbourhood
design should focus around the part of the problem that contributes the cost
to the objective, several different adaptive neighbourhoods should be consid-
ered to ensure completeness of the approach, and learning techniques should
be employed to determine the most effective combination of neighbourhoods
and their resource limitations. The approach can be applied to a wide range of
problems, and the authors demonstrate its effectiveness on job-shop scheduling.

Solution-based phase saving is a straightforward addition to a CP solver. It
offers a substantial improvement on a wide range of benchmarks, significantly
improving the best performing solver in the free category of the MiniZinc Chal-
lenge 2017, Chuffed. We expect other solvers to adopt solution-based phase sav-
ing as a powerful yet simple value selection strategy.

Acknowledgements. We would like to thank Andreas Schutt for his exceptional assis-
tance with comparing solvers and Graeme Gange for his insight on the implementation.

References

1. Roig, I.A.: Solving hard industrial combinatorial problems with SAT. Ph.D. thesis,
Technical University of Catalonia (UPC) (2013)

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

3. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Model. Algorithms 8(3), 245–270 (2009)

4. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011)

5. Haralick, R., Elliott, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artif. Intell. 14, 263–313 (1980)

6. Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07046-9 21

7. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Proc. Let. 47(4), 173–180 (1993)

8. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of DAC 2001, pp. 530–535 (2001)

https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21

108 E. Demirović et al.

9. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

10. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 35

11. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

12. Prud’homme, C., Lorca, X., Jussien, N.: Explanation-based large neighborhood
search. Constraints 19(4), 339–379 (2014)

13. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

14. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

15. Walsh, T.: Search in a small world. In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 1172–1177 (1999)

https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1007/3-540-49481-2_30

An SMT Approach to Fractional
Hypertree Width

Johannes K. Fichte1(B), Markus Hecher2(B), Neha Lodha3(B),
and Stefan Szeider3(B)

1 International Center of Computational Logic, TU Dresden, Dresden, Germany
fichte@tu-dresden.de

2 Database and Artificial Intelligence Group, TU Wien, Vienna, Austria
hecher@dbai.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{neha,sz}@ac.tuwien.ac.at

Abstract. Bounded fractional hypertree width (fhtw) is the most gen-
eral known structural property that guarantees polynomial-time solvabil-
ity of the constraint satisfaction problem. Bounded fhtw generalizes other
structural properties like bounded induced width and bounded hypertree
width.

We propose, implement and test the first practical algorithm for com-
puting the fhtw and its associated structural decomposition. We pro-
vide an extensive empirical evaluation of our method on a large class of
benchmark instances which also provides a comparison with known exact
decomposition methods for hypertree width. Our approach is based on
an efficient encoding of the decomposition problem to SMT (SAT modulo
Theory) with Linear Arithmetic as implemented in the SMT solver Z3.
The encoding is further strengthened by preprocessing and symmetry
breaking methods. Our experiments show (i) that fhtw can indeed be
computed exactly for a wide range of benchmark instances, and (ii) that
state-of-the art SMT techniques can be successfully applied for structural
decomposition.

1 Introduction

A prominent research question is the identification of structural restrictions that
make the constraint satisfaction problem (CSP) tractable [10]. Structural restric-
tions are concerned only in the way how constraints and variables interact, in
contrast to language restrictions that are only concerned with the relations that
appear in the constraints. Hybrid restrictions are concerned with both aspects.

In his seminal work, Freuder [21] showed that the CSP is tractable under
structural restrictions imposed in terms of bounded treewidth of the constraint

The work has been supported by the Austrian Science Fund (FWF), Grants Y698
and P26696, and the German Science Fund (DFG), Grant HO 1294/11-1. Fichte and
Hecher are also affiliated with the University of Potsdam, Germany.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 109–127, 2018.
https://doi.org/10.1007/978-3-319-98334-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_8&domain=pdf

110 J. K. Fichte et al.

graph. The following decades brought a phalanx of results that identified more
and more general structural restrictions that still guarantee polynomial-time
tractability of the CSP, some prominent notions are spread-cut width [11] and
hypertree width [24]. This line of research found its culmination point in the
work of Grohe and Marx [27,28], who introduced the notion of fractional hyper-
tree width, which generalizes all known structural restrictions that guarantee
polynomial-time tractability of the CSP.

So far, fractional hypertree width was mostly of theoretical interest, because
of the lack of practical algorithms for actually computing the associated decom-
positions. One can approximate the fractional hypertree width in polynomial
time with a cubic error factor [37]. This is prohibitive for practical applications,
since CSP algorithms that exploit (fractional) hypertree decompositions are
exponential in time and space in the width of the decomposition [11,24,27,28]. It
is unlikely that one could compute the exact fractional hypertree width in poly-
nomial time as checking whether a hypergraph has fractional hypertree width
≤ w is already NP-hard for w = 2 [20].

Contributions. In this paper we propose, implement and test the first practical
approach to compute the fractional hypertree width. Our approach is based on an
efficient SMT-encoding of the problem, and utilizes preprocessing and symmetry
breaking methods. We establish an ordering-based characterization of fractional
hypertree-width which is similar to the well-known elimination order characteri-
zation of treewidth (see, e.g., [8,13]), which traces back to the work of Rose [39].
Ordering-based characterizations of treewidth have been shown to be well-suited
for SAT encodings of treewidth and related width measures [4,7,36,42], hence it
was promising to establish such a characterization also for fractional hypertree
width. This indeed turned out to be both feasible as well as effective. In fact, to
encode the linear ordering as well as the hyperedges induced by the ordering, we
could utilize the very same Boolean variables and constraints that have been used
for treewidth encodings. However, for treewidth one needs to bound the cardinal-
ities of certain sets of vertices, which in the existing encodings was accomplished
by SAT-based cardinality constraints or Max-SAT formulations. For fractional
hypertree width, however, we need to find certain real-valued weights of hyper-
edges and enforce lower and upper bounds on the sums of weights of certain sets
of hyperedges. We found that these constraints can be handled well by the SAT
modulo Theory (SMT) framework, in particularly by SMT with Linear Arith-
metic as implemented in the state-of-the-art SMT solver Z3 [38]. On top of the
SMT encoding we also developed various preprocessing and symmetry breaking
methods.

We would like to point out that for CSP instances of bounded fractional
hypertree width, one can not only decide satisfiability, but also count the num-
ber of satisfying assignments in polynomial time, as observed by Duran and
Mengel [15]. Hence also from a complexity theoretic point of view it is justified
to use an SMT solver which operates in the class NP to facilitate the solution
of a harder #P-complete counting problem.

An SMT Approach to Fractional Hypertree Width 111

We implemented our methods creating the prototype tool FraSMT and per-
formed extensive experiments on benchmark instances which contain real-world
instances from various application domains. To the best of our knowledge, there
have not been any practical algorithms for fractional hypertree width reported
in the literature. Thus we took as a reference point the algorithm det-k-decomp
of Gottlob and Samer [26] for the related (but less general) parameter hyper-
tree width, which in turn was shown to outperform the algorithm opt-k-decomp
proposed earlier by Gottlob et al. [25].

Our results show that on an extensive collection of benchmark instances
the new SMT approach clearly outperforms the known algorithm det-k-decomp,
even without preprocessing or symmetry breaking. Adding these techniques gives
again a significant performance boost.

In summary, our findings are significant as they show (i) that fractional
hypertree width can indeed be computed for a wide range of benchmark
instances, and (ii) that SMT techniques can be successfully applied for structural
decomposition and outperform known methods.

2 Preliminaries

A hypergraph is a pair H = (V (H), E(H)), consisting of a set V (H) of vertices
and a set E(H) of hyperedges, each hyperedge being a subset of V (H).

For a hypergraph H = (V,E) and a vertex v ∈ V , we write EH(v) = { e ∈
E | v ∈ e } and NH(v) = (∪EH(v)) \ {v}; the latter set is the neighborhood of v.
If u ∈ NH(v) we say that u and v are adjacent.

The hypergraph H − v is defined by H = (V \ {v}, {e \ {v} | e ∈ E}).
The primal graph (or 2-section) of a hypergraph H = (V,E) is the graph

P (H) = (V,EP (H)) with EP (H) = { {u, v} | u �= v, there is some e ∈ E such
that {u, v} ⊆ e }.

Consider a hypergraph H = (V,E) and a set S ⊆ V . An edge cover of S
is a set F ⊆ E such that for every v ∈ S there is some e ∈ F with v ∈ e. A
fractional edge cover of S (with respect to H) is a mapping γ : E → [0, 1] such
that for every v ∈ S we have

∑
e∈E, v∈e γ(e) ≥ 1. The weight of γ is defined as∑

e∈E γ(e). The fractional edge cover number of S with respect to a hypergraph
H, denoted fnH(S), is the minimum weight over all its fractional edge covers
with respect to H.

A tree decomposition of a hypergraph H = (V,E) is a pair T = (T, χ) where
T = (V (T), E(T)) is a tree and χ is a mapping that assigns each t ∈ V (T) a set
χ(t) ⊆ V (called the bag at t) such that the following properties hold:

– for each v ∈ V there is some t ∈ V (T) with v ∈ χ(t) (“v is covered by t”),
– for each e ∈ E there is some t ∈ V (T) with e ⊆ χ(t) (“e is covered by t”),
– for any three t, t′, t′′ ∈ V (T) where t′ lies on the path between t and t′′, we

have χ(t′) ⊆ χ(t) ∩ χ(t′′) (“bags containing the same vertex are connected”).

The width of a tree decomposition T of H is the size of a largest bag of
T minus 1. The treewidth tw(H) of H is the smallest width over all its tree
decompositions.

112 J. K. Fichte et al.

We will frequently use the following well-known fact (see, e.g. [9]).

Fact 1. Let (T, χ) be a tree decomposition of a graph G and K a clique in G,
then there exists a node t ∈ V (T) with V (K) ⊆ χ(t).

Using this fact it is easy to see that tw(H) = tw(P (H)) holds for every hyper-
graph H.

A generalized hypertree decomposition of H is a triple G = (T, χ, λ) where
(T, χ) is a tree decomposition of H and λ is a mapping that assigns each t ∈ V (T)
an edge cover λ(t) of χ(t). The width of G is the size of a largest edge cover λ(t)
over all t ∈ V (T). A hypertree decomposition is a generalized hypertree decom-
position that satisfies a certain additional property which was added in order
to make the computation of the decomposition tractable [24]. The generalized
hypertree width ghtw(H) of H is the smallest width over all generalized hypertree
decompositions of H. The hypertree width htw(H) is the smallest width over all
hypertree decompositions of H.

A fractional hypertree decomposition of H is a triple F = (T, χ, γ) where
(T, χ) is a tree decomposition of H and γ is a mapping that assigns each t ∈ V (T)
a fractional edge cover λ(t) of χ(t) with respect to H. The width of F is the
largest weight of the fractional edge covers λ(t) over all t ∈ V (T). The fractional
hypertree width fhtw(H) of H is the smallest width over all fractional hypertree
decompositions of H.

To avoid trivial cases, we consider only hypergraphs H = (V,E)
where EH(v) �= ∅ for all v ∈ V . Consequently, every considered hypergraph
H has a (fractional) edge cover and fhtw(H) is always defined. If |V | = 1 then
fhtw(H) = 1.

Since an edge cover can be seen as the special case of a fractional edge cover,
with weights restricted to {0, 1}, it follows that for every hypergraph H we have
fhtw(H) ≤ ghtw(H) ≤ htw(H) ≤ tw(P (H)).

3 Ordering-Based Characterization of Fractional
Hypertree Width

The first SAT encoding of treewidth was suggested by Samer and Veith [42],
it uses an ordering-based characterization of treewidth. Also more recent SAT
encodings of treewidth are ordering-based [4,7]. In view of the success of
ordering-based characterizations of treewidth, we developed an ordering-based
characterization of fractional hypertree width, and used it for our SMT encoding.
The remainder of this section is devoted to the definition of this characteriza-
tion and a proof of its correctness. Kamis et al. [33] have suggested a similar
characterization.

Let H = (V,E) be a hypergraph with n = |V | and L = (v1, . . . , vn) a
linear ordering of the vertices of H. We define the hypergraph induced by L as
Hn

L = (V,En) where En is obtained from E by adding hyperedges successively
as follows. We let E0 = E, and for 1 ≤ i ≤ n we let Ei = Ei−1 ∪ {ei} where
ei = { v ∈ {vi+1, . . . , vn} | there is some e ∈ Ei−1 containing v and vi }. We

An SMT Approach to Fractional Hypertree Width 113

consider the binary relation ArcL = { (vi, vj) ∈ V × V | i < j and vi and vj

are adjacent in Hn
L }. We write ArcL(i) = {vi} ∪ { vj | (vi, vj) ∈ ArcL }, hence

ArcL(i) = {vi} ∪ ei.
The fractional hypertree width of H with respect to a linear ordering L,

denoted fhtwL(H), is the largest fractional edge cover number with respect to
H over all the sets ArcL(i), i.e.,

fhtwL(H) =
n

max
i=1

fnH(ArcL(i)).

We would like to emphasize that in this definition the fractional covers are
considered with respect to the original hypergraph H, and not with respect to
the induced hypergraph Hn

L.
Figure 1 illustrates these concepts on a small example.

Fig. 1. An example illustrating a fractional hypertree decomposition of width 2 as well
as the hyperedges ei for 1 ≤ i ≤ 7.

Theorem 1. The fractional hypertree width of a hypergraph H equals the small-
est fractional width over all its linear orderings, i.e., fhtw(H) = minL fhtwL(H).

We establish the theorem by means of two lemmas below. Before doing so,
we introduce some additional terminology.

Let H = (V,E) be a hypergraph and E′ ⊆ E an edge cover of H. An
E′-fractional hypertree decomposition of H is a fractional hypertree decomposi-
tion F = (T, χ, γ) of H where each fractional cover γ(t) assigns edges e ∈ E \E′

the value 0. Similarly, the E′-fractional hypertree width of H with respect to a
linear ordering L, denoted fhtwL(E′,H), is computed by using only fractional
edge covers that assign edges e ∈ E \ E′ the value 0, i.e.,

fhtwL(E′,H) =
n

max
i=1

fn(V,E′)(ArcL(i)).

The proof of the following lemma provides a decoding algorithm that effi-
ciently computes a fractional hypertree decomposition from a given ordering.

114 J. K. Fichte et al.

Lemma 1. Let H = (V,E) be a hypergraph, L = (v1, . . . , vn) a linear ordering
of V , and E′ ⊆ E an edge cover of H. Then H has an E′-fractional hypertree
decomposition of width ≤ fhtwL(E′,H).

Proof. We proceed by induction on n. If n = 1 the statement is trivially
true. Now assume n > 0 and that the statement holds for all smaller n. Let
w = fhtwL(E′,H). Let e1, . . . , en and S1, . . . , Sn as in the definition of a frac-
tional hypertree width of H with respect to the linear ordering L.

We obtain from H the hypergraph H2 by deleting v1 and adding the hyper-
edge e1. Furthermore, we obtain from E′ the edge cover E′

2 ⊆ E(H2) of H2 by
removing v1 from every edge in E′.

Now L2 = (v2, . . . , vn) is a linear ordering of H2, and we observe that its
width cannot be larger than the width of L, since the sequence of sets ArcL2(i)
for 1 ≤ i ≤ n−1 is exactly the same as the sequence of sets ArcL(i) for 2 ≤ i ≤ n.
Hence fhtwL2(E

′
2,H2) ≤ fhtwL(E′,H) = w.

By induction hypothesis, it follows that H2 has an E′
2-fractional hypertree

decomposition F2 = (T2, χ2, γ2) of width ≤ w. By definition of a tree decom-
position, there must be a node t2 ∈ V (T2) such that e1 ⊆ χ2(t2). We define an
E′-fractional hypertree decomposition F = (T, χ, γ) of H as follows.

1. We obtain T by adding a new node t1 to T2 and making it adjacent with t2.
2. We set χ(t1) = {v1} ∪ e1 = S1 and χ(t) = χ2(t) for all other tree nodes t.
3. We choose for γ(t1) an E′-fractional edge cover of S1 of smallest weight, which

must be ≤ w since L was assumed to have weight w, and we set γ(t) = γ2(t)
for all other tree nodes t.

We observe that (T, χ) satisfies all conditions of a tree decomposition, and
conclude that F is indeed an E′-fractional hypertree decomposition of H of
width ≤ w. ��

Lemma 2. Let H = (V,E) be a hypergraph, E′ ⊆ E an edge cover of H and
F = (T, χ, γ) an E′-fractional hypertree decomposition of H of width w. Then
there is a linear ordering L = (v1, . . . , vn) of V such that fhtwL(E′,H) ≤ w.

Proof. As above we proceed by induction on n. We observe that the statement
is trivially true if n = 1 or |V (T)| = 1. Now assume n > 0, |V (T)| > 1, and that
the statement holds for all smaller n.

W.l.o.g., we may assume that for each leaf t of T there is some v ∈ χ(t) that
does not belong to χ(t′) for any other node t′ ∈ V (T) \ {t}. Namely, if such
a v ∈ χ(t) does not exist, then the properties of a tree decomposition imply
that χ(t) ⊆ χ(t′′) for the unique neighbor t′′ of t in T , and so all vertices and
hyperedges covered at node t are also covered at node t′′, and t can be omitted.

Based on the above assumption, we conclude that there must be some v1 ∈ V
which belongs to χ(t) for a leaf t of T , but v1 does not belong to χ(t′) for any
other node t′ ∈ V (T) \ {t}.

An SMT Approach to Fractional Hypertree Width 115

Let e1 = { v ∈ {v2, . . . , vn} | there is some e ∈ E containing v and vi } and
S1 = {v1} ∪ e1 (as in the definition of fractional hypertree width of H with
respect to the linear ordering). Since S1 ⊆ χ(t), γ(t) gives an E′-fractional cover
of S1 with respect to H of weight ≤ w, hence fn(V,E′)(S1) ≤ w.

We obtain the hypergraph H2 = (V2, E2) where V2 = V \ {v1} and E2 =
{ e \ {v1} | e ∈ E } ∪ {e1}. We also define E′

2 = { e \ {v1} | e ∈ E′ } which is an
edge cover of H2. It is easy to see that from F we can obtain an E′

2-fractional
hypertree decomposition F2 = (T, χ2, γ2) of H2 of width ≤ w as follows.

1. We define χ2(t) = χ(t) \ {v1}, and χ2(t′) = χ(t′) for all other tree nodes t.
2. For every a hyperedge e2 ∈ E′

2 we let γ2(t)[e2] = max{ γ(t)[e1 ∪ {v1}] |
e1 ∪ {v1} ∈ E′ } ∪ { γ(t)[e1] | e1 ∈ E′ }.

The induction hypothesis applies and hence we can conclude that there exists
a linear ordering L2 = (v2, . . . , vn) of V (H2) such that fhtwL2(E

′
2,H2) ≤ w.

We now extend L2 by adding v1 at the first position and obtain the ordering
L = (v1, . . . , vn). We have already observed above that fn(V,E′)(S1) ≤ w, hence
fhtwL(E′,H) ≤ w. ��

Theorem 1 now follows by Lemmas 1 and 2 by taking E′ = E.

4 SMT Encoding

In this section we describe an SMT encoding for the characterization of fractional
hypertree decompositions as given in the previous section. The encoding is an
adaptation of the Samer-Veith encoding of treewidth [42]. Given a hypergraph
H = (V,E) with V = {v1, . . . , vn}, we produce a formula F (H,w) which is
satisfiable if and only if the hypergraph V has a linear ordering L of V such that
fhtwL(H) ≤ w.

The relation ArcL can be computed in exactly the same way as Samer and
Veith compute the “graph induced by the ordering.” We therefore use the same
notation and introduce Boolean ordering variables oi,j for 1 ≤ i < j ≤ n and
Boolean arc variables ai,j for 1 ≤ i, j ≤ n.

An ordering variable oi,j is true if and only if i < j and vi precedes vj in
L. Consequently, to enforce that L is indeed a linear ordering, we must ensure
transitivity, which can be accomplished with the following clauses (here o∗(i, j)
stands for o(i, j) if i < j and ¬o(j, i) otherwise):

[¬o∗(i, j) ∨ ¬o∗(j, k) ∨ o∗(i, k)] for 1 ≤ i, j, k ≤ n and i, j, k are distinct.

The arc variables are used to represent the relation ArcL for the ordering L
represented by the ordering variables, where a(i, j) is true if and only if (vi, vj) ∈
ArcL, i.e., if vj ∈ ArcL(i).

116 J. K. Fichte et al.

A straightforward encoding of the definitions of ArcL gives rise to the
following clauses:

[¬o(i, j) ∨ a(i, j)] ∧ [o(i, j) ∨ a(j, i)] for {vi, vj} ∈ E(P (H)) and i < j,

[¬a(i, j) ∨ ¬a(i, l) ∨ ¬o(j, l) ∨ a(j, l)] ∧ [¬a(i, j) ∨ ¬a(i, l) ∨ o(j, l) ∨ a(l, j)]
for 1 ≤ i, j, l ≤ n, i �= j, i �= l, and j < l,

[¬a(i, j) ∨ ¬a(i, l) ∨ a(j, l) ∨ a(l, j)] for 1 ≤ i, j, k ≤ n, i �= j, i �= k and j < k,

[¬a(i, i)] for 1 ≤ i ≤ n.

Now, instead of cardinality constraints as used for treewidth, we use here
real-valued weight variables representing the fractional covers. In fact, this makes
the overall SMT encoding for fractional hypertree width even simpler and more
compact than the SAT encoding for treewidth.

More precisely, we introduce a weight variable w(i, e) for each 1 ≤ i ≤ n and
e ∈ E, representing the weight of e in a fractional edge cover γL(i) of the set
ArcL(i), where L is the ordering represented by the ordering variables.

To ensure that γL(i) is indeed a fractional edge cover of ArcL(i), we add the
following two constraints; the first checks that all the vertices in ArcL(i) \ {vi}
are covered by γL(i), the second checks that vi is covered by γL(i):

[¬a(i, j) ∨
∑

e∈EH(vj)
w(i, e) ≥ 1] for 1 ≤ i �= j ≤ n,

[
∑

e∈EH(vi)
w(i, e) ≥ 1] for 1 ≤ i ≤ n.

Finally, we ensure that the weights of the fractional covers γL(i) are at most
w, 1 ≤ i ≤ n, by means of the following constraints:

[
∑

e∈E w(i, e) ≤ w] for 1 ≤ i ≤ n.

This completes the construction of the formula F (H,w). The formula
F (H,w) has O(n(n + m)) variables where O(n2) are Boolean variables and
O(nm) are real variables, and O(n3) clauses, where only O(n2) are used for
restricting the width.

In view of the construction of the formula and by Theorem 1 we obtain the
following result.

Theorem 2. A hypergraph H has fractional hypertree width ≤ w if and only if
F (H,w) is satisfiable.

In view of the remark from the end of Sect. 2, we conclude that by replac-
ing the real variables with integer variables yields an encoding for generalized
hypertree width.

5 Preprocessing

In this section, we formulate several preprocessing methods. Some of them
originate in the context of treewidth [4] and we adapted them for our pur-
poses. It turned out that in some cases the preprocessing techniques decrease

An SMT Approach to Fractional Hypertree Width 117

the encoding size significantly. This not only speeds up the solving process but
also extends the scope of our method to larger instances.

We exhaustively apply the following preprocessing rules R1–R4 in their order
of occurrence.

R1: Contained Hyperedges. A hyperedge that is a subset of another hyper-
edge can be safely removed.

Proposition 1. Let H = (V,E) be a hypergraph, e, f ∈ E be hyperedges such
that e � f , then fhtw(H) = fhtw((V,E \ {e})).

Proof. Consider a fractional hypertree decomposition F = (T, χ, λ) of H with
λ(e) > 0. We define a fractional hypertree decomposition F ′ = (T, χ, λ′) of
the same width by setting λ′(e′) = λ(e′) for e′ ∈ E \ {e, f} and λ′(f) =
λ(f) + λ(e). ��

R2: Biconnected Components. A hypergraph H is connected if for any two
vertices u, v ∈ V there exist vertices v1, . . . , vk ∈ V such that u = v1, v = vk

and vi and vi+1 are adjacent in H for 1 ≤ i ≤ k − 1. H is biconnected if H − v
is connected for every v ∈ V . A biconnected component of H is a maximal
biconnected hypergraph H ′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Observe that
two biconnected components of H can have at most one vertex in common.

We can split any hypergraph into biconnected components and compute the
fractional hypertree width of each component separately.

Proposition 2. Let H be a hypergraph and H1, . . . , H� its biconnected compo-
nents. Then fhtw(H) = maxk

i=1 fhtw(Hi).

We omit the easy proof due to space restrictions.

R3: Deletion of Vertices of Degree 1. A vertex of degree 1 (i.e., a vertex
occurring in only one hyperedge) can be safely deleted.

Proposition 3. Let H = (V,E) be a hypergraph and v ∈ V be a vertex of degree
one, i.e., |EH(v)| = 1, and fhtw(H − v) ≥ 1. Then fhtw(H) = fhtw(H − v).

Proof. We know that fhtw(H) ≥ fhtw(H − v). For showing fhtw(H) ≤ fhtw
(H − v), we take a fractional hypertree decomposition F = (T, χ, λ) of H − v
and modify F to obtain a fractional hypertree decomposition F ′ = (T ′, χ′, λ′)
of H. In particular, there has to exist node t in T with χ(t) = e\{v}, where e ∈ E
such that v ∈ e. Then, we construct F ′ by taking F , adding a fresh node t′ as a
child node of t to T ′, and assigning χ(t′) = e and λ′(t′) = 1. Since fhtw(H) ≥ 1,
the claim sustains. ��

118 J. K. Fichte et al.

R4: Simplicial Vertices. Let H = (V,E) be a hypergraph. A vertex v ∈ V is
a simplicial vertex of H if the neighborhood of v forms a clique in the primal
graph of H.

We can remove a simplicial vertex v as long we maintain fnH(NH [v] ∪ {v})
as a lower bound for the fractional hypertree width.

Proposition 4. Let H = (V,E) be a hypergraph and v a simplicial vertex of H.
Then, fhtw(H) = max(fhtw(H − v), fnH(NH [v] ∪ {v})).

Proof. We proceed similarly to the proof of Proposition 3, where we modi-
fied a fractional hypertree decomposition F for H − v in order to obtain one
for H. Here, however, the fresh decomposition node t′ contains NH [v] ∪ {v} in
its bag. ��

6 Symmetry Breaking and Lower Bounds with Cliques

In this section we present the utilization of cliques in the primal graph for two
purposes. First, we can choose any clique (i.e., a complete subgraph) in the
primal graph and put the vertices of the clique at the end of the ordering. This
can be seen as a symmetry breaking method that decreases the search space. In
particular, it helps to speed up the optimality check (i.e., the F (H,w) call when
w = fhtw(H) − 1), as here the full search space needs to be explored. A similar
technique has previously been used for a SAT encoding of treewidth [4].

For a hypergraph H = (V,E) we call a set S ⊆ V a hyperclique if S is a
complete subgraph of the primal graph P (H).

The next proposition ensures that we can indeed force a hyperclique to be
the last in the ordering without effecting the fractional hypertree width.

Proposition 5. Let H = (V,E) and be a hypergraph and S = {v1, . . . , v�} a
hyperclique in H. Then, there is an ordering L = (. . . , v1, . . . , v�) in which the
vertices of S appear at the end, such that fhtwL(H) = fhtw(H).

Proof. Let F = (T, χ, λ) be a fractional hypertree decomposition of H of
width fhtw(H). By Fact 1 there is a node t in T with S ⊆ χ(t). We consider
T to be rooted in t and construct a linear ordering L according to the proof of
Lemma 2. Since we always pick vertices from bags from leaves of T , we will be
left with t as the last tree node, and hence the vertices from χ(t) will be picked
last. As a result, we obtain an ordering L, where vertices V ′ appear at the end
and fhtwL(H) = fhtw(H). ��

Hypercliques can also be used to obtain a lower bound on the fractional
hypertree width. If we want to compute the treewidth of a graph, and we know
that the graph contains a clique on k vertices, then by Fact 1 we immediately
know that the treewidth of the graph must be at least k − 1. However, in the
context of hypergraphs and fractional hypertree width, we need to take the
fractional edge cover number of the clique into account. Consider for instance a

An SMT Approach to Fractional Hypertree Width 119

hypergraph H = (V, {V }). It is easy to see that fhtw(H) = 1, although V forms
a hyperclique. However, we still can show the following:

Proposition 6. Let H = (V,E) be a hypergraph and S a hyperclique of H.
Then, fhtw(H) ≥ fnH(S).

Proof. Assume any fractional hypertree decomposition F = (T, χ, λ) of H.
Since S is a hyperclique, Fact 1 provides us a node t in F whose bag contains S,
i.e., χ(t) ⊇ S. Then, by definition of fractional hypertree decompositions, every
vertex of S is covered in t. As a result, the weight λ(t) is at least fnH(S), and
fhtw(H) ≥ fnH(S). ��
We performed some experiments that suggest that the symmetry breaking works
better with a hyperclique S with large fnH(S) than with a hyperclique S′ where
this number is small (e.g., a clique that is contained in a single hyperedge), even
when S′ is larger than S. Hence a hyperclique S with large fnH(S) serves two
purposes: it facilitates symmetry breaking and provides us with a lower bound
on the fractional hypertree width. However, the computation of a hyperclique S
where fnH(S) is maximal is a very hard problem, hence we propose the notion
of a k-hyperclique as a compromise.

A hyperclique S of a hypergraph H = (V,E) is a k-hyperclique if no hyper-
edge of H intersects with S in more than k vertices. Intuitively, small values
of k prevent large hyperedges, whereas bigger values provides us with flexibility,
resulting in potentially larger cliques.

As already discussed, for symmetry breaking we rely on appropriate cliques.
We aim to (i) fix parts of the ordering L of all the vertices of the clique (prefer-
ably large), (ii) to influence other bags as much as possible. The chances of L
influencing other bags increase when we do not have large hyperedges, i.e., one
hyperedge does not cover all the vertices of a large clique. Therefore, there is a
tradeoff between finding large cliques, and avoiding large hyperedges.

In order to address this tradeoff we compute maximum cardinality k-hyper-
clique. We can detect a k-hyperclique of size at least � for given hypergraph
H = (V,E) by means of a SAT encoding. Here k is assumed to be a small con-
stant. For each vertex v we introduce a Boolean variable xv, which is true if v
belongs to the k-hyperclique. We then add the following constraints:

[¬xv1 ∨ ¬xv2] for any two vertices v1, v2 ∈ V with v2 �∈ N [v1];

[¬xv1 ∨ · · · ∨ ¬xvk
] for any k vertices v1, . . . , vk belonging to hyperedge e ∈ E;

[
∑

v∈V xv ≥ �] cardinality constraint for enforcing clique size at least �.

In the next section we will provide more details on how we have implemented
the search for k-hypercliques.

7 Experimental Work

We performed a series of experiments on various publicly available benchmark
sets, in order to obtain the fractional hypertreewidth of these instances, to eval-
uate whether our SMT-based approach fits well to obtain exact values on the

120 J. K. Fichte et al.

width, and to investigate how well our approach scales. The source code of
our SMT-based decomposer1, benchmarks, and detailed results2 are publicly
available.

7.1 Implementation

We implemented our encoding into our prototypical decomposer FraSMT.
We used Python 2.7.14 [40] based on an Anaconda3 distribution, which
includes dependency handling for binaries packages. We used the graph library
networkX 2.1 [30], the answer-set programming solver clingo 5.2.2 (gringo 5.2.2
and clasp 3.3.3) [22], and the SMT solver Z3 4.6.2 [38]. Our implementation
consists of two separate tools: a validator and a decomposer.

Validator. The first part is a reusable validator that validates computed frac-
tional hypertree decompositions or related decompositions such as tree decompo-
sitions and hypertree decompositions. The validator takes as input an extended
version of the format used for the treewidth track of the Parameterized Algo-
rithms and Computational Experiments Challenge (PACE) [14]. Since the graph
library networkX does not support hypergraphs, we implemented hypergraph
classes and classes that allow for a primal graph view on such a hypergraph.
Both classes implement a networkX-like hypergraph API. Although it suffices
to use rational numbers to compute the fractional hypertree width [27,28], we
still represent the maximum width by a real value since Z3 does neither support
rationals nor reals of arbitrary precision. As we may have a precision loss due to
the internal representation of the reals [12], we check for width w + ε for some
small ε ≥ 0. By default we set ε to 0.001.

Decomposer and Its Configurations. The second and main part is the decom-
poser FraSMT, which implements the preprocessing techniques, the SMT encod-
ing, invoking the SMT solver, as well as reconstructing a decomposition from
the solver assignments and outputting a decomposition (if possible; for details
see below). Our decomposer always reduces contained hyperedges and splits a
hypergraph into biconnected components and computes the width of each com-
ponent separately. We optionally run finding and deleting degree 1 vertices as
well as simplicial vertices. We refer to configurations that include this prepro-
cessing with a string that contains “P”, whereas “p” indicates that this prepro-
cessing technique is disabled (see Table 1). Further, our decomposer computes as
a preprocessing step large k-hypercliques for symmetry breaking and for obtain-
ing lower bounds, as discussed above. For this task we employ the answer-set
programming (ASP) solver clingo, which supports (implicit) incremental solv-
ing and unsatisfiable core shrinking [1]. We use this to aim at a k-hyperclique
of maximum cardinality. However, we limited the solving time (ten seconds) to

1 See: github.com/daajoe/frasmt.
2 See: Benchmark repository [16] and results/raw data [17].
3 See: https://conda.io/docs/user-guide/install/download.html.

https://github.com/daajoe/frasmt/releases/tag/v1.0.0
https://www.doi.org/10.5281/zenodo.1289383
https://www.doi.org/10.5281/zenodo.1289429
https://conda.io/docs/user-guide/install/download.html

An SMT Approach to Fractional Hypertree Width 121

determine such a clique. Still, at any time during the optimization (as long as
at least one k-hyperclique has been computed), the solver is able to provide a
large k-hyperclique. The ASP solver supports a natural encoding of cardinal-
ity constraints, and allows for incrementally computing maximum cardinality
cliques among all k-hypercliques for 3 ≤ k ≤ � for some fixed �. We thereby start
with k = � and then proceed (aiming at better lower bounds) by incrementally
decreasing k by adding the necessary constraints to the ASP solver in multiple
shots [22].

We then use such a resulting large hyperclique to apply symmetry breaking
in our encoding as described in Proposition 5 and we use hypercliques to obtain
additional lower bounds for the encoding. Moreover, we take the maximum width
over the previously computed components and feed this value into the next
computation. In that way we might obtain unsatisfiability and cannot output a
decomposition, however, we cut the search space for the SMT solver as the solver
does not necessarily need to find an exact solution in order to avoid an easy-
hard-easy behavior. In the following configurations we use symmetry breaking as
well as lower bounds. Finally, we implemented the encoding via a direct Python
interface to the solver using additional features of Z3.

Other Solvers. In order to obtain results for hypertree width of our instances,
we used a backtracking-based implementation det-k-decomp by Gottlob and
Samer [26]. Since this implementation can only check for hypertree width of
size at most k of an instance, we added a simple progression step on top4, which
for every iteration reduces the result of det-k-decomp by 1 to check optimality.

7.2 Benchmark Instances

We considered a selection of 2191 instances, which contain hypergraphs that orig-
inate from CSP instances and conjunctive database queries from various sources.
The hypergraphs contain up to 2993 vertices and 2958 hyperedges. The first
set DaimlerChrysler consists of 15 instances, the second set Grid2D consists of
12 instances, and the third set ISCAS’89 consists of 24 instances on circuits [26].
Moreover, the benchmarks contain 35 instances in the set MaxSAT [6] and two
sets (csp application and csp random) of instances from the well known XCSP
benchmarks [3] with less than 100 constraints such that all constraints are exten-
sional. The set csp application contains 1090 instances and the set csp random
contains 863 instances. Further, the set csp other contains 82 instances, which
have been collected for works on hypertree decompositions5. The set CQ con-
sists of 156 instances from various conjunctive queries [2,5,23,29,34,43]. About
a quarter of the instances are graphs. Although fhtw and tw coincide on graphs,
these instances are still well-suited as benchmarks as they provide a challenge
for the decomposer. All instances have been collected by Fischl et al. [19] (pub-
licly available at [16]). We gratefully acknowledge him for providing this large
collection of instances.
4 github.com/daajoe/detkdecomp.
5 https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip.

https://github.com/daajoe/detkdecomp
https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip

122 J. K. Fichte et al.

7.3 Benchmark Setting

Hardware. Our results were gathered on Ubuntu 16.04 LTS Linux machines
kernel 4.13.0-3 on GCC 5.4.1, both post-Spectre and post-Meltdown kernels6.
We ran the experiments on a cluster of 16 nodes. Each node is equipped with
two Intel Xeon E5-2640v4 CPUs consisting of 10 physical cores each at 2.4 GHz
clock speed and 160 GB RAM. Hyper threading was disabled.

Setup and Limits. In order to draw conclusions about the efficiency of FraSMT,
we mainly inspected the wall clock time. We set a timeout of 7200 s and lim-
ited available RAM to 8 GB per instance. Resource limits where enforced by
runsolver [41]. Due to hardware resource limitations we conducted only one run
per instance and configuration. However, we benchmarked a few instances with
multiple runs and observed no significant difference.

7.4 Results

We used a tool to gather data and control the benchmark generation, evaluation,
and cluster setting [31]. We publicly provide all experimental data [17], including
raw data such as all command line flags used, system sampling (RAM/sysload),
standard output and standard error during the run.

Solved Instances/Runtime. Table 1 provides basic statistics on the benchmarks.
The table contains the tested configurations of our decomposer and the number
of solved instances for which we obtained the (fractional) hypertree width and

Table 1. Overview on the number N of instances for which the respective decom-
poser configuration outputted the exact (fractional) hypertree width of the instance
within the given timeout. Configuration: c/C represents disabled or enabled symmetry
breaking and lower bound techniques, respectively. p/P represents disabled or enabled
preprocessing techniques. 0 represents that finding cliques was disabled. 4 and 6 repre-
sent that we used the ASP solver to search for a k-hyperclique of maximum cardinality
with k ∈ {4, 6}. However, due to the imposed timeout, the solver might also just use
an �-hyperclique where 3 ≤ � ≤ k. t median (avg, std) represents the median (average,
standard deviation) of the runtime in seconds of the decomposer over all instances of
our benchmark instances, including the timeouts.

config N t[s] median avg std

FraSMT (C6P) 1449 1189 3124 3299

FraSMT (C4P) 1434 1187 3192 3326

FraSMT (C4p) 1282 1760 3461 3432

FraSMT (c0p) 1106 7200 4019 3398

det-k-decomp 838 7200 4672 3357

6 See: spectreattack.com.

https://spectreattack.com/

An SMT Approach to Fractional Hypertree Width 123

Table 2. Distribution of the fractional hypertree width over the solved instances.

fhtw 1 (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9]

N 145 123 198 255 308 273 65 81 1

0 500 1000 1500 2000

0

1000

2000

3000

4000

5000

6000

7000

vbest
FraSMT-C6P
FraSMT-C4P
FraSMT-C4p
FraSMT-c0p
detkdecomp

Fig. 2. Runtime in seconds on the considered benchmark instance. vbest refers to the
virtual best solver. The x-axis labels consecutive integers that identify instances. The
instances are ordered by running time, individually for each solver.

present total (average, minimum) runtime of the decomposer. We include time-
outs of 7200 s into the average and median. Figure 2 illustrates runtime results
for the tested decomposer configurations as cactus plot. We solved instances
that have up to 1453 vertices, up to 891 hyperedges, and up to hyperedges of
size 16. The best configuration, namely FraSMT(C6P), was capable of decom-
posing 1451 out of the total number of 2191 instances. Using k-hypercliques with
k = 4 instead of k = 6 for symmetry breaking solved 1435 instances. Without
preprocessing, FraSMT was able to solve 1283 instances. Without preprocessing
or symmetry breaking, FraSMT could obtain 1107 fractional hypertree decom-
positions of exact width. Solver det-k-decomp was able to solve 838 instances,
although both underlying methods are exact and det-k-decomp computes the
less general parameter hypertree width in the same time. We further observe
that by analyzing the virtual best solver (vbest), there are few instances a single
best configuration cannot solve but can be solved by different configurations.

(Fractional) Hypertree Width. We computed the fractional hypertree width for
our benchmarks using FraSMT and the hypertree width using det-k-decomp.
The sets contain a few identical instances that occur in multiple sets. Even
though we provide here only an overview on all instances, we decided to keep
the duplicate instances to analyze the benchmark sets as provided from the orig-
inal source for easier comparability. We provide detailed statistics online [17].
Using det-k-decomp we obtained the hypertree width for 838 instances. Table 2

124 J. K. Fichte et al.

provides the distribution of the number of instances and their respective frac-
tional hypertree width. Considering all sets, 33% of the instances have fractional
hypertree width below 4, 60% of the instances have fractional hypertree width
below 6. Overall we were able to obtain the exact width for 66% of the instances.

Fractional Hypertree Width vs. Hypertree Width. When considering the obtained
fractional hypertree width and hypertree width for these instances in our bench-
mark set that have been solved by both methods, the best FraSMT configuration
and det-k-decomp, we observed a difference between the two width measures on
221 instances. The maximum difference was 2, and among these 221 instances
the median difference was 0.6. However, since det-k-decomp could decompose
significantly fewer instances and by construction works better on instances of
small width, we expect the difference between fhtw and htw to be significantly
higher on the remaining instances.

8 Discussion and Conclusions

Our SMT-based encoding for fractional hypertree width, in combination with
preprocessing and symmetry breaking methods, and its implementation, enable
us to compute the exact fractional hypertree width for many realistic instances.
This provides a significant step for making the theoretical notion of bounded
fractional hypertree width, the most general known structural restriction for
CSP that guarantees tractability, accessible for a practical use.

Our results show that a large majority of our considered benchmarked
instances have low fractional hypertree width (below 10). However, we were
unable to compute the exact width for about 33% of the instances. Consequently,
we think that upper bound computations either using heuristics for hypertree
width or modifying our encoding to obtain only upper bounds are of interest for
future investigations.

Interestingly, we obtained the exact fractional hypertree width for more
instances using our decomposer FraSMT than the exact hypertree width using
det-k-decomp, although our decomposer determined the more general parameter.
An important factor is the extensive preprocessing and symmetry breaking meth-
ods, which are not present in det-k-decomp, as these methods resulted in 16%
more solved instances for our decomposition technique. However, even without
preprocessing or symmetry breaking our approach solved more instances than
det-k-decomp.

Since our results are limited to small and medium-sized hypergraphs up to
about 1400 vertices, 900 hyperedges, and hyperedges of small size, heuristics or
combinations of heuristics and exact methods might be interesting for practi-
cal purposes. Our techniques can be very helpful to evaluate the accuracy of
heuristics. Efficient and precise heuristics would enable us to obtain a broad pic-
ture about available instances in CSP which might lead to a usage of fractional
hypertree decompositions for solving actual CSP instances, in particular, for
problems such as model counting in CSP. We believe that our methods can be

An SMT Approach to Fractional Hypertree Width 125

extended to compute the “fractional FAQ-width” which, when bounded, renders
the Functional Aggregate Query (FAQ) problem tractable [33].

The focus of this paper was the exact computation of fractional hypertree
width. However, we would like to point out that with our approach one can also
compute good upper bounds on the fractional hypertree width by just skipping
the expensive optimality check. We have reasons to believe that this will scale
to significantly larger instances, since a similar behaviour has been observed in
related work [18,35]. We are interested to address this potential of our method
systematically in future work.

References

1. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core
shrinking. Theory Pract. Log. Program. 16(5–6), 533–551 (2016)

2. Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The iBench integration meta-
data generator. In: Li, C., Markl, V. (eds.) Proceedings of Very Large Data Bases
(VLDB) Endowment, vol. 9:3, pp. 108–119. VLDB Endowment, November 2015.
https://github.com/RJMillerLab/ibench

3. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: An XML-Based
Format Designed to Represent Combinatorial Constrained Problems. http://xcsp.
org (2016)

4. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.)
16th International Symposium on Experimental Algorithms, SEA 2017, 21–23 June
2017, London, UK, LIPIcs, vol. 75, pp. 28:1–28:21. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

5. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D.,
Tsamoura, E.: Benchmarking the chase. In: Geerts, F. (ed.) Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS 2017), pp. 37–52. Association for Computing Machinery, New York,
Chicago (2017). https://github.com/dbunibas/chasebench

6. Berg, J., Lodha, N., Järvisalo, M., Szeider., S.: MaxSAT benchmarks based on
determining generalized hypertree-width. Technical report, MaxSAT Evaluation
2017 (2017)

7. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evalu-
ation. In: 26th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Com-
puter Society (2014)

8. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci. 209(1–2), 1–45 (1998)

9. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM
J. Discrete Math. 6(2), 181–188 (1993)

10. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a
survey. Constraints 21(2), 115–144 (2016)

11. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for
constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)

12. Committee, M.S.: IEEE standard for floating-point arithmetic. IEEE Std 754-2008,
pp. 1–70, August 2008

https://github.com/RJMillerLab/ibench
http://xcsp.org
http://xcsp.org
https://github.com/dbunibas/chasebench

126 J. K. Fichte et al.

13. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi,
F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. I,
chap. 7, pp. 209–244. Elsevier (2006)

14. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
Lokshtanov, D., Nishimura, N. (eds.) Proceedings of the 12th International Sym-
posium on Parameterized and Exact Computation (IPEC 2017), pp. 30:1–30:13.
LIPIcs (2017)

15. Durand, A., Mengel, S.: Structural tractability of counting of solutions to conjunc-
tive queries. Theoret. Comput. Sci. 57(4), 1202–1249 (2015)

16. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: A Benchmark Collection of Hyper-
graphs, June 2018. https://doi.org/10.5281/zenodo.1289383

17. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: Analyzed Benchmarks and Raw
Data on Experiments for FraSMT, June 2018. https://doi.org/10.5281/zenodo.
1289429

18. Fichte, J.K., Lodha, N., Szeider, S.: SAT-based local improvement for finding tree
decompositions of small width. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS,
vol. 10491, pp. 401–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66263-3 25

19. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: A Benchmark of
Hypergraphs (2017). http://hyperbench.dbai.tuwien.ac.at

20. Fischl, W., Gottlob, G., Pichler, R.: Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI symposium on principles of database systems. In: den Bussche,
J.V., Arenas, M. (eds.) Conference SIGMOD/PODS 2018 International Conference
on Management of Data, Houston, TX, USA, 10–15 June 2018, pp. 17–32. ACM
(2018)

21. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 29(1),
24–32 (1982)

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP Solving
with Clingo. CoRR abs/1705.09811 (2017). http://arxiv.org/abs/1705.09811

23. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Mapping and cleaning. In: Cruz, I.,
Ferrari, E., Tao, Y. (eds.) Proceedings of the IEEE 30th International Conference
on Data Engineering (ICDE 2014), pp. 232–243, March 2014

24. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

25. Gottlob, G., Leone, N., Scarcello, F.: On tractable queries and constraints. In:
Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677,
pp. 1–15. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48309-8 1

26. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decompo-
sition. J. Exp. Alg. 13, 1:1.1–1:1.19 (2009)

27. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings
of the of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2006), pp. 289–298. ACM Press (2006)

28. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans.
Alg. 11(1) (2014). Article 4, 20

29. Guo, Y., Pan, Z., Heflin, J.: LUBM Benchmark OWL Knowl. Base Syst. Web
semantics: science, services and agents on the world wide web 3(2), 158–182 (2005)

30. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using networkx. In: Gäel Varoquaux, T.V., Millman, J. (eds.) Pro-
ceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA,
USA, pp. 11–15, August 2008

https://doi.org/10.5281/zenodo.1289383
https://doi.org/10.5281/zenodo.1289429
https://doi.org/10.5281/zenodo.1289429
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.1007/978-3-319-66263-3_25
http://hyperbench.dbai.tuwien.ac.at
http://arxiv.org/abs/1705.09811
https://doi.org/10.1007/3-540-48309-8_1

An SMT Approach to Fractional Hypertree Width 127

31. Kaminski, R., Schneider, M., Rabener, T., et al.: Benchmark-Tool (2017). https://
github.com/potassco/benchmark-tool

32. Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In: Milo,
T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,
June 26–July 01 2016. pp. 13–28. Association for Computer Machinery, New York
(2016)

33. Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. CoRR
abs/1504.04044 (2017). http://arxiv.org/abs/1504.04044v6. Full version of [32]

34. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How
good are query optimizers, really? Proc. Very Large Data Bases (VLDB) Endow.
9(3), 204–215 (2015)

35. Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In:
Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 12

36. Lodha, N., Ordyniak, S., Szeider, S.: SAT-encodings for special treewidth and
pathwidth. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
429–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 27

37. Marx, D.: Approximating fractional hypertree width. TALG 6(2) (2010). Article
17, 29

38. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

39. Rose, D.J.: On simple characterizations of k-trees. Discrete Math. 7, 317–322
(1974)

40. van Rossum, G.: Python tutorial. CS-R9526, Centrum voor Wiskunde en Infor-
matica (CWI), Amsterdam, May 1995

41. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability
Boolean Model. Comput. 7, 139–144 (2011)

42. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02777-2 6

43. Transaction Processing Performance Council (TPC): TPC-H decision support
benchmark. Technical report, TPC (2014). http://www.tpc.org/tpch/default.asp

https://github.com/potassco/benchmark-tool
https://github.com/potassco/benchmark-tool
http://arxiv.org/abs/1504.04044v6
https://doi.org/10.1007/978-3-319-40970-2_12
https://doi.org/10.1007/978-3-319-66263-3_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-02777-2_6
https://doi.org/10.1007/978-3-642-02777-2_6
http://www.tpc.org/tpch/default.asp

On the Non-degeneracy
of Unsatisfiability Proof Graphs

Produced by SAT Solvers

Rohan Fossé(B) and Laurent Simon(B)

Labri, University of Bordeaux, UMR 5800, 33405 Talence Cedex, France
{rfosse,lsimon}@labri.fr

Abstract. Despite the important effort in developing fast and power-
ful SAT solvers, many aspects of their behaviors remains largely unex-
plained. We analyze the properties of learnt clauses derived by a typical
Conflict Driven Clause Learning algorithm (CDCL) and study how they
are linked to their ancestors, in the dependency graph generated by the
resolution steps during conflict analysis and clauses minimizations. We
show that all these graphs share a common structure: they are non
k-degenerated with surprising large values, which mean they contain
a very dense subgraph, the K-Core. We unveil the existence of large
K-Cores, even on parallelized SAT solvers with clauses exchanges. We
show that the analysis of the K-Core allows a good prediction of which
literals will occur in future learnt clauses, until the very end of the com-
putation. Moreover, we show that the analysis of the graph allows to
identify a set of learnt clauses that will be necessary for deriving the final
contradiction. At last, we demonstrate that the analysis of the depen-
dency graph is possible with a reasonable cost in any CDCL.

1 Introduction

Since the introduction of the Conflict-Driven Clause Learning (CDCL) frame-
work [13,14], the SAT technology has entered a new era. Solvers are now relying
on lookback techniques rather than lookahead ones, which make the analysis of
current methods harder. At the age of the Davis Putnam Logemann Loveland
(DPLL) procedure [4,10], typically before the 2000’s, the need for studying the
behavior of algorithms was indeed less crucial. DPLL was a typical system-
atic backtrack search algorithm, relying on strong (costly and lookahead-based)
heuristics for decisions: solvers were often spending most of their time at each
node of the search tree computing their heuristics values to make careful deci-
sions. As a consequence, the architecture of these solvers was mostly understood
by the mathematical definition of the heuristics allowed to infer some general
results on the size of the search tree [11], at least on random instances. On more
structured problems, heuristics gave a very strong intuition explaining why the
algorithm was working efficiently (e.g. branch on most frequent and balanced
variables in shortest clauses, . . .).

This work was supported by the French Project SATAS ANR-15-CE40-0017.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 128–143, 2018.
https://doi.org/10.1007/978-3-319-98334-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_9&domain=pdf

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 129

Within a few years, thanks to the introduction of the CDCL framework, the
picture had considerably changed. The systematic backtrack search of the orig-
inal DPLL is now ensured by the learning mechanism in CDCL, but aggressive
clauses database cleanings [2,6], very reactive heuristics and very fast restarts [7]
makes the final procedure very complex to analysis. More importantly, the state
of the search in a CDCL is not static anymore (i.e. based on some counters ana-
lyzing the current formula at a point of the search tree). The state of the search
is now based on the entire past of the solver. In addition, each component of so
called “Modern” SAT solvers are tightly connected together and any intrusive
change in any of them may have considerable side effects on other components.
It is thus very difficult to study these solvers, and we argue that we need to
consider them as complex systems, needing an important experimental study in
order to understand their strengths and weaknesses.

This work can be viewed as extending a few previous works [1,8] that tried to
connect theoretical measures with observed behavior of SAT solvers. However, no
previous work has focused on some structural properties of generated proofs. In
[1], they used a modified version of satz [10] to study the evolution of the space
needed by the solver on a set of random and industrial problems. In another
work [8], it was proposed to build a particular set of formulas (pebbling puzzles)
to study the relationship between the minimal proofs for the initial formula
and the behavior of CDCL solvers. The shape of proofs produced by CDCL
solvers was also previously identified as a possible bottleneck for their efficient
parallelization [9]. In some sense, we follow the same kind of idea in this paper
but we focus on demonstrating a very particular structure of the proofs produced
by sequential and parallel solvers. Our study is inspired by the work of [18] that
already proposed to study the proofs, post-mortem, but by extending this work
and focusing our study on the existence (and importance for the search) of a
very dense subgraph (the K-Core) in all the proofs produced by CDCL SAT
solvers.

Our hypothesis is that the existence of a K-Core strongly forces the search of
the SAT solver, which implies that the study of K-Cores of dependency graphs
is a necessary step towards a better understanding of SAT solvers. Our paper is
thus an experimental paper, the aim of which is to report the existence – and the
importance – of a dense subgraph in the dependency graph generated by SAT
solvers and not (yet) to improve the performances1 We organized our work as
follows: after a few preliminaries presenting the essential notions of SAT solvers
and K-Cores in graphs, we demonstrate the presence of K-Cores in dependency
graphs produced by CDCL SAT solvers. Then, we show that the analysis of the
dependency graph allows to make good predictions of the usefulness of learnt
clauses. Then, we extend our findings in two directions. Firstly, we show that
our results can be generalized to parallel proof. Secondly, we show that the
analysis of the dependency graph can be done in any CDCL SAT solver with no
additional memory required and at very small cost.

1 For the reviewing process, figures are in colors. We plan to make two versions of the
paper if accepted, with a black and white version of the figures for the proceedings.

130 R. Fossé and L. Simon

2 Preliminaries

We assume the reader familiar with SAT but let us just recall here the global
schema of CDCL solvers [3,6,14]: a branch is a sequence of decisions (taken
accordingly to the VSIDS heuristic), followed by unit propagations, repeated
until a conflict is reached. Each decision literal is assigned at a distinct, increas-
ing, decision level, with all propagated literals assigned at the same decision
level. Each time a conflict is reached, a series of resolution steps, performed
during conflict analysis, allows the solver to extract a new clause to learn. This
clause is then added to the clause database and a backjumping is triggered,
forcing the last learnt clause to be unit and then propagated. Solvers also incor-
porate other important components such as preprocessing [5], restarts and learnt
clause database reduction policies. It was shown in [2] that the strategy based
on Literal Block Distance (LBD) was a good way of scoring clauses. The LBD
is computed during conflict analysis: it simply measures the number of distinct
decisions levels occurring in the learnt clause.

Parallel SAT solvers are roughly independent SAT engines (duplicating all
their clauses) that can exchange clauses after each conflicts following some
politics. Classically, binary clauses and clauses of small LBD are exchanged
between solvers, even if more sophisticated techniques have been proposed.

2.1 Dependency Graph Induced by the Proof

The idea behind our study relies on the earlier work of [18], by extending it in
many ways. We base our study on the same notion of dependency graph produced
by a CDCL solver (we took Glucose as a reference, which the author of [18] gave
us). Each conflict generates a new node in the graph (nodes in the dependency
graph either match an original or a learnt clause, and for simplicity we may refer
to a node or a clause for the same object in the following), and an (oriented)
edge is added from each learnt clause to all its ancestors: all the clauses viewed
during conflict analysis or clause minimization, oriented from the learnt clause
to its ancestor.

If the notion of Dependency Graph (DG) holds for SAT and UNSAT formu-
las, we focus in this article on UNSAT formulas only (except in Sect. 6), for which
the DG can be considered as an UNSAT (resolution) proof. Such a proof is thus
here a direct acyclic graphs (DAG), with a subset of original clauses as leaves,
learnt clauses as internal nodes and the empty clause at the top. We added the
ability of Glucose to produce a DG. For this, we had to consider the special case
of unary clauses. In Glucose and Minisat, unary clauses are simulated by adding
a virtual decision at level 0, forcing the assignment of the literal occurring in the
unit-clause. Here, we had to keep unit clauses in memory too, in order to keep
track of them during conflict analysis.

Learnt clauses are totally ordered by the number of conflicts they were pro-
duced at. In addition, for each clause, once the total DG is generated, we compute
a set of features. First of all, its usefulness. We call useful a clause necessary of
the proof, and useless if it’s not. Useful clauses are in other words the clauses

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 131

connected with the top clause. Do notice that, with this definition of usefulness,
we do not consider useful a clause that would have been crucial for propagat-
ing a literal during the search, if no resolution was done on this literal during
any conflict analysis. The generalization of DGs to parallel SAT solvers proofs
is easy, by simply considering clauses exchanged by SAT solvers as unique, to
keep track of the origin of each clause (parallel proofs will be considered only in
Sect. 5).

In graph theory, a k-degenerate graph is an undirected graph in which every
subgraph has a vertex of degree at most k. Similarly, a k-core of a graph G is an
undirected subgraph of G in which all vertexes have degree at least k [16]. Thus,
a k-core can be seen as a certificate for the non k-degeneracy of the graph. We
are here interested only in the maximal k-core of graphs, such that the graph is
not k-degenerate but (k+1)-degenerate. We will use the notation K-core for the
maximal k-core of the graph. As these notions are defined over directed graphs,
we will simply consider DG as an undirected graph for computing them. We also
defined the notion of coreness of a graph as the value of the largest k such that
the graph is not k-degenerate.

2.2 Selection of UNSAT Problems

Modern SAT solvers can run for millions of conflicts, each one involving hundreds
of resolution steps. They may thus quickly produce very large graphs preventing
any costly analysis. In this article, we will consider two sets of problems. One
suitable for in-depth analysis (described below), and one demonstrating that
our findings on relatively small problems holds on larger classical problems (all
problems from the last 5 competitions, from 2013 to 2017, see Sect. 6).

For the first part of our analysis, as aforementioned, we needed a set of not
too hard, not too easy problems. For simplicity, we took the same approach as
[18] and selected the same set of 60 problems from past competitions, selecting
as many distinct series of problems as possible. The strategy to select the 60
UNSAT problems was to choose at least two benchmarks per family of problems
that needed less than one million conflicts to be solved on the original formula
(non shuffled, after preprocessing). In the same family, “harder” benchmarks
were selected first (thus trying to limit the number of too easy problems). Once
the benchmarks were selected, the SatElite preprocessing [5] was used on each of
them. When mentioned, we also considered shuffled versions of these problems
(random reordering of clauses order, literals positions in clauses and random
renaming of literals). Without any other precisions, median values are considered
when reporting statistics over shuffled problems. We used 50 shuffled instance
per original problem. We used the exact same list of problems than in [18]. The
interested reader can refer to this previous work for more details on the list of
benchmarks.

Experiments were conducted on a cluster of Xeon E7-4870 processors from
the Mesocentre Aquitain de Calcul Intensif with at least one hour CPU time
(more CPU time will be allocated for simulating parallel solvers in the later).

132 R. Fossé and L. Simon

Fig. 1. Violin plots showing basic statistics on Dependency graph over the 60 problems.
Dashed line is the mean value, middle line the median (over 50 shuffled instances). From
left to right: Number of initial variables and clauses. Second line: number of internal
nodes (or conflicts) and sum of learnt clause sizes. In light gray (more padded to the
right) the total number and in darker gray the useful ones. Last line: percentage of
useful learnt clauses and useful original clauses. All numbers are median values over
shuffled and original problems.

2.3 Basic Dependency Graph Properties

Some important properties about DG were already identified in [18]. It was for
instance observed that, on average, only 50% of learnt clauses were useful. More-
over, only 21% of clauses that were unit-propagated were seen in any conflict
analysis. Given the fact that, in order to be used again in another conflict analy-
sis, a clause must be unit-propagated again (due to the backjumping mechanism
that unset all literals seen during last analysis), only a little more than 10% of
unit propagations are used to derive a useful clause. If we approximate the time
taken by a CDCL by the time taken by its unit-propagation engine (which is a
reasonable assumption), we can thus observe that 90% of the time taken by a
CDCL is “useless” (or only useful to update branching heuristics, ...). Under-
standing the characteristics of the Dependency Graph may be thus crucial to
improve CDCL performances. Figure 1 shows some of the main characteristics
of the formulas and the DG graphs we studied. It confirms the above conclu-
sions made in [18]. We can also check that the formulas are indeed well chosen:
they have different sizes and the median effort to solve them is around 500,000
conflicts, with a maximum of a few millions ones.

3 Characterization of K-Cores

To give a first intuition of the high density of DG generated by SAT solvers,
we represent Fig. 2 a graphical representation of a very easy problem (less than
100,000 conflicts). Do notice the rotation of the graph around a very dense center:

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 133

Fig. 2. Force-Directed layout of the Dependency Graph for the benchmark
een-pico-prop-05. The color shows the coreness of the node.

Fig. 3. Characteristics of K-Cores in the set of 60 problems. In the middle, darker plots
are original problems, lighter shuffled problems. A log scale has been used to represent
the wide range of obtained values. On left and right, we show the distribution of median
values over shuffled instances.

the K-Core. Figure 3 shows the K-Core values (the coreness of the graph) and
the sizes of the corresponding subgraph on the set of 60 problems, including
shuffled ones. Let us first focus on the two violin plots. We can see (left) that the
K-Cores can be very large. The median is larger than 500 and some problems can
have K-Core values of a few thousands. On the right, we can see that the dense

134 R. Fossé and L. Simon

subgraphs can be quite large too, containing typically more than 2,000 clauses.
Now, if we focus on the scatter plot, it is striking to see how many problems are
very close the y = x line. Those problem have a K-Core size that is very close
to the K-Core value, showing almost a clique of clauses as a K-Core.

3.1 Evolution of K-Cores Along the Computation

Let us now study how the K-Core evolves along the computation. Figure 4 shows
its characteristics at two points of the search w.r.t its final values. For this, we
computed the K-Core values considering (1) only the first 20,000 conflicts and (2)
only the first half of the conflicts. The first set of points (after 20,000) conflicts
shows that the computed values can be very far from the final values. However,
it is very encouraging to notice that, at half of the run, the values are really
close to the final values, showing that a study of the K-Core at this point of the
computation may probably provide good informations about the final K-Core.

One of the main hypothesis in this work is that the K-Core is strongly forcing
the search of the SAT solver into a close search space. To illustrate this, let us
discuss now the results shown Fig. 4-right. The figure reports the CDF of the
distance of a certain percentage of learnt clauses to the K-Core, in terms of
resolutions. Clauses in the K-Core are at distance 0. A learnt clause obtained
by resolution with at least a clause of distance n is at most at distance n + 1.
Similarly, a clause used in conflict analysis to produce at least a clause of distance
n is, also, at most at distance n+1 (we thus consider distances on the undirected
DG). On Fig. 4-right, each curve correspond to a CDF plot. The CDF for P%
shows how many problems (x) have at least P% of its learnt clauses at distance
smaller than y. We considered here all the problems (original and learnt). We
can see that, in the very large majority of the cases, at least half of the learnt
clauses are at distance 5 or less. It is also striking to notice that, on our selection

Fig. 4. (Left). Evolution of the K-Core characteristics after 20,000 conflicts and at the
middle of the run (in terms of conflicts). (Right) Distance of the clauses w.r.t. the
K-Core. Original and 50 shuffled versions of the 60 problems are considered. A very
large fraction of the learnt clauses are often very close to the K-Core.

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 135

of problems, half of the problems have 99% of the learnt clauses at distance 5
or less. A distance of 15 resolutions seems also to be a very good bound in the
majority of the cases. Most of the learnt clauses are very close to the K-Core in
terms of resolutions.

3.2 K-Cores Structure

Let us now say a few words on the structure of the K-Core by reading the Fig. 5.
First of all, let us point out that it is composed by original and learnt clauses,
with a majority of learnt clauses, but with more than 30% of original clauses
(see the median and mean values of the top-right violin plot). More surprisingly,
despite its central role in the creation of all the learnt clauses (see section above),
it is not entirely composed of useful clauses (see top-left violin plot): only around
75% of its clauses are used to derive the final contradiction. Let us now focus on
the sizes of clauses in K-Core (see the 4 bottom plots of Fig. 5). By construction,
original clauses are often limited in size (SAT encodings may prevent very large
clauses to be built, and it is common to have a very large majority of binary
clauses), but also contain a few large clauses. However, it is striking to see how
short original clauses are in the K-Core (the median of the clauses are binary
or ternary clauses only). This is emphasized with the comparison of the same
statistics values, but not restricted to original K-Core clauses: the plot in darker
gray shows these values computed on all the original clauses of each problem.
We can thus see that original K-Core clauses are indeed short, compared to

Fig. 5. The two top violin plots represents the percentages of useful clauses (left) and
learnt clauses (right). The 4 others violin plots summarize the sizes of the clauses in
the K-Core, split between original and learnt clauses. Darker gray violins (padded at
the left) are the same values on the whole original problem (instead of original clauses
in K-Core in light gray). A log scale has been used for reporting sizes of learnt clauses
in the K-Core. All numbers are median values over 50 shuffled and original problems
over our set of 60 problems.

136 R. Fossé and L. Simon

the formula. As opposite, we had to use a log scale to represent the very large
discrepancy in the size of K-Core learnt clauses. Here, clauses larger than 100
are frequent.

Two conclusions can be drawn from this experiment. Firstly, it is interesting
to notice that some clauses of the K-Core, despite its central role in the learning
mechanism, are useless. This is potentially an interesting point for improving
SAT solver performances: identifying these clauses could potentially help the
solver not generating useless clauses. Secondly, the fact that the K-Core contains
very large clauses casts also a new light on detecting important clauses. We also
observed that K-Core clauses are not necessarily clauses of small LBD (exper-
iment not reported here), and thus there is a high chance that they could be
removed during the clause database reduction. In order to explain this apparent
paradox, we make the hypothesis that these clauses stay because of an implemen-
tation trick in the clause database reduction: in Glucose, only clauses of small
LBD are kept but things are a little bit more complicated. In fact, the clause
database reduction is generally triggered right after a regular backjump after a
conflict analysis, but not after a restart. During the reduction, clauses that are
currently unit-propagated are not removed. Thus, very large clauses that are
very likely to be unit-propagated are also likely to be kept, which is probably
the case of K-Core clauses.

4 On Predictions Based on Dependency Graph Analysis

The existence of large K-Cores is something that is not uncommon in real-life
graphs, in which its analysis can even be used to detect, for instance in social
graphs, to efficiently detect the most important nodes [17], i.e. nodes that have
the most influence on other nodes. We tried a few measures and report here two
interesting results we obtained. The first one tries to identify which clauses will
be useful. The second measure tries to identify literals that will occur frequently
in learnt clauses until the very end of the computation. In both experiments, we
report the analysis of the DG after 20,000 conflicts and at half-run, by simply
removing from DG all the nodes and edges added after the limit.

4.1 Predicting Useful Clauses

In this experiment, we used a flow algorithm on the DG, without considering the
K-Core. We initialize all root nodes (clauses without descendants) with a con-
stant weight and propagate the weight of each node to its ancestors by dividing
the weight equally between them (following a topological order). For each node,
the idea is to measure the clauses that occurs in the maximal number of paths
to a root node (the graph can have many root nodes before the end).

The results we obtained are summarized Fig. 6 (left and right). Figure 6-left
shows the results of our prediction by ranking 10,000 clauses according to the
above flow values. Of course the darker curves (finished rune) give good results,
even if they must not be considered has having any practical interest (it is easy

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 137

Fig. 6. (Left): Fraction of clauses that have been predicted as useful and that are
useful. “All clauses” includes 10,000 clauses that can be original or learnt. “Learnt
clauses” restricts the computation to only learnt clausesd. A prediction is made after
20,000 conflicts, at half-run, and at the end of the run. Reported values are median over
original and 50 shuffled problems. (Right): Other parameters for the same experiment.
Top-10000 curves are also represented on the left figure.

at the end to detect useful clauses with no errors by another method). However,
we can see that a simple flow algorithm, with no knowledge of which root node
is the contradiction, can already identify useful clauses with a good precision.

The second observation follows the bottom light gray curve (at 20,000 con-
flicts), which clearly gives very bad results for identifying useful learnt clauses.
This is in fact not surprising given the fact that we try to identify 10,000 good
learnt clauses after only 20,000 conflicts. Here, our technique is possibly not
better than a random guess. However, if we try to predict 10,000 useful clauses
including original ones, we see that we correctly guess 80% of the 10,000 clauses,
probably because we mostly bet on original clauses. This is already encouraging:
we can identify useful original clauses at the very beginning of the computation.
We can imagine, for instance, a search procedure that focuses on working on
these clauses in priority. More importantly, we can see that, at half of the com-
putation, results are very good: on half of the problems, we correctly guess at
least 90% of useful learnt clauses over 10,000 guesses. This is even better when
considering original clauses too.

Let us now focus on Fig. 6-right. In this figure, we try to identify 100, 1000
or 10,000 clauses. What this figure shows is that, if detecting 10,000 clauses can
somehow give bad results, we can identify, with a great confidence, 100 learnt
clauses that will be useful in the future, even after only 20,000 conflicts. At half-
run the prediction is even better (see the dotted CDF line). We have around
95% good classification for 100 learnt clauses.

Let us temperate our findings. In fact, despite the importance of being able
to detect a useful clause early in the computation (for instance for splitting the
search space), it did not allowed us to improve Glucose yet. This is probably due
to the fact that useful clauses may still have be deleted with no harm. It is for
instance possible that only a descendant of the clause is needed for the remaining

138 R. Fossé and L. Simon

computation, and thus our attempts to protect this clauses for further deletion
did not helped. We are however still hopping that this kind of detection could
help solvers to work on only part of the initial formula.

4.2 Detecting Future Learnt Clauses

In the above study, we were not able to detect which clauses will be important
for the future of the search. In the following experiment, we try to guess which
variables will occur in the last learnt clauses, just before deriving the final con-
tradiction. For this, we propose to study the variables occurring in the K-Core
at half of the computation. One first idea could be to consider all K-Core’s vari-
ables, but, as we can see on the top-right violin plot Fig. 7, some problems can
have large K-Cores, containing all their variables. We thus propose to simply
consider only the most frequent variables in the K-Core (the 5, 10 and 20 most
frequent variables, respectively). The middle-right violin plot shows how frequent
the top-5 variables are (median larger than 800) in K-Cores.

Let us now comment the left part of Fig. 7. These plots report the percentage
of top variables we observe in the very last learnt clauses of the computation. The
top plot shows the percentage of the top-5 variables that occurs in the last 20
clauses, w.r.t the total number of literals in the last 20 clauses (some clauses can
be very long, see the bottom-right plot). We can see that, on average, 1% of the
literals in the last 20 learnt clauses are from the top-5 variables in the K-Core.
Numbers are of course better if we consider the top-10 and top-20 variables (on
the violin plots below, we also plots the above distribution plots to emphasize the
differences in the prediction with 5, 10 and 20 variables). We already observe a
pretty good prediction, given the very large number of variables of our problems
(median at 8,000 variables, see Fig. 1). We can also report our predictions by the

20 50 100 1000

5 27 37 45 53
10 42 47 50 54
20 49 51 51 55

(See caption for table
description)

Fig. 7. (Left) Results of our prediction for literals occurring in the last learnt clauses.
(Right) Over 60 problems, how many problems have at least one of the top-Y variables
(rows) in the last X learnt clauses (columns)

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 139

lens of the table, right side of the same figure. We can see that for 27 problems
over the 60 ones, at least one of the top-5 variables we identified occurred at
least once in the last 20 clauses. At least a variable from the top-20 occurs in the
20 last learnt clauses, for 49 problems over the 60 (median values on all original
and shuffled problems).

We did not have enough space to report another interesting experiment we
also performed, but we noticed that, generally, the top variables are assigned by
learning a unit clause only at the very end of the computation.

5 Analysis of Parallel Proofs

As we mentioned it in the first sections of this paper, sequential CDCL solvers
are not well understood. The question is even more critical for parallel SAT
solvers. They are generally a portfolio of SAT solvers exchanging clauses, based
on some criterion (size, LBD are the most common ones). Clauses are thus
shared amongst threads but no study have ever been conducted on the impact
of parallelizing search over the final proof. Here, we study how the proof evolves
w.r.t. the number of threads. For this, we simulated a parallel SAT solver on the
top of our Glucose solver, hacked to handle dependency graphs. In our simulation,
each simulated thread successively generates a clause by conflict analysis and
offer to share it. Before each conflict, each thread can thus pick any last learnt
clause by the other threads. In our setting, we imported clauses that had size
strictly smaller than 8 and LBD strictly smaller than 4. We keep track of the
origin of each imported clause. In the DG, imported clauses are not duplicated.

Let us now describe Fig. 8. On the two topmost sub-figures, each plot is a
violin plot reporting a value for 1, 2, 4, 8, 12, 16, 20 and 24 cores, based on runs
on the original problems only. We can firstly verify that parallelizing does not
change the property of the proof: we have large K-Cores with a high coreness
value. It can be observed that the K-Core seems to increase in comparison to
the sequential version. Another finding is the evolution of the depth of the proof
(initial clauses are of depth 0). Clearly enough, the depth is smaller as the number
of cores increases. On the second sub-figure, we can see that, as opposite, the
size of the proof tends to increase: proofs are shallower but larger as the number
of threads increases. It is also interesting to measure how much effort is wasted
when going parallel. “Useless learnts” reports the number of learnt clauses that
do not occur in the proof. Clearly enough, the more we add threads, the more we
produce useless clauses. This is emphasized by the “Efficiency” plot, that report
the percentage of useful learnt clauses over the total number of learnt clauses.
This clearly confirm the loss of efficiency in parallel solvers.

At last, we study, thanks to the bottom sub-figure of Fig. 8, the composition
of the K-Cores in terms of clause origins (which thread produced the clause)
with 24 cores. For each run, we measured the percentage of clauses from each
thread in the final K-Core, and sorted it. Then, on the figure, we represent each
curve in a cumulative way, normalized to 1.0. The result is in fact simple to read.
Most of the problems have a K-Core composed by clauses from all the threads.

140 R. Fossé and L. Simon

Fig. 8. (Two top figures) Characteristics of K-Cores when using from 1 to 24 threads.
Changes in medians are kept track for each violin plot. Experiments are done on the
60 original problems, not shuffled. (Bottom) Cumulative plot of sorted origin of clauses
in a 24-threads parallel solver over the 60 original problems

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 141

Some threads have a stronger presence in the Kcore, but not really significantly,
except for one thread, especially on a small set of problems (most of the curves
are almost “parallel” except for a few curves at the top of the plot: a perfect
parallel curve to the curve below means that all threads are equally represented
in the K-Core). Our conclusion is that, somehow surprisingly, the K-Core is
composed of all the cores, despite the strong bottleneck in clauses exchanges.
Even in a parallel setting, the presence of a K-Core strongly guide the search.

6 Fast Dependency Graph Analysis

Until know, we used a modified version of Glucose that kept track of all the
dependencies (even for removed clauses). The memory consumption of our tech-
nique is thus not suitable for improving any CDCL performances: it is simply
too costly to maintain all the informations. The goal of this short section is
to show that is possible to analyze a simplified version of the DG in a regular
CDCL with almost no cost. The idea is to built the DG just once, by using
vivification on all the learnt clauses in memory at the time we want to build
the DG [12,15] (of course, a lot of learnt clauses have been removed). This step,
performed once in our setting after 110,000 conflicts, allows us to find reasons
for each learnt clauses in memory (this is the same method that is somehow
used when rebuilding DRAT proofs [19]). Of course we cannot find the orig-
inal dependencies but, as we can see Fig. 9 we were able to find very similar
results as previously reported (large coreness of the DG), despite the partial
information we have about the current proof (limited to the set of current learnt
clauses). Let us point out here that we were able to compute this values for all
the problems from the 5 last SAT competitions (2013–2017 included). Do notice
also that we included in this experiment SAT and UNSAT problems, as well
as problems which timed out after the computation of the K-Core. This last

Fig. 9. Characteristics of K-Cores computed with vivification on the remaining learnt
clauses after 110,000 conflicts, for all the problems from competitions 2013 to 2017.

142 R. Fossé and L. Simon

experiment clearly demonstrates that the presence of K-Cores is a strong and
general characteristics of DG, for SAT and UNSAT problems (do notice also
that, on many problems, we also observed a K-Core size of the coreness value,
showing a number of problems with large cliques in their DG).

7 Conclusion

Our experimental report points out a hidden structure behind the learning mech-
anism of CDCL SAT solvers. We demonstrated that all the proof graphs gen-
erated by SAT solvers share a common important characteristics: dependency
graphs are non-degenerated with high values. This shows that there is a very
dense subgraph that seem to play an important role in the search. In order to
emphasize this role, we demonstrated that, by analyzing the dependency graph
at half of the run, we were already capable of identifying a set of learnt clauses
that will be necessary for deriving the final contradiction, with high confidence.
The analysis of the K-Core also allowed us to identify a very small set of vari-
ables that will occur in the very last learnt clauses. We also demonstrated that
most of the learnt clauses are very close to the K-Core in terms of resolution
steps. We demonstrated that, even in parallel, a K-Core composed by clauses
of all the threads is also dominating the proof. Additionally, parallel proofs are
generally larger, even if they are shallower.

At last, we shown that the analysis of the dependency graph can be done in
any CDCL solver at minimal cost. It is sufficient to analyze the current set of
learnt clauses to build a dependency graph that also exhibit a strong K-Core.
This last experiment also demonstrates that the existence of K-Cores also holds
for SAT and UNSAT problems. We hope that our work will cast new research
directions on the reasons why SAT solvers are so efficient. We hypothesis that
one of the reasons for their efficiency is their ability to produce and handle proofs
with these properties. In some sense, this proves that CDCL proofs are really
far away from tree-like resolutions (non-degenerate graphs are clearly far from
trees). We also think that our analysis will allow to efficiently reduce the proof
sizes generated by SAT solvers. A short proof for UNSAT can be essential in
many applications.

References

1. Ansótegui, C., Bonnet, M.L., Levy, J., Many, F.: Measuring the hardness of sat
instances. In: Proceedings of AAAI, pp. 222–228 (2008)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: IJCAI (2009)

3. Darwiche, A., Pipatsrisawat, K.: Complete Algorithms, Chap. 3, pp. 99–130. IOS
Press (2009)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
JACM 5, 394–397 (1962)

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced 143

5. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

7. Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI
2007, pp. 2318–2323 (2007)

8. Järvisalo, M., Matsliah, A., Nordström, J., Živný, S.: Relating proof complexity
measures and practical hardness of SAT. In: Milano, M. (ed.) CP 2012. LNCS, pp.
316–331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-
7 25

9. Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L.: Resolution and paral-
lelizability: barriers to the efficient parallelization of sat solvers. In: Proceedings of
AAAI (2013)

10. Li, C.M., Anbulagan, A.: Heuristics based on unit propagation for satisfiability
problems. In: Proceedings of IJCAI, pp. 366–371 (1997)

11. Li, C.M., Gérard, S.: On the limit of branching rules for hard random unsatisfiable
3-sat. In: Proceedings of ECAI, pp. 98–102 (2000)

12. Luo, M., Li, C.M., Xiao, F., Manya, F., Lu, Z.: An effective learnt clause mini-
mization approach for CDCL SAT solvers. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 703–711
(2017)

13. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)

15. Piette, C., Hamadi, Y., Sas, L.: Vivifying propositional clausal formulae. In: ECAI,
pp. 525–529 (2008)

16. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

17. Shin, K., Eliassi-Rad, T., Faloutso, C.: Graph mining using k-core analysis - pat-
terns, anomalies and algorithms. In: IEEE 16th International Conference on Data
Mining ICMD, pp. 469–478 (2016)

18. Simon, L.: Post mortem analysis of sat solver proofs. In: Berre, D.L. (ed.) POS-
14. Fifth Pragmatics of SAT Workshop. EPiC Series in Computing, vol. 27, pp.
26–40. EasyChair (2014). https://doi.org/10.29007/gpp8, https://easychair.org/
publications/paper/N3GD

19. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-33558-7_25
https://doi.org/10.1007/978-3-642-33558-7_25
https://doi.org/10.29007/gpp8
https://easychair.org/publications/paper/N3GD
https://easychair.org/publications/paper/N3GD
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

Sequential Precede Chain for Value
Symmetry Elimination

Graeme Gange1(B) and Peter J. Stuckey1,2

1 Faculty of Information Technology, Monash University, Melbourne, Australia
graeme.gange@monash.edu

2 Data61, CSIRO, Melbourne, Australia

Abstract. The main global constraint used for removing value sym-
metries is the value-precede-chain constraint which forces the first
occurences of values in an ordered list to be appear in order. We intro-
duce the seq-precede-chain constraint for the restricted, but common,
case where the values are 1, 2, . . . , k, and variables in the constraint do
not take values higher than k. We construct an efficient domain consistent
propagator for this constraint, and show how we can generate explana-
tions for its propagation. This leads us to an efficient domain consistent
decomposition. We show how we can map any value-precede-chain
to use instead seq-precede-chain. Experiments show that the new
propagator and decomposition are better than existing approachs to
propagating value-precede-chain.

1 Introduction

The value-precede-chain constraint introduced by Law and Lee [1] is one of
the principal symmetry breaking constraints for removing value symmetries. The
constraint value-precede-chain([t1, t2, . . . , tk],X) holds if in the sequence of
values taken by variables X, at least one occurence of ti occurs earlier in the
sequence than any occurrence of tj for all 1 ≤ i < j ≤ k.

Law and Lee also introduce the constraint value-precede(t1, t2,X) which
requires that an occurence of t1 occurs before any occurence of t2 in X. They
describe a domain consistent propagator for value-precede and implement
value-precede-chain by decomposition into a series of value-precede:

value-precede-chain([t1, t2, . . . , tk],X) =
k∧

i=2

value-precede(ti−1, ti,X)

Law and Lee [1] observe that adding redundant value-precede constraints
obtains stronger propagation. However, even with redundant constraints, this
encoding is not domain consistent.

Example 1. Consider the constraint value-precede-chain([1, . . . , 5],X),
where X = [x1, . . . , x9]), with domains [{0, 1}, {0, 1, 5}, {0, 3}, {0, 1, 2, 4}, {0,
1, 3}, {1, 3}, {2, 3, 4, 5}, {4, 5}, {0, 1, 2, 3}]. The domains of the variables are
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 144–159, 2018.
https://doi.org/10.1007/978-3-319-98334-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_10&domain=pdf

Sequential Precede Chain for Value Symmetry Elimination 145

x1 x2 x3 x4 x5 x6 x7 x8 x9

0

1

2

3

4

5

Fig. 1. A sequence of variables [x1, . . . , x9], with corresponding upper and lower fron-
tiers. (Color figure online)

illustrated in Fig. 1. We can clearly reduce the upper bound of x2 and x3 to
1 since there is no earlier occurence of 2. Similarly we can reduce the upper
bound of x4 to 2 since there is no earlier occurence of 2. Similarly we can reduce
the upper bound of x7 to 4 since there is no earlier occurence of 4. A decompo-
sition into value-precede constraints cannot obtain any further propagation:
there are at least two possible occurrences each of 2 and 3 to the left of x8, so
neither can be assigned. And because all other variables may be lower, nothing
else can propagate.

But we can also increase the lower bound of x4 to 2 (fixing it to 2) since
there is no other value 2 capable of supporting x8 = 4. We know that at least
one of x5, x6 and x7 must take the value 3 to support this value, and hence x4

cannot possibly take the value 1. ��
It is observed in [2] that a domain consistent encoding may be obtained by

reformulating value-precede-chain as a regular [3] constraint, for which
appropriate propagators [4–6] and decompositions [7,8] exist. However, this
reformulation is rather inefficient: the automaton, shown in Fig. 2 has k×|D(X)|
edges, which are unfolded |X| times in constructing the regular constraint.

q0 q1 q2 · · · qk
t1 t2 t3 tk

Σ − T Σ − T Σ − T Σ − T

t1 t1, t2 t1, . . . , tk

Fig. 2. Regular automata for value-precede-chain

In this paper we investigate a special case of value-precede-chain and
show how it can be propagated efficiently, or implemented by a decomposition.

146 G. Gange and P. J. Stuckey

We then show how it can be used to encode any value-precede-chain con-
straint. The contributions of this paper are:

– an efficient domain consistent propagator for seq-precede-chain which
explains its propagations;

– an efficient decomposition of seq-precede-chain;
– a proof that the decomposiion maintains domain consistency;
– an encoding of value-precede-chain using seq-precede-chain which is

domain consistent; and
– experiments showing that the propagator and decomposition are both highly

competitive with existing approaches to value-precede-chain.

2 The Common Case: value-precede-chain
([1, 2, . . . , k], X)

The most frequent use of value-precede-chain is in cases where either all val-
ues in the domain are indistinguishable (i.e. colouring problems), or have exactly
one distinguished value (i.e. concert hall scheduling, optional bin packing). We
introduce a new global seq-precede-chain(X) equivalent to value-precede-
chain([1, 2, . . . , k],X) where k is the maximum value appearing in the domain
on any x ∈ X.

Given this new simplified form of the constraint we can build a global domain
consistent propagator that is more efficient. Let D be the current domain of the
variables, thought of as a set of unary constraints. Let Dx be the restriction of
D to constraints only mentioning variables x. We use notation D(x) to refer to
the current domain of x, that is the set of all values it can take D(x) = {v | x =
v → Dx}, and lb and ub to refer to the least and greatest value x can take in the
current domain, lb(x) = min D(x) and ub(x) = max D(x).

2.1 Propagation

Propagation proceeds in two passes: a forward pass to find the upper frontier up,
tightening upper bounds as it proceeds. Then it walks backwards to collect the
lower frontier low, setting the value of any variable where the frontiers coincide.

The algorithm shown in Fig. 3 is fairly straightforward. In a forward pass the
algorithm maintains up the largest value seen in a chain of the form 1, . . . , up.
If the upper bound of a variable is more than one greater than up we reduce
it to up + 1. If the new upper bound is up + 1 we increment up and record
in first[up] the first position where the new bound is met. We similarly keep
track of the highest lower bound seen so far low, and store in last[low] the last
position where the increasing sequence can take a value below low. Note that the
sequence [ub(x1), . . . , ub(xn)] (after propagation) records the lexicographically
greatest solution to the constraint.

The backwards pass pulls up low bounds. If low is first possible at position
i then i must take that value, so we propagate that. If low is in the domain of
x[i] and this is before last[low] we then reduce the lower bound. We also store

Sequential Precede Chain for Value Symmetry Elimination 147

seq-precede-chain(x)
up := 0
low := 0
last[0] := −∞ � last[i] = ∞ for i > 0
for(i ∈ 1..n) � impose upper bounds

if(ub(x[i]) > up + 1)
propagate x[i] ≤ up + 1

if(ub(x[i]) = up + 1)
up := up + 1
first[up] := i

if(low < lb(xi))
last[lb(xi)] := i
low := lb(xi)

for(i ∈ n..1) � impose lower bounds
least[i] := lb(xi)
if(first[low] = i)

propagate x[i] ≥ low
if(i ≤ last[low] ∧ low ∈ dom(x[i]))

least[i] := low
last[low] := i
low := low − 1

Fig. 3. Propagation algorithm for seq-precede-chain.

the new last position information. The code to create least[i] generates the
lexicographically least solution to the constraint, [least[1], . . . , least[n]]. This is
not required for propagation, but useful for proofs.

Example 2. Consider the problem of Example 1 using instead the constraint
seq-precede-chain(X). The propagator sets first[1] = 1 propagates x2 ≤ 1,
x3 ≤ 1 and x4 ≤ 2, sets first[2] = 4, first[3] = 5 and propagates x7 ≤ 4 and sets
first[4] = 7 and last[1] = 7, then sets first[5] = 8, and last[4] = 8. The blue line
in Fig. 1 shows the progress of up (drawn above its value). In the backwards pass
low takes values 4, 4, 3, 3, 3 setting last[3] = 7. Then we detect that first[2] = 4
and propagate x4 ≥ 2, and set last[2] = 4, then low takes values 2, 2, 1, 0,
setting last[1] = 2 and last[0] = 1. The red line in Fig. 1 shows the progress of
low (drawn underneath its value). The sequence least is calculated as [0, 1, 0,
2, 0, 1, 3, 4, 0]. ��
Theorem 1. The propagator for seq-precede-chain(X) is correct.

Proof. Given a solution θ = [v1, . . . , vn] of seq-precede-chain(X) we show
that the propagator never removes it. Suppose the upper bound pruning removes
earliest value vi, then up at iteration i − 1 has value less than vi − 1, but then
there can be not j < i with value vj = vi − 1 earlier in θ, otherwise up would
have reached this level. Contradiction.

Suppose the lower bound pruning removes latest value vi, then vi < u where
first[u] = i, and low at iteration i + 1 has value u + 1. Since first[u] = i then

148 G. Gange and P. J. Stuckey

clearly vj < u, 1 ≤ j < i. Let k be the first position after i where vk = low
in the kth iteration. Then the sequence of low in between only steps down to
u + 1 hence there is no position in θ taking value u before a value of u + 1.
Contradiction. ��
Theorem 2. The propagator for seq-precede-chain(X) enforces domain
consistency.

Proof. Given a value vi ∈ dom(xi) after the propagation of seq-precede-
chain(X) we show that there exists a solution [v1, . . . , vn] where vj ∈ D(xj), 1 ≤
j ≤ n supporting this value. If vi = ub(xi) then we can take the sequence
of [ub(x1), . . . , ub(xn)]. Suppose first[ub(xi)] �= i then an alternate solution is
clearly [ub(x1), . . . , ub(xi−1), vi, ub(xi+1), . . . , ub(xn)].

It remains to consider where first[ub(xi)] = i and vi < ub(xi). We show that
the sequence θ = [ub(x1), . . . , ub(xi−1), vi, least[i + 1], . . . least[n]] is a solution
of the constraint. First note that [least[1], . . . , least[n]] is a solution of the con-
straint, since we only step down by at most one, and least[j] ∈ dom(xj), 1 ≤ j ≤
n. Now least[i] �= ub(xi) otherwise we would have propagated that xi ≥ last[i]
and then vi �∈ dom(xi). The sequence θ is a solution since least[i] ≤ vi < ub(xi)
is neither too large for the predecessor sequence nor too large for the successor
sequence by definition. ��

2.2 Incrementality

Unfortunately, successive runs of the propagator are frequently quite wasteful.
The propagator will perform a full forward/backward pass, even if neither fron-
tier has changed. We can do better by identifying the circumstances where a
frontier may change: (1) the upper-bound of a variable on the upper frontier is
decreased, (2) the lower-bound of a variable is increased above the lower fron-
tier, or (3) k is removed from the domain of last[k]. These changes are also
directional : if the upper-bound of xi changes, only variables right of xi may be
affected. Similarly, if the lower frontier is shifted, the change can only cascade
to the left. Thus, if we start repairing the frontiers as the result of a change, we
can stop whenever the repaired frontier coincides with the existing one.

However, first and last are not quite enough for an incremental propagator:
when D(xi) changes, we only want to execute the propagator if one of the fron-
tiers has been affected. However while first and last tell us for a given value which
variable supports it, we need to know for a given variable whether it supports a
frontier step.

We thus maintain two persistent arrays, first val and last val, maintaining
the invariant first [k] ≤ n → first val[first [k]] = k (similarly for last and last val).
That is, first val[xi] = k whenever xi supports the kth step of the upper frontier
(but is unconstrained if xi is not a support). This allows us to quickly determine
if changes to D(xi) have invalidated the frontier (by testing if last val[xi] /∈
D(xi) ∧ last [last val[xi]] = xi), while only updating cells along the frontier.
The incremental propagator is shown in Fig. 4 where wakeup looks at domain

Sequential Precede Chain for Value Symmetry Elimination 149

wakeup(changes)
for(xi ∈ changes)

k := first val[xi]
if(first [k] = xi ∧ ub(xi) < k)

if(repair upper(k) = FAIL)
return FAIL

for(xi ∈ changes)
k := last val[xi]
if(last [k] = xi ∧ k /∈ D(xi))

repair lower(k)
return OKAY

repair lower(k)
i := last [k]
while(k > 0)

if(k ∈ D(xi))
last [k] := i
last val[i] := k
if(first [k] = i)

propagate 〈xi ≥ k〉
k := k − 1
if(last [k] < i)

return
i := i − 1

repair upper(k)
i := first [k]
lim := last [k]
while(i < lim)

if(ub(x[i]) > k)
propagate 〈x[i] ≤ k〉

if(k ∈ D(x[i]))
first [k] := i
first val[i] := k
k := k + 1
if(i < first [k])

return OKAY

i := i + 1
if(i < N)

� First occurrence of k is too late.
return FAIL

Fig. 4. Incremental propagation algorithms for seq-precede-chain

changes since last execution and repair upper and repair lower exactly reflect the
corresponding stage of the basic seq-precede-chain propagator.

2.3 Explanation

For integration into lazy clause generation [9], every propagator must be able
to explain itself: for each inference a it make, the propagator p must be able to
produce a set of antecedents E such that D ⇒ E, and c ∧ E ⇒ a.

The seq-precede-chain propagator performs two kinds of propagation: on
the forward pass, it tightens upper bounds to the reachable frontier. On the
backward pass, it fixes values which we discover must be on the frontier.

Explaining xi ≤ k is straightforward: if xi is greater than j, some variable
to the left of xi must take the value k. Thus

∧i−1
j=1 xj �= k → xi ≤ k. However, if

there are no occurrences of k, we know there can also be no occurrences of values
k′ > k. Thus, we can use the more general explanation

∧i−1
j=1 xj < k → xi ≤ k.

Example 3. Recall the upper-bound propagation from Example 1. The explana-
tion for x4 ≤ 2 is illustrated in Fig. 5(a), and is simply: 〈x1 ≤ 1〉 ∧ 〈x2 ≤ 1〉 ∧
〈x3 ≤ 1〉 → 〈x4 ≤ 2〉. ��

150 G. Gange and P. J. Stuckey

x1 x2 x3 x4

0

1

2

3

4

5

× × ×

x4 x5 x6 x7 x8

A B

(a) Upper bound explanation (b) Lower bound explanation

Fig. 5. Example explanations for upper- and lower-bound pruning.

The reasoning for lower-bound propagation is slightly more intricate. Lower
bounds are updated when a lower bound pulls the frontier upwards, forcing the
upper and lower frontiers to coincide at a variable. The explanation then consists
of 3 parts: why the frontier cannot be relaxed to the left, why the lower bound
was lifted, and why there is no slack in the frontier.

Example 4. Now consider the lower-bound propagation from Example 1. We
must explain why the lower and upper frontiers coincide at x4 = 2. The reason
for the upper frontier is given in Example 3.

For the lower frontier, we have to explain why the lower frontier could not be
lower. Hence we need to prevent any step downs which did not occur from the
tight lower bound, until the propagation. For the explanation of the example
we need the tight bound 〈x8 ≥ 4〉 and the prevention of step downs 〈x6 �= 2〉
and 〈x5 �= 2〉. Note that position x7 where there is a step down is not relevant.
The full explanation is 〈x1 ≤ 1〉 ∧ 〈x2 ≤ 1〉 ∧ 〈x3 ≤ 1〉 ∧ 〈x5 �= 2〉 ∧ 〈x6 �= 2〉 ∧
〈x8 ≥ 4〉 → 〈x4 ≥ 2〉. ��

In general the procedure can be formalized using the equations below.

explain(〈xi ≤ k〉) =
i−1∧

j=0

〈xi < k〉

explain(〈xi ≥ k〉) = exL(xi+1, k) ∧
i−1∧

j=0

〈xi < k〉

where exL(xi, k) =

⎧
⎨

⎩

〈xi ≥ k〉 if lb(xi) ≥ k
exL(xi+1, k + 1) if k ∈ D(xi)
〈xi �= k〉 ∧ exL(xi+1, k) otherwise

Sequential Precede Chain for Value Symmetry Elimination 151

3 Domain Consistent Decomposition
for seq-precede-chain

Given the nature of the propagation for the seq-precede-chain(X) con-
straint we devised a simple decomposition, introducing intermediate variables
H0, . . . ,Hn:

seq-precede-chain([x1, . . . , xn]) = ∃H0, H1, . . . , Hn.

H0 = 0

∧
n∧

i=1

Hi ≤ Hi−1 + 1 ∧
Hi = max(xi, Hi−1)

The intuition is that Hi stores the highwater mark u of the increasing sub-
sequence 1, . . . , u seen in the x values from positions 1 to i. A MiniZinc definition
(slightly different to avoid using H0) is given below.

1 predicate seq_precede_chain(array[int] of var int: X) =
2 let { int: l = lb_array(X); % least possible value
3 int: u = ub_array(X); % greatest possible value
4 int: f = min(index_set(X));
5 array[index_set(X)] of var l..u: H; } in
6 H[f] <= 1 /\ H[f] = max(X[f], 0) /\
7 forall(i in index_set(X) diff {f})
8 (H[i] <= H[i-1] + 1 /\ H[i] = max(X[i], H[i-1]));

Example 5. Consider the problem of Example 1. Passing forward across the con-
straints sets H0 = 0, D(H1) = D(H2) = D(H3) = {0, 1}, propagating x2 ≤ 1 and
x3 ≤ 1, D(H4) = {0, 1, 2}, propagating x4 ≤ 2, D(H5) = D(H6) = {0, 1, 2, 3},
D(H7) = {0, 1, 2, 3, 4} propagating x7 ≤ 4. and dom(H8) = {4, 5}. Now passing
backwards over the constraints sets D(H7) = D(H6) = {3, 4}, then D(H5) = {3}
and D(H4) = {2} which propagates x4 ≥ 2 and finally DH3 = {1}. The decom-
position mimics the global where dom(Hi) = {low..up} for the values reached
after the ith iteration. ��

We now show that this decomposition is correct and maintains domain con-
sistency if the max propagator and ≤ propagators are domain consistent, and
we do not branch to introduce holes in domains of H variables.

Theorem 3. The decomposition for seq-precede-chain(X) is correct.

Proof. Given a solution θ = [v1, . . . , vn] of seq-precede-chain(X). We show
that the decomposition never removes it. Now ignoring the constraints Hi ≤
Hi−1 + 1 we can inductively show that the max constraints enforce Hi =
maxj∈1..i(vj). The max constraints are satisfied. Suppose the inequalities were
violated then the maximum value before i − 1 is Hi−1 < vi − 1 and hence θ is
not a solution. ��
Lemma 1. The decomposition maintains D(Hi) as range domains, assuming
these variables are not branched on to introduce holes.

152 G. Gange and P. J. Stuckey

Proof. The proof is by induction. Assuming all domains of Hi are range domains,
we show that no propagation can cause a hole to be created. First Hi ≤ Hi−1+1
can never create holes. Consider Hi = max(xi,Hi−1) this may create a hole in
the domain of Hi if there is hole in v �∈ D(xi). Now either v < lb(Hi−1) in which
case lb(Hi) = lb(Hi−1) and there is no hole, or v ≥ lb(Hi−1) in which case either
v ≤ ub(Hi−1) and then no hole is punched since v ∈ D(Hi−1). The remaining
case is v > ub(Hi−1) then ub(xi) > v and ub(Hi) = ub(xi) but this would violate
the constraint Hi ≤ Hi−1 + 1 so it would reduce the upper bounds to ub(Hi−1)
and no hole is created. ��
Lemma 2. The constraints Hi ≤ Hi−1 ∧ Hi = max(xi,Hi−1) maintain domain
consistency of the conjunction assuming D(Hi) and D(Hi−1) are range domains.

Proof. We first show that an arbitrary v ∈ D(xi) can be extended to a solution.
If v = ub(Hi) then we have solution (Hi−1, xi,Hi) of (v − 1, v, v), and v − 1 =
ub(Hi−1) by propagation of the inequality. If ∃v′ ∈ D(Hi) ∩ D(Hi−1), v′ ≥ v we
have solution (v′, v, v′). Otherwise we have ∀v′ ∈ D(Hi)∩D(Hi−1), v′ < v. Since
they are range domains this means that ub(Hi−1) < v and thus ub(Hi) ≤ v,
which implies v = ub(Hi).

Next we show that an arbitrary value v ∈ D(Hi−1) can be extended to a
solution. If v′ = lb(xi) ≤ v then (v, v′, v) is a solution since the max constraint
ensures v ∈ D(Hi). Otherwise if v′ = v + 1 then (v, v′, v′) is a solution since the
max constraint ensures v′ ∈ D(Hi). Otherwise v′ > v + 1, but then lb(Hi) = v′

and the inequality would have removed v from the D(Hi−1).
Finally we show that an arbitrary value v ∈ D(Hi) can be extended to a

solution. Now v′ = lb(xi) ≤ v hence either v′ < v in which case (v, v′, v) is a
solution since the max constraint ensures v ∈ D(Hi−1). Or v′ = v and either
v ∈ D(Hi−1) leading to solution (v, v, v) or v > ub(Hi−1) meaning v = ub(Hi)
and hence (v − 1, v′, v) is a solution. ��
Theorem 4. The decomposition for seq-precede-chain(X) enforces domain
consistency, assuming no hole punching branching on H variables.

Proof. Lemma 1 shows that the decomposition will always have range domains
for Hi if holes are not punched by branching. Lemma 2 shows that the constraint
c(Hi−1, xi,Hi) = Hi ≤ Hi−1 + 1 ∧ Hi = max(xi,Hi−1) is domain consistent
assuming range domains for H. Since the decomposition treating c(Hi−1, xi,Hi)
as a single constraint is Berge acyclic, the decomposition enforces domain con-
sistency. ��

Note that the decomposition c(Hi−1, xi,Hi) does not maintain domain con-
sistency if we permit holes in the H domains.

Example 6. Consider c(Hi−1, xi,Hi), with variable domains D(Hi−1) = {1, 4},
D(xi) = [1, 5], D(Hi) = {1, 3, 5}.

The value Hi = 3 is infeasible, as neither 2 nor 3 are in the domain of
Hi−1. However Hi ≤ Hi−1 + 1 is satisfied by assignment (4, , 3), and Hi =
max(xi,Hi−1) is satisfied by (1, 3, 3).

Sequential Precede Chain for Value Symmetry Elimination 153

The value x = 3 is also infeasible, as x > 2 would require Hi−1 to take
value 4, which forces Hi to be 5. But Hi−1 = 4 ∧ Hi = 5 forces xi = 5, which
contradicts our xi assignment. However Hi ≤ Hi−1 + 1 is independent of x, and
Hi = max(xi,Hi−1) is satisfied by (1, 3, 3). �

The advantage of the decomposition over the global is that it is incremental
by its nature. For a learning solver there is another advantage, explanations for
propagation and failure can use the H variables, this allows the summary of lots
of previous behaviour in a way that is reusable. For example given the lower
bound propagation in Example 1 is explained by

〈H3 ≤ 1〉 ∧ 〈H4 ≥ 2〉 → 〈x4 ≥ 2〉 .

There could be many reasons why H4 ≥ 2 rather than the particular history
shown in Fig. 5(b).

4 Mapping value-precede-chain
to seq-precede-chain

While the case for seq-precede-chain may seem somewhat restricted we can
use it to model arbitrary value-precede-chain constraints by using a mapping
to the case that seq-precede-chain supports.

A MiniZinc decomposition for the encoding is given below. Because the map-
ping using element is domain consistent (including the view used to encode
X[i] − l + 1), the resulting decomposition is also domain consistent, since the
constraint structure is a tree [10].

1 predicate value_precede_chain(array[int] of int: T, array[int] of var int: X)

2 = if min(index_set(T)) = 1 /\ forall(i in index_set(T))(T[i] = i)

3 /\ max(T) = ub_array(X) then seq_precede_chain(X)

4 else

5 let { int: l = lb_array(X);

6 int: u = ub_array(X);

7 array [1..u-l+1] of int: p

8 = [sum(i in index_set(T) where T[i] = j)(i)

9 | j in l..u];

10 array[index_set(X)] of var 0.. length(T): Y;

11 } in

12 forall(i in index_set(X))

13 (element(X[i] - l + 1, p, Y[i])) /\

14 seq_precede_chain(Y)

15 endif;

Example 7. Consider the constraint value-precede-chain([2,−2, 1,−1],X)
where X variables range over values −3..3, then we use element constraints
of the form element(xi + 4, [0, 2, 4, 0, 3, 1, 0], yi) to map X to Y , together
with seq-precede-chain(Y) to encode this constraint. ��

154 G. Gange and P. J. Stuckey

5 Experimental Results

We implemented the new propagator and decomposition in chuffed [11], a lazy
clause generation CP solver. For comparison, we also tested several alternate
encodings of value-precede-chain:

dec Decomposition into k − 1 value-precede constraints, enforced with the
propagator described in [1].

ddec As dec, but the value-precede constraints encoded using the standard
MiniZinc decomposition.1

reg As a finite-state automaton of Fig. 2, enforced using an incremental MDD-
based propagator [6].

chain The new propagator given in Sect. 2.
seq The new decomposition given in Sect. 3.

The modified version of chuffed, MiniZinc models and data files are available
at https://github.com/gkgange/chuffed/releases/tag/data-2018-cp.

5.1 Concert Hall

The concert hall scheduling problem [12] considers a set H of identical halls,
and a set C of concerts each having a start time sc, end time ec and profit pc.
Each concert may either be allocated to a hall h ∈ H, or not scheduled. As the
halls are interchangeable, we break symmetries by imposing a seq-precede-
chain constraint over the set of assignments. We also add dominance-breaking
constraints, to prefer shorter, more profitable concerts. Branch first on the set
of concerts to include (including concerts ordered by pc

ec−sc+1), then assign these
concerts in input order to the first available hall.

Figure 6 reports performance of the five seq-precede-chain implementa-
tions on concert hall scheduling problems, with and without lazy clause genera-
tion. It is clear that dec, decomposition into value-precede propagators, is at
all not competitive. Without learning, chain and seq are clearly superior. With
learning (where we omit the uncompetitive dec, those results being far outside
the current chart bounds), the gap closes dramatically, with ddec nearly catching
the new methods, and reg slightly behind.

A direct comparison of seq and chain is given in Fig. 7. Interestingly, although
chuffed’s propagator for z = max(x, y) is only bounds((Z)) consistent, with
learning disabled the propagator and decomposition always explored the same
number of nodes. The incremental propagator was up to 30% faster than the
decomposition, but typically closer to 10%.

Enabling learning introduces a good deal of variance, as the changes in
nogoods can result in dramatic changes in search. Nevertheless, we see similar
results: the incremental propagator is typically slightly faster than the decom-
position, both of which consistently outperform existing encodings.
1 That is, ∃ b1, . . . , bn. ((b1 ↔ x1 = s)∧∧n

i=2 bi ↔ (bi−1∨〈xi−1 = s〉)∧〈xi = t〉 → bi−1.
Here bi records whether there is an occurrence of s no later than xi.

https://github.com/gkgange/chuffed/releases/tag/data-2018-cp

Sequential Precede Chain for Value Symmetry Elimination 155

Fig. 6. Comparison of seq-precede-chain implementations, for different sizes of H.
We omit dec from plots for learning, being totally non-competitive.

5.2 Capacitated Concert Hall

To evaluate these techniques on domains with multiple sets of indistinguishable
values, we extend the concert hall problem with capacities: each offer now has
a minimum size requirement, and each hall has a maximum capacity (and the
‘not scheduled’ hall can fit any concert). We then add the constraint:

1 constraint forall (o in Offers) (size[o] <= capacity[assign[o]]);

While the halls are no longer indistinguishable, they may still be partitioned
into equivalence classes based on the set of concerts which they may hold. We
break this symmetry by adding a value-precede-chain constraint for each
equivalence class of halls. When using seq and chain these are mapped to a
seq-precede-chain constraints using the decomposition of Sect. 4.

156 G. Gange and P. J. Stuckey

Fig. 7. Comparison of incremental seq-precede-chain propagator versus the sequen-
tial decomposition, on concert hall scheduling instances (a) without and (b) with
learning.

We extended each instance used in the previous section with a capacity and
size for each hall and offers. We generate capacities in a similar manner as the
other parameters described in [1]: we generate each equivalence-class of halls by
first selecting the class size uniformly in [1, r], then choose the capacity uniformly
in the range [200, 1000]. This is repeated until the m hall capacities have been
generated. We generate concert sizes using the same procedure.2 Search follows
the same strategy as for the previous problem: include concerts by profitability,
then assign to the first hall in input order.

Figure 8 illustrates the performance of each encoding on the capacitated
concert hall instances. On these problems, the differences between encodings
are more pronounced – interestingly, here ddec performs worse than dec,
which remains uncompetitive; chain and seq again outperform reg. On these
problems, we did observe differences in backtrack counts, but seq nevertheless
appears to be the more robust approach (except on instances where both meth-
ods complete in < 0.1s, where initialisation time dominates).

2 Note that the size equivalences are generated independently of other instance param-
eters, so may break existing dominance relationships.

Sequential Precede Chain for Value Symmetry Elimination 157

Fig. 8. Mean time to solve capacitated concert hall scheduling instances for 10 halls
(above) and 14 (below) for each value-precede-chain implementation.

5.3 Graph Colouring

We also evaluated the value-precede-chain implementations on the graph
colouring problems from [12]. In these problems, vertices are partitioned into
equivalence classes. Each class is either complete or empty; and if there is an
edge between any members of two equivalence classes, there are edges between
all pairs of members of the two classes. For search, we simply assign the mini-
mum colour to vertices in input order. The results are shown in Fig. 9. Without
learning, most of the solving time is spent in disequality reasoning, so differences
between encodings are less pronounced. Even so, the new encodings are consis-
tently faster. With learning enabled, we see the performance of reg degrade
rapidly as the instance sizes increase.

158 G. Gange and P. J. Stuckey

Fig. 9. Mean time required to solve graph colouring instances, using each value-
precede-chain implementation. Results for dec are again omitted in (b).

The main lesson we take from these experiments is that seq is the fastest,
most robust encoding of value-precede-chain for both learning and non-
learning solvers. The domain-consistent propagator chain has similar perfor-
mance, but does not outperform seq enough to justify its implementation.

6 Conclusion

We define seq-precede-chain to encode the most common usages of value-
precede-chain. We define a new efficient global propagator for this constraint,
and how to explain its propagations. This led us to an efficient decomposition,
which actually creates more reusable explanations, and is competitive in propa-
gation speed with the global because it is naturally incremental. We propose that
the standard decomposition for value-precede-chain in the MiniZinc library
make use of our decomposition.

Acknowledgements. This research is supported by the Australian Research Council
through grant DE160100568 and the Asian Office of Aerospace Research and Develop-
ment grant 15-4016.

References

1. Law, Y.C., Lee, J.H.M.: Global constraints for integer and set value precedence.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 28

2. Beldiceanu, N., Carlsson, M., Régin, J., Demassey, S.: Global constraint
catalogue: int value precede chain. http://sofdem.github.io/gccat/gccat/Cint
value precede chain.html. Accessed April 2018

https://doi.org/10.1007/978-3-540-30201-8_28
http://sofdem.github.io/gccat/gccat/Cint_value_precede_chain.html
http://sofdem.github.io/gccat/gccat/Cint_value_precede_chain.html

Sequential Precede Chain for Value Symmetry Elimination 159

3. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

4. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc
r -ary constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1 34

5. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 44

6. Gange, G., Stuckey, P.J., Szymanek, R.: MDD propagators with explanation. Con-
straints 16(4), 407–429 (2011)

7. Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar con-
straints. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 132–147. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01929-6 11

8. Ab́ıo, I., Gange, G., Mayer-Eichberger, V., Stuckey, P.J.: On CNF encodings of
decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp.
1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2 1

9. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

10. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–
32 (1982)

11. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, Department of Com-
puting and Information Systems, University of Melbourne (2011)

12. Law, Y.C., Lee, J.H.: Symmetry breaking constraints for value symmetries in con-
straint satisfaction. Constraints 11(2–3), 221–267 (2006)

https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-3-540-85958-1_34
https://doi.org/10.1007/978-3-319-10428-7_44
https://doi.org/10.1007/978-3-642-01929-6_11
https://doi.org/10.1007/978-3-642-01929-6_11
https://doi.org/10.1007/978-3-319-33954-2_1

An Incremental SAT-Based Approach
to Reason Efficiently on Qualitative

Constraint Networks

Gael Glorian1(B), Jean-Marie Lagniez1, Valentin Montmirail1,
and Michael Sioutis2

1 CRIL, Artois University and CNRS, 62300 Lens, France
{glorian,lagniez,montmirail}@cril.fr

2 Örebro Universitet, MPI@AASS, Örebro, Sweden
michael.sioutis@oru.se

Abstract. The RCC8 language is a widely-studied formalism for
describing topological arrangements of spatial regions. Two fundamen-
tal reasoning problems that are associated with RCC8 are the problems
of satisfiability and realization. Given a qualitative constraint network
(QCN) of RCC8, the satisfiability problem is deciding whether it is pos-
sible to assign regions to the spatial variables of the QCN in such a way
that all of its constraints are satisfied (solution). The realization prob-
lem is producing an actual spatial model that can serve as a solution.
Researchers in RCC8 focus either on symbolically checking the satisfiabil-
ity of a QCN or on presenting a method to realize (valuate) a satisfiable
QCN. To the best of our knowledge, a combination of those two lines
of research has not been considered in the literature in a unified and
homogeneous approach, as the first line deals with native constraint-
based methods, and the second one with rich mathematical structures
that are difficult to implement. In this article, we combine the two afore-
mentioned lines of research and explore the opportunities that surface by
interrelating the corresponding reasoning problems, viz., the problems of
satisfiability and realization. We restrict ourselves to QCNs that, when
satisfiable, are realizable with rectangles. In particular, we propose an
incremental SAT-based approach for providing a framework that rea-
sons about the RCC8 language in a counterexample-guided manner. The
incrementality of our approach also avoids the usual blow-up and the lack
of scalability in SAT-based encodings. Specifically, our SAT-translation is
parsimonious, i.e, constraints are added incrementally in a manner that
guides the embedded SAT-solver and forbids it to find the same counter-
example twice. We experimentally evaluated our approach and studied
its scalability against state-of-the-art solvers for reasoning about RCC8
relations using a varied dataset of instances. The approach scales up and
is competitive with the state of the art for the considered benchmarks.

Keywords: RCC · Qualitative Spatial and Temporal Reasoning
SAT · CEGAR

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 160–178, 2018.
https://doi.org/10.1007/978-3-319-98334-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_11&domain=pdf

An Incremental SAT-Based Approach to Reason Efficiently on QCN 161

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study
in Artificial Intelligence, and in particular in Knowledge Representation & Rea-
soning, that deals with the fundamental cognitive concepts of space and time
in an abstract, qualitative, and human-like manner. By way of illustration, in
natural language, one uses expressions such as inside, before, and north of to
spatially or temporally relate one object with another object or oneself, without
resorting to providing quantitative information about these entities. Formally,
QSTR restricts the vocabulary of rich mathematical theories that deal with
spatial and temporal entities to simple qualitative constraint languages. Thus,
QSTR provides a concise framework that allows inexpensive reasoning about
entities located in space and time. This framework boosts research and applica-
tions to a plethora of areas and domains that include, but are not limited to,
ambient intelligence, dynamic GIS, cognitive robotics, spatio-temporal design,
and qualitative model generation from video [1–4].

Regarding qualitative spatial reasoning, Randell et al. developed in [5] one
of the most well-known and dominant spatial calculi in QSTR, viz., the Region
Connection Calculus (RCC). It studies the different relations that can be defined
between regions in some topological space; these relations are based on the prim-
itive relation of connection. For example, the relation disconnected between two
regions X and Y suggests that none of the points of region X connects with a
point of region Y , and vice versa. Two fragments of RCC, namely, RCC8 and
RCC5 (a sub-language of RCC8 where no significance is attached to boundaries
of regions), have been used in several real-life applications. In particular, Bouzy
in [6] used RCC8 in programming the Go game, Lattner et al. in [7] used RCC5 to
set up assistance systems in intelligent vehicles, Heintz et al. in [8] used RCC8 in
the domain of autonomous unmanned aircraft systems (UAS), and Randell et al.
in [9] used RCC8 to correct segmentation errors for images of hematoxylin and
eosin (H&E)-stained human carcinoma cell line cultures. Other typical applica-
tions of RCC involve robot navigation, high level vision, and natural language
processing [2]. RCC8 (which will be the focus of this paper) is based on the
following eight relations: equals (EQ), partially overlaps (PO), externally con-
nected (EC), disconnected (DC), tangential proper part (TPP) and its inverse
(TPP−1), and non-tangential proper part (NTPP) and its inverse (NTPP−1).
These spatial relations are illustrated in Fig. 1.

Given a qualitative constraint network (QCN) of RCC8, we are particularly
interested in its satisfiability problem, which is the problem of deciding if there
exists a spatial interpretation of the variables of the QCN that satisfies its con-
straints. The satisfiability problem for RCC8 (and RCC5) is NP-complete [10].
Once a QCN of RCC8 is known to be satisfiable, thus having only one relation
at each edge without any choice possible, one typically deals with the realiza-
tion problem in order to produce an actual spatial model that can serve as a
solution, which is a tractable problem (see [11]). Other fundamental reason-
ing problems include the minimal labeling (or deductive closure) problem and
the redundancy problem [12]. The minimal labeling problem is the problem of

162 G. Glorian et al.

Fig. 1. Illustration of the base RCC8 relations

finding the strongest implied constraints of the QCN, and the redundancy prob-
lem is the problem of determining if a given constraint in the QCN is entailed by
the rest of the network (that constraint being called redundant, as its removal
does not change the solution set of the QCN). The problems of redundancy,
minimal labeling, and satisfiability are all equivalent under polynomial Turing
reductions [13].

Research in RCC8 usually focuses either on symbolically checking the satis-
fiability of a QCN or on presenting a method to realize (valuate) a satisfiable
QCN. To the best of our knowledge, combining those two lines of research in
an interrelating manner has not been considered in the literature, as the first
line deals with native constraint-based methods, and the second one with rich
mathematical structures that are difficult to implement. In this paper, we bind
those two lines of research together in a unified and homogeneous approach by
means of an incremental SAT-based technique known as CEGAR, which stands
for Counter-Example Guided Abstraction Refinement [14]. The idea is as fol-
lows: instead of creating an equisatisfiable propositional formula as per the state
of the art [15], we generate an under-approximation formula (a formula which
is under-constrained, also called relaxation in other domains). Meaning, if an
under-approximation is unsatisfiable, then by construction the original formula
is unsatisfiable; otherwise, the SAT solver outputs a model that can then be
checked. It could be the case that the approach is lucky and the model of the
under-approximation is also a model of the original formula, in which case the
problem is decided. In general, the under-approximation is constantly refined,
i.e., it comes closer to the original formula and, in the worst-case, it will even-
tually become equisatisfiable with the original formula after a finite number of
refinements. Notably, CEGAR has been successfully proposed in many prob-
lems such as Bounded Model Checking [14], Satisfiability Modulo Theory [16],
Planning [17], the Hamiltonian Cycle Problem [18] and more recently within
Quantified Boolean Formulas (QBF) [19,20].

The idea of abstracting decision problems with a CEGAR-under approach is
well known in the SAT-community. However, the CP/OR community is probably

An Incremental SAT-Based Approach to Reason Efficiently on QCN 163

more familiar with the Logic-based Benders decomposition (LBBD) [21], which
can be viewed as the CEGAR-under approach for optimization. It is used in many
domains where we want to abstract and then solve an optimization problem.
LBBD approaches are orders of magnitude faster than state-of-the-art MIP for
all problems where it has been applied [22–24], just as their CEGAR counterparts
are against a direct encoding. One could also see the CEGAR-under approach
as a kind of Lazy-SMT approach [25,26], where the problem-specific knowledge
that is extracted from an abstraction is used to guide the refinement process,
instead of a theory solver.

2 Preliminaries

In this section, we will assume that the reader is familiar with basic notions
from graph theory and topology such as chordal graph, open and closed sets,
the interior and closure operators and with basic notions from geometry.

2.1 Region Connection Calculus

The Region Connection Calculus (RCC) [5] is a first order theory for repre-
senting and reasoning about mereotopological information between regions of
some topological space. Its relations are based on a connectedness relation C.
In particular, using C, a set of binary relations is defined. From this set, the
RCC8 fragment can be extracted: {DC, EC, PO, EQ, TPP, NTPP, TPP−1,
NTPP−1}. These eight ones are jointly exhaustive and pairwise disjoint, mean-
ing that only one of those can hold between any two regions. As noted in the
introduction, this fragment (illustrated in Fig. 1), will be referred to simply as
RCC8 for convenience.

We can view regions in RCC as non-empty regular subsets of some topological
space that do not have to be internally connected and do not have a particular
dimension, but that are usually required to be closed [27] (i.e., the subsets equal
the closure of their respective interiors). Let R(X) denote the set of all regions
of some topological space X . Then, we can have the following interpretation for
the basic relations of RCC8, where Ri denotes the interpretation of R for two
instantiated region variables. Semantically, binary relation R contains all the
possible instantiations of its pair of region variables.

Definition 1 (Set Notation of RCC8). Given two regions X and Y in R(X),
then:1

EQi(X,Y) iff X = Y

DCi(X,Y) iff X ∩ Y = ∅
ECi(X,Y) iff X̊ ∩ Y̊ = ∅,X ∩ Y �= ∅

1 Å denotes the interior of A.

164 G. Glorian et al.

POi(X,Y) iff X̊ ∩ Y̊ �=∅,X � Y, Y � X

TPPi(X,Y) iff X ⊂ Y,X � Y̊

TPP−1
i (X,Y) iff Y ⊂ X,Y � X̊

NTPPi(X,Y) iff X ⊂ Y̊

NTPP−1
i (X,Y) iff Y ⊂ X̊

Given two basic relations R and S of RCC8 that involve the pair of vari-
ables (i, j) and (j, k) respectively, the weak composition of R and S, denoted by
CT(R,S), yields the strongest relation of RCC8 that contains R ◦ S, i.e., it
yields the smallest set of basic relations such that, each of which can be satisfied
by the instantiated variables i and k for some possible instantiation of variables
i, j, k with respect to relations R and S. We remind the following definition of
the weak composition operation from [28]:

Definition 2 (Weak Composition CT). For two basic relations R, S of
RCC8, their weak composition CT(R,S) is defined to be the smallest subset
{T1,T2, . . . ,Tn} of 2RCC8 such that Ti ∩ (R ◦ S) �= ∅ ∀i ∈ {1, . . . , n}.

The result of the weak composition operation for each possible pair of basic
relations of RCC8 is provided by a dedicated table, called the weak composition
table [29] (RCC8 CT for short), shown in Table 1. The weak composition oper-
ation for two general RCC8 relations can be computed by unifying the results
(sets) of the weak composition operations for all ordered pairs of basic relations
that involve a basic relation from the first general relation and a basic relation

Table 1. The RCC8 CT, where * specifies the universal relation

CT DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC * DC EC PO

TPP NTPP

DC EC PO

TPP NTPP

DC EC PO

TPP NTPP

DC EC PO

TPP NTPP

DC DC DC

EC DC EC PO

TPP−1

NTPP−1

DC EC PO

TPP

TPP−1 EQ

DC EC PO

TPP NTPP

EC PO

TPP NTPP

PO TPP

NTPP

DC EC DC EC

PO DC EC PO

TPP−1

NTPP−1

DC EC PO

TPP−1

NTPP−1

* PO TPP

NTPP

PO TPP

NTPP

DC EC PO

TPP−1

NTPP−1

DC EC PO

TPP−1

NTPP−1

PO

TPP DC DC EC DC EC PO

TPP NTPP

TPP NTPP NTPP DC EC PO

TPP

TPP−1 EQ

DC EC PO

TPP−1

NTPP−1

TPP

NTPP DC DC DC EC PO

TPP NTPP

NTPP NTPP DC EC PO

TPP NTPP

* NTPP

TPP−1 DC EC PO

TPP−1

NTPP−1

EC PO

TPP−1

NTPP−1

PO TPP−1

NTPP−1
PO TPP

TPP−1 EQ

PO TPP

NTPP

TPP−1

NTPP−1
NTPP−1 TPP−1

NTPP−1 DC EC PO

TPP−1

NTPP−1

PO TPP−1

NTPP−1
PO TPP−1

NTPP−1
PO TPP−1

NTPP−1
PO TPP

NTPP

TPP−1

NTPP−1

EQ

NTPP−1 NTPP−1 NTPP−1

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

An Incremental SAT-Based Approach to Reason Efficiently on QCN 165

from the second one. Henceforward, a general RCC8 relation will be represented
by the set of its basic relations.

In order to concretely capture the qualitative spatial information that is
entailed by a knowledge base of RCC8 relations, we will use the notion of a
Qualitative Constraint Network (QCN), defined as follows:

Definition 3 (Qualitative Constraint Networks (QCN)). A QCN of RCC8
is a pair N = (V,C) where V is a non-empty finite set of variables (each one
corresponding to a region), and C is a mapping associating a relation C(v, v′) ∈
2RCC8 with each pair (v, v′) of V ×V . Further, mapping C is such that C(v, v) ⊆
{EQ} and C(v, v′) = (C(v′, v))−1.

Concerning a QCN N = (V,C), we have the following definitions: An instan-
tiation of V is a mapping σ defined from V to the domain R(X). A solution
(realization) σ of N is an instantiation of V such that for every pair (v, v′) of
variables in V , (σ(v), σ(v′)) satisfies C(v, v′), i.e., there exists a basic relation
b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b. N is satisfiable if and only if it admits a
solution. The constraint graph of a QCN N is the graph (V,E), denoted by GN ,
for which we have that {v, v′} ∈ E if and only if C(v, v′) �= RCC8 (i.e., C(v, v′)
corresponds to a non-universal relation) and v �= v′.

In this article, we restrict ourselves to QCNs that, when satisfiable, are real-
izable with rectangles. As pointed out in [30, Example 1], there exist QCNs for
which it is not possible to find a rectangular realization using a single rectangle
for a region (though it is still possible if more rectangles per region are used).
However, for hard-to-solve instances, which concern us here and which typically
involve a lot of indefinite knowledge and, hence, are flexible in terms of realizing
them, it is rarely (if ever) the case that a rectangular realization will not be
attainable for a satisfiable QCN (see Sect. 5).

2.2 Propositional Logic

The Propositional Logic will be denoted by CPL. It is the logic of reasoning
about what is True and what is False. The syntax of CPL can be formally
defined as follows:

Definition 4 (Language of the Propositional Logic). Let P be a countably
infinite non-empty set of propositional variables. The language of propositional
logic (denoted by CPL) is the set of formulas containing P, closed under the set
of propositional connectives {¬,∧}.

Without loss of generality, we will assume all the formulas of CPL to be
in Conjunctive Normal Form (CNF) because any formula can be translated
into an equisatisfiable CNF formula using the Tseitin algorithm [31]. Regarding
the semantics aspect of the propositional logic, the notion of interpretation is
important. It is defined as follows:

Definition 5 (Interpretation). An interpretation is a set of valuations of
propositional variables. Formally, it is a mapping P → {True, False}.

166 G. Glorian et al.

An interpretation is a model of φ if φ is true for that interpretation. If a
formula φ has at least one model M, we will say that this formula is satisfiable;
M |= φ will denote that M satisfies φ. Formally, the satisfiability relation is
defined as follows:

Definition 6 (Satisfaction Relation in CPL). The relation |= between
Interpretations M and formulas φ in CPL is recursively defined as follows:

M |= p iff p ∈ M
M |= ¬φ iff M �|= φ

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2

If a formula is satisfiable by any interpretation, we will say that this formula
is valid ; in that case the formula is a tautology and we will denote it by |= φ.
If a formula is false for any interpretation, we will say that this formula is
unsatisfiable.

2.3 CEGAR Preliminaries

Counter-Example-Guided Abstraction Refinement, CEGAR for short, is an
incremental way to decide the satisfiability of formulas in classical propositional
logic (CPL). It has been originally designed for model checking [14], i.e., to
answer questions such as “Does S |= P hold?” or, likewise, “Is S ∧ ¬P unsatisfi-
able?”, where S describes a system and P a property. In such highly structured
problems, it is often the case that only a small part of the formula is needed to
answer the question. The keystone of CEGAR is to replace φ = S ∧ ¬P by an
abstraction φ′, where φ′ should be easier to solve in practice than φ. There are
two kinds of abstractions: an over-abstraction (resp. under-abstraction) of φ is
a formula φ̂ (resp. φ̌) such that φ̂ |= φ (resp. φ |= φ̌) holds. φ̂ has at most as
many models as φ and φ̌ has at least as many models as φ. Usually, φ is in CNF.
An illustration of a CEGAR approach using under-abstraction is given in Fig. 2.

Fig. 2. The CEGAR framework with under-abstraction

An Incremental SAT-Based Approach to Reason Efficiently on QCN 167

To be sound, complete, and to terminate, a CEGAR approach has to verify the
following assumptions (proofs can be obtained from [32, Theorems 1, 2 and 3]):

1. “solve” is sound, complete, and terminates;
2. if φ̌ is unsatisfiable, then φ is unsatisfiable;
3. “check(λ, φ)” returns true if λ is a model of φ;
4. ∃ n ∈ N such that refinen(φ̌) is equisatisfiable with φ.

As we will use a SAT solver in our approach, we will suppose that the embed-
ded SAT solver is well coded and that it is sound, complete, and terminates, so
that CEGAR-under Assumption (1) is satisfied. Having introduced the notions
needed to understand the contributions, we can proceed to the first of them,
which is encoding RCC8 into propositional logic in such a convenient way that
it allows us to easily verify the CEGAR-under Assumptions (2) and (4).

3 Encoding RCC8 into SAT

To obtain a SAT encoding of the RCC8 satisfiability problem, we need to define
how to translate the different possible relations. We will represent a region i as
a set of four variables {x−

i , y−
i , x+

i , y+
i } as illustrated in Fig. 3.

Fig. 3. Illustration of how a region is represented

All the possibles cases for every relation may be found and proved, along with
their link with Point Algebra, in [33, Table 6.2]. From this encoding, we can then
propose the following SAT encoding which translates all the edges possible:

Definition 7 (SAT Translation – tr). For all relations R in all the given
edges (i, j) of the input problem N we have:

tr(N) :=
∧

∀(R,i,j)∈N
tr(R, i, j)

Then from [33, Table 6.2], if we want to translate for example the relation
EC between nodes i and j (the procedure is similar for other RCC8 relations),
we will have the following SAT encoding as per Definition 7:

168 G. Glorian et al.

Definition 8 (SAT Translation of EC on the edge i-j)

tr(EC, i, j) := EC(i, j) → (ECr(i, j) ∨ ECl(i, j) ∨ ECu(i, j) ∨ ECd(i, j))

From this definition, we can see that the relation EC for the edge (i, j) can
only be satisfied by 4 different cases, viz., left, right, up, down. Each case is
defined as follows:

ECr(i, j) →((x
−
i < x

−
j) ∧ (x

−
i < x

+
j)) ∧

((x
−
i = x

+
j) ∧ (x

+
i < x

+
j)) ∧

((y
−
i < y

+
j) ∨ (y

−
i < y

+
j)) ∧

((y
+
i < y

−
j) ∨ (y

+
i < y

−
j))

ECu(i, j) →((x
−
i < x

−
j) ∨ (x

−
i = x

−
j)) ∧

((x
−
i > x

+
j) ∨ (x

−
i = x

+
j)) ∧

((y
−
i < y

−
j) ∧ (y

−
i < y

+
i)) ∧

((y
+
i = y

−
j) ∧ (y

+
i < y

+
j))

ECl(i, j) →((x
−
i > x

−
j) ∧ (x

−
i = x

+
j)) ∧

((x
−
i > x

+
j) ∧ (x

+
i > x

+
j)) ∧

((y
−
i < y

+
j) ∨ (y

−
i < y

+
j)) ∧

((y
+
i < y

−
j) ∨ (y

+
i < y

−
j))

ECd(i, j) →((x
−
i < x

−
j) ∨ (x

−
i = x

−
j)) ∧

((x
−
i > x

+
j) ∨ (x

−
i = x

+
j)) ∧

((y
−
i > y

−
j) ∧ (y

−
i = y

+
i)) ∧

((y
+
i > y

−
j) ∧ (y

+
i > y

+
j))

The inverse relations are defined as usual: TPP−1(i, j) = TPP(j, i) and
NTPP−1(i, j) = NTPP(j, i). For every node in the QCN with N nodes that
we want to solve, we will add the following constraint assuring that all the point
coordinates are in good order:

N∧

i=1

((x−
i < x+

i) ∧ (y−
i < y+

i))

We want to point out that, if the propositional variable (A < B) is true, then the
variables (A > B) and (A = B) are false. To express this, we use the following
clauses:

AMO :=
∧

a∈{x,y}

∧

c1∈{−,+}

∧

c2∈{−,+}

N∧

i=1

N∧

j=1

⎛

⎜⎜⎜⎝

((ac1i < ac2j) ∨ (ac1i = ac2j) ∨ (ac1i > ac2j)) ∧
(¬(ac1i < ac2j) ∨ ¬(ac1i = ac2j)) ∧
(¬(ac1i < ac2j) ∨ ¬(ac1i > ac2j)) ∧
(¬(ac1i = ac2j) ∨ ¬(ac1i > ac2j)) ∧

⎞

⎟⎟⎟⎠

(1)

Thanks to Eq. 1 (AMO – At Most One), we can thus replace, for example, in
EC (i,j) (u), (x−

i < x+
j) ∨ (x−

i = x+
j) by ¬(x−

i > x+
j). The same applies for

all the disjunctions in [33, Table 6.2]. Last but not least, we want to ensure the
transitivity of the relations on all the possible coordinates; this will have the
biggest impact on the size of the generated CNF. For all the triplets (i, j, k) in a
triangulation (chordal completion of the constraint graph of an input QCN), we

An Incremental SAT-Based Approach to Reason Efficiently on QCN 169

must add the following rules for every combination (c1, c2) that can be assured
by transitivity ∈ {(−,−), (−,+), (+,−), (+,+)} and for both axis a ∈ {x, y}:

transitivity(i, j, k) :=
∧

⎛

⎜⎜⎜⎜⎝

((ac1
i = ac1

j) ∧ (ac1
j = ac2

k)) → (ac1
i = ac2

k)
((ac1

i < ac1
j) ∧ ¬(ac1

j > ac2
k)) → (ac1

i < ac2
k)

((ac1
i > ac1

j) ∧ ¬(ac1
j < ac2

k)) → (ac1
i > ac2

k)
((ac1

j > ac2
k) ∧ ¬(ac1

i < ac1
j)) → (ac1

i > ac2
k)

((ac1
j < ac2

k) ∧ ¬(ac1
i > ac1

j)) → (ac1
i < ac2

k)

⎞

⎟⎟⎟⎟⎠

We will not enter the details of how a graph can be made chordal; it is a
standard procedure and we redirect the reader to [34] for more information about
how it can be done. It is worth noting that triangulating a graph can take linear
time in the size of the output chordal graph. Before moving to the CEGAR part,
we need to prove that the encoding we designed is sound and complete.

Theorem 1. Let N = (V,C) be a QCN of RCC8, and G a chordal supergraph
of the constraint graph of N . If toSAT(N) is defined as follows:

toSAT(N) := tr(N) ∧ AMO ∧
N∧

i=1

((x−
i < x+

i) ∧ (y−
i < y+

i))

∧
∧

(i,j,k)∈G

transitivity(i, j, k)

then toSAT(N) is equisatisfiable with N .

Proof. We need to show that toSAT(N) is equisatisfiable with N . In order to

do so, we split toSAT(N) in two parts. The first one (tr(N) ∧ AMO ∧
N∧
i=1

((x−
i <

x+
i) ∧ (y−

i < y+
i))) is obviously the input problem; this representation comes

from [33] and the relation with Point Algebra (PA). As proven in [35], it is
enough to check the path consistency with respect to the chordal graph, so the
real difficulty of this proof is demonstrating why by adding a finite number of
transitivity constraints does the translation become equisatisfiable. The intu-
ition is that, each time we add a transitivity constraint transitivity(i, j, k),
we force the SAT solver to find only relations in this triangle which match the
weak composition table CT (Table 1). For this purpose, we need to enumerate
all the cases pertaining to the CT and show that, each time, the transitivity
constraints force the solver to find only relations allowed by the CT. Let us
consider the following case: (i, j) has the relation EQ and (j, k) has the rela-
tion NTPP. Then by the CT, the transitivity constraints should force to find
NTPP on (i, k). Because of what we assume true, we have the following propo-
sitional variables assigned to true: (x−

i = x−
j), (y−

i = y−
j), (x−

i < x+
j), (y−

i <

y+
j), (x+

i > x−
j), (y+

i > y−
j), (x+

i = x+
j), (y+

i = y+
j) (which encodes EQ(i, j)) and

170 G. Glorian et al.

(x−
j > x−

k), (y−
j > y−

k), (x−
j < x−

k), (y−
j < y+

k), (x−
j > x+

k), (y−
j > y−

k), (x−
j <

x+
k), (y−

j < y+
k) (which encodes NTPP(j, k)). Then, we want to obtain the

following:

(1.a) (x−
i > x−

k) (1.b) (y−
i > y−

k)

(2.a) (x−
j < x−

k) (2.b) (y−
j < y+

k)

(3.a) (x−
j > x+

k) (3.b) (y−
j > y−

k)

(4.a) (x−
j < x+

k) (4.b) (y−
j < y+

k)

1.a We have (x−
i = x−

j) and (x−
j > x−

k). Due to the transitivity constraint
transitivity(i, j, k) at one point, we add the clause: ((x−

i = x−
j)∧¬(x−

j <

x−
k) → (x−

i > x−
k)). Then, because of AMO, we have ((x−

j > x−
k) → ¬(x−

j <

x−
k)). Thus we have (x−

i > x−
k).

2.a We have (x−
i = x−

j) and (x−
j < x+

k). Due to the transitivity constraint
transitivity(i, j, k) at one point, we add the clause: (¬(x−

i < x−
j)∧ (x−

j <

x+
k) → (x−

i < x+
k)). Then, because of AMO, we have ((x−

i = x−
j) → ¬(x−

i <

x−
j)). Thus we have (x−

i < x+
k).

3.a We have (x+
i = x+

j) and (x+
j > x−

k). Due to the transitivity constraint
transitivity(i, j, k) at one point, we add the clause: (¬(x+

i < x+
j)∧ (x+

j >

x−
k) → (x+

i > x−
k)). Then, because of AMO, we have ((x+

i = x+
j) → ¬(x+

i <

x+
j)). Thus we have (x+

i > x−
k).

4.a We have (x+
i = x+

j) and (x+
j < x+

k). Due to the transitivity constraint
transitivity(i, j, k) at one point, we add the clause: (¬(x+

i > x+
j)∧ (x+

j <

x+
k) → (x+

i > x+
k)). Then, because of AMO, we have ((x+

i = x+
j) → ¬(x+

i >

x+
j)). Thus we have (x+

i < x+
k).

The cases on the y-axis (1.b, 2.b, 3.b and 4.b) are similar to the one on the
x-axis. From this point forward, we just have to enumerate in that way all the
possible cases pertaining to the weak composition table. This would be extremely
space-consuming so we leave it as exercise for the reader. ��

We just saw that if we encode all the transitivity cases for every triangle in
the respective chordal graph in accordance with our description, we obtain an
equisatisfiable SAT encoding. However, when we take a closer look at what can
be time-consuming, function transitivity is exactly what we want to avoid at
any cost due to the size of its encoding, and that is why we propose a CEGAR
approach to circumvent it.

4 Translating Parsimoniously the Transitivity Constraints

As we explained earlier, the function transitivity can be costly and it hence
needs to be avoided if we want to have a competitive approach. This is exactly
the hypothesis on which our CEGAR approach rests. Let us take the example

An Incremental SAT-Based Approach to Reason Efficiently on QCN 171

Fig. 4. An example of the constraint graph of an RCC8 problem φ, (the labels denote
the corresponding RCC8 relations), in red the edges added to make the graph chordal

illustrated in Fig. 4, a RCC8 problem with 5 nodes and 5 relations given as input
(the relations are shown in black in Fig. 4). Thus, when we translate this
problem into a propositional logic formula, we obtain the following rules:

under(φ) = tr(EC, 0, 1) ∧ tr(EC, 1, 2) ∧ tr(EC, 2, 3) ∧ tr(EC, 0, 1)
∧ tr(EQ, 3, 4) ∧ tr(DC, 3, 4) ∧ tr(EQ, 4, 0) ∧ tr(DC, 4, 0)
∧ EC0,1 ∧ EC1,2 ∧ EC2,3 ∧ (EQ3,4 ∨ DC3,4) ∧ (EQ4,0 ∨ DC4,0)

∧ AMO ∧
4∧

i=0

((x−
i < x+

i) ∧ (y−
i < y+

i))

Theorem 2. Let φ be a QCN, then under(φ) is an under-abstraction of φ (i.e.,
it has at least the same amount of models).

Proof. under(φ) is a subset of clauses of the equisatisfiable encoding (Theo-
rem 1). Thus if under(φ) is unsatisfiable, then φ is also unsatisfiable by definition
of the logical conjunction.

At this point, the translation is an under-abstraction of the original problem,
i.e., if it is unsatisfiable, then for sure the problem is unsatisfiable, but a model
of this translation does not imply that it exists a model for the original problem.
The CEGAR Assumption (2) is respected by construction of the translation, to
obtain this equisatisfiability we need to have:

toSAT(φ) = under(φ)
∧ transitivity(0, 1, 2)
∧ transitivity(0, 2, 3)
∧ transitivity(0, 3, 4)

As the number of triangles in a chordal graph is bounded by a number N
(worst case: N = |V |3 when the graph is complete), we can now easily see that
after we translate the transitivity of each triangle (an operation that we will call
a refinement in what follows), we can refine the problem N times and obtain an
equisatisfiable formula. This allows us to respect the CEGAR Assumption (4).

172 G. Glorian et al.

Algorithm 1. CEGAR-RCC8(N)
Data: N=(V,C) with n variables
Result: A realization of N if it is possible to obtain one, UNSAT otherwise

1 G ← (V, E ← E(GN));
2 setOfTriangles ← Chordal(G);
3 transitivity ← �;
4 ψ ← under(N) ; // under-abstraction step

5 while (setOfTriangle �= ∅) do
6 λ ← SAT-Solver(ψ ∧ transitivity) ; // solve step

7 if (λ = ⊥) then return UNSAT ;
8 res ← check(λ, N) ; // check step

9 if (res = null) then return interpret(λ) ;
10 else
11 setOfTriangle.remove(res);
12 transitivity ← transitivity ∧transitivity(res) ; // refinement step

13 λ ← SAT-Solver(ψ ∧ transitivity) ; // worst case: equisatisfiability

14 if (λ = ⊥) then return UNSAT ;
15 else return interpret(λ) ;

Concerning the CEGAR Assumption (3), we need to find a way to check effi-
ciently if a returned model of the under-abstraction is also a model of the original
formula. For this purpose, we used the algorithm Directional Path Consistency
(DPC) presented in [36–38]. Our function check performs the model-checking
and returns the triangle which results in the assignment of the empty set to
some relation. From this point forward, if the checker returns the triangle (i, j,
k) and we consequently add the transitivity constraint transitivity(i, j, k) in
the propositional formula, then it is impossible for the checker to return once
again the same triangle. As discussed earlier, the maximum set of transitivity
constraints that we need to add is of finite size, at which point we will have an
equisatisfiable formula.

We now have all the pieces to create two different ways to solve the satisfi-
ability and at the same time the realization problem in RCC8. The first one is
by using a direct encoding (with the function toSAT(N)). The second one is by
using a CEGAR approach for it, like the one presented in Algorithm1, which in
the worst-case (the case where all the transitivity rules must be considered) will
end-up being just a slightly slower version of the direct encoding; however, this
has been experimentally found to never occur in practice (see Sect. 5). Moreover,
every time we have that the instance is satisfiable, we also obtain an interpre-
tation of the model returned by the SAT solver. In other words, we solve the
satisfiability and realization problems together.

5 Experimental Results

Now that we have a new SAT encoding and a CEGAR approach for solv-
ing the satisfiability and realization problems in RCC8, we want to compare

An Incremental SAT-Based Approach to Reason Efficiently on QCN 173

against the state-of-the-art. For this purpose, we implemented the approach
within the solver Churchill2 and we used Glucose [39,40] as an internal SAT
solver. We will compare Churchill in direct-encoding and CEGAR mode against
the state-of-the-art qualitative spatial reasoners for RCC8, which are GQR [41],
Renz-Nebel01 [42], RCC8SAT [15], PPyRCC8 [35], and Chordal-Phalanx [43].
Each solver is using default settings, except GQR, which is using the flag “-c
horn”. By using the flag “-c horn”, GQR decomposes an RCC8 relation into horn
sub-relations (which is standard behavior for the rest of the solvers), instead of
basic relations; this changes the branching factor from 4 to ∼1.4. Moreover,
PPyRCC8 and Chordal-Phalanx are run using PyPy as recommended by their
authors to improve the overall performance. We compare these solvers on four
categories of benchmarks.

1. The first set consists of random hard instances that have been generated
with: “gencsp -i 100 -n 100 -d 10 15 0.5 -r nprels”.3 In particular,
it consists of 100 instances of 100 nodes for every average degree from 10.0 to
15.0 with a 0.5 step and using only relations that result to NP-completeness
(nprels); thus, a total of 1 100 QCNs were generated.

2. The second set is generated exactly like the first one but with 500 nodes
instead of 100 and for a range of d between 10.0 and 20.0, consisting of a
total of 2100 QCNs.

3. The third set is the random-scale-free-like-instances [44], which consists of
300 instances, 30 instances for every size from 1 000 to 10 000 nodes with a
1 000 step. These instances are normal to hard.

4. The fourth set is the random-scale-free-like-np8-instances [44], which consists
of 70 instances, 10 for every size from 500 to 3 500 nodes with a 500 step.
These instances are hard to very hard as they are defined solely by nprels.

Regarding sets 3 and 4, scale-free networks are networks whose degree dis-
tribution follows a power law [45]; notably, structured networks have been used
extensively in the recent literature [15,44]. The experiments were run on a clus-
ter of Xeon, 4 cores, 3.3 GHz with CentOS 7.0 with a memory limit of 32 GB
and a runtime limit of 900 s per solver per benchmark. All solvers’ answers were
checked by verifying if all the solvers gave the same output for each benchmark.
No discrepancy was found. This means that the cases where satisfiable QCNs
are not realizable with rectangles did not appear in our datasets.

Regarding Figs. 5 and 6, which show the runtime distributions of the different
solvers for the first and second set of instances, we can see that Churchill and
GQR are extremely fast to solve the respecting sets. Indeed, it took at most
1.42 s for Churchill to solve the hardest instance of the first set and 10.10 s for
GQR, and 32.70 s on the second set for Churchill. For Churchill, the speed-up is
because we perform in average a small number of CEGAR loops (avg: 8.90 for
first set and 11.87 for second set). However, when we take a look at the direct

2 The name comes from the historical figure who used to also do a lot of CEGAR.
3 The generator comes with the Renz-Nebel01 solver.

174 G. Glorian et al.

Fig. 5. Runtime distribution on the first
set

Fig. 6. Runtime distribution on the sec-
ond set

translations (RCC8SAT and Churchill Direct), 500 nodes is already too much
and this blows up the allowed memory.

Table 2 shows the number of benchmarks solved for sets 3 and 4. The best
results of a given row are presented in bold and the number of benchmarks which
cannot be solved because of lack of memory is provided between parenthesis (if
such benchmarks do not exist a dash is displayed). The line VBS represents the
Virtual Best Solver (a practical upper-bound on the performance achievable by
picking the best solver for each benchmark). On the third set, we can see the

Table 2. Results on sets 3 (left) and 4 (right)

random-scale-free-like-instances random-scale-free-like-np8-instances

#Nodes (x1000) < 6 6 7 8 9 10 0.5 1 1.5 2 2.5 3 3.5
#Instances 150 30 30 30 30 30 10 10 10 10 10 10 10

Renz-Nebel01 0 0 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - - - -
0 0 0 0 0 0 0 0 0 0 0 0 0RCC8SAT (150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

PPyRCC8 134 19 20 21 23 23 10 9 10 8 7 3 3
(14) (8) (7) (7) (7) (4) - - - - (1) (5) (7)
150 30 30 30 30 30 10 10 10 10 10 10 10Chordal-Phalanx - - - - - - - - - - - - -

GQR-1500 150 30 30 30 30 30 10 10 9 6 10 8 9
- - - - - - - - - - - - -
0 0 0 0 0 0 0 0 0 0 0 0 0Churchill Direct (150) (30) (30) (30) (30) (30) (10) (10) (10) (10) (10) (10) (10)

Churchill CEGAR 150 30 30 18 8 6 10 10 10 10 10 10 10
- - - (10) (20) (24) - - - - - - -

VBS 150 30 30 30 30 30 10 10 10 10 10 10 10

An Incremental SAT-Based Approach to Reason Efficiently on QCN 175

scalability of a CEGAR approach against a direct encoding (Churchill Direct)
or via a CP representation. The results are clear, when the number of nodes is
too big, the SAT approaches require too much memory or too much time for
the translation of the problem and, hence, become inefficient. The bigger the
network, the more time Churchill CEGAR spends model-checking the output of
the SAT solver and the more space is required to add transitivity constraints.
In some cases, we just reach the space limit and are unable to solve instances.

On the fourth set, we study the scalability on very hard instances that are of
reasonable size. We can see here that SAT solvers still have a hard time with the
size of the input, and that using a CEGAR approach instead of a direct encoding
leads to a huge improvement. Indeed, Churchill CEGAR managed to solve all
the instances, but, unfortunately, it took more time than Chordal-Phalanx to do
so in most cases (median: 37.97 s for Churchill vs 16.78 for Chordal-Phalanx);
however, it was faster in the worst-case (max: 163.10 s for Churchill vs 714.12 s
for Chordal-Phalanx). This is mainly due to the fact that model-checking many
times, which is typically the case when the network has a size between 2 000
and 3 500 nodes, is time-consuming. In fact, a sum-up of how the runtime of
Churchill is distinguished by Triangulation time, Checking time, and Solving
time is given in Table 3. When we analyze the results given in Table 3, the result
is clear: when the network is small (first and second sets) the main percentage
of the time is spent in the triangulation of the graph. When the network is big
(third and fourth sets) the main percentage of the time is spent in the Checking
time. But in any case, the SAT solver is not the bottleneck here. For all the
results, it is worth remembering that even if we are a little bit slower on sets 3
and 4, we are solving in the same time the realization problem, i.e., we output
a solution for the input problem, not only a decision about the satisfiability of
that problem.

Table 3. Sum-up of times for the three steps in Churchill

Time (s) Triangulation Checking Solving

min med max min med max min med max

First set 0.220 0.390 0.630 0.015 0.030 0.151 0.002 0.003 0.010

Second set 3.910 12.910 20.153 0.430 1.170 2.057 0.015 0.030 0.370

Third set 8.708 55.96 128.96 7.900 222.3 668.57 0.015 0.860 16.38

Fourth set 3.765 21.530 68.230 0.560 24.410 58.950 0.012 0.250 15.73

6 Conclusion

In this paper, a new approach for solving the satisfiability and realization
problems in RCC8 using an under-abstraction refinement approach within the
CEGAR framework has been proposed. We showed that our encoding is sound
and complete for satisfiable QCNs that are realizable with rectangles and we

176 G. Glorian et al.

instantiated it within the solver Churchill. We compared our approach against
solvers representing, to the best of our knowledge, the state-of-the-art for prac-
tical RCC8 solving, on a wide range of benchmarks of different size and diffi-
culty. We concluded that a basic direct-encoding approach is not competitive
at all, because many of the available benchmarks are huge and require a lot of
transitivity constraints in the SAT encoding. However, our CEGAR approach,
mixing SAT and UNSAT shortcuts, outperformed the other solvers on most of
the benchmarks considered.

As future work, seeing Table 3, we could improve the checker. Indeed, one
could think about avoiding checking unmodified sub-graphs twice by flagging
some nodes, i.e., checking only the part which was modified due to the previous
assignment. Moreover, to make the approach sound in any case and not just rect-
angles, one could think about extending the CEGAR approach into a RECAR
one [32] where the over-abstraction would be to consider more and more complex
shapes (points then rectangles then rectangles allowing holes, and so on).

Acknowledgments. The authors would like to thank the anonymous reviewers for
their insightful comments. Part of this work was supported by the French Ministry
for Higher Education and Research, the Haut-de-France Regional Council through the
“Contrat de Plan État Région (CPER) DATA” and an EC FEDER grant.

References

1. Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualita-
tive spatio-temporal reasoning and smart environments for assisting the elderly at
home. In: IJCAI Workshop on Qualitative Reasoning (2017)

2. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and temporal
reasoning: emerging applications, trends, and directions. Spat. Cogn. Comput. 11,
1–14 (2011)

3. Dubba, K.S.R., Cohn, A.G., Hogg, D.C., Bhatt, M., Dylla, F.: Learning relational
event models from video. J. Artif. Intell. Res. 53, 41–90 (2015)

4. Story, P.A., Worboys, M.F.: A design support environment for spatio-temporal
database applications. In: Frank, A.U., Kuhn, W. (eds.) COSIT 1995. LNCS,
vol. 988, pp. 413–430. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60392-1 27

5. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: KR (1992)

6. Bouzy, B.: Les concepts spatiaux dans la programmation du go. Revue
d’Intelligence Artificielle 15, 143–172 (2001)

7. Lattner, A.D., Timm, I.J., Lorenz, M., Herzog, O.: Knowledge-based risk assess-
ment for intelligent vehicles. In: KIMAS (2005)

8. Heintz, F., de Leng, D.: Spatio-temporal stream reasoning with incomplete spatial
information. In: ECAI (2014)

9. Randell, D.A., Galton, A., Fouad, S., Mehanna, H., Landini, G.: Mereotopological
correction of segmentation errors in histological imaging. J. Imaging 3(4), 63 (2017)

10. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal
tractable fragment of the region connection calculus. Artif. Intell. 108(1–2), 69–123
(1999)

https://doi.org/10.1007/3-540-60392-1_27
https://doi.org/10.1007/3-540-60392-1_27

An Incremental SAT-Based Approach to Reason Efficiently on QCN 177

11. Li, S.: On topological consistency and realization. Constraints 11, 31–51 (2006)
12. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In:

Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Log-
ics, pp. 161–215. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-
5587-4 4

13. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time:
a graph-theoretic approach. J. ACM 40, 1108–1133 (1993)

14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

15. Huang, J., Li, J.J., Renz, J.: Decomposition and tractability in qualitative spatial
and temporal reasoning. Artif. Intell. 195, 140–164 (2013)

16. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04772-5 40

17. Seipp, J., Helmert, M.: Counterexample-guided cartesian abstraction refinement.
In: Borrajo, D., et al. (eds.) Proceedings of ICAPS 2013. AAAI (2013)

18. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-
based method with native boolean cardinality handling for the hamiltonian cycle
problem. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
684–693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 52

19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–24 (2016)

20. Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Lonsing, F.,
Seidl, M. (eds.) Proceedings of QBF@SAT 2016, CEUR Workshop Proceedings,
vol. 1719. CEUR-WS.org (2016)

21. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.) PPCP
1994. LNCS, vol. 874, pp. 336–349. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58601-6 111

22. Chu, Y., Xia, Q.: A hybrid algorithm for a class of resource constrained scheduling
problems. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp.
110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/11493853 10

23. Hooker, J.N.: A hybrid method for the planning and scheduling. Constraints 10(4),
385–401 (2005)

24. Tran, T.T., Beck, J.C.: Logic-based benders decomposition for alternative resource
scheduling with sequence dependent setups. In: Proceedings of ECAI 2012 (2012)

25. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI),
vol. 2392, pp. 438–455. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45620-1 35

26. Ji, X., Ma, F.: An efficient lazy SMT solver for nonlinear numerical constraints.
In: Proceedings of WETICE 2012 (2012)

27. Renz, J.: A canonical model of the region connection calculus. JANCL 12, 469–494
(2002)

28. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal rea-
soning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer,
Heidelberg (2005). https://doi.org/10.1007/11564751 40

29. Li, S., Ying, M.: Region connection calculus: its models and composition table.
Artif. Intell. 145, 121–146 (2003)

30. Long, Z., Schockaert, S., Li, S.: Encoding large RCC8 scenarios using rectangular
pseudo-solutions. In: Proceedings of KR 2016 (2016)

https://doi.org/10.1007/978-1-4020-5587-4_4
https://doi.org/10.1007/978-1-4020-5587-4_4
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-319-11558-0_52
https://doi.org/10.1007/3-540-58601-6_111
https://doi.org/10.1007/3-540-58601-6_111
https://doi.org/10.1007/11493853_10
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/11564751_40

178 G. Glorian et al.

31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1 28

32. Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: A recursive shortcut for
CEGAR: application to the modal logic K satisfiability problem. In: Proceedings
of IJCAI 2017 (2017)

33. Long, Z.: Qualitative spatial and temporal representation and reasoning: efficiency
in time and space. Ph.D. thesis, Faculty of Engineering and Information Technol-
ogy, University of Technology Sydney (UTS), January 2017

34. Savicky, P., Vomlel, J.: Triangulation heuristics for BN2O networks. In: Sossai,
C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 566–577.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02906-6 49

35. Sioutis, M., Koubarakis, M.: Consistency of chordal RCC-8 networks. In: Proceed-
ings of ICTAI 2012. IEEE Computer Society (2012)

36. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–
3), 61–95 (1991)

37. Long, Z., Sioutis, M., Li, S.: Efficient path consistency algorithm for large qualita-
tive constraint networks. In: Proceedings of IJCAI 2016 (2016)

38. Sioutis, M., Long, Z., Li, S.: Leveraging variable elimination for efficiently reasoning
about qualitative constraints. Int. J. Artif. Intell. Tools (2018, in press)

39. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

40. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

41. Westphal, M., Wölfl, S., Gantner, Z.: GQR: a fast solver for binary qualitative
constraint networks. In: Proceedings of the AAAI Spring Symposium. AAAI (2009)

42. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. J. Artif.
Intell. Res. 15, 289–318 (2001)

43. Sioutis, M., Condotta, J.-F.: Tackling large qualitative spatial networks of scale-
free-like structure. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS
(LNAI), vol. 8445, pp. 178–191. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07064-3 15

44. Sioutis, M., Condotta, J., Koubarakis, M.: An efficient approach for tackling large
real world qualitative spatial networks. Int. J. Artif. Intell. Tools 25, 1–33 (2016)

45. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-02906-6_49
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-07064-3_15
https://doi.org/10.1007/978-3-319-07064-3_15

Clause Learning and New Bounds
for Graph Coloring

Emmanuel Hebrard1(B) and George Katsirelos2(B)

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
hebrard@laas.fr

2 MIAT, UR-875, INRA, Toulouse, France
gkatsi@gmail.com

Abstract. Graph coloring is a major component of numerous allocation
and scheduling problems.

We introduce a hybrid CP/SAT approach to graph coloring based on
exploring Zykov’s tree: for two non-neighbors, either they take a different
color and there might as well be an edge between them, or they take the
same color and we might as well merge them. Branching on whether two
neighbors get the same color yields a symmetry-free tree with complete
graphs as leaves, which correspond to colorings of the original graph.

We introduce a new lower bound for this problem based on Myciel-
skian graphs; a method to produce a clausal explanation of this bound
for use in a CDCL algorithm; and a branching heuristic emulating Brelaz
on the Zykov tree.

The combination of these techniques in both a branch-and-bound
and in a bottom-up search outperforms Dsatur and other SAT-based
approaches on standard benchmarks both for finding upper bounds and
for proving lower bounds.

1 Introduction

A coloring of a graph is a labeling of its vertices such that adjacent vertices have
distinct labels. Let a labeling of the graph G = (V,E) be a mapping from its set
of vertices V to the integers. A labeling c such that c(v) �= c(u) for every edge
(uv) ∈ E is a coloring of G, and its cardinality is |{c(v) | v ∈ V }|. The chromatic
number χ(G) of a graph G is the cardinality of its smallest coloring.

The problem of finding a minimum coloring of a graph is NP-hard, but
has numerous applications. For instance when allocating frequencies, devices
on nearby locations should not be assigned the same frequency to avoid inter-
ferences. The chromatic number of this distance-induced graph is therefore the
minimum span of frequencies that is required [1,18]. In compilers, finding an
optimal register allocation can be cast as a coloring problem on an interference
graph of value live ranges [3].

G. Katsirelos—Partially supported by the french “Agence nationale de la
Recherche”, project DEMOGRAPH, reference ANR-16-C40-0028.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 179–194, 2018.
https://doi.org/10.1007/978-3-319-98334-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_12&domain=pdf

180 E. Hebrard and G. Katsirelos

One of the oldest and most successful technique for coloring a graph is Bre-
laz’ Dsatur algorithm [2]: when branching, the vertex with highest degree of
saturation is chosen and colored with the lexicographically least candidate. The
degree of saturation of a vertex v is the number of assigned colors within its
neighborhood NG(v) in G. In case of a tie, the vertex with largest number of
uncolored neighbors is chosen among the tied vertices. This heuristic is often
used within a branch-and-bound algorithm with one variable per vertex whose
domain is the set of possible colors. It is known as dom+deg in the CSP litera-
ture [6]. The standard approach for computing a bound in these algorithms is
to compute a heuristic approximation of the clique number ω(G) of the graph G
(e.g., the size of a maximal clique) since ω(G) ≤ χ(G). This bound is known to
be weak for some polynomially recognizable classes of graphs, such as Myciel-
skian graphs, which are triangle-free graphs with arbitrarily large chromatic
number [16]. Moreover, within the search tree explored using Brelaz’ heuristic,
the clique has to be found only among vertices with degree of saturation equal
to the number of colors in the current partial solution (i.e., adjacent to at least
one vertex of every color used so far). Finally, this formulation exhibits value
interchangeability [24]. One common way to break this symmetry is to arbitrar-
ily color a clique, and never branch on colors larger than k + 1 when extending
a solution with k colors [14,23,25].

Satisfiability [13,15] offers an attractive approach to coloring, in part because
it is trivial to encode the problem. In satisfiability, we express problems with
Boolean variables X. We say that a literal l is either a variable x or its negation x.
Constraints are disjunctions of literals, written interchangably as sets of literals
or as disjunctions, which are satisfied by an assignment if it assigns at least one
literal to true. In order to encode graph coloring with satisfiability, one typically
relies on color variables xvi, where xvi being true means vertex v takes color i.
For every edge (uv), there is a binary clause xvi∨xui for every color i. Then, if K
is the maximum number of colors, then there is a clause

∨
1≤i≤K xui. Refinements

to this encoding include Van Gelder’s log encoding versions, where xvj is true
if the j-th bit of the binary encoding of the color taken by vertex v is 1 [22].
However, the use of modern SAT solving techniques like restarting [7,8] and
clause learning [13] are not straightforward to combine with symmetry breaking
such as that of van Hentenryck et al. [23]. They can only be easily combined
with starting from an arbitrary coloring to a clique, but that is incomplete. The
color6 solver [25] uses symmetry breaking branching but forgoes restarting to
maintain complete symmetry breaking.

On the other hand, the search tree induced by Zykov’s deletion-contraction
recurrence [26] has no color symmetry and using the clique number as lower
bound is easier and more powerful than in the color variable formulation.

Let G/(uv) be the graph obtained by contracting u and v: the two vertices
are identified to a single vertex r(u) = r(v) = u, every edge (vw) is replaced
by (r(v)w) and self edges are discarded. Conversely, let G + (uv) be the graph
obtained by adding the edge (uv). The Zykov reccurrence is thus:

χ(G) = min{χ(G/(uv)), χ(G + (uv))} (1)

Clause Learning and New Bounds for Graph Coloring 181

Indeed, given a minimum coloring of G, either the vertices u and v have
distinct colors and therefore it is also a coloring of G + (uv), or they have the
same color and it is a coloring of G/(uv).

Example 1. Fig. 1 illustrates the Zykov reccurrence. From the graph G in Fig. 1a,
we obtain the graph G + (cd) shown in Fig. 1b by adding the edge (cd) and the
graph G/(cd) shown in Fig. 1c. One of these two graphs has the same chromatic
number as G.

a

b
c d

e

f

g

(a) G

a

b
c d

e

f

g

(b) G+ (cd)

a

b c, d

e

f

g

(c) G/(cd)

Fig. 1. Zykov reccurrence

This branching scheme was successfully used in a branch-and-price approach
to coloring [14]. In the context of satisfiability, Schaafsma et al. showed that a
clause encoding of Zykov formulation is not efficient [19]. For every non-edge
(uv), the edge variable euv stands for the decision of contracting the vertices
(euv = 1), or adding the edge (euv = 0). A difficulty is that a cubic number of
clauses are required, three for every triplet u, v, w, in order to forbid that exactly
two of the variables euv, euw and evw are true. This encoding proved too heavy
and as a result less efficient than the formulations using color variables. However,
Schaafsma et al. introduced a novel and clever way of taking advantage of Zykov’s
idea: when learning a clause involving color variables, one can compactly encode
all symmetric clauses using a single clause that only uses edge variables and
propagates the same as if all the symmetric clauses were present.

In this work, we propose a constraint programming formulation of color-
ing in Sect. 2 that also uses the Zykov branching scheme. We use the idea of
integrating constraint programming into clause learning satisfiability solvers by
simply having each propagator label each pruning or failure by a clausal reason
or explanation [10,17] to alleviate the cost of keeping the edge variables consis-
tent (Sect. 2.1) and to integrate a lower bound based on either cliques (Sect. 2.2)
or a more general bound based on Mycielskians (Sect. 2.3). Together with effec-
tive branching heuristics (Sect. 2.4) and search strategies that emphasize either
upper or lower bounds (Sect. 2.5), we get a solver that clearly outperforms the
state of the art in satisfiability-based coloring (Sect. 3).

182 E. Hebrard and G. Katsirelos

2 Clause-Learning Approach

In our approach, similar to that Schaafsma et al., we use a model which leads to
the exploration of the tree resulting from application of the Zykov recurrence.
We have one Boolean variable euv for each non-edge of the input graph, that is
for every (uv) /∈ E. When euv is true, the vertices v and u are contracted, hence
assigned the same color, and are separated otherwise, hence assigned different
colors. We somewhat abuse notation in the sequel and write clauses using vari-
ables euv even when (uv) ∈ E and assume that the variable is set to false at the
root of the search tree.

With every (partial) assignment A to the edge variables, we can associate a
graph GA. For the empty assignment, we have G∅ = G. For non-empty assign-
ments it is the graph that results from contracting all vertices u, v of G for
which A contains euv and adding an edge between all pairs of vertices u, v of G
for which A contains euv. When euv and evw are both true, this means that we
contract u and v and then contract w and r(v) and similarly for false literals.
The operation of contracting vertices is associative and commutative, so we get
the same graph GA regardless of the order in which we process the literals in A.

The property of having the same color is transitive, so if euv and evw are
true, then so is euw. Similarly, if euv is true and evw is false, then euw must also
be false. We enforce this using the constraint

Triangle({euv | (uv) /∈ E}) (2)

We can enforce GAC on this constraint using a decomposition of size O(|V |3):

(euv ∨ evw ∨ euw) ∀ distinct u, v, w ∈ V (3)

Enforcing unit propagation on this decomposition therefore takes O(|V |3)
time, amortized over a branch of the search tree. In our implementation, we
have opted instead for a dedicated propagator for this, described in Sect. 2.1,
whose complexity over a branch is only O(|V |2).

The model also includes a constraint Coloring which is satisfied by any
assignment that corresponds to a coloring with fewer than k colors.

Coloring({euv | (uv) /∈ E}, k) (4)

This constraint is clearly NP-hard. We describe two incomplete propagators
for it in Sects. 2.2 and 2.3. The first computes either the well known clique lower
bound (Sect. 2.2) and the second a novel, stronger, bound (Sect. 2.3). If that
bound meets or exceeds k, the propagator fails and produces an explanation.
Neither of these bounds is cheap to compute, hence the propagator runs at a
lower priority than unit propagation and the Triangle constraint.

Although we have experimented with pruning in this propagator, the rules
we have found tend to be ineffective, in the sense that they generate very little
pruning, barely reduce the overall search effort, and increase the overall runtime.

Clause Learning and New Bounds for Graph Coloring 183

Discussion. Clearly, our approach is closely related to that of Schaafsma et
al. However, there are some important differences. First, since we do not need
the color variables to compute the size of the coloring, we completely eliminate
the need for the clause rewriting scheme that they implement and get color
symmetry-free search with no additional effort. In addition, since we our model
uses a CP/SAT hybrid, we can use a constraint to compute a lower bound at
each node, thus avoiding a potentially large number of conflicts.

The approach of Schaafsma et al. does not enforce triangle consistency except
through the color variables (so that Xv = Xu ⇐⇒ euv). In contrast, the
triangle propagator maintains GAC on this constraint, without having to encode
channeling between the edge variables and the color variables.

The main drawback of this model is that we need a large number of variables.
This is especially problematic for large, sparse graphs, where the number of non-
edges is quadratic in the number of vertices and significantly larger than the
number of edges. Indeed, in 4 of the 125 instances we used in our experimental
evaluation, our solver exceeded the memory limit.

The approach of Schaafsma et al. does not have the same limitation, as they
introduce variables only when they are needed to rewrite a learnt clause, in a
way similar to lazy model expansion [4]. It is possible that this approach of
lazily introducing variables can be adapted to our model, but this, as well as
other ways of reducing the memory requirements, remains future work.

2.1 Triangle Consistency Propagation

The propagator for the Triangle constraints works as follows: for each vertex
v, we keep a bag b(v) to which it belongs. Initially, b(v) = {v} for all v. When we
set euv to true, we set eu′v′ to true for all v′ ∈ b(v), u′ ∈ b(u). We also set eu′v′ to
false for all v′ ∈ b(v) and u′ ∈ N(b(u) \ N(b(v)).1 Finally, we set B = b(u) ∪ b(v)
and update b(v′) = B for all v′ ∈ B. In the case where we set euv to false, we
set eu′v′ to false for all v′ ∈ b(v), u′ ∈ b(u).

A small but important optimization is that if the propagator is invoked for
euv becoming true (resp. false) but u and v are already in the same bag (resp.
already separated) then it does nothing. This ensures that it touches each non-
edge exactly once, hence its complexity is quadratic over an entire branch. This
is also optimal, since in the worst case every non-edge must be set either as a
decision or by propagation.

This propagator uses the clauses (3) as explanations. The mapping from
actions that it performs to explanations is fairly straightforward, using the ver-
tices involved in the literal that woke the propagator as “pivots”. For example,
if b(v) = {v, v′}, b(u) = {u, u′} and it is woken on the literal euv, it sets euv′

using (evv′ ∨ euv ∨ euv′) as the reason and then eu′v′ using (euv′ ∨ euu′ ∨ eu′v′).

1 We abuse the neighborhood notation and write N(S) for
⋃

u∈S N(u).

184 E. Hebrard and G. Katsirelos

2.2 Clique-Based Lower Bound

As we already discussed, an important advantage of the edge-variable based
model is that computing a lower bound for the current subproblem is as easy as
for the entire problem. For example, if the partial assignment in the current node
is A, the clique number of the graph GA is a lower bound for the subproblem.

In order to find a large clique we use the following greedy algorithm. Let o
be an ordering of the vertices, so we visit all vertices in the order vo1 , . . . , von .
We maintain an initially empty list of cliques. For each vertex, we add to all the
cliques which admit it and if no clique admits it we put it in a new singleton
clique. When this finishes, we iterate over the vertices one more time and add
them to all cliques which admit them, because in the first pass a vertex v was
not evaluated against cliques which were created after we processed v. We then
pick the largest among these cliques as our lower bound.

If the lower bound meets or exceeds the upper bound k, the propagator
reports a conflict. We construct a clausal conflict as follows: each vertex v of the
current graph is the result of the contraction of 1 or more vertices of the original
graph. In keeping with the notation for the triangle consistency propagator, we
call this the bag b(v). We arbitrarily pick one vertex r(v) from the bag of each
vertex v in the largest clique C, and set the explanation to

∨

v,u∈C

er(v)r(u) (5)

We have experimented with producing explanations with mixed-sign literals
and found that they tend to be much shorter and speed up search in terms
of number of conflicts per second, but significantly increase the overall effort
required, both in runtime and number of conflicts.

Preprocessing and Vertex Ordering. We tried a few different heuristics for order-
ing the vertices of the graph, including the inverse of the degeneracy order [11],
which tends to produce large cliques [5,9]. However, we found that it works best
to sort the vertices in order of decreasing bag size.

Lin et al. [12] recently proposed a reduction rule for graph coloring instances,
which allowed them to reduce the size of large, sparse graphs.

Proposition 1 ([12]). Let G be a graph with χ(G) ≥ k and let I be an indepen-
dent set of G such that for all v ∈ I, d(v) ≤ k. Then, k − 1 ≤ χ(G \ I) ≤ χ(G)
and if χ(G \ I) = k − 1 then χ(G) = k.

The rule of Proposition 1 can be used with any lower bound and applied
iteratively until no more reduction is possible. Besides the obvious advantage of
trimming the graph this reduction also helps improve the lower bound found by
a heuristic maximal clique algorithm. The reason is that whatever heuristic we
use for finding a maximal clique may make a suboptimal choice and this prepro-
cessing step removes some obviously suboptimal choices from consideration.

We have used this result for preprocessing, as Lin et al. did, but observed
very little benefit in our instance set, which comprises smaller and denser graphs

Clause Learning and New Bounds for Graph Coloring 185

than the one that they used. We also used it, however, to improve the ordering
for the greedy algorithm by placing such vertices at the end of the ordering. As
we will show in Sect. 3, this has a small but measurable impact.

2.3 Mycielski-Based Bound

Although being a useful bound in practice, the clique number is both hard to
compute and gives no guarantees on the quality of the bound. We propose here
a new lower bound inspired by Mycielskian graph.

Definition 1 (Mycielskian graph [16]). The Mycielskian graph μ(G) = (μ(V),
μ(E)) of G = (V , E) is defined as follows:

– μ(V) contains every vertex in V , and |V | + 1 additional vertices, constituted
of a set U = {ui | vi ∈ V } and another distinct vertex w.

– For every edge vivj ∈ E, μ(E) contains vivj , viuj and uivj . Moreover, it
contains all the edges between U and w.

The Mycielskian μ(G) of a graph G, has the same clique number, however
its chromatic number is χ(G) + 1. Indeed, consider a coloring of μ(G). For any
vertex vi ∈ V , we have N(vi) ⊆ N(ui), and therefore we can safely use the
same color vi as for ui. If follows that at least χ(G) colors are required for
the vertices in U , and since N(w) = U , then w requires a χ(G) + 1-th color.
Mycielski introduced these graphs to demonstrate that triangle-free graphs can
have arbitrarilly large chromatic numbers, hence the clique number does not
approximate the chromatic number.

The principle of our bound is a greedy procedure that can discover embedded
“pseudo” Mycielskians. Indeed, the class of embedded graphs that we look for is
significantly broader than set of “pure” Mycielskians {M2,M3,M4, . . .}. First,
we look for a partial subgraph. Therefore, trivially, Mycielskians with extra edges
also provide valid lower bounds. Moreover, we use as starting point a (poten-
tially large) clique. Finally, the method we propose can also find Mycielskians

(a) M2 (b) M3 (c) M4

Fig. 2. A 2-clique M2 = µ(∅), its Mycielskians M3 = µ(M2) and M4 = µ(M3)

186 E. Hebrard and G. Katsirelos

modulo some vertex contractions. Clearly, those are also valid lower bounds since
contracting vertices is equivalent to adding equality constraints to the problem.

Let NG(v) be the neighborhood of v in the graph G. Suppose that we have
a partial subgraph H = (VH , EH) of G such that χ(H) ≥ k. This can be for
example a clique of size k. We define

Sv = {u | NH(v) ⊆ NG(u)} (6)

Suppose that there exists a vertex w with at least one neighbor in every set Sv:

w ∈ ∩v∈VH
NG(Sv) (7)

and let u(v) be any element of Sv such that u(v) ∈ NG(w) and U = {u(v) | v ∈ V },
then:

Lemma 1. The graph

H ′ = (V ∪ U ∪ {w}, E ∪
⋃

v∈V

NH(v) × u(v) ∪
⋃

u∈U

{(u,w)})

is such that χ(H ′) ≥ k + 1.

Proof. The proof follows from the facts that H ′ is the Mycielskian graph of H
possibly with contracted vertices, and is embedded in G.

Suppose first that, for each v ∈ V , u(v) �= v and w �∈ V . Then we have
H ′ = μ(H) by using u(vi) for the vertex ui, and w for itself, in Definition 1.

Suppose now that H ′ �= μ(H). This can only be because either:

– For some vertex vi of H, we have u(vi) = vi. In this case, consider the graph
μ(H) and contract ui and vi. The resulting graph μ(H)/(uivi) has a chromatic
number at least as high as μ(H). However, it is isomorphic to H ′.

– The vertex w is the vertex vi from the original subgraph H. Here again
contracting vi and w in μ(H) yields H ′.

Notice that there is not a third case where w is taken among U since, for any
v ∈ VH , we have u(v) �∈ ∩v∈VH

NG(Sv) because u(v) is not a neighbor of itself.
Finally, it is easy to see that H ′ is embedded in G since the edges added to

H ′ are all edges of G. �

Example 2. Figure 3a shows the graph G/(cd) obtained by contracting vertices c
and d in the graph G of Fig. 1. Let H be the clique {a, b, c}. We have Sa = {a, e},
Sb = {b, f} and Sc = {c}. Furthermore, NG({a, e}) ∩ NG({b, f}) ∩ NG({c}) =
{b, c, g} ∩ {a, e, c, g} ∩ {a, b, e, g, f} = {g}, from which we can conclude that this
graph has chromatic number at least 4. As shown in Fig. 3b, when called with
H = {a, b, c} Algorithm 1 will extend it with a first layer U = {e, c, f} and an
extra vertex w = g. Notice that the graph obtained by adding the edge (cd) has
a 4-clique (see Fig. 1). Therefore, the graph G in Fig. 1a also has a chromatic
number of at least 4.

Clause Learning and New Bounds for Graph Coloring 187

a

b c

e

f

g

(a) H = G/(cd)

a

b c

u(a)

u(b)

w

(b) Trace of Algorithm 1 on H

Fig. 3. Embedded Mycielski

Algorithm 1 greedily extends a partial subgraph H = (VH , EH) of the graph
G (with χ(H) ≥ k) into a larger partial subgraph H ′ = (V ′

H , E′
H), following the

above principles. As long as this succeeds, in the outermost loop, we replace H
by H ′ and iterate. The computed bound k is equal to χ(H) plus the number of
successful iterations.

We compute the sets Sv (Eq. 6) and the set W of nodes with at least one
neighbor in every Sv in Loop 1. Then, if it is possible to extend H (Line 4), we
compute the pseudo Mycielskian (V ′

H , E′
H) as shown in Lemma 1 and replaces

H with it in Line 5 before starting another iteration.

Complexity. One iteration of Algorithm1 requires O(|VH | × |V |) bitset opera-
tions (Line 2 is 1 ‘AND’ operation and Line 3 is O(|V |) ‘OR’ operations and 1

Algorithm 1. MycielskiBound(k,H = (VH , EH), G = (V,E))

while |VH | < |V | do
W ← V ;
∀v ∈ VH Sv ← {v};

1 foreach v ∈ VH do
foreach u ∈ V do

2 if NH(v) ⊆ NG(u) then Sv ← Sv ∪ {u}
3 W ← W ∩ NG(Sv);

4 if W �= ∅ then
k ← k + 1;
(V ′

H , E′
H) ← (VH , EH);

w ← any element of W ;
foreach v ∈ VH do

V ′
H ← V ′

H ∪ { any element of (NG(w) ∩ Sv)};
E′

H ← E′
H ∪ {(wu)} ∪ {u × NH(v)};

5 (VH , EH) ← (V ′
H , E′

H);
else break
return k;

188 E. Hebrard and G. Katsirelos

‘AND’). The second part of the loop, starting from Line 4, runs in O(|VH |2) time.
Typically, the number of iterations is very small. In the worst case, it cannot be
larger than log |V | since the number of vertices in H is (more than) doubled at
each iteration. It follows that Loop 1 is executed at most 2|V | times, and there-
fore, the worst case time complexity is O(|V |2) bitset operations (hence O(|V |3)
time).

Explanation. Similarly to the clique based lower bound, the explanations that
we produce here correspond to the set of all edges in the graph H:

∨

(v,u)∈EH

euv (8)

Adaptive Application of the Mycielskian Bound. In our experiments, we found
that trying to find a Mycielskian subgraph in every node of the search tree
was too expensive and did not pay off in terms of total runtime. Therefore,
we adapted a heuristic proposed by Stergiou [20] which allows us to apply this
stronger reasoning less often. In particular, we only compute the clique lower
bound by default. But everytime there is a conflict, whether by unit propagation
or by bound computation, we compute the Mycielskian lower bound in the next
node. If that causes a conflict, we keep computing this bound until we backtrack
to a point where even the stronger bound does not detect a bound violation.
This has the effect that we compute the cheaper clique lower bound most of the
time, but learn clauses based on the stronger bound.

2.4 Branching Heuristic

Brelaz’ branching heuristic remains extremely competitive for finding good color-
ings, as evidenced by the performance of Dsatur in our experimental evaluation
(Sect. 3). Moreover, Schaafsma et al. observed that branching on color variables
was significantly better than branching on edge variables.

But adding the color variables is not really desirable. First, it adds the over-
head of propagating the reified equality constraints. Second, using these variables
to follow the Brelaz heuristic requires branching on them, which in trun requires
that we use some kind of symmetry breaking method, like the rewriting scheme
of Schaafsma et al. So it would be preferable to get the benefit of the more
effective branching heuristic without needing to introduce color variables.

In order to get behavior similar to that of Brelaz’ heuristic in the edge variable
model, we proceed as follows: we pick a maximal clique C in the current graph. We
pick the vertex v that maximises |N(v) ∩ C|, breaking ties by highest |N(v) \ C|,
and an arbitrary vertex u ∈ C \ N(v)2. We then set euv to true. This uses the
current maximal clique to implicitly construct a coloring and uses that to choose
the next vertex to color as Brelaz’ heuristic does. If the assignments euv are refuted
for all u ∈ C, then v is adjacent to all vertices in C and so C∪{v} is a larger clique,
which corresponds to using a new color in Brelaz’ heuristic.
2 We assume the graph is connected, otherwise u may not always exist.

Clause Learning and New Bounds for Graph Coloring 189

This branching strategy can be more flexible than committing to a coloring
by assigning the color variables. For example, unit propagation on learned clauses
as we exlore a branch of the search tree can make it so that the maximal clique
C ′ at some deep level is not an extension of the maximal clique C at the root
of the tree, i.e., C �⊆ C ′. The Brelaz heuristic on the color variables commits to
using C at the root, hence cannot take advantage of the information that C ′ is
a larger clique. The modification that we present here achieves this.

2.5 Solution Strategies

Previous satisfiability-based approaches to coloring have mostly ignored the opti-
mization problem of finding an optimal coloring of a graph and instead attack
the decision problem of whether a graph is colorable with k colors. In our set-
ting, we have the flexibility to do both. In particular, we implemented two search
strategies: branch-and-bound and bottom-up. The former uses a single instance
of a solver, finds a solution and then tightens the upper bound in the Coloring
constraint and continues searching. This is similar to the top-down approach one
would use when solving a series of decision problems, starting from a heuristic
upper bound and decreasing that until we generate an unsatisfiable instance, in
which case we have identified the optimum. The advantage of the branch-and-
bound approach is that it does not discard accumulated information between
solution: learned clauses and heuristic scores for variables. Moreover, it more
closely resembles the typical approach used in constraint programming systems.

The other approach we implemented is bottom-up: start from a lower bound
(such as those described in Sect. 2.2 or 2.3) and keep increasing until we find a
satisfiable instance, which gives the optimum. This has none of the advantages
of the branch-and-bound approach, as it is not safe to reuse clauses from a more
constrained problem in one that is less constrained. Moreover, it cannot generate
upper bounds before it finds the optimum. But it gains from the fact that the
more constrained problems it solves may be easier. One particular behavior we
have observed is that sometimes the lower bound computed at the root coincides
with the optimum and finding is quite easy with the bottom-up strategy, but
finding that solution with branch-and-bound can be very hard.

3 Experimental Evaluation

We implemented several variations of our approach using MiniCSP3 as the
underlying CDCL CSP solver, and retained two, one for each of the solution
strategies described in Sect. 2.5.4 The former, cdcl, is a branch-and-bound algo-
rithm, using Brelaz branching. The latter, cdcl↑, is a bottom-up algorithm,
using VSIDS. In both cases, we use the adaptive application of the Mycielskian
bound, as explained in Sect. 2.3. When computing the Mycielskian bound, we
apply Algorithm1 on all of the maximal cliques, and keep the best outcome.
3 Sources available at: https://bitbucket.org/gkatsi/minicsp.
4 Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.

https://bitbucket.org/gkatsi/minicsp
https://bitbucket.org/gkatsi/gc-cdcl/src/master/

190 E. Hebrard and G. Katsirelos

We compared with the state-of-art SAT-based solver color6 [25], a very
efficient clause-learning algorithm for graph coloring proposed recently by Zhou
et al. Similarly to our approach, it is based on a SAT solver (namely zChaff),
however, it uses the color-based formulation. It was shown to outperform the
state of the art on many instances. As color6 solves satisfiability instances
only (testing whether a coloring with a specific number of colors exists), we
implemented a branch-and-bound wrapper on top of it, denoted color6, as well
as well as a wrapper that implements the bottom-up strategy, denoted color6↑.
We used the lower and upper bounds computed by our approach (respectively
the maximal clique algorithm described in Sect. 2.2 and a greedy run of Brelaz)
as initial bounds for color6 and color6↑.

Moreover, we also compared with an implementation of Dsatur by Trick, and
an integer programming formulation in CPLEX. The model we used for CPLEX is
the trivial one using binary color variables (one for each vertex and each color),
and one binary inequality per edge. However, observe that CPLEX actually com-
putes maximal cliques in its preprocessing, so providing it with clique inequalities
would have been useless. Moreover, we initialized the upper bound with the same
method as for color6, and also arbitrarily fixed the colors of one maximal clique
in order to break symmetries.

Unfortunately, we could not compare our method to the method of Schaafsma
et al. (Minicolor) directly. Indeed, its implementation, generously provided by
the authors, is difficult to use in the type of extensive experiments of the type we
performed. Firstly, the algorithm is restricted to instances with at most 32 colors.
Secondly it solves the satisfiability problem χ(G) ≤ K and uses a file converter.
Finally, the changes made to Minisat’s code do not seem to be robust and we
experienced several occurrences of assertion failures.

We used 125 benchmark instances from Trick’s graph coloring webpage
(http://mat.gsia.cmu.edu/COLOR/color.html) and described in the proceedings
of the workshop COLOR02 [21]. In the subsequent tables, however, we omit 22
of these instances that were trivial for every approach we used (i.e., that solved
by every method to optimality). Every method was run with a time limit of one
hour and a memory limit of 3.5 GB5 on 4 nodes, each with 35 Intel Xeon CPU
E5-2695 v4 2.10 GHz cores running Linux Ubuntu 16.04.4.

The results in Tables 1 and 2 are averaged over instances from the same class
and the number of instances in each class is given next to the class name. We
show the ratio of instances for which a proof of optimality was found (‘opt’),
as well as the average upper bound (‘ub’) and lower bound (‘lb’), for every
method. The best results for each criterion are highlighted using colors. Table 1
focuses on top-down methods. cdcl is better on all but three classes of instances:
Insertions, qg (quasigroup) and queen. Moreover, it finds the same coloring as
the other methods in the Insertions class, and computes strictly more proofs of
optimality than other solvers in the two other classes. Finally, on many classes it
is strictly better than the second best solver (considering at least one criterion).
Table 2 focuses on the two bottom-up methods. Here again there are far more

5 cdcl exceeded the memory limit on 4 instances, and CPLEX on 16 instances.

http://mat.gsia.cmu.edu/COLOR/color.html

Clause Learning and New Bounds for Graph Coloring 191

Table 1. Comparison with top-down methods (by classes of instances)

cdcl color6 CPLEX Dsatur

opt ub lb opt ub lb opt ub lb opt ub lb

DSJ (14) 0.07 76.00 30.71 0.07 77.57 28.93 0.07 86.07 29.79 0.00 77.86 27.64
FullIns (14) 1.00 6.79 6.79 0.21 6.79 5.14 0.86 6.93 6.36 0.00 6.79 4.86

Insertions (11) 0.27 5.18 2.55 0.36 5.18 2.82 0.36 5.18 3.64 0.00 5.18 2.00
abb313GPI (1) 1.00 9.00 9.00 0.00 14.00 8.00 0.00 14.00 8.00 0.00 10.00 6.00

ash (3) 1.00 4.00 4.00 0.67 4.67 3.67 0.33 5.67 3.33 0.00 4.33 3.00
flat (6) 0.00 73.83 11.67 0.00 74.33 10.67 0.00 79.67 10.67 0.00 74.83 9.67

fpsol2 (1) 1.00 65.00 65.00 0.00 65.00 59.00 1.00 65.00 65.00 1.00 65.00 65.00
inithx (1) 1.00 54.00 54.00 0.00 54.00 43.00 1.00 54.00 54.00 1.00 54.00 54.00

latin square (1) 0.00 116.00 90.00 0.00 125.00 90.00 0.00 159.00 90.00 0.00 129.00 90.00
le450 (10) 0.50 15.20 13.00 0.10 15.60 13.00 0.30 19.10 13.00 0.20 16.00 11.70
miles (5) 1.00 34.80 34.80 0.00 36.40 33.40 1.00 34.80 34.80 1.00 34.80 34.80
mug (4) 1.00 4.00 4.00 1.00 4.00 4.00 1.00 4.00 4.00 0.00 4.00 3.00

myciel (5) 1.00 6.00 6.00 0.80 6.00 4.80 0.60 6.00 5.00 0.00 6.00 2.00
qg (4) 0.75 66.00 57.50 0.25 63.25 57.50 0.25 72.50 57.50 0.25 59.50 57.50

queen (13) 0.46 12.08 10.85 0.00 15.92 10.62 0.38 12.46 10.77 0.23 12.00 10.62
school1 (1) 1.00 14.00 14.00 0.00 26.00 14.00 1.00 14.00 14.00 0.00 14.00 13.00
wap0 (8) 0.12 46.50 41.25 0.00 47.62 40.00 0.00 51.12 40.00 0.00 48.00 30.38

will199GPI (1) 1.00 7.00 7.00 0.00 10.00 6.00 1.00 7.00 7.00 0.00 7.00 6.00

Table 2. Comparison with bottom-up methods (by classes of instances)

cdcl↑ color6↑
opt ub lb opt ub lb

DSJ (14) 0.07 86.93 33.79 0.07 86.93 35.79
FullIns (14) 0.93 6.86 6.71 0.21 7.29 5.43

Insertions (11) 0.36 5.36 4.27 0.36 5.36 4.09
abb313GPI (1) 0.00 14.00 9.00 0.00 14.00 8.00

ash (3) 1.00 4.00 4.00 0.67 4.67 3.67
flat (6) 0.00 82.17 14.00 0.00 82.17 16.83

fpsol2 (1) 1.00 65.00 65.00 0.00 65.00 59.00
inithx (1) 1.00 54.00 54.00 0.00 54.00 43.00

latin square (1) 0.00 159.00 90.00 0.00 159.00 90.00
le450 (10) 0.80 14.70 13.00 0.20 20.00 13.00
miles (5) 1.00 34.80 34.80 0.00 36.40 33.40
mug (4) 1.00 4.00 4.00 1.00 4.00 4.00

myciel (5) 1.00 6.00 6.00 0.80 6.00 5.60
qg (4) 0.25 72.50 57.50 0.75 66.00 57.50

queen (13) 0.46 14.54 10.92 0.00 15.92 10.62
school1 (1) 1.00 14.00 14.00 1.00 14.00 14.00
wap0 (8) 0.12 50.88 41.25 0.00 51.12 40.00

will199GPI (1) 1.00 7.00 7.00 0.00 10.00 6.00

classes where cdcl↑ is better than classes (such as qg again) where the opposite
is true. Moreover, although cdcl↑ finds better lower bounds on two large classes
(DSJ and flat) this does not translates to a higher proof ratio.

Table 3 shows results aggregated across all instances. We report the average
ratio of instance proven optimal (‘optimal’) in the first column. Then in the
second to the fifth columns, we report the arithmetic (‘avg’) and geometric
averages (‘gavg’) for both the lower and upper bounds. Finally, we report the
mean normalised gap to the best upper bound, and to the best lower bound. Let
b (resp. w) be the value found by best (resp. worst) method. In the case of the

192 E. Hebrard and G. Katsirelos

Table 3. Comparison with the state of the art: global results

Method Optimal ub lb gap (ub) gap (lb)

avg gavg avg gavg avg avg avg

cdcl 0.53398 15.247 30.107 10.790 18.689 0.0909 0.2254

cdcl↑ 0.53398 16.248 33.427 11.846 19.427 0.4175 0.0740

CPLEX 0.41748 16.503 33.388 10.886 18.379 0.4014 0.2562

color6↑ 0.23301 17.408 34.068 11.527 19.252 0.6408 0.2371

color6 0.19417 16.314 31.233 10.040 17.748 0.3201 0.4716

Dsatur 0.12621 15.506 30.495 8.754 16.524 0.1450 0.7248

lower bound, b will be the maximum, while it will be the minimum for the upper
bound. The normalised gap g(x) of the outcome x is:

g(x) =
{

0 if b = w
(b − x)/(b − w) otherwise

A mean normalised gap of 0 (resp. 1) therefore indicates that the method sys-
tematically has the best (resp. worst) outcome.

Overall, the variants of cdcl are best for all criteria. CPLEX is third best for
the number of optimality proofs. Although it requires a lot of memory, and is very
poor in terms of solution quality, CPLEX often gives good lower bounds. This is
not so surprising since the linear relaxation is quite potent on this formulation.
For instance at the root node, since we fix the variables of a maximal clique,
the lower bound from the linear relaxation can only be higher than that of our
method. It should be noted, however, that in many cases it was not able to
improve on the initial bounds provided to the model, even when memory was
not an issue. color6↑ is second best for the lower bound, however, notice that the
much larger mean normalised gap to the best lower bound than cdcl↑ indicates
that it was often close but rarely better than our approach. Finally, Dsatur,
even though extremely simple, is still a very good method to actually find small
colorings and is a close second best for the upper bound.

Next, we tried to assess the impact of the new bounds, and of learning. To
that purpose, we ran six variants. Let L denote the usage of clause learning, M
the mycielskian-based lower bound and O the partition-based vertex ordering
used to find maximal cliques, then X \ S stands for the solver X where the
options in S are turned off. The results reported in Table 4 clearly show the
impact of each factor. There is an almost perfect correlation between turning
off a feature, and moving down the ranking for any criterion. In particular,
clause learning has clearly a very high impact as turning it off systematically
and significantly degrades the performances on every criterion. Moreover, using
the partition-based vertex ordering also has a very significant impact for such a
simple technique. Finally the mycielskian-based lower bound also clearly helps.
However, its impact on the upper bound is limited. For instance, with respect

Clause Learning and New Bounds for Graph Coloring 193

Table 4. Factor analysis: global results

Method Optimal ub lb gap (ub) gap (lb)

avg gavg avg gavg avg avg avg

cdcl 0.53398 15.247 30.107 10.790 18.689 0.0909 0.2254

cdcl↑ 0.53398 16.248 33.427 11.846 19.427 0.4175 0.0740

cdcl↑ \M 0.51456 16.219 33.466 11.738 19.262 0.4175 0.0925

cdcl\M 0.49515 15.308 30.126 10.364 18.272 0.0929 0.2764

cdcl\M,O 0.47573 15.469 30.534 10.234 18.282 0.1273 0.2890

cdcl↑ \M,O 0.45631 16.370 33.476 11.701 19.369 0.4563 0.0988

cdcl\M,O,L 0.39806 15.521 30.524 10.034 18.184 0.1311 0.3602

cdcl↑ \M,O,L 0.23301 17.861 34.476 10.724 18.738 0.6311 0.2808

to cdcl\M , it increases the proof ratio by 7.8% and the mean lower bound by
2.3%, but decreases the mean upper bound by only 0.3%.

4 Conclusions

We have presented a CP/SAT hybrid approach to graph coloring. The approach
uses a new, sophisticated, lower bound that generalizes the clique bound and is
inspired by Mycielskian graphs. We combined it with clause learning and effec-
tive primal heuristics for coloring to get a solver that in both its configurations
outperforms the previous state of the art in satisfiability-based coloring, con-
straint programming based coloring, as well as a MIP model of the problem.
The main disadvantage of the approach is that it requires one Boolean variable
for each non-edge of the graph and hence cannot scale to large sparse graphs.

References

1. Aardal, K.I., Van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for frequency assignment problems. Ann. Oper.
Res. 153(1), 79–129 (2007)

2. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4),
251–256 (1979)

3. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Comput. Lang. 6(1), 47–57 (1981)

4. De Cat, B., Denecker, M., Bruynooghe, M., Stuckey, P.: Lazy model expansion:
interleaving grounding with search. J. Artif. Intell. Res. 52, 235–286 (2015)

5. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics 18(3.1–3.21) (2013)

6. Frost, D., Dechter, R.: Look-ahead value ordering for constraint satisfaction prob-
lems. In: Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence (IJCAI-1995), pp. 572–578 (1995)

194 E. Hebrard and G. Katsirelos

7. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through random-
ization. In: Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-1998), pp. 431–438 (1998)

8. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI-2007)
(2007)

9. Jiang, H., Li, C.-M., Manyà, F.: An exact algorithm for the maximum weight
clique problem in large graphs. In: Proceedings of the 31st Conference on Artificial
Intelligence (AAAI-2017), pp. 830–838 (2017)

10. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI-2005), pp. 390–396
(2005)

11. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)
12. Lin, J., Cai, S., Luo, C., Su, K.: A reduction based method for coloring very large

graphs. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI-2017), pp. 517–523 (2017)

13. Marques-Silva, J.P., Sakallah, K.A.: GRASP–a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

14. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996)

15. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 39th Design Automation Conference
(DAC-2001), pp. 530–535 (2001)

16. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math 3, 161–162 (1955)
17. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.

In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 39

18. Park, T., Lee, C.Y.: Application of the graph coloring algorithm to the frequency
assignment problem. J. Oper. Res. Soc. Jpn. 39(2), 258–265 (1996)

19. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking
by simulating zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol.
5584, pp. 223–236. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02777-2 22

20. Stergiou, K.: Heuristics for dynamically adapting propagation. In: Proceedings of
the 18th European Conference on Artificial Intelligence (ECAI-2008), pp. 485–489
(2008)

21. Trick, M.A. (ed.): Computational Symposium on Graph Coloring and its General-
izations (COLOR-2002) (2002)

22. Van Gelder, A.: Another look at graph coloring via propositional satisfiability.
Discrete Appl. Math. 156(2), 230–243 (2008)

23. Van Hentenryck, P., Ågren, M., Flener, P., Pearson, J.: Tractable symmetry break-
ing for CSPs with interchangeable values. In: Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-2003), pp. 277–282 (2003)

24. Walsh, T.: Breaking value symmetry. In: Proceedings of the 23rd National Confer-
ence on Artificial Intelligence (AAAI-2008), pp. 880–887 (2008)

25. Zhou, Z., Li, C.-M., Huang, C., Ruchu, X.: An exact algorithm with learning for
the graph coloring problem. Comput. Oper. Res. 51, 282–301 (2014)

26. Zykov, A.A.: On some properties of linear complexes. Mat. Sb. (N.S.) 24(66)(2),
163–188 (1949). http://mi.mathnet.ru/eng/msb5974

https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.1007/978-3-642-02777-2_22
https://doi.org/10.1007/978-3-642-02777-2_22
http://mi.mathnet.ru/eng/msb5974

Portfolio-Based Algorithm Selection
for Circuit QBFs

Holger H. Hoos1, Tomáš Peitl2(B), Friedrich Slivovsky2, and Stefan Szeider2

1 Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands

hh@liacs.nl
2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

{peitl,fslivovsky,sz}@ac.tuwien.ac.at

Abstract. Quantified Boolean Formulas (QBFs) are a generalization
of propositional formulae that admits succinct encodings of verification
and synthesis problems. Given that modern QBF solvers are based on
different architectures with complementary performance characteristics,
a portfolio-based approach to QBF solving is particularly promising.

While general QBFs can be converted to prenex conjunctive normal
form (PCNF) with small overhead, this transformation has been known
to adversely affect performance. This issue has prompted the develop-
ment of several solvers for circuit QBFs in recent years.

We define a natural set of features of circuit QBFs and show that they
can be used to construct portfolio-based algorithm selectors of state-of-
the-art circuit QBF solvers that are close to the virtual best solver. We
further demonstrate that most of this performance can be achieved using
surprisingly small subsets of cheaply computable and intuitive features.

1 Introduction

The advent of modern satisfiability (SAT) solvers has established propositional
logic as the low-level language of choice for encoding hard combinatorial prob-
lems arising in domains such as formal verification [4,27] and AI planning [23].
However, since the computational complexity of these problems usually out-
strips the complexity of SAT, propositional encodings of such problems can be
exponentially larger than their original descriptions. This imposes a limit on the
problem instances that can be feasibly solved even with extremely efficient SAT
solvers, and has prompted research on decision procedures for more succinct
logical formalisms such as Quantified Boolean Formulas (QBFs).

QBFs augment propositional formulas with existential and universal quan-
tification over truth values and can be exponentially more succinct. The flip
side of this conciseness is that the satisfiability problem of QBFs (QSAT) is
PSPACE-complete [25], and in spite of substantial progress in solver technology,
practically relevant instances remain hard to solve. The complexity of QSAT

This research was partially supported by FWF grants P27721 and W1255-N23.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 195–209, 2018.
https://doi.org/10.1007/978-3-319-98334-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_13&domain=pdf

196 H. H. Hoos et al.

is also reflected in the fact that there is currently no single best QBF solver—
in fact, state-of-the-art solvers are based on fundamentally different paradigms
whose underlying proof systems are known to be exponentially separated [3,10].
In particular, it has been observed that expansion-based solvers work better
than search-based solvers on formulas with few quantifier alternations, while
search-based solvers tend to be better suited to formulas with many quantifier
alternations [17].

Thus, even more so than in the case of SAT, portfolio-based approaches
that leverage the complementary strength of multiple QBF solvers, such as per-
instance algorithm selection, have the potential to achieve significant speedups
over individual solvers, as demonstrated for QBF formulae in the prenex CNF
(PCNF) format [20]. Although any QBF can be converted to PCNF with small
overhead, this transformation is known to adversely affect solver performance [1];
moreover, it can obscure features of the original instance that might be strong
predictors of solver performance. In light of the first issue, researchers have
developed a new standard, QCIR, for representing quantified circuits, or cir-
cuit QBFs [12],1 while the second issue is potentially relevant to per-instance
algorithm selection.

In this work, we present the first per-instance algorithm selector for QCIR
formulae, built from four state-of-the-art QBF solvers, and demonstrate that it
achieves performance substantially better than any of the individual solvers and
close to the theoretical upper bound given by the virtual best solver (VBS) both
in terms of overall runtime and number of solved instances. Following common
practice, we developed and used a large set of static and dynamic instance fea-
tures for this purpose. To our surprise, we discovered that, different from the
situation for SAT, probing features are not helpful, and a set of only three static
instance features are sufficient to achieve 99% of the performance gain obtained
using our full set of features. Interestingly, these features are simple, cheaply-
computable and intuitively characterize the quantification and circuit structure
of the instance. Therefore, our work provides evidence that, different from what
might gather from the literature, to effectively leverage per-instance algorithm
selection, at least in some cases, a small set of easily implemented and com-
puted features is sufficient. This is a significant finding, since it further lowers
the barrier for researchers to effectively apply algorithm selection.

2 Related Work

For many problems in AI, there is no single algorithm that is clearly superior
to all other algorithms. This may be due to algorithms implementing heuristics
that work well on some instance type but not on others. Per-instance algorithm
selection (as originally introduced by Rice [22]) attempts to mitigate this issue by
choosing the algorithm that is expected to solve a given instance most efficiently.

1 We only consider “cleansed” QCIR instances in prenex normal form supported by
the current generation of solvers.

Portfolio-Based Algorithm Selection for Circuit QBFs 197

In recent years, algorithm selection tools have been successfully applied to a
variety of AI problems, such as SAT, CSP, ASP, and QBF [5,18,20,29]. The most
common approach to algorithm selection involves picking an algorithm from a
set of algorithms called a portfolio. Since the relationship between properties
of a problem instance and algorithm performance is typically opaque and hard
to capture formally, the construction of a portfolio normally involves training a
machine learning model to predict performance and choose an algorithm [14].

In the context of QBF, multinomial logistic regression has been used to switch
between different branching heuristics in a search-based QBF solver based on
instance features, even at runtime [24]. The (PCNF) portfolio solver AQME
incorporates several models such as decision trees and nearest neighbor clas-
sification [20]. Moreover, it is “self-adaptive” in the sense that it can mod-
ify its performance prediction model to accommodate for instance types not
seen during initial training. HordeQBF is a massively parallel QBF solver [2]
that implements a parallel portfolio by running multiple instances of the solver
DepQBF [16] with different parameter settings.

Automated parameter tuning is an area that is gaining popularity due to
algorithms increasingly having a large number of parameters that are virtually
impossible to tune by hand [6,7]. Parameter tuning can be combined with port-
folio construction in order to find algorithm configurations that complement each
other well [28]. Algorithm selectors typically have many options themselves (such
as the choice of machine learning model and its corresponding hyperparameters),
and parameter tuning can also be used to configure the selector [15].

3 Preliminaries

3.1 Circuit QBF Solvers

Our portfolios comprise the QBF solvers that participated in the prenex non-
CNF track of the 2017 QBF Evaluation2 (with the exception of CQesto, which is
not publicly available; for all solvers, the default configurations provided by their
authors were used). Their performance on the corresponding benchmark set was
fairly similar, with the number of solved instances ranging from 89 (GhostQ)
to 117 (QFun) out of a total 320.

1. QuAbS [26] generalizes the concept of “clause selection” (as implemented in
Qesto [11] and CAQE [21]) from clauses to subformulas. An abstraction
is maintained for each quantifier block, and so-called interface literals com-
municate whether a subformula is satisfied or falsified at a lower (or higher)
level.

2. QFun [8] generalizes counterexample-guided abstraction refinement
(CEGAR) solving [9] to circuit QBFs and uses decision tree learning to
“guess” counter(models) based on recent truth assignments.

2 See http://www.qbflib.org.

http://www.qbflib.org

198 H. H. Hoos et al.

3. Qute [19] is a search-based solver that implements a technique called depen-
dency learning to ignore artificial syntactic dependencies induced by nested
quantifiers.

4. GhostQ [13] is a search-based solver that utilizes so-called ghost literals for
dual propagation.

3.2 AutoFolio

AutoFolio is an algorithm selector that alleviates the burden of manually
choosing the right machine learning model for a problem domain and hand-
tuning hyperparameters by using algorithm configuration tools to automatically
make design choices and find hyperparameter settings that work well for a par-
ticular scenario [15].

AutoFolio allows us to construct a portfolio from the above solvers with
little effort. In particular, it quickly lets us create portfolios that are tuned to
particular subsets of features (see Sect. 6). Our main design choice consists in
defining the set of features described in the next section.

4 QCIR Instance Features

We consider circuit Quantified Boolean Formulas (QBFs) in prenex normal form
encoded according to the “cleansed” QCIR standard [12]. Each such formula is
a pair F = Q.ϕ consisting of a quantifier prefix Q and a Boolean circuit ϕ called
the matrix of F . The quantifier prefix Q is a sequence Q1X1 . . . QkXk where
each Qi ∈ {∀,∃} is a quantifier for 1 ≤ i ≤ k such that Qi �= Qi+1 for 1 ≤ i < k,
and the Xi are pairwise disjoint sets of variables called quantifier blocks.

The matrix ϕ is a Boolean circuit encoded as a sequence of gate definitions
of the form

g = ◦(l1, . . . , lr)

where ◦ ∈ {∧,∨}, each gate literal li is either an unnegated gate variable g′

(a positive gate literal) or a negated gate variable ¬g′ (a negative gate literal),
and g′ is a previously defined gate or an input gate g′ ∈ ⋃k

i=1 Xi. We refer to r as
the size of gate g. The depth of a gate g is 0 if g is an input gate, and otherwise
the maximum depth of a gate occurring in the definition of g plus one. A unique
gate literal is identified as the output of the circuit ϕ.

We consider the following static features of QCIR instances:

1. The number ne of existential variables.
2. The number nu of universal variables.
3. The balance ne/nu + nu/ne of existential and universal variables.
4. The number k of quantifier blocks.
5. The minimum size minb of a quantifier block.
6. The maximum size maxb of a quantifier block.
7. The average size μb of a quantifier block.
8. The standard deviation σb of the quantifier block size.

Portfolio-Based Algorithm Selection for Circuit QBFs 199

9. The relative standard deviation σb/μb of the quantifier block size.
10. The total number pos of positive gate literals.
11. The total number neg of negative gate literals.
12. The balance pos/neg + neg/pos of positive and negative gate literals.
13. The number n∧ of AND gates.
14. The number n∨ or OR gates.
15. The maximum gate size max gs.
16. The average gate size μgs.
17. The standard deviation σgs of the gate size.
18. The relative standard deviation σgs/μgs of the gate size.
19. The maximum gate depth maxd.
20. The average gate depth μd.
21. The standard deviation σd of the gate depth.
22. The relative standard deviation σd/μd of the gate depth.
23. The number np of gates all of whose gate literals have the same polarity (all

positive or all negative).

Features that only depend on the quantifier prefix can be computed just as well
for PCNF instances, and indeed some of the features 1–9 were already used
in constructing the portfolio solver AQME [20]. The main difference between
PCNF and QCIR is in the representation of the matrix and accordingly, this
is where new features are required. Some of the above features (such as the
numbers of AND/OR gates) can be seen as generalizations of PCNF features
(number of clauses). Others, such as the maximum gate depth, only make sense
for circuits.

In addition to these static features, we use several probing features computed
by a short run of Qute (probing features are crucial for the performance of
portfolios for SAT [29]):

1. The number of learned clauses.
2. The number of learned tautological clauses.
3. The number of learned terms.
4. The number of learned contradictory terms.
5. The fraction of variable assignments made by branching (the remaining

assignments are due to propagation).
6. The total number of backtracks.
7. The number of backtracks due to dependency learning (a feature of Qute).
8. The number of learned dependencies as a fraction of the trivial dependencies.

5 Per-instance Algorithm Selection for QCIR

The experiments were conducted on a cluster where each node is equipped with
2 Intel Xeon E5-2640 v4 processors (25M Cache, 2.40 GHz) and 160 GB of RAM.
The machines are running 64-bit Ubuntu in version 16.04.3.

We work with the set of QCIR benchmark instances from the 2016 and 2017
QBF evaluations solved by at least one of the above solvers within 900 s of CPU

200 H. H. Hoos et al.

Fig. 1. Comparisons of high-performance QBF solvers on our instance set; performance
is measured as PAR 10 (penalized running times with penalty factor 10) on our ref-
erence machines. This shows that there is quite a lot of complementarity between the
solvers.

Portfolio-Based Algorithm Selection for Circuit QBFs 201

time and 4 GB of memory usage, a total of 731 instances. Figure 1 illustrates
that there is a lot of complementarity between the component solvers. We split
the 731 instances into a training set of 549 instances and a test set of 182
instances, uniformly at random. On the training set we fixed a cross-validation
split into 10 folds of the same size. When we report performance of a selector
on the training set, we in fact report cross-validation performance on this fixed
split. This means that the selector was trained once on each subset of 9 folds
and evaluated on the 10th one, and the results were combined. On the other
hand, when we report performance on the test set, the respective selector is
trained on the entire training set, disregarding the CV-split, and then evaluated
on the entire test set. The reason why we use this setup for our evaluation is
the following. The standard way to evaluate the performance of AutoFolio is
by using cross-validation. However, if AutoFolio is tuned to the specific CV-
split, the CV performance may be an overly optimistic estimate of how well the
model will generalize. Even though cross validation should still protect us from
overfitting, we decided to hold out a test set even on top of that, in order to
perform a sanity check of the experiment afterwards.

Each of the selectors PF* mentioned in Table 1 was trained using Auto-
Folio in self-tuning mode, with a budget of 42 000 wall-clock seconds and a
bound of 50 000 runs for the algorithm configuration tool SMAC, and with a
specific subset of features (see the next section and caption of Table 1 for details).
For the SMAC-configuration phase we used the CV-split as mentioned earlier.
The selectors PFA, PFS, and PF3 use an XGBoost classifier, while PF2 uses a
random-forest regressor.

6 Which Features Matter?

It is common wisdom that high-performance per-instance algorithm selectors
should have access to a large and rich set of features (see, e.g. [29]). While earlier
selector designs based on ridge regression required feature selection to work well,
state-of-the-art per-instance selectors make use of sophisticated machine learn-
ing techniques, such as random forests, that are less sensitive to uninformative or
correlated features. However, defining and computing features requires substan-
tial domain expertise and often involves significant amount of work, especially
since feature computation must be efficient in order to achieve good selector
performance. Furthermore, selectors based on large sets of complex features can
be far more difficult to understand than ones based on few and simple features.
Since our full feature set for QCIR formulae, as described previously, gave rise to
excellent selector performance, we decided to investigate whether similarly good
performance could be obtained with fewer features.

We first trained a selector using only our static features, using AutoFolio,
as described in the previous section. The resulting selector, denoted PFS in
Table 1, performed slightly better than the selector trained using the full set of
static and probing features (PFA). This was a great surprise to us in light of
previous work on algorithm selection in which probing features were found to be

202 H. H. Hoos et al.

helpful (see, e.g. [14]). Since our full selector is already very close in performance
to the VBS, it cannot be the case that we simply failed to come up with the
right probing features, but rather that in the scenario we consider, static features
are sufficient. Prompted by this finding, we decided to investigate the effect of
further reducing our static features set.

In order to test what feature subsets might work well, we used the follow-
ing setup. We configured AutoFolio using the static features, and we saved
the resulting configuration of hyperparameters. Then, with this configuration of
AutoFolio, we performed forward and backward selection on the set of static
features. In forward selection, we started with the empty set of features, and at
each step added a single feature, while in backward selection we started with the
full set of static features, and at each step removed a feature. In both cases, the
feature to be added/removed was chosen so that the resulting portfolio would
have maximum performance. It is important to note here that we did not con-
figure AutoFolio for each of the subsets searched in this process—instead we
used the configuration that we computed as described at the beginning of this
paragraph. The reason for that was to avoid the huge computational cost of con-
figuring AutoFolio over and over again. In retrospect, this was indeed justified,
as we obtained well-performing selectors for the feature subsets even this way,
and we saved months of CPU time. However, note that once we found promising
subsets of features by forward/backward selection, we configured AutoFolio
for these subsets again, and the results of those specifically configured selectors
are reported in Table 1.

Table 1. Performance of component solvers and selectors on the training and test sets
in terms of penalized average runtime (PAR10), the number of solved instances, and for
selectors the extent to which they match the virtual best solver (VBS) measured as the
percentage of the PAR10 gap between the single best solver (SBS) and the VBS that is
closed by the selector. Training performance of selectors is CV-performance. Selectors
were configured using AutoFolio in self-tuning mode for each of the feature subsets
reported. PF2 is the selector configured for the best subset of 2 features, similarly PF3,
PFS uses static features only, and PFA uses all features.

Solver Training set (549) Test set (182)

PAR10 #solved %closed PAR10 #solved %closed

GhostQ 2228.92 414 – 2492.61 132 –

Qfun 1922.07 433 – 2384.68 134 –

QuAbS 1641.90 450 – 1747.40 147 0%

Qute 1458.09 461 0% 1845.48 145 –

PFA 71.93 546 96.35% 171.03 179 91.01%

PF2 57.58 547 97.35% 217.16 178 88.34%

PF3 55.78 547 97.47% 165.97 179 91.30%

PFS 55.65 547 97.48% 167.53 179 91.21%

VBS 19.46 549 100% 15.35 182 100%

Portfolio-Based Algorithm Selection for Circuit QBFs 203

Fig. 2. Forward and backward selection on the static features; the plots show perfor-
mance based on the number of features included. Note that for the performance evalua-
tion during forward/backward selection, AutoFolio was not automatically configured
for each subset of features, but instead was once configured for the full set of static
features at the beginning, and this configuration of hyperparameters was subsequently
used for all feature subsets.

204 H. H. Hoos et al.

Figure 2 shows the performance curve along forward/backward selection. The
values of PAR10 and the number of solved instances were obtained by perform-
ing cross validation on the fixed CV-split mentioned earlier. In particular, we
can see that forward selection achieves very good performance with two or three
features already. The first three features picked by forward selection are circuit
depth, number of quantifier blocks, and average block size. Since so few features
turned out to yield such good selectors, we performed a brute-force search of all
subsets of size 2 or 3 (again, evaluating performance with the fixed AutoFo-
lio configuration used for forward/backward selection). This search confirmed
that the size-2 subset found by forward selection was almost optimal (second
best, equal number of solved instances as with the optimal set, difference of 1.2
in PAR10), while the size-3 subset was optimal. We decided to continue the
experiment with the size-2 subset found by forward selection (instead of the
“optimal” one), for two reasons. Firstly, it contains the feature circuit depth,
which is the best single predictor, but which is replaced in the optimal subset
by relative standard deviation of gate depths, a feature that is somewhat harder
to interpret. Secondly, we need to keep in mind, that not even this exhaustive
search was perfect, as we did not (and could not) configure AutoFolio for each
subset searched. Therefore, its results only served as a sanity check, to make
sure that forward selection did not miss some great feature set, which turned
out not to be the case. Hence, we went on to configure AutoFolio for the sub-
sets {circuit depth, number of quantifier blocks}, and {circuit depth, number of
quantifier blocks, average block size}, the results of which are shown in Table 1
(entries PF2 and PF3). As Table 1 shows, PF2 achieves virtually the same good
performance as PFS, and closes almost all of the gap between SBS and VBS.
This holds whether we look at the CV-evaluation on the training set, or the
additional evaluation on the test set (Fig. 3).

As a final sanity check, we evaluated the performance of selectors trained
using these small sets of features on the same set of instances, but using only 3
out the 4 participating solvers (for each subset of 3 solvers). We set this exper-
iment up in the following way: for each subset of features corresponding to
one of the selectors PF*, we saved the configuration of AutoFolio that was
optimized for the particular subset of features using all four solvers. We then
evaluated the performance of selectors built using the saved configurations for
each of the 4 size-3 solver subsets (a total of 16 selectors), in the same way as
we did for Table 1. In order to get the theoretically best AutoFolio perfor-
mance, we would have had to reconfigure AutoFolio for every pair of (solver
subset, feature subset), but as before we simplified things to save computational
resources. This experiment confirmed that even for different solver sets, the fea-
tures circuit depth, and number of quantifier blocks are fairly robust predictors
of solver performance. However, naturally, features must be tied to solvers whose
performance they predict, so we cannot expect that a fixed set of features will
be a universal predictor for all solver sets.

In a sense, these results are not surprising, as one would expect from com-
plexity theory as well as from previous work that the number of quantifier blocks

Portfolio-Based Algorithm Selection for Circuit QBFs 205

Fig. 3. Performance of PF2 with all four solvers vs SBS and VBS.

206 H. H. Hoos et al.

Fig. 4. Best solver choices based on instance features. Each point represents an
instance/solver pair; the coordinates correspond to the number of quantifier blocks
and circuit depth of the instance, the shape and color indicate the solver that is fastest
on that instance. Only instances where the fastest solver is either the only one to solve
the instance, or at least ten times faster than the second fastest, are shown. This is to
ensure that the figure shows only solver choices that are crucial, and to avoid instances
where the solver choice is unimportant, because all of them run in similar time.

indeed plays an important role. Similarly, circuit depth seems to be a prominent
property of circuits. However, it is indeed striking that only two, and moreover
the most straightforward features of circuit QBF suffice to build such robust
portfolios. We believe that this opens up a new path of thinking for both solver
users and developers. Users can classify their benchmarks and pick a suitable
solver more easily, while developers can take advantage of this information to
build portfolios within their solvers. Believing many features are necessary to
learn anything meaningful about a given instance can be discouraging from
even trying. With just two features, the options are much wider—they can be
understood intuitively, or even plotted. In fact, to demonstrate how we can gain
additional insight into the problem, we visualize the solver choices made both
by the portfolio, as well as by the VBS. When plotting the VBS in Fig. 4, we
ignore instances where the solvers perform too similarly, because they contain
more noise than information. On the other hand, we plot the portfolio choices
in Fig. 5 as a grid (of hypothetical instances), in order to discover the decision
boundaries. These figures show very clearly which solvers are good for which

Portfolio-Based Algorithm Selection for Circuit QBFs 207

Fig. 5. Points indicate solver choices of PF2 based on feature values.

instances. Incidentally, Fig. 4 also reveals the fact that the QCIR instances that
are available either have many quantifier blocks, or deep circuits, or neither, but
not both (strictly speaking, to see that, we would need to plot all instances,
but the picture has the same shape, only more noise). This should serve as a
challenge to the QBF community to come up with a more complete distribution
of benchmark instances.

7 Conclusions and Future Work

With the availability of tools such as AutoFolio, the task of constructing
effective per-instance algorithm selectors essentially boils down to designing and
implementing features that (jointly) permit to effectively identify which solver
to run on any given problem instance. This can still seem daunting in view of
the fact that certain domains require rich sets of quickly computable features,
with a combination of static and dynamic features, in order to achieve good
selector performance [29]. Our results show that this need not be the case: for
circuit QBFs, two or three cheaply computable instance features are sufficient
to realize most of the performance potential of a (hypothetical) perfect selec-
tor. Moreover, these features include properties of QBFs such as the number of
quantifier blocks that are known to affect solver performance. Apart from cor-
roborating the notion that quantifier alternations matter, our results show that
circuit depth seems to be important. This warrants further investigation.

208 H. H. Hoos et al.

Our finding that simple feature sets can be effective likely applies to other
problems and encourages an incremental design philosophy: start with a few
simple features and add features as needed. As part of future work we hope to
find other domains where this approach works well and, more generally, identify
the circumstances under which this is the case.

References

1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Veloso,
M.M., Kambhampati, S. (eds.) The Twentieth National Conference on Artificial
Intelligence - AAAI 2005, pp. 275–281. AAAI Press/The MIT Press (2005)

2. Balyo, T., Lonsing, F.: HordeQBF: a modular and massively parallel QBF solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 531–538.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 33

3. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on The-
oretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching,
Germany. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2015)

4. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009)

5. Gebser, M., et al.: A portfolio solver for answer set programming: preliminary
report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol.
6645, pp. 352–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20895-9 40

6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

7. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

8. Janota, M.: Towards generalization in QBF solving via machine learning. In: McIl-
raith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence - AAAI 2018. AAAI Press (2018)

9. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8 10

10. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

11. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q.,
Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015. pp. 325–331. AAAI Press (2015)

12. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Dar-
wiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Ari-
zona, USA, February 12, 2016. AAAI Workshops, vol. WS-16-05. AAAI Press
(2016)

https://doi.org/10.1007/978-3-319-40970-2_33
https://doi.org/10.1007/978-3-642-20895-9_40
https://doi.org/10.1007/978-3-642-20895-9_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10

Portfolio-Based Algorithm Selection for Circuit QBFs 209

13. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14186-7 12

14. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey.
In: Bessiere, C., et al. (eds.) Data Mining and Constraint Programming. LNCS
(LNAI), vol. 10101, pp. 149–190. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50137-6 7

15. Lindauer, M.T., Hoos, H.H., Hutter, F., Schaub, T.: Autofolio: an automatically
configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

16. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 23

17. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter.
CoRR abs/1701.06612 (2017). http://arxiv.org/abs/1701.06612

18. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science, pp. 210–216 (2008)

19. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 19

20. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints 14(1), 80–116 (2009)

21. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, T.
(eds.) Formal Methods in Computer-Aided Design - FMCAD 2015, pp. 136–143.
IEEE Computer Society (2015)

22. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
23. Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh,

T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 483–504. IOS Press (2009)

24. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22–26, 2007, Van-
couver, British Columbia, Canada, pp. 255–260. AAAI Press (2007)

25. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: pre-
liminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, 30 April–2 May 1973, Austin, Texas, USA,
pp. 1–9. Association for Computing Machinery, New York (1973)

26. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 24

27. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

28. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, 11–15 July 2010. AAAI Press (2010)

29. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-63046-5_23
http://arxiv.org/abs/1701.06612
https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24

Making Compact-Table Compact

Linnea Ingmar1 and Christian Schulte2(B)

1 Uppsala University, Uppsala, Sweden
linnea.ingmar.3244@student.uu.se

2 KTH Royal Institute of Technology, Stockholm, Sweden
cschulte@kth.se

Abstract. The compact-table propagator for table constraints appears
to be a strong candidate for inclusion into any constraint solver due to
its efficiency and simplicity. However, successful integration into a con-
straint solver based on copying rather than trailing is not obvious: while
the underlying bit-set data structure is sparse for efficiency it is not
compact for memory, which is essential for a copying solver.

The paper introduces techniques to make compact-table an excellent
fit for a copying solver. The key is to make sparse bit-sets dynamically
compact (only their essential parts occupy memory and their implemen-
tation is dynamically adapted during search) and tables shared (their
read-only parts are shared among copies). Dynamically compact bit-sets
reduce peak memory by 7.2% and runtime by 13.6% on average and
by up to 66.3% and 33.2%. Shared tables even further reduce runtime
and memory usage. The reduction in runtime exceeds the reduction in
memory and a cache analysis indicates that our techniques might also be
beneficial for trailing solvers. The proposed implementation has replaced
Gecode’s original implementations as it runs on average almost an order
of magnitude faster while using half the memory.

1 Introduction

The compact-table propagator [5] implements table constraints, where an
explicit table of tuples defines the solutions to the constraint. Its basic idea is to
assign a number to each tuple in the table and maintain a sparse bit-set where bit
number i is set iff the tuple with number i is still considered a possible solution.
The sparse bit-set is represented as an array of words (typically, words of 64 bits)
and is sparse: operations performed on it by the propagator only consider words
that have at least one bit set (that is, non-zero or non-empty words), where the
emptiness information is tracked by an index structure. Compact-table and its
extensions have already shown great potential [5,14,15] and sparse bit-sets have
also been successfully used for itemset mining constraints [12].

The above-mentioned papers use constraint solvers that are based on trailing
where changes during propagation and search are recorded and undone when
backtracking occurs. Solvers based on copying create copies of the solver’s state
to which they can return during backtracking [10,13]. For a copying solver it is

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 210–218, 2018.
https://doi.org/10.1007/978-3-319-98334-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_14&domain=pdf

Making Compact-Table Compact 211

crucial that the state to be copied be small, so any of its propagators should
require as little memory as possible to be copied. This paper contributes how
this can be achieved for the compact-table propagator.

Operations on sparse bit-sets save time as they safely ignore empty words.
However, empty words might still occupy memory as they are interleaved with
non-empty words in memory. This does not matter for a trailing solver as the
bit-set exists in one copy, however it poses a problem for a copying solver where
the bit-set needs to be copied for each node of the search tree. We contribute
how to make bit-sets sparse as well as compact : non-empty words move to the
beginning of the word array and hence only its non-empty prefix needs copy-
ing. Additionally, compact bit-sets are more cache-friendly and require fewer
indirections during update, which might be also beneficial for trailing solvers.

We make the propagator parametric with respect to its sparse bit-set imple-
mentation, so that we can get variants specialized for small tables. Here we take
advantage by compressing the index structure or dropping it altogether. This
optimization is dynamic: when the propagator is copied, the current size of its
sparse bit-set decides which implementation is best for the copy. The rationale
is that most copies are created close to the leaves of the search tree and hence
many words of the bit-sets might be empty.

It is important that as much information as possible of the table that is read-
only to the propagator be shared among its copies and among propagators using
the same table for different constraints. We introduce a design where tables can
be shared and only requires two mutable pointers per propagator variable.

The paper evaluates the various design decisions showing that the imple-
mentation of table constraints based on compact-table outperforms the original
implementations in Gecode. We demonstrate that compactness is important,
identify a promising hybrid candidate, and demonstrate that sharing is benefi-
cial while residues (discussed below) are not beneficial in the context of Gecode.

Plan of the Paper. The next section reviews the compact-table propagator.
Section 3 shows how tables can be shared between several propagators. Section 4
introduces techniques for dynamic compact sparse bit-sets which are evaluated
in Sect. 5 and Sect. 6 concludes the paper.

2 Compact-Table

Throughout the paper we assume: the n tuples in the table t are numbered from
0 to n−1; the i-th tuple is denoted as ti; the constraint (and hence t) has arity a;
the value at position k (1 ≤ k ≤ a) of tuple ti is denoted as ti,k; the variables
are x1, . . . , xa where the domain of variable xk is dom(xk); a tuple ti is a support
for a variable-value pair 〈xk, v〉 and for a position-value pair 〈k, v〉 if ti,k = v.

Sparse Bit-Sets. The n tuples are maintained in a sparse bit-set per propagator
where bit number i is set iff the tuple ti is still considered a possible solution. The
sparse bit-set is an array words of words of 64 bits and is sparse: its operations

212 L. Ingmar and C. Schulte

only consider non-empty words, where the emptiness information is tracked by
an index structure. The index structure is an array index of 32-bit words that
maintain a permutation of the indices of words and a counter limit for the
current number of non-empty words. The first limit entries of index store the
indices of words that are currently non-empty. If limit reaches zero the entire
bit-set is empty. The index structure is key to sparseness: bit-set operations only
need to consider words with indices in the first limit entries of index.

Modifications to the sparse bit-set are performed by intersections (word by
word bit-wise and, denoted as &) with a temporary mask. If the word at index
index[i] in words becomes empty, then the index structure records this by swap-
ping index[i] with index[limit − 1] in index and decrementing limit by one.
By doing so, non-empty indices move to the front of index while their order in
words remains unchanged. The following invariant is maintained, where w is the
number of words: ∀i ∈ {0, . . . , w − 1} : i < limit ⇔ words[index[i]] �= 0.

Support Bit-Sets. For each variable xk (1 ≤ k ≤ a) and value v ∈ dom(xk)
a support bit-set is constructed when the propagator is created, denoted by
supports〈xk,v〉. It captures the tuples in the table t that are supports for 〈xk, v〉:
bit i in the support bit-set is set iff ti,k = v. The support bit-sets are used to
update the sparse bit-set during the filtering phase of the algorithm (discussed
below). Note that the support bit-sets are created for each propagator using
the same table t with respect to the initial variable domains according to [5], a
design that we are going to improve on in Sect. 3.

Update and Filtering. The sparse bit-set and the support bit-sets encode the
information necessary to perform the two phases of the algorithm. The update
phase zeroes the bits in the sparse bit-set that correspond to tuples that have
lost support. The filtering phase removes values from variable domains that are
no longer supported by any tuple.

An optimization in the filtering phase of the algorithm are residual supports:
for each variable xk and value v ∈ dom(xk) the word index in the sparse bit-set
for which a support for 〈xk, v〉 was found is cached.

3 Sharing Tables

Sharing tables among propagators has two aspects: copies of a propagator cre-
ated during search share tables and propagators using the same table for different
constraints (that is, for different variables) share it. As mentioned in Sect. 2, the
latter case is not exploited in [5]. Sharing saves memory and increases spatial
locality and is likely to improve cache performance. When the table is created,
admissible domains and supports are computed, which are shared among all
propagators and their copies using the table.

Admissible Domains. For each position k (1 ≤ k ≤ a) the admissible domain
is computed as the set of values dk = {ti,k | 0 ≤ i < n} that occur in a tuple.

Making Compact-Table Compact 213

The admissible domains only depend on the table and hence can be shared.
When a propagator with variables x1 . . . , xa and table t is created, the variable
domains are constrained to dk ∩ dom(xk).

Supports. The table data structure provides shared access to the support bit-sets
supports〈k,v〉 for v ∈ dk. Note the difference from the notation supports〈xk,v〉
used in Sect. 2, as support bit-sets are based on domains of variables xk in [5].
All support bit-sets for a position k are stored contiguously in a bit-set array
such that supports〈k,v2〉 is stored directly after supports〈k,v1〉 if value v2 is the
next larger value than v1 in the admissible domain dk.

The table should provide constant-time operations to find supports〈k,v〉 for
v ∈ dom(xk) or v ∈ Δxk

. Here Δxk
is the delta of xk as the set of values that

are removed from dom(xk). This is important if deltas are accurate, as for [5],
even though it is not discussed there. In [5] the domain implementation relies
on sparse bit-sets, which provide cheap access to deltas [11]. Gecode provides
only accurate delta information in case the lower or upper bound of a variable
changes [7]. Hence, the operations required skip entire ranges of values. Our
propagator maintains per variable xk pointers to supports〈k,min dom(xk)〉 and
supports〈k,maxdom(xk)〉 which are adjusted by binary search when min dom(xk)
or max dom(xk) change. In case no delta information is available, the correspond-
ing support information is computed by simultaneously iterating over variable
domains and the supports between the two pointers.

4 Dynamically Compact Sparse Bit-Sets

This section introduces techniques to make sparse bit-sets compact and index
structures small that can be adapted dynamically during copying. As in [5], our
implementation is a data structure that could also be used in other contexts.

Compact Bit-Sets. Our implementation makes sparse bit-sets compact such that
their non-empty words form a contiguous block in memory.

Let us consider part of the algorithm’s
update phase. The sparse bit-set with limit=4
is about to be updated with the shown mask
(computed from the support information). For
simplicity, we use 4-bit rather than 64-bit

mask 1010 0010 0111 0010
w0 w1 w2 w3

words 1101 1000 1011 1001
index 0 1 2 3

words. The update with the mask is performed by word-wise in-place inter-
section. After the update, limit is 2 and the words w1 and w3 are empty.

The original implementation, called Original, executes the following
instructions (simplified), where x ←& y abbreviates x ← x & y:

214 L. Ingmar and C. Schulte

The result is shown to the right, where dead entries (not to be copied) are
marked gray. When copying the resulting bit-set the word w1 would be copied
even though it is empty, as it is interleaved with w0 and w2.

Our compact implementation, called Compact, updates the data structures
by executing the following instructions (simplified) leading to the result shown
to the right of the instructions. Note that only w0 and w2 need copying.

The key benefit of Compact is that non-empty words are contiguous in
memory as captured by the following invariant:

∀i ∈ {0, . . . , limit − 1} : words[i] �= 0

As only non-empty words need copying, both memory usage and time for copying
is reduced. The data structure is also more cache-friendly as it is contiguous.
Compact uses less indirection and hence might be more efficient than Original
as the words are accessed directly and not through index. Even though the
removal of an empty word now also requires an update to words, these updates
are infrequent. Additional changes to the implementation are required, they are
analogous. In particular, masks are constructed to be compact to match words
directly without indirection.

Note that for a trailing solver, rather than overwriting index[i] and words[i]
with index[limit − 1] and words[limit − 1], these entries would be swapped.
Hence the idea of Compact is also compatible with a trailing solver.

During the filtering phase of the algorithm, the bit-set is intersected with
support bit-sets which are not compact. The original implementation executes
instructions of the following form:

words[index[i]] & supports〈k,v〉[index[i]]

while our compact implementation uses less indirection:

words[i] & supports〈k,v〉[index[i]]

for position-value pairs 〈k, v〉 and 0 ≤ i < limit.

Compressing the Index Structure. We save additional memory for the index
structure. When possible, we use 16- or 8-bit data types for the entries in index
instead of 32-bit; this optimization we refer to as Compact++. Consider a table
with 16 384 tuples, which results in words and index with 256 entries each.
Assuming two pointers for words and index with 64 bits each, Compact++ can

Making Compact-Table Compact 215

use 8-bit entries and reduce memory usage from 3 092 to 2 321 bytes, a reduction
by ≈25% (ignoring memory layout requirements).

Two specialized implementations for sufficiently small tables with w words
are as follows. Smallw uses 4-bit index entries, that is up to 15 entries and the
limit field are packed into a single 64-bit word. Densew drops the entire index
structure and considers all words in the bit-set.

Dynamic Data Structures. Making the propagator parametric with respect to
its sparse bit-set implementation gives opportunity for further optimization. The
decision which implementation to use is made statically when the propagator
is created or dynamically when the propagator is copied. For implementations
where only static decisions are made, we use “S” as subscript; for implemen-
tations also making dynamic decisions we use “D”. For example, Compact++S

may decide to use 16-bit integers initially and all of its copies also use 16-bit
integers, while Compact++D might create copies using 8-bit integers if possible.

5 Evaluation

We evaluate our implementation of compact-table and the various optimizations
on top of Gecode (Version 6.0.0), on the same benchmark set as in [5], involv-
ing 1 621 table instances. Being originally in format XCSP 2.1, which is not sup-
ported by Gecode, the benchmarks are translated into MiniZinc [9] using the
tool xcsp2mzn1. Time measurements are run on a Windows 7 (64 bit) computer
with two four-core Intel Xeon E5462 of 2.80 GHz and 8 GB RAM. Measure-
ments of memory usage are run on a server cluster. A time out of 1 000 s is used
on each instance. We skip instances that (i) cannot be translated to MiniZinc
due to parse errors (117 instances); (ii) require more than 8 GB of RAM (43
instances); (iii) cannot be solved within the time out for the Original con-
figuration (170 instances); or (iv) are solved in less than 1 s for the Original
configuration (1014 instances). In total, 277 instances are evaluated.

Table 1 shows the relative performance of various implementations, using
Original as baseline. No implementation except Residues uses residual sup-
ports. We report the minimum and maximum relative performance, the geomet-
ric mean of the relative performance, as well as the geometric standard deviation
of the relative performance. Solvetime means wall time excluding the time for
parsing FlatZinc and peak heap memory usage also excludes the peak memory
for parsing. For presenting the relation of implementation a to a baseline imple-
mentation b (Original in Table 1), we use the relative measures 100 · aT

i

bTi
and

100 · aM
i

bMi
, where cTi and cMi are solvetime respectively peak memory usage for

implementation c on instance i. Detailed results are available from the authors.
As shown in Table 1, compressing the bit-set (Compact) improves runtime

by 14.4% and peak memory usage by 4.5% on average compared to the original
implementation (Original). The decrease in runtime is most likely achieved
1 Available at https://github.com/CP-Unibo/mzn2feat, last accessed April 17, 2018.

https://github.com/CP-Unibo/mzn2feat

216 L. Ingmar and C. Schulte

Table 1. Solvetime and peak memory relative to Original.

Solvetime Compact Compact++S Compact++D BestS BestD Residues

Min −67.1% −66.8% −66.4% −66.7% −66.3% −8.5%

Mean −14.4% −14.4% −13.7% −14.6% −13.6% 13.1%

Max 0.4% 1.1% 0.7% 2.2% 0.9% 32.4%

Deviation ±30.8% ±31.1% ±29.7% ±31.0% ±29.6% ±8.3%

Peak memory Compact Compact++S Compact++D BestS BestD Residues

Min −27.2% −33.4% −33.4% −33.4% −33.2% −0.0%

Mean −4.5% −6.8% −6.8% −7.2% −7.2% 10.0%

Max 0.2% 0.0% 0.0% −0.3% −0.3% 71.2%

Deviation ±8.5% ±11.4% ±11.4% ±11.2% ±11.2% ±13.1%

by a combination of (i) fewer operations for copying, (ii) less indirection as
argued in Sect. 4, and (iii) better cache performance due to the more compact
representation. Additional analysis with the cache profiling tool Cachegrind [8]
on instances with solvetime of more than 10 seconds (using a time out of one
hour), indicates that Compact reduces the miss rate of the first-level data cache
by ≈3% on average compared to Original.

Compressing the bit-set as well as the index structure (Compact++), further
reduces peak memory usage to −6.8% on average. Comparing Compact++S and
Compact++D, there is no visible difference in peak memory usage, while the
runtime is slightly higher for Compact++D due to extra overhead during copying.

Our proposed winning strategy, Best, is the combination of Compact++

and Dense4. This strategy has the best memory usage among all evalu-
ated implementations by a very modest ≈0.5% in average while being only
marginally slower in average. The winning strategy is chosen from evaluating
the specialized implementations Smallw for w ∈ {1, 2, 4, 8, 15} and Densew for
w ∈ {1, 2, 4, 8, 16} respectively, whose results we omit for lack of space. Overall,
these variants perform similarly to each other for all w, though Dense tends
to be slightly faster than Small. For simplicity, we use only one of Dense and
Small, with Dense being the winner of the two. The threshold value w = 4 is
chosen as larger values for w yield slightly higher maximum memory usage.

In Table 1, Residues denotes an implementation that is like Original
except that it uses residues, discussed in Sect. 2. Clearly, computation saved
during propagation by residues do not compensate for the memory and copying
overhead they incur, as both runtime and memory usage is increased.

To evaluate the impact of sharing tables between propagators, as discussed
in Sect. 3, we extend Gecode’s FlatZinc interpreter so that propagators that use
the same set of tuples can share the corresponding tables. Measurements are
made with and without sharing for BestD, and on average runtime is reduced
by 4.6% and memory usage by 56.5% when using sharing.

Making Compact-Table Compact 217

Note that the comparison is slightly approximate in the sense that it does
not only reflect sharing of the admissible domains and the support bit-sets, but
also the actual tuples, as the entire tables are duplicated in the version with-
out sharing (even though the actual tuples are never used during propagation).
That being said, as the runtime measurements do not include FlatZinc over-
head, during which the tables are created, and as tables are not copied, the run-
time measurements are likely to reflect actual difference from sharing admissible
domains and support bit-sets. Analysis with Cachegrind indicates that sharing
tables reduces the miss rate of the first-level data cache by ≈18% on average on
sufficiently time-consuming instances.

We compare the performance of BestD with the two original implementa-
tions of table constraints in Gecode, based on [3] and [4]. The comparison is
without sharing tables in FlatZinc as this is not available for the two implemen-
tations. Our implementation reduces runtime on average by 85.7% and up to
99.6% and reduces peak memory on average by 45.4% and up to 67.7% com-
pared to the best of Gecode’s two implementations. Note that these numbers
are based on fewer instances than the other studied configurations, as the best
old implementation timed out on 43 additional instances.

6 Conclusions and Future Work

This paper shows that compact-table is an excellent fit for a copying solver; the
algorithm runs on average almost an order of magnitude faster than Gecode’s
implementations while using only half the memory. Our proposed implementa-
tion of compact-table is more compact in memory than the original implementa-
tion, reducing peak memory usage by 7.2% and solvetime by 13.6% on average
on our benchmark set. We introduce how to share tables among propagators and
demonstrate that sharing moderately reduces solvetime by 4.6% and consider-
ably reduces memory usage by 56.5%. A trailing solver can most likely benefit
from our optimizations as well: support bit-sets can be shared; and it might be
beneficial to make sparse bit-sets compact as it is better for cache performance
and uses less indirection.

Future Work. Our implementation only uses approximate information about
variable deltas; more accurate information maintained by the propagator might
speed up propagation. Heuristics for re-ordering the tuples in the table have not
been explored. Re-ordering can have an impact on how much the sparse bit-sets
can be compressed, as the order in which the tuples appear in the table decides
which bits become zero first during propagation.

Acknowledgments. We are grateful for numerous comments and assistance from
Mats Carlsson and Roberto Castañeda Lozano. Part of the work has been carried out
in the first author’s bachelor thesis [6] and during her student internship at KTH. We
are grateful for the helpful comments from the anonymous reviewers.

218 L. Ingmar and C. Schulte

References

1. Beck, J.C. (ed.): CP 2017. LNCS, vol. 10416. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66158-2

2. Bessière, C. (ed.): CP 2007. LNCS, vol. 4741. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74970-7

3. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: prelimi-
nary results. In: International Joint Conference on Artificial Intelligence (IJCAI),
vol. 1, Nagoya, Japan, pp. 398–404, August 1997

4. Bessière, C., Régin, J.C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc
consistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

5. Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with
reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
207–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 14

6. Ingmar, L.: Implementation and evaluation of a compact-table propagator in
Gecode. Bachelor thesis, Department of Information Technology, Uppsala Uni-
versity, Sweden, August 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-
328679

7. Lagerkvist, M.Z., Schulte, C.: Advisors for incremental propagation. In: Bessière
[2], pp. 409–422

8. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Ferrante, J., McKinley, K.S. (eds.) Conference on Program-
ming Language Design and Implementation (PLDI), pp. 89–100. ACM, San Diego
(2007)

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière [2], pp. 529–543

10. Reischuk, R.M., Schulte, C., Stuckey, P.J., Tack, G.: Maintaining state in propaga-
tion solvers. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 692–706. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 54

11. de Saint-Marcq, V.L.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for
domain implementation. In: CP Workshop on Techniques for Implementing Con-
straint Programming Systems (TRICS), pp. 1–10, Uppsala, Sweden, September
2013

12. Schaus, P., Aoga, J.O.R., Guns, T.: CoverSize: a global constraint for frequency-
based itemset mining. In: Beck [1], pp. 529–546

13. Schulte, C.: Comparing trailing and copying for constraint programming. In: De
Schreye, D. (ed.) International Conference on Logic Programming, pp. 275–289.
The MIT Press, Las Cruces (1999)

14. Verhaeghe, H., Lecoutre, C., Deville, Y., Schaus, P.: Extending compact-table to
basic smart tables. In: Beck [1], pp. 297–307

15. Verhaeghe, H., Lecoutre, C., Schaus, P.: Extending compact-table to negative and
short tables. In: Singh, S.P., Markovitch, S. (eds.) AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, pp. 3951–3957, February 2017

https://doi.org/10.1007/978-3-319-66158-2
https://doi.org/10.1007/978-3-319-66158-2
https://doi.org/10.1007/978-3-540-74970-7
https://doi.org/10.1007/978-3-540-74970-7
https://doi.org/10.1007/978-3-319-44953-1_14
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328679
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328679
https://doi.org/10.1007/978-3-642-04244-7_54

Approximation Strategies
for Incomplete MaxSAT

Saurabh Joshi1(B), Prateek Kumar1, Ruben Martins2, and Sukrut Rao1

1 Indian Institute of Technology Hyderabad, Sangareddy, India
{sbjoshi,cs15btech11031,cs15btech11036}@iith.ac.in

2 Carnegie Mellon University, Pittsburgh, USA
rubenm@andrew.cmu.edu

Abstract. Incomplete MaxSAT solving aims to quickly find a solution
that attempts to minimize the sum of the weights of the unsatisfied soft
clauses without providing any optimality guarantees. In this paper, we
propose two approximation strategies for improving incomplete MaxSAT
solving. In one of the strategies, we cluster the weights and approximate
them with a representative weight. In another strategy, we break up
the problem of minimizing the sum of weights of unsatisfiable clauses
into multiple minimization subproblems. Experimental results show that
approximation strategies can be used to find better solutions than the
best incomplete solvers in the MaxSAT Evaluation 2017.

Keywords: MaxSAT · Incomplete · Approximation

1 Introduction

Given a set of Boolean constraints in a conjunctive normal form (CNF), the
problem of Maximum Satisfiability (MaxSAT) asks to provide valuation of vari-
ables so that maximum number of constraints are satisfied. These constraints
can be assigned weights to prioritize some set of constraints over others, which
would give rise to a weighted MaxSAT problem where the goal is to find a valu-
ation which maximizes the sum of the weights of the satisfied constraints. Any
improvements in MaxSAT solving have a huge impact because many real world
problems can be encoded as MaxSAT problems (e.g., [5,14,16]).

Often, the application may be able to tolerate a suboptimal solution but
requires this solution to be computed in a very short amount of time. For such
cases, it tremendously helps if there are techniques and tools that can very
quickly find a solution which is close enough to an optimal solution. Incomplete
MaxSAT solvers [4,9,10,19,20,26] strive to find a good solution in a limited
time frame. The solution, thus provided, need not be an optimal one. Therefore,
for improvement, we need to develop tools and techniques that can find better
solutions (closer to an optimal solution) in the same time frame.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 219–228, 2018.
https://doi.org/10.1007/978-3-319-98334-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_15&domain=pdf

220 S. Joshi et al.

As part of this paper, we contribute the following:

– An approximation strategy based on weight relaxation (Sect. 3), which mod-
ifies the weights of the clauses in a manner so that it is easier for the solver
to find a solution quickly.

– An approximation strategy which breaks up the problem of minimizing the
sum of weights of unsatisfied clauses into multiple minimization subproblems
and attempts to minimize these subproblems in a greedy order (Sect. 3). This
strategy can also be combined with the weight relaxation strategy.

– Empirical results on how the accuracy of the solver gets affected as we vary
the weight relaxation parameter (Sect. 5).

– An implementation of these strategies using the Open-WBO framework. We
also demonstrate the advantage of these approximation strategies by showing
its prowess against state-of-the-art incomplete MaxSAT solvers (Sect. 5).

2 Preliminaries

Let x be a Boolean variable which can take values true or false. A literal l is a
variable x or its negation ¬x. A clause ω is a disjunction of literals and a formula
ϕ is a conjunction of clauses. Notationally, we will treat a clause ω and a formula
ϕ as sets containing literals and clauses respectively.

An assignment ν maps variables to either true or false. An assignment is
said to satisfy a positive literal x (resp. a negative literal ¬x) if ν(x) = true
(resp. ν(x) = false). A clause is said to be satisfied if at least one of its literals is
satisfied. A formula is said to be satisfied by an assignment if all of its clauses are
satisfied by the assignment. A formula is called satisfiable if there exists a sat-
isfying assignment for that formula, otherwise it is called unsatisfiable. Boolean
satisfiability problem (SAT) asks to find a satisfying assignment (i.e., model) to
a formula. Maximum satisfiability (MaxSAT) problem is an optimization version
where the goal is to find an assignment which satisfies the maximum number of
clauses of a formula. In a partial MaxSAT problem, a partition of ϕ is given as
two mutually exclusive sets ϕh (hard clauses) and ϕs (soft clauses), where the
goal is to satisfy all the clauses in ϕh

1 while maximizing the number of clauses
satisfied in ϕs. Let weight : Clauses → N

+ be a map from a set of clauses to
positive integers. In a partial weighted MaxSAT problem, the goal is to find an
assignment that maximizes the sum of weights of the satisfied soft clauses. From
now on, we will refer to a weighted partial MaxSAT problem as MaxSAT.

A clause ω can be relaxed by adding a relaxation variable r so that the relaxed
clause becomes ω ∪ {r}. The relaxed clause can be satisfied by either satisfying
the original clause or its relaxation variable. For a formula ϕ, when all of its soft
clauses are relaxed, we will denote it as ϕr. We define the cost of a relaxation
variable r to be the weight of the clause that it relaxed, cost(r) = weight(ω).
The cost of an assignment ν is defined as cost(ν) =

∑
ri:ν(ri)=1 cost(ri). The

goal of MaxSAT is to find a satisfying assignment with the minimum cost.

1 For simplicity, we will assume that ϕh is always satisfiable.

Approximation Strategies for Incomplete MaxSAT 221

Input : Formula ϕs, Map weight, partitioning parameter m
Output: Partition P (m), new weight map weightm

1 n ← |ϕs|
2 sort clauses of ϕs in the ascending order of weights
3 for i ← 1 to n − 1 do
4 diffi ← weight(ωi+1) − weight(ωi)
5 〈i1, . . . , im−1〉 ← sorted indices where top (m − 1) difference diffi occurs
6 c1 ← {ω1, . . . , ωi1}
7 for j ← 2 to m − 1 do
8 cj ← {ωij−1+1, . . . , ωij

}
9 cm ← {ωim−1+1, . . . , ωn}

10 P (m) ← {c1, . . . , cm}
11 foreach ci ∈ P (m) do
12 foreach ωj ∈ ci do
13 weightm[ωj] ← RepresentativeWeight(ci)

14 return 〈P (m), weightm〉
Algorithm 1. Partitioning and weight approximation

Input: Formula ϕr, weight maps weightm, and weight
Output: model to ϕ

1 (model, μ, ϕW) ← (∅, +∞, ϕr)
2 status = SAT
3 while status = SAT do
4 (status, ν) ← SAT(ϕW)
5 if status = SAT then
6 if cost(ν) < cost(model) then
7 model ← ν
8 μ ← costm(ν)
9 ϕW ← ϕW ∪ {CNF((∑r∈VR

(costm(r) · r)) ≤ μ − 1)}
10 return model

Algorithm 2. Linear search Sat-Unsat algorithm for MaxSAT

3 Approximation Strategies

In this section, we describe two approximation strategies that can allow MaxSAT
algorithms to converge faster to lower cost solutions. Note that the best model
found by approximation strategies is not guaranteed to be an optimal solution
of the original MaxSAT formula.

Weight-Based Approximation. Let Pm(ϕs) = {c1, . . . , cm} be a partition
of ϕs into m mutually exclusive sets c1, . . . , cm such that

⋃
1≤i≤m ci = ϕs and

∀i�=j : ci ∩ cj = ∅. We will call sets c1, . . . , cm as clusters of the partition.
Given a formula ϕs, Algorithm 1 partitions the clauses into clusters as follows.

All soft clauses are sorted by their weights (Line 2). Then, differences in weights
between two consecutive clauses are calculated (Line 4). m−1 indices are picked
where the weight differences are amongst the top m − 1 weight differences (Line
5). These indices are used as boundaries to create clusters (Lines 6–9). This way
of clustering is similar to single-link agglomerative clustering [15]. Finally, a new
weight map weightm is created, where all the clauses in the same cluster get
the same weight (Lines 11–13). RepresentativeWeight (Line 13) indicates any
representative weight for the cluster. In this paper, we use the arithmetic mean of
the weights of the clauses in a cluster as the representative weight. In principle,
other representative weights can also be chosen which may have different effect on

222 S. Joshi et al.

Input: ϕ = ϕh ∪ ϕs, weight maps weight and weightm, Partition P (m)
Output: model to ϕ

1 (model,µ, ϕW , C) ← (∅,+∞, ϕr, Pm(ϕs)))
2 foreach ci ∈ C in the descending order of weightm(ci) do
3 Vi ← VR ∩ ci
4 status = SAT
5 while status = SAT do
6 (status, ν) ← SAT(ϕW)
7 if status = SAT then
8 if cost(ν) < cost(model) then
9 model ← ν

10 μi ← |{r ∈ Vi | ν(r) = 1}|
11 ϕW ← ϕW ∪ {CNF(∑r∈Vi

r ≤ μi − 1)}
12 else
13 ϕW ← ϕr

14 foreach cj ∈ C such that weightm(cj) ≥ weightm(ci) do
15 ϕW ← ϕW ∪ {CNF(∑r∈Vj

r ≤ μj)}
16 return model

Algorithm 3. Clustering-based algorithm for MaxSAT

how much an algorithm can deviate from finding the minimum cost assignment.
It is redundant to have m > #weights, where #weights are different number
of weights, because for m ≥ #weights, weight = weightm. Algorithm 1 can
be combined with any search algorithm and as m increases the deviation of the
search algorithm from an optimal solution decreases. If m = 0 it is assumed that
no partitioning is done.

There are encodings which perform better when #weights is small [12,17].
Such encodings can benefit from approximation of weights because it results
in a smaller size formula when converted to CNF. This can be used with a
cost minimization algorithm for MaxSAT such as the linear search Sat-Unsat
algorithm [8,18] shown in Algorithm 2. In this algorithm, all the clauses in ϕs

are initially relaxed, and the set of corresponding relaxation variables is denoted
as VR. A working formula ϕW is initialized with the relaxed formula ϕr. The cost
of an empty model is assumed to be +∞. Our primary goal is to find a satisfying
assignment ν to ϕ with the minimum cost(ν). Algorithm 2 iteratively asks a SAT
solver if there is a satisfying assignment, with its cost at most μ−1 (Line 9). The
approximation comes from Algorithm 2 using costm instead of cost to encode
a pseudo-Boolean (PB) constraint that restricts the cost of relaxation variables
being set to true (Line 9). Since costm is an approximation of cost, minimizing
costm does not necessarily translate to minimization w.r.t. cost. Therefore, we
update model, only when a satisfying assignment indeed reduces the previous
value of cost(model) (Lines 6–7).

Approximation via Subproblem Minimization. Algorithm 3 proceeds in a
greedy manner by processing each cluster in the descending order of its represen-
tative weight (Line 2). Vi indicates a set of relaxation variables corresponding
to the clauses in ci (Line 3). Minimization of the cost of a satisfying assign-
ment is divided in subproblems by minimizing the number of unsatisfied clauses
in clusters, starting from highest representative weight to the lowest (Line 2).
For each cluster, the number of unsatisfied clauses are minimized by iteratively

Approximation Strategies for Incomplete MaxSAT 223

reducing the upper bound μi on the number of relaxation variables in Vi that
can be set to true (Lines 10–11). In the process, the minimum cost assignment
seen so far is recorded (Lines 8–9). Since within any cluster, all the clauses have
the same weightm, only cardinality constraints are used to restrict the number
of unsatisfied clauses within μi (Line 11). Once μi can not be reduced further, it
is frozen by adding upper bound μi for all the cluster seen so far (Lines 12–15).
Since the minimization is done locally as a minimization subproblem at a cluster
level, rather than looking at the whole formula, this procedure is not guaranteed
to converge to a globally optimum solution.

4 Related Work

Approaches for incomplete MaxSAT solving can primarily be divided into two
categories: (i) stochastic MaxSAT solvers [9,10,13,19,20] and (ii) complete Max-
SAT solvers that can find intermediate solutions [4,8,11,18,23,25].

Incomplete MaxSAT. Stochastic solvers start by finding a random assignment
ν for ϕ. Since this assignment is unlikely to satisfy all clauses in ϕ, they choose
a clause ωi that is unsatisfied by ν and flip the assignment of a variable in ωi

such that ωi becomes satisfied. When compared to local SAT solvers, stochastic
MaxSAT solvers have additional challenges since they must find an assignment
ν that satisfies ϕh while attempting to minimize the cost of the unsatisfied soft
clauses. Stochastic MaxSAT solvers are particularly effective for random bench-
marks but their performance tends to deteriorate for industrial benchmarks.
Since the MaxSAT Evaluation 2017 (MSE2017) [2] did not contain any random
instances, there were no stochastic MaxSAT solvers in the MSE2017.

Complete MaxSAT. Complete solvers can often find intermediate solutions to
ϕ before finding an optimal assignment ν. MaxSAT solvers based on linear search
algorithms [8,18,23] can find a sequence of intermediate solutions that converge
to an optimal solution. These solvers use PB constraints to enforce convergence.
While SAT4J [8] uses specialized data structures for PB constraints to avoid
their conversion to CNF, other solvers such as QMaxSAT [18] convert the PB
constraint into clauses using PB encodings [12,17,27]. Some MaxSAT solvers
which are based on the implicit hitting set approach [11,25] maintain a lower
and an upper bound on the values of the solution. These solvers can also be used
for incomplete MaxSAT since they are also able to find intermediate solutions.
Another approach for complete MaxSAT solving is to use unsatisfiability-based
algorithms [1,4,24]. These algorithms use unsatisfiable subformulas to increase
a lower bound on the cost of a solution until they find an optimal solution. For
weighted MaxSAT, these algorithms employ a stratified approach [3] where they
start by considering only a subset of the soft clauses with the largest weights
and iteratively add more soft clauses when the subformula becomes satisfiable.
An intermediate solution is found at each iteration. WPM3 [4] is an example of
an unsatisfiable-based solver that can be used for incomplete MaxSAT and was
the best incomplete MaxSAT solver in the MSE2016 [6]. maxroster [26] was the

224 S. Joshi et al.

winner of the incomplete track for Weighted MaxSAT in the MSE2017. It is a
hybrid solver that combines an initial short phase of a stochastic algorithm [13]
with complete MaxSAT algorithms [18,24].

Boolean Multilevel Optimization. The clustering-based algorithm presented
in Algorithm 3 is closely related to Boolean Multilevel Optimization (BMO) [21].
BMO is a technique for identifying lexicographic optimization conditions, i.e. the
existence of an ordered sequence of objective functions. Let Mi be the minimum
weight of soft clauses in a cluster ci. Consider a sequence of clusters c1, . . . , cm

arranged in a descending order of Mi. A MaxSAT formula is an instance of BMO
if for every cluster ci, Mi is larger than the sum of the weights of all soft clauses
in clusters ci+1, . . . , cm. If this condition holds then the result of Algorithm 3
is equivalent to solving a BMO formula. However, when using the proposed
clustering-based algorithm on partitions that do not preserve the BMO condi-
tion, it is not guaranteed that the solution found by Algorithm 3 is an optimal
solution for ϕ. Our approach differs from previous complete approaches in using
approximation strategies that do not preserve optimality but are more likely to
converge faster to a better solution.

5 Experimental Results

To evaluate incomplete MaxSAT solvers we used the scoring mechanism from
MaxSAT Evaluations 2017 (MSE2017) [2]. Given a formula ϕ, the score for a
solver S is computed by the ratio of the cost (sum of weights of unsatisfied
clauses) of the best solution known for ϕ, denoted as best(ϕ),2 to the best cost
found by S, denoted as costS(ϕ).3 The score for S for a set of n benchmarks is
given by the average score ([0, 1]) as follows:

score(S) =

∑n
i=1

best(ϕi)
costS(ϕi)

n
(1)

score(S) shows how close on average is a solver S to the best known solution.
All the experiments were conducted on Intel R© Xeon R© E5-2620 v4 processors

with a memory limit of 32 GB and time limits of 10, 60 and 300 s. We have
used a non-standard timeout of 10 s to show that approximation strategies can
find good solutions very quickly. We used the 156 benchmarks for incomplete
MaxSAT from MSE2017 [2]. Note that most of these benchmarks are challenging
for complete solvers and have unknown optimal solutions.

We have implemented all the algorithms presented in this paper in Open-
WBO-Inc. Open-WBO-Inc is built on top of Open-WBO [23] which uses Glu-
cose [7] as the underlying SAT solver. We used Generalized Totalizer Encoding
(GTE) [17] and incremental Totalizer encoding [22] to translate PB constraints
and cardinality constraints into CNF, respectively.
2 best(ϕ) is the cost of the best solution found by any solver in this evaluation.
3 We consider a score of 0 if S did not find any solution to ϕ.

Approximation Strategies for Incomplete MaxSAT 225

We evaluated Open-WBO-Inc by conducting experiments that are designed
to answer the following questions: (1) What is the impact of the number of
clusters in the quality of the solution found by our approximation strategies? (2)
How does Open-WBO-Inc compare against state-of-the-art incomplete MaxSAT
solvers?

Impact of the Number of Clusters. We measure the impact of partitioning
parameter m on the accuracy of the results. Figure 1a shows the score of Algo-
rithm 2 with GTE encoding (henceforth called apx-weight). Figure 1a shows that
apx-weight performs the worst when no partitioning is done. This is attributed
to the fact that in the absence of any partitioning, the size of the underlying
encoding is dictated by #weights, where #weights are the number of different
weights in the weight map. Figure 1c shows a measure of increase in formula
size as m varies. The Y -axis shows the ratio of the formula size after the PB
encoding to the size of the original input formula. Because of the weight-based
approximation, the reduction on the #weights leads to a smaller encoding, thus
making it easier for the underlying SAT solver. As m increases, the possible devi-
ation from an optimal cost also decreases, thereby resulting in increased scores.
The degradation for larger m is attributed to larger size of the formula. As the
timeout is increased, the score increases because Algorithm 2 has more time and
can do more iterations to reduce costm(model).

Figure 1b shows that similar scoring trends are witnessed for Algorithm 3
(henceforth called apx-subprob). As apx-subprob uses only cardinality constraints,
the formula size is not much sensitive to m. As m increases, the scores also
improve, with the best scores achieved when m = #weights. apx-subprob is guar-
anteed to find optimal solution only if BMO condition holds and m = #weights.
Only 3 out of 156 benchmarks have the BMO condition and apx-subprob with
m = #weights does not terminate for any of them. However, apx-subprob using
a 300 s time limit terminates for 94 out of 156 benchmarks which shows that
apx-subprob quickly finds a good solution.

Comparison Against State-of-the-Art MaxSAT Solvers. We compared
the best version of Open-WBO-Inc for weight-based approximation, apx-weight
with m = 2, and subproblem minimization approximation, apx-subprob with
m = #weights, with maxroster [26], WPM3 [4] and QMaxSAT [18]. maxroster and
WPM3 were the winners of the incomplete weighted category of the MSE2017
and MSE2016, respectively. QMaxSAT was placed second on the complete cate-
gory of the MSE2017 and uses the algorithm described in Algorithm 2.4

As shown in Fig. 1d, for a 10 s timeout, both apx-weight and apx-subprob
perform better than all the other solvers with apx-subprob performing the best.
This demonstrates that approximation strategies are quite effective when we
want to quickly find a solution which is closer to an optimal solution. For 60
and 300 s timeout, apx-subprob performs the best with maxroster being second
and apx-weight outperforming WPM3 and QMaxSAT. Even though apx-weight

4 Even though MaxHS [11] placed first in the complete weighted category of the
MSE2017, its incomplete version is not as competitive as the other solvers [2].

226 S. Joshi et al.

Fig. 1. Impact of clustering and comparison against state-of-the-art

with m = 0 performs worse than QMaxSAT, it outperforms QMaxSAT when
clustering is used. apx-subprob outperforms all other solvers and these results
prove the efficacy of approximation strategies with respect to the state-of-the-
art in incomplete MaxSAT solving.

6 Conclusion and Future Work

Approximation strategies, be it weight-based relaxation or subproblem mini-
mization, are not guaranteed to find an optimal solution even when unlimited
time is given. However, they serve the purpose of quickly finding a good solution.
Our experiments have successfully demonstrated that with the right parameters,
these strategies can outperform the best incomplete solvers. In future, we would
like to explore the application of approximation strategies to complete algo-
rithms. In particular, progressively increasing the number of clusters and using
approximation strategies to find good initial upper bounds that can later be
exploited by complete MaxSAT algorithms.

Approximation Strategies for Incomplete MaxSAT 227

Acknowledgements. This work is partially funded by ECR 2017 grant from SERB,
DST, India, NSF award #1762363 and CMU/AIR/0022/2017 grant. Authors would
like to thank the anonymous reviewers for their helpful comments, and Saketha Nath
for lending his servers for the experiments.

References

1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of International Joint Conference on Arti-
ficial Intelligence, pp. 2677–2683. AAAI Press (2015)

2. Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2017
(2017). http://mse17.cs.helsinki.fi/. Accessed 18 Apr 2017

3. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9

4. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. 250, 37–57 (2017)

5. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving linux
upgradeability problems using Boolean optimization. In: Proceedings of Workshop
on Logics for Component Configuration, pp. 11–22. EPTCS (2010)

6. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT Evaluation 2016 (2016).
http://maxsat.ia.udl.cat/. Accessed 18 Apr 2016

7. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of International Joint Conference on Artificial Intelligence, pp.
399–404. AAAI Press (2009)

8. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. JSAT 7(2–3), 59–64
(2010)

9. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSat. In:
Proceedings of AAAI Conference on Artificial Intelligence, pp. 2623–2629. AAAI
Press (2014)

10. Cai, S., Luo, C., Zhang, H., From decimation to local search and back: a new app-
roach to MaxSAT. In: Proceedings of AAAI Conference on Artificial Intelligence,
pp. 571–577. AAAI Press (2017)

11. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

12. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

13. Fan, Y., Ma, Z., Kaile, S., Sattar, A., Li, C.: Ramp: a local search solver based on
make-positive variables. In: Proceedings of MaxSAT Evaluation (2016)

14. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis
of semantic malware signatures using maximum satisfiability. In: Proceedings of
Network and Distributed System Security Symposium (2017)

15. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

16. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of Conference on Programming Language Design and
Implementation, pp. 437–446. ACM (2011)

http://mse17.cs.helsinki.fi/
https://doi.org/10.1007/978-3-642-33558-7_9
http://maxsat.ia.udl.cat/
https://doi.org/10.1007/978-3-642-23786-7_19

228 S. Joshi et al.

17. Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-
Boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 15

18. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. JSAT 8(1/2), 95–100 (2012)

19. Luo, C., Cai, S., Kaile, S., Huang, W.: CCEHC: an efficient local search algorithm
for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

20. Luo, C., Cai, S., Wei, W., Jie, Z., Kaile, S.: CCLS: an efficient local search algo-
rithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843
(2015)

21. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343
(2011)

22. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental Cardinality Con-
straints for MaxSAT. In: O?Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39

23. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver’.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

24. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014)

25. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 34

26. Sugawara, T.: MaxRoster: solver description. In: Proceedings MaxSAT Evalua-
tion 2017: Solver and Benchmark Descriptions, vol. B-2017-2, p. 12. University of
Helsinki, Department of Computer Science (2017)

27. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/978-3-319-40970-2_34

A Novel Graph-Based Heuristic Approach
for Solving Sport Scheduling Problem

Meriem Khelifa1(B), Dalila Boughaci1(B), and Esma Aı̈meur2

1 Department of Computer Science-Laboratory of Research in Artificial Intelligence
LRIA, USTHB, Bab Ezzouar, Algeria

khalifa.merieme.lmd@gmail.com, dboughaci@usthb.dz
2 Department of Computer Science and Operations Research HERON Laboratory,

Montreal, Canada
aimeur@iro.unmontreal.ca

Abstract. This paper proposes an original and effective heuristic
approach for solving the unconstrained traveling tournament problem
(denoted by UTTP) in sport scheduling. UTTP is an interesting variant
of the well-known NP-hard traveling tournament problem (TTP) where
the main objective is to find a tournament schedule that minimizes the
total distances traveled by the teams. The proposed graph-based heuris-
tic method starts with a set of n teams (n < 10). The method models
the problem by representing the home locations of the teams as ver-
tices and each arc corresponds to the matching between two teams. Each
round corresponds to a 1-factor of the generated graph. We use the Bron-
Kerbosch clique detection algorithm to enumerate all the possible 2(n−1)
cliques from the 1-factors. Then, the vertices of each 2(n− 1) cliques are
sorted to create double round robin tournament (DRRT) schedules. The
schedule with lowest cost travel is selected to be the solution of the
problem. The proposed method is evaluated on several instances and
compared with the state-of-the-art. The numerical results are promising
and show the benefits of our method. The proposed method significantly
improves the current best solutions for the US National Baseball League
(NL) instances and produces new good solutions for the Rugby League
(SUPER) instances.

Keywords: Sport scheduling · Traveling tournament problem
Heuristic · Perfect matching · Graph
Unconstrained traveling tournament problem

1 Introduction

Sports scheduling is an active and important research area that can be useful to
real sports leagues [11,17,18]. This work focus on the traveling tournament prob-
lem (TTP) [8,12,19]. The traveling tournament problem (TTP) is a core problem
in sports scheduling where the aim is to find a double round robin tournament

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 229–241, 2018.
https://doi.org/10.1007/978-3-319-98334-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_16&domain=pdf

230 K. Meriem et al.

(DRRT) schedule for a finite number of teams located at various geographical
locations with a finite distance between them [8].

Most association sport leagues in the world can be organized in a double
round robin. In a DRRT schedule, all teams T = (t1, t2 . . . tn) meet all other
teams twice where n is a positive even integer. Every team plays against each
other team exactly once at home and once away, and all teams must play only
one match every round. Consequently, a DRRT has n(n − 1) games, and n/2
games are played in every round. Thus exactly 2(n − 1) rounds are required to
schedule a DRRT.

TTP is a difficult problem to solve, and it is known to be NP-hard [22]. In
this work, we are interested in the unconstrained traveling tournament problem
(UTTP) which is a variant of TTP. UTTP is also an NP-hard problem [3].

In this paper, we propose an effective heuristic for UTTP. We propose a
graph-based heuristic able to yield promising results for a number of teams
n < 10. We use as a model a complete graph GT (H, E) where the set H =
{hi}ni=1 of the vertices represents the home of the team ti, and the set of edges
E, are weighted by the distance dis(hi, hj) between the home of teams ti and
tj . Our method is based on the perfect matching of graphs of rounds where
the input is the number of the teams (n < 10) and the output is a DRRT
schedule. The proposed method produces new good solutions on some unsolved
UTTP instances. A significant improvement is noted over previous approaches
for National League United States (NL) instances.

The rest of this paper is organized as follows. Section 2 gives a background
on the TTP problem. Section 3 presents some related works. Section 4 details the
proposed approach. Section 5 gives the numerical results and the comparison of
our results with the best ones existing in the literature. Finally, Sect. 6 concludes
and gives some perspectives.

2 Problem Definition

TTP is the problem of scheduling a double round-robin tournament while satis-
fying a set of related constraints and minimizing the total distance traveled by
all the teams. The TTP can be stated as follows:

– The TTP inputs: include a set of n teams T = (t1, t2 . . . tn) and a symmetric
n by n integer distance matrix that represents the distance between team
sites. We denote this matrix by dis.

– The output: is a DRRT of 2(n−1) rounds that minimizes the total traveled
distance of the teams with the following constraints:

1. No team should play more than 3 consecutive home or away games.
2. A team cannot play against the same opponent in two consecutive games.

The objective of the TTP is to find a schedule with the minimum cost satisfying
the two above constraints. We note that the cost of a schedule is the sum of

A Novel Graph-Based Heuristic for UTTP 231

the cost of every team where the cost of team ti is equal to the total distance
traveled by this team.

UTTP is a variant of TTP in which constraints 1 and 2 are eliminated. The
objective of the UTTP is the same of TTP; find a schedule with minimum cost
where the constraints 1 and 2 are not necessarily required. UTTP can be a
suitable model for some practical scheduling problems.

Moreover, eliminating both constraints decreases the budget constraint. Thus
a solution for UTTP is an appropriate model for managing a sports league with
low budget.

Example: Table 1 provides an example of a TTP schedule for n = 6.

Table 1. Double round robin tournament (DRRT) (n = 6)

R1 (t6, t4) (t2, t3) (t5, t1) R6 (t2, t6) (t4, t1) (t3, t5)

R2 (t5, t6) (t3, t1) (t2, t4) R7 (t3, t6) (t5, t4) (t2, t1)

R3 (t1, t6) (t5, t2) (t3, t4) R8 (t6, t2) (t1, t4) (t5, t3)

R4 (t6, t3) (t4, t5) (t1, t2) R9 (t6, t5) (t1, t3) (t4, t2)

R5 (t6, t1) (t2, t5) (t4, t3) R10 (t4, t6) (t3, t2) (t1, t5)

The schedule in Table 1 specifies that team t1 has the following schedule:
it plays against teams: t5 away, t3 away, t6 at home, t2 at home, t6 away, t4
away, t2 away, t4 at home, t3 at home and t5 at home. The t1 tour πt1 is:
(h1, h5, h3, h1, h6, h4, h2, h1).

The travel cost or distance value of team t1 is:

dis(h1, h5) + dis(h5, h3) + dis(h3, h1) + dis(h1, h6) + dis(h6, h4) + dis(h4, h2)
+ dis(h2, h1)

More formally, the distance of a team tour πt is the summation of distances
between consecutive venues dis(πt

i , π
t
i+1) found in the tour πt of team t. Loca-

tions of πt
0 and πt

2(n−1)+1 must be at home. Thus, a tour distance is:

πt =
2(n−1)+1∑

i=1

dis(πt
i−1, π

t
i) (1)

The travel cost of the schedule (travel cost):

travel cost =
n∑

t=1

πt (2)

We note that a good optimization in TTP may lead to great savings in
travel costs due to reduced travel distances, while poor schedules might lead to
heavy budget losses to the sport league management. Furthermore, reducing the
traveling distances creates more opportunities for players to train along a season.

232 K. Meriem et al.

3 Related Works

TTP is a core problem in sports scheduling. Several works in different contexts
tackled TTP. Among them, we mention the integer programming, constraint pro-
gramming, and their hybridization which is a useful tool to model and solve small
TTP instances: In [6], de Carvalho and Lorena, presented an integer program-
ming formulation to the mirrored version of TTP (mTTP) and the Max-MinTTP
variant, in which the problem of minimizing the longest traveled distance is
addressed. Another exact method based on branch-and-price-based solution for
the TTP is developed in [10]. They optimally solved NL8 and CIRC6 instances.

Rasmussen and Trick, in [19] proposed an exact method based on constraint
programming and branch-and-price for a special case of TTP so-called TCDMP
(Constrained distance minimization problem). The TCDMP problem consists of
finding an optimal home-away assignment when the opponents of each team in
each round are given.

Approximation algorithms were also proposed for the TTP: in [24] Westphal
and Noparlik proposed an algorithm that approximates the optimal solution by
a factor of 5.875.

For the large instances, the methods based on meta-heuristics are the most
successful approaches for TTP. In [15], a hybrid approach combining a simu-
lated annealing (SA) and hill-climbing components is proposed for TTP. Vari-
able neighborhood search [12] and a clustering search (CSA) method for mTTP
[4] are also proposed to solve TTP and they have got results comparable with
the best-known solution for NL and CON instances.

Further, in [20], a hybridization of GRASP (Greedy Randomized Adaptive
Search Procedure) and ILS (Iterated Local Search) are proposed for solving
mTTP problem. Their experiments were performed on CIRC and NL instances.

A new enhanced harmony search combined with a variable neighborhood
search (V-HS) was developed for mTTP in [13]. This approach was evaluated
on instances of up to size 16 for NL instances and 20 for CON instances. The
approach matches the optimal solution for NL 6, CON 4 to CON 12 instances
and the general deviation from optimality is equal to 4.45%. In [1], an enhanced
simulated annealing for TTP (TTSA) is proposed for TTP. This method was
successful for solving TTP and it improved the best known solution for NL
instances.

Other approximation algorithms were conducted for the UTTP in [9]. Their
idea is based on the circle method (the Kirkman schedule) and the shortest
Hamiltonian cycle passing by all venues teams.

4 Contributions

We propose an effective and fast heuristic method for UTTP. The proposed
method is structured into three main successive steps where the input is the
number of the teams (n < 10) and the output is a set of DRRT schedules for
sport leagues with low-cost travel. The different steps of the proposed method
for UTTP are given as follows:

A Novel Graph-Based Heuristic for UTTP 233

1. Step 1. Generation of all the possible rounds: In this step, we create
all the possible rounds by enumerating all the perfect matching of the initial
directed graph of the teams GT (H, E) (Sect. 4.1). We note that, a perfect
matching of a graph is a matching in which every vertex of the graph is
incident to exactly one edge of the matching.

2. Step 2. Enumeration of the 2(n − 1) − cliques of the graph of the
rounds (Sect. 4.2): In this step first, we use the resulting rounds from the
previous step to create the undirected graph of rounds GR(V, U). Then, we
enumerate all the 2(n − 1) − cliques of the graph GR(V, U).

3. Step 3. Creation of the DRRT schedules: In this last step, we sort the
vertices of each 2(n − 1) − clique (the cliques of the second step) to form
DRRT schedules with low-cost travel (Sect. 4.3).

Figure 1 illustrates the different steps of our proposed approach for UTTP.
As shown in Fig. 1, the method starts with a set of n teams with a distance

matrix dis. We create the complete directed graph of teams. Then, from this
graph we enumerate all the 1-factors of the initial graph where 1-factor represents
a round. For this purpose, we use a simple backtracking and recursion algorithm.
In the next step, we generate the undirected graph of rounds and enumerate all
the 2(n − 1) − cliques of the graph. After that, we sort the vertices of each
2(n−1)−clique in order to form the DRRT schedules. The schedule with lowest
cost travel is selected in the last step to be the solution for our problem. More
details are given in the next subsections.

Fig. 1. The flowchart of the proposed approach

234 K. Meriem et al.

4.1 Step1. Generation of All the Possible Rounds

We start with a complete directed graph GT (H, E) of the teams. As already
said, the vertices H = {hi}ni=1 of the graph GT (H,E) are the home locations
of the teams T = (t1, . . . , tn). The arc

→
ei,j corresponds to the matching between

team ti and team tj , the direction of the arc indicates that the game takes place
in the home city of team ti.

Figure 2 shows an example of a complete directed graph GT (H, E), where
H = {t1, t2, t3, t4}.

We use here the concept of 1-factor. The 1-factor of a graph GT (H, E) is a
sub-graph GT (H, E

′
), with E

′ ⊂ E, all edges of E
′
are independent (they have

no common end vertex) and all the vertices have their degrees equal to one.
Since each team plays only one game per round, n/2 different games are played
in every round.

Accordingly, each round corresponds to a 1-factor in GT (H, E). More pre-
cisely, the oriented 1-factor may model the n/2 games scheduled for a given
round [7].

In the 1-factor, each game is modeled by an arc (ti, tj) oriented from team
ti to tj which means that the game is played in the home location of team
ti. Figure 2 depicts examples of 1-factors that represent the schedules of given
rounds.

For example, the first 1-factor (Ra) may schedule one round Ra :
(t1, t2)(t4, t3) (as shown in Fig. 2).

We remind that the aim of the first step is to derive all possible rounds by
getting the oriented 1-factors of GT (H,E): |H| = n (n teams).

Note: the number of 1-factors of a complete directed graph Gn is equal to (n)!
(n/2)!

Proof: In the complete directed graph with n vertices, to form a 1-factor (perfect
matching), each vertex must be assigned to a single arc, so for the first vertex
there are (n − 1) × 2 choices (×2 to orient the edge) to choose its neighbor. For
the second vertex, we pick an unused vertex from the sub-graph on the rest n−2
vertices, so it will result in 2(n − 3) ways to choose its neighbor, for the third
vertex we will have 2(n − 5) ways to choose its neighbor and so on with others
vertices. Thus the overall number of 1-factors is equal to:

(n − 1) × 2 × (n − 3) × 2 × (n − 5) × 2...3 × 2 × 1 × 2 = 2n/2 × (n − 1)!! = (n)!
(n/2)!

Figure 2 represents the 1-factors of GT (H,E): (Ra : ((t1, t2), (t4, t3)), Rb :
((t1, t2), (t3, t4)), Rc : ((t1, t2), (t3, t4)),....Rl : ((t4, t1), (t2, t3))).

4.2 Step2. Enumeration of All the 2(n − 1) − cliques of the Graph
of the Rounds

In this section, we explain the creation of the graph of the rounds. Then we show
how we enumerate all the 2(n − 1) − cliques of the graph GR(V, U).

A Novel Graph-Based Heuristic for UTTP 235

Creation of the Graph of the Rounds. The resulting rounds of the previous

step V := {Ri}
(n)!

(n/2)!
i=1 are used to form an undirected graph GR(V, U) where V

are the nodes and U are the edges:
U :=

{
{Ri, Rj} : Independent Rounds(Ri, Rj), i, j = 1, ..., (n)!

(n/2)!

}
.

We define independent Rounds (Ri, Rj) where there is no common game
between rounds Ri and Rj . This is illustrated in Fig. 2, there is no common game
between Ra : ((t1, t2), (t4, t3)) and Rc : ((t3, t1), (t2, t4)), hence the corresponding
vertices Ra and Rc in GR(V, U) must be linked by edges. On the other hand
there is a common game (t1, t2) between rounds Ra : ((t1, t2), (t4, t3)) and Rb :
((t1, t2), (t3, t4)) hence both rounds(vertices) are not connected by an edge.

In Fig. 3, we give the graph GR(V, U) formed by using the rounds depicted
in Fig. 2.

Fig. 2. The 1-factors of the complete graph GT (H, E) n = 4

236 K. Meriem et al.

Fig. 3. The graph of the rounds GR(V, U) with two cliques getting from this graph

Enumeration of All 2(n − 1) − cliques of the GraphGR(V, U). A clique
is a complete sub-graph that represents a subset of vertices, all adjacent to each
other, and a k-clique is a clique with k vertices.

As already mentioned, a TTP solution is a DRRT schedule. DRRT has n(n−
1) games which are organized in 2(n − 1) Independent Rounds.

In the graph of the rounds GR(V, U) (see Fig. 3):

1. The adjacent rounds are Independent.
2. 2(n−1)−clique in the graph GR(V,U) is a set of 2(n−1) Independent Rounds

all adjacent to each other (see Fig. 3).

From (1) and (2), we can say that a 2(n− 1)− clique in GR(V, U) may schedule
or form a DRRT schedule (see Fig. 4).

To enumerate all possible DRRT schedules, we enumerate the 2(n − 1) −
cliques of the graph GR(V, U). Thus, the purpose of this step is to enumerate
the 2(n − 1) − cliques of the graph of rounds GR(V, U). This is done by using
Bron-Kerbosch clique detection algorithm [5,23] with complexity of O(3V/3) (V-
vertex graph: for n = 4, V is equal to 12, for n = 6, V is equal to 120 and for
n = 8, V is equal to 1680).

Figure 3 outlines an example of two 2(n−1)−cliques of the graph of rounds,
the 6 − clique (1) is formed by the independent rounds (Ra, Rd, Rc, Rk, Rj , Rh),
and the 6 − clique (2) formed by independent rounds (Ra, Rc, Rg, Rl, Rj , Rh).
Both 6 − cliques (1) and (2) may form two different DRRT schedules.

A Novel Graph-Based Heuristic for UTTP 237

4.3 Step3. Creation of DRRT Schedules

To reorder efficiently the rounds of each clique and so create the corresponding
schedules in the best possible way (with low- cost travel), we model the problem
of sorting the rounds of each 2(n − 1) − clique as a traveling salesman problem
(TSP) [14].

We sort the rounds (the vertices) of each 2(n − 1) − clique according to the
shortest route passing all its vertices (the rounds of the schedule).

The process can be done as follows: for each 2(n − 1) − clique:

1. We associate a weight to each edge of the clique w(ui,j) = dR(Ri;Rj) where
dR(Ri;Rj) indicates the distance between the rounds. It represents the dis-
tance traveled by the teams from round Ri to round Rj in the schedule:

dR(Ri;Rj) = Σn
t=1dis(πt

Ri
, πt

Rj
). (3)

Figure 4 gives an example of weighting each edge in the clique 6-clique(1):
dR(Ra;Rd) = dis(h1, h4) + dis(h1, h3) + dis(h4, h3).

2. Find the shortest route (in the 2(n − 1) − clique) that visits each vertex
exactly once (to ensure each round will appear once in the schedule). Then
returns to the origin vertex; accordingly we are looking for solving TSP [14]
in the 2(n − 1) − clique in GR(V, U). We use the nearest neighbor algorithm
(O(log n)-approximation algorithm) [2,14,21]). This is done in order to sort

Fig. 4. Reordering the vertices of 6 − clique(1) to form schedule with low-cost travel

238 K. Meriem et al.

the rounds of the each 2(n − 1) − clique in the best way which forms the
corresponding schedule with low-cost travel.
As shown in Fig. 4, the shortest route in 6 − clique(1) is Ra → Rj → Rd →
Rc → Rh → Rk.

3. We sort the rounds of the clique according to the TSP solution to create a
new schedule S with low-cost travel.

Figure 4 illustrates the process of sorting the vertices of 6−clique(1) (depicted
in Fig. 3), with the aim to build a DRRT schedule with low-cost travel.

5 Experiments

The proposed method is evaluated on some well-known datasets for TTP. The
source code is written in Java and run on an Intel(R) Core(TM) i5 4270UCPU
@ (3.20 GHz) with 8 GB of RAM.

We consider the well-known benchmarks instances [16] which are: the so-
called NLx, CONx, CIRCx, SUPERx (x stands for the dimension of the
instance).

– NLx instances are based on real data of the US National Baseball League,
where x is an even number of teams. The NLx family of instances is proba-
bly the most researched TTP benchmark- family and virtually all researches
studying the TTP publish their computational results with NLx instances
[11,19,24].

– CONx The constant distance instances are characterized by a distance of
one (1) between all teams.

– SUPERx is based on Rugby League, a league with 14 teams from South
Africa, New Zealand and Australia.

– CIRCx instances: all teams are placed on a circle, with unit distances (dis-
tance of 1 between all adjacent nodes). The distance between two teams i and
j with i > j is then equal to the length of the shortest path between i and j
which is the minimum of i − j and j − i + n.

5.1 The Numerical Results

Table 2 gives the numerical results obtained by our approach on the different
NL, CON, CIRC, and SUPER instances. The first column gives the name of the
instance. The column (best-known) is the best known solutions for the consid-
ered instance (UTTP) [9,16]. The column ourapproach provides the travel cost
achieved by the proposed algorithm. The column Gap(ourapproach/best−known)

provides the gap between the best solution of our method and the best-known
solutions.

Gap(ourapproach/best−known)% =
(

travel costourapproach − best − known

travel costourapproach

)
· 100

(4)

A Novel Graph-Based Heuristic for UTTP 239

Table 2. Comparative study with the best-known solutions

Instance Our approach Best-known Gapbest−known/ourapproach

NL4 8276Opt 8276 0%

NL6 19900∗ 20547 −3.25%

NL8 30700 ∗ 33190 −8.11%

CON4 17Opt 17 0%

CON6 38Opt 38 0%

CON8 67Opt 67 0%

CIRC4 20Opt 20 0%

CIRC6 54Opt 54 0%

CIRC8 102Opt 102 0%

Super4 63405 - -

Super6 99825 - -

Super8 134980 - -

* New best solutions on UTTP
Opt Optimal solution

The numerical results show that our proposed approach generates schedules
of high quality. In order to quantify this improvement, we compute the arithmetic
mean of the percentage (Gap), which we called the performance ratio (PR):

PR =
NBins∑

i=1

Gapourapproach/best−knowni/NBins (5)

The Gapourapproach/best−knowni (formula 4) is the gap between the best solu-
tion of our method and the best known solution (best-known) of instance i, and
NBins is the number of the tested instances for each benchmark.

As reported in Table 2, our approach succeeds in improving the current best
solutions [9] for the tested NL instances. The performance ratio is equal to PR
= 3.78%. Thus our approach improves the best known solutions for the NL
considered instances (n < 10) by 3.78% in average.

Further, the results show that the new proposed approach is able to achieve
the optimal solution [16] for CON4, CON6 and CON8 instances. The proposed
approach matches the best known solutions on CIRC4, CIRC6 and CIRC8
instances. For the SUPER instances we can say that the proposed approach
is the first research effort that handles them, thus for the moment our results
are the best solutions. Additionally, our heuristic can be used for solving the 4,
6 and 8 teams TTP version by selecting the best schedule that satisfies both
constraints. It can reach the optimal solution for NL4, NL 6 and NL8 instances
on TTP.

We note that the obtained schedules are validated by using the validator of
Luca Di Gaspero and Andrea Schaerf from the Challenge Traveling Tournament
Instances web site [16].

240 K. Meriem et al.

6 Conclusion

This paper proposed a novel and effective heuristic for the well-known UTTP
which is the problem of scheduling a double round robin tournament, by min-
imizing the total distances traveled by the teams. The proposed method is a
graph-based heuristic where the input is the number of the teams (n < 10) with
asymmetric n by n integer distance matrix that represents the distance between
team sites and the output is a set of DRRT schedules for sports leagues with
low-cost travel. The proposed approach is evaluated on several instances and
compared with the state-of-the-art. The numerical results show the performance
of the proposed approach. The latter significantly improves the current best
solutions for the considered National League (NL) instances. Further, the pro-
posed approach is able to produce new good solutions to unsolved Rugby League
composed of teams from New Zealand, Australia, and South Africa (SUPER)
instances. It is important to note that our contribution is not only to achieve a
good algorithm to solve UTTP but also to propose a new strategy to generate
appropriate schedules for sport leagues with low-travel cost. As future work, we
plan to combine our approach with integer programming based methods to solve
large TTP instances.

References

1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated
annealing approach to the traveling tournament problem. J. Sched. 9(2), 177–193
(2006)

2. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper.
Res. 16(3), 538–558 (1968)

3. Bhattacharyya, R.: Complexity of the unconstrained traveling tournament prob-
lem. Oper. Res. Lett. 44(5), 649–654 (2016)

4. Biajoli, F.L., Lorena, L.A.N.: Clustering search approach for the traveling tourna-
ment problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS
(LNAI), vol. 4827, pp. 83–93. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76631-5 9

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

6. de Carvalho, M.A.M., Lorena, L.A.N.: New models for the mirrored traveling tour-
nament problem. Comput. Ind. Eng. 63(4), 1089–1095 (2012)

7. De Werra, D.: Scheduling in sports. Stud. Graphs Discrete Program. 11, 381–395
(1981)

8. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem descrip-
tion and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7 43

9. Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the
unconstrained traveling tournament problem. Ann. Oper. Res. 218(1), 237–247
(2014)

10. Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem.
Eur. J. Oper. Res. 204(2), 218–228 (2010)

https://doi.org/10.1007/978-3-540-76631-5_9
https://doi.org/10.1007/978-3-540-76631-5_9
https://doi.org/10.1007/3-540-45578-7_43

A Novel Graph-Based Heuristic for UTTP 241

11. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an anno-
tated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010)

12. Khelifa, M., Boughaci, D.: A variable neighborhood search method for solving the
traveling tournaments problem. Electr. Notes Discrete Math. 47, 157–164 (2015)

13. Khelifa, M., Boughaci, D.: Hybrid harmony search combined with variable
neighborhood search for the traveling tournament problem. In: Nguyen, N.-T.,
Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016, Part I. LNCS
(LNAI), vol. 9875, pp. 520–530. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45243-2 48

14. Laporte, G.: The traveling salesman problem: an overview of exact and approxi-
mate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

15. Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algo-
rithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478
(2006)

16. Michael, T.: Challenge traveling tournament instances. http://mat.tepper.cmu.
edu/TOURN/. Accessed Jan 2018

17. Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum
break problem. Eur. J. Oper. Res. 177(1), 198–213 (2007)

18. Rasmussen, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Oper.
Res. 188(3), 617–636 (2008)

19. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization
problem. Ann. Oper. Res. 171(1), 45 (2009)

20. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament prob-
lem. Eur. J. Oper. Res. 179(3), 775–787 (2007)

21. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for
the traveling salesman problem. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental
Problems in Computing, pp. 45–69. Springer, Dordrecht (2009). https://doi.org/
10.1007/978-1-4020-9688-4 3

22. Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theor.
Comput. Sci. 412(4–5), 345–351 (2011)

23. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theor. Comput. Sci.
363(1), 28–42 (2006)

24. Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament
problem. Ann. Oper. Res. 218(1), 347–360 (2014)

https://doi.org/10.1007/978-3-319-45243-2_48
https://doi.org/10.1007/978-3-319-45243-2_48
http://mat.tepper.cmu.edu/TOURN/
http://mat.tepper.cmu.edu/TOURN/
https://doi.org/10.1007/978-1-4020-9688-4_3
https://doi.org/10.1007/978-1-4020-9688-4_3

Augmenting Stream Constraint
Programming with Eventuality

Conditions

Jasper C. H. Lee1, Jimmy H. M. Lee2(B), and Allen Z. Zhong2

1 Department of Computer Science, Brown University,
Providence, RI 02912, USA
jasperchlee@brown.edu

2 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{jlee,azhong}@cuhk.edu.hk

Abstract. Stream constraint programming is a recent addition to the
family of constraint programming frameworks, where variable domains
are sets of infinite streams over finite alphabets. Previous works showed
promising results for its applicability to real-world planning and control
problems. In this paper, motivated by the modelling of planning applica-
tions, we improve the expressiveness of the framework by introducing (1)
the “until” constraint, a new construct that is adapted from Linear Tem-
poral Logic and (2) the @ operator on streams, a syntactic sugar for which
we provide a more efficient solving algorithm over simple desugaring. For
both constructs, we propose corresponding novel solving algorithms and
prove their correctness. We present competitive experimental results on
the Missionaries and Cannibals logic puzzle and a standard path plan-
ning application on the grid, by comparing with Apt and Brand’s method
for verifying eventuality conditions using a CP approach.

1 Introduction

Stream constraint programming [11,12] is a recent addition to the family of con-
straint programming frameworks. Instead of reasoning about finite strings [7],
the domain of the constraint variables in a Stream Constraint Satisfaction Prob-
lem (St-CSP) consists of infinite streams over finite alphabets. A St-CSP solver
computes not only one but all stream solutions to a given St-CSP, succinctly
represented as a deterministic Büchi automaton. Because of the infinite stream
domains, and the fact we can find all solutions, the framework is particularly
suitable for modelling problems involving time series, for example in control and
planning, using one variable for each stream as opposed to using one variable
per stream per time point in traditional finite domain constraint programming
[1]. Lallouet et al. [11] first demonstrated such capabilities by implementing the
game controller of Digi Invaders1, a popular game on vintage Casio calculator
1 See https://www.youtube.com/watch?v=1YafgAcmov4 for a video of the game as

implemented by Casio.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 242–258, 2018.
https://doi.org/10.1007/978-3-319-98334-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_17&domain=pdf
https://www.youtube.com/watch?v=1YafgAcmov4

Augmenting Stream Constraint Programming with Eventuality Conditions 243

models, using the St-CSP framework. Lee and Lee [12] further applied the frame-
work to synthesise PID controllers for simple robotic systems2.

In addition to using St-CSPs for control, Lee and Lee also proposed a frame-
work for modelling planning problems as St-CSPs, adapting that of Ghallab
et al. [6] for finite domain constraint programming. Even though the St-CSP
framework can express the entirety of what finite domain CSPs could, there are
still natural constraints on plans that we expect to be able to express but are
unable to. For example, we cannot express the constraint that the generated
plan must eventually satisfy a certain condition, without imposing a hard upper
bound on the number of steps before the plan must satisfy the condition.

This paper focuses on enhancing the expressiveness of the St-CSP framework,
using planning problems as a motivation. We introduce the “until” constraint
(Sect. 3), adapted from Linear Temporal Logic (LTL) [14], which includes as a
special case the “eventually” constraint. In addition, in the case where we do
wish to concretely bound the number of steps before a condition is satisfied, we
introduce the @ operator (Sect. 4) to simplify the modelling from the approach
of Lee and Lee. There are two advantages to using the new operator in con-
straints: (1) we can better leverage known structure to accelerate solving, and
(2) the notation is significantly less cumbersome, as measured in the length of
the constraint expressions. We give experimental evidence (Sect. 5) of the com-
petitiveness of our new solving algorithms.

For space reasons, we give only proof sketches of some of the results. The
full paper is available at https://arxiv.org/abs/1806.04325, which includes all
proofs, constraint models of our experiments and also more detailed exposition.

2 Background

We review the basics of stream constraint programming.

Existing Stream Expressions and Constraints. A stream a over a (finite)
alphabet Σ is a function N0 → Σ. For example, the function a(n) = n mod 2 is a
stream over any alphabet containing {0, 1}. The set of all streams with alphabet
Σ is denoted by Σω. The notation a(i,∞) is used for the stream suffix a′ where
a′(j) = a(j + i). For a language L, we similarly define L(i,∞) = {a(i,∞) | a ∈
L}. In this paper, we are only concerned with St-CSPs whose variables take
alphabets that are integer intervals, i.e. [m..n]ω for some m ≤ n ∈ Z. However,
the framework generalises naturally to any other finite alphabets.

To specify expressions, there are primitives such as variable streams, which
are the variables in the St-CSP, and constant streams. For example, the stream
2 denotes the stream s where s(i) = 2 for all i ≥ 0.

Pointwise operators, such as integer arithmetic operators {+, -, *, /, %},
combine two streams at each index using the corresponding operator. Integer
arithmetic relational operators are {lt, le, eq, ge, gt, ne}. They compare two

2 See http://www.youtube.com/watch?v=dT56qAZt8hI and http://www.youtube.
com/watch?v=5GvbG3pN0vY for video demonstrations.

https://arxiv.org/abs/1806.04325
http://www.youtube.com/watch?v=dT56qAZt8hI
http://www.youtube.com/watch?v=5GvbG3pN0vY
http://www.youtube.com/watch?v=5GvbG3pN0vY

244 J. C. H. Lee et al.

streams pointwisely and return a pseudo-Boolean stream, that is a stream in
[0..1]ω. Pointwise Boolean operators {and, or} act on any two pseudo-Boolean
streams a and b. The final pointwise operator supported is if-then-else. Sup-
pose c is pseudo-Boolean, and a, b are streams in general, then (if c then a
else b) (i) is a(i) if c(i) = 1 and b(i) otherwise. There are also three temporal
operators, in the style of the Lucid programming language [16]: first, next and
fby. Suppose a and b are streams. We have first a being the constant stream
of a(0), and next a being the “tail” of a, that is next a = a(1,∞). In addition,
a fby b = c is the concatenation of the head of a with b (a followed by b), that
is c(0) = a(0) and c(i) = b(i − 1) for i ≥ 1. Note that stream expressions can
involve stream variables. For example, (first y) + (next x) is an expression.

Given stream expressions, we can now use the following relations to express
stream constraints. For integer arithmetic comparisons R ∈ {<, <=, ==, >=, >, !=},
the constraint aR b is satisfied if and only if the arithmetic comparison R is
true at every point in the streams. Therefore, a constraint is violated if and
only if there exists a time point at which the arithmetic comparison is false. For
example, next x ! = y + 1 is a constraint enforcing that the stream expression y
+ 1 is not equal to the stream next x at all time points. Similarly, we define the
constraint a -> b to hold if and only if for all i ≥ 0, a(i) �= 0 implies b(i) �= 0.
Here we use the C language convention for interpreting integers as Booleans.

Care should be taken to distinguish between constraints and relational
expressions. Relational operators take two streams and output a pseudo-Boolean
stream. Constraints, however, are relations on streams. Two simple examples
illustrate the difference: x le 4 is a pseudo-Boolean stream, whereas x <= 4 is a
constraint that enforces x to be less than or equal to 4 at every time point.

Stream Constraint Satisfaction Problems

Definition 1 [11,12]. A stream constraint satisfaction problem (St-CSP) is a
triple P = (X,D,C), where X is the set of variables and D(x) = (Σ(x))ω is the
domain of x ∈ X, the set of all streams with alphabet Σ(x). A constraint c ∈ C
is defined on an ordered subset Scope(c) of variables, and every constraint must
be formed as specified previously (though it is the aim of this paper to extend the
class of specifiable constraints).

Figure 1 gives an example St-CSP. An assignment A : X → ⋃
x∈X D(x) is

a function mapping a variable xi ∈ X to an element in its domain D(xi). A
constraint c is satisfied by an assignment A if and only if it is satisfied by the
streams {A(x)}x∈Scope(c), and a St-CSP P is satisfied by A if and only if all
constraints c ∈ C are satisfied by A. We call the assignment A a solution of
the St-CSP P . We denote the solution set of P , namely the set of all solutions
A to P , by sol(P). The St-CSP P is satisfiable if sol(P) is non-empty, and
unsatisfiable otherwise. We also say that two St-CSPs P and P ′ are equivalent
(denoted P ≡ P ′) when sol(P) = sol(P ′).

Given a set of constraints C and an integer i, the shifted view of C is defined as
C(i,∞) = {ck(i,∞) | ck ∈ C} by interpreting constraints as languages. Similarly,

Augmenting Stream Constraint Programming with Eventuality Conditions 245

given an St-CSP P = (X,D,C) and a point i, the shifted view of P is defined
as P̂ (i) = (X,D,C(i,∞)).

Solving St-CSPs. Lallouet et al. [11] showed that the solution set sol(P) of a
St-CSP P is a deterministic ω-regular language, accepted by some deterministic
Büchi automaton A, which is a deterministic finite automaton for languages of
streams [3]. A stream s is accepted by A if the execution of A on input s visits
accepting states of A infinitely many times. When given a St-CSP P , the goal of
a St-CSP solver, then, is to produce a deterministic Büchi automaton A, called
a solution automaton of P , that accepts the language sol(P). We note that the
work of Golden and Pang [7] for finite string constraint reasoning also finds all
solutions as a single regular expression.

A St-CSP can be solved by a two-step approach [11,12]. First, a given St-
CSP P is normalised into some normal form P ′ where auxiliary variables may be
introduced, but P ′ is equivalent to P modulo the auxiliary variables. Afterwards,
the search tree (as defined below) is explored and “morphed” into a deterministic
Büchi automaton via a dominance detection procedure, which is then output as
the solution automaton. In the rest of the paper, when we augment the language
for specifying stream expressions and constraints, we shall also follow the above
two-step approach to solve these new classes of St-CSPs. As such, we only have
to (a) specify our new normal forms, (b) give a corresponding normalisation
procedure, and (c) detail the new dominance detection procedures.

We now define the notion of search trees for St-CSPs, adapted from that for
traditional finite-domain CSPs [4]. We also describe how they are explored and
how dominance detection allows us to compute solution automata from search
trees. A search tree for a St-CSP P is a tree with potentially infinite height.
Its nodes are St-CSPs with the root node being P itself. The level of a node
N is defined as 0 for the root node and recursively for descendants. A child
node Q′ = (X,D,C ∪ {c′}) at level k + 1 is constructed from a parent node
P ′ = (X,D,C) at level k and an instantaneous assignment τ(x) ∈ Σ(x), where
τ takes a stream variable x and returns a value in Σ(x). In other words, τ assigns
a value to each variable at time point k. The constraint c′ specifies that for all
x ∈ X, x(k) = τ(x) and for all i �= k, x(i) is unconstrained. We write P ′ τ→ Q′

for such a parent to child construction, and label the edge on the tree between
the two nodes with τ . During search in practice, we shall not consider every
possible instantaneous assignment, but instead consider only the ones remaining
after applying prefix-k consistency [11].

We can identify a search node Q at level k with the shifted view Q̂(k).
Taking this view, if P̂ (k) = (X,D,C) is the parent node of Q̂(k + 1), then
Q̂(k + 1) = (X,D,C ∪ {c′})(1) = (X,D, (C ∪ {c′})(1,∞)) where c′ is the same
constraint as defined above.

Recall that a constraint violation requires only a single time point at which
the constraint is false. Therefore, we can generalise the definition of constraint
violation such that a finite prefix of an assignment can violate a constraint. A
sequence of instantaneous assignments from the root to a node is isomorphic to
a finite prefix of an assignment, and so the definition again generalises. Suppose

246 J. C. H. Lee et al.

F = (X,D,C) is a node at level k such that {τi}i∈[1..k] is the sequence of
instantaneous assignments that constructs F from the root node, i.e. P

τ1→ . . .
τk→

F . We say node F is a failure if and only if {τi}i∈[1..k] violates a constraint c ∈ C.
Given a normalised St-CSP P , its search tree is then explored using depth

first search. Backtracking happens when the current search node is a failure. A
search node M at level k is said to dominate another search node N at level k′,
written N ≺ M , if and only if their shifted views are equivalent (M̂(k) ≡ N̂(k′))
and M is visited before N during the search [11,12]. When the algorithm visits
a search node N that is dominated by a previously visited node M , the edge
pointing to N is redirected to M instead. If the algorithm terminates, then
the resulting (finite) structure is a deterministic Büchi automaton (subject to
accepting states being specified). If dominance detection were perfect, then the
search algorithm terminates, because every branch either ends in a failure or
contains two nodes with the same shifted views [11]. The crucial missing detail
from this high-level algorithm, then, is exactly how dominance is detected in
practice. Search node dominance is an inherently semantic notion, implying that
it is often inefficient to detect precisely. Thus, previous works identify efficient
syntactic approximations to detecting dominance such that the overall search
algorithm terminates [11,12]. We shall also give a new dominance detection
procedure in light of the new ways of forming stream expressions and constraints.
As for specifying the set of accepting states, previous work take all states as
accepting states, whereas we shall give a more nuanced criterion.

3 The “Until” Constraint

In this section, we introduce the “until” constraint to the St-CSP framework.
Recall that all the stream constraints introduced in Sect. 2 are pointwise predi-
cates. That is, the constraint is satisfied if its corresponding predicate holds for
every single time point of its input streams. The “until” constraint, as we shall
later see, is not a pointwise constraint.

Let us consider the following path planning problem on the standard n × n
grid world domain [8,15]. Between any two neighbouring vertices on the grid,
there could be 0, 1 or 2 directed edges. We ask for all paths on the directed graph
from a given start point that eventually visit a given end point.

Our method finds more than a shortest path. Modelling this problem as a St-
CSP allows us to find a succinct description of all the paths, and moreover allows
for additional side constraints. Well-studied side constraints in the literature
include precedence constraints [10] and time window constraints [13].

We can formulate as a St-CSP the condition that the path starts at (is, js),
has to respect the graph, and furthermore in the St-CSP model check whether
the goal of visiting the end point (ig, jg) is attained. This St-CSP is shown in
Fig. 1. We use variables x, y to represent the x and y coordinates of the current
position. In addition, a variable goal denotes if we have visited the end point.
The second to last constraint is such that if goal is true in one time point, it

Augmenting Stream Constraint Programming with Eventuality Conditions 247

Fig. 1. St-CSP model for the path planning problem

stays true in the next one as well. The last constraint says that if the path has
reached the end point, then it stays there indefinitely.

In this current model, we have not enforced that the goal is indeed eventually
attained at some point. An undesirable solution to the St-CSP would be, for
example, to stay in one location forever. However, variants of the “eventually”
constraint is not expressible in the St-CSP framework prior to this work, since
all constraints are inherently pointwise. Temporal operators are not expressive
enough for our purpose, since these operators shift streams by a constant number
of time points only. The “eventually” constraint, on the other hand, can be
satisfied at an unbounded number of time points away into the future.

We thus introduce the “until” constraint, adapted from Linear Temporal
Logic (LTL) [14] and essentially equivalent to “eventually” [5].

Definition 2 (The “Until” Constraint). Given two streams a, b, the con-
straint a until b is satisfied if and only if there exists a time point i ≥ 0 such
that (1) for all j < i, a(j) �= 0 and (2) b(i) �= 0. We say that the constraint is
finally satisfied at time point i if b(i) �= 0. Note that we are again adapting the
C language convention for interpreting integers as Booleans.

The “eventually” constraint is expressible in terms of the “until” constraint.
Suppose we want to express the constraint that a predicate G on stream elements
eventually holds, for example if G is “goal eq 1”. Then, we can express the
constraint as “1 until G”, or in our particular example, “1 until (goal eq 1)”.
Conversely, “a until b” is equivalent to “c == b fby (next b or c); (not c) ->
(a ne 0); eventually b;”.

3.1 Normalising “Until” Constraints

In light of the “until” constraint, we give a new constraint normal form. A St-
CSP is in normal form if it contains only constraints of the following forms:

248 J. C. H. Lee et al.

– Primitive next constraints: xi == next xj

– Primitive until constraints: xi until xj

– Primitive pointwise constraints with no next, fby or until (but can contain
first operators).

Any St-CSP can be transformed into this normal form by applying the rewrit-
ing system below. We adopt notations from programming language semantics
theory [17], writing c [] for constraint contexts, i.e. constraints with placehold-
ers for syntactic substitution. For example, if c [] = [+ 3 >= 4], then c [first
α] = [(first α) + 3 >= 4]. We also write a constraint rewriting transition as
(C0, C1) � (C ′

0, C ′
1), where C0, C1, C ′

0 and C ′
1 are sets of constraints. C0 is

the set of constraints that potentially could be further normalised, and C1 is
the set that is already in normal form. Hence, the initial constraint pair for the
St-CSP (X,D,C) is (C, {}). Rules are applied in arbitrary order until none are
applicable.

– (C0 ∪ {c [next expr]}, C1) � (C0 ∪ {c [x1], x2 == expr}, C1 ∪ {x1 == next
x2}), where x1 and x2 are fresh auxiliary stream variables.

– (C0 ∪ {c [expr1 fby expr2]}, C1) � (C0 ∪ {c [x1], x2 == expr1, x3 == expr2},
C1 ∪ {first x1 == first x2, x3 == next x1}), where x1, x2 and x3 are fresh
auxiliary stream variables.

– (C0 ∪ {expr1 until expr2}, C1) � (C0 ∪ {x1 == expr1, x2 == expr2}, C1 ∪
{x1 until x2}), where x1 and x2 are fresh auxiliary stream variables.

We can check easily the following properties of the new rewriting system.

Proposition 1. The new rewriting system always terminates, regardless of the
order in which the rules are applied.

Proposition 2. The rewriting system has the Church-Rosser property (up to
auxiliary variable renaming).

Proposition 3. The rewriting system is sound, in the sense that it preserves the
projection of the solution set of the resulting St-CSP into the original variables.

3.2 Search Algorithm and Dominance Detection

In the following, we assume that all given St-CSPs are in normal form.
Recalling the high-level solving algorithm in Sect. 2, we give in this section a

concrete instantiation of the syntactic dominance detection procedure. Our syn-
tactic procedure should possess two key properties. First, the procedure should
be sound : if two search nodes are claimed to have equivalent shifted views by
the procedure, then they do indeed have equivalent shifted views. Second, the
approximation should be sufficiently close to the semantic notion, such that the
overall search algorithm terminates and produces a finite structure. Otherwise,
in the extreme scenario where the dominance detection procedure never reports
any dominance, the search algorithm will simply search the entire (usually infi-
nite) search tree, resulting in non-termination.

Augmenting Stream Constraint Programming with Eventuality Conditions 249

Algorithm 1. Dominance Detection with Until Constraints
1: function Construct(Search Node P̂ (k) = (C, h), Instantaneous Assignment τ)
2: Historic values h′ ← ∅
3: for all primitive next constraints xi == next xj do
4: h′(xj) ← τ(xi)

5: Constraint Set C′ ← ∅
6: for all primitive until constraints xi until xj do
7: if τ(xj) = 0 then
8: C′ ← C′ ∪ {xi until xj}
9: for all primitive pointwise, next constraints c do

10: Constraint c′ ← c evaluated with τ
11: if c′ is not a zeroth order tautology then
12: C′ ← C′ ∪ {c′}
13: return Q̂(k + 1) = (C′, h′)

14: function areEqual(Search Nodes P̂ (k) = (CP , hP), Q̂(k′) = (CQ, hQ))
15: return (CP = CQ) ∧ (hP = hQ)

Our dominance detection procedure, as with previous works [11,12], involves
keeping track of a syntactic representation of the shifted view of each search
node, and detects dominance by checking syntactic equivalence between the two
representations. Hereafter, we refer to search nodes and their syntactic repre-
sentations interchangeably for narratory simplicity. Each search node, then, is
represented by two components: (1) a set C of St-CSP constraints and (2) a
table h, called historic values, storing for each variable xj in a primitive next
constraint “xi == next xj” the value assigned to xi at the previous time point.
The historic values are used to enforce primitive next constraints. If a value v is
assigned to xi at the previous time point, then first xj == v holds in the shifted
view of the current search node. We thus store v in the table entry for xj .

Algorithm 1 gives pseudocode for two functions, Construct and AreE-
qual, both adapted from the algorithm of Lee and Lee [12] with minimal changes
(lines 6–8) to accommodate “until” constraints. The function Construct takes
a parent search node P̂ (k) and an instantaneous assignment τ , and outputs the
corresponding child search node Q̂(k + 1) (the new constraint set C ′ and new
historic values h′). The function AreEqual, on the input of two search nodes,
just checks whether their components are syntactically equal.

We describe the function Construct in more detail. The new set of historic
values h′ is conceptually simple to compute. For each primitive next constraint
“xi == next xj”, we store h′(xj) = τ(xi) where τ is the instantaneous assign-
ment given for the construction of the child search node. The new constraint
set C ′ is computed from C by processing each constraint individually: (1) For
primitive next constraints, we keep them as is and put them into C ′. (2) For prim-
itive pointwise constraints, we follow Lee and Lee [12] in evaluating them using
the instantaneous assignment τ . That is, we substitute every variable stream
x appearing in an expression whose outermost operator is the first operator,

250 J. C. H. Lee et al.

using the value τ(x). This process produces expressions that consist entirely
of constant streams, pointwise operators and first operators, and thus can be
evaluated into a single constant stream. If, as a result, a primitive pointwise con-
straint becomes a numerical tautology (e.g. 1 == 1), we discard such a constraint.
(3) For primitive until constraints “xi until xj” (lines 6–8), we simply check
whether τ(xj) is 1, namely if the constraint is satisfied by the instantaneous
assignment τ . If so, we discard the constraint; otherwise we keep it in C ′.

When the search algorithm terminates, which provably happens as we shall
state later, we have a finite automaton whose states have to be labelled as
accepting or non-accepting. We choose the set of accepting states as those whose
constraint set C contains no primitive until constraints. As a special case, when
the given St-CSP has no “until” constraints, then all the states are accepting.

We stress again that our algorithm requires minimal changes from previous
work to support the use of “until” constraints in St-CSPs. The only changes we
have are lines 6–8 for the treatment of primitive until constraints, as well as how
we pick the set of accepting states.

We first show that the dominance detection procedure is sound. To do so,
we show that from a parent search node (C, h) and an instantaneous assignment
τ , Construct computes a child node (C ′, h′) representing the correct shifted
view. Thus, if two search nodes are syntactically equivalent, the corresponding
shifted views must also be equivalent.

Theorem 1 (Soundness of dominance detection). Suppose the constraint
set C ′ of the shifted view of child node Q̂(k + 1) is output by Construct from
the constraint set C of the parent node P̂ (k) and the instantaneous assignment
τk. Then sol(C ′ ∪ {c2}) = sol({c ∩ πScope(c)(c1) | c ∈ C}(1,∞)) where c1 is the
constraint stating x(0) = τk(x) for all streams x, and c2 is the constraint stating
xj(0) = τk(xi) for all constraints xi == next xj in C (and hence C ′). Note that
c2 is enforced by the set of historic values h′ produced by Construct.

Proof (Sketch). The two solution sets share the same primitive pointwise con-
straints. Primitive next constraints in C (and C ′) are respected in both solution
sets because of the constraint c2. Primitive until constraints in C are either pre-
served in C ′ or removed by Construct depending on τk. Hence the constraint
sets are either both constrained by an until constraint or both are not.

Having analysed the dominance detection algorithm, we can leverage the
results to prove termination and soundness of the overall search algorithm.

Theorem 2 (Termination). Using this new dominance detection procedure,
the search algorithm always terminates.

Proof (Sketch). Overall, the search algorithm can produce only finitely many
syntactically distinct search nodes, and thus always terminates.

Theorem 3 (Soundness and Completeness). The resulting solution
automaton A accepts the same language L(A) as the solution set sol(P) of the
input St-CSP P .

Augmenting Stream Constraint Programming with Eventuality Conditions 251

Proof (Sketch). L(A) ⊆ sol(P): The search algorithm ensures that primitive
pointwise and next constraints are satisfied. Primitive until constraints are also
satisfied by streams in the language by our choice of accepting states.

sol(P) ⊆ L(A): Follows from Theorem 1 and induction on time points.

3.3 Automaton Pruning

As a post-processing step, we prune all states that cannot reach any accepting
states via a flood-fill algorithm taking time linear in the size of the automaton
(before pruning), which retains the accepted language by the following lemma.

Lemma 1. Given a solution automaton A, let A′ be obtained from A by remov-
ing all states not reaching any accepting states. Then L(A) = L(A′).

Furthermore, the pruning gives us the following guarantee about finite runs
of the resulting automaton.

Theorem 4. For any finite-length run of the generated and pruned solution
automaton A, corresponding to a finite string (stream prefix) p, there exists a
solution stream s ∈ L(A) such that p is the prefix of s of length |p|.
Proof (Sketch). Every finite run can be extended, inductively by the fact that
each state can reach an accepting state.

Intuitively, the theorem says that, no matter how we run the automaton,
we can always extend the (finite) stream prefix generated so far into an infinite-
length solution stream. This therefore also guarantees that it is sound to generate
solution streams by running the automaton.

We emphasise that this pruning is for soundness, not solving efficiency.

4 The @ Operator

With the introduced “until” constraint along with a new solving algorithm, we
can now model in St-CSPs conditions that need to be eventually satisfied. How-
ever, eventuality constraints might not be suitable for all application scenarios.
It could be vital to be able to impose a strict upper bound on when a condition
is satisfied, whilst with an eventuality constraint, the time at which a specified
condition is satisfied could be arbitrarily far into the future.

Lee and Lee [12] propose using a constraint of the form “first next · · ·
next goal == 1” to model this bound, reflected by the number of next operators
in the constraint as the time bound. There are, however, two disadvantages to
this approach. First, such a constraint has its own structure that we could not
exploit to improve solving if we were to simply use the above syntax and current
solving algorithms. Second, the notation is cumbersome, with the length of the
constraint scaling linearly with the upper bound we wish to impose. To remedy
these two issues, we propose a new temporal operator “@” that acts as syntactic

252 J. C. H. Lee et al.

sugar, and further give another modification to the solving algorithm (more
concretely, the dominance detection algorithm) to solve constraints involving
the @ operator efficiently. We note however that, since the @ operator is simply
a sugar, it does not enhance the expressiveness of the St-CSP framework.

Definition 3 (The @ operator). Given a stream x (where x is instantiated
or is some expression even involving stream variables) and a number t ≥ 1,
the stream x@t is defined as the constant stream (x@t)(i) = x(t) for all i ≥ 0.
Equivalently, it is defined as first next · · · next x, where there are t many
next operators.

We require that, for the purpose of this paper, the @ operator to take only a
concrete number, instead of a variable, for its second parameter t. Our solving
algorithm relies crucially on this assumption.

4.1 Modified Constraint Normalisation

We first augment the constraint normal form to allow for primitive @ constraints:
xi == xj@t, where t ≥ 1.

Accordingly, we add the following rewriting rule to the constraint rewriting
system presented in Sect. 3.

– (C0 ∪ {c [expr@t]}, C1) � (C0 ∪ {c [x1], x2 == expr}, C1 ∪ {x1 == x2@t}),
where x1 and x2 are fresh auxiliary stream variables.

This new rewriting system is also terminating, Church-Rosser and sound.
The proofs are essentially identical to those in Sect. 3.

4.2 Changes to Dominance Detection

Having introduced the @ operator, we adapt the function Construct by describ-
ing how primitive @ constraints are modified when we construct a child search
node from its parent. Given a primitive @ constraint “xi == xj@t” from a parent
node, we consider two cases.

– If t > 1, then we include “xi == xj@(t − 1)” in the new constraint set.
– If t = 1, then we include “xi == first xj” instead.

This modification is orthogonal to those for the “until” constraint. This new
dominance detection procedure (namely Construct and AreEqual) is again
sound, and induces a terminating, sound and complete overall search algorithm.
The proofs are again essentially same as those in Sect. 3.

5 Experimental Results

We performed experiments in two settings to demonstrate the competitiveness
of our approaches: (1) solving the Missionaries and Cannibals logic puzzle and

Augmenting Stream Constraint Programming with Eventuality Conditions 253

(2) solving a standard path planning problem on grid instances. For each setting,
we solve for plans that eventually attain the goal using the “until” constraint in
the model, as well as for bounded-length plans using the @ operator.

For the “until” experiments, we compare our approach to a standard CP
approach proposed by Apt and Brand [1]. Their approach creates a series of
finite domain CSPs, each corresponding to a finite horizon into the future, asking
if the eventuality condition is satisfiable within the horizon. The time bound is
incremented until the resulting CSP becomes satisfiable. (The idea was also
used by van Beek and Chen [2], who credit Kautz and Selman [9].) As a result,
if there is no upper bound a-priori on the minimum length of successful plans,
this approach may not terminate. However, in the two settings we consider, such
upper bounds do exist, and so we also experimented on using a CP solver to
solve for a plan of exactly that length at the upper bound.

For the bounded-length plans scenario, we compare the use of the @ operator
to the use of the first next · · · next operator phrase, as well as to using a
standard CP approach of solving the corresponding finite domain CSP.

All our experiments were run on an Intel Xeon CPU E5-2630 v2 (2.60 GHz)
machine with 256 GB of RAM, with a timeout of 600 s. We used Gecode v6.0.0
as our finite domain CP solver. We also configured both the St-CSP solver and
Gecode to not output the solutions to the file system, so as to minimise the
impact of file I/O on time. The Gecode solver selects variables using the input
order and according to the time point, which is the same as how the St-CSP
solver label stream variables. Values are assigned the min value first. We tried
fail-first for Gecode, but the results are less competitive.

5.1 Missionaries and Cannibals

In the Missionaries and Cannibals problem, there are n missionaries and n can-
nibals trying to cross a river from one bank to another, using a boat of capacity
b people. There are three constraints in this problem: (1) at any time, there
could be at most b people on the boat, (2) there must be at least one person on
the boat on every trip and (3) for each bank, if there are any missionaries, then
the cannibals cannot outnumber the missionaries; otherwise the missionaries will
perish. The success condition is when everyone ends up on the other bank.

Table 1 shows the experimental results, when we solve using the St-CSP
solver for all valid transportation plans that eventually attains the goal. Rows
and columns in the table give different values of n and b respectively. Each entry
in the table denotes the solving time in seconds for the test case. The results
show that our solver is able to solve the problem for reasonably large instances
without suffering from exponential increases in runtime.

We also performed experiments using the Apt and Brand framework [1] that
uses traditional finite domain CP solvers. Such CP approach timed out on
all these instances. On the other hand, for this particular problem there is, in
fact, an upper bound on the number of steps of n(b + 1) if a feasible plan exists.
We used a CP solver to solve for plans of such length, and because of the simple

254 J. C. H. Lee et al.

Table 1. Missionaries and Cannibals: “until”

b = 4 b = 5 b = 6 b = 7 b = 8
n = 40 1.456 1.939 2.307 2.537 2.959
n = 60 4.459 5.831 7.417 9.081 10.698
n = 80 9.979 13.45 17.324 21.356 26.229
n = 100 19.053 26.044 33.747 42.16 53.112
n = 120 33.56 44.782 59.113 73.335 91.351
n = 140 51.623 70.666 92.744 118.407 146.325
n = 160 76.532 105.341 139.212 175.149 219.134
n = 180 110.122 149.741 196.743 250.56 313.35
n = 200 150.137 207.466 274.537 348.243 436.469
n = 220 201.308 277.219 363.592 463.509 –
n = 240 259.773 360.413 474.005 – –

structure in the constraints, the solver was able to terminate under 15 s in all
these instances, outperforming our approach.

The next set of experiments replaces the “until” constraint that eventually
everyone is on the other bank with the condition that the goal must be satisfied
at time t, which is a value we vary between test cases. Because the St-CSP model
is modified, requiring different solving times, the range of parameters (n, b) we
experimented on is also different.

Table 2(a) shows the experimental results comparing the @ operator against
first next · · · next. Each table entry again shows the solving times using the
new and old approaches respectively, separated by a “/”, with “–” denoting a
timeout. The results demonstrate our implementation significantly outperform-
ing the previous approach, with up to 2 orders of magnitude speedup.

Table 2. Missionaries and Cannibals: Time bounded

(a) @ vs first next · · · next

(n, b) t = 10 t = 40 t = 70 t = 100
(20, 5) 0.64/49.68 4.04/– 9.21/– 14.84/–
(30, 6) 1.71/178.68 16.33/– 36.23/– 56.76/–
(40, 7) 4.01/454.98 38.55/– 95.19/– 152.79/–
(50, 8) 9.07/– 100.34/– 236.58/– 374.07/–
(60, 9) 17.31/– 183.89/– 461.51/– –/–
(70, 10) 32.25/– 371.57/– –/– –/–

(b) CP approach

(n, b) t = 10 t = 40 t = 70 t = 100
(20, 5) 0.663 0.435 0.562 1.075
(30, 6) 0.435 0.560 0.780 1.011
(40, 7) 0.562 0.519 0.799 1.139
(50, 8) 0.762 0.521 0.767 1.102
(60, 9) 1.002 0.501 0.835 0.975
(70, 10) 1.425 0.526 0.873 0.1109

For the reader’s reference, we also include Table 2(b), that is the solving time
of Gecode finding a single solution/plan for the time-bounded scenario. Since
St-CSP solvers find all solutions, it is reasonable to not be competitive with
a traditional CP approach. However, when we asked for all solutions instead,
Gecode timed out for all but the t = 10 instances, since the St-CSP search

Augmenting Stream Constraint Programming with Eventuality Conditions 255

algorithm is able to avoid repeating equivalent search, via dominance detection.
Asking a St-CSP solver to decide only the existence of some solution, instead of
solving for all solutions, is scope for future work.

5.2 Path Planning in Grid World

The second set of experiments uses the path finding problem defined by the
St-CSP model presented in Fig. 1. We generate random grid worlds of size n ×
n by independently sampling each directed edge between adjacent cells with
probability p, as well as uniformly sampling the start and end points on the
grid. Similarly, we performed two sets of experiments, solving for plans that
eventually reach the goal (using the “until” constraint), and plans that have to
reach the goal within a certain number of steps (using the @ operator).

For the “until” experiments, we varied both n and p, sampling 50 random
instances for each setting of n and p. Figure 2(a) shows the average solving time
of the test instances, where instances that timed out count as 600 s. The solving
times in this setting increase in n polynomially, and become concave for larger
n and p when a substantial number of instances start timing out.

Fig. 2. Path planning: Eventuality condition

For comparison, Fig. 2(b) shows the solving time using the Apt and Brand [1]
framework. The figures show that most of the instances timed out, demonstrating
that the St-CSP approach is far more efficient. Since any simple path on the grid
has an upper bound of n2 in length, similarly to the previous setting we also
used a CP solver to solve for a plan of length n2. However, Gecode runs into
memory issues around n = 40, exceeding the 256 GB memory available. Even
before so, for n = 10 a significant proportion of the instances already timed out,
even though the St-CSP solves them almost instantaneously (as in Fig. 2(a)).
Because of the memory issues that Gecode ran into, we decided to not give
corresponding runtime plots since runtime is ill-defined.

For our last set of experiments, we again replace the “until” constraint with
the constraint that the path must have visited the end point by t steps, a param-
eter that we vary across test cases. We generated 50 random instances for a

256 J. C. H. Lee et al.

selected set of n values, however fixing p = 0.8 to make sure that a sizeable
portion of the instances are satisfiable. We further varied t on these instances.

Figure 3(a) shows the average solving times by the old and new St-CSP
approaches. We observe a 2 orders of magnitude improvement in solving time
for large t. The plots for the @ operator are also in general better behaved. We
further found that the reason for the essentially horizontal plots for the “first
next · · · next” operator phrase is due to it only being able to solve the trivially
unsatisfiable instances in under 1 s, where the reachable component from the
start point is small. All the other cases timed out, giving the plateau we observe
in solving time for the operator phrase.

Fig. 3. Path planning: Time bounded

Figure 3(b) shows the solving time using Gecode. The plots display similar
plateauing behaviour as our old approach, only starting earlier at t = 20. In com-
parison, the St-CSP approach is competitive with Gecode, despite the St-CSP
solver being a prototype. We believe that it is due to the inherent specification
complexity of the path planning problem on the grid. The entire graph structure
has to be encoded for each time point, meaning that for the CP approach, the
program is of size O(tn2), whereas the St-CSP is only of size O(n2).

6 Concluding Remarks

Our work improves the expressiveness of the St-CSP framework by augmenting
it with (1) the new “until” constraint construct, adapted from the corresponding
LTL operator, and (2) the @ operator, which is a syntactic sugar for first next
· · · next that further allows for faster solving by exploiting the special structure
of the expression. We give corresponding new St-CSP solving algorithms, and
also experimental evidence for their competitiveness with the corresponding CP
approaches using Gecode. In our opinion the @ operator and the “until” con-
straint are for different purposes. The former is for time bounded scenario, while
the latter is useful, for example, from a security perspective: we wish to know
our adversary can never achieve sinister goal regardless of time budget.

Augmenting Stream Constraint Programming with Eventuality Conditions 257

By introducing the “until” constraint, we altered the structure of the gen-
erated solution automata and the guarantee we give regarding the execution of
the automata (Sect. 3.3). From the statement that every run of the automaton
is an accepting run, we weaken the guarantee (whilst maintaining practical rel-
evance) to such that every finite run of the automaton could be extended to
an infinite length solution stream. A natural direction for further investigation
is to consider, under this weaker guarantee, how much more expressive can the
St-CSP framework become. Are there other practical and natural constraints
or temporal operators that, despite being currently inexpressible in the St-CSP
framework, can be introduced with a solving algorithm that provides the above
guarantee? Can we identify even weaker, yet still practically relevant guaran-
tees that allows for even more expressiveness in the framework? We leave the
answering of these questions for future work.

References

1. Apt, K.R., Brand, S.: Infinite qualitative simulations by means of constraint pro-
gramming. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 29–43. Springer,
Heidelberg (2006). https://doi.org/10.1007/11889205 5

2. van Beek, P., Chen, X.: CPlan: a constraint programming approach to planning.
In: Proceedings of AAAI 1999/IAAI 1999, pp. 585–590 (1999)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Mac
Lane, S., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435.
Springer, New York (1990). https://doi.org/10.1007/978-1-4613-8928-6 23

4. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

5. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science (vol. B), pp. 995–1072. MIT Press, Cambridge (1990)

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

7. Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP
2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45193-8 26

8. Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In:
Proceedings of AAAI 2011, pp. 1114–1119 (2011)

9. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of ECAI 1992,
pp. 359–363 (1992)

10. Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints
5(4), 389–414 (2000)

11. Lallouet, A., Law, Y.C., Lee, J.H.M., Siu, C.F.K.: Constraint programming on
infinite data streams. In: Proceedings of IJCAI 2011, pp. 597–604 (2011)

12. Lee, J.C.H., Lee, J.H.M.: Towards practical infinite stream constraint program-
ming: applications and implementation. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 449–464. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10428-7 34

13. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transp. Sci. 32(1), 12–29 (1998)

https://doi.org/10.1007/11889205_5
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-3-540-45193-8_26
https://doi.org/10.1007/978-3-540-45193-8_26
https://doi.org/10.1007/978-3-319-10428-7_34
https://doi.org/10.1007/978-3-319-10428-7_34

258 J. C. H. Lee et al.

14. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977, pp.
46–57 (1977)

15. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Trans. Comput.
Intell. AI Games 4(2), 144–148 (2012)

16. Wadge, W.W., Ashcroft, E.A.: LUCID, the Dataflow Programming Language. Aca-
demic Press Professional Inc., San Diego (1985)

17. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

A Complete Tolerant Algebraic
Side-Channel Attack for AES with CP

Fanghui Liu, Waldemar Cruz, and Laurent Michel(B)

Computer Science and Engineering Department, School of Engineering,
University of Connecticut, Storrs, CT 06269-4155, USA

{fanghui.liu,waldemar.cruz,laurent.michel}@uconn.edu

Abstract. Tolerant Algebraic Side-Channel Attack (TASCA) is a com-
bination of algebraic and side-channel analysis with error tolerance. Oren
et al., used mathematical programming to implement TASCA over a
round-limited version of AES. In [7], Liu et al. revisited their results and
introduced a TASCA-CP model that delivers solutions to this 1-round
relaxation with orders of magnitude improvement in both solving time
and memory consumption.

This paper extends the result and considers TASCA for the full 10-
rounds AES algorithm. Two approaches are introduced: staged and inte-
grated. The staged approach uses TASCA-CP as a spring board to enu-
merate and check its candidate solutions against the requirements of
subsequent rounds. The integrated model formulates all the rounds of
AES together with side-channel constraints on all rounds within a sin-
gle unified optimization model. Empirical results shows both approaches
are suitable to find the correct key of AES while the integrated model
dominates the staged both in simplicity and solving time.

Keywords: Algebraic side-channel attack · AES
Cryptography · Block cipher · Constraint programming · Optimization

1 Introduction

Side-Channel Analysis (SCA) is a type of attack that exploits the physical prop-
erties of a device performing a cryptographic operation, the goal of which is to
obtain secret information (e.g., a secret key) from a cryptographic system. A side-
channel attack typically needs hundreds to thousands of power traces to reduce
the sensitivity to noise from measurement or decoding. Algebraic Side-Channel
Attack (ASCA) was introduced in [19] to combine algebraic cryptanalysis with
side-channel attack. It was applied to AES in [20]. Compared to SCA, ASCA
requires much less power traces ([20] showed that as little as a single power
trace is enough to recover the secret key of AES). However, the success of ASCA
heavily depends on the accuracy of the side-channel information because it does
not tolerate power trace measurement errors. Improved ASCA (IASCA) [12]
improved the performance of ASCA on AES by optimizing AES and algebraic
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 259–275, 2018.
https://doi.org/10.1007/978-3-319-98334-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_18&domain=pdf

260 F. Liu et al.

representation, it also introduced a method for error handling. Tolerant Algebraic
Side-Channel Attack (TASCA) [14] transforms a side-channel analysis problem
to a pseudo-boolean optimization problem where the objective is the minimiza-
tion of the total deviation from the measured side-channel signal.

The TASCA for AES, as presented by Oren et al. [16], models the encryption
algorithm as a series of pseudo-boolean equations and side-channel constraints
(i.e., the Hamming weights representing the side-channel signal). The formula-
tion allows for providing either the plaintext alone, or both the plaintext and
the ciphertext. The key was recovered with up to 20% of error rate, which refers
to the probability that the measured Hamming weights are incorrect. The key
is counted as correct if four or less bytes of the sixteen bytes of the key are
incorrect.

In 2017, Liu et al. [7] revisited the TASCA attack on AES and offered a CP
formulation based on bit-vectors [8]. Their model, like that of Oren et al. [16],
focused on the first round of AES and provided an approach that attempts
to recover the key with low complexity. By using CP over bit-vectors with a
customized search, it was possible to recover candidate keys for the one round
problem with orders of magnitude improvements both in runtime and mem-
ory usage over the pseudo-boolean optimization and Integer Programming (IP)
approaches. Yet, relying on only one round of AES and side-channel information
is a relaxation of the true problem that mandates a brute-force post-processing to
zero-in on the true key and rule out candidate solutions that are not conforming
to the requirements of the full AES algorithm and side-channel information.

Several approaches were proposed to apply Constraint Programming to
crypt-analysis. [18] used a CSP framework to design substitution functions for
substitution permutation (SP) networks. [4] introduced a chosen key differen-
tial crypt-analysis using Constraint Programming models, and it was performed
against AES-128 in [5], AES-192 and AES-256 in [3]. Based on [4,21] apply
CP to search for differential/linear characteristics, integral distinguishers and
performed the analysis on AES, PRESENT [2] and SKINNY [1].

This paper explores extensions of the CP approach to natively handle the
full 10 rounds of AES and side-channel information. The paper presents two
approaches for doing so and evaluates them empirically alongside the natural
extensions that could be offered for the earlier pseudo-boolean formulation. The
staged approach uses TASCA-CP as a “black box” subroutine to produce solu-
tions in the full model. The integrated approach extends the constraint program-
ming model to directly handle all 10 rounds of AES alongside the side-channel
information for those rounds.

The remainder of the paper is organized as follows. Section 3 recalls the
1-round TASCA approach and how it is meant to be used. Section 4 articu-
lates the limitations of the restricted formulation, the source of relaxations and
the contributions of the paper. Section 5 is the core of the paper and presents
two extensions needed to consider AES in full. Section 6 discusses the empirical
results while Sect. 7 concludes.

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 261

2 AES Overview

AES is an iterated block cipher that supports a fixed block size of 128 bits, and
key size of 128, 192 and 256 bits. The version used in this paper is AES with
128-bit cipher key (AES-128). The cipher key is first expanded into 10 round
keys via key expansion [13]. The plaintext is separated into blocks of 16 bytes,
denoted as p0 . . . p15 (where pi ∈ {0, 1}8, i = 0, . . . , 15). Each block is represented
by a 4 × 4 matrix of bytes.

There are four elementary operations that build the whole function of AES:

– SubBytes: Apply a permutation on the input bytes using an “S-Box” [11].
– ShiftRows: Apply a byte-wise left-rotate operation for each of the four rows

by 0, 1, 2, and 3 bytes.
– MixColumns: Multiply each column in the state with a matrix of constants.
– AddRoundKey: XOR the state with the round key.

During the encryption, the plaintext is first combined with the initial round
key (cipher key) and then goes through 9 rounds of iteration consisting of 4
subrounds (SubBytes, ShiftRows, MixColumns, AddRoundKey), and the last
iteration consist of 3 subrounds (without MixColumns) to produce the ciphertext
c0 . . . c15. The AES encryption process is outlined in Algorithm 1. More details
of AES can be found in [13].

Algorithm 1. Pseudocode for AES Encryption Algorithm
1: function AES(byte in[16], byte out[16], key array round key[Nr+1])
2: byte state[16]
3: state = in
4: AddRoundKey(state,round key[0])
5: for i = 1 to Nr-1 do
6: SubBytes(state)
7: ShiftRows(state)
8: MixColumns(state)
9: AddRoundKey(state, round key[i])

10: SubBytes(state)
11: ShiftRows(state)
12: AddRoundKey(state, round key[Nr])
13: out = state
14: return out

3 TASCA over Restricted AES

TACSA-CP presented a tolerant algebraic side-channel attack using constraint
programming. The TASCA-CP model includes one round AES structural con-
straints, one round side-channel constraints (which contains 10% errors) and

262 F. Liu et al.

auxiliary constraint (e.g. plaintext). The goal is to minimize the errors in the
side-channel information. With a customized search, the TASCA-CP is able to
find the global optima with an overwhelmingly better performance compared to
pseudo-boolean model with SCIP [16] and IP model with Gurobi [7].

The global optima is then given to a CP solver to search for all candidate
solutions. An attacker needs to enumerate over the candidate solutions to dis-
cover the true key used in the captured AES encryption process.

4 TASCA over Full AES

The previous section showed that it is possible to carry out a Tolerant Algebraic
Side-Channel Attack using CP on one round AES encryption with one round
side-channel information. The empirical results established that the performance
of TASCA-CP is significantly better than the IP models making CP the tech-
nology of choice to conduct this type of side-channel attacks. Nonetheless, it
is essential to remember that the TASCA approach considered earlier remains
a resolution technique for a relaxation of the true problem. Indeed, with only
one round of the AES computation being modeled, one can only find candidate
solutions. Those candidate solutions may not satisfy the structural constraints
imposed by the subsequent rounds of AES and they may deliver a ciphertext
that is different from the sought after solution. Specifically, it is worth noting
that there are two distinct relaxations.

Round. The 1-round relaxation was essential in the case of the integer program-
ming approach to sidestep difficulties arising from the sheer size of the model.
Yet, the relaxed problem is still challenging and requires non-trivial efforts.
While the relaxation will produce all the bits of the key and fix all the bits
of the output state of round 1, those output bits should still be subjected to
three classes of constraints: (1) the structural constraints of state derivation
dictated by AES; (2) the side-channel constraints based on the measurements
done in rounds 1–10; and (3) the equality to the target ciphertext when the
attack is carried out with a known pair cleartext, ciphertext. This limitation
can still be acceptable if the number of candidate solutions remains small,
in which case an exhaustive check can verify each candidate solution. Yet,
observe that since this is a relaxation, it is quite possible that all candidate
solutions associated to the global optima of the relaxation are infeasible in
the full problem. This indicates that the global optimum of the full problem
has an objective value worse than what was reported by the relaxation. The
instances considered in [7] were engineered to have a tight relaxation, i.e.,
the global optimum of the relaxation was also the global optimum of the true
problem.

Tolerance. Both the MIP and the CP models from [7] consider that side-channel
measurements for a state byte b are hamming weights estimates (H̃(b)) and
may be off from their true value H(b) by ±1, i.e., for any state byte b, H̃(b)−
1 ≤ H(b) ≤ H̃(b) + 1. With both technologies, the optimization models see

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 263

a byte b as a decision variable that must satisfy these inequalities. If the
measurement estimates are off by a wider margin, the true solution can never
be found since the model will exclude it.

The purpose of this paper is to articulate a solution methodology that mitigates
the shortcomings introduced by these relaxations to obtain a direct resolution
technique capable of computing the key used by an AES encryption of a known
plaintext. Specifically, the methodology must scale to support all 10 rounds
of AES, exploit any additional side-channel measurements provided for those
rounds, and gracefully handle the tolerance bounds. Note that the bit-vector
formulation employed by the CP model holds the promise of a scalable rep-
resentation as a single round consumes from 20 to 40 times less memory and
delivers runtimes that are two order of magnitude better than state-of-the-art
mathematical programming solvers.

5 Approaches

The remainder of the paper considers two natural approaches and articulates the
rationale behind them and the needed improvements to make them competitive.
Before describing the two approaches, a few preliminaries are in order.

5.1 Preliminaries

At a macroscopic level, the optimization model for one AES round uses decision
variables to represent the input state of the round, the output state of the round
and the round key. Its constraints define the relations connecting the input state
and round key through intermediary states to the output state of the round.
They also constrain the hamming weights of each state to be within the error
tolerance requirements. The objective function collects all the deviation errors,
positive or negative, that can be experienced to match the hamming weights
with their estimates.

Definition 1 (State Variables). Let Sk denote the 128-bit wide bit-vector
variable denoting the input state to round k ∈ 1..10. Similarly, let Ok denote
the 128-bit wide bit-vector variable denoting the output state of round k. Finally,
let Ik,r denote the 128-bit wide bit-vector variable denoting the internal state r
within round k. Namely, this is the state after each stage encountered within a
round of AES, e.g., the add round key, S-box and mix column stages (r ∈ 1..4).

Definition 2 (Key Variable). Let Kk denote the 128-bit wide bit-vector vari-
able denoting the round key for round k.

Definition 3 (Byte structure). Given a state variable S (a 128-bit wide bit-
vector), let Sb be a byte corresponding to the 8-bit subsequence of S aligned on
an 8-bit boundary.

264 F. Liu et al.

Clearly, any state variable S is broken down into its 16 constituent bytes,
numbered 0 through 15.

Definition 4 (Error Variable). Eb+
k,r and Eb−

k,r are the non-negative slack vari-
ables modeling noise in a side-channel equation. The binary variable Eb+

k,r models
the positive error while Eb−

k,r models the negative error for byte b ∈ 0..15 of round
k ∈ 1..10 and state r ∈ 1..4.

Definition 5 (Hamming Weight Estimates). Let H̃(Sb) denote the esti-
mate of the hamming weight for any state byte Sb (b ∈ 0..15) of a state S.

Definition 6 (Hamming Weights). Let H(Sb) denote the actual hamming
weight of byte b ∈ 0..15 for a state S.

AES Constraints

– AddRoundKey ARK(X,Y,Z) is implemented as a bit-wise XOR operation
between two 8-bit bit-vector variables, X ⊕ Y = Z.

– SubBytes SubByte(X,Z) is implemented as an element constraint [7] over
bit-vectors. The element constraint Z = c[I(X)] takes in an array c of (con-
stant) bit-vectors and requires Z to be equal to the I(X)th entry of the array
c. An array of 256 constant bit-vectors model the full substitution box.

– ShiftRows ShiftRows(X,Z) is a logical circular shift on input variable and
there are no changes in the values. Therefore ShiftRows operation does not
leak any side-channel information and is combined with MixColumns [15].

– MixColumns MixColumns(X,Z) is a complex operation that applies to a
column of input variable matrix at a time. An 8-bit efficient MixColumns
implementation [17] is used in CP encoding. Suppose [a0, a1, a2, a3] is a col-
umn of input X, [o0, o1, o2, o3] is a column of output Z, the MixColumns
operation can be expressed as follows:

ok =
(⊕3

i=0 ai

)
⊕ xtime(ak ⊕ a(k+1) mod 4) ⊕ ak ∀ k ∈ 0..3

bit-vector constraints are used to capture XOR as well as xtime [13].

Side-Channel Constraint: are created using count [7] constraint on bit-
vectors. Using count constraint the actual hamming weight H(Ibk,r) is encoded
as count(Ibk,r). The side-channel constraint is formulated as:

H(Ibk,r) + Eb+
k,r − Eb−

k,r = H̃(Ibk,r)

It is now possible to define a COP for round k.

Definition 7 (AES Round Model). Given a round k ∈ 1..10, the TASCA-
CP model for round k is the COP

Mk = 〈Xk, Ck, fk〉

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 265

Where
Xk = Sk

⋃
r∈1..4

Ik,r ∪ Ok

and

Ck = ARK(Sk, Kk, Ik,1) ∪SubBytes(Ik,1, Ik,2) ∪
ShiftRows(Ik,2, Ik,3) ∪MixColumns(Ik,3, Ik,4) ∪
Ik,4 = Ok ∪
⋃

r∈1..4,b∈0..15 H(Ib
k,r) + Eb+

k,r − Eb−
k,r = H̃(Ib

k,r)

and the objective to minimize is s

fk =
∑

r∈1..4,b∈0..15

Eb+
k,r + Eb−

k,r

Constraints in Mk link the input state Sk to the output state Ok of round k.

Definition 8 (Whole Model). While Ck represents the AES constraints and
side-channel constraints for round k, C represents the AES constraints and side-
channel constraints for all 10 rounds. Similarly, f represents the overall sum of
errors for 10 rounds:

f =
∑

k∈1..10

fk

With the optimization models for the rounds of AES formalized, it is now
possible to formally describe two approaches to solve the full AES model.

5.2 A Staged Approach

Consider the AES Round model M1 = 〈X1, C1, f1〉 that captures the first round
of AES. The COP model considered in [7] can be derived from M1 by adding two
additional sets of constraints to capture the cleartext requirement and the key
schedule. The cleartext requirement is straightforward and consist in binding the
bytes of S1 to their value in the cleartext. The key schedule requirement derives
the round keys K1,K2, · · · ,K10 from the AES key K with invertible operations.
Namely, the 16 bytes (byte number is the superscript) of the round key Kr are
defined with

K0
r = SubByte(K13

r−1) ⊕ K0
r−1 ⊕ RCr (1)

K1
r = SubByte(K14

r−1) ⊕ K1
r−1 (2)

K2
r = SubByte(K15

r−1) ⊕ K2
r−1 (3)

K3
r = SubByte(K12

r−1) ⊕ K3
r−1 (4)

∀i ∈ {0, ..., 11} Ki+4
r = Ki

r ⊕ Ki+4
r−1 (5)

where r ∈ {1, . . . , 10}, and K0 = K. RCr is a round-specific constant and
SubByte is the usual non-linear S-Box of AES. The key expansion function is

266 F. Liu et al.

encoded as a series of cascading XOR constraints and substitutions via the ele-
ment constraint. In the following KeySchedule(K,[K1, · · · ,K10]) refers to the
set of constraints implementing this key expansion requirement.

Therefore, the model in [7] is:

M ′
1 = 〈X1, C1 ∪ ClearText(S1) ∪ KeySchedule(K, [K1, · · · ,K10]), f1〉

Clearly, this is a relaxation since this model ignores all but round 1. The res-
olution of that relaxation will produce a sequence of improving local optima
culminating with the global optimum of the relaxation f∗

1 . For any discrete
value v ∈ f∗

1 ..
|E|
2 , it is possible to enumerate all candidate solutions that yield

that specific objective with the constraint satisfaction problem

Mv
1 = 〈X,C1 ∪ ClearText(S1) ∪ KeySchedule(K, [K1, · · · ,K10]) ∪ {f1 = v}〉

Mfull =

〈
X, C ∪ ClearText(S1) ∪ CipherText(S41)

∪ KeySchedule(K, [K1, · · · ,K10])
, f

〉

Algorithm 2. Staged Approach to solve the Full AES model
1: v, f∗

1 ← optimize(M ′
1)

2: Best ← +∞
3: F ∗ = ∅
4: do
5: Sols ← solveAll(Mv

1)
6: F ← {c ∈ Sols | validate(c, Mfull ∧ f1 = v ∧ f ≤ Best)}
7: Best ← min(Best, mins∈F (f(s))
8: F ∗ = {s ∈ F ∗|f(s) ≤ Best} ∪ F
9: v ← v + 1

10: while v ≤ |E|
2

∧ F ∗ = ∅ return F ∗

This observation gives rise to an algorithm for the full AES shown in Algorithm 2.
The algorithm in line 1 produces the global optima of the relaxation f∗

1 and the
target value v. Line 2 sets the best objective function to ∞ and line 3 defines
the set of solution F ∗ as empty. The loop covering lines 4–10 start by deriving
(line 5) the solution pool obtained if the objective function for round 1 (f1)
is forced to adopt value v. Line 6 discards any candidate solution c from the
relaxation that do not correspond to the current relaxed target v nor improve
upon the incumbent value Best. This validation process clearly uses the full
AES model Mfull which features constraints for all the rounds of AES, all the
side-channel information and auxiliary information (plaintext and ciphertext).
The validate subroutine fixes the state variables of round 1 to their value in
the candidate solution c and Mfull has all the constraints for all the rounds,
all the side-channels and its objective function f captures the sum of the errors

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 267

over all rounds. Lines 7 and 8 update the value of the incumbent and the set
of solutions that deliver the optimal objective value which is stored in F ∗. Line
9 finally increases the target value by 1 and the loop repeats the process. The
terminating condition relies on a trivial upper bound for the objective function
f equal to the number of error variables divided by 2 (no byte can have both
a positive and negative slack) and whether F ∗ is empty. F ∗
= ∅ indicates that
the optimal solution is found since both the plaintext and ciphertext are fixed
in Mfull and guarantee a valid and unique solution.

It is critical to distinguish the two objective functions. f1 is the first round
while f captures the sum of errors over all rounds. It is possible to encounter
a solution of the relaxation that features many deviations from the hamming
weights in round 1 – hence a poor value for the relaxed objective f1 – but very
few errors in subsequent rounds, ultimately delivering an excellent value for the
global objective f . The subroutines in Fig. 2 are as follows

optimize(M) Solves M and produces a local optima f∗
1 .

solveAll(M) Generates a solution pool for a fixed value of the objective.
validate(c,M) Verifies, in polynomial time, that c satisfies model M .

Analysis. In most cases, the round-1 relaxation happens to be tight. Namely,
its candidate solutions for the relaxation optimum coincides with the global
optimum when extended to the full AES and the algorithm produces a set F of
cardinality 1 with a feasible and optimal solution in the first iteration. Subse-
quent iteration yield empty sets F as the candidate solutions of weaker solutions
from the relaxation cannot be extended and meet the f ≤ Best requirement.
Occasionally, the algorithm will have to consider weaker candidate pools that
may contain globally feasible and better solutions. In the extreme case, the algo-
rithm may have to expand considerable resources to eventually find out that,
because of the tolerance relaxation of ±1, none of the candidate solutions are
globally feasible. In the worst case, the algorithm may perform O(|E|) iterations1

since the objective function is bounded from above by |E|
2 and still not deliver a

globally optimal solution because of the tolerance relaxation. In practice though,
it performs reasonably well thanks to the tightness of the relaxation.

These limitations indicate that an alternative approach may be worthwhile.

5.3 Integrated Approach

The AES round model formulated in Definition 7 explicitly captures a single
round k of AES with a COP Mk = 〈Xk, Ck, fk〉 in which Xk contains input,
output and internal state variables. It is therefore tempting to aggregate all these
models since the output state variables of round k are the input state variables
of round k+1. Similarly, the objective function of the full AES is separable and
exactly matches the sum of the objective functions. Namely f =

∑
k∈1..10 fk. By

accumulating all the variables, constraints and the additive objectives together
1 Recall that E is the set of all error variables.

268 F. Liu et al.

with the constraints for the key schedule, one can obtain a (large) mathematical
formulation of the entire AES state transformation.

Definition 9 (AES Full Model). Given n rounds, numbered 1 through n and
their associated AES Round models M1 through M10, the AES Full Model for n
rounds is the COP

M(n) = 〈X,C, f〉
Where

X =
⋃

k∈1..n

Xk ∪ K

C =
⋃

k∈1..n

(Ck ∪ {Ok = Ik+1})∪ClearText(S1)∪KeySchedule(K, [K1, · · · ,Kn])

In which the objective is to minimize

f =
∑

k∈1..n

fk

This formulation encapsulates in a single family of models all the details about
AES and progressively eliminates the round relaxation as n increases from 1
to 10. It still depends on the tolerance relaxation though. Naturally, M(10)
coincides with the full AES model while M(1) was detailed in [7]. As before,
an M(n) model can be submitted ‘as is’ to a constraint programming solver
together with a suitable search, or it can be linearized for an IP solver.

Search Heuristic Revisited. The search heuristic is focused on the semantics
of the AES transformations and the side-channel information. For each of the 16
bytes of the state variables, there is a hamming weight value attributed to each
state. A set of candidate values are produced for each state variable, such that
the hamming weight of the value is within the tolerance range as dictated by

M i
r − k ≤ H(Si

r) ≤ k + M i
r

Where k is the allowable discrepancy between the measurement M i
r of byte i in

round r and the candidate value for the ith byte of the state variable Sr. Recall
that H(b) simply counts the number of bits at 1 in byte b, i.e.,

H(b) =
∑
i∈0..7

(b ∧ (1 i) = (1 i))

The goal of TASCA is to minimize the number of deviations from the predi-
cated hamming weight value delivered from the side-channel analysis. The search
heuristic is responsible for driving the variable/value choices to reach the opti-
mal solution early. Value assignments that contribute the least to the objective
function will be effective in reaching high-quality solution early.

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 269

Variable Heuristic. The search introduced in TASCA-CP used branching on
multiple variables at once. Branching on a pair of variables allows for calculation
of high-quality under-estimates of the actual errors. The main intuition is that
branching on a pair of variables allowed for the propagation to fix the values of
connecting variables via the AES transform constraints.

Fig. 1. Circuit for bytes {0, 1, 2, 3}.

Figure 1 offers a schematic view of the search for one quarter of the circuit
modeling round 1 of AES. The schematic is best understood bottom-up. At the
bottom layer, four bytes of the plaintext (Bold variables S0

1 , S5
1 , S10

1 and S15
1) are

combined via the addRoundKey constraints with the matching bytes of the round
key (K0, K5, K10 and K15) to produce the intermediate state I01,1, I

5
1,1, I

10
1,1 and

I151,1. The internal state variables are mapped via the SubByte constraints to I01,2,
I51,2, I

10
1,2 and I151,2. These are then composed via the mixColumn operation which

links the last two sets of internal state bytes (a mix of XOR and shifts). Note
again, that the last internal state variables are simply made equal to the output
variables of the round. The main insight is that given the known plaintext, the
addRoundKey and SubByte transformations are bijective. Therefore labeling any
variables connected to the addRoundKey and SubByte constraints will fix the
other variable via propagation. In particular, labeling variable I01,2, will, through
propagation, fix the I01,1 and K0 variables. Fixing I51,2 at the same time would,
likewise, propagate to I51,1 and K5. Simultaneously fixing I01,2 and I51,2 would
exploit the ternary constraint connecting the dotted box containing that pair to
I01,3 and help propagation fix I01,4 and therefore O0

1 allowing the search to get a
fair estimate of the hamming weight errors associated to these variables.

Subsequently, the search will consider other pairs that reuse one of the two
variables from the first pair. For instance, if 〈I01,2, I51,2〉 was selected first, it is
tempting to consider the two pairs 〈I151,2, I01,2〉 and 〈I51,2, I101,2〉 as the domain of
I151,3 and I51,3 are already reduced by the first choice.

270 F. Liu et al.

Value Heuristic. The objective is driven by the sum of measurement errors
on intermediate state variables. If the search considers a pair of values 〈a, b〉 ∈
D(I01,2) × D(I51,2) it can assess the impact that the simultaneous assignments
I01,2 = a ∧ I51,2 = b would have on the errors at the intermediate state variables
in the leftmost gray column. This assessment is an under-approximation of the
true error induced by the assignments. Indeed the intermediate variable I51,3 can
expose errors caused by the choice of value b for I51,2, but that falls outside the
gray column and is therefore ignored.

Therefore the value heuristic considers pairs of values and assess the quality
of the pair with a scoring function SC given as:

SC(〈a, b〉) = SCleg(a, [I01,2, I
0
1,1,K

0])+SCleg(b, [I51,2, I
5
1,1,K

5])+SCmc(a⊕b, I01,4)

The functions SCleg and SCmc model the error attributes to a “leg”
([I01,2, I

0
1,1,K

0]) or to the top of the “leg” (the MixColumns operation).

Optimality Pruning. The objective function is defined as the total contribu-
tion of the errors in the predicted hamming weight values of the state variables.
As the search continues to find an improving solution, the objective function
will dive deeper reducing the number of errors required to find the next best
satisfiable solution. At each incumbent solution, the search tree can prune any
path that will not lead to an improving solution.

Overall Search. The search aims at labeling variables that contribute the
least amount of error to minimize the objective function. This allows the solver
to reach high quality solutions quickly. The strategy that governs the order in
which search tree nodes are explored is a standard depth first search. When
considering a model with multiple rounds, it makes sense to partition all the
variables according to their round and branch on them in increasing round order.
Within a round, the same search heuristic as before can be adopted (branching
on pairs of variables).

Analysis. This search procedure is sufficient to experiment with a full AES
model. Surprisingly, the first empirical results were disappointing. Indeed, the
integrated approach needed a considerable search effort (10–100 times more
search nodes) to deliver a global optimum often exceeding the time out limit
of 10 min. The analysis of the result revealed that: (1) The search delivered only
one globally optimal solution; and (2) The search did not deliver any sub-optimal
solutions. These two observations lead to a conjecture on the search behavior:

Conjecture 1 (Degeneracy). The AES Full COP Model has only one feasible
solution, even in the presence of a ±1 tolerance relaxation.

If true, all candidate solutions from the round 1 are ultimately infeasible which
propagation discovers causing backtracking early. Fundamentally, when branch-
ing in round order, once round 1 is complete, the solver checks the constraints of

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 271

the subsequent round as propagation alone fixes everything. In essence, candi-
date solutions emerging from round 1 can only be either extended to all rounds
and deliver a global solution without further branching, or a constraint (i.e., a
hamming weight constraint) will fail and cause backtracking.

Fig. 2. Search tree comparison.

Figure 2 offers a depiction of two search trees. The left triangle represents the
search tree for M(1), i.e., the one-round model solved in [7]. The right triangle
illustrates the search “tree” for M(10), the AES full model. What it suggests
is that the search over M(1) delivered many feasible solutions that were used
to bound away some subtrees like the small white triangle in the gray zone.
However, in the right part of the picture, those solutions feasible at the boundary
of round 1 become infeasible and therefore one never finds an incumbent and
never tighten the upper bound. Consequently, the same little white triangle
must be explored in the full model and this is what contributes to the significant
increase in search effort.

Corollary 1 (DFS is unadapted). If one (or very few) feasible solutions
exist, the objective function can only be used to guide the search heuristic and it
is essential to discover the (sole) feasible solution as early as possible.

The search heuristic was designed specifically to exploit the objective func-
tion and minimize deviations from the prescribed hamming weights. Under the
assumption that the heuristic is effective, a natural option is to consider limited
discrepancy search [6] that slowly and progressively distrusts the search heuristic,
authorizing a limited number of deviation from its recommendations.

Recall that there are 16 bit-vector variables to be labeled, which is a large
search tree. If the feasible solution is on the far right side of the search tree, the
DFS strategy will explore all nodes (left to right) before reaching the solution.
Limited Discrepancy Search, by gradually increasing potential “wrong turns”,
increases the likelihood to hit the feasible solution sooner. The implementation
of LDS was detailed in [10]. Empirical results indicate that limited discrepancy
search is quite effective on this problem.

272 F. Liu et al.

6 Experimental Setup

The adopted CP solver is Objective-CP [9] that combines modeling and search
as well as user-defined searches. The IP approach relies on Gurobi (7.5.2). The
experiments ran on a 16-core Intel Xeon E52640 at 2.40 Ghz with 16 MB cache
and Ubuntu 16.04 LTS. 1000 instances were generated. Each instance is based on
a randomly chosen plaintext and cipher key in {0, 1}128. Each instance contains,
for its plaintext, 996 Hamming weight leaks that correspond to the full 10 rounds.
For each instance, a 10% error rate is uniformly applied to the 996 Hamming
weight leaks, the Hamming weights are modified by ±1.

To evaluate the performance of the approaches considered in the paper,
experiments are conducted with either 1, 2 or 10 rounds of AES encryption
and side-channel information. In particular, the paper considers the integrated
approach with the LDS and DFS search strategies as well as the staged approach.

6.1 IP Approach

The average runtime of IP using Gurobi with one round AES and side-channel
information is 222 s with a standard deviation 135 s. This results matches what
was reported in [7]. It becomes significantly harder for the IP solver when solv-
ing with 2 rounds of AES and side-channel information. First, ten easy (10 s),
medium (300 s) and hard instances (500–600 s) are identified based on their run-
time on the CP solver. This restricted set of 30 instances was then submit-
ted to the IP solver with 2 rounds. Easy instances took the IP solver around
5 h. Medium instances took from 5 to 10 h of solving time. Out of the 10 hard
instances, only one terminated with the solution right before the 24 h limit. All
others timed out. Then 19 easy instances of MIP (finished within 2 h) are sub-
mitted to CP solver. For those instances that are easy for MIP, CP is over an
order of magnitude faster (finished within 10 s). The results above show that CP
has an overwhelming advantage over MIP.

As for the memory consumption, the IP solver took 5 to 8 times more memory
than CP with LDS for solving 1 round. For 2 rounds, that memory increase factor
climbs to a range of 10x–16x.

6.2 Integrated

Figure 3 below illustrates the performance for the integrated approach with 1 and
10 rounds of AES encryption and side-channel information respectively. More
than 80% of instances finish within 100 s, and the majority of the instances
finish within 20 s. Increasing the rounds of AES encryption and side-channel
information does not heavily affect the run time.

Figure 4 reports the runtime of LDS and DFS for 10 rounds. LDS is substan-
tially faster than DFS and has a more stable performance throughout all 1000
instances. DFS timeouts after 10 min on 30% of the instances when considering
multiple rounds whereas LDS experiences only 4% of timeouts.

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 273

Table 1. Performance for LDS, DFS and Staged approach

Rounds LDS(Integrated) DFS(Integrated) Staged

μT σT μT σT μT σT

1 41.25 85.66 44.40 89.29 73.5 116.36

2 24.78 63.97 54.68 115.33

10 26.71 65.74 58.58 122.34

Fig. 3. LDS performance Fig. 4. Methods comparison

6.3 Staged

Since “staged” and “integrated” (10 rounds) are complete approaches, staged is
compared to integrated on 10 rounds – with both LDS and DFS for integrated–.
Table 1 shows that the staged approach is, on average, 3 times slower than LDS
with a large deviation. Figure 4 shows that LDS(Integrated) has a much smaller
“surface under the curve” when compared to Staged. While the staged approach
displays reasonable running times, it is worth remembering that it requires the
availability of the ciphertext as discussed in Sect. 5.2.

6.4 Solution Pool

The premise in [16] is that one is already able to effectively attack AES with
only one round of relaxation since the pool of candidate solutions from the relax-
ation is reasonably small and therefore the candidates it offers can be checked
exhaustively. That premise is based on the assumption that the pool of candidate
solution associated to the global optimum f∗

1 of M(1) does indeed contain the
global optimum. While this assumption happens to hold for the 1,000 randomly
generated instances, it is not true in general. Nonetheless, it is informative to
consider how the candidate pool size evolves when going from M(1) to M(10),
i.e., as we consider increasingly tighter relaxations. As the empirical result shows,
starting at round 2, the solution pool size for all instances collapses to 1. And
the only one solution in the pool is indeed the correct key.

274 F. Liu et al.

7 Conclusion

This paper extends [7] with the ability to conduct a Tolerant Algebraic Side-
Channel Attack over the complete AES algorithm. Two approaches: Staged
and Integrated are introduced. The staged approach obtains the optimum from
TASCA-CP model to enumerate and check all the solutions against full-round
AES structural constraints and the accompanying side-channel constraints and
ciphertext. The integrated model aggregates each single round AES with COP
and therefore is able to construct 1 to 10 rounds of AES model with side-channel
information. To improve the performance of the customized search, Limited Dis-
crepancy is adopted by the integrated approach. The empirical results show the
integrated approach with LDS is faster and more consistent than the stock DFS
strategy or the staged approach and are orders of magnitude more scalable in
space and time than an IP.

References

1. Beierle, C., et al.: The skinny family of block ciphers and its low-latency variant
mantis. Cryptology ePrint Archive, Report 2016/660 (2016). https://eprint.iacr.
org/2016/660

2. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

3. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. IACR Cryptology ePrint Archive
2017, 139 (2017). http://eprint.iacr.org/2017/139

4. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 37

5. Gerault, D., Minier, M., Solnon, C.: Using constraint programming to solve a crypt-
analytic problem. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–
25 August 2017, pp. 4844–4848. ijcai.org (2017). https://doi.org/10.24963/ijcai.
2017/679

6. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the
14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 1,
pp. 607–613. Morgan Kaufmann Publishers Inc., San Francisco (1995). http://dl.
acm.org/citation.cfm?id=1625855.1625935

7. Liu, F., Cruz, W., Ma, C., Johnson, G., Michel, L.: A tolerant algebraic side-channel
attack on AES using CP. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 189–
205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 13

8. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7 39

9. Michel, L., Van Hentenryck, P.: A microkernel architecture for constraint pro-
gramming. Constraints 22(2), 107–151 (2017). https://doi.org/10.1007/s10601-
016-9242-1

https://eprint.iacr.org/2016/660
https://eprint.iacr.org/2016/660
https://doi.org/10.1007/978-3-540-74735-2_31
http://eprint.iacr.org/2017/139
https://doi.org/10.1007/978-3-319-44953-1_37
https://doi.org/10.24963/ijcai.2017/679
https://doi.org/10.24963/ijcai.2017/679
http://dl.acm.org/citation.cfm?id=1625855.1625935
http://dl.acm.org/citation.cfm?id=1625855.1625935
https://doi.org/10.1007/978-3-319-66158-2_13
https://doi.org/10.1007/978-3-642-33558-7_39
https://doi.org/10.1007/s10601-016-9242-1
https://doi.org/10.1007/s10601-016-9242-1

A Complete Tolerant Algebraic Side-Channel Attack for AES with CP 275

10. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS J. Comput. 21(3), 363–382 (2009). https://doi.org/10.
1287/ijoc.1080.0313

11. Mister, S., Adams, C.: Practical S-box design. In: Selected Areas in Cryptography
(1996)

12. Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann,
J.: Improved algebraic side-channel attack on AES. J. Cryptographic Eng. 3(3),
139–156 (2013). https://doi.org/10.1007/s13389-013-0059-1

13. NIST: Federal information processing standards publication (FIPS 197). Advanced
Encryption Standard (AES) (2001)

14. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428–442. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 29

15. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 9

16. Oren, Y., Wool, A.: Tolerant algebraic side-channel analysis of AES. IACR Cryp-
tology ePrint Archive, Report 2012/092 (2012). http://iss.oy.ne.ro/TASCA-eprint

17. Oren, Y., Wool, A.: Side-channel cryptographic attacks using pseudo-boolean opti-
mization. Constraints 21(4), 616–645 (2016). https://doi.org/10.1007/s10601-015-
9237-3

18. Ramamoorthy, V., Silaghi, M.C., Matsui, T., Hirayama, K., Yokoo, M.: The design
of cryptographic S-Boxes using CSPs. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876,
pp. 54–68. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7 7. http://dl.acm.org/citation.cfm?id=2041160.2041169

19. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

20. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 8

21. Sun, S., et al.: Analysis of AES, skinny, and others with constraint programming.
IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017). https://doi.org/10.
13154/tosc.v2017.i1.281-306

https://doi.org/10.1287/ijoc.1080.0313
https://doi.org/10.1287/ijoc.1080.0313
https://doi.org/10.1007/s13389-013-0059-1
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-33027-8_9
http://iss.oy.ne.ro/TASCA-eprint
https://doi.org/10.1007/s10601-015-9237-3
https://doi.org/10.1007/s10601-015-9237-3
https://doi.org/10.1007/978-3-642-23786-7_7
https://doi.org/10.1007/978-3-642-23786-7_7
http://dl.acm.org/citation.cfm?id=2041160.2041169
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.13154/tosc.v2017.i1.281-306

Evaluating QBF Solvers:
Quantifier Alternations Matter

Florian Lonsing(B) and Uwe Egly(B)

Research Division of Knowledge Based Systems,
Institute of Logic and Computation, TU Wien, Vienna, Austria

{florian.lonsing,uwe.egly}@tuwien.ac.at

Abstract. We present an experimental study of the effects of quanti-
fier alternations on the evaluation of quantified Boolean formula (QBF)
solvers. The number of quantifier alternations in a QBF in prenex con-
junctive normal form (PCNF) is directly related to the theoretical hard-
ness of the respective QBF satisfiability problem in the polynomial hier-
archy. We show empirically that the performance of solvers based on
different solving paradigms substantially varies depending on the num-
bers of alternations in PCNFs. In related theoretical work, quantifier
alternations have become the focus of understanding the strengths and
weaknesses of various QBF proof systems implemented in solvers. Our
results motivate the development of methods to evaluate orthogonal solv-
ing paradigms by taking quantifier alternations into account. This is nec-
essary to showcase the broad range of existing QBF solving paradigms
for practical QBF applications. Moreover, we highlight the potential of
combining different approaches and QBF proof systems in solvers.

1 Introduction

The logic of quantified Boolean formulas (QBFs) [33] extends propositional logic
by existential and universal quantification of propositional variables. Conse-
quently, the QBF satisfiability problem is PSPACE-complete [49]. QBF satisfia-
bility is a restricted form of a quantified constraint satisfaction problem (QCSP),
cf. [13,16,17,41], where all variables are defined over a Boolean domain.

The polynomial hierarchy (PH) [42,48,53] allows to describe the complexity
of problems that are beyond the classes P and NP. The satisfiability problem
of a QBF ψ in prenex conjunctive normal form (PCNF) with k ≥ 0 quantifier
alternations is located at level k + 1 of PH [48,53] and either ΣP

k+1-complete
or ΠP

k+1-complete, depending on the first quantifier in ψ. Due to this property,
practically relevant problems from any level of PH up to the class PSPACE (here
with arbitrarily nested quantifiers) can succinctly be encoded as QBFs.

Efficient solvers are highly requested to solve QBF encodings of problems.
Competitions like QBFEVAL or the QBF Galleries have been driving solver
development [23,29,39]. State-of-the-art solvers are based on solving paradigms

Supported by the Austrian Science Fund (FWF) under grant S11409-N23.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 276–294, 2018.
https://doi.org/10.1007/978-3-319-98334-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_19&domain=pdf

Evaluating QBF Solvers: Quantifier Alternations Matter 277

like, e.g., expansion [2,10,30] or Q-resolution [34]. These two paradigms are
orthogonal by proof complexity [7,31,50]. Informally, orthogonal paradigms have
complementary strengths on certain families of formulas.

Motivated by the variety of available QBF solving paradigms and solvers,
we present an experimental study of the effects of quantifier alternations on the
evaluation of QBF solvers. To this end, we consider benchmarks, solvers, and
preprocessors from QBFEVAL’17 [44]. As our main result, we show that the per-
formance of solvers based on different and, notably, orthogonal solving paradigms
substantially varies depending on the numbers of alternations. Instances with a
particular number of alternations may be overrepresented (i.e., appear more
frequently) in a benchmark set, thus resulting in alternation bias. In this case,
overall solver rankings by total solved instances may not provide a comprehensive
picture as they might only reflect the strengths of certain solvers on overrepre-
sented instances, but not the (perhaps orthogonal) strengths of other solvers on
underrepresented ones.

In related work [40], the correlation between solver performance and various
syntactic features such as treewidth [1,45] was analyzed. In contrast to that, we
do not study such correlations. By our study we a posteriori highlight diver-
sity of solver performance based on the single feature of alternations, which
are naturally related to the theoretical hardness of instances in PH. Recently,
alternations have become of interest also in theoretical work on QBF proof com-
plexity [6,9,18].

We aim at raising the awareness and importance of quantifier alternations
in comparative studies of QBF solver performance and the potential negative
impact on the progress of QBF solver development. If solvers are evaluated on
benchmark sets with alternation bias and alternations are neglected in the anal-
ysis, then future research may inadvertently be narrowed down to only exploring
approaches that perform well on overrepresented instances with a certain num-
ber of alternations. The risk of such detrimental effects on a research field driven
by empirical analysis has been pointed already in the early days of propositional
satisfiability (SAT) solving [27] and also with respect to more recent SAT solver
competitions [3–5]. In contrast to the NP-completeness of SAT, the complexity
landscape of QBF encodings defined by PH is more diverse, which gives rise to
several sources of inadvertent convergence of research lines.

In addition to focusing on alternations, we report on virtual best solver (VBS)
statistics, where the VBS solved between 50% and 70% more instances than the
single overall best solver on a benchmark set. These results indicate the potential
of combining orthogonal QBF proof systems in solvers. Moreover, we point out
that overall low-ranked solvers potentially solve more instances uniquely and
have larger contributions to the VBS than high-ranked ones. Similar observations
were made in the context of SAT solver competitions [54].

The majority of benchmarks in QBFLIB [23], the QBF research community
portal, has no more than two quantifier alternations. Hence problems from the
first three levels in PH have been, and are, of primary interest to practitioners.
However, to strengthen QBF solving as a key technology for solving problems

278 F. Lonsing and U. Egly

from any levels of PH up to PSPACE-complete problems, QBF solvers must
be improved on instances with any number of alternations. Our empirical study
motivates the development of methods to evaluate orthogonal solving paradigms
by taking quantifier alternations into account. This is necessary to showcase the
broad range of existing paradigms for practical QBF applications.

2 Preliminaries

We consider QBFs ψ := Π.φ in prenex conjunctive normal form (PCNF) consist-
ing of a quantifier prefix Π := Q1B1 . . . QnBn and a quantifier-free propositional
formula φ in CNF. A CNF consists of a conjunction of clauses. A clause is a dis-
junction of literals. A literal is either a propositional variable x or its negation
¬x. The prefix Π is a linearly ordered sequence of quantifier blocks (qblocks)
QiBi, where Qi ∈ {∀,∃} is a quantifier and Bi is a block (i.e., a set) of propo-
sitional variables with Bi ∩ Bj = ∅ for i �= j. The notation QiBi is shorthand
for Qix1 . . . Qixm for all xj ∈ Bi. Formula φ is defined precisely over the vari-
ables that appear in Π. If Qi = Qi+1 then Bi and Bi+1 are merged to obtain
Qi(Bi ∪ Bi+1). Hence adjacent qblocks are quantified differently. Without loss
of generality, we assume that the innermost quantifier Qn = ∃ is existential. (If
Qn = ∀ then Bn is eliminated by universal reduction [34]). A PCNF with n
qblocks has n − 1 quantifier alternations.

The semantics of PCNFs are defined recursively. The PCNF consisting only
of the syntactic truth constant
 (⊥) is satisfiable (unsatisfiable). A PCNF
ψ := Q1B1 . . . QnBn.φ with Q1 = ∃ (Q1 = ∀) is satisfiable iff, for x ∈ B1, ψ[x]
or (and) ψ[¬x] is satisfiable, where ψ[x] (ψ[¬x]) is the PCNF obtained from ψ
by replacing all occurrences of x by
 (⊥) and deleting x from B1.

To make the presentation of our experimental study self-contained, we intro-
duce QBF proof systems only informally and refer to a standard, formal defi-
nition of propositional proof systems [20]. A QBF proof system PS is a formal
system consisting of inference rules. The inference rules allow to derive new for-
mulas (e.g. clauses) from a given QBF ψ and from previously derived formulas.
A QBF proof system PS is correct if, for any QBF ψ, it holds that if the formula
⊥ (false, e.g., the empty clause) is derivable in PS from ψ then ψ is unsatisfi-
able.1 A QBF proof system PS is complete if, for any QBF ψ, it holds that if ψ
is unsatisfiable then ⊥ is derivable in PS from ψ. A proof P of an unsatisfiable
QBF ψ in PS is a sequence of given formulas and formulas derived by inference
rules ending in ⊥. The length |P | of a proof P is the sum of the sizes of all
formulas in P .

Let PS and PS ′ be QBF proof systems and Ψ be a family of unsatisfiable
QBFs. Let P be a proof of some QBF ψ ∈ Ψ in PS such that the length |P | of P
is polynomial in the size of ψ. Assume that the length |P ′| of every proof P ′ of
ψ ∈ Ψ in PS ′ is exponential in the size of ψ. Then PS is stronger than PS ′ with
respect to family Ψ . Two QBF proof systems PS and PS ′ are orthogonal if PS is
stronger than PS ′ with respect to a family Ψ and PS ′ is stronger than PS with
1 Theoretical work on QBF proof systems typically focuses on unsatisfiable QBFs.

Evaluating QBF Solvers: Quantifier Alternations Matter 279

respect to some other family Ψ ′. The relation between QBF proof systems in
terms of their strengths is studied in the research field of QBF proof complexity.

QBF proof systems are the formal foundation of QBF solver implementations.
Expansion [2,10,30] and Q-resolution [34] are traditional QBF proof systems
that are orthogonal [7,31,50]. Orthogonal proof systems are of particular interest
for practical QBF solving since they give rise to solvers that have individual,
complementary strengths on certain families of formulas. In our experiments, we
highlight the potential of combining orthogonal proof systems in QBF solvers.

3 Experimental Setup

Table 1. Histograms.

#q #f #fL

1 0 253

2 90 7,319

3 236 4,110

4–10 70 2,185

11–20 42 437

21– 85 2,444

1–3 326 11,682

4– 197 5,066

For our experimental study we use the set S17|523 con-
taining 523 PCNFs from QBFEVAL’17 [44]. Partitioning
S17|523 by numbers of qblocks results in 64 classes. Table 1
shows a histogram of S17|523 by the numbers of formulas
(#f) in classes defined by the number of qblocks (#q).
Instances with up to three qblocks (row “1–3”) amount
to 62% of all instances and hence are overrepresented in
S17|523. To generate S17|523, instances were sampled from
instance categories in QBFLIB in addition to newly sub-
mitted ones based on empirical hardness results from pre-
vious competitions. We also computed a histogram of a
QBFLIB snapshot containing 16,748 instances (column
#fL in Table 1). Instances with no more than three qblocks (row “1–3”) are
also overrepresented (69%) in that snapshot. Hence alternation bias in S17|523
follows from a related bias in QBFLIB, which is due to the focus of QBF prac-
titioners on problems located at low levels in PH. Moreover, the bias does not
result from a flawed selection of competition instances. We use the terminol-
ogy “overrepresented” and “bias” for the statistical fact that instances with few
qblocks appear more frequently in S17|523.

In order to evaluate the impact of qblocks on solver performance, we con-
sider 11 solvers that participated in QBFEVAL’17 and were top-ranked.2 The
solvers implement the following six different solving paradigms:

1. Expansion [2,10] eliminates variables from a PCNF ψ until the formula
reduces to either true or false. RAReQS 1.1 [30] applies recursive expansion
based on counterexample-guided abstraction refinement (CEGAR) [19], while
Ijtihad operates in a non-recursive way. Rev-Qfun 0.1 [28] extends RAReQS by
machine learning techniques, and DynQBF [15] exploits QBF tree decomposi-
tions. Theoretical properties of expansion as a proof system, which underlies
implementations of expansion solvers, have been intensively studied [7,31].

2 For some solvers where version numbers are not reported, the authors kindly pro-
vided us with the competition versions, which were not publicly available. We
excluded the solver AIGSolve because we observed assertion failures on certain
instances.

280 F. Lonsing and U. Egly

2. QDPLL [14] is a backtracking search procedure that generalizes the DPLL
algorithm [21]. GhostQ [30,35] combines QDPLL with clause and cube learn-
ing (a cube is a conjunction of literals) based on the Q-resolution proof sys-
tem [34]. Additionally, it reconstructs the structure of PCNFs encoded by
Tseitin translation [51], and applies CEGAR-based learning.

3. Nested SAT solving uses one SAT solver per qblock in a PCNF, where univer-
sal quantification is handled as negated existential quantification. The solver
QSTS [11,12] combines nested SAT solving with structure reconstruction.
Propositional resolution is the proof system that underlies SAT solving.

4. Clause selection and clausal abstraction as implemented in the solvers
QESTO 1.0 [32] and CAQE [46,50], respectively, decompose the given PCNF
into a sequence of propositional formulas and apply CEGAR techniques. The
proof system implemented in CAQE has been presented recently [50].

5. Backtracking search with clause and cube learning (QCDCL) [24,25,36,55]
based on Q-resolution extends the CDCL approach for SAT solving [47]
to QBFs. The solver DepQBF [37] implements QCDCL with generalized Q-
resolution axioms allowing for a stronger calculus to derive learned clauses
and cubes. Qute [43] learns variable dependencies lazily in a run.

6. Heretic is based on a hybrid approach that combines expansion and QCDCL
in a sequential portfolio style. Thereby, the QCDCL solver DepQBF is applied
to learn clauses from the given QBF, which are then heuristically added to
the expansion solver Ijtihad.

4 Experimental Results

We illustrate a substantial performance diversity of the above solvers from
QBFEVAL’17 on instances with different numbers of quantifier alternations. To
this end, we rank solvers based on instance classes given by numbers of qblocks
similar to Table 1. Our empirical results are consistent on instances with and
without preprocessing by the state-of-the-art tools Bloqqer [26] and HQSpre [52].
Alternation bias in original instances is present also in preprocessed ones. Unless
stated otherwise, all experiments were run on Intel Xeon CPUs (E5-2650v4,
2.20 GHz) with Ubuntu 16.04.1 using CPU time and memory limits of 1800 s
and seven GB. Exceeding the memory limit is counted as a time out.

It is well known that preprocessing may have positive effects on the perfor-
mance of certain solvers while negative effects on others (cf. [39,40]). To com-
pensate for these effects, we applied preprocessing both to filter the original
benchmark set S17|523 and to preprocess instances. Many preprocessing tech-
niques used to simplify a QBF by eliminating clauses and literals are restricted
variants of solving approaches, hence instances might be solved already by pre-
processing.

We ran Bloqqer (version 37) with a time limit of two hours as a filter on
set S17|523 to obtain the set S17|437 containing 437 original PCNFs, where we
discarded 76 instances from S17|523 that were solved already by Bloqqer and
ten instances that became propositional, i.e., which ended up having a single

Evaluating QBF Solvers: Quantifier Alternations Matter 281

quantifier block of existential variables only. Bloqqer exceeded the time limit on
39 instances, which we included in their original form in set S17|437.

In a similar way, we filtered set S17|523 using HQSpre to obtain the set S17|312
containing 312 original instances, where we discarded 183 instances solved by
HQSpre and 28 which became propositional, and we included 42 original ones
in S17|312 where HQSpre exceeded the resource limits. We did not consider a
variant of HQSpre that applies a restricted form of preprocessing to preserve
gate structure present in formulas [52]. Compared to the unrestricted variant of
HQSpre we used, the restricted one did not improve overall solver performance.

Fig. 1. Numbers of qblocks before (“original”) and after preprocessing by Bloqqer (a)
and HQSpre (b) on filtered (x-axes) and preprocessed instances (y-axes), respectively.

By applying Bloqqer and HQSpre to the filtered sets S17|437 and S17|312 again,
we generated the sets S′

17|437 and S′
17|312, respectively, containing preprocessed

instances and those original instances where the preprocessors exceeded the
resource limits. We disabled any additional use of Bloqqer or HQSpre as sep-
arate preprocessing modules integrated in some solvers. In the following, we
focus our analysis on the four sets S17|437, S′

17|437, S17|312, and S′
17|312.

The application of Bloqqer and HQSpre to sets S17|437 and S17|312 reduces
the number of qblocks in instances considerably. This is illustrated by the scatter
plots in Figs. 1a and b, respectively. The average number of qblocks decreases
from 29 in set S17|437 to 10 in set S′

17|437. Likewise, the average decreases from 24
in set S17|312 to 14 in set S′

17|312. As an extreme case, the number of qblocks in
an instance in S17|437 was reduced by Bloqqer from 1061 to 19.

In all sets S17|437, S′
17|437, S17|312, and S′

17|312, the median number of qblocks
is three. This is due to alternation bias like in the original set S17|523 (Table 1).
The related histograms are shown in Tables 2a to d, where instances with no
more than three qblocks are overrepresented (rows “2–3”) as they amount to
between 63% and 68% of all 437, respectively, 312 instances. Set S17|437 has 59
classes by numbers of qblocks compared to 45 in set S′

17|437, and set S17|312 has

282 F. Lonsing and U. Egly

Table 2. Histograms of the benchmark sets S17|437 and S′
17|437 (filtered and prepro-

cessed by Bloqqer), and S17|312 and S′
17|312 (filtered and preprocessed by HQSpre)

illustrating the numbers of formulas (#f) in classes given by the number of qblocks
(#q).

42 compared to 40 in set S′
17|312. Bloqqer reduces the number of instances with

21 or more qblocks (lines “21–”) from 60 in S17|437 to 42 in S′
17|437 (Tables 2a

and b). HQSpre reduces this number from 41 in S17|312 to 31 in S′
17|312 (Tables 2c

and d).

4.1 Solved Instances: Overall Rankings

We first analyze overall solver performance by ranking solvers according to total
numbers of instances solved in the benchmark sets S17|437, S′

17|437, S17|312, and
S′
17|312. Then we show that the strengths of certain solvers and solving paradigms

are not reflected in such overall rankings. To highlight these individual strengths,
in Sect. 4.2 below we carry out a more fine-grained analysis of solver performance
based on instances that were solved in instance classes defined by their number
of qblocks. Our results show that there is a considerable performance diversity
between solvers and solving paradigms with respect to classes.

Tables 3a to d show overall solver rankings by total numbers of solved
instances. Solver performance greatly varies depending on preprocessing. For
example, while RAReQS, CAQE, and QESTO clearly benefit from preprocessing,
it is harmful for GhostQ and Rev-Qfun. The expansion solvers RAReQS and Rev-
Qfun (paradigm 1) dominate the rankings on sets S17|437 and S′

17|437 (Tables 3a
and b), and are ranked second on sets S17|312 and S′

17|312 (Tables 3c and d).
The first three places in the respective rankings of each set are taken by solvers
based on paradigms 1, 2, 4, and 6. That is, solvers QSTS, DepQBF, and Qute
(paradigms 3 and 5) are not among the three top-performing solvers.

There is a large performance diversity between different solvers based on the
same paradigm. For example, the expansion solver DynQBF is ranked last on
three sets, which is in contrast to the overall good performance of the expan-
sion solvers RAReQS and Rev-Qfun. Likewise, there is a difference between the
QCDCL solvers DepQBF and Qute. Such differences between implementations

Evaluating QBF Solvers: Quantifier Alternations Matter 283

Table 3. Solvers and corresponding paradigms (P) from Sect. 3, solved instances (S),
unsatisfiable (⊥) and satisfiable ones (�), total CPU time including time outs, and
uniquely solved instances (U) on sets S17|437 (a), S′

17|437 (b), S17|312 (c), and S′
17|312

(d).

of the same solving paradigm (or proof system) can be attributed to the fact
that the solvers might apply different heuristics to explore the search space to
find a proof.

The numbers of instances solved uniquely by a particular solver (columns
U in Tables 3a to d) highlight the strengths of solvers such as QSTS, DynQBF,
and DepQBF which do not show top performance in the overall rankings. Most
notably DynQBF by far solved the largest number of instances uniquely on pre-
processed sets S′

17|437 (Table 3b) and S′
17|312 (Table 3d). With respect to uniquely

solved instances, QSTS is second after DynQBF on set S′
17|437, and DepQBF

solved the largest number of instances uniquely on set S17|437 (Table 3a).
Towards a more fine-grained analysis of solver performance, we consider the

number of qblocks of instances solved by individual solvers and in total by solving
paradigms. Table 4 shows related average and median numbers of qblocks. In

284 F. Lonsing and U. Egly

Table 4. Solvers and corresponding solving paradigms (P) as listed in Sect. 3, solved
instances (S, cf. Tables 3a to d), average (q) and median number (q̃) of qblocks of
respective solved instances in the considered benchmark sets. Rows “

⋃
” show statistics

for the total number of instances solved by any solver based on a particular paradigm.

S17|437 S′
17|437 S17|312 S′

17|312
P Solver S q q̃ S q q̃ S q q̃ S q q̃

1 DynQBF 47 6.1 3.0 65 9.0 3.0 46 4.8 3.0 45 3.3 2.0

Ijtihad 110 42.1 5.0 136 12.7 3.0 36 40.5 3.0 58 17.6 3.0

RAReQS 126 39.8 3.0 175 11.2 3.0 50 22.6 3.0 103 11.5 3.0

Rev-Qfun 174 55.1 3.0 135 12.5 3.0 110 47.4 3.0 90 24.0 3.0
⋃

228 45.9 3.0 238 9.6 3.0 145 37.8 3.0 150 16.6 3.0

2 GhostQ 145 12.5 3.0 82 15.8 3.0 112 7.5 3.0 58 8.1 3.0

3 QSTS 103 63.2 5.0 127 15.6 5.0 56 65.3 3.0 72 22.6 3.0

4 CAQE 126 44.3 5.0 169 12.9 3.0 68 37.4 3.0 114 12.0 3.0

QESTO 76 47.7 3.0 115 15.5 3.0 45 15.6 3.0 97 8.1 3.0
⋃

134 41.9 3.5 182 12.5 3.0 74 34.7 3.0 127 11.6 3.0

5 DepQBF 115 45.7 5.0 102 17.8 8.5 64 21.2 8.0 72 10.5 3.0

Qute 77 30.0 4.0 73 20.7 9.0 47 16.4 3.0 70 9.7 3.0
⋃

137 38.8 3.0 117 16.2 6.0 83 17.0 3.0 97 9.2 3.0

6 Heretic 122 39.5 5.0 164 12.5 5.0 49 34.4 3.0 87 14.1 3.0

general, averages are greater for instances from filtered sets (S17|437 and S17|312)
than from preprocessed ones (S′

17|437 and S′
17|312), since preprocessing reduces

the numbers of qblocks (cf. Fig. 1). The difference in averages between solvers
based on the same paradigm, e.g., DynQBF and Rev-Qfun in set S17|437, is due
to few solved instances having many qblocks (up to more than 1000).

Although the median number of qblocks of instances in every considered set is
three (due to alternation bias), the median number of instances solved by certain
solvers as shown in Table 4 is greater than three. For example, this is the case
for the QCDCL solvers DepQBF and Qute on sets S17|437, S′

17|437, and S17|312
(DepQBF only). Moreover, QCDCL is the solving paradigm with the greatest
median (6.0 in set S′

17|437) among all sets when considering instances solved by
any solver based on a particular paradigm (rows “

⋃
”). Ijtihad has the greatest

median among expansion solvers, QSTS and Heretic have a median of 5.0 on
sets S17|437 and S′

17|437, and CAQE has a median of 5.0 on set S17|437. These
statistics indicate that there are solvers which tend to perform well on instances
with relatively many qblocks, which however is not reflected in overall rankings
in Tables 3a to d as many of these solvers are not among the top-performing
ones.

Evaluating QBF Solvers: Quantifier Alternations Matter 285

4.2 Solved Instances: Class-Based Analysis

Motivated by the above observations related to median numbers of qblocks of
solved instances, we aim to provide a more detailed picture of the strengths of
the different solvers and implemented solving paradigms. To this end, we analyze
the numbers of solved instances in classes defined by their numbers of qblocks.

Tables 5a to d show the numbers of instances that were solved in the individ-
ual classes in the considered sets. Only class winners are shown (bold face),3 i.e.,
solvers that solved the largest number of instances in at least one class, where
ties are not broken. The bottom rows of the tables show statistics for instances
with up to three (row “2–3”) and more than three qblocks (row “4–”).

The five different class winners Rev-Qfun, GhostQ, CAQE, Heretic, and
DepQBF in set S17|437 (Table 5a) implement five different solving paradigms

Table 5. Instances solved in classes by numbers of qblocks (#q) and numbers of
formulas in each class (#f) for sets S17|437 (a), S′

17|437 (b), S17|312 (c), S′
17|312 (d). Only

class winners (bold face) are shown, paradigms (P:) are indicated in the first row.

3 We refer to an online appendix for complete tables [38].

286 F. Lonsing and U. Egly

(rows P:). In set S′
17|437 (Table 5b) the four class winners implement three dif-

ferent paradigms. In sets S17|312 and S′
17|312 (Tables 5c and d), there are four

different paradigms implemented in the respective four class winners. Overall,
with respect to all four benchmark sets, there are seven different solvers out of
the 11 considered ones that win in a class. These class winners implement five
out of the six paradigms listed in Sect. 3, all except paradigm 3 implemented in
QSTS.

Notably, class winners are not always overall top-ranked, and an overall top-
ranked solver does not always win a class. For example, RAReQS is ranked third
in set S17|437 (Table 3a) and second in set S′

17|312 (Table 3d) but does not win
a class in the respective set (Tables 5a and d). As an extreme case, DynQBF is
ranked last on sets S′

17|437 and S′
17|312 (Tables 3b and d) but wins the class of

instances with no more than two qblocks (row “2” in Tables 5b and d).
Instances with few qblocks are overrepresented in the benchmark sets. Alter-

nation bias of this kind in general bears the risk of masking the strengths of
certain solvers on underrepresented instances. The variety of class winners and
paradigms shown in Tables 5a to d is not reflected when only considering overall
solver rankings by total numbers of solved instances in Tables 3a to d.

The expansion solvers Rev-Qfun and RAReQS (paradigm 1) tend to perform
better on instances with relatively few qblocks, while solvers applying QCDCL
(paradigms 5 and 6) tend to perform better on many qblocks. For example,
either DepQBF or Heretic win on instances with four or more qblocks (row “4–”)
in any set. These statistics are interesting in the context of QBF proof complexity
as the proof systems underlying expansion and QCDCL are orthogonal [7,31].
CAQE based on paradigm 4 wins on instances with 21 or more qblocks (rows
“21–”) in all sets (Tables 5a to d). Further, it also wins on instances with no
more than three qblocks in set S′

17|312 (Table 5d). The proof systems underlying
paradigms 4 and 1 (expansion) are orthogonal [50]. The performance diversity
of orthogonal proof systems on instances with different numbers of qblocks is
not reflected in overall rankings and motivates further, theoretical study in QBF
proof complexity.

Due to alternation bias, classes of instances with few qblocks are larger than
those with many qblocks. Hence solvers often win in a class of instances with
many qblocks by only a small margin. For example, the top-ranked solvers on
classes “4–10”, “11–20”, and “21–” tend to be close to each other in terms of
solved instances (cf. appendix [38]). Moreover, solvers implementing the same
paradigm might show diverse performance due to different heuristics in proof
search. To consider these factors, we carry out a class-based analysis of solving
paradigms. To this end, we count instances solved by any solver implementing a
particular paradigm. This study is related to statistics in rows “

⋃
” of Table 4.

Tables 6a to d show instances solved by each of the solving paradigms 1 to
6 (first row) in classes of instances. Class winners are highlighted in bold face.
Paradigm 1 (expansion) dominates the other paradigms on complete benchmark
sets (row “2–”). On instances obtained by Bloqqer (Tables 6a and b), in total only
four classes are won by paradigms other than expansion: class “2” by paradigm 2

Evaluating QBF Solvers: Quantifier Alternations Matter 287

Table 6. Instances solved by solving paradigms 1 to 6 (cf. Sect. 3) in classes by numbers
of qblocks (#q) for sets S17|437 (a), S′

17|437 (b), S17|312 (c), and S′
17|312 (d).

(QDPLL) on set S17|437, class “11–20” by paradigm 5 (QCDCL) on sets S17|437
and S′

17|437, and class “21–” by paradigm 4 (clause selection/abstraction) on set
S′
17|437. Regarding the dominance of paradigm 1 (expansion) in Tables 6a and b,

we note that four solvers among the considered ones are based on expansion,
while there are at most two solvers implementing the other paradigms.

Performance is more diverse on instances filtered and preprocessed by HQSpre
(Tables 6c and d). There, paradigms other than expansion either win or are on
par with expansion in nine classes in total. Notably, paradigms 4 and 5 win in
classes “4–” of sets S′

17|312 and S17|312 containing instances with many qblocks.
Although CAQE (paradigm 4) is overall top-ranked on set S′

17|312 (Table 3d), the
strong performance of paradigms 4 and 5 on instances with many qblocks is not
reflected in overall rankings (Tables 3c and d).

4.3 Virtual Best Solver Analysis

We strengthen our above observations of performance diversity of solvers and
solving paradigms with respect to numbers of qblocks by a virtual best solver
(VBS) analysis, which is common in QBF [40] and SAT competitions (cf. [4]).
The VBS is an ideal portfolio where the solving time of the fastest solver on an
instance is attributed to the VBS. Thus the VBS reflects the best performance
that can be achieved when running a set of solvers in parallel on an instance.

288 F. Lonsing and U. Egly

Table 7. Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of
each solver to instances solved by the VBS for sets S17|312 (a) and S′

17|312 (b).

Tables 7a and b show numbers of instances solved by the VBS in classes
for sets S17|312 and S′

17|312 and the relative contribution of solvers (percentage)
to the VBS in terms of solved instances. Similar to instances solved in classes
(Tables 5a to d), the VBS contributions differ and provide a more fine-grained
picture of the strengths of solvers and solving paradigms than the VBS con-
tributions on the entire benchmark set (rows “2–” in Tables 7a and b). In the
following, we comment on general VBS statistics for all considered benchmark
sets, with a focus on sets S17|312 and S′

17|312 generated using HQSpre. We refer
to the appendix [38] for tables related to sets S17|437 and S′

17|437 generated using
Bloqqer.

On all benchmark sets the VBS solved between 50% and 70% more instances
than the single overall best solver (Tables 3a to d). These results highlight the
complementary strengths of solvers and solving paradigms that are not among
the top-ranked ones. On each of the four benchmark sets, there are five different
solvers, respectively, which have the largest VBS contribution in a class. Interest-
ingly, from the respective overall winning solvers (Tables 3a to d), only RAReQS
on set S′

17|437 also has the largest VBS contribution on the entire benchmark
set. While RAReQS is ranked second on set S′

17|312 (Table 3d), it has the largest
overall VBS contribution (row “2–” in Table 7b).

Evaluating QBF Solvers: Quantifier Alternations Matter 289

Consistent with Tables 5b and d, where DynQBF solved the largest number
of instances in class “2” of sets S′

17|437 and S′
17|312, it has the largest VBS con-

tributions in this class (cf. Table 7b and appendix [38]) although it is ranked
last in overall rankings (Tables 3b and d). The large VBS contributions of Dyn-
QBF conform to the fact that it solved the largest numbers of instances uniquely
in sets S′

17|437 and S′
17|312. Similar observations regarding VBS contributions of

solvers that are not top-ranked were made in the context of SAT solver compe-
titions [54].

QSTS neither is among the overall top-ranked solvers (Tables 3a to d) nor
among the class winners (Tables 5a to d), yet it has the largest VBS contribution
in class “21–” on all sets except S′

17|312 (Table 7b), where it is on par with
RAReQS.

Similar to the analysis presented in Tables 6a to d, we analyze the VBS
contribution of each solving paradigm for sets S17|312 and S′

17|312 in Tables 8a
and b, respectively. We refer to the appendix [38] for tables related to sets S17|437
and S′

17|437. Considering instances with many qblocks (row “4–”), paradigm 5
(QCDCL) has the largest contribution in set S17|312 and is on par with paradigm
1 (expansion) in set S′

17|312. This is remarkable, given that paradigm 1, where
four solvers are based on, clearly has the largest VBS contribution on the entire
sets (rows “2–”). However, only two solvers implement paradigm 5.

4.4 Discussion

In the following, we discuss threats to the validity of our study and related issues.

Heuristics. The performance of solvers implementing the same paradigm might
be diverse due to different heuristics applied in proof search. To comprehensively
evaluate the impact of heuristics, it is necessary to consider further syntactic
parameters of instances other than alternations, such as ratio of variables per
clause, size of clauses, and the like. In our study, we focused on alternations
as they impact the theoretical hardness of PCNFs, thus resulting in a larger
complexity landscape than, e.g., in propositional logic (SAT). To even out the
effects of heuristics, we studied and observed performance diversity of paradigms
(Tables 6 and 8). Such diversity cannot be explained by different heuristics, in
contrast to diversity between individual solvers based on the same paradigm.

Dominance of Single Solvers and Paradigms. We are not aware of solvers
being specifically targeted to instances with a particular number of alternations.
Similar to the effects of heuristics, we even out a potential dominance of single
solvers and overrepresented paradigms in solvers by a paradigm-based analysis
(Tables 6 and 8). This provides a more comprehensive picture of the strengths
of different paradigms. This way, e.g., we observed remarkable results regarding
the VBS contribution of QCDCL on instances with many alternations (Table 8).

Choice of Benchmarks and Solvers. The benchmarks we considered contain
few instances with many alternations, which follows from alternation bias in
original benchmarks (cf. Sect. 3). We observed performance diversity in the large

290 F. Lonsing and U. Egly

Table 8. Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of
solving paradigms to instances solved by the VBS for sets S17|312 (a), and S′

17|312 (b).

classes “2–3” and “4–”, which is more robust than in smaller classes containing
fewer instances. Class “4–” is the largest one with many alternations that can
be selected in the given benchmarks. Our choice of solvers was predetermined by
the ranking of the top-performing solvers in the PCNF track of QBFEVAL’17.

Relation to QBF Proof Complexity. We emphasize that our study does
not show that certain proof systems provably perform differently with respect
to alternations. This is an open research problem in QBF proof complexity.

Overrepresented Problems and Different Prenex Forms. Several QBF
encodings of a problem with different numbers of alternations may exist. Hence
in the instance classes we defined by alternations certain problems might be
overrepresented. These problems may be detected based on detailed information
about the encoding process. However, such information is often not available for
PCNF benchmarks. A related issue is the impact of different quantifier prefixes in
PCNFs on solver performance, which was studied in theory [8] and practice [22].

5 Conclusion

We analyzed the effects of quantifier alternations on the evaluation of QBF
solvers. Our empirical results indicate that the performance of solvers based on

Evaluating QBF Solvers: Quantifier Alternations Matter 291

different solving paradigms substantially varies on classes of formulas defined by
their numbers of alternations. While the theoretical hardness of QBFs in prenex
CNF with a particular number of alternations is naturally related to levels in the
polynomial hierarchy, our study a posteriori sheds light on solver performance
observed in practice. We observed a substantial performance diversity of solvers
based on orthogonal QBF proof systems [7,31,50] on instances with different
numbers of alternations, e.g., expansion and Q-resolution. Thereby, our work is
in line with a recent focus on alternations in QBF proof complexity [6,9,18]. As
a future direction in practice, and motivated by virtual best solver statistics we
presented, it is promising to combine orthogonal approaches to leverage their
individual strengths in a single QBF solver.

The class- and paradigm-based performance analysis we presented is a
methodology to evaluate QBF solvers that takes quantifier alternations of under-
and overrepresented instances into account. This is necessary to highlight the
strengths of solving paradigms in a comprehensive way. In doing so, we aim to
reach out to users of QBF technology who are inexperienced with solver imple-
mentations and look for solvers that are suitable to solve a particular problem.
Ultimately, QBF technology must be improved as a general approach to tackle
PSPACE problems.

References

1. Atserias, A., Oliva, S.: Bounded-width QBF is PSPACE-complete. In: STACS.
LIPIcs, vol. 20, pp. 44–54. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2013)

2. Ayari, A., Basin, D.: Qubos: deciding quantified boolean logic using propositional
satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 187–201. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36126-X 12

3. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015)

4. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65
(2016). https://doi.org/10.1016/j.artint.2016.08.007

5. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: recent develop-
ments. In: AAAI, pp. 5061–5063. AAAI Press (2017)

6. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost and capacity: a semantic tech-
nique for hard random QBFs. In: ITCS. LIPIcs, vol. 94, pp. 9:1–9:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

7. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: STACS. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2015)

8. Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF Resolution. In:
Beyond NP Workshop, AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

9. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
In: FSTTCS. LIPIcs, vol. 93, pp. 14:1–14:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017)

https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1016/j.artint.2016.08.007

292 F. Lonsing and U. Egly

10. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527695 5

11. Bogaerts, B., Janhunen, T., Tasharrofi, S.: SAT-to-SAT in QBFEval 2016. In: QBF
Workshop, CEUR Workshop Proceedings, vol. 1719, pp. 63–70. CEUR-WS.org
(2016)

12. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT
solvers. In: Beyond NP Workshop 2016 at AAAI 2016 (2016)

13. Bordeaux, L., Cadoli, M., Mancini, T.: CSP properties for quantified constraints:
definitions and complexity. In: AAAI, pp. 360–365. AAAI Press/The MIT Press
(2005)

14. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
Boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)

15. Charwat, G., Woltran, S.: Expansion-based QBF solving on tree decompositions.
In: RCRA Workshop, CEUR Workshop Proceedings, vol. 2011, pp. 16–26. CEUR-
WS.org (2017)

16. Chen, H.: A rendezvous of logic, complexity, and algebra. ACM Comput. Surv.
42(1), 2:1–2:32 (2009)

17. Chen, H.: Meditations on quantified constraint satisfaction. In: Constable, R.L.,
Silva, A. (eds.) Logic and Program Semantics. LNCS, vol. 7230, pp. 35–49.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29485-3 4

18. Chen, H.: Proof complexity modulo the polynomial hierarchy: understanding alter-
nation as a source of hardness. TOCT 9(3), 15:1–15:20 (2017)

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

20. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

21. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

22. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing different
prenexing strategies for quantified Boolean formulas. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 17

23. Giunchiglia, E., Narizzano, M., Pulina, L., Tacchella, A.: Quantified Boolean For-
mulas Library (QBFLIB) and Solver Evaluation Portal (QBFEVAL) (2004). www.
qbflib.org

24. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic
satisfiability. In: AAAI, pp. 649–654. AAAI Press/The MIT Press (2002)

25. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. JAIR 26, 371–416 (2006)

26. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. JAIR 53, 127–168 (2015)

27. Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42
(1995)

28. Janota, M.: Towards generalization in QBF solving via machine learning. In: Pro-
ceedings of the AAAI 2018 (2018, to appear)

29. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBFGallery 2014: the QBF competition at the FLoC olympic games. JSAT 9,
187–206 (2016)

30. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/978-3-642-29485-3_4
https://doi.org/10.1007/978-3-540-24605-3_17
www.qbflib.org
www.qbflib.org

Evaluating QBF Solvers: Quantifier Alternations Matter 293

31. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

32. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp.
325–331. AAAI Press (2015)

33. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Hand-
book of Satisfiability, FAIA, vol. 185, pp. 735–760. IOS Press (2009)

34. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

35. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14186-7 12

36. Letz, R.: Lemma and model caching in decision procedures for quantified Boolean
formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 160–175. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45616-3 12

37. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 23

38. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter.
CoRR abs/1701.06612 (2018). http://arxiv.org/abs/1701.06612, CP 2018 proceed-
ings version with appendix

39. Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: behind the scenes. Artif.
Intell. 237, 92–114 (2016)

40. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years
of QBF evaluations: QSAT is PSPACE-hard and it shows. Fundam. Inf. 149(1–2),
133–158 (2016)

41. Martin, B.: Quantified constraints in twenty seventeen. In: The Constraint Satis-
faction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, vol. 7,
pp. 327–346. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

42. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: 13th Annual Symposium on Switching
and Automata Theory, pp. 125–129. IEEE Computer Society (1972)

43. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 19

44. Pulina, L., Seidl, M.: QBFEVAL’17: competitive evaluation of QBF solvers (2017).
http://www.qbflib.org/event page.php?year=2017

45. Pulina, L., Tacchella, A.: Treewidth: a useful marker of empirical hardness in quan-
tified Boolean Logic Encodings. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 528–542. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89439-1 37

46. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–
143. IEEE (2015)

47. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, FAIA, vol. 185, pp. 131–153. IOS Press (2009)

48. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

49. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: STOC, pp. 1–9. ACM (1973)

https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/978-3-319-63046-5_23
http://arxiv.org/abs/1701.06612
https://doi.org/10.1007/978-3-319-66263-3_19
http://www.qbflib.org/event_page.php?year=2017
https://doi.org/10.1007/978-3-540-89439-1_37

294 F. Lonsing and U. Egly

50. Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 25

51. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Stud.
Constr. Math. Math. Log., 115–125 (1968)

52. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor
for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 373–390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 21

53. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput.
Sci. 3(1), 23–33 (1976)

54. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8 18

55. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46135-3 14

https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/3-540-46135-3_14
https://doi.org/10.1007/3-540-46135-3_14

Quantified Valued Constraint
Satisfaction Problem

Florent Madelaine1(B) and Stéphane Secouard2

1 Université Paris-Est Créteil, LACL, Créteil, France
florent.madelaine@uca.fr

2 Université Caen Normandie, CNRS, GREYC, Caen, France

Abstract. We study the complexity of the quantified and valued exten-
sion of the constraint satisfaction problem (QVCSP) for certain classes
of languages. This problem is also known as the weighted constraint sat-
isfaction problem with min-max quantifiers [1].

The multimorphisms that preserve a language is the starting point of
our analysis. We establish some situations where a QVCSP is solvable
in polynomial time by formulating new algorithms or by extending the
usage of collapsibility, a property well known for reducing the complex-
ity of the quantified CSP (QCSP) from Pspace to NP. In contrast, we
identify some classes of problems for which the VCSP is tractable but
the QVCSP is Pspace-hard.

As a main Corollary, we derive an analogue of Shaeffer’s dichotomy
between P and Pspace for QCSP on Boolean languages and Cohen et al.
dichotomy between P and NP-complete for VCSP on Boolean valued
languages: we prove that the QVCSP follows a dichotomy between P
and Pspace-complete.

Finally, we exhibit examples of NP-complete QVCSP for domains of
size 3 and more, which suggest at best a trichotomy between P, NP-
complete and Pspace-complete for the QVCSP.

Keywords: Complexity classification · Valued CSP
Quantified CSP · Polymorphisms · Multimorphisms · Collapsibility

1 Introduction

Modern SAT and CSP solvers are quite efficient on industrial instances, so much
so that there is a current impetus in the community towards solvers that tackle
computational problems that lie beyond NP [2]. Meanwhile on the theoretical
front, several proofs [3,4] have just been proposed for Feder and Vardi celebrated
dichotomy conjecture for the CSP [5]. There has been some advances for its
quantified counterpart the QCSP that seems to follow a trichotomy between P,
NP-complete and Pspace-complete [6–9]. Its optimisation counterpart the VCSP

Supported by Université Clermont Auvergne, CNRS, LIMOS and Université Caen
normandie, CNRS, GREYC.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 295–311, 2018.
https://doi.org/10.1007/978-3-319-98334-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_20&domain=pdf
http://orcid.org/0000-0002-8528-7105

296 F. Madelaine and S. Secouard

has been classified, first for finite valued cost functions [10] then for arbitrary
cost function assuming the dichotomy conjecture holds [11]. The reader may also
consult these recent surveys on QCSP [12] and VCSP [13].

It is now well established that the presence or absence of certain well behaved
polymorphisms of a constraint language characterises the complexity of the cor-
responding CSP. Schaefer proved a dichotomy in the Boolean case [14], which
may be reformulated as follows.

Theorem 1 [15]. Let Γ be a constraint language over D = {0, 1}.
CSP(Γ) is in P if Γ admits one of the following six good polymorphisms and
NP-complete otherwise.
Good polymorphisms: {Mjrty,Mnrty,Max,Min,Const0,Const1}.
Here, Mjrty denotes the ternary operation that returns its repeated argument,
while Mnrty is the ternary minority operation; Max and Min are binary opera-
tions that returns the maximum and minimum, respectively; Const0 and Const1
are the unary constant operations that sends their argument to 0 and 1 respec-
tively. We delay further formal definitions to the next section.

For the QCSP and VCSP, surjective polymorphisms and fractional polymor-
phisms play the same role as polymorphisms for the CSP. As an illustration,
let us state two classification results in the Boolean case. For the QCSP, the
following dichotomy was announced by Schaefer [14].

Theorem 2 [15,16]. Let Γ be a constraint language over D = {0, 1}.
QCSP(Γ) is in P if Γ admits one of the following four good surjective polymor-
phisms and Pspace-complete otherwise.
Good surjective polymorphisms: {Mjrty,Mnrty,Max,Min}.

For the Boolean VCSP, the good multimorphisms must combine good poly-
morphisms from Theorem 1, as otherwise the feasibility of the VCSP would read-
ily allow to solve a hard CSP.

Theorem 3 [17]. Let Γ be a valued constraint language on D = {0, 1}.
VCSP(Γ) is in P if it admits at least one of the following eight good multimor-
phisms. Otherwise, the problem is NP-hard.
Good multimorphisms for VCSP:
{3Mjrty, 3Mnrty, 2Mjrty + Mnrty, 2Max, 2Min,Max + Min,Const0,Const1}.

In this paper, we combine universal quantification (QCSP) and valued con-
straints (VCSP) and work in the framework of the Quantified Valued Constraint
Satisfaction Problem (QVCSP). Unbeknownst to us until the reviewers pointed
it out, this problem was in fact already introduced in [1] as the weighted CSPs
with min-max quantifiers and studied from an experimental perspective in the
context of solver designs: the authors showed that alpha-beta pruning can be
adapted in this context in a relevant fashion. While their name for the problem
is very natural in their context, we will stick to our terminology which makes
more apparent that we merge the QCSP and the VCSP frameworks. A natural
way of building a QCSP instance from a CSP instance consists in assuming that

Quantified Valued CSP 297

a malicious opponent or uncertainty with respect to the environment is limiting
certain resources or strengthening some constraints after some decisions have
been made (see for example [18] for examples of scheduling with opponents).
In the same manner, we could build natural example of QVCSP from natural
instances of the VCSP.

Note that some of the tractable languages for the VCSP are in fact not
genuine valued languages since the costs are the same for all feasible tuples. This
is the case for the multimorphisms 3Mjrty and 3Mnrty in Theorem3 (actually
this is the case for any finite domain size). For such so called essentially crisp
languages, one can therefore deduce immediately the complexity of their QVCSP
from the QCSP classification: they are both collapsible (so in NP) and reduce
in fact to a CSP in P.

For the QCSP, the fact that the complexity drops from Pspace to NP is
explained by a property known as switchability [19–22]. Here we will only con-
sider a restricted form of this property known as collapsibility, which asserts that
a language is k-collapsible, whenever to satisfy an input sentence, it suffices to
satisfy all sentences induced from this input sentence by fixing all but a bounded
number of universal variables to take the same value. This is true in particular
for the languages preserved by Max or Min for k = 1. We will show that this
approach can be applied in some cases to QVCSP as well, which will in turn
lead to tractability in some cases.

In particular, we obtain a complete classification of the complexity of the
QVCSP in the Boolean case.

Theorem 4 (main result). Let Γ be a valued constraint language on D =
{0, 1}. If Γ has one of the following good multimorphism then QVCSP(Γ) is
tractable, otherwise it is Pspace-hard.
Good multimorphisms for QVCSP:
{3Mjrty, 3Mnrty, 2Mjrty + Mnrty, 2Max, 2Min}.
The hardness part of our proof relies on a fairly non trivial case analysis of
tractable languages from Theorem 3 that are not tractable according to Theo-
rem 4. We show that we can always express in this case a cost function that is
hard for the QVCSP (and was of course not hard for the VCSP). Among other,
we borrow and adapt the technique of compression used in [17] for the proof of
Theorem 3.

The paper is organised as follows. In the next section we recall definitions and
notations. In Sect. 3, we introduce the QVCSP and provide some examples of
Pspace-hard Boolean QVCSP. In Sect. 4, we show that some valued constraint
languages are tractable for essentially trivial reasons: either because they are
crisp or because they are non crisp but any instance with “too many” universal
quantifiers must be rejected. In Sect. 5, we extend the notion of collapsibility
from the QCSP to the valued setting of QVCSP and use it to obtain tractability
results for the QVCSP. In Sect. 6, we finish the proof of Theorem4. Finally we
conclude with some remarks.

298 F. Madelaine and S. Secouard

2 Preliminaries

A VCSP instance φ is a finite collection of valued constraints over some finite
variable set X ranging over a label set D with value in the rationals augmented
with the non feasible ∞. Here a valued constraint is given by a so-called cost
function ρ from Dn to Q∪{∞} for some positive integer n (the arity) and an n-
tuple of elements of X (the scope). Given the assignment α := {σx ∈ D|x ∈ X},
we write obj(φ, α) as a short hand for

∑
ρ(x̄) in φ ρ(α(x̄)) where by α(x̄) we mean

that the value of each variable x from the scope x̄ is replaced by its assigned
label σx. The VCSP is an optimisation problem, the aim of which is to compute
an α such that obj(φ, α) is minimum. There are two other problems that arise
in the context of VCSP.

– decision: given an additional input k in Q, is there an α such that obj(φ, α)
is at most k?

– feasibility: is there an α such that obj(φ, α) is finite?

All these problems are NP-hard in general, and a standard way of better
understanding the complexity is to study language restrictions, that is restricts
costs functions to come from a certain set Γ . A valued constraint language is
NP-hard (for the VCSP), iff it contains a finite language for which the VCSP
is NP-hard. A cost function is crisp (resp., essentially crisp) if it ranges over
{0,∞} (resp., over {c,∞} for some c in Q). A language is (essentially) crisp if
it contains only (essentially) crisp cost functions. The crisp language associated
with a valued constraint language Γ denoted by crisp(Γ) consists of the set of
corresponding relations, where crisp(ρ)(t) := 0 iff ρ(t) < ∞.

An m-ary operation on D is a function g : Dm → D. Let O(m)
D denote the set

of all m-ary operations on D. An m-ary fractional operation is a function ω from
O(m)

D to the positive rationals such that
∑

g ω(g) = 1. The set {g | ω(g) > 0} of
operations is called the support of ω and is denoted by supp(ω).

A fractional operation ω is called an m-ary fractional polymorphism of a
r-ary valued constraint ρ if for any tuples t1, t2, . . . , tm in Dr, it holds that

1
m

(ρ(t1) + ρ(t2) + . . . + ρ(tm)) ≥
∑

g∈O(m)
D

ω(g)ρ(g(t1, t2, . . . , tm)) (1)

where the operations g are applied component-wise. We will alternatively say
that a fractional operation improves a cost function. A multimorphism is a frac-
tional polymorphism with integral weights1. If ω is a fractional polymorphism
of every cost function in a constraint language Γ , then ω is called a fractional
polymorphism of Γ . A fractional polymorphism of a crisp language is a collec-
tion of polymorphisms (one identifies a crisp cost function ρ with the relation

1 We deviate marginally from the standard definition, which would require to rescale
by the arity.

Quantified Valued CSP 299

{t|ρ(t) < ∞}). If ω is a fractional polymorphism of Γ , any g in supp(ω) is a
polymorphism of crisp(Γ). Rewriting (1) as

ρ(t1) + ρ(t2) + . . . + ρ(tm) ≥
∑

g∈O(m)
D

m.ω(g)ρ(g(t1, t2, . . . , tm)) (2)

we will mildly abuse the notation of m-ary fractional polymorphisms in this
paper, and write them as a weighted sum of operations of arity m, such that the
sum of weights equals m. This explains the notation used in the statement of
Theorems 3 and 4, where we listed several examples including ternary fractional
operations such as 3Mjrty and 2Mjrty + Mnrty, binary ones such as 2Max and
Max + Min and, unary ones Const0,Const1.

We recall some operation of importance. For a constant c in D, let Constc

denote the unary operation that always return c. Given a total order over D, let
Max (resp, Min) denote the binary operation that returns the largest argument.
Over the Boolean domain, we shall consider the usual order 0 < 1. More gen-
erally, any partial order over D such that the greatest lower bound of any pair
of elements exist, induces naturally a semi-lattice operation, which is a binary
operation ∧ that is idempotent (x ∧ x = x), associative and commutative. The
element ⊥ :=

∧
d∈D d satisfies for any x in D, ⊥∧x = ⊥. If there is a constant 	

such that for any x in D, 	 ∧ x = x, then we say that 	 is a unit and ∧ a semi-
lattice with unit. For 1 ≤ i ≤ 3, let Mjrtyi denote the ternary operation that
returns the argument that occurs the most if some are equal, and its ith argument
otherwise. When the domain is Boolean, we drop the unnecessary subscript. We
define similarly Mnrtyi, which returns the least frequent argument if some are
equal. A k-ary Hubie operation2 f over D with respect to a constant c in D is
a surjective operation that remains surjective even when any coordinate is fixed
to c. That is, f(c,D, . . . , D) = f(D, c,D, . . . ,D) = . . . = f(D, . . . ,D, c) = D.
We say that a cost function φ(x1, . . . , xm) can be expressed by Γ if there is an
instance I of VCSP(Γ) with objective function φI(x1, . . . , xm, xm+1, . . . , xn),
such that

φ(x1, . . . , xm) = Min
xm+1,...,xn

φI(x1, . . . , xm, xm+1, . . . , xn).

We can also easily implement cost functions by scaling and translating that is
a cost function a.φ + b, for any φ ∈ Γ , any a ∈ Q+ and any b ∈ Q. Let Γ ∗

be the closure of Γ under expressibility, scaling and translation. It is known
that this closure preserve (in)tractability and that Γ ∗ is the same as the set of
cost functions that are invariant under the fractional polymorphisms of Γ [13,
Theorem 35].

3 Definition and Examples of QVCSP

An instance of the quantified valued constraint satisfaction problem (QVCSP)
is defined as above with the addition of a prefix of quantification P applying
2 It was anonymous in [23] and the term was coined in [21].

300 F. Madelaine and S. Secouard

to all variables: that is, P is a strict linear order over variables where variables
are either existential or universal. For convenience, we will denote the set of
existential variables by XP and universal variables by Y P . Given an existential
variable x of XP , we denote by Y P

x the set of universal variables that precede
x in the prefix order given by P. When the prefix of quantification is clear from
context, we feel free to drop the superscript from our notation.

A Skolem function σx for the variable x is a D ranging function that takes as
input values corresponding to the values of the universal variables that precedes
it in P, that is from D|Yx| to D. If β is a family of Skolem functions for our
instance β = {σx : D|Yx| → D|x ∈ X} (we will call such a family a strategy for
our instance) and π : Y → D an assignment of the universal variables, we write
β ◦ π for the assignment to the variables which assigns a universal variable y in
Y to π(y) and an existential variable x in X to σx(π�Yx

), where π�Yx
denotes

the restriction to Yx of π.
We are now in a game setting pitching a universal player (male) and an

existential player (female). Informally, she is trying to give a label to existential
variables with the long term view of optimising the objective function, while
he is a malicious opponent trying to prevent her from doing so. She tries to
minimise the objective no matter what her opponent plays. This is reasonable if
she knows that he is maliciously trying to make sure that after play her objective
is as large as possible. We extend therefore the objective function to quantified
valued constraints and let obj(φ, β) := maxπ:Y →D obj(φ, β ◦π). We will consider
the QVCSP to be the optimisation problem, the aim of which is to compute a
β such that obj(φ, β) is minimum. We will not as such request that β be given
in full as it would be of size at least Dm where m is the number of universal
variables. Instead, we will ask for a procedure that can play the underlying game
according to the strategy β. Like for the VCSP, there are again two natural
decision problems that arise:

– decision: given an additional input k in Q, is there a β such that obj(φ, β) is
at most k?

– feasibility: is there a β such that obj(φ, β) is finite?

Note that this definition extends naturally the usual semantic of the QCSP
and the feasibility question for the QVCSP amounts to solving the QCSP for
the underlying crisp language. This means that the above three problems are
Pspace-hard in general, and we study in this paper their restrictions to a valued
constraint language Γ .

Example 1. Let Γnae be the boolean constraint language that consists of the cost
function.

ρnae(x, y, z) =
{∞ if x = y = z

0 otherwise

This language is crisp and we know that the complexity for the VCSP is that
of the corresponding CSP, namely NP-complete, and that for the QVCSP, we
should look at the QCSP, well known to be Pspace-complete [12].

Quantified Valued CSP 301

Example 2. Let Γneq be the boolean constraint language that consists of the cost
function

ρneq(x, y) =
{

0 if x �= y
1 otherwise

For this non crisp language, we again get an NP-hard VCSP but not because of
the feasibility which is tractable, but because of the optimisation, by reduction
from MAX Sat for XOR [17]. Alternatively, one can simulate a variant of ρnae:

ρ′
nae(x, y, z) := ρneq(x, y) + ρneq(x, z) + ρneq(y, z) − 1 =

{
2 if x = y = z
0 otherwise

We can reduce VCSP(Γnae) to VCSP(Γneq) by replacing every occurrence of the
cost function by ρ′

nae. The former instance holds iff the latter has a solution
reaching an objective of 0. The same reduction applies for the QVCSP, whose
decision version is therefore Pspace-complete.

Example 3. The following boolean cost function

ρeq(x, y) =
{

0 if x = y
1 otherwise

together with two unary crisp cost functions that encodes the constants 0 and
1 forms the boolean language Γcut, whose VCSP corresponds essentially to the
problem MIN-CUT and is tractable [17]. In contrast we will show below that
the language Γeq = {ρeq} has already a QVCSP that is Pspace-hard.

Proposition 1. The QVCSP for the constraint language Γeq is Pspace-hard.

Proof. We reduce the decision version of QVCSP for Γneq (see example above)
to that of Γeq as follows.

Given an instance φ of the former with a quantifier prefix P, we reduce to
the instance φ̃ obtained by replacing every occurrence of the cost function ρneq
by ρeq in φ and picking the dual quantifier prefix P̃ (that is turn existential
variables to universal and vice versa).

Let N be the number of occurrences of the ρneq cost function in φ. We claim
that the objective for φ̃ must be more than N − k, iff the objective for φ is less
then k.

Indeed, otherwise pitting a strategy β̃ for φ̃ that would attain an objective of
less than N minus k, against any strategy β for φ in the game for φ, we would
obtain a final objective of more than k.

The dual argument applies for the other direction, which proves our claim.
The claim gives us the (Turing) reduction. We answer the opposite answer

of that for φ̃ with the threshold N − k. �

302 F. Madelaine and S. Secouard

4 Some Tractable Languages

4.1 Essentially Crisp Languages

We can deduce the complexity of such languages from the complexity of the
associated QCSP.

Proposition 2. Let Γ be a valued constraint language over some finite set D.
If Γ admits 3Mjrty or 3Mnrty as a multimorphism, where Mjrty (respectively,
Mnrty) is any majority (respectively, minority) operation, then QVCSP(Γ) is
tractable.

Proof. By Proposition 6.20 (majority) and 6.22 (minority) in [17], Γ is an essen-
tially crisp language. Thus the problem QVCSP(Γ) is the same as QCSP(Γ ′)
where Γ ′ = crisp(Γ). By construction, Γ ′ admits Mjrty or Mnrty as a poly-
morphism, which are known to be tractable by Theorem 4.2 (mal’tsev) and 4.5
(near-unanimity) in [6]. �
Remark 1. The above can be generalised to a language that admits a multi-
morphism 3f where f is Mal’tsev or a multimorphism k.f where f is a k-ary
near-unanimity operation.

4.2 Permutations and Unary

The proof principle used to discard universal quantifiers for the language of the
following result is reminiscent of the case of a language that consists of a single
bipartite or a single disconnected graph for the QCSP [24]. In a nutshell, an
instance boils down to a collection (conjunction) of instances with a prefix of
quantification with at most one leading universal variable or it must be rejected.

Theorem 5. Let Γ be a valued constraint language over some finite set D. If
Γ admits Mjrty1 + Mjrty2 + Mnrty3 as a multimorphism, then QVCSP(Γ) is
tractable.

Proof. By Theorem 6.25 in [17], any cost function from Γ can be expressed as a
sum of unary cost functions and binary permutation restrictions. The latter are
crisp cost functions with costs ranging in {0,∞}, that amount to a restricted
permutation in the sense that for any x, there is at most one y2 such that φ(x, y2)
holds (has non ∞ weight) and at most one y1 such that φ(y1, x) holds.

Our algorithm will apply some simple preprocessing and detect that the
instance is not feasible or it will deduce that each connected component of the
constraint graph contains at most one universal variable and by some simple case
analysis deduce the (worst) cost for these components. In effect this reduces the
instance to a VCSP instance for which a simple algorithm is already known.

Let φ be a permutation restriction occurring in the instance.
If ∃x∀yφ(x, y) occurs in the instance then it is not feasible since any but at

most one value for y will yield an objective of ∞ for a given value of x. In this

Quantified Valued CSP 303

case, we may answer ∞. Of course, the symmetric case of ∃x∀yφ(y, x) is dealt
with in the same way. We ignore symmetric cases from now on.

Similarly, if ∀y1∀y2φ(y1, y2) occurs in the instance, then we may answer ∞.
In the degenerate case of ∀yφ(y, y), we may also answer ∞ unless φ is the

crisp function for equality over D, in which case, we may simply discard φ(y, y)
from the sum.

So we may assume from now on that any occurrence of a permutation restric-
tion is of the form ∀y∃xφ(x, y). If there is one y0 such that |{x|φ(x, y0) = 0}| = 0
then we may answer ∞. Otherwise, let ζ(y) be the unique x such that φ(x, y) = 0.
The only Skolem function for x that yields feasibility is essentially unary and
depends only of y : σx(y) = ζ(y).

If there is a path y1, x1, x2, . . . , xn where y1 is universal and x1, x2, . . . , xn

are existential variables in the constraint graph then there are some permuta-
tions ζi on D such that the only Skolem functions for these existential vari-
ables that could possibly yield feasibility are of the form σx1(y) = ζ1(y1),
σx2(y) = ζ2(ζ1(y1)) . . . σxn

(y) = ζn(. . . ζ2(ζ1(y1)) . . .). If there is an edge from
xn to some universal variable y2 then the instance is necessarily unfeasible since
any but one value for y2 will yield an objective of ∞ for a given value of xn.

We can solve in parallel the part of the instance induced by each connected
component of the constraint graph, and we may assume that a connected com-
ponent of this graph contains at most one universal variable that is quantified
ahead of the existential variables of this connected component.

A connected component that does not contain any universal variable can be
solved efficiently by some simple propagation (see [17]).

If a universal variable y occurs only within the scope of unary constraints
then we simply assume that y takes the value yielding the worst cost.

More generally, for each connected component that contains one universal
variable y, we can check in parallel for all values d of y, the corresponding
cost My=d for the component (all other variables are now fixed). Let M be the
maximum combined cost among My=d. �
Remark 2. The tractable languages for the QCSP from [24] mentioned above
can be shown to exhibit collapsibility thanks to specific polymorphisms (see
examples 2 and 3 in [23]). While we shall proceed similarly for the valued lan-
guages of the next section with a suitable multimorphism, we do not yet know
of a multimorphism that witnesses directly “collapsibility” for the language of
Theorem 5.

5 Collapsibility in the Valued Settings

Following Chen [20], for an input of the QVCSP with m universal variables, we
restrict the universal opponent to play universal variables from a specific set
of tuples, and investigate the interpolation of unrestricted game from restricted
(small sized) ones in the presence of good multimorphisms.

As a concrete application, we will see the case of a language closed under
the multimorphism 2.g (2 times g) where g is a semi-lattice with unit 	. On

304 F. Madelaine and S. Secouard

an instance involving cost functions improved by this multimorphism, we may
interpolate a winning strategy from winning strategies for all instances induced
by replacing all but one universal variable by 	.

The necessary definitions and notations to discuss such an interpolation in
general can be a bit off-putting, and the keen reader may refer to the appendix.
Here, we will only eventually state our tractability result and give first a detailed
and concrete example to illustrate it.

Example 4. Consider the instance ∀y1∃x1∀y2∀y3∃x2 φ(y1, x1, y2, y3, x2), where
φ is the 5-ary Boolean cost function such that the cost of (0, 0, 0, 0, 0) is 51, that
of (0, 0, 0, 0, 1) and (0, 0, 0, 1, 0) is ∞, that of (0, 0, 0, 1, 1) is 21, etc. This instance
is depicted on Fig. 1. It can be checked that the cost function admits 2Max as a
multimorphism: that is, the sum of the costs of any two tuples dominates twice
the cost of their max taken component-wise. For example, when t1 = (0, 0, 1, 0, 1)
and t2 = (1, 0, 0, 1, 1); their max is t3 = (1, 0, 1, 1, 1); the costs are φ(t1) = 51,
φ(t2) = 13 and φ(t3) = 5; it is indeed the case that 10 = 2 × 5 ≤ 51 + 13 = 64.

We replace all but one universal variable by 0 (the value of the unit 	 for the
specific case of Max) and derive three restricted games, which amounts to solve
the instances that are depicted on Fig. 2. Of course, each restricted game is a
relaxation of the original instance. Thus, if one of them is not feasible then the
original instance is also not feasible. The same argument applies to the objective
reached by feasible instances.

The important point is that the converse holds since we can interpolate a
strategy for the original instance from three strategies for the restricted games,
in a way that can only improve them.

In what follows, we will assume that we have at our disposal the three strate-
gies that are optimal for each restricted game.

Imagine that the first universal quantifier takes value 1, that is y1 = 1. We
will play also y1 = 1 in the first restricted game and y1 = 0 in the other two
restricted games (we may not do otherwise). Observe that the max of the triple
(1, 0, 0) is 1. Next, we look up where the subsequent existential variable x1 is
played in each restricted game. For example, we must have x1 = 1 in the first
restricted game, and x1 = 0 in the two other games (otherwise, we would end
up being necessarily unfeasible). We apply max to this triple (1, 0, 0) and play
x1 = 1 in the original game. We proceed in this fashion going back and forth
taking antecedent and image under max. For example, y2 = 0 brings us back to
y2 being played on (0, 0, 0) in the three games, and y3 = 1 brings us back to y3
being played on (0, 0, 1) in the three games. In these three games x2 must be
played on 1,0, and 1, respectively. We play x2 on their maximum which is 1. The
“branches” of play in the four games alluded to above are highlighted on Figs. 1
and 2.

The fact that Max is surjective means that we can always go back. The fact
that 2Max is a multimorphism means (with a little bit of work) that the strategy
we have interpolated from those for the restricted games can only improve them.

In the previous example, we have explained how a general strategy can be
interpolated from a set of strategies applying to restricted games, where we

Quantified Valued CSP 305

Fig. 1. An instance of the QVCSP

Fig. 2. Restricted Games: from left to right, we keep the first, second and third uni-
versal quantifier. The other universal variables are assumed to take value 0 (we write
a • to denote that they are pinned to a constant).

are left with a single universal quantifier. Each such strategy can be computed
by an adaptation of Generalized Arc Consistency that runs also in polynomial
time, and there are linearly many such strategies to compute. Thus, we have a
tractable QVCSP in this case.

Theorem 6. Let Γ be a valued constraint language. Let g be a semi-lattice with
unit 	. If Γ admits 2 times g (2.g) as a multimorphism the QVCSP(Γ) is
tractable.

6 Proof of Theorem4

We have proved in Sect. 4 that any valued Boolean constraint language that
admits one of the good multimorphism from the statement is tractable: for

306 F. Madelaine and S. Secouard

3Mjrty and 3Mnrty by Proposition 2, for 2Mjrty + Mnrty by Theorem5, for
2Max and 2Min by Theorem6. So, we are left with the hardness part of the
statement.

If a constraint language does not admit any of these multimorphisms, and
is essentially crisp it must be hard by Theorem 2. If a constraint language does
not admit any of the multimorphisms of Theorem3, and is not essentially crisp,
then by Lemma 7.10 in [17] Γ ∗ contains ρneq which has a Pspace hard QVCSP
as seen in Example 2.

The next lemma concludes the proof, as we show that even if a language must
admit all multimorphisms from Theorem 3 that are not in Theorem4, then it
can simulate a cut function.

A language Γ ′ that admits less multimorphisms than Γ can express any finite
subset of Γ ∗. So any such Γ ′ would also simulate a cut function.

A cut function is a binary function from {0, 1}2 in Q ∪ {∞} of the following

form φcutβ
α
(x, y) =

{
α if x = y,
β otherwise where α, β ∈ Q ∪ {∞} with α < β < ∞.

The QVCSP of a cut function is Pspace-hard by Proposition 1, since ρeq can be
simulated by scaling and translating from any cut function.

Since we are in a quantified and valued setting, we will be able to use expres-
sivity, scaling and translating as for the VCSP but also universal quantifiers as
for the QCSP. We will call this simulation with some universal quantifiers in
what follows to stress that we go beyond the ∗ closure from the VCSP.

Lemma 1. Let Γ be a valued Boolean constraint language. If Γ admits Const1,
Const0 and Max + Min as multimorphism but no multimorphism from {3Mjrty,
3Mnrty, 2Mjrty+Mnrty, 2Max, 2Min} then Γ can simulate with some universal
quantifiers a cut function.

Consequently, the decision problem of the QVCSP of Γ is Pspace-complete.

The rest of this section is devoted to a proof of this Lemma.

Fact 1. If Γ admits Max+Min as a multimorphism then crisp(Γ) admits Mjrty
as a polymorphism.

Proof. crisp(Γ) admits both Max and Min as polymorphisms and the majority
can be defined as follows:

Mjrty(a, b, c) := Max[Max(Min(a, b),Min(a, c)),Min(b, c)].

Fact 2. If Γ does not admit 3Mjrty as a multimorphism and crisp(Γ) does admit
Mjrty as a polymorphism then Γ is not essentially crisp.

Proof. Let ρ be a cost function in Γ and u, v, w such that ρ(u), ρ(v), ρ(w) < ∞.
Since Mjrty is a polymorphism of crisp(Γ) then ρ(Mjrty(u, v, w)) < ∞. If ρ is
essentially crisp then 3ρ(Mjrty(u, v, w) = 3ρ(u) = ρ(u) + ρ(v) + ρ(w). If Γ was
essentially crisp then it would admit 3Mjrty as a multimorphism which would
contradict our assumption.

Quantified Valued CSP 307

Recall that ρ is finitely modular, whenever for all tuples s, t such that φ(s),
φ(t), φ(Max(s, t)), and φ(Min(s, t)) have finite costs, we have that φ(s)+φ(t) =
φ(Max(s, t)) + φ(Min(s, t)).

Fact 3. If Γ does not admit 2Mjrty + Mnrty as a multimorphism and crisp(Γ)
does admit Mjrty as a polymorphism then there exist a cost function in ρ that is
not finitely modular or crisp(ρ) does not admit Mnrty as a polymorphism.

Proof. Corollary 6.26 in [17] establishes that a cost function ρ does admit
2Mjrty + Mnrty as a multimorphism iff it is both finitely modular and crisp(ρ)
admits as polymorphisms both Mjrty and Mnrty.

Fact 4. If Γ is not essentially crisp, and it admits Const0 and Const1 as mul-
timorphisms, and crisp(Γ) admits Mjrty but does not admit Mnrty then Γ ∗

contains a cut function.

Before proving this, let us point out that this means that we are only left with
the case when there is a ρ that is not finitely modular, a case that we will settle
in the last Fact.

Proof. We follow the same argument as in case 3 of the proof of Theorem 6.27
from [17] and establish that Γ contains a binary cost function ρ such that for
exactly one (a, b) ∈ D2 there is ρ(a, b) = ∞ (other values being finite). Since Γ
admits Const0 and Const1 as multimorphisms, we know that ρ(0, 0) = ρ(1, 1) �
ρ(b, a) < ρ(a, b) = ∞. W.l.o.g. up to symmetry, we can suppose that a = 0 and
b = 1 and we have ρ(0, 0) = ρ(1, 1) � ρ(1, 0) < ρ(0, 1) = ∞.

We must ensure ρ(1, 0) > ρ(0, 0) for our next construction to work. If it is
not the case, then since Γ is not essentially crisp and has the multimorphisms
Const0 and Const1, there is a cost function ρm (of arity m) and a m-tuple u such
that ρm(0, . . . , 0) = ρm(1, . . . , 1) < ρm(u) < ∞. Let ρ2 be the binary function
obtained by ρ2(x1, x0) = ρm(xu[1], . . . , xu[m]). We do not know for sure the value
of ρ2(0, 1) but we know that ρ2(0, 0) = ρ2(1, 1) < ρ2(1, 0) = ρm(u) < ∞.

Let ρ3(x, y) := ρ(x, y) + ρ2(x, y). By construction, ρ3(0, 0) = ρ3(1, 1) <
ρ3(1, 0) < ρ3(0, 1) = ∞.

The last function which is the desired cut function is created by expressibility
as follows:

ρ4(x, y) := Min
z,t

[ρ3(x, t) + ρ3(z, t) + ρ3(z, y) + ρ3(y, z) − 4ρ3(0, 0)]. �

The next step will rely heavily on the technique of compression from [17], which
we shall adapt to our purpose. Given an m-ary cost function ρm and two m-
tuples u and v, let the compression ρ4 of ρm w.r.t. u and v is defined as:
ρ4(x00, x01, x10, x11) = ρ(xu[1]v[1], xu[2],v[2], . . . , xu[m]v[m]). One can verify that
ρ4(0, 0, 0, 1) = ρm(Min(u, v)), ρ4(0, 0, 1, 1) = ρm(u), ρ4(0, 1, 0, 1) = ρm(v) and
ρ4(0, 1, 1, 1) = ρm(Max(u, v)).

Next, we want to ensure that the first and last coordinate of ρ4 must take
values 0 and 1 in order to simulate the binary cost function ρ4(0, x1, x2, 1).

308 F. Madelaine and S. Secouard

Fact 5. If Γ is not essentially crisp and admits Const1 and Const0 as multimor-
phisms, then Γ ∗ contains a cut function or a small quantified instance with 2 free
variables x1 and x2 and two universal variables built from cost functions from Γ
together with ρ4 allows to simulates the binary cost function ρ4(0, x1, x2, 1) for
any m-ary cost function ρm from Γ .

Proof. Let ρ2(0, 0) = ρ2(1, 1) < ρ2(1, 0) = ρm(u) < ∞ be defined as in the proof
of the previous fact (we only need the assumptions that Γ is not essentially crisp
and admits Const1 and Const0 as multimorphisms). If ρ2(0, 1) is also finite then
ρ2(x, y) + ρ2(y, x) expresses a cut function and we are done.

Otherwise, ∃x1∃x2∀y1∀y2 ρ2(x1, y1) + ρ2(y2, x2) − 2ρ2(1, 0) forces x1 = 0
and x2 = 1 (because this is the only way to avoid an infinite cost).

So for any cost function ρm from Γ and its compression ρ4, if we insert at
the beginning of an instance ∃x1∃x2∀y1∀y2 ρ2(x1, y1) + ρ2(y2, x2) − 2ρ2(0, 1),
all subsequent constraint of the form ρ4(x1, x, y, x2) plays the same role as
ρ4(0, x1, x2, 1).

Fact 6. If there exists a cost function which is not finitely modular in Γ , which
does admit Min + Max as a multimorphism but does not admit either 2Max or
2Min as a multimorphism then Γ can simulate with some universal variables a
cut function.

Proof. Since 2Max is not a multimorphism there is a function ρNMax and u, v
such that 2ρNMax(Max(u, v)) > ρNMax(u)+ρNMax(v). Both ρNMax(Max(u, v)) <
∞ and ρNMax(Min(u, v)) < ∞ because Min + Max is a multimorphism and so
both Min and Max are polymorphisms of crisp(Γ).

By the binarisation method of the compression from the previous fact, either
we have a cut function and we are done or we can simulate the binary function
ρ2NMax and let ρM (x, y) = ρ2NMax(x, y) + ρ2NMax(y, x) − 2ρ2NMax(0, 0).

We have ρM :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ A + ε1 with 0 < ε1 � A
1, 0 �→ A with A > 0
0, 1 �→ A
0, 0 �→ 0

0 < ε1 because ρNMAX does not have the multimorphism 2Max and ε1 � A
because ρNMAX has the multimorphism Min + Max.

There is a function ρNMod which is not finitely modular and admits Min +
Max as a multimorphism. So there are u, v such that ρNMod(Max(u, v)) +
ρNMod(Min(u, v)) < ρNMod(u)+ρNMod(v) < ∞. By the binarisation method from
the previous fact, either we have a cut function and we are done or we can sim-
ulate ρ2NMod and define ρs(x, y) := ρ2NMod(x, y)+ρ2NMod(y, x)−2ρ2NMod(0, 0).

By construction, we have, ρs :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ b0 < 2b
1, 0 �→ b
0, 1 �→ b
0, 0 �→ 0

.

Quantified Valued CSP 309

Let α be a positive integer such that α > b−b0
ε1

and ϕM := αρM + ρs

– ϕM (1, 1) = αA + αε1 + b0 > αA + b − b0 + b0 = ϕM (1, 0)
– ϕM (1, 1) = (A + ε1)α + b0 < 2Aα + 2b = 2(αA + b) = 2ϕM (1, 0)
– ϕM (1, 0) = ϕM (0, 1) = b + αA � b + αε1 > b + b − b0 > 0
– ϕM (0, 0) = 0

We have ϕM :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ M + εM with 0 < εM < M
1, 0 �→ M with M > 0
0, 1 �→ M
0, 0 �→ 0

A similar proof with 2Min instead of 2Max can be used to construct the

binary function ρm such that, ϕm :

⎧
⎪⎪⎨

⎪⎪⎩

1, 1 �→ 0
1, 0 �→ m with m > 0
0, 1 �→ m
0, 0 �→ m + εm with 0 < εm < m

We define the function ρ(x, y) = (m + εm)ρM + (M + εM)ρm and we have:

– ρ(1, 1) = ρ(0, 0) = mM + mεM + Mεm + εM εm

– ρ(1, 0) = ρ(0, 1) = mM + mεM + Mεm + mM
– εM εm < mM

So ρ is a cut function as required. �

7 Conclusion

We have studied the quantified valued constraint satisfaction problem, also
known as the weighted CSPs with min-max quantifiers, and established pre-
liminary results regarding its complexity when restricted by a valued language.

Without introducing any new Galois connection and using only the tools
for the VCSP, and only adapting collapsibility from the QCSP, we get several
tractability and intractability results, which allows us to derive in particular a
dichotomy for the Boolean case. The proof is somewhat complex, and we plan
to introduce the correct Galois connection for the QVCSP in the hope that it
will allow to streamline this proof, and extend this result to larger domains.

Another line of enquiry would be to better understand collapsibility in the
context of valued constraints. Our current attempt does not seem to provide us
with transitivity as it does in the non valued case.

Finally, let us note that any attempt at classifying the QVCSP for 3 or more
elements might hit the same hurdle as in the case of the QCSP. We can easily
build problems that fall in NPO and are NP-hard. For example consider

ρ :

⎧
⎨

⎩

{0, 1, 2} → Q ∪ {∞}
(x, y) �→

{
ρneq(x, y) if (x, y) ∈ {0, 1}
∞ otherwise

310 F. Madelaine and S. Secouard

Every instance with a universal quantifier y can be trivially answered as the
objective is ∞ as soon as y is 2. We are left with existential instances which
likewise must play on {0, 1}. Consequently, QVCSP has the same complexity as
the VCSP on ρneq, namely it is NP-hard and in NPO.

Acknowledgments. The authors are thankful to the three anonymous reviewers for
their valuable comments which have helped us improve the manuscript.

References

1. Lee, J.H., Mak, T.W.K., Yip, J.: Weighted constraint satisfaction problems with
min-max quantifiers. In: IEEE 23rd International Conference on Tools with Arti-
ficial Intelligence, ICTAI 2011, Boca Raton, FL, USA, 7–9 November 2011, pp.
769–776. IEEE Computer Society (2011). https://doi.org/10.1109/ICTAI.2011.121

2. Beyond np. http://beyondnp.org/. Accessed 21 June 2017
3. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: Umans [26], pp.

319–330. https://doi.org/10.1109/FOCS.2017.37
4. Zhuk, D.: A proof of CSP dichotomy conjecture. In: Umans [26], pp. 331–342.

https://doi.org/10.1109/FOCS.2017.38
5. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP

and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998). https://doi.org/10.1137/S0097539794266766

6. Börner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity
of constraint satisfaction games and QCSP. Inf. Comput. 207(9), 923–944 (2009)

7. Martin, B.: QCSP on partially reflexive forests. In: Lee, J. (ed.) CP 2011. LNCS,
vol. 6876, pp. 546–560. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23786-7 42

8. Madelaine, F., Martin, B.: QCSP on partially reflexive cycles – the wavy line of
tractability. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913,
pp. 322–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38536-0 28

9. Dapic, P., Markovic, P., Martin, B.: Quantified constraint satisfaction problem on
semicomplete digraphs. ACM Trans. Comput. Log. 18(1), 2:1–2:47 (2017). https://
doi.org/10.1145/3007899

10. Thapper, J., Zivny, S.: The complexity of finite-valued CSPs. J. ACM 63(4), 37:1–
37:33 (2016). https://doi.org/10.1145/2974019

11. Kolmogorov, V., Krokhin, A.A., Rolinek, M.: The complexity of general-valued
CSPs. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 1246–
1258. IEEE Computer Society (2015). https://doi.org/10.1109/FOCS.2015.80

12. Martin, B.: Quantified constraints in twenty seventeen. In: Krokhin and Zivny [25],
pp. 327–346. https://doi.org/10.4230/DFU.Vol7.15301.12

13. Krokhin, A.A., Zivny, S.: The complexity of valued CSPs. In: The Constraint
Satisfaction Problem: Complexity and Approximability [25], pp. 233–266. https://
doi.org/10.4230/DFU.Vol7.15301.9

14. Schaefer, T.: The complexity of satisfiability problems. In: STOC (1978)
15. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Con-

straint Satisfaction Problems. Society for Industrial and Applied Mathematics,
Philadelphia (2001)

https://doi.org/10.1109/ICTAI.2011.121
http://beyondnp.org/
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1007/978-3-642-23786-7_42
https://doi.org/10.1007/978-3-642-23786-7_42
https://doi.org/10.1007/978-3-642-38536-0_28
https://doi.org/10.1007/978-3-642-38536-0_28
https://doi.org/10.1145/3007899
https://doi.org/10.1145/3007899
https://doi.org/10.1145/2974019
https://doi.org/10.1109/FOCS.2015.80
https://doi.org/10.4230/DFU.Vol7.15301.12
https://doi.org/10.4230/DFU.Vol7.15301.9
https://doi.org/10.4230/DFU.Vol7.15301.9

Quantified Valued CSP 311

16. Dalmau, V.: Some dichotomy theorems on constant-free quantified boolean formu-
las. Technical report LSI-97-43-R., Departament LSI, Universitat Pompeu Fabra
(1997)

17. Cohen, D.A., Cooper, M.C., Jeavons, P., Krokhin, A.A.: The complexity of soft
constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006). https://doi.org/10.
1016/j.artint.2006.04.002

18. Benedetti, M., Lallouet, A., Vautard, J.: Modeling adversary scheduling with
qcsp+. In: Wainwright, R.L., Haddad, H. (eds.) Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, 16–20 March
2008, pp. 151–155. ACM (2008). https://doi.org/10.1145/1363686.1363727

19. Chen, H.: The complexity of quantified constraint satisfaction: collapsibility, sink
algebras, and the three-element case. SIAM J. Comput. 37(5), 1674–1701 (2008)

20. Chen, H.: Quantified constraint satisfaction and the polynomially generated pow-
ers property. Algebra Universalis 65(3), 213–241 (2011). https://doi.org/10.1007/
s00012-011-0125-4. an extended abstract appeared in ICALP B 2008

21. Carvalho, C., Madelaine, F.R., Martin, B.: From complexity to algebra and back:
digraph classes, collapsibility, and the PGP. In: 30th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp.
462–474. IEEE Computer Society (2015). https://doi.org/10.1109/LICS.2015.50

22. Carvalho, C., Martin, B., Zhuk, D.: The complexity of quantified constraints. CoRR
abs/1701.04086 (2017). http://arxiv.org/abs/1701.04086

23. Chen, H.: Meditations on quantified constraint satisfaction. CoRR abs/1201.6306
(2012)

24. Martin, B., Madelaine, F.: Towards a trichotomy for quantified H -Coloring. In:
Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988,
pp. 342–352. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342 36

25. Krokhin, A.A., Zivny, S. (eds.): The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). http://www.dagstuhl.de/dagpub/978-3-95977-
003-3

26. Umans, C. (ed.): 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017. IEEE
Computer Society (2017). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=8100284

https://doi.org/10.1016/j.artint.2006.04.002
https://doi.org/10.1016/j.artint.2006.04.002
https://doi.org/10.1145/1363686.1363727
https://doi.org/10.1007/s00012-011-0125-4
https://doi.org/10.1007/s00012-011-0125-4
https://doi.org/10.1109/LICS.2015.50
http://arxiv.org/abs/1701.04086
https://doi.org/10.1007/11780342_36
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8100284
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8100284

MLIC: A MaxSAT-Based Framework
for Learning Interpretable

Classification Rules

Dmitry Malioutov1 and Kuldeep S. Meel2(B)

1 T. J. Watson IBM Research Center, Yorktown Heights, USA
dmal@alum.mit.edu

2 School of Computing, National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

Abstract. The wide adoption of machine learning approaches in the
industry, government, medicine and science has renewed the interest in
interpretable machine learning: many decisions are too important to be
delegated to black-box techniques such as deep neural networks or kernel
SVMs. Historically, problems of learning interpretable classifiers, includ-
ing classification rules or decision trees, have been approached by greedy
heuristic methods as essentially all the exact optimization formulations
are NP-hard. Our primary contribution is a MaxSAT-based framework,
called MLIC, which allows principled search for interpretable classi-
fication rules expressible in propositional logic. Our approach benefits
from the revolutionary advances in the constraint satisfaction commu-
nity to solve large-scale instances of such problems. In experimental eval-
uations over a collection of benchmarks arising from practical scenarios
we demonstrate its effectiveness: we show that the formulation can solve
large classification problems with tens or hundreds of thousands of exam-
ples and thousands of features, and to provide a tunable balance of accu-
racy vs. interpretability. Furthermore, we show that in many problems
interpretability can be obtained at only a minor cost in accuracy.

The primary objective of the paper is to show that recent advances
in the MaxSAT literature make it realistic to find optimal (or very high
quality near-optimal) solutions to large-scale classification problems. We
also hope to encourage researchers in both interpretable classification
and in the constraint programming community to take it further and
develop richer formulations, and bespoke solvers attuned to the problem
of interpretable ML.

1 Introduction

The last decade has witnessed an unprecedented adoption of machine learning
techniques to make sense of available data and make predictions to support deci-
sion making for a wide variety of applications ranging from health-care analyt-
ics to customer churn predictions, movie recommendations and macro-economic

The original version of this chapter was revised: There was a typing error in the family
name of the first author. This has now been corrected. The correction to this chapter
is available at https://doi.org/10.1007/978-3-319-98334-9 49

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 312–327, 2018.
https://doi.org/10.1007/978-3-319-98334-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_21&domain=pdf
https://doi.org/10.1007/978-3-319-98334-9_49

MLIC: A MaxSAT-Based Framework 313

policy. The focus in the machine learning literature has been on increasingly
sophisticated systems with the paramount goal of improving the accuracy of
their predictions at the cost of making such systems essentially black-box. While
in certain tasks such as ad predictions, accuracy is the main objective, in other
domains, e.g., in legal, medical, and government, it is essential that the human
decision makers who may not have been trained in machine learning can interpret
and validate the predictions [17,28].

The most popular interpretable techniques that tend to be adopted and
trusted by decision makers include classification rules, decision trees, and deci-
sion lists [8,10,24,25]. In particular, decision rules with a small number of
Boolean clauses tend to be the most interpretable. Such models can be used
both to learn interpretable models from the start, and also as proxies that pro-
vide post-hoc explanations to pre-trained black-box models [1,12].

On the theoretical front, the problem of rule learning was shown to be com-
putationally intractable [27]. Consequently, the earliest practical efforts such as
decision list and decision tree approaches relied on a combination of heuristically
chosen optimization objectives and greedy algorithmic techniques, and the size
of the rule was controlled by either early stopping or ad-hoc rule pruning. Only
recently there have been some formulations that attempt to balance the accu-
racy and the size of the rule in a principled optimization objective either through
combinatorial optimization, linear programming (LP) relaxations, submodular
optimization, or Bayesian methods [4,7,21,22,29] as we review in Sect. 5.

Motivated by the significant progress in the development of combinato-
rial solvers (in particular, MaxSAT), we ask: can we design a combinatorial
framework to efficiently construct interpretable classification rules that takes
advantage of these recent advances? The primary contribution of this paper is to
present a combinatorial framework that enables a precise control of accuracy vs.
interpretability, and to verify that the computational advances in the MaxSAT
community can make it practical to solve large-scale classification problems.

In particular, this paper makes following contributions:

1. A MaxSAT-based framework, MLIC, that provably trades off accuracy vs.
interpretability of the rules

2. A prototype implementation of MLIC based on MaxSAT that is capable of
finding optimal (or high-quality near-optimal) classification rules from mod-
ern large-scale data-sets

3. We show that in many classification problems interpretability can be achieved
at only a minor loss of accuracy, and furthermore, MLIC, which specifically
looks for interpretable rules, can learn from much fewer samples than black-
box ML techniques.

Furthermore, we hope to share our excitement with applications of constraint
programming/MaxSAT in Machine Learning, and to encourage researchers in
both interpretable classification and in the CSP/SAT communities to consider
this topic further: both in developing new SAT-based formulations for inter-
pretable ML, and in designing bespoke solvers attuned to the problem of inter-
pretable ML.

314 D. Malioutov and K. S. Meel

The rest of the paper is organized as follows: We discuss notations and pre-
liminaries in Sect. 2. We then present MLIC, which is the primary contribution
of this paper, in Sect. 3 and follow up with experimental setup and results over
a large set of benchmarks in Sect. 4. We then discuss related work in Sect. 5 and
finally conclude in Sect. 7.

2 Preliminaries

We use capital boldface letters such as X to denote matrices while lower boldface
letters y are reserved for vectors/sets. For a matrix X, Xi represents i-th row of
X while for a vector/set y, yi represents i-th element of y.

Let F be a Boolean formula and b = {b1, b2, · · · bn} be the set of variables
appearing in F . A literal is a variable (bi) or its complement(¬bi). A satisfying
assignment or a witness of F is an assignment of variables in b that makes F
evaluate to true. If σ is an assignment of variables and bi ∈ b, we use σ(bi) to
denote the value assigned to bi in σ. F is in Conjunctive Normal Form (CNF)
if F := C1 ∧ C2 · · · Cm, where each clause Ci is represented as disjunction of
literals. We use |Ci| to denote the number of literals in Ci. For two vectors u
and v over propositional variable/constants, we define u∨v =

∨
i(ui ∧vi), where

ui and vi denote variables/constants at i-th index of u and v respectively. In
this context, note that the operation ∧ between a variable and a constant follows
standard interpretation, i.e. 0 ∧ b = 0 and 1 ∧ b = b.

We consider standard binary classification, where we are given a collection
of training samples {Xi, yi} where each vector Xi ∈ X contains valuation of the
features x = {x1, x2, · · · xm} for sample i, and yi ∈ {0, 1} is the binary label
for sample i. A classifier R is a mapping that takes in a feature vector x and
return a class y, i.e. y = R(x). The goal is not only to design R to approximate
our training set, but also to generalize to unseen samples arising from the same
distribution. In this work, we restrict x and y to be Boolean1 and focus on
classifiers that can be expressed compactly in Conjunctive Normal Form (CNF).
We use Ci to denote the ith clause of R. Furthermore, we use |R| to denote the
sum of the counts of literals in all the clauses, i.e. |R| = Σi|Ci|.

In this work, we focus on weighted variant of CNF wherein a weight function
is defined over clauses. For a clause Ci and weight function W (·), we use W (Ci) to
denote the weight of clause Ci. We say that a clause Ci is hard if W (Ci) = −∞,
otherwise Ci is called as soft clause. To avoid notational clutter, we overload
W (·) to denote the weight of an assignment or clause, depending on the context.
We define weight of an assignment σ as the sum of weight of clauses that σ does
not satisfy. Formally, W (σ) = Σi|σ �|=Ci

W (Ci).
Given F and weight function W (·), the problem of MaxSAT is to find an

assignment σ∗ that has the maximum weight, i.e. σ∗ = MaxSAT(F,W) if ∀σ �=
σ∗,W (σ∗) ≥ W (σ). Our formulation will have negative clause weights, hence
MaxSAT corresponds to satisfying as many clauses as possible, and picking the

1 We discuss in Sect. 3 that such a restriction can be achieved without loss of generality.

MLIC: A MaxSAT-Based Framework 315

weakest clauses among the unsatisfied ones. Note that the above formulation
is different from the typical definition of MaxSAT but the difference is only
syntactic. Borrowing terminology of community focused on developing MaxSAT
solvers, we are solving a partial weighted MaxSAT instance wherein we mark all
the clauses with −∞ weight as hard and negate weight of all the other clauses
and ask for a solution that optimizes the partial weighted MaxSAT formula. The
knowledge of inner working of MaxSAT solvers and encoding of our representation
into weighted MaxSAT is not required for this paper and we defer the details to
release of source code post-publication.

3 MLIC: MaxSAT-Based Learning of Interpretable
Classifiers

We now discuss the primary technical contribution of this paper, MLIC:
MaxSAT-based Learning of Interpretable Classifiers. We first describe a metric
for interpretability of CNF rules. Since our formulation employs binary features,
we discuss how non-binary features such as categorical and continuous features
can be represented as binary features. We then move on to formulate the prob-
lem of learning interpretable classification rules as a MaxSAT query and provide
a proof of its theoretical soundness regarding controlling sparsity of the rules.
As discussed in Sect. 5, prior work does not provide a sound procedure for con-
trolling sparsity and accuracy. We then discuss the representational power of our
CNF framework – in particular, we demonstrate that the proposed framework
generalizes to handle complex objective function and rules in forms other than
CNF.

3.1 Balancing Accuracy and Intrepretability

While in general interpretability may be hard to define precisely, in the context
of decision rules, an effective proxy is merely the count of clauses or literals
used in the rule. Rules involving few clauses with few literals are natural for
humans to evaluate and understand, while complex rules involving hundreds of
clauses will not be interpretable even if the individual clauses are. In addition to
interpretability, such sparsity also controls model complexity and gives a handle
of the generalization error.2

First, suppose that there exists a rule R that perfectly classifies all the exam-
ples, i.e. ∀i, yi = R(Xi). Among all possible functions that satisfy this we would
like to find the most interpretable (sparse) one:

min
R

|R| such that R(Xi) = yi, ∀i

Since most ML datasets do not allow perfect classification, we introduce a
penalty on classification errors. We balance the two terms by a parameter λ,
2 The framework proposed in this paper allows generalization to other forms of rules,

as we discuss in Sect. 3.6.

316 D. Malioutov and K. S. Meel

where large λ gives more accurate but more complex rules, and smaller λ gives
smaller rules at the cost of reduced accuracy. Let ER be the set of examples on
which our classifier R makes an error, then our objective is3:

min
R

|R| + λ|ER| such that R(Xi) = yi, ∀i /∈ ER (1)

3.2 Discretization of Features

In our MaxSAT-based formulation, we focus on learning rules based on Boolean
variables. We do also allow categorical and continuous features for our classifier,
which are pre-processed before being presented to the MaxSAT-formulation. To
handle categorical features one may use the common ‘one-hot’ encoding, where
a Boolean vector variable is introduced with the cardinality equal to the number
of categories. For example a categorical feature with values ‘red’, ‘green’, ‘blue’
would get converted to three binary variables, which take values 100, 010, and
001 for the three categorical values.

For continuous features, we introduce discretization, by comparing feature
values to a collection of thresholds. The thresholds may be chosen for example
based on quantiles of their distribution, or alternatively, on uniform partition of
the range of feature values. Specifically, for a continuous feature xc we consider
a number of thresholds {τk} and define two separate Boolean features I[xc ≥ τk]
and I[xc < τk] for each τk. The number of thresholds may vary by feature. Thus,
each continuous feature is represented using a collection of 2q Boolean features,
where q is the number of thresholds.

In principle, one could use all the values occurring in the data as thresholds,
and this would be equivalent to the original continuous features. In practice,
however, such granularity is typically not necessary, and a handful of thresholds
could be used, e.g., age-groups for each 5 years to discretize a continuous age
variable. This typically leads to only a very minor (if any) loss in accuracy, and in
fact improves the presentations and understanding of the rules to human users.
In our experiments, we used 10 thresholds based on the quantiles of the feature
distribution (10-th, 20-th, ... 100-th percentile), unless the number of unique
values of the feature was less than 10, in which case we kept all of them.

We note that we could easily define arbitrary other Boolean functions of con-
tinuous or categorical variables within our framework. For example, categorical
variables with many possible values (e.g. states or countries) may be grouped
into more interpretable coarser units (regions or continents). Such groupings
are application specific and wpuld typically require relevant domain knowledge.
They could perhaps be learned from data, but this is outside the scope of the
current paper.

3 Cost-sensitive classification is defined analogously by allowing a separate parameter
for false positives and false negatives.

MLIC: A MaxSAT-Based Framework 317

3.3 Transformation to Max-SAT Query

We now describe our Max-SAT formulation for learning interpretable rules.
MLIC takes in four inputs: (i) a (0,1)-matrix X of dimension n × m describing
values of all m features for n samples with Xi corresponding to feature vector
x = {x1, x2, · · · xm} for sample i, (ii) (0,1)-vector y containing class labels yi

for sample i, (iii) k, the desired number of clauses in CNF rule, (iv) the regu-
larization parameter λ. Consequently, MLIC constructs a MaxSAT query and
invokes a MaxSAT solver to compute the underlying rule R as we now describe.

The key idea of MLIC is to define a MaxSAT query over k×m propositional
variables, denoted by {b11, b

2
1, · · · bm

1 · · · bm
k }, such that every truth assignment σ

defines a k-clause CNF rule R, where feature xj appears in clause Ri if σ(bj
i) = 1.

Corresponding to every sample i, we introduce a noise variable ηi that is
employed to distinguish whether the labeling for sample i should be considered
as noise or not. Let Bi = {bj

i | j ∈ [m]}.
The Max-SAT query constructed by MLIC consists of the following three

sets of constraints:

1. Ni := (¬ηi); W (Ni) = −λ

2. V j
i := (¬bj

i); W
(
V j

i

)
= −1

3. Di := (¬ηi → (yi ↔ ∧k
l=1(Xi ∨ Bl)));W (Di) = −∞

Please refer to Sect. 2 for the interpretation of (Xi ∨ Bj). Finally, the set of
constraints Qk constructed by MLIC is defined as follows:

Qk :=
n∧

i=1

Ni ∧
i=k,j=m∧

i=1,j=1

V j
i ∧

n∧

i=1

Di (2)

Note that the elements of Xi and yi are not variables but constants whose
values (0 or 1) are provided as inputs. Therefore, the set of variables for Qk

is {η1, η2, · · · , ηn, b11, b
2
1, · · · bm

1 · · · bm
k }. We now explain the intuition behind the

design of Qk.
We assign a weight of −λ to every Ni as we would like to satisfy as many Ni,

i.e. falsify as many ηi as possible. Similarly, we assign a weight of −1 to every
clause V j

i as we are, again, interested in sparse solutions (i.e., ideally, we would
prefer as many V j

i to be satisfied as possible). Every clause Di can be read as
follows: if ηi is assigned to false, i.e. sample i is not considered as noise, then
yi = R. As noted in Sect. 2, equivalent representation of the W (·), as described
above, for MaxSAT solvers involves usage of hard clauses.

Next, we extract R from the solution of Qk as follows.

Construction 1. Let σ∗ = MaxSAT(Qk,W), then xj ∈ Ri iff σ∗(bj
i) = 1.

Before proceeding further, it is important to discuss CNF encodings for the
above sets of constraints. The constraints arising from Ni and Vi are unit clauses
and do not require further processing. Furthermore, note that yi is already
known and is a constant. Therefore, when yi is 1, the constraint Di can be

318 D. Malioutov and K. S. Meel

directly encoded as CNF by using equivalence of (a → b) ≡ (¬a ∨ b). Finally,
when yi is 0, we use Tseitin encoding wherein we introduce an auxiliary variable
zj
i corresponding to each clause (Xi ∨ Bj). Formally, we replace Di := (¬ηi →

(
∨k

j=1 ¬(Xi∨Bj))) with
∧k

j=0 Dj
i where D0

i := (¬ηi → ∨
j zj

i)), and Dj
i := (zj

i →
¬(Xi ∨Bj). Furthermore, W

(
Dj

i

)
= −∞. The following lemma establishes the

theoretical soundness of parameter λ.

Lemma 1. For all λ2 > λ1 > 0, if R1 ← MLIC(X,y, k, λ1) and R2 ←
MLIC(X,y, k, λ2), then |R1| ≤ |R2| and ER1 ≥ ER2 .

Proof. First, note that construction of Qk depends only on X and y. Further-
more, the parameter λ influences only the associated weight function. We denote
weight functions corresponding to λ1 and λ2 as Wλ1 and Wλ2 respectively. Fur-
thermore, let σ1 = MaxSAT(Qk,Wλ1) and σ2 = MaxSAT(Qk,Wλ1). If σ1 = σ2,
the lemma trivially holds. We now complete proof by contradiction argument
for the case when σ1 �= σ2.

Let |R1| > |R2|. As σ1 �= σ2, we have Wλ2(σ1) ≤ Wλ2(σ2). Since Wλ(σ) =
|R| + λER, where R is extracted from σ as stated above. Therefore, we have
λ2(ER2 − ER1) ≥ |R1| − |R2|. But we also have Wλ1(σ1) ≤ Wλ1(σ2), which
implies that λ1(ER2 −ER1) ≤ |R1|− |R2|. Since λ1 > λ2, we have contradiction.
Therefore, it must be the case that |R1| ≤ |R2|.

3.4 Illustrate Example

We illustrate our encoding with the help of a toy example. Let n = 2,m = 3,

k = 2 and X =
[
1 0 1
0 1 1

]

and y =
[
0
1

]

. Then we have following clauses:

N1 := (¬η1); N2 := (¬η2);

V 1
1 = (¬b11); V 2

1 = (¬b21); V 3
1 = (¬b31);

V 1
2 = (¬b12); V 2

2 = (¬b22); V 3
2 = (¬b32);

D1 := (¬η1 → (¬(b11 ∨ b31) ∨ ¬(b12 ∨ b32));

D2 := (¬η2 → ((b21 ∨ b31) ∧ (b22 ∨ b32))

3.5 Beyond CNF Rules

While CNF formulas are general enough to express every Boolean formula, the
length of representation may not be polynomial size. Therefore, one might won-
der if we can extend MLIC to learn rules in other canonical forms as well. In
fact, early CSP based approaches to rule learning focused on rules in DNF form.
We now show that with a minor change, we are able to learn rules expressible
in DNF. Suppose that we are interested in learning a rule S that is express-
ible in DNF, such that y = S(x), where S is a DNF formula. We note that

MLIC: A MaxSAT-Based Framework 319

(y = S(x)) ↔ ¬(y = ¬S(x)). And if S is a DNF formula, then ¬S is a CNF
formula. Therefore, to learn rule S, we simply call MLIC with ¬y as input and
negate the learned rule.

3.6 Complex Objective Functions

We now discuss how MLIC can be easily extended to handle complex objective
functions. The objective function for MLIC as defined in Eq. 1 treats all features
equally. In some cases, the user might prefer rules that contain certain features.
Such an extension is fairly easy to achieve as we need only to change the weight
function corresponding to clauses V j

i . Furthermore, in certain cases, one might
want to minimize the total number of different features across different clauses
rather than minimize the total number of terms. Such an extension is fairly easy
to handle as we can simply replace

∧k
j=1 V j

i with V̂i where V̂i = (
∨k

j=1 ¬bj
i). It

is worth noting that the proposed modifications impact only the MaxSAT query
and does not require any modifications to the underlying MaxSAT solver. We
believe that such a separation is a key strength of MLIC as it separates modeling
and solving completely.

4 Evaluation

To evaluate the performance of MLIC, we implemented a prototype implemen-
tation in Python that employs MaxHS [13] to handle MaxSAT instances. We
also experimented with LMHS [3], another state of the art MaxSAT solver and
MaxHS outperformed LMHS for our benchmarks4. We conducted an extensive
set of experiments on diverse publicly available benchmarks, seeking to answer
the following questions5:

1. Do advancements in MaxSAT solving enable MLIC to be run with datasets
involving tens of thousands of variables with thousands of binary features?

2. How does the accuracy of MLIC compare to that of state of the art but
typically non-interpretable classifiers?

3. How does the accuracy of MLIC vary with the size of training set?
4. How does the accuracy of MLIC vary with λ?
5. How does the size of learnt rules of MLIC vary with λ?

In summary, our experiments demonstrate that MLIC can handle datasets
involving tens of thousands of variables with thousands of binary features. Fur-
thermore, MLIC can generate rules that are not only interpretable but with
accuracy comparable to that of other competitive classifiers, which often pro-
duce hard to interpret rules/models. We demonstrate that MLIC is able to
achieve sufficiently high accuracy with very few samples.
4 A detailed evaluation among different MaxSAT solvers is beyond the scope of this

work and left for future work.
5 The source code of MLIC and benchmarks can be viewed at https://github.com/

meelgroup/mlic.

https://github.com/meelgroup/mlic
https://github.com/meelgroup/mlic

320 D. Malioutov and K. S. Meel

Table 1. Comparison of classification accuracy with 10-fold cross validation for dif-
ferent classifiers. For every cell in the last five columns, the top value represents the
accuracy, while the value sorrounded by parenthesis represent average training time.

Dataset Size # Features RIPPER Log Reg NN RF SVC MLIC
Toms hardware 28170 830 0.968 0.976 0.977 0.976 Timeout 0.969

(92.8) (0.2) (3.4) (64.9) (2000)

Twitter 49990 1050 0.938 0.963 0.965 0.962 0.962 0.958

(187.3) (0.2) (6.8) (250.9) (1010.0) (2000)

Adult-data 32560 262 0.852 0.801 0.866 0.844 Timeout 0.755

(0.5) (0.3) (3.0) (41.8) (2000)

Credit-card 30000 334 0.811 0.781 0.822 0.82 Timeout 0.82

(0.7) (0.1) (3.9) (25.5) (2000)

Ionosphere 350 564 0.886 0.909 0.926 0.909 0.886 0.889

(0.1) (0.1) (1.2) (1.3) (0.1) (15.04)

PIMA 760 134 0.774 0.749 0.764 0.761 0.77 0.736

(0.1) (0.1) (1.3) (1.3) (21.4) (2000)

Parkinsons 190 392 0.868 0.884 0.921 0.895 0.879 0.895

(0.1) (0.1) (1.2) (1.1) (1.6) (245)

Trans 740 64 0.78 0.759 0.788 0.788 0.765 0.797

(0.0) (0.0) (1.2) (1.2) (372.3) (1177)

WDBC 560 540 0.961 0.936 0.961 0.943 0.955 0.946

(0.1) (0.0) (1.3) (1.4) (3.0) (911)

4.1 Experimental Methodology

We conducted extensive experiments on publicly available data sets obtained
from UCI repository [6]. The data sets involved both real- and categorical-
valued features. Specifically, the specific datasets are: buzz events from two
different social networks: Twitter, Tom’s Hardware, Adult Data (adult data),
Credit Approval Data Set (credit data), Ionosphere (Ionos), Pima Indians Dia-
betes (PIMA), Parkinsons, connectionist bench sonar (Sonar), blood transfusion
service center (Trans), and breast cancer Wisconsin diagnostic (WDBC).

For purposes of comparison of the accuracy of MLIC, we considered a variety
of popular classifiers: �1-penalized Logistic regression (LogReg), Nearest neigh-
bors classifier (NN), and the black box random forests (RF), and support vector
classification (SVC).

We perform 10-fold cross-validation to perform an assessment of accuracy on
a validation set. We compute the mean across the 10 folds for each choice of a
regularization (or complexity control) parameter for each technique (baseline and
MLIC), and report the best cross-validation accuracy. The number of parameter
values is comparable (10) for each technique. For RF and RIPPER we use control
based on the cutoff of the number of examples in the leaf node. For SVC and
LogReg we discretize the regularization parameter on a logarithmic grid. In case
of MLIC we have 2 choices of λ ∈ {1, 10} and number of clauses, k ∈ {1, 2, 3}
and the type of rule as {CNF, DNF}. We set the training time cutoff for each
classifier (on each fold) to be 2000 seconds. Again, note that some classifiers

MLIC: A MaxSAT-Based Framework 321

Table 2. Comparison of RIPPER vis-a-vis MLIC in terms of the size of rules. Note
that despite using only a small number of literals, the proposed classifier,
MLIC mostly has better accuracy than RIPPER.

Dataset Size # Features RIPPER MLIC
Toms hardware 28170 830 57.5 4

Twitter 49990 1050 78.5 15

Adult-data 32560 262 74.5 51.5

Credit-card 30000 334 7.5 4

Ionosphere 350 564 3 5.5

PIMA 760 134 5 9

Parkinsons 190 392 6.5 6

Trans 740 64 6 4

WDBC 560 540 7.5 3.5

can be much faster than others, but in this paper we focus on the best tradeoff
of accuracy vs interpretability in mission-critical settings, and the training time
(which can be off-line) is secondary, as long as it is realistic. In this context,
note that testing time for each of these techniques is less than 0.01 seconds for
a given set of labels.

4.2 Illustrative Example

We illustrate the interpertable rules that are computed by MLIC on the iris
data set, which is a simple benchmark and widely used by machine learning
community to illustrate new classification techniques. We consider the binary
problem of classifying iris versicolor from the other two species, setosa and vir-
ginica. Of the four features, sepal length, sepal width, petal length, and petal
width, we learn the following rule: R:=

1. (sepal length > 6.3 ∨ sepal width > 3.0 ∨ petal width <= 1.5) ∧
2. (sepal width <= 2.7 ∨ petal length > 4.0 ∨ petal width > 1.2) ∧
3. (petal length <= 5.0)

Let us pause a bit to understand how to apply the above rule. The above
rule implies that when the three constraints are satisfied, the flower must be
classified as Iris otherwise, non-iris. The size of the above rule, i.e. |R| = Σi|Ci| =
3 + 3 + 1 = 7.

4.3 Results

Table 1 presents results of comparison of MLIC vis-a-vis typical non-
interpretable classifiers. The first three columns list the name, size (number
of samples) and the number of binary features for each Dataset. The next five

322 D. Malioutov and K. S. Meel

Fig. 1. Plot demonstrating behavior of training and test accuracy vs size of training
data for WDBC.

columns present test accuracy of the classifiers RIPPER, Logistic Regression
(Log Reg), Nearest Neighbor (NN), Random Forest (RF), and SVC. The final
column contain the median test accuracy for MLIC. For every cell in the last
five columns, the top value represents the accuracy, while the value sorrounded
by parenthesis represent average training time. We draw the following two con-
clusions from the table: First, MLIC is able to handle datasets with tens of
thousands of examples with hundreds of features. The scalability of MLIC
demonstrates the potential presented by remarkable progress in SAT solving.
Recent research efforts have often used NP-hardness of the problem to justify
the usage of heuristics but our experience with MLIC shows that SAT solving is
able to solve many large-scale problems directly. Note that when MaxHS times
out, it is able to provide the best solution found so far. In this context, it is
worth noting that for some of the benchmarks, even state of the art classifiers
such as SVC time out. Secondly, MLIC is often able to achieve accuracy that
is sufficiently close to accuracy achieved by typical non-interpretable classifiers
but produces easy to state rules that often have just a few literals.

To demonstrate MLIC’s ability to compute easy to state rules in comparison
to the state of the art classifiers such as RIPPER, we computed the size of
rules returned by RIPPER and MLIC. Table 2 presents results of comparison
of MLIC vis-a-vis RIPPER. The first three columns list the name, size (number
of samples) and the number of binary features for each Dataset. The next two
columns state the median size of rules returned by RIPPER and MLIC. The
size of a rule is computed as the number of terms involved in a rule. First, note
that except for two cases where RIPPER has produced marginally shorter rules
compared to MLIC, MLIC produces significantly shorter rules and sometimes,
these rules could be orders of magnitude larger than those produced by MLIC.
For example, for Toms hardware, the rule produced by RIPPER has 57 terms
compared to just 4 literals for MLIC. Note that with MLIC has better accuracy
than RIPPER. One might wonder if the rule learned by RIPPER could have been

MLIC: A MaxSAT-Based Framework 323

simply transformed into a sparser rule; it is not the case here. Furthermore, it is
worth noting that RIPPER does not provide sound handle to tune rule size and
therefore, user is left to trying out combination of input parameters without any
guarantee of improvement of the interpretability of generated rules, which we
experienced in this case. A in-depth study into failure of RIPPER to generate
sparser rules than MLIC is beyond the scope of this work.

To measure the accuracy of MLIC w.r.t. the size of training data, we consider
test errors when only a fraction of training data is available (we vary it from
10 % to 90 % in steps of 10 %). Due to lack of space, we present result for
only one benchmark, WDBC, for λ = 1 and 5 and k = 1 in Fig. 1. We plot
median training and test accuracy of MLIC over 10 trials, which is also known
as learning curve in machine learning literature. The y-axis represents the error
as the ratio of incorrect predictions to total examples while the x-axis represents
the size of training set. The plot shows how training and test error vary for
λ = 1 and 5. Note that MLIC is able to achieve sufficiently high test accuracy
with just 40% of the complete dataset. We observe similar behavior for other
benchmarks as well.

Fig. 2. Plot demonstrating monotone behavior of training accuracy vs λ for CNF and
DNF rules with k = 1 and 2.

Figures 2 and 3 illustrate how training accuracy and rule sizes vary with λ for
one of the representative benchmark, parkinsons. CNF1, CNF2, DNF1, DNF2
refer to invocations of MLIC with (rule type, k) set to (CNF, 1), (CNF, 2),
(DNF, 1), and (DNF, 2) respectively. For each of the plots, x-axis refers to the
value of λ while y-axis represents Rule size (i.e. |R|) and accuracy for Figs. 3
and 2 respectively. First, note that for both CNF and DNF, the accuracy of
rules is generally higher for larger k. Significantly, the plots clearly demonstrate
monotonicity of rule size and accuracy with respect to λ. In contrast, the state
of the art interpretable classifier, RIPPER, can lead to rules that can be order

324 D. Malioutov and K. S. Meel

of magnitude larger than those produced by MLIC. For example, for Toms
hardware, the rule produced by RIPPER has 57 terms compared to just 4 literals
for MLIC. In this context, it is worth noting that RIPPER does not provide
sound handle to tune rule size and therefore, user is left to trying out combination
of input parameters without any guarantee of improvement of the interpretability
of generated rules.

5 Related Work

There is a long history of learning interpretable classification models from data,
including popular approaches such as decision trees [5,24], decision lists [25], and
classification rules [10]. While the form of such classifiers is highly amenable to
human interpretation, unfortunately, most of the objective functions that arise
for these problems are intractable combinatorial optimization problems. Hence,
most popular existing approaches rely on various greedy heuristics, pruning, and
ad-hoc local criteria such as maximizing information gain, coverage, e.t.c. For
example various popular decision rule approaches, such as C4.5.rules [24], CN2
[9], RIPPER [10], SLIPPER [11], all make different trade-offs in how they use
these heuristic criteria for growing and pruning the rules.

Fig. 3. Plot demonstrating behavior of rule size vs λ

Recent advances in large-scale optimization and scalable Bayesian inference
gave rise to state-of-the-art black box models. However, many of the same
advances can also be used in the context of interpretable machine learning
models. Some of such recent proposals include Bayesian approaches [20,30],
constraint programming [2], integer programming approaches to learn decision
trees [4], quadratic programming relaxation with a variance-penalized margin

MLIC: A MaxSAT-Based Framework 325

objective [26]. Greedy approaches are used with a principled objective func-
tion in ENDER [15] and Set covering machines [22]. [19] propose a hierarchical
kernel learning approach and [18] use optimization to combine basic Boolean
clauses obtained from decision trees. Linear Programming relaxations based on
Boolean Compressed Sensing formulation have been used to learn sparse inter-
pretable rules and checklists6 in [16,21]. Prior work has considered applications
of constraint programming to learning Bayesian networks [2] and itemset mining
[14,23]. In contrast, we focus on learning sparse interpretable classification rules
allowing control of accuracy vs. interpretability.

6 Extensions

In the paper, we have focused on decision rules in the DNF or CNF form, which is
among the most interpretable classification methods available. We now describe a
few related classification formulations, which are also amenable to being learned
from data using a SAT-based framework. A simple AND-clause can be consid-
ered as a requirement that all of the N literals in the clause are satisfied, while
a simple OR-clause requires that at least 1 of the N literals are satisfied. A
useful generalization is a “K-of-N” clause [12], which is true when at least K
of the N literals are satisfied. In particular, it leads to a very popular decision
rubric called checklists or scorecards, widely used in medicine and finance, where
a questionnaire asks some questions (e.g., risk factors), and the total number of
positive answers is compared to a pre-determined threshold. LP relaxations have
been considered for learning scorecards from data [16], and our MaxSAT-based
framework can be directly extended. In the case of multi-class classification, a
decision rule may be ambiguous, as it does not specify what multi-class label to
use when several contradictory clauses pointing to different labels are satisfied
simultaneously. Decision lists [25] enforces an order of evaluation of the rules,
resolving this ambiguity. Bayesian frameworks for learning decision lists have
been considered recently [20]. Perhaps the most well known interpretable classi-
fication scheme is a decision tree, where literals are arranged as nodes in a binary
tree, and a decision is made by following the path from the root node to one of
the leafs. The decision tree can be converted to an equivalent set of classifica-
tion rules which correspond to all the paths from the root to the leafs, a more
expensive representation. On the other side, however, certain small decision rules
can lead to very complex decision trees, for example, the “K-of-N” rule cannot
be efficiently encoded using a decision tree. Recent work has considered combi-
natorial optimization to learn compact interpretable decision trees [4]. Beyond
simple Boolean expressions, a variety of weighted classification methods can be
used, for example, a weighted linear combination of simple AND clauses – for
instance by using Boosting on a set of classifiers based on simple logical clauses.
In future work, we plan to extend our MaxSAT-based framework for all these
related interpretable classification approaches.
6 Note, however, that the objective functions for the integer program and the LP

relaxation in these papers are not the same as sparsity-penalized cost-sensitive clas-
sification error.

326 D. Malioutov and K. S. Meel

7 Conclusion

We proposed a new approach to learn interpretable classification rules via reduc-
tion to (MaxSAT). Due to the impressive advances in MaxSAT-solving, our for-
mulation can find optimal or near-optimal rules balancing accuracy and inter-
pretability (sparsity) for large data-sets involving tens or hundreds of thousands
of data points, and hundreds or thousands of features. Furthermore, the app-
roach separates the modeling from the optimization, and this framework could
be used to solve a wide variety of interpretable classification formulations, includ-
ing decision lists, decision trees, and decision rules with different cost functions
(including group-sparsity, sharing of the variables, and having prior knowledge
on variable importance). Finally, we demonstrate on experiments that for many
classification problems interpretability does not have to come at a high cost in
terms of accuracy.

Furthermore, we hope to share our excitement with applications of constraint
programming/MaxSAT in Machine Learning, and to encourage researchers in
both interpretable classification and in the CSP/SAT communities to consider
this topic further: both in developing new SAT-based formulations for inter-
pretable ML, and in designing bespoke solvers attuned to the problem of inter-
pretable ML.

Acknowledgements. This work was supported in part by NUS ODPRT Grant, R-
252-000-685-133 and IBM PhD Fellowship. The computational work for this article was
performed on resources of the National Supercomputing Centre, Singapore, https://
www.nscc.sg.

References

1. Andrews, R., Diederich, J., Tickle, A.: Survey and critique of techniques for extract-
ing rules from trained artificial neural networks. Knowl. Based Syst. 8(6), 373–389
(1995)

2. van Beek, P., Hoffmann, H.F.: Machine learning of Bayesian networks using con-
straint programming. In: Proceedings of CP, pp. 429–445 (2015)

3. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of sat-based prepro-
cessing for MaxSAT. In: Proceedings of IJCAI (2015)

4. Bertsimas, D., Chang, A., Rudin, C.: An integer optimization approach to asso-
ciative classification. Adv. Neur. Inf. Process. Syst. 25, 269–277 (2012)

5. Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combi-
natorial optimisation. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 173–187.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 16

6. Blake, C., Merz, C.J.: {UCI} repository of machine learning databases (1998)
7. Boros, E., Hammer, P., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An

implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2),
292–306 (2000)

8. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

9. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283
(1989)

https://www.nscc.sg
https://www.nscc.sg
https://doi.org/10.1007/978-3-642-04244-7_16

MLIC: A MaxSAT-Based Framework 327

10. Cohen, W.W.: Fast effective rule induction. In: Proceedings of International Con-
ference on Machine Learning, pp. 115–123. Tahoe City, CA, July 1995

11. Cohen, W.W., Singer, Y.: A simple, fast, and effective rule learner. In: Proceedings
of National Conference on Artificial Intelligence, pp. 335–342, Orlando, FL. July
1999

12. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Proceedings of NIPS, pp. 24–30 (1996)

13. Davies, J., Bacchus, F.: Solving MaxSAT by solving a sequence of simpler sat
instances. In: Proceedings of CP, pp. 225–239 (2011)

14. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: Proceedings of KDD, pp. 204–212 (2008)

15. Dembczyński, K., Kot�lowski, W., S�lowiński, R.: Ender: a statistical framework for
boosting decision rules. Data Mining Knowl. Discov. 21(1), 52–90 (2010)

16. Emad, A., Varshney, K.R., Malioutov, D.M.: A semiquantitative group testing
approach for learning interpretable clinical prediction rules. In: Proceedings of
Signal Process. Adapt. Sparse Struct. Repr. Workshop, Cambridge, UK (2015)

17. Freitas, A.: Comprehensible classification models: a position paper. ACM SIGKDD
Explor. Newsl. 15(1), 1–10 (2014)

18. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl.
Stat. 2(3), 916–954 (2008)

19. Jawanpuria, P., Jagarlapudi, S.N., Ramakrishnan, G.: Efficient rule ensemble learn-
ing using hierarchical kernels. In: Proceedings of ICML (2011)

20. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Building interpretable
classifiers with rules using Bayesian analysis. Technical report 609, Department of
Statistics. University of Washington, December 2012

21. Malioutov, D.M., Varshney, K.R.: Exact rule learning via Boolean compressed
sensing. In: Proceedings of ICML, pp. 765–773 (2013)

22. Marchand, M., Shawe-Taylor, J.: The set covering machine. J. Mach. Learn. Res.
3(Dec), 723–746 (2002)

23. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a
constraint programming approach. In: KDD, pp. 647–656. ACM (2009)

24. Quinlan, J.R.: C4.5: Programming for Machine Learning, p. 38. Morgan Kauff-
mann, San Francisco (1993)

25. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
26. Rückert, U., Kramer, S.: Margin-based first-order rule learning. Mach. Learn.

70(2–3), 189–206 (2008)
27. Valiant, L.G.: Learning disjunctions of conjunctions. In: Proceedings of Interna-

tional Joint Conference on Artificial Intelligence, pp. 560–566. Los Angeles, CA,
August 1985

28. Varshney, K.R.: Data science of the people, for the people, by the people: a view-
point on an emerging dichotomy. In: Proceedings of Data for Good Exchange Con-
ference (2015)

29. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: Or’s
of And’s for interpretable classification, with application to context-aware recom-
mender systems. arXiv preprint arXiv:1504.07614 (2015)

30. Wang, T., Rudin, C., Liu, Y., Klampfl, E., MacNeille, P.: Bayesian Or’s of And’s for
interpretable classification with application to context aware recommender systems
(2015)

http://arxiv.org/abs/1504.07614

Objective as a Feature for Robust
Search Strategies

Anthony Palmieri1,2 and Guillaume Perez3(B)

1 Huawei Technologies Ltd., French Research Center, Paris, France
anthony.palmieri@huawei.com

2 Université de Caen - Normandie, GREYC, Caen, France
3 Department of Computer Science, Cornell University, Ithaca, NY 14850, USA

guillaume.perez06@gmail.com

Abstract. In constraint programming the search strategy entirely
guides the solving process, and drastically affects the running time for
solving particular problem instances. Many features have been defined
so far for the design of efficient and robust search strategies, such as vari-
ables’ domains, constraint graph, or even the constraints triggering fails.
In this paper, we propose to use the objective functions of constraint
optimization problems as a feature to guide search strategies. We define
an objective-based function, to monitor the objective bounds modifica-
tions and to extract information. This function is the main feature to
design a new variable selection heuristic, whose results validate human
intuitions about the objective modifications. Finally, we introduce a sim-
ple but efficient combination of features, to incorporate the objective in
the state-of-the-art search strategies. We illustrate this new method by
testing it on several classic optimization problems, showing that the new
feature often yields to a better running time and finds better solutions
in the given time.

1 Introduction

Solving combinatorial optimization problems is known to be a hard task, but
constraint programming (CP) enables tackling several of them [22,26]. One of
the CP strength leans on an efficient search for a solution in the variables’ domain
space. The resolution of industrial problems often relies on dedicated knowledge
experts to build a good search strategy (SS) [23,25]. But such information, while
appealing, is not always available nor possible. That is one of the main motiva-
tions for the development of black-box constraint solvers, where the only user’s
concern is to build an efficient model. Black-box solvers need robust and efficient
SSs, and many researches have been done [5,11,16,18,28]. Notably, in Constraint
Programming, activity-based search (ABS) [14], impact-based search (IBS) [20]
and weighted degrees (Wdeg) [1] are well known state-of-the-art search strategies
for combinatorial problems.

In CP a search heuristic usually consists of choosing a pair (variable, value),
called a decision. Then, a binary search tree is built to explore the search space.
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 328–344, 2018.
https://doi.org/10.1007/978-3-319-98334-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_22&domain=pdf

Objective as a Feature for Robust Search Strategies 329

The solving time is highly correlated with the size of the search tree. A shorter
run time is usually expected when a smaller tree is explored. Since the search
strategy determines how to build the search tree, the solving time is strongly
impacted by the search strategy, and can differ by order of magnitude.

Most search strategies use the first fail principle [7,24]. This principle tries
to fail as soon as possible, in order to reduce the search tree size. The first fail
principle is very efficient in practice for constraint satisfaction problems (CSPs),
for example SSs such as IBS and ABS consider the variables’ domains as feature
to make decisions, and try to find variables having the potential to reduce the
other variables domains, while WDeg uses fail counters and the constraint graph.

A constraint optimization problem (COP) can be seen as a CSP with an
objective function to optimize. Solvers often have a variable representing the
possible values of the objective function. When a new solution is found, a con-
straint is added, requiring the next one to be better. Once the best solution is
found, the next step is to prove its optimality. In other words, solving a COP
includes: finding the best solution, and proving that no better solution exists.
In practice, it is unknown whether the current solution is the best one until the
exploration of the search tree is completed.

Search strategies are mostly designed to reduce the search space by focusing
on constraint satisfaction, but with COPs, the objective value can additionally be
used to reduce the search space. Two different solutions might prune the search
space, depending on their respective objective values. In COP, finding a good
solution can drastically reduce the search space, by avoiding the exploration of
less promising parts of the search tree, with respect to the objective. This implies
that the order in which solutions are found has a strong impact on run-time for
the complete space exploration, unlike for CSPs.

This observation is one of the main motivations of this paper. Our idea,
inspired by integer programming [4], is to extract good features from the objec-
tive variable to make good decisions. A recent CP work started exploring this
area by using the objective to design a value selector in order to find a first good
solution [3]. An advantage of using the objective as a feature is its ability to both
optimize the objective value and to reduce the search tree at the same time. Such
information, as will be shown in the experimental section, can drastically help
SSs to make better decisions.

In the following, we design a function (ΔO) monitoring the objective bounds
modifications along the solving process. This function is one possible implemen-
tation of an objective-based feature extractor (˜ΔO). We then define a variable
selector based only on ˜ΔO, named Objective-Based Selector (OBS), which selects
the variable maximizing ˜ΔO. Lastly, in order to take advantage of this new objec-
tive feature and the many existing ones, we propose a simple but efficient hybrid
method to combine search strategies, such as IBS, ABS etc., to take into account
the newly introduced objective feature. Finally, we show the efficacy of these
new hybrid strategies compared to the original strategies on all the optimization
problems from the Minizinc challenge library [15].

330 A. Palmieri and G. Perez

2 Preliminaries

2.1 Constraint Satisfaction Problem (CSP)

A CSP is a pair P = (X,C) where X = {x1, x2, . . . , xn} is a set of variables and
C = {C1, C2, . . . , Cm} is a set of constraints. A variable xi is associated with a
domain D(xi), representing all of its possible values. A constraint Ci contains a
set of all its allowed tuples defined over a subset SCi

⊆ X of variables.
A solution is a tuple of values (a1, a2, . . . , an) such that the assignments

x1 = a1, x2 = a2 . . . , xn = an respect all the constraints. The solving process
for a CSP generally involves a depth first search algorithm with backtracks
in a decision tree. At each node of the tree, a propagation algorithm is run,
which iteratively uses a dedicated filtering algorithm to check the validity of
each constraint. Each filtering algorithm reduces the search space by removing
the values that cannot belong to a solution. Finally, a solution is found when all
variables are instantiated to a value.

A constraint optimization problem (COP) is a pair (P, FO), where P is a
CSP and FO is an objective function that has to be optimized. Without loss of
generality, we consider here only minimization problems. All solutions to a COP
are not equivalent, as their overall quality is determined by the objective value
FO(sol). The solving process of a COP is analogous to a CSP, except that it
contains an objective constraint. This constraint ensures that the next solution
found will be better. This paper aims to use this constraint in order to reduce
the search space.

2.2 Search Strategies

A search strategy (SS) for constraint programming (CP) determines how the
search tree is built during the solving process. At each node of the search tree,
the SS chooses a non-assigned variable and a value belonging to its domain. A
decision often corresponds to a pair (variable, value) which can be seen as a
backtrackable constraint variable = value. Search strategies are crucially impor-
tant to find good solutions, to reduce the search space, and even to quickly find
an initial feasible or good solution [3].

We briefly describe three state-of-the-art SSs. For a more complete descrip-
tion please refer to their original publications.

Impact Based Search (IBS) [20] selects the variable whose choice is expected
to provide the largest search space reduction. To do so, IBS considers the car-
dinality reduction of the Cartesian product of the domains (called the impact).
Thus the main feature of this SS uses variables’ domains.

More formally, let x be a variable, and v be a value belonging to the cur-
rent domain D(x). Let Pbefore (resp. Pafter) be the cardinality of the Cartesian
product of the domains before (resp. after) the application of the decision x = v.
The impact of a decision is:

I(x = v) = 1 − Pafter

Pbefore

Objective as a Feature for Robust Search Strategies 331

Let Ī(x = v) be the average impact of the decision x = v. Then, this impact of
a variable x with current domain D(x) is computed by the following formula:

Īx =
∑

v∈Dx

1 − Ī(x = v)

At each node the free variable having the largest impact is assigned to its
value having the smallest impact. Note that this search is an adaptation of
pseudo-cost-based search from mixed integer programming.

Activity Based Search (ABS) [14] selects the most active variable per domain
value. A variable’s activity is measured by counting how often its domain is
reduced during the search. Thus, once again, the feature of this SS uses the
domains of the variables. More formally, the number of modified variables is
monitored and stored in A(x), which is updated after each decision with the
following rule:

∀x ∈ Xs.t.|D(x)| > 1 : A(x) = A(x) × γ

∀x ∈ X0 : A(x) = A(x) + 1

X0 represents the set of variables reduced by the decision and γ ∈ [0, 1] is the
decay parameter. ABS maintains an exponential moving average of activities by
variables’ value. At each node, ABS selects the variable with the highest activity
and the value with the least activity.

Weighted Degree (WDeg) [1] uses the constraint graph to make decisions. WDeg
counts the number of failures ωc for each constraint c. WDeg features are the
constraint graph and the fail counters. WDeg first computes, for each variable
x, the value wdeg(x), which is the weighted (ω) sum of the constraints involving
at least one non-assigned variable. WDeg then, selects the variable having the
highest ratio |D(x)|

wdeg(x) .

3 Objective Function and Search Strategy

Search strategies aim to reduce the search space, but additionally aim to find
good solutions as quickly as possible. Most SSs choose the hardest variables to
satisfy first, the main challenge being to find such variables. While most SSs
decisions were based on variables domains, the constraint graph, etc., objective-
value based decisions are rarely done in CP. One of the reasons is that, in CP,
we cannot easily back-propagate the objective to the variables to make decisions
as done in Mixed Integer Programming. But even if we can not have such exact
information, not taking into account the variables impacting the objective value
can lead to an exponential loss in time. This is shown by the following synthetic
example.

332 A. Palmieri and G. Perez

Example. Consider a COP having n + m variables and whose objective is the
sum of the last m variables. This problem has an AllDifferent constraint [21]
over all the variables. Ignoring the objective value can lead to the search tree
shown in Fig. 1 (left). In this example, the strategy focuses only on other features,
without taking the objective into account. Whereas a strategy that considers the
objective detects variables having high impact on the objective, and consider
them earlier enabling a potential reduction of the search tree.

Moreover, we can find high quality solutions earlier and these solutions prune
the search space more efficiently. As we can see, the processing of the m variables
is repeated an exponential number of times (dn). This is because the variables
that impact the objective are chosen too late leading to a bigger search tree.

The search tree using the objective value as a feature is shown in Fig. 1
(right). The last m variables are selected higher in the search tree, yielding
better solutions faster and allowing to close the search using the objective sooner.
Finally, by using the objective value, we obtain a smaller search tree.

Fig. 1. (left) A search failing to consider the objective value. (right) An objective based
search.

This simple example shows that the objective value allows to assign variables
having high influence on the objective earlier and thus can help the solver to
avoid considering useless parts of the tree. The idea is to consider as soon as
possible the variables impacting the objective. We now define a new feature
based on the objective, which we will use to define an objective-based search
strategy.

3.1 Objective Modifications as a Feature

The proposed feature focuses on the objective bounds modifications by using
a function ΔO. The upper and lower bounds are separately considered as two
different pieces of information. Let O be the objective variable to optimize. Let
s and s − 1 be respectively the current and the previous node of the search
tree. Let ΔO (resp. ΔO) be the upper (resp. lower) bounds difference between
its value before and after the decision propagation. The function is defined as
follows:

Objective as a Feature for Robust Search Strategies 333

ΔO(s) = a × ΔO + b × ΔO

We choose to consider the upper and lower bounds separately. The choice
of the parameters a and b defines the function behavior. The coefficients can
take any value and correspond to the importance (positive or negative) given to
each bound. For instance, in minimization problems, the coefficient a of lower
bound modification corresponds to the weight for the consideration of removing
the best potential solutions. While, the upper bound modification coefficient b,
represents the weight to consider the deletion of the worst potential solutions.

Note that this function has a more fine-grained description of the objective
than usual measures used in search strategies. Classic SSs monitor the modifica-
tions of the decision variables, but in general, treating differently the lower and
upper bounds, has no meaning for such variables.

3.2 Objective-Based Selector (OBS)

We propose a new variable selector based on the ΔO function: OBS. OBS first
selects the variables having the highest impact on the objective with regard
to the ΔO function. To do so, the weighted sum of the ΔO function values
for each x ∈ X is monitored through ˜ΔO(x), and updated after each decision
involving the variable x. The parameter γ is the degree of weighting decrease
of the exponential moving average. The updated value ˜ΔO

′
(x) is processed as

follow:

˜ΔO

′
(x) =

˜ΔO(x) ∗ (1 − γ) + γ ∗ ΔO(x)
γ

At each decision, OBS selects the variable x ∈ X such that ∀y ∈ X, ˜ΔO(x) ≥
˜ΔO(y).

Example. Consider the didactic COP defined by the variables (x1, x2, x3, x4)
having each as domain D = [1, 4] and an AllDifferent constraint on the 4 vari-
ables. The COP’s objective is min x3+x4. We use the parameters (a = −1, b = 1)
for the ΔO function, in order to penalize lower bound modifications and reward
upper bound modification.

The tree search from Fig. 2 shows the application of the objective based
search strategy versus a lexicographic search. In this example, when a variable
is selected, it is assigned to its minimum value. The lexicographic search on the
left has more decisions than OBS on the right because it cannot identify which
variable are important to satisfy the constraints and improve the objective.

At the beginning of the exploration, in the right tree showing OBS search,
the variables x1, x2 and x3 are selected and set to their minimum values. Each
of these assignments has an effect on the objective’s bounds and thus modifies
ΔO. When the decision x1 = 1 is propagated, ΔO(x1) is set to −2 because
of the changes of the objective domain from [2, 8] to [4, 8]. The propagation of
x2 = 2 reduces the objective’s domain from [4, 8] to [6, 8] implying ΔO(x2) = −2.
When the variable x3 is selected, the objective is instantiated to 7. This implies

334 A. Palmieri and G. Perez

Fig. 2. Comparison of the search tree by a lexicographic search (left) and an objective
based search (right)

a ΔO(x3) = 0. A solution is found with the value 7, so the next solution has to
be smaller than 7. Afterwards the decision x3 = 3 is refuted and the search tree
is backtracked to the decision x2 = 2 which is refuted, implying x2 �= 2. Then
x3 which has the highest ΔO value is selected and instantiated to its domain’s
minimal value: 2. Then x4 is the next free variable with the highest ΔO value, 0.
We thus select x4 and assign it to its smallest value, 3. We find a solution equal
to 5. Finally, when this branch is closed, the decision x1 = 1 is refuted and by
applying the OBS selection, the branch leading to the best solution is explored.
An important aspect of this search is that it is close to human intuition to choose
first variables x3 and x4 since they belong to the objective.

Note that the maintenance of ˜ΔO values and the selection process are sim-
ple and not intrusive in solvers. Moreover, OBS does not need to change the
constraints implementations.

3.3 Hybridization of Search Strategies

In this section we show how the objective and classical features can be combined
together, to benefit from both. But most strategies should not be directly com-
bined due to the range differences of their feature. For example, the IBS strategy
has a value range between [0, 1], while ABS one is between [0, n]. We propose to
normalize all these values to fit in the interval [0, 1] in order to combine them.
Note that this applies to the ΔO function as well.

Let ˜Sn(x) be the normalized value of a search strategy S based on a classical
feature. And let ˜Δn

O(x) be the normalized values for OBS. We combine the two
pieces of information with the following formula:

SO(x) = α ∗ ˜Sn(x) + (1 − α) ∗ ˜Δn
O(x)

The hybrid search strategy selects the variable maximizing SO. The values α
and (1 − α) represent the importance given to each feature. Note that α is in
[0, 1].

Objective as a Feature for Robust Search Strategies 335

Example with ABSO: While the ABS strategy uses the ˜A values, storing the
activities involved by the variables, our modification of the value associated
with each variable is the sum:

ABSO(x) = α ∗ ˜An(x) + (1 − α) ∗ ˜Δn
O(x)

This ABSO(x) value contains both pieces of information: the activity and the
objective modifications.

Remarks: The hybridization of many others strategies is as simple as for
ABS. For the following sections, we respectively denote the hybridized versions
of ABS, IBS and WDeg by ABSO, IBSO and WDegO.

4 Experiments

4.1 The Experimental Setting

Configurations. All experiments were done on a Dell machine having four Intel
E7-4870 Intel processors and 256 GB of memory, running Scientific Linux. We
implemented these new strategies in the Choco 4 CP solver [19]. The code can
be found on our GitHub1. Each run used a time limit of 30 min. The strategies
were warmed up with a diving step, using up to 1000 restarts, or by ensuring
a certain number of decisions. The same warm up (method and seed) was used
for all the methods, in order to avoid any bias.

Benchmarks. The experimental evaluation used on the MiniZinc Benchmark
library [15], with benchmarks that have been widely studied, often by different
communities, including template design, still life, RCPSP, golomb ruler, etc.
Many problem specifications can be found in [6]. Every class of optimization
problems from the MiniZinc library has been considered. Since the number of
instances per family is huge, and has a large variance between families, we have
randomly selected up to 10 instances per family. Such subset selection preserves
the diversity of instances, and do not favor a specific kind of family in plots.
The problems have been translated into the FlatZinc format, using the MiniZinc
global constraints library provided by Choco-solver, which preserves the global
constraints.

Plots. The scatters and curves presented in this section are in log scale. A scatter
plot shows the comparison of two strategies instance by instance. The diagonal
separates the instances where each method has performed better than the other.
The points above (resp under) the line correspond to the instances where the
ordinate (resp the abscissa) strategy is less efficient. Larger is the gap between the
axis line and the point, bigger is the difference between the strategies. Extreme
points above and on the right correspond to the timeouts.

1 Link.

336 A. Palmieri and G. Perez

Terminology. An instance is said to be solved, when the best solution has been
found and its value proved to be optimal. The term solution quality is used when
the search is incomplete, and only the best found solution can be judged.

4.2 OBS Evaluation

Once again, the OBS selector is highly configurable: each bound can have its
own coefficient impacting the selection process. The running time of several
configurations with different bounds importance have been profiled. The values
−1, 1 and 0 have been tested to respectively give: negative, positive, or no
importance to the considered bound. All possible pairs of (a, b) from (−1, 0, 1)×
(−1, 0, 1)\{(0, 0)} have been tested.

The performance of different OBS parameters are shown in Fig. 3. This cumu-
lative plot shows how many instances can be solved by each method, for a given
time limit. This plot shows that a negative cost to the lower bound outperforms
zero or positive cost, regardless of the upper bound.

Configurations weighting the lower bound negatively solve approximately 50
more instances than the alternatives. The solution quality has been compared as
well: Fig. 4 shows how many time a search has found the best solution (not neces-
sarily optimal) compared to its alternatives. Once again, the searches weighting
the lower bound negatively show better results. One intuitive explanation is that
choosing the variables impacting the less the bound which has to be optimized,

Fig. 3. Comparison of the number of solved instances for different OBS configuration.

Objective as a Feature for Robust Search Strategies 337

concentrates the search into the most promising parts and like shown in Example
2 helps to back-propagate the objective to prune the tree search. Furthermore,
the upper bound in optimization problems (here minimization, without loss of
generality) does not have a big impact on resolution time. In addition to our
previous intuitions, the upper bound seems to be very sensitive to initialization
and to propagation. For instance in some constraints such as sum, which often
determines the objective value, no arc consistency can be achieved in polynomial
time. But, often, only the bounds are filtered, making less consistent the vari-
ations of this variable. Based on different OBS experiments, the configurations
(a = −1, b = 0) and (a = −1, b = −1) seem to be the most promising.

4.3 Evaluation of Hybrid Strategies

We tried the hybridization with all the OBS configurations in order to select
the most promising one. The configuration (a = −1, b = 0) got better results
within the hybridization, both in run-times and best objectives, which confirms
our previous results. In the following, when no configuration is specified for
OBS, then it means that the configuration (a = −1, b = 0) has been used. Like
OBS, the hybridization method is configurable in different ways. More or less
importance can be given to the objective, or to the classical feature. In order
to find the best parameter α, different experiments have been done. Figure 5
shows the comparison of different values of α on ABS. When OBS and ABS are
not hybridized (α = 1 and α = 0), they clearly show orthogonal behaviors: the
timeout are observed on different instances. By looking at the Fig. 5, it can be
seen that ABSO(0.5) dominates the others: less timeout and better run-times are
observed. Only a full comparison of ABS is presented here. We intentionally omit
the remaining combinations to preserve clarity, but similar results are observed
with the others hybridized strategies. The best combinations are reached when
α = 0.5. Thus in the following, when we are going to talk about a hybridized
version, it will be always with α = 0.5.

Fig. 4. Comparison of the objective quality between different OBS configurations.

338 A. Palmieri and G. Perez

Fig. 5. Running time comparisons of the hybrid strategies, with respect to the
hybridization parameters. From left to right and the top to the bottom, the config-
urations of ABS with (0.25), (0.5), (0.75) and (0).

Fig. 6. Comparison of the original search against their hybridized version

The run-time and timeout comparisons between the others searches and their
hybridized version are shown in Fig. 6. It is import to remark that WDegO
seems to outperform its original version, unlike IBSO which has an orthogonal
behavior. The Fig. 7 shows how the objective feature impacts the search to find

Objective as a Feature for Robust Search Strategies 339

Fig. 7. Comparison of the objective quality between search strategies and their
hybridized versions.

Table 1. Number of timeout in some families of instances.

Family OBS ABS WDeg IBS ABSO WDegO IBSO

tdtsp 2 5 5 5 5 5 5

prize-collecting 2 7 7 7 7 2 8

2DBinPacking 7 8 8 8 6 8 8

mrcpspmm 0 3 1 1 0 0 0

mario 0 4 2 0 4 0 3

tpp 7 7 10 10 5 10 10

depot placement 3 7 7 1 4 6 4

p1f 2 1 7 1 2 7 3

table-layout 0 0 10 4 0 3 5

filters 2 1 5 1 1 5 1

amaze 4 3 5 4 3 5 4

open stack 8 5 10 7 4 9 6

talent scheduling 8 7 8 7 4 8 7

good solutions. It compares the number of times a search against its hybridized
version has found a better solution. Unlike IBS, ABS and WDeg seem to benefit
from the objective features, since their hybridized versions often find better
solution than the original ones. For instance, the classical ABS find less than
10 better solution compared to its hybridized version which find more than 100
times.

340 A. Palmieri and G. Perez

To support again the interest of the hybridization method, we have extracted
some interesting problem families in the Table 1. In this Table, even if OBS is
not the best strategy, it is often able to solve problems where classical strategies
do not. Furthermore, this table shows the interest of the hybridization, which
most of the time takes advantage and improve the search considering only one
feature. A good example is talent scheduling problem, OBS has 8 timeouts and
ABS 7, but the hybridized version have only 4.

From the different plots and table presented, we remark that IBS is an excep-
tion because neither the original nor the hybridized version dominates each
other and thus does not benefit as much as other search strategies from the
hybridization. Actually, IBS contains already some information about the objec-
tive bounds modifications. The impact is computed over all variables including
the objective. This is why the combination of the two features does not lead to
a domination, but only an improvement in several problems and a decrease in
some others. The resulting search is an orthogonal search to IBS.

4.4 Overall Evaluation

Figure 9 shows how many instances were solved as a function of time over all
strategies. Without any hybridization IBS is the best strategy. However, with
the hybridization, ABS shows the best improvements and so ABSO become
the best strategy. ABSO has the largest number of solved instances under the
allotted time. Furthermore, the hybridized versions are very competitive and
improve the number of solved instances. Such a result confirms that using the
objective as feature leads to strong improvement in solving time.

Most of the time, in real life problems, the optimal solution cannot be found
or proved due to time limits. That is why we now compare the capabilities

Fig. 8. Number of instances where each search strategy has found a strictly better
objective compared to all the other. (Color figure online)

Objective as a Feature for Robust Search Strategies 341

of OBS and the hybridized versions to find good solutions under an allotted
time. The new hybrid strategies are very competitive in finding good solutions
under a given amount of time as well. Figure 8 shows how many times a search
strategy has found a strictly better solution than all the others. Searches using
the objective feature are depicted in yellow and the others in blue.

ABSO surpass the others and was able to find 30 times a strictly better
objective than the others, while its original version ABS never finds a better
solution. IBS and OBS seem to be the second best search strategies in terms
of score. The hybridization shows again its advantages since ABSO is strictly
better than ABS. WDegO slightly dominates WDeg and OBS has a good rank.

Miscellaneous Discussions. The objective can be monitor in many different ways.
The ΔO(t) was not our only trial, we tried to monitor the changes through a
qualitative function counting how many times a variable modifies either the
lower or the upper bounds. On the Minizinc Library, the qualitative function
was dominated by the quantitative one.

Furthermore the ΔO(t) function was used to designed a value selector. Dif-
ferent variants have been tried: first to select the value minimizing ΔO(t), with
possibly different values for a and b. Second to select the value using the new
value heuristic from [3]. However, even if on some instances such as ghoulomb
or openstack these selector showed a real improvement, they seem to globally

Fig. 9. Comparison of the number of instances solved by the different strategies as a
function of time.

342 A. Palmieri and G. Perez

be dominated in the Minizinc problems set by minVal. The definition of a good
value heuristic seems to still be a challenge to solve.

Our experimental section shows that combining classic search strategies with
our objective-based feature leads to better performances and the ability to solve
new problems. It shows that for ABS and WDeg adding an objective-based
feature seems to dominate their performance. Finally it shows that the objective
as a feature can play an important role in finding a good solution faster, as
already claimed [3].

5 Related Work

The objective variable in COPs has already been considered in other fields such
as max-SAT [8] to choose which literal to select, or in Soft-CSP for the deci-
sion value [10]. Large Neighborhood Search (LNS) framework also consider the
objective: for example by changing the term of the weighted sum to minimize
[13]. In constraint programming, the objective information is not yet well used.
In [12], the authors propose a heuristic for weighted constraint satisfaction prob-
lems based on the solution quality to guide the value selection during the search.
In [2], the authors propose a machine learning approach to learn the objective
function from the variables’ values, but not directly on the variables themselves.

More recently, counting based search has been adapted for optimization
problems [17], the main idea being to consider objective-based solution density
instead of a simple solution density. This is done by adding to each objective-
based constraint an additional algorithm processing these values. Also, in MIP,
the objective is widely used in the heuristic [4]: the variables having the best
impact on the objective value of the relaxed problem are selected first. This
approach differs from our, since CP does not have good relaxation as MIP and
we consider the hybridization of the search strategies. A recent work [3] uses
the objective information in order to select the variable value, leaving the vari-
able selection to another strategy. Our method differs from [3] since we propose
a variables selector, while [3] proposed a value selector. Secondly, we are try-
ing to learn on-the-fly all along the search tree which variable seems to be the
most promising, unlike [3]. In [3] the value is selected by testing all the possible
assignments of the variable’s domains to determine after the propagation which
value is the best. Moreover, our feature is more fine-grained because it can be
determined how strongly to emphasize bound modifications, using positive or
negative parameters. In addition, in this paper we propose an hybridization of
existing searches with the objective feature. More particularly our new strategies
can be added into the set of available strategies to choose to solve a problem,
even in online fashion [27].

6 Conclusion

In this paper we have demonstrated the need for using the objective variable as a
feature for decisions within search strategies in constraint programming. We have
defined a fine grain feature based on objective bound modifications. By using

Objective as a Feature for Robust Search Strategies 343

this new feature, we have designed a new variable selector named OBS. This new
variable selector is not the most efficient, but it is able to overpass the existing
ones on some class of problems. Moreover, we have proposed a hybridization
method to combine our proposed objective-based feature with many existing
search strategies. Our evaluation has shown that the hybridized searches give
great results and are better than the original strategy in term of run time and
solution quality. Some searches are dominated by their hybrid versions. Through
this new perspective, we have shown that using the objective as a feature to make
decisions can lead to strong results. In addition, further work can be done, for
example, with non valued SSs like the ones using a ranking criteria such as
COS [5]. Directly applying this work on such SSs is not trivial, and should be a
next step.

For both the ΔO(t) function and the hybridization, we consider here only a
linear combination of the values. More complex combination scheme can be con-
sidered. For example, non linear function or ranking function could be studied.

Finally, parameter optimization methods [9] could be used in order to find
the best values of a, b and α for a given family of problem while solving it.

References

1. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI, vol. 16, p. 146 (2004)

2. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18008-3 8

3. Fages, J.-G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017
29th IEEE International Conference on Tools with Artificial Intelligence (2017)

4. Gauthier, J.-M., Ribière, G.: Experiments in mixed-integer linear programming
using pseudo-costs. Math. Program. 12(1), 26–47 (1977)

5. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 10

6. Gent, I.P., Walsh, T.: CSPlib: a benchmark library for constraints. In: Jaffar, J.
(ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-540-48085-3 36

7. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intell. 14(3), 263–313 (1980)

8. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI,
pp. 68–73 (2006)

9. Hutter, F., Hoos, H., Leyton-Brown, K.: An evaluation of sequential model-based
optimization for expensive blackbox functions. In: Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation, pp. 1209–1216.
ACM (2013)

10. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159(1–2), 1–26 (2004)

11. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in
constraint programming. Artif. Intell. 173(18), 1592–1614 (2009)

https://doi.org/10.1007/978-3-319-18008-3_8
https://doi.org/10.1007/978-3-319-23219-5_10
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36

344 A. Palmieri and G. Perez

12. Levasseur, N., Boizumault, P., Loudni, S.: A value ordering heuristic for weighted
CSP. In: 19th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2007, vol. 1, pp. 259–262. IEEE (2007)

13. Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07046-9 21

14. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8 15

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

16. Palmieri, A., Régin, J.-C., Schaus, P.: Parallel strategies selection. In: Rueher, M.
(ed.) CP 2016. LNCS, vol. 9892, pp. 388–404. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44953-1 25

17. Pesant, G.: Counting-based search for constraint optimization problems. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix,
Arizona, 12–17 February 2016, USA, pp. 3441–3448 (2016)

18. Pesant, G., Quimper, C.-G., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. (JAIR) 43, 173–210
(2012)

19. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S (2016)

20. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

21. Régin, J.-C.: A Filtering algorithm for constraints of difference in CSPS. In: AAAI,
vol. 94, pp. 362–367 (1994)

22. Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable load balancing in nurse to
patient assignment problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR
2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01929-6 19

23. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J.
(ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85958-1 4

24. Smith, B.M., Grant, S.A.: Trying harder to fail first. Research Report Series-
University of Leeds School of Computer Studies LU SCS RR (1997)

25. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 30

26. Wallace, M.: Practical applications of constraint programming. Constraints 1(1–2),
139–168 (1996)

27. Xia, W., Yap, RH.C.: Learning robust search strategies using a bandit-based app-
roach. In: AAAI Conference on Artificial Intelligence (2018)

28. Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point
constraint systems. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 707–722.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 45

https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-44953-1_25
https://doi.org/10.1007/978-3-319-44953-1_25
https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1007/978-3-642-01929-6_19
https://doi.org/10.1007/978-3-642-01929-6_19
https://doi.org/10.1007/978-3-540-85958-1_4
https://doi.org/10.1007/978-3-540-85958-1_4
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1007/978-3-319-66158-2_45

PW-CT: Extending Compact-Table
to Enforce Pairwise Consistency

on Table Constraints

Anthony Schneider(B) and Berthe Y. Choueiry(B)

Constraint Systems Laboratory, University of Nebraska-Lincoln, Lincoln, USA
{aschneid,choueiry}@cse.unl.edu

Abstract. The Compact-Table (CT) algorithm is the current state-of-
the-art algorithm for enforcing Generalized Arc Consistency (GAC) on
table constraints during search. Recently, algorithms for enforcing Pair-
wise Consistency (PWC), which is strictly stronger than GAC, were
shown to be advantageous for solving difficult problems. However, PWC
algorithms can be costly in terms of CPU time and memory consumption.
As a result, their overhead may offset the savings of search-space reduc-
tion. In this paper, we introduce PW-CT, an algorithm that modifies
CT to enforce full PWC. We show that PW-CT avoids the high memory
requirements of prior PWC algorithms and significantly reduces the time
required to enforce PWC.

1 Introduction

Consistency properties and algorithms for enforcing them on a Constraint Sat-
isfaction Problem (CSP) are one of the most intensively studied topics in Con-
straint Programming (CP). Consistency algorithms are used for inference and
effectively reduce the search space of solving a CSP. In particular, Generalized
Arc Consistency (GAC) has recently been the focus of extensive research for a
good reason: it lends itself towards simple yet highly effective algorithms. Indeed,
the low cost and effectiveness of GAC algorithms when paired with an order-
ing heuristic like dom/wdeg have made them the de facto baseline for research.
The current state-of-the-art in GAC algorithms are Compact-Table (CT) [8] and
STRBit [27], both of which use bitsets to quickly check for supports and perform
tabular reduction – the process of removing invalid tuples from constraints.

Algorithms that enforce pairwise-consistency (PWC) have received a rela-
tively modest amount of attention [23]. Recent algorithms have shown promise
on some benchmarks [15–17,20], at times considerably reducing the size of the
search space. However, enforcing GAC with either CT or STRBit outperforms

The original version of this chapter was revised: The title has been corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-98334-9 48

Supported by NSF Grant No. RI-1619344. Work completed utilizing the Holland Com-
puting Center of the University of Nebraska, which receives support from the Nebraska
Research Initiative. We thank the reviewers for constructive feedback.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 345–361, 2018.
https://doi.org/10.1007/978-3-319-98334-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_23&domain=pdf
https://doi.org/10.1007/978-3-319-98334-9_48

346 A. Schneider and B. Y. Choueiry

these PWC algorithms due to the latter’s initialization overhead, memory usage,
and computational cost.

In this paper, we introduce PW-CT, an algorithm for enforcing full PWC,
as an extension of CT [8]. PW-CT requires few modifications to the original CT
structures, exploits mechanisms from existing PWC algorithms, and integrates
additional improvements discussed in this paper. More specifically, PW-CT uses
CT (i.e., GAC) as much as possible to avoid costly PWC checks in two ways:
by ensuring the problem is GAC before resorting to any PWC checks and by
identifying situations where GAC guarantees PWC. Finally, it exploits properties
of the dual CSP to speed-up processing and reduce memory consumption. We
compare the performance of PW-CT to that of state-of-the-art GAC and full
PWC algorithms. We show that PW-CT dominates the latter by a large margin
and outperforms both STRBit and CT on several benchmarks.

This paper is structured as follows. Section 2 provides background informa-
tion. Section 3 reviews the state of the art. Section 4 identifies directions to
improve PWC algorithms. Section 5 discusses PW-CT. Section 6 discusses our
experiments. Finally, Sect. 7 concludes this paper.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as P= (X ,D, C), where X is
a set of variables, D the set of their domain values, and C is a set of constraints
ci = 〈Ri, scope(ci)〉, where Ri is a relation defined on the variables in the scope
of the constraint, scope(ci) ⊆ X , restricting the combination of values that the
variables can take at the same time. The arity of a constraint is the cardinality
of its scope. Solving a CSP requires assigning to each variable a value from its
domain such that all the constraints are satisfied. In this paper, we consider
table constraints, where relations are given by their allowed tuples. We use the
relational projection operator π to restrict a tuple to a set of variables.

In the hypergraph representation of a CSP, the vertices represent CSP vari-
ables. Hyperedges represent constraints and connect the variables in the scope
of the constraints. In the dual graph representation, the vertices represent the
CSP constraints and edges connect vertices that share variables. Figure 1 shows
the dual graph of a CSP with four nonbinary constraints. The edges are equality
constraints forcing the shared variables to agree on the assigned values.

Fig. 1. Dual graph (left), subscopes and blocks (center), a minimal dual graph (right)

We designate by subscope the set of CSP variables shared by two constraints,
subscope(ci, cj) = scope(ci)∩ scope(cj). Multiple edges in the dual graph may be

PW-CT 347

labeled by the same subscope. In Fig. 1, each of the subscopes AB and AC label
two edges and each of the subscopes A and ABC label one edge. The equal-
ity constraints of the dual graph are binary and piecewise functional [10,23]. A
binary constraint is said to be piecewise functional if the domains of the variables
in its scope can be partitioned such that a set from one variable is supported by
at most one set in the other and vice versa. Because of the piecewise function-
ality of the constraints of the dual graph, each subscope partitions the tuples
of a constraint into sets of equivalent tuples, which we call blocks. In Fig. 1, the
subscope AB partitions each of the two relations R1 and R2 into three blocks.
We define the signature of a block as the set of variable-value pairs of the induc-
ing subscope (e.g., {〈A, 0〉, 〈B, 0〉}). Thus, a signature is uniquely determined
by a combination of a constraint, subscope, and tuple. Janssen et al. [11] and
Dechter [7] observed that, in the dual graph, an edge between two vertices is
redundant if there exists an alternate path between the two vertices such that
the shared variables appear in every vertex in the path. Redundant edges can
be removed without affecting the set of solutions. Janssen et al. [11] introduced
an efficient algorithm for computing the minimal dual graph by removing redun-
dant edges. Many minimal graphs may exist, but all are guaranteed to have the
same number of edges. Figure 1 shows an example of a minimal dual graph.

In this paper, we exploit the following two consistency properties:

Definition 1. Generalized Arc Consistency (GAC) [18,26]: A constraint net-
work P = (X ,D, C) is GAC iff, for every constraint ci ∈ C, and ∀xj ∈ scope(ci),
every value v ∈ D(xj) is consistent with ci (i.e., appears in some support of ci).

Definition 2. Pairwise Consistency (PWC) [9]: A constraint network P = (X ,
D, C) is PWC iff, for every tuple ti in every constraint ci there is a tuple tj in
every constraint cj such that πsubscope(ci,cj)(ti) = πsubscope(ci,cj)(tj), tj is called
a PW-support of ti in cj. A CSP that is both PWC and GAC is said to be full
PWC (fPWC).

3 Related Work

The CT algorithm [8] is the current state-of-the-art algorithm for enforcing
GAC.1 It makes heavy use of a data structure called an RSparseBitSet, which is
similar to the sparse set structure [5,6]. In this paper, we extend the definition
of the RSparseBitSet to facilitate PWC operations.

STRBit [27] is a GAC algorithm similar to CT in that it operates on bitsets.
STRBit differs from CT in its data structures and how it propagates changes.
To our knowledge, a comparison of the performance of these two algorithms has
not yet appeared in the literature.

Samaras and Stergiou introduced PW-AC [23], an algorithm for enforcing
PWC. PW-AC operates on the dual graph of the CSP, taking advantage of
the piecewise functionality of the equality constraints. It propagates deletions

1 In this paper, we consider that a GAC algorithm applies tabular reduction.

348 A. Schneider and B. Y. Choueiry

of blocks of tuples, rather than individual tuples, and maintains counts of the
living tuples in each block. Notably, it iterates over every pair of constraints
with a non-empty subscope.

The parametrized algorithms PerTuple [12,13] and PerFB [24] enforce m-wise
consistency, which generalizes pairwise consistency to every set of m constraints.
Both algorithms use data structures that group the equivalent tuples in a con-
straint based on the piecewise-functionality property.

Algorithm eSTR [15], an extension of the STR family of algorithms for
GAC [14,25], enforces fPWC. It maintains PWC by tracking the counts of PW-
supports of each tuple in a constraint relative to all other constraints in the
problem and verifying a valid PW-support for each tuple as it is processed by
STR. Algorithm eSTRw is a modification of eSTR and enforces a weakened
version of fPWC by not re-queuing a constraint after a PW-support is lost.

Algorithms HOSTR and MaxRPWC+r [20] enforce consistency properties
that are weaker than PWC and incomparable to each other. fHOSTR, a variant
of HOSTR, enforces full PWC, but was found by its authors to be too expensive
relative to its weakened version. Paparrizou and Stergiou show that HOSTR and
MaxRPWC+r outperform STR2 [14] on certain benchmarks.

Some approaches for enforcing higher order consistencies apply GAC after
reformulating the CSP with new constraints or variables. Algorithm DkWC [19]
enforces k-wise consistency by adding new hybrid constraints to the problem.
The Factor Encoding (FE) enforces fPWC by adding new variables to the prob-
lem, thereby increasing the arity of constraints [16]. A decomposition of the FE
lessens the imposed arity increases from FE while still enforcing fPWC [17].

4 Improving PWC Algorithms

Below, we describe four distinct techniques to improve the performance of PWC
algorithms. These methods can be combined or exploited in isolation.

4.1 Piecewise Functionality

As mentioned in Sect. 2, Samaras and Stergiou [23] exploit the piecewise-
functional property of the equality constraints of the dual graph to infer the
blocks of equivalent tuples of two constraints with shared variables. If a tuple τ
in a constraint ci does not have a PW-support in another constraint cj , all tuples
in the block induced by πsubscope(ci ,cj)(τ) on ci can be immediately removed. Fur-
ther, all other blocks of tuples that are PW-supported by τ in all other neigh-
boring constraints (i.e., have the same signature) must also be deleted. This
operation is in stark contrast with most GAC-based algorithms that search for
supports one tuple at a time (except, of course, AC-5 [10]).

4.2 Pairwise Vs Subscope Reasoning

Algorithms for enforcing pairwise consistency usually operate on every pair of
constraints with overlapping subscopes (e.g., PW-AC partitions relations pair-
wise, eSTR counts supports pairwise, etc.). Karakashian et al. [13] and Schneider

PW-CT 349

et al. [24] exploit the fact that, for a given subscope, any number of relations
induce on a relation Ri the same unique partition. For example, in Fig. 1, the
blocks induced by subscope {A,B} on relation R1 are the same for any relation
Rj such that subscope(R1, Rj) = {A,B}.

Consequently, identifying and storing a relation’s partitions based on unique
subscopes rather than by the degree of a vertex in the dual graph can signifi-
cantly reduce the memory requirements of algorithms that exploit the pairwise
functionality of the equality constraints of the dual graph.

4.3 Minimal Dual Graph

As stated in Sect. 2, we can remove redundant edges in the dual graph of a CSP
without affecting the set of solutions. In fact, Janssen et al. [11] show that enforc-
ing PWC on a dual graph is equivalent to enforcing PWC on any of its minimal
dual graphs. Importantly, removing redundant edges can reduce not only the
degree of the graph (thus reducing the number of pairs of constraints over which
a PWC algorithm must iterate) but also the number of unique subscopes that
a PWC algorithm must take into consideration. For instance, in the example
shown in Fig. 1, removing redundant edges eliminates: (1) The need to compute
and store the partitions of R1 for the subscope {A,B} and the partitions of R3

for the subscope {A,C} and (2) The subscope {A} and the partition it induces
on each of R2 and R4. Consequently, a minimal dual graph can reduce the num-
ber of neighbors of a constraint in the problem, the number of unique subscopes
incident to a constraint, and may entirely eliminate some subscopes from the
problem. We conclude that a PWC algorithm that operates on a minimal dual
graph may reduce its memory requirements and increase its propagation speed
because of the reduced number of subscopes to consider per constraint and the
total number of unique subscopes.

4.4 Determining When GAC Is Enough to Enforce PWC

In some situations, GAC is enough to enforce PWC between constraints. The
algorithm eSTR, for example, only checks for PW-supports over “non-trivial”
subscopes, which are subscopes with a cardinality strictly greater than one [15].
In fact, the particularity of constraints intersecting on at most one variable is
discussed by Bessiere et al. [3] but PWC is unexplainably excluded from the
corresponding theorem. Below, we restate this property and give a proof:

Proposition 1. GAC is sufficient to enforce PWC over trivial subscopes.

Proof. Consider the CSP P= (X ,D, C). If a subscope is trivial (e.g., subscope =
{x} ⊂ X) the signature of each block induced by this subscope is one variable-
value pair (e.g., 〈x, a〉). Thus, the block loses all PW-supports only if 〈x, a〉 is
removed from the problem. If 〈x, a〉 is deleted, a tabular-reduction algorithm
necessarily removes all tuples with 〈x, a〉 from the problem. On the other hand,
if 〈x, a〉 is alive after enforcing GAC, then, by definition, ∀ci ∈ C such that

350 A. Schneider and B. Y. Choueiry

x ∈ scope(ci), there is at least one living tuple τ in the relation of ci such that
πx(τ) = a. �

We elucidate a particular situation, which arises during search, in which the
above property holds even for non-trivial subscopes as long as GAC is enforced
on a constraint prior to running a PWC algorithm:

Proposition 2. GAC is sufficient to enforce PWC on a block induced by a non-
trivial subscope whose signature includes a deleted variable-value pair.

Proof. This proposition follows from Proposition 1. Consider a block bi induced
by a non-trivial subscope σi on the constraint ci. If a dead variable-value pair
〈x, a〉 is in the block’s signature, a tabular-reduction GAC algorithm removes
all tuples with 〈x, a〉 from the problem, and as a result, it removes all the
PW-supports of bi from the relations of neighboring constraints because they
necessarily also contain 〈x, a〉 in their signatures. �

Algorithm eSTR [15] implicitly applies this principle by ensuring that all the
variable-value pairs of a tuple are alive before checking whether or not the tuple
has PW-supports in neighboring constraints. We exploit Proposition 2 in PWC
algorithms in a slightly more efficient manner. Assume a CSP is already PWC,
after a variable is instantiated, we run an STR-based GAC, which may delete
tuples from constraints. We now need to process these deleted tuples because
some of them may be the sole tuples of some blocks that were the PW-support
of other blocks in other constraints. In the case that a variable-value pair deleted
by GAC appears in the signature of a block in which one of these deleted tuples
appears, we can safely skip the processing we intended to do because its result
is ensured by GAC. This operation is implemented in function EnforcePWC
(Algorithm 4) in Sect. 5.2. In summary, Algorithm eSTR exploits the property by
checking first whether the tuple is GAC and we exploit the property by avoiding
checking PWC on blocks that we know are dead.

5 PW-CT

We now introduce PW-CT, an fPWC algorithm that exploits the mechanisms
presented in Sect. 4. First, we describe how we modify the RSparseBitSet class
of the CT algorithm [8] and the additional data structures required for enforcing
PWC. Then, we provide the pseudocode of PW-CT.

5.1 Data Structures

PW-CT exploits the functions and data structures CT [8]. Below, we review the
CT data structures and the additions required for PW-CT.

PW-CT 351

Support Structures. Both CT and PW-CT represent the living tuples in a
constraint as an RSparseBitSet. The RSparseBitSet stores four members: an
array of reversible 64-bit integers called words,2 a reversible integer called limit
that represents the number of non-zero integers in words, an array called index
that stores the position of all non-zero integers in words in locations less-than or
equal-to limit, and an array called mask used to modify the set. Demeulenaere
et al. [8] introduce member functions of the RSparseBitSet used by PW-CT
which we briefly review: function addToMask takes an array and alters mask to be
the bitwise OR of the array and the current mask, function intersectWithMask
alters words to be the bitwise AND of the current words and mask, and function
clearMask sets the integers in mask to 0.

The RSparseBitSet for a constraint ci is denoted as living(ci). The data
structure supports[ci, x, a] is a static array of bits corresponding to the tuples of
a constraint ci that have the value a for variable x.3 To improve performance of
various functions in PW-CT, we introduce a structure indices[ci, x, a], which is
an RSparseBitSet that stores the positions in supports[ci, x, a] that are non-zero.

PW-CT uses two maps. The first, incidentCons[σ], gives the list of constraints
incident to a non-trivial subscope σ. The second, incidentSubscopes[ci], gives the
list of non-trivial subscopes incident to a constraint ci. We can optionally use the
minimal dual graph to reduce the number of generated subscopes in each map
without affecting the level of consistency enforced (see Sect. 4). Importantly, all
these support structures are created at initialization.

Blocks. We represent a block as a simple structure with a member sets, which
is a vector of pointers to supports[ci, x, a] representing the signature of the block,
and a member commonIndices, which is an RSparseBitSet of the indices shared
by all of the supports in sets. Performing an intersection of the sets in a block
computes the set of tuples with the signature corresponding to sets. In PW-CT,
blocks are never stored but always computed dynamically during search.

The function CreateBlock (Algorithm 1) takes as input a constraint,
tuple, and subscope and returns a block structure, which can be used to
dynamically compute the partition of tuples of the constraint with the corre-
sponding signature. The RSparseBitSet commonIndices improves performance of
some operations of the methods listed in Algorithm 2. Note that the method
initIntersection called in Line 7 is defined in Algorithm2 and makes use of
the call swap in Line 5.

Additional Methods for the RSparseBitSet Class. Algorithm 2 introduces
additional methods for the RSparseBitSet class for use in PW-CT. The method
initIntersection is used in CreateBlock to initialize the RSparseBitSet
with the indices common to a collection of RSparseBitSets.

2 64-bit on most current architectures.
3 Note that we have added the additional parameter ci to supports[] to uniquely deter-

mine the constraint’s supports we are referring to in the pseudocode.

352 A. Schneider and B. Y. Choueiry

Algorithm 1. CreateBlock(ci, τ, σ)

Input: A constraint ci, a tuple τ , and a subscope σ
Output: A block b

1 j ← 0
2 foreach variable x ∈ σ do
3 b.sets[j] ← supports[ci][x][τ [x]] // τ [x] is the value for x in tuple τ
4 ind[j] ← indices[ci][x][τ [x]]
5 if ind[j].limit < ind[0].limit then swap(ind[j], ind[0])
6 j ← j + 1

7 b.commonIndices.initIntersection(ind)
8 return b

We overload the original RSparesBitSet method intersectIndex to operate
on blocks. It is similar in behavior to the original intersectIndex, differing in
that it determines if a block of tuples has a support in the set, rather than a
single variable-value pair. The method removeBlock computes the set-difference
between the RSparseBitSet and a block of tuples.

Now, we list functions omitted from Algorithm2 for brevity. The methods
save and restore respectively save and restore the state of the reversible ele-
ments in the RSparseBitSet. We maintain the number of living bits when altering
the set and numSet returns this value.4 PW-CT relies on the ability to discover
the tuples removed between two points in time (the delta of the set). To this end,
method computeDelta returns an RSparseBitSet containing the bits removed
between the current state of the RSparseBitSet and the last stored state. Method
clearDelta readies the set to track the next set of removed tuples, but does not
alter the currently set bits. These were implemented using the method save and
comparing the reversible primitives of the current state of the set and its previ-
ously saved state. Method addBlockToMask behaves like the original addToMask,
but adds to the mask only those bits common to all bit-sets in the block. Its
implementation follows from addToMask and intersectIndex. We also assume
that the bits in the RSparseBitSets are iterable and treat the bits and the tuples
they represent interchangeably in our pseudocode for simplicity.

5.2 Enforcing PW-CT

Roughly speaking, PW-CT has two main phases: a GAC phase, in which CT is
executed until quiescence, and a PWC phase that performs a single pass over
the tuples deleted by CT to uncover new non-PWC blocks. PW-CT maintains
two queues: CTQueue tracks constraints that must be ‘checked for GAC’ and
PWCQueue tracks constraints that have lost tuples thus threatening the PW-
consistency of blocks in other constraints. Both queues are sets.

Function Lookahead (Algorithm 3) is the entry point for PW-CT. Lines 4
to 7 run CT until quiescence and enqueues constraints modified by GAC into
4 This can be done efficiently in C++ with Clang/GCC’s builtin popcountll.

PW-CT 353

Algorithm 2. Additional algorithms required for RSparseBitSet

1 Method initIntersection(sets: A vector of RSparseBitSets):
2 limit ← −1
3 index ← ∅
4 Expand words and index to size of sets[0].words
5 foreach i ← 0 to sets[0].limit do
6 offset ← sets[0].index[i]
7 bits ← sets[0].words[offset]
8 for set ∈ sets and bits �= 0 do
9 bits ← bits & set.words[offset] // Bitwise AND

10 if bits �= 0 then
11 words[offset] ← bits
12 limit ← limit + 1
13 index[limit] ← offset

14 Method intersectIndex(block: A Block created by createBlock):
// If limit < block.commonIndices.numSet(), iterate from 0 to limit

15 for offset ∈ block.commonIndices do
16 intersection ← words[offset]
17 for set ∈ block.sets and intersection �= 0 do
18 intersection ← intersection & set.words[offset] // Bitwise AND

19 if intersection �= 0 then return offset

20 return -1

21 Method removeBlock(block: A Block created by createBlock):
22 for i ← limit to 0 do
23 offset ← index[i]
24 if offset ∈ block.commonIndices then
25 b ← 64-bit Integer with all bits set
26 for set ∈ block.sets and b �= 0 do
27 b ← b & set.words[offset] // Bitwise AND

28 words[offset] ← words[offset] & ∼b // Bitwise NOT

29 if words[offset] = 0 then
30 index[i] ← index[limit]
31 index[limit] ← offset
32 limit ← limit −1

PWCQueue. CT enqueues constraints with modified variables into CTQueue,
thus, when execution hits Line 9, the problem is GAC but not necessarily PWC.
Lines 9 to 13 call function EnforcePWC (Algorithm 4) on modified constraints
to determine if the removal of tuples in each constraint ci in the queue causes
the loss of a PW-support in another constraint.

EnforcePWC iterates over all subscopes incident to a constraint and the
constraint’s most recently removed tuples, checking whether the block induced

354 A. Schneider and B. Y. Choueiry

Algorithm 3. Lookahead(P) Enforces PWC on a CSP P
Input: A CSP P = (X , D, C)
Output: Whether the current problem is consistent

1 consistent ← true
2 if P has not been preprocessed then
3 consistent ← PreProcess(C)
4 while consistent and not empty(CTQueue) do
5 ci ← pop(CTQueue)
6 consistent ← CompactTable(ci)
7 if ci was modified then push(ci,PWCQueue)
8 if consistent and empty(CTQueue) then
9 mCons ← PWCQueue

10 for ci ∈ mCons and consistent do
11 consistent ← EnforcePWC(ci)

12 living(ci).clearDelta()
13 PWCQueue ← PWCQueue \{ci}

14 return consistent

by the combination of each subscope and tuple is empty. As discussed in Sect. 4.4,
any blocks whose signatures have variable-value pairs removed by GAC neces-
sarily have had all of their supporting blocks in neighboring constraints removed
as well. The loop beginning at Line 4 in EnforcePWC (Algorithm 4) takes
advantage of this insight by discarding blocks of tuples from consideration for
PW-support checks, skipping unnecessary calls to ReviseBlock (Algorithm 5).
It uses a mechanism similar to the incremental and reset-based updates [22],
where Δx is the set of values of variable x removed by the previous call to CT.

Lines 16 to 19 check the block induced by each removed tuple for the current
subscope for validity by calling function ReviseBlock (Algorithm 5). If no other
tuples in the induced block are alive in the constraint, ReviseBlock removes
the piecewise-functional blocks from all other constraints incident to the current
subscope, and enqueues the constraints modified during this process. Multiple
tuples in the set of removed tuples may belong to the same block for a given
subscope, so, Line 19 removes all other tuples from that block from the set of
tuples to check (as successive calls for the same block would be redundant).

It is advantageous to interleave CT and EnforcePWC calls because tuples
removed by EnforcePWC may enable value deletions that can be propagated
quickly by CT. To prevent running EnforcePWC until quiescence on the first
pass, a copy of the queue is created in Line 9 of Lookahead (Algorithm 3). As
a result, each modified constraint is processed at most once at each PWC pass.

Proposition 3. If the CSP is initially PWC, Lookahead guarantees fPWC.

Proof. Consider a constraint ci altered by CT. Because the problem was PWC
prior to running CT, the only ‘endangered’ blocks in ci have tuples deleted
by CT. To enforce PWC, we need to check if any block bi whose signature is a

PW-CT 355

Algorithm 4. EnforcePWC(ci) Propagates invalid blocks of ci

Input: Constraint ci that has been modified by CT
Output: Whether the current problem is consistent

1 tupsToCheck ← living(ci).computeDelta()
2 for σ ∈ incidentSubscopes[ci] do
3 tupsToCheck.save()
4 for variable x ∈ σ s.t. x was modified on previous call to CT do
5 if |D(x)| < |Δx| then
6 tupsToCheck.clearMask()
7 for value a ∈ D(x) do
8 tupsToCheck.addToMask(supports[ci][x][a])

9 tupsToCheck.intersectWithMask()

10 else
11 for value a ∈ Δx do
12 b ← an empty block
13 b.sets ← supports[ci][x][a]
14 b.indices ← indices[ci][x][a]
15 tupsToCheck.removeBlock(b)

16 for τ ∈ tupsToCheck do
17 consistent ← ReviseBlock(ci, σ, τ)
18 if not consistent then return false
19 tupsToCheck.removeBlock(CreateBlock(ci, σ, τ))

20 tupsToCheck.restore()

21 return true

Algorithm 5. ReviseBlock(ci, σ, τ) Removes supports of empty block

Input: A constraint ci, a subscope σ, and a tuple τ
Output: Whether the current problem is consistent

1 if living(ci).intersectIndex(CreateBlock(ci, σ, τ)) = -1 then
2 for cj ∈ incidentCons[σ] s.t. ci �= cj do
3 living(cj).removeBlock(CreateBlock(cj , σ, τ))
4 if living(cj) was modified then
5 if living(cj).numSet() = 0 then return false
6 push(cj,PWCQueue)
7 push(cj,CTQueue)

8 return true

combination of a deleted tuple τ of ci, a subscope σi incident to ci and ci is empty
as a result of CT. If we find a block bi to be empty, we can remove the blocks
that are PW-supports of bi from all constraints cj incident to σi. Because each cj
modified in ReviseBlock is added to the PWCQueue (Line 6), the removal of
any tuple in cj by ReviseBlock that emptied a block induced on any subscope

356 A. Schneider and B. Y. Choueiry

σj is necessarily detected by the next call to EnforcePWC(cj). Running CT
in between calls to EnforcePWC on any modified constraint ensures that the
domains of the variables in the scope of the constraint are ‘synced’ with the
constraint’s relation, thus, ensuring fPWC. �

Proposition 4. The time complexity of calling EnforcePWC on a constraint
is O((|C| · t) · (t

64
 · |C| + |σ|)), where t is the number of tuples in the largest
constraint and σ the largest subscope.

Proof. ReviseBlock iterates over the constraints incident to a subscope, which
in the worst case is |C|−1. Each constraint may need to call removeBlock, which
requires iterating over 	t/64
 elements. Creating the block requires iterating over
σ. The only tuples evaluated by ReviseBlock are those that have been removed
from a constraint, and at most t tuples can be removed. A removed tuple can
be revised for each of its constraint’s incident subscopes. In the worst case, a
constraint has |C| − 1 neighbors in the dual graph, and each neighbor induces a
unique subscope. Therefore, each tuple in the problem may cause ReviseBlock
to be called O((|C| · t) · (t

64
 · |C| + |σ|)) times. �

Algorithm 6. PreProcess(C) Runs CT and removes non-PWC tuples

Input: A set of constraints C
Output: Whether the current problem is consistent

1 Run CT until quiescence
2 if consistent then
3 consistent ← InitPWC(C)

4 if consistent then
5 forall ci ∈ C do living(ci).clearDelta()
6 consistent ← InitPWC(C)

7 return consistent

PW-CT requires an additional initialization step to guarantee that prepro-
cessing enforces fPWC. Consider the tuple τ = {〈A, 1〉,〈B, 1〉,〈C, 1〉, 〈E, 1〉} in
R1 in Fig. 1. Each variable-value pair in τ has a GAC support in R2, but no
PW-support. EnforcePWC operates on deleted tuples in order to propagate
PW-support removals, but because τ ’s variable-value pairs are GAC, τ is not
deleted by CT. Therefore, EnforcePWC is not called. To remedy this situation,
all blocks that initially lack PW-supports need first to be removed from the prob-
lem. Once this removal is done, EnforcePWC can then evaluate the deleted
tuples and propagate any other blocks that are emptied by their removal. Func-
tion PreProcess (Algorithm 6) accomplishes this operation by first enforcing
GAC with CT and then calling function InitPWC (Algorithm 7).

Function InitPWC considers each subscope σ in the problem. It begins by
finding the constraint cs with the smallest number of living tuples incident to σ.

PW-CT 357

Algorithm 7. InitPWC(C) Partially enforces PWC on the constraints

Input: A set of constraints C
Output: Whether the problem is consistent at preprocessing

1 for σ ∈ Subscopes do
2 cs ← constraint with fewest living tuples ∈ incidentCons[σ]
3 foreach ci ∈ incidentCons[σ] do living(ci).clearMask()
4 toCheck ← living(cs) // Makes a copy

5 for τ ∈ toCheck do
6 tuplePWC ← true
7 foreach ci ∈ incidentCons[σ] and tuplePWC do
8 if living(ci).intersectIndex(CreateBlock(ci, τ, σ))= −1 then
9 tuplePWC ← false

10 if tuplePWC then
11 foreach ci ∈ incidentCons[σ] do
12 living(ci).addBlockToMask(CreateBlock(ci, τ, σ));

13 toCheck.removeBlock(CreateBlock(cs, τ, σ))

14 foreach ci ∈ incidentCons[σ] do
15 living(ci).intersectWithMask()
16 if living(ci) was modified then
17 push(ci,PWCQueue)
18 push(ci,CTQueue)

19 if living(ci).numSet = 0 then return false
20

21 return true

The algorithm checks if the blocks induced by the subscope σ for each tuple τ
in living(cs) has a PW-support in all constraints incident to σ (Lines 6 to 9).
If the block is supported, then, for each constraint cj incident to σ, we add
the block of tuples induced by τ to the mask of living(cj) (Line 12). After
all blocks of cs are processed, the masks of each RSparseBitSet living(cj) con-
tain only PW-supported tuples. Line 15 removes non-PWC tuples by calling
the intersectWithMask method for each living(cj). In practice, we found that
in some problems the number of initially non-PWC tuples can be extremely
large causing significant slowdown in the first call to EnforcePWC after Pre-
Process. To alleviate some of this burden, Function PreProcess runs twice
InitPWC. The second call to InitPWC tends to remove fewer tuples than the
first and guarantees the removal of any block that lost PW-supports due to the
first call. Note that only the first call is strictly necessary for correctness.

358 A. Schneider and B. Y. Choueiry

6 Experiments

Our experiments run on 72 benchmarks of non-binary CSPs.5 Instances with
intension and global constraints are converted to positive table constraints,
resulting in a total of 2,210 instances. We evaluate and compare a total of 11
algorithms (Table 1) starting with the following: STR2 [14], STRBit [27], and
CT [8] enforce GAC by table reduction; eSTR2 [15] enforces fPWC; eSTR2w [15]
enforces a weakened version of fPWC; STRBit+PW-AC is an unpublished hybrid
algorithm that runs STRBit until quiescence before running PW-AC (greatly
enhancing PW-AC’s effectiveness); and PW-CT enforces fPWC. Additionally,
we evaluate eSTR2m, eSTR2wm, and PW-CTm as variants of eSTR2, eSTR2w,
and PW-CT respectively, obtained on a minimal dual graph. Finally, Algo-
rithm STRBit+PW-ACms is a variant of STRBit+PW-AC that operates on
a minimal dual graph and propagates via subscopes. We test ordering heuristics
dom/ddeg [2] and dom/wdeg [4],6 finding the first consistent solution with our
custom solver. We limit each run to 7,200 s and 8GB of memory. When an algo-
rithm times out, we add 7,200 s to the CPU time and indicate with a > sign
that the time reported is a lower bound.

We perform a paired t-test between all algorithms with a significance level
α = .05. Under dom/ddeg, CT is the best algorithm with statistical significance.
Most notably, we find that both PW-CT and PW-CTm outperform all other
eight algorithms, including both STR2 and STRBit. To our knowledge, PW-CT
is the first fPWC algorithm to dominate a recent GAC algorithm. Exploiting
a minimal dual graph improves, with statistical significance, every PWC algo-
rithm tested. One exception occurs in the benchmark bddLarge, which times out
while computing the minimal dual graph. Indeed, the number of unique, non-
trivial subscopes in the problem is extremely large, averaging 1,123,484 over
its instances.7 Surprisingly, PW-CT completes every instance in the benchmark,
while all other PWC algorithms fail to complete even one instance. Not including
bddLarge, we are able to load 1,707 instances of which 854 have non-trivial sub-
scopes. The average number of unique subscopes on the full graph is 399.5, and
264.3 on the minimal. The remainder of the section discusses only the variants
of the PWC algorithms exploiting a minimal dual graph given their superiority.

Table 1 compares the performance of the 11 algorithms. It provides the
number of instances completed (#Cmpltd), the total CPU time (ΣCPU) over
instances completed by at least one algorithm, the number of memouts (#MO),
and the average number of node visits for instances completed by all algorithms
(#NV). We exclude instances not solved by any algorithm.

PW-CT has almost the same number of memouts as GAC algorithms, testi-
fying to its low memory consumption relative to all other PWC algorithms (34
5 http://www.cril.univ-artois.fr/CPAI08/.
6 Although dom/wdeg is generally more effective than dom/ddeg, the decisions made

by dom/wdeg are considered too unstable to objectively allow comparing algorithms’
performance. Researchers studying the performance of HLC during search typically
use dom/ddeg in their experiments [1,20,21].

7 Because bddLarge is an extreme outlier, we omit it from the results.

http://www.cril.univ-artois.fr/CPAI08/.

PW-CT 359

Table 1. Summary statistics of all tested instances

dom/ddeg dom/wdeg

#Cmpltd ΣCPU (sec) #MO #NV #Cmpltd ΣCPU (sec) #MO #NV

71 Benchmarks tested with 2,210 total instances total

GAC CT 1,411 >449,421 65 2.90M 1,474 >338,246 65 1.65M

STR2 1,284 >1,327,706 64 2.90M 1,355 >1,164,208 64 1.65M

STRBit 1,370 >765,923 64 2.90M 1,445 >600,089 65 1.65M

fPWC PW-CT 1,403 >579,112 65 0.99M 1,428 >715,885 65 0.82M

PW-CTm 1,403 >567,500 65 0.99M 1,431 >696,622 65 0.82M

STRBit+PW-AC 1,213 >1,738,628 137 0.99M 1,263 >1,752,986 139 0.84M

STRBit+PW-ACms 1,247 >1,472,804 113 0.99M 1,290 >1,527,538 113 0.84M

eSTR2 1,231 >1,750,990 102 0.99M 1,282 >1,769,454 102 0.83M

eSTR2m 1,248 >1,588,847 99 0.99M 1,295 >1,627,281 99 0.83M

wPWC eSTR2w 1,227 >1,784,866 102 1.01M 1,280 >1,769,529 102 1.1M

eSTR2wm 1,243 >1,629,846 99 1.01M 1,294 >1,622,247 99 1.1M

to 72 fewer memouts). PWC algorithms that exploit a minimal dual graph incur
fewer memouts than their original versions, testifying to the importance of using
a minimal dual graph for PWC algorithms. When using dom/wdeg, the results
of the pairwise t-tests are identical to dom/ddeg with the exception of STRBit
and PW-CT. STRBit improves dramatically, beating both variants of PW-CT.
Even so, it is clear from Table 1 that the performance of PW-CT is substantially
closer to state-of-the-art GAC than to other algorithms used to enforce fPWC.

Figure 2 shows cumulative graphs of the number of instances completed for a
given time using dom/ddeg: it compares the performance of PW-CTm with the
other GAC algorithms (left) and PWC algorithms (right). While CT wins, PW-
CTm is a close second, dominating the other two GAC algorithms. PW-CTm

clearly dominates all PWC algorithms by a large margin.

Fig. 2. PW-CTm vs. GAC-based (left) and PWC algorithms (right) with dom/ddeg

Table 2 shows select benchmarks where PW-CT outperforms CT. These
benchmarks were previously shown to benefit from enforcing PWC [20]. It is

360 A. Schneider and B. Y. Choueiry

Table 2. Select benchmarks using dom/ddeg (#I is the number of instances completed
by at least one algorithm, and σ is the average number of non-trivial subscopes)

Benchmarks #I #σ ΣCPU (sec)

CT STR2 STRBit PW-CTm STRBit+PW-ACms eSTR2m eSTR2wm

aim-100 24 146.9 >46,305 >54,997 >51,105 10,766 >19,078 >24,030 >37,687

aim-200 12 218.5 >34,208 >40,218 >35,594 69 121 253 >16,773

dubois 10 2.0 >29,801 >32,711 >31,363 10,798 >17,833 >20,061 >22,621

modRenault 50 61.6 2,553 >12,520 6,036 440 1,517 2,037 2,446

radar-8-24-3-2 1 113 2,621 3,450 3,452 2,612 >7,200 3,475 3,475

thus not surprising that those results hold for PW-CT. Notably, with the excep-
tion of the radar benchmark, all PWC algorithms outperform CT, emphasizing
the usefulness of enforcing fPWC on difficult problems.

7 Conclusion

In this paper, we show that all PWC algorithms benefit from using a minimal
dual graph to improve time and space cost and that the performance of PW-CT,
our new algorithm for fPWC, is second only to CT, the best GAC algorithm.

References

1. Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive con-
straint propagation. In: Proceedings of IJCAI 2015, pp. 290–296 (2015)

2. Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC
(and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118,
pp. 61–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 66

3. Bessière, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary
constraints. Artif. Intell. 172, 800–822 (2008)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

5. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett.
Program. Lang. Syst. 2(1–4), 59–69 (1993)

6. le Clément, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain imple-
mentation. In: Proceedings of the CP Workshop on TRICS 2013 (2013)

7. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
8. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C.,

Schaus, P.: Compact-table: efficiently filtering table constraints with reversible
sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 14

9. Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst.
11(1), 81–108 (1986)

10. Hentenryck, P.V., Deville, Y., Teng, C.M.: A generic arc consistency algorithm and
its specializations. Artif. Intell. 57, 291–321 (1992)

11. Janssen, P., Jégou, P., Nougier, B., Vilarem, M.: A filtering process for general
constraint-satisfaction problems: achieving pairwise-consistency using an associ-
ated binary representation. In: IEEE Workshop on Tools for AI, pp. 420–427 (1989)

https://doi.org/10.1007/3-540-61551-2_66
https://doi.org/10.1007/978-3-319-44953-1_14

PW-CT 361

12. Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the performance of
consistency algorithms by localizing and bolstering propagation in a tree decom-
position. In: Proceedings of AAAI 2013, pp. 466–473 (2013)

13. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first
practical algorithm for high levels of relational consistency. In: Proceedings of
AAAI 2010, pp. 101–107 (2010)

14. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

15. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a higher-order con-
sistency. In: Proceedings of AAAI 2013, pp. 576–582 (2013)

16. Likitvivatanavong, C., Xia, W., Yap, R.H.C.: Higher-order consistencies through
GAC on factor variables. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
497–513. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 37

17. Likitvivatanavong, C., Xia, W., Yap, R.: Decomposition of the factor encoding for
CSPs. In: Proceedings of IJCAI 2015, pp. 353–359 (2015)

18. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118
(1977)

19. Mairy, J.-B., Deville, Y., Lecoutre, C.: Domain k-wise consistency made as sim-
ple as generalized arc consistency. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 235–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07046-9 17

20. Paparrizou, A., Stergiou, K.: Strong local consistency algorithms for table con-
straints. Constraints 21(2), 163–197 (2016)

21. Paparrizou, A., Stergiou, K.: On neighborhood singleton consistencies. In: Pro-
ceedings of IJCAI 2017, pp. 736–742 (2017)

22. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 44

23. Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfac-
tion problems: algorithms and experimental results. In: JAIR vol. 24, pp. 641–684
(2005)

24. Schneider, A., Woodward, R.J., Choueiry, B.Y., Bessiere, C.: Improving relational
consistency algorithms using dynamic relation partitioning. In: O’Sullivan, B. (ed.)
CP 2014. LNCS, vol. 8656, pp. 688–704. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10428-7 50

25. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci.
177(18), 3639–3678 (2007)

26. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.
(ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill Inc., New York
City (1975)

27. Wang, R., Xia, W., Yap, R.H.C., Li, Z.: Optimizing simple tabular reduction with
a bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–793 (2016)

https://doi.org/10.1007/978-3-319-10428-7_37
https://doi.org/10.1007/978-3-319-07046-9_17
https://doi.org/10.1007/978-3-319-07046-9_17
https://doi.org/10.1007/978-3-319-10428-7_44
https://doi.org/10.1007/978-3-319-10428-7_50
https://doi.org/10.1007/978-3-319-10428-7_50

Automatic Generation and Selection
of Streamlined Constraint Models via

Monte Carlo Search on a Model Lattice

Patrick Spracklen, Özgür Akgün(B), and Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jlps,ozgur.akgun,ijm}@st-andrews.ac.uk

Abstract. Streamlined constraint reasoning is the addition of unin-
ferred constraints to a constraint model to reduce the search space, while
retaining at least one solution. Previously it has been established that it is
possible to generate streamliners automatically from abstract constraint
specifications in Essence and that effective combinations of streamliners
can allow instances of much larger scale to be solved. A shortcoming of
the previous approach was the crude exploration of the power set of all
combinations using depth and breadth first search. We present a new
approach based on Monte Carlo search over the lattice of streamlined
models, which efficiently identifies effective streamliner combinations.

1 Introduction and Background

If the performance of a constraint model is found to be inadequate, a natural step
is to consider adding constraints to the model in order to assist the constraint
solver in detecting dead ends in search and therefore reducing overall search
effort. One approach is to add implied constraints, which can be inferred from
the initial model and are therefore guaranteed to be sound. Effective implied
constraints have been found both by hand [17,18] and via automated methods
[10,11,19]. If implied constraints cannot be found, or improve performance insuf-
ficiently, for satisfiable problems1 a more aggressive step is to add streamliner
constraints [22], which are not guaranteed to be sound but are designed to reduce
significantly the search space while permitting at least one solution. For several
problem classes, effective streamliners have been found by hand by looking for
patterns in the solutions of small instances of those classes [22,24,26,27].

Wetter et al. [40] demonstrated how to generate effective streamliners auto-
matically from the specification of a constraint problem class in the abstract con-
straint specification language Essence [14–16]. This method, which we expand
upon, exploits the structure apparent in an Essence specification, such as that
of the Progressive Party Problem (Fig. 1), to produce candidate streamliners via

1 Streamlining is unsuitable for unsatisfiable problems: streamliners are not necessarily
sound, so exhausting the search space does not prove unsatisfiability (a case split
approach is possible: a sub-problem with a streamliner, another with its negation).

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 362–372, 2018.
https://doi.org/10.1007/978-3-319-98334-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_24&domain=pdf

Automatic Generation and Selection of Streamlined Constraint Models 363

Fig. 1. The Progressive Party Problem [36] in Essence. There are two abstract decision
variables, a set of host boats, and a set of functions from boats to boats representing
the assignment of guests to hosts in each period. From this very concise, structured
statement of the problem, 160 candidate streamliners can be generated by our system.

a set of streamliner generation rules. An effective streamliner that we automati-
cally generate for this problem class constrains approximately half of the entries
in the sched set variable to be monotonically increasing functions.

Using training instances drawn from the problem class under consideration,
streamliner candidates are evaluated via a toolchain consisting of the automated
constraint modelling tools Conjure [1–4] and Savile Row [31–33], and the
constraint solver Minion [21]. Promising candidates, which retain at least one
solution to the training instances while significantly reducing search, are used to
solve more difficult instances from the same problem class. Candidate stream-
liners are often most effectively used in combination. For example, Wetter et al.
presented an effective combination of three streamliners for the Van der Waer-
den numbers problem. Hence, the space of streamlined models forms a lattice
where the root is the original Essence specification and an edge represents the
addition of a streamliner to the combination associated with the parent node.

A shortcoming of Wetter et al.’s work is the uninformed manner in which the
streamliner lattice is explored using depth- or breadth-first search. Our princi-
pal contribution is a new method for exploring the lattice via Monte Carlo-style
search, allowing more effective streamlined models to be found in a time budget.
A second contribution is a set of new streamliner generator rules for sequence and
matrix Essence type constructors to complement those presented by Wetter
et al. Finally, we demonstrate the efficacy of our approach on a variety of
problems.

364 P. Spracklen et al.

2 Essence Specifications and Streamliner Generators

An Essence specification such as that presented in Fig. 1 identifies: the input
parameters of the problem class (given), whose values define an instance; the
combinatorial objects to be found (find); the constraints the objects must satisfy
(such that); identifiers declared (letting); and an (optional) objective function
(min/maximising). The key feature of the language is its support for abstract
decision variables, such as set, multiset, relation and function, as well as nested
types, such as the set of functions found in Fig. 1.

A concise, structured specification of a problem class directly supports the
generation of powerful candidate streamliners: in the example, it is readily appar-
ent that the problem requires us to find a set of boats and a set of functions
assigning guest boat crews to hosts. Hence, streamliners related to sets and
functions, such as that given in the introduction, can be generated straightfor-
wardly. In contrast an equivalent constraint model in, for example, MiniZinc [30]
or Essence Prime [32] has to represent these abstract decision variables with
constrained collections of more primitive (e.g. integer domain) variables, such
as the matrix model [12,13] proposed by Smith et al. [36]. In this context, it
is significantly more difficult to recognise the structure (i.e. the set and set of
functions) in the problem and generate the equivalent streamliners.

Wetter et al. present a set of streamliner generation rules for the Essence
type constructors set, function and partition, as well as simple integer domains
[40]. Our first contribution is to extend this set also to cover sequence and matrix
type constructors. These are summarised in Fig. 2. For decision variables with

Fig. 2. Streamliner generators for sequence and matrix domains.

Automatic Generation and Selection of Streamlined Constraint Models 365

matrix domains, one generator (matrix all) takes another streamliner generator
as a parameter (R, as a simple example: constrain an integer variable to take
an even value) and lifts it to operate on all entries in a matrix. This rule can
be applied to higher dimensional matrix domains as well, in which case the
multi-dimensional matrix domain is interpreted in the same way as a series
of nested one-dimensional matrix domains. The generators matrix most (and
matrix half and matrix approximately half) operate in a similar way. In contrast
to the matrix all streamliner generator, these generators first reify the result of
applying R, and then restrict the number of places the constraint must hold.

For sequence domains, we present two sets of first-order streamliner gen-
erators: monotonically increasing (or decreasing) and smallest (or largest) first.
These do not take another generator as a parameter but directly post constraints
on the sequence decision variable. The sequence on range and sequence on defined
generators take an existing streamliner generator as a parameter and lift it to
work on the range or the defined set of the sequence domain respectively.

3 Monte Carlo Search for Streamliner Combinations

Le Bras et al. [25] and Wetter et al. [40] both observed that by applying sev-
eral streamlining constraints to a model simultaneously the search required for
finding the first solution can be reduced further than by applying the streamlin-
ers in isolation. Finding an effective streamliner combination involves searching
the streamliner lattice, the size of which is determined by the power set of all
candidate streamliners for a given problem class. Table 1 presents the number of
candidate streamliners our current set of generation rules produces for a number
of problem classes. In some cases the number of candidates generated is small.
However, the cost of evaluating each combination on a set of test instances means
that it is typically not feasible to evaluate all possible streamliner combinations.

Wetter et al. employed breadth-first and depth-first search to explore the
streamliner lattice in an uninformed manner. The motivation for our work is the
hypothesis that a best-first search can allow more effective streamliner combi-
nations to be discovered within a given time budget. Our approach is to focus
the search onto areas of the lattice where the streamliners combine to give the
greatest reduction in search while retaining at least one solution.

For a given problem class, we have no prior knowledge of the performance
of the set of candidate streamliners, either individually or in combination. This
raises the issue of the exploration/exploitation problem: if we can identify a
combination of streamliners that performs well, should we try and exploit that
combination further by evaluating the addition of further streamliners, or should
we explore other parts of the lattice that may at present seem less promising?

The exploration/exploitation tradeoff can be formalised in several reinforce-
ment learning variants, including via markov decision processes [7]. We model
this situation as a multi-armed bandit problem [5], which allows us to employ
regret minimising algorithms to deal with the exploration/exploitation dilemma.
The multi-armed bandit can be seen as a set of real distributions, each dis-
tribution being associated with the rewards delivered by one of the K levers.

366 P. Spracklen et al.

Since the multi-armed bandit problem assumes that each lever corresponds to
an independent action, in order to use it directly we would have to associate a
lever with each point in the streamliner lattice, which is infeasible in general.
Instead, we use the bandit algorithm to guide the exploration of the lattice in a
process reminiscent of Monte Carlo Tree Search (MCTS) [8], as described below.

3.1 Algorithm Outline

Our algorithm has the same four basic steps as MCTS. It uses Upper Confidence
bound applied to Trees (UCT) [8] to balance exploration and exploitation.

1. Selection: Starting at the root node, the UCT policy is recursively applied to
traverse the explored part of the lattice until an unexpanded, but expandable
node is reached. A node is expandable if it has at least one child that is not
marked as pruned (Sect. 3.5). A child node is selected to maximise:

UCT = Xj + 2Cp

√
2 lnn

nj

where n is the number of times the current (parent) node in the lattice has
been visited, nj the number of times child j has been visited, Xj is the mean
reward associated with child j and Cp > 0 is a constant [8].

2. Expansion: Enumerate the children of the Selected node and choose one to
expand according to the heuristic explained in Sect. 3.4.

3. Simulation: The collection of streamliners associated with the expanded
node are evaluated using the Conjure, Savile Row, and Minion toolchain.

4. BackPropagation: The result of the evaluation is propagated back up
through the lattice to update reward values, as explained below.

3.2 Back Propagation

Since our search is operating over a lattice, a node may have multiple parents.
This requires an alteration to the back propagation employed in MCTS: when we
perform back propagation that reward value is back propagated up all paths from
that node to the root. To illustrate consider a problem with two streamliners
{A,B} and we are back propagating from a node in the lattice representing the
combination {AB}. There are two paths by which this node could have been
reached, {root → A → B} and {root → B → A}. Although the algorithm
will have only descended one of these paths, because the reward value of a
node in the lattice is representative of the ability of the streamliner combination
represented by that node to combine and produce effective reductions in search,
the node in the lattice that represents streamliner combination {B} should also
receive this reward. For this reason both paths are rewarded accordingly and the
reward generated is back propagated up all paths from that node to the root.
We also ensure that a node that lies on more than one such path is rewarded
only once. The cost of back propagation thus grows exponentially with depth.

Automatic Generation and Selection of Streamlined Constraint Models 367

However, since each level of the lattice represents an additional constraint it
is unlikely that satisfiability is maintained at great enough depths for this to
become an issue. Empirically, the cost is insignificant relative to solving the
training instances.

We must also consider the situation where a node in a path back to the root
has not yet been expanded. If we ignore such nodes, their true reward is not
reflected in their reward values because all reward values back propagated from
child nodes prior to their creation are lost. Our approach is that when a node is
expanded, it absorbs the reward value and visit count of its immediate children
that have already been expanded. This avoids caching a potentially large set of
values while maintaining reward values for nodes around the focus of our search.

3.3 Simulation Reward

The performance of our best first search algorithm is heavily reliant on how the
reward is produced from the simulation step. Initially we assigned rewards as
follows: if the majority of the instances evaluated are unsatisfiable a reward of
−1 is back-propagated, otherwise a reward of one minus the average reduction
in search space (expressed in search nodes) is returned. While this is valid, our
initial experiments revealed that its effect was to produce a search strategy
similar to breadth-first search - i.e. too strong a bias towards exploration.

The reason for this is that the penalty value is too punitive when evaluating
larger streamliner combinations. Intuitively, the penalty should be sensitive to
the depth we have travelled into the lattice: as we add streamliners we reduce
the search space and we expect the probability of such failure to rise. Therefore
we divide the penalty value by the depth of the node being evaluated, allowing
the prolonged exploration of promising paths.

3.4 Expansion Heuristic

The order of expansion of child nodes is an important factor in performance. An
expanded child consumes time to perform simulation and, because the simulation
reward is back propagated, if a penalty is awarded it can affect the likelihood
of the parent node being selected on the next iteration. During the expansion
phase of our algorithm child nodes are expanded in descending likelihood of the
application of the associated streamliner combination resulting in a satisfiable
problem. In order to facilitate this, when a successful simulation is performed, for
a representative instance the solution found is stored, along with the approximate
size of its search space (via the product of the domains of the decision variables
in the model) and the proportion of the space explored to find the solution.

368 P. Spracklen et al.

Upon expansion all potential children are enumerated and for each we check
whether the additional associated streamliner invalidates the solution stored at
the expanding parent. If the solution remains valid then the child is preferred
for expansion because we know pre-simulation that the associated streamliner
combination satisfies at least one instance and the additional streamliner might
reduce search. If the solution is invalidated then the search space explored by the
child is smaller than the expanding parent. We use the proportion of search space
explored to find the solution associated with the expanding parent to estimate
the likelihood of a solution existing in that subspace. Intuitively, if the parent
explored a large fraction of the space then it is less likely that a solution will be
found when adding the streamliner associated with the child node.

3.5 Pruning the Streamliner Lattice

As per Sect. 3.2, when a simulation for a streamliner combination reveals that
the majority of training instances are unsatisfiable, a penalty is back propagated
up the lattice. We also mark the node associated with the simulation as pruned
and never consider any of its children for expansion. In addition, we prune nodes
whose additional streamliner is determined to be redundant in combination with
those inherited from the expanding parent, in the sense that it causes no further
reduction in search on the evaluated instances. Pruning the lattice by these two
methods typically reduces the number of nodes to be expanded very significantly.

4 Empirical Evaluation

We evaluate two hypotheses empirically. First, that the best-first search is more
effective in exploring the streamliner lattice than the simpler depth- and breadth-
first search methods employed in [40]. Second, that our method is able to auto-
matically find streamliner combinations that drastically reduce the search space
across a variety of problem classes.

We experiment with thirteen problem classes, eight from Wetter et al. and the
remainder selected for variety, particularly problem classes requiring significantly
more instance data such as SONET [28]. Streamlining can aid in the search
for feasible solutions of optimisation problems, but not the proof of optimality.
Hence, in our experiments we transformed optimisation into decision problems
by the standard method of bounding the objective and searching for a satisfying
solution. The results we obtain are very positive, as presented in Table 1.

Automatic Generation and Selection of Streamlined Constraint Models 369

T
a
b
le

1
.

F
o
r

ea
ch

o
f

th
e

th
ir

te
en

p
ro

b
le

m
cl

a
ss

es
,

fi
ft

ee
n

in
st

a
n
ce

s
w

er
e

sp
li
t

7
0
/
3
0

in
to

tr
a
in

in
g

a
n
d

te
st

se
ts

.
A

ll
th

re
e

m
et

h
o
d
s

re
ce

iv
ed

th
e

sa
m

e
tr

a
in

in
g

b
u
d
g
et

o
f
si

x
h
o
u
rs

p
er

p
ro

b
le

m
cl

a
ss

,
a

co
st

w
h
ic

h
is

a
m

o
rt

is
ed

ov
er

th
e

en
ti

re
p
ro

b
le

m
cl

a
ss

fo
r

w
h
ic

h
th

e
st

re
a
m

li
n
er

s
a
re

a
p
p
li
ca

b
le

.
W

e
re

co
rd

th
e

n
u
m

b
er

o
f
ca

n
d
id

a
te

st
re

a
m

li
n
er

s
a
n
d

th
e

m
ea

n
ti

m
e

to
so

lu
ti

o
n

fo
r

th
e

te
st

in
st

a
n
ce

s
u
si

n
g

n
o
n
-s

tr
ea

m
li
n
ed

m
o
d
el

s
in

co
lu

m
n
s

2
a
n
d

3
.
F
o
r

th
e

su
b
st

a
n
ti

a
l
m

a
jo

ri
ty

o
f
th

e
p
ro

b
le

m
cl

a
ss

es
th

e
m

o
st

eff
ec

ti
v
e

st
re

a
m

li
n
er

d
is

co
v
er

ed
is

co
m

p
o
se

d
o
f
a

co
m

b
in

a
ti

o
n

o
f
in

d
iv

id
u
a
l
st

re
a
m

li
n
in

g
co

n
st

ra
in

ts
,
a
s

p
re

se
n
te

d
in

co
lu

m
n
s

4
,
6

a
n
d

8
.
In

th
es

e
ca

se
s

th
e

M
o
n
te

C
a
rl

o
se

a
rc

h
m

et
h
o
d

is
a
b
le

to
d
is

co
v
er

la
rg

er
co

m
b
in

a
ti

o
n
s

th
a
t

y
ie

ld
su

p
er

io
r

re
su

lt
s.

F
o
r

th
e

p
ro

b
le

m
cl

a
ss

es
w

h
er

e
a

si
n
g
le

st
re

a
m

li
n
er

w
a
s

fo
u
n
d

to
b
e

th
e

m
o
st

eff
ec

ti
v
e

a
ll

m
et

h
o
d
s

a
re

eq
u
a
ll
y

eff
ec

ti
v
e,

a
s

th
ro

u
g
h

p
ru

n
in

g
(S

ec
t.

3
.5

)
w

e
w

er
e

a
b
le

to
ex

h
a
u
st

iv
el

y
se

a
rc

h
th

e
sp

a
ce

o
f

a
ll

st
re

a
m

li
n
er

co
m

b
in

a
ti

o
n
s.

M
ea

n
re

d
u
ct

io
n

fo
r

b
o
th

ti
m

e
a
n
d

se
a
rc

h
n
o
d
es

is
m

ea
su

re
d

b
y

co
m

p
a
ri

n
g

th
e

se
a
rc

h
re

q
u
ir

ed
to

fi
n
d

th
e

fi
rs

t
so

lu
ti

o
n

o
n

th
e

n
o
n
-s

tr
ea

m
li
n
ed

m
o
d
el

w
it

h
th

e
m

o
d
el

st
re

a
m

li
n
ed

w
it

h
th

e
m

o
st

eff
ec

ti
v
e

st
re

a
m

li
n
er

co
m

b
in

a
ti

o
n

fo
u
n
d

u
si

n
g

th
e

re
sp

ec
ti

v
e

se
a
rc

h
m

et
h
o
d
.
T

h
e

se
le

ct
ed

st
re

a
m

li
n
er

s
fo

r
ea

ch
p
ro

b
le

m
cl

a
ss

re
ta

in
ed

sa
ti

sfi
a
b
il
it
y

o
n

a
ll

te
st

in
st

a
n
ce

s.
T

h
ro

u
g
h

th
e

a
d
d
it

io
n

o
f
st

re
a
m

li
n
in

g
co

n
st

ra
in

ts
w

e
o
b
ta

in
a

u
n
if
o
rm

ly
va

st
re

d
u
ct

io
n

in
b
o
th

se
a
rc

h
n
o
d
es

a
n
d

ti
m

e.
A

ll
co

m
p
u
ta

ti
o
n
a
l

ex
p
er

im
en

ts
w

er
e

ru
n

o
n

a
3
2
-c

o
re

A
M

D
O

p
te

ro
n

6
2
7
2

a
t

2
.1

G
H

z
a
n
d

a
n

8
co

re
In

te
l
C

o
re

i7
-6

9
2
0
H

Q
a
t

2
.9

0
G

H
z.

A
ll

ex
p
er

im
en

ts
fo

r
a
n

in
d
iv

id
u
a
l
p
ro

b
le

m
cl

a
ss

w
er

e
ru

n
o
n

a
si

n
g
le

m
a
ch

in
e.

E
x
p
er

im
en

ta
l
d
a
ta

,
m

o
d
el

s,
ra

w
re

su
lt

s,
a
n
d

so
u
rc

e
co

d
e

ca
n

b
e

d
ow

n
lo

a
d
ed

fr
o
m

:
h
tt

p
:/

/
g
it

h
u
b
.c

o
m

/
st

a
cs

-c
p
/
cp

2
0
1
8
-s

tr
ea

m
li
n
in

g

D
F
S

B
F
S

M
on

te
C
ar

lo

P
ro

b
le
m

C
la
ss

N
u
m
b
er

of
C
an

d
id
at

e
S
tr
ea

m
li
n
er
s

M
ea

n
In

st
an

ce
T
im

e
(S

ec
on

d
s)

C
om

b
in
at

io
n

si
ze

M
ea

n
R
ed

u
ct
io
n

in
S
ea

rc
h

N
od

es

C
om

b
in
at

io
n

si
ze

M
ea

n
R
ed

u
ct
io
n

in
S
ea

rc
h

N
od

es

C
om

b
in
at

io
n

si
ze

M
ea

n
R
ed

u
ct
io
n

in
S
ea

rc
h

N
od

es

M
ea

n
R
ed

u
ct
io
n

in
S
ea

rc
h

T
im

e
P
ro

gr
es
si
ve

P
ar

ty
[3
5]

16
0

76
1

48
.2
%

2
41

.5
%

4
93

.2
%

91
.7
%

M
E
B

[8
]

76
54

2
72

.7
%

2
83

.1
%

3
96

.2
%

93
.5
%

S
ch

u
r’
s
L
em

m
a
[3
8]

65
25

4
1

39
.2
%

1
81

.4
%

3
92

.3
%

89
.8
%

Q
u
as

ig
ro

u
p

E
xi
st
en

ce
[3
4]

17
33

7
1

83
.0
%

1
83

.0
%

1
83

.0
%

87
.4
%

V
an

D
er

W
ae

rd
en

N
u
m
b
er
s
[3
7]

65
14

2
3

84
.4
%

2
82

.3
%

4
96

.2
%

95
.7
%

G
ra

ce
fu
l
D
ou

b
le

W
h
ee

l
G
ra

p
h
s
[2
6]

72
57

2
2

65
.6
%

3
81

.0
%

4
94

.2
%

90
.2
%

G
ra

ce
fu
l
G
ea

rs
[2
8]

72
49

3
2

64
.6
%

2
84

.9
%

4
95

.5
%

89
.1
%

G
ra

ce
fu
l
H
el
m
s
[6
]

72
59

8
2

85
.4
%

2
80

.6
%

3
91

.8
%

87
.1
%

G
ra

ce
fu
l
W

h
ee

l
G
ra

p
h
s
[1
9]

72
12

2
69

.5
%

2
67

.4
%

4
88

.3
%

80
.8
%

C
ar

S
eq

u
en

ci
n
g
[3
3]

36
72

4
1

31
.9
%

1
31

.9
%

1
31

.9
%

37
.9
%

E
F
P
A

[2
2]

14
4

23
1

1
86

.1
%

1
86

.1
%

1
86

.1
%

85
.7
%

S
O
N
E
T

[2
7]

64
67

8
1

72
.0
%

2
87

.2
%

3
94

.6
%

95
.8
%

C
V
R
P

[3
6]

84
81

7
1

93
.0
%

1
93

.0
%

1
93

.0
%

84
.1
%

http://github.com/stacs-cp/cp2018-streamlining

370 P. Spracklen et al.

5 Conclusion

We have presented a new method for the automated generation of streamlined
constraint models from a large set of candidates via Monte Carlo search. Our
method is efficient in searching the space of candidates, producing more effective
streamlined models in less time than less informed approaches. Our empirical
results demonstrate a vast reduction in search across a variety of benchmarks.

As part of future work we plan to explore the generation of streamlined
versions of alternative models generated by Conjure. We expect the utility of
particular streamlining constraints to vary depending on the model.

Acknowledgements. This work was supported via EPSRC EP/P015638/1. We
thank our anonymous reviewers for helpful comments.

References

1. Akgün, Ö.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in
Conjure. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 11

3. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Breaking condi-
tional symmetry in automated constraint modelling with Conjure. In: ECAI, pp.
3–8 (2014)

4. Akgün, Ö., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, pp. 4–11. AAAI Press (2011)

5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235–256 (2002). https://doi.org/10.1023/A:
1013689704352

6. Ayel, J., Favaron, O.: Helms are graceful. In: Progress in Graph Theory (Waterloo,
Ont., 1982), pp. 89–92. Academic Press, Toronto (1984)

7. Bellman, R.: Dynamic Programming and Markov Processes. JSTOR (1961)
8. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Tavener, S.,

Perez, D., Samothrakis, S., Colton, S., et al.: A survey of Monte Carlo tree search
methods. IEEE Trans. Comput. Intell. AI 4(1), 1–43 (2012)

9. Čagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: Np-completeness and distribution issues. In: Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking, pp. 172–182.
ACM (2002)

10. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
ECAI 141, 73–77 (2006)

11. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 575–579. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45578-7 42

12. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling. In: Proceedings of the CP-01 Workshop on Modelling and Problem Formu-
lation, p. 223 (2001)

https://doi.org/10.1007/978-3-642-40627-0_11
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/3-540-45578-7_42

Automatic Generation and Selection of Streamlined Constraint Models 371

13. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix
modelling: exploiting common patterns in constraint programming. In: Proceedings
of the International Workshop on Reformulating Constraint Satisfaction Problems,
pp. 27–41 (2002)

14. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The essence
of essence. In: Modelling and Reformulating Constraint Satisfaction Problems, p.
73 (2005)

15. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design
of essence: a constraint language for specifying combinatorial problems. IJCAI 7,
80–87 (2007)

16. Frisch, A.M., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268–306 (2008)

17. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied
constraints: a constraint modelling pattern. In: ECAI, vol. 16, p. 171 (2004)

18. Frisch, A.M., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Proceedings of CP01 Workshop on Modelling and
Problem Formulation (2001)

19. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: a system for transforming constraint
satisfaction problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS, vol. 2627, pp.
15–30. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36607-5 2

20. Frucht, R.: Graceful numbering of wheels and related graphs. Ann. N. Y. Acad.
Sci. 319(1), 219–229 (1979)

21. Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. ECAI
141, 98–102 (2006)

22. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 22

23. Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant fre-
quency permutation arrays: an application of constraints to mathematics. In: Gent,
I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 50–64. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04244-7 7

24. Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143–157. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 11

25. Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Pro-
ceedings of the Twenty-Third International Joint Conference on Artificial Intelli-
gence, IJCAI 2013, pp. 587–593. AAAI Press (2013). http://dl.acm.org/citation.
cfm?id=2540128.2540214

26. Le Bras, R., Gomes, C.P., Selman, B.: On the Erdős discrepancy problem. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 440–448. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 33

27. LeBras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: IJCAI,
pp. 587–593 (2013)

28. Lee, Y., Sherali, H.D., Han, J., Kim, S.I.: A branch-and-cut algorithm for solving
an intraring synchronous optical network design problem. Networks 35(3), 223–232
(2000)

29. Ma, K., Feng, C.: On the gracefulness of gear graphs. Math. Pract. Theor. 4, 72–73
(1984)

https://doi.org/10.1007/3-540-36607-5_2
https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/978-3-642-04244-7_7
https://doi.org/10.1007/11499107_11
http://dl.acm.org/citation.cfm?id=2540128.2540214
http://dl.acm.org/citation.cfm?id=2540128.2540214
https://doi.org/10.1007/978-3-319-10428-7_33

372 P. Spracklen et al.

30. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

31. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically
improving constraint models in Savile Row through associative-commutative com-
mon subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 590–605. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-
7 43

32. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35–
61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

33. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding
of constraint problems through common subexpression elimination in Savile Row.
In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23219-5 23

34. Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop scheduling using automated rea-
soning: a case study of the car-sequencing problem. J. Autom. Reason. 2(1), 1–42
(1986)

35. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
quasigroup existence problems. Comput. Math. Appl. 29(2), 115–132 (1995)

36. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive
party problem: integer linear programming and constraint programming compared.
Constraints 1(1–2), 119–138 (1996)

37. Toth, P., Vigo, D.: The vehicle routing problem. In: SIAM (2002)
38. van der Waerden, B.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.

19, 212–216 (1927)
39. Walsh, T.: CSPLib problem 015: Schur’s lemma. http://www.csplib.org/Problems/

prob015
40. Wetter, J., Akgün, Ö., Miguel, I.: Automatically generating streamlined constraint

models with Essence and Conjure. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 480–496. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 34

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1007/978-3-319-10428-7_43
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-319-23219-5_23
http://www.csplib.org/Problems/prob015
http://www.csplib.org/Problems/prob015
https://doi.org/10.1007/978-3-319-23219-5_34
https://doi.org/10.1007/978-3-319-23219-5_34

Efficient Methods for Constraint
Acquisition

Dimosthenis C. Tsouros(B), Kostas Stergiou, and Panagiotis G. Sarigiannidis

Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece
{dtsouros,kstergiou,psarigiannidis}@uowm.gr

Abstract. Constraint acquisition systems such as QuAcq and MultiAcq
can assist non-expert users to model their problems as constraint net-
works by classifying (partial) examples as positive or negative. For each
negative example, the former focuses on one constraint of the target
network, while the latter can learn a maximum number of constraints.
Two bottlenecks of the acquisition process where both these algorithms
encounter problems are the large number of queries required to reach
convergence, and the high cpu times needed to generate queries, espe-
cially near convergence. We propose methods that deal with both these
issues. The first one is an algorithm that blends the main idea of Multi-
Acq into QuAcq resulting in a method that learns as many constraints
as MultiAcq does after a negative example, but with a lower complexity.
The second is a technique that helps reduce the number of queries sig-
nificantly. The third is based on the use of partial queries to cut down
the time required for convergence. Experiments demonstrate that our
resulting algorithm, which integrates all the new techniques, does not
only generate considerably fewer queries than QuAcq and MultiAcq, but
it is also by far faster than both of them, both in average query genera-
tion time and in total run time.

Keywords: Constraint acquisition · Learning · Modeling

1 Introduction

Constraint programming (CP) has progressed significantly over the last decades,
and is now considered as one of the foremost paradigms for solving combinatorial
problems. However, a major bottleneck in the use of CP is modeling. Expressing
a combinatorial problem as a constraint network requires considerable expertise
[1]. To overcome this obstacle, several techniques have been proposed for model-
ing a constraint problem automatically [2]. Along these lines, an area of research
that has started to attract a lot of attention is that of constraint acquisition
where the model of a constraint problem is acquired (i.e. learned) using a set of
examples that are posted to a human user or to a sofware system [3].

Constraint acquisition can come in various flavours depending on factors such
as whether the learner can post queries to the user dynamically, and the type
of queries that can be posted and answered. In passive acquisition, examples
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 373–388, 2018.
https://doi.org/10.1007/978-3-319-98334-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_25&domain=pdf

374 D. C. Tsouros et al.

of solutions and non-solutions are provided by the user. Based on these exam-
ples, the system learns a set of constraints that correctly classifies all the given
examples [3–7]. In active acquisition, the learner interacts with the user dynam-
ically while acquiring the constraint network [3,8,9]. In such a scenario, the
acquisition system proposes examples to the user to classify as solutions or non-
solutions. Such questions are called membership queries [10], and this is the class
of queries that has received the most attention.

A state-of-the-art interactive acquisition algorithm is QuAcq [11]. QuAcq is
able to ask the user to classify partial queries, which may be easier for the user
to answer. Also, asking partial queries gives the system the capability to focus
on the scope of a constraint that is violated and hence learn the constraint. If the
answer to a membership query posted by QuAcq is positive, the system reduces
the search space by removing the set of constraints violated by this example.
If the answer is negative, QuAcq asks a series of partial queries to locate the
scope of one of the violated constraints of the target network. An attempt to
make QuAcq more efficient was presented by Arcangioli et al., with the MultiAcq
algorithm [12]. Instead of focusing on the scope of only one constraint, MultiAcq
finds all the scopes of constraints of the target network violated by a generated
example that is classified as negative.

Active acquisition has several advantages. First of all, it decreases the number
of examples necessary to converge to the target set of constraints. In addition, it
does not require the existence of diverse examples of solutions or non-solutions
to the problem. This is a significant advantage especially if the problem has
not already been solved. Another advantage is that the user does not need to be
human. It might be a previous system developed to solve the problem. For exam-
ple, active learning to automatically acquire CSPs which model the elementary
actions of a robot by asking queries to the simulator of the robot [13].

However, active learning still presents computational challenges regarding
the number of queries required and the cpu time needed to generate them. It
has been shown that the number of membership queries needed to converge can
be exponentially large [14]. Furthermore, despite the good theoretical bound of
QuAcq and QuAcq-like approaches in terms of number of queries, the generation
of a membership query is an NP-hard problem [3]. Hence, it can be too time-
consuming, and therefore annoying, if the system interacts with a human user.
For example, QuAcq can take more than 30 min to generate a query for the
model acquisition of Sudoku puzzles near convergence.

In this paper, we propose methods to deal with both of these challenges.
We first introduce an algorithm, called MQuAcq, that blends the main idea of
MultiAcq into QuAcq. This algorithm uses the reasoning of QuAcq when search-
ing for constraints to learn once a negative query is encountered, but instead of
focusing on one constraint, it learns a maximum number of constraints, just like
MultiAcq does. But whereas MultiAcq learns constraints of the target network
in a number of queries linear in the size of the example, our proposed approach
finds constraints in a logarithmic number of queries. Experiments demonstrate
that MQuAcq outperforms both QuAcq and MultiAcq.

Efficient Methods for Constraint Acquisition 375

Our second method is an optimization on the process of locating scopes that
helps reduce the number of queries significantly. Our third method generalizes
the idea of allowing partial queries to be posted to the user. Instead of using
partial queries only when trying to focus on one or more constraints after a com-
plete example has been classified as negative, we allow the generation of partial
queries as examples to be posted to the user. We use an optimization method
to generate such queries, and as experiments demonstrate, this can reduce the
time needed for the system to converge, resulting in avoidance of premature
convergence and reduced total run time.

Experimental results with benchmark problems demonstrate that the inte-
gration of our methods results in an algorithm that considerably outperforms
both QuAcq and MultiAcq as it generates significantly fewer queries, it is up to
one order of magnitude faster in average query generation time, and by far supe-
rior in total run time.

The rest of this paper is organized as follows. Section 2 presents the nec-
essary background on constraint acquisition. In Sect. 3 we review the basics of
QuAcq and MultiAcq. Section 4 describes the new methods that we propose.
Experimental results are reported in Sect. 5. Section 6 concludes the paper.

2 Background

The vocabulary (X,D) is a finite set of n variables X = {X1, ...,Xn} and a
domain D = {D(x1), ...,D(xn)}, where D(Xi) ⊂ Z is the finite set of values
for Xi. The vocabulary is the common knowledge shared by the user and the
constraint acquisition system.

A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope of the
constraint and rel(c) is a relation between the variables in var(c) that specifies
which of their assignments are allowed. |var(c)| is called the arity of the con-
straint. A constraint network is a set C of constraints on the vocabulary (X,D).
C[Y], where Y ⊆ X, denotes the set of constraints from C whose scope is a
subset of Y . Besides the vocabulary, the learner has a language Γ consisting of
bounded arity constraints.

An example eY is an assignment on a set of variables Y ⊆ X. eY is rejected
by a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables
in the scope var(c) of the constraint is not in rel(c). An assignment eY is a partial
solution iff it is accepted by all the constraints in C[Y]. A complete assignment
that is accepted by all the constraints in C is a solution to the problem. sol(C)
denotes the set of solutions of C. A partial assignment eY which is accepted
by C[Y] is not necessarily part of a complete solution. A redundant or implied
constraint c in C is a constraint that if removed from the constraint network
the set of solutions sol(C) remains the same. In other words, if all the other
constraints in C are satisfied then c is also satisfied.

Using terminology from machine learning, a concept is a Boolean function
over DX , that assigns to each example e ∈ DX a value in {0, 1}, or in other
words classifies it as positive or negative. The target concept fT is a concept

376 D. C. Tsouros et al.

that assigns 1 to e if e is a solution of the problem and 0 otherwise. In constraint
acquisition, the target concept is the target constraint network CT , such that
sol(CT) = {e ∈ DX | fT (e) = 1}. The constraint bias B is a set of constraints
on the vocabulary (X,D), built using the constraint language Γ , from which
the system can learn the target constraint network. κB(eY) represents the set of
constraints in B that reject eY .

The classification question asking the user to determine if an example eX is
a solution to the problem that the user has in mind is called a membership query
ASK(e). The answer to a membership query is positive if fT (e) = 1 and negative
otherwise. A partial query ASK(eY), with Y ⊆ X, asks the user to determine
if eY , which is an assignment in DY , is a partial solution or not. A classified
assignment eY is labelled as positive or negative depending on the answer of
the user to ASK(eY). Following the literature, we assume that all queries are
answered correctly by the user.

In interactive constraint acquisition the system generates a set E of complete
or partial examples, which are labelled by the user as positive or negative. A
constraint network C agrees with E if C accepts all examples labelled as positive
in E and reject those labelled as negative. The learned network CL has to agree
with E.

A (complete or partial) query q = eY is called irredundant (or informative) iff
the answer to q is not predictable. That is, q is irredundant iff it is not classified
as positive by all the constraints in the bias B, which means that κB(eY) is
not empty. At the same time, q should be accepted by the learned network CL

otherwise it will be classified as negative.
The acquisition process has converged on the learned network CL ⊆ B iff

CL agrees with E and for every other network C ⊆ B that agrees with E, we
have sol(C) = sol(CL). If the first condition is true (CL agrees with E) but the
second condition has not been proved, we have premature convergence. If there
does not exist a constraint network C ⊆ B such that C agrees with E then the
acquisition has collapsed. This happens when the target constraint network is
not included in the bias, i.e. CT � B.

3 Algorithms for Constraint Acquisition

QuAcq (Algorithm 1) iteratively generates a complete assignment e which satis-
fies the currently built CL and is rejected by at least one constraint in B (line 4).
Then e is posted as a membership query to the user. If e is classified as positive
then all constraints that violate it are removed from B (line 6). If e is negative,
the algorithm tries to find one constraint that is violated by e to add to CL

by calling functions FindC and FindScope (line 8). Once the system learns the
constraint (line 10), if no collapse occurs, it returns to the query generation step.

Once a generated example is classified as negative, QuAcq calls the recursive
function FindScope (Algorithm 2) to discover the scope of one of the violated
constraints. FindScope takes as parameters an example e that violates one or
more constraints from the Bias, two sets of variables R and Y , initialized to the
empty set and to X respectively, and a Boolean variable ask query.

Efficient Methods for Constraint Acquisition 377

Algorithm 1. QuAcq: Quick Acquisition
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: if sol(CL) = ∅ then return “collapse”;

4: Generate e in DX accepted by CL and rejected by B;
5: if e = nil then return “CL converged”;

6: if ASK(e) = yes then B ← B \ κB(e);
7: else
8: c ← FindC(e, F indScope(e, ∅, X, false));
9: if c = nil then return “collapse”;

10: else CL ← CL ∪ {c};

An invariant of FindScope is that the example e violates at least one con-
straint whose scope is a subset of R ∪ Y . If FindScope is called with ask query
= true it asks the user if eR is positive or not (line 3). If the answer is yes, it
removes all the constraints from the bias that reject eR. Otherwise, it returns
the empty set (line 3). FindScope reaches line 5 only in the case where eR does
not violate any constraint. Hence, because as mentioned above e violates at least
one constraint whose scope is a subset of R ∪ Y , if Y is a singleton, the variable
it contains surely belongs to the scope of a constraint that is violated. In this
case the function returns Y .

If none of the return conditions is satisfied, the set Y is split in two balanced
parts (line 6) and the algorithm searches recursively, in sets of variables built
using these parts, for the scope of a violated constraint, in a logarithmic number
of steps (lines 7–9).

Function FindScope posts a partial query to the user until it finds the scope
of a constraint that is violated. A potential deficiency is the fact that if a ques-
tion to the user violates, say 3 constraints, and the answer was negative, then
after removing some variables from Y , if the partial query is still rejecting 3 con-
straints, FindScope will ask the user to classify the partial query again. However,
there is no need for this because it is certain that the partial query will still be
classified as negative. In Sect. 4.2 we propose a fix to this problem.

After the system has located the scope of a violated constraint, it calls func-
tion FindC, described in [11] but not included here due to space limitations, to
find the violated constraint.

Given that the generation of an irredundant membership query e is an
NP-hard problem, and that there may be several constraints from the target
network that are violated by e, it is very likely that the system can learn more
information from a negative query. This is what MultiAcq tries to do. MultiAcq
generates an example like QuAcq and then the function FindAllScopes is called
to learn a maximum number of constraints violated by the specific example [12].

378 D. C. Tsouros et al.

Algorithm 2. FindScope
Input: e, R, Y , ask query (e: the example, R,Y : sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of a constraint in CT

1: function FindScope(e, R, Y , ask query)
2: if ask query then
3: if ASK(eR) = yes then B ← B \ κB(eR);
4: else return ∅;

5: if |Y | = 1 then return Y ;

6: split Y into < Y1, Y2 > such that |Y1| = �|Y |/2�;
7: S1 ← FindScope(e, R ∪ Y1, Y2, true);
8: S2 ← FindScope(e, R ∪ S1, Y1, (S1 �= ∅));
9: return S1 ∪ S2;

The recursive function FindAllScopes takes as input a complete example e
and a subset of variables Y (X for the first call). It asks the user to classify the
example and if the answer is “no”, there still exist violated constraints in Y .
Therefore, FindAllScopes is called on each subset of Y built by removing one
variable from Y . If in all of these calls the answer of the user is “yes” then Y
is the scope of a violated constraint and it is added to the set of found scopes.
Function FindC is then called to find the constraint, like in QuAcq.

In addition to the above, which are described in the relevant papers, QuAcq
and MultiAcq take some extra steps, especially during query generation1. Specif-
ically, in line 4 of QuAcq (respectively in MultiAcq), when trying to find a
solution of CL violating at least one constraint from the bias, there is a cutoff
imposed. If no example is found within this time limit then the system visits
the constraints in B one by one, and for each constraint c it tries to solve the
problem comprising CL ∪ ¬c. A second cutoff is then used for this process. This
is done both in QuAcq and MultiAcq. This means that if the second cutoff is
triggered for all constraints in B, premature convergence has occured because
for every other network C ⊆ B that agrees with E, it has not been proved that
sol(C) = sol(CL). Another optimization concerning MultiAcq that is not men-
tioned in [12] but has been implemented by the authors is that FindC is called
on the fly each time a scope is found, whereas in [12] all scopes are first returned
and then FindC is called.

4 Efficient Constraint Acquisition

4.1 Multi-QuAcq

We first describe a new algorithm, called Multi-QuAcq (MQuAcq for short)
which takes logarithimic time to discover all the violated constraints, achieving
the benefits of both QuAcq and MultiAcq. MQuAcq (Algorithm 3) is an active
learning algorithm which is based on QuAcq and extends it by incorporating the

1 Personal communication with the authors of the algorithms.

Efficient Methods for Constraint Acquisition 379

basic idea of MultiAcq. The main difference between QuAcq and MQuAcq is the
fact that QuAcq finds one explanation (constraint) of why the user classfied an
example as negative, whereas MQuAcq tries to learn all the violated constraints.
This is done by calling function FindScope (Algorithm 2) iteratively while reduc-
ing the search space, removing variables from the scopes already found. The main
difference with MultiAcq is that the proposed approach uses the QuAcq search
method to find each scope through function FindScope, and in this way avoids
some redundant searches (which can be very time-consuming) and queries that
MultiAcq makes with function FindAllScopes.

Algorithm 3. The MQuAcq Algorithm
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: Scopes.clear();
4: if sol(CL) = ∅ then return “collapse”;

5: Generate e in DX accepted by CL and rejected by B;
6: if e = nil then return “CL converged”;

7: if ¬findAllCons(e, X, 0) then return “collapse”;

MQuAcq starts by initializing the CL network to the empty set (line 1) and
then it enters the main loop (line 2). The array Scopes, which is initialized to be
empty in line 3, is used within function FindAllCons as explained below. If CL is
unsatisfiable, the algorithm collapses (line 4). Otherwise, a complete assignment
e is generated (line 5), satisfying CL and violating at least one constraint in B.
If such an example does not exist then we have converged (line 6). Otherwise,
function findAllCons is called to find all the constraints that are violated by the
example e. If findAllCons return false then have we collapsed (line 7).

The recursive function FindAllCons is presented in Algorithm 4. It takes as
parameters an example e, a set of variables Y and an integer variable s, which is
an counter/identifier for the scopes. It returns false if collapse has occured and
true otherwise. FindAllCons adds to CL all the constraints that are violated by e
in Y . It uses the array Scopes to store all the scopes of the constraints that have
been found in the current generated query. The main idea is to search for partial
queries in the given example that do not contain any constraint already found,
so that the answer will not be predictable. To achieve this, from each scope S
already found we make |S| partial examples, one for each variable xi ∈ S, with
each such example involving variables Y ′ = Y \{xi}. The identifier s helps us to
decide on which scope we have to branch. When a partial example that violates
no constraint already learned but at least one from B is found, FindAllCons uses
FindScope, as in QuAcq, to learn a constraint from CT .

In the first call to FindAllCons s is equal to 0 so that a query is immedi-
ately posted to the user in line 7. The condition of line 2 will be false because

380 D. C. Tsouros et al.

Algorithm 4. findAllCons
Input: e, Y, s (e: the example, Y : set of variables, s: scopes identifier)
Output: not collapsed : returns false if collapsed, true otherwise
1: function findAllCons(e, Y, s)
2: if κB\CL

(eY) = ∅ then return true;

3: if s < |Scopes| then
4: for xi ∈ Scopes[s] do
5: if ¬findAllCons(e, Y \ {xi}, s + 1) then return false;

6: else
7: if ASK(eY) = yes then B ← B \ κB(eY);
8: else
9: scope ← FindScope(e, ∅, Y, false);

10: c ← FindC(e, scope);
11: if c = nil then return false;
12: else CL ← CL ∪ {c};

13: Scopes.push(scope);
14: if ¬findAllCons(e, Y, s) then return false;

15: return true;

e is generated in such a way that it violates at least one constraint in B (i.e.
|κB/CL

(eY)| > 0). If the example is negative then a constraint is seeked using
FindScope and then the recursive calls to FindAllCons start. If the example is
positive, the constraints in B that reject it are removed and true is returned.

In any subsequent call to FindAllCons we start by checking if there exists
any violated constraint in B to learn, not already in CL. If not, it is implied that
ASK(eY) = yes and the function returns true (line 2), because we assume that
the bias is expressive enough to learn a CL equivalent to the target network CT .
This check is important because as the recursive calls to FindAllCons remove
variables from Y (as explained below), we may end up in a case where eY is
surely positive and no search for a violated constraint is needed. This is because
if ASK(eY) = yes then for every Y ′ ⊆ Y we surely have ASK(eY ′) = yes. With
this check the algorithm avoids a lot of redundant searches, reducing the number
of nodes in the tree of recursive calls, and also avoids asking redundant queries.

After that, FindAllCons checks if s is smaller than the size of Scopes. As
mentioned, s is an counter/identifier acting as an id of scopes already visited.
If we have not branched on all the scopes already found (s < Scopes), it means
that we still have a violating scope in the query and therefore we avoid asking
a partial query which includes Scopes[s] because we know that the answer will
be “no”. So we call FindAllCons recursively on each subset of Y created by
removing one of the variables of the scope at position s of Scopes (lines 4–5),
and increasing s by 1 to continue with the next scope.

In the case that s is equal to the size of Scopes it means that we have finished
with branching and we have a partial example that does not contain the scope
of any violated constraint already learned. Hence, there must exist a partial
query eY that violates at least one constraint of B (otherwise the algorithm

Efficient Methods for Constraint Acquisition 381

would have returned at line 2) and no violated constraint already found exists
in Y . Therefore, the system asks again the user to classify the partial example
(line 7). If the answer is positive then the constraints in B that reject e are
removed. Otherwise, function FindScope is called to find the scope of one of the
violated constraints (line 9). FindC will then select a constraint from B with the
discovered scope that is violated by e (line 10). If no constraint is found then
the algorithm collapses. Otherwise, the constraint returned by FindC is added
to CL (line 12) and its scope is added to the array of found scopes (line 13).
Now, we call again FindAllCons to continue searching in the partial examples
created by removing the variables of the scope the function has just found.

We now illustrate the behavior of FindAllCons with a simple example. We
denote by cij the constraint between variables Xi and Xj .

Example 1. Consider a problem consisting of n variables and a complete example
e generated in line 5 of MQuAcq. Suppose that the constraints from CT that
are violated by e and we have not already learned are c12, c13 and c34. In the
first call (call 0) to FindAllCons, e will be posted as a query to the user. After
the user answers “no”, the algorithm will find the constraint c12 using functions
FindScope and FindC. Next, FindAllCons will be called to continue searching
for the remaining constraints that violate e. In the next call (call 1) we have
Y = X, s = 0 and |Scopes| = 1 (Scopes includes {X1,X2}). As s < |Scopes|, we
know that the answer to ASK(eY) will be “no”. So FindAllCons will be called
recursively on each subset of Y built by removing one variable from the scope
Scopes[0] (i.e. {X1,X2}), and increasing s by 1.

In the first recursive call (call 1.1) we have Y ′ = Y \ {X1} and s = 1. As
s = |Scopes|, it means that we have branched on all scopes found until now.
Hence, the query eY ′ will be posted to the user and the constraint c34 will be
learned because it is the only constraint among the variables Y ′ that violates
CT . In the next call (call 2) of FindAllCons in line 14 no further constraint
will be found. So we go back to the second call of line 5 (call 1.2). We have
Y ′ = Y \ {X2} and s = 1. |Scopes| = 2, so we have another scope in which we
have to branch. Hence, FindAllCons will be called recursively on each subset of
Y ′ built by removing one variable from the scope Scopes[1], and increasing s by
1. In call 1.2.1, we have Y ′′ = Y ′ \ {X3} and s = 2. Because no constraint from
CT is violated the answer from the user will be “yes” and true will be returned.
In call 1.2.2, we have Y ′′ = Y ′ \{X4} and s = 2. Because s = |Scopes| the query
will be asked to the user and then the constraint c13 will be learned.

MultiAcq learns a constraint of the target network in a number of queries
linear in the size of the example whereas MQuAcq finds a constraint in a loga-
rithmic number of queries, using the FindScope function as is QuAcq. We now
analyse the complexity of MQuAcq in terms of the number of queries it asks to
the user.

Theorem 1. Given a bias B built from a language Γ , with bounded arity con-
straints, and a target network CT , MQuAcq uses O(|CT | ∗ (log|X|+ |Γ |)) queries
to find the target network or to collapse and O(|B|) queries to prove convergence.

382 D. C. Tsouros et al.

Proof. (sketch) We know that a scope of a constraint from CT is found in at
most |S| ∗ log|Y | queries with the function FindScope, with |S| being the arity
of the scope and |Y | the size of the example given to the function [11]. As
Y ⊆ X, FindScope needs at most |S| ∗ log|X| queries to find a scope, because in
MQuAcq, in the worst case, only one constraint from B will be violated by any
complete example. Also, FindC needs at most |Γ | queries to find a constraint
from CT in the scope it takes as parameter, if one exists [11]. If none exists, the
system collapses. Hence, the number of queries necessary to find a constraint is
O(|S| ∗ log|X|+ |Γ |), and the number of queries for finding all the constraints in
CT or collapsing is at most CT ∗(|S|∗log|X|+|Γ |) which is O(CT ∗(log|X|+|Γ |))
because |S| is bounded. Convergence is proved when B is empty or contains only
redundant constraints. Constraints are removed from B when the answer from
the user is yes in a query. In the case that the example generated by the algorithm
in line 5, contains only one constraint from B, it leeds to at least one constraint
removal in each query. This gives a total of O(|B|) queries to converge. ��

The complexities of QuAcq and MultiAcq to find the target network are
O(|CT | ∗ (log|X|+ |Γ |)) and O(|CT | ∗ (|X|+ |Γ |)) respectively. Hence, we achieve
the same bound as QuAcq but a better one than MultiAcq, while discovering
all the violated constraints from a negative example.

4.2 FindScope-2

We now describe an optimization to function FindScope, aiming at asking fewer
queries to the user. This results in a function we simply call FindScope-2, which
can be used instead of FindScope either inside QuAcq or inside our new algorithm
MQuAcq to cut down the number of generated queries.

Let us first consider the example illustrated in Table 1 for motivation. In this
example we have a problem consisting of the set of variables X1, ...,X5, and the
language Γ = {	=}. The bias B contains all the possible 	= constraints between
the five variables.

Table 1. Example illustrating a deficiency of FindScope

Call R Y ASK

0 ∅ X1, X2, X3, X4, X5 -

1 X1, X2, X3 X4, X5 No

For the purpose of this example, the target network CT is not important.
Assume that QuAcq is applied to this problem and suppose that the first exam-
ple, which was classified as negative by the user, is e1 = {1, 1, 1, 4, 5}. The
constraints from B that it violates are X1 	= X2,X1 	= X3,X2 	= X3. After the
first call to FindScope, R is equal to X1,X2,X3, so the partial example eR that
is then asked to the user is e2 = {1, 1, 1}. But the constraints from B that are
violated are still X1 	= X2,X1 	= X3,X2 	= X3. Therefore, this partial example
is negative, and there is no point in posting it to the user.

Efficient Methods for Constraint Acquisition 383

To avoid such redundant queries made by FindScope, we modify this function
(see Algorithm 5) adding a check that inspects if the number of violated con-
straints from the bias is the same as in the last query asked. This is implemented
using a global variable rej to store this number. This check is done in line 3. If
this is the case, it is implied that the answer will still be no and therefore we
return the empty set. Before the first call to FindScope, rej must be initialized
to the number of constraints from B that are violated by the complete query.

As a further improvement to FindScope, given the assumption that the bias
is expressive enough to learn CT , in cases where |κB(eR)| = 0 (i.e. there is no
violated constraint in B), it is implied that ASK(eR) = yes. So another check is
performed in line 2. If the bias is not expressive enough to learn CT , the system
will collapse later, because it will not find any constraint to learn.

Algorithm 5. FindScope-2
Input: e, R, Y, ask query (e: the example, R,Y: sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of a constraint in CT

1: function FindScope-2(e, R, Y, ask query)
2: if ask query AND |κB(eR)| > 0 then
3: if rej �= |κB(eR)| then
4: if ASK(eR) = yes then B ← B \ κB(eR);
5: else
6: rej ← |κB(eR)|;
7: return ∅;

8: else return ∅;

9: if |Y | = 1 then return Y ;

10: split Y into < Y1, Y2 > such that |Y1| = �|Y |/2�;
11: S1 ← FindScope(e, R ∪ Y1, Y2, true);
12: S2 ← FindScope(e, R ∪ S1, Y1, (S1 �= ∅));
13: return S1 ∪ S2;

4.3 Exploiting Partial Queries

Another step of the acquisition process that can be improved is the crucial initial
query generation step, which is included in all of the proposed algorithms (e.g.
line 4 in Algorithm 1 and line 5 in Algorithm 3). In this section we propose an
approach to query generation that helps improve any acquisition algorithm.

Let us first note that although both QuAcq and MultiAcq allow for the use of
partial queries to focus on the violated constraint(s) after an example has been
classified as negative, they both always try to generate complete examples at
the start of the query generation iteration (e.g. line 4 in Algorithm 1). However,
generating a complete example requires finding a complete variable assignment
that satisfies all constraints in CL and violates at least one constraint in B.
Given that solving CL is in itself an NP-hard problem, the process can be very
time-consuming.

384 D. C. Tsouros et al.

Experimental results that we have obtained with both QuAcq and Multi-
Acq demonstrate that when no time limit to the query generation process is
set then both algorithms can take several minutes (more than 30 min) to gener-
ate a query as convergence is approached. This of course is unacceptable from
the user’s point of view, and therefore a time limit is necessary for the practi-
cal application of the algorithms. However, setting any time limit to the query
generation process means that the algorithm may reach premature convergence
(e.g. line 5 of Algorithm 1).

Another relevant issue is that of proving convergence in problems that contain
redundant constraints. As the system cannot always know beforehand if some of
the constraints in the bias are redundant, proving that no solution of CL violates
at least one constraint in B can be very time-consuming in the presence of
redundant constraints. This is because if near the end of the process B is left with
redundant constraints only, no solution of CL can violate any of these constraints,
simply because these constraints, being implied, will be surely satisfied.

Given the importance of query generation in the acquisition process, it is of
primary importance that it is executed as efficiently as possible, and in a way
such that the problem of premature convergence is avoided as much as possible.
Towards this, we propose to exploit partial queries at this step of the process.
Both QuAcq and MultiAcq assume that the user, be it human or machine, is
able to answer partial queries, so there is no reason to limit the use of partial
queries to the case where a complete query has been classified as negative.

Our proposal is to model the query generation problem as an optimization
problem in which we seek to find a (partial) assignment of the variables that
maximizes the number of violated constraints in B. We call this heuristic maxB .
This is related to but is not the same as the max heuristic that was used within
QuAcq [11]. The max heuristic tries to generate a complete solution of CL that
violates a maximum number of constraints from B. Hence, given a time limit,
which is necessary for any algorithm to run in reasonable times as explained
above, max will focus on finding complete assignments that satisfy all the con-
straints in CL and violate as many as possible from B, while maxB will focus on
violating as many constraints as possible from B without necessarily building a
complete variable assignment.

Although the difference between maxB and max may not seem substantial,
experimental results given below show the use of maxB largely alleviates the
danger of premature convergence and can have a significant impact on the total
run time of the acquisition algorithm.

5 Experimental Evaluation

To evaluate our proposed methods, we ran some experiments on a system car-
rying an Intel(R) Core(TM) i5-4690K CPU @ 3.50 GHz with 8 Gb of RAM.
We compared the proposed methods to both QuAcq and MultiAcq, which were
implemented as efficiently as possible using the strategies described in [11,12], as

Efficient Methods for Constraint Acquisition 385

well as the additional heuristics described to us through private communication
with the authors. To be precise:

– We implemented the max and maxB heuristics, with dom/wdeg for variable
ordering and random value ordering, for the generation of the queries. For
both heuristics we set a cutoff of 1 s, returning the best example found within
this time limit, if any.

– In all our methods, and also in QuAcq and MultiAcq, we used the additional
cutoff of 5 s to the query generation step that was described in Sect. 3. That
is, if no example is found within this time limit, the system takes one by one
each constraint c in B and tries to solve CL ∪ ¬c with a second cutoff of 5 s.

– To maximize the performance of MultiAcq we used the heuristic proposed
in [12]: A cutoff of 5 s is used in function FindAllScopes. After triggering the
cutoff for the first time, FindAllScopes is called again on the same complete
example with a reverse order of the variables. If a second cutoff is triggered,
we generate a new example and shuffle the variables’ order.

We used the following benchmarks in our study:
Sudoku. The Sudoku puzzle is a 9 × 9 grid. It must be completed in such a

way that all the rows, all the columns and the 9 non overlapping 3 × 3 squares
contain the numbers 1 to 9. The vocabulary for this problem has 81 variables
and domains of size 9. The target network has 810 binary 	= constraints on rows,
columns and squares. The bias was initialized with 12.960 binary constraints
from the language Γ = {=, 	=, >,<}.

Latin Square. The Latin square problem consists of an n × n table in which
each element occurs once in every row and column. In this problem, we have 100
(i.e. n = 10) variables with domains of size 10. The target network has 900 binary
	= constraints on rows and columns. The system was initialized with a bias of
19.800 binary constraints created from the language Γ = {=, 	=, >,<}.

Zebra. The Zebra problem consists of 25 variables of domain size of 5. The
target network contains 50 	= constraints and 12 additional constraints given
in the description of the problem. The bias was initialized with 1200 binary
constraints from the language Γ = {=, 	=, >,<, xi − xj = 1, |xi − xj | = 1}.

Murder. This problem consists of 20 variables with domains of size 5. The
target network contains 4 cliques of 	= constraints and 12 additional binary
constraints. The bias was initialized with 760 constraints based on the language
Γ = {=, 	=, >,<}.

5.1 Results
In our experiments we measure the size of the learned network CL, the average
waiting time T̄ (in secs) for the user, the total number of queries #q, the average
size q̄ of all queries, the number of complete queries #qc, the time Tqueries taken
from the start of the process until the last query and the total time needed (to
converge) Ttotal. The difference between Ttotal and Tqueries is the time needed to
prove convergence or to reach premature convergence (because of the cutoffs).
The size of CL in some cases is smaller than the size of the target network CT due

386 D. C. Tsouros et al.

to the presence of redundant constraints that some methods learn and others do
not. Finally, we counted the times each method triggers any of the two cutoffs.

To validate our results, we implemented the tested methods, including QuAcq
and MultiAcq, using the Choco solver, as well as our own solver written in C++2.
Results were very similar, with our solver being slightly faster. Therefore, in the
following we report results obtained using our solver. In Table 2 we evaluate our
methods both individually and combined, and we compare them against QuAcq
and MultiAcq. Hence, we give results from QuAcq, MultiAcq, MQuAq, QuAcq
with FindScope-2 instead of FindScope, QuAcq with maxB instead of max, and
MQuAcq with FindScope-2 and maxB (i.e. all our methods combined). Each
algorithm was run 10 times and the means are presented.

Table 2. Comparative results

Benchmark Algorithm |CL| T̄ #q q̄ #qc Tqueries Ttotal

Sudoku QuAcq 648 0.063 11567 35 659 734.65 1555.34

MultiAcq 797 0.050 14361 10 37 752.49 822.56

QuAcq + FindScope 2 648 0.113 6054 43 658 686.26 1506.88

QuAcq maxB 810 0.060 14240 31 534 865.35 865.41

MQuAcq 800 0.008 14735 27 40 117.96 173.01

MquAcq + FindScope 2 maxB 810 0.012 6713 32 15 84.99 85.00

Latin QuAcq 855 0.062 15515 46 869 956.23 1186.46

MultiAcq 898 0.119 20628 11 49 2471.12 2486.15

QuAcq + FindScope 2 855 0.123 7993 56 870 983.13 1212.14

QuAcq maxB 900 0.059 16226 44 789 96 956.01

MQuAcq 898 0.008 17812 36 45 142.25 157.27

MquAcq + FindScope 2 maxB 900 0.013 8401 45 19 113.77 113.78

Zebra QuAcq 60 0.066 789 11 60 51.93 51.95

MultiAcq 59 0.393 953 6 8 374.77 374.78

QuAcq + FindScope 2 60 0.105 485 12 60 51.09 51.10

QuAcq maxB 60 0.066 800 11 59 53.38 53.39

MQuAcq 60 0.004 790 8 8 3.44 3.45

MquAcq + FindScope 2 maxB 60 0.007 503 9 6 3.92 3.92

Murder QuAcq 52 0.080 609 9 52 48.98 49.14

MultiAcq 52 0.008 680 5 9 5.97 6.13

QuAcq + FindScope 2 52 0.138 355 10 52 49.25 49.40

QuAcq maxB 52 0.084 608 8 47 51.13 51.42

MQuAcq 52 0.008 634 7 7 5.50 5.67

MquAcq + FindScope 2 maxB 52 0.017 370 8 3 6.23 6.47

Looking at the performance of FindScope-2 when used inside QuAcq, we
can see that the number of queries asked were significantly lower compared
to standard QuAcq with FindScope because the former avoids asking several
redundant queries. In terms of number of queries FindScope-2 gives a gain of

2 The only exception is the maxB heuristic which was only implemented in our solver.

Efficient Methods for Constraint Acquisition 387

38% on the zebra problem, 42% on murder, and 48% on sudoku and latin square.
Interestingly, it seems that the more variables are present in a problem, the bigger
is the gain in avoided queries. As a downside, FindScope-2 increases the average
query generation time, but not the total time required to converge.

Focusing on the use of maxB , we observe that in small problems (murder and
zebra) we have similar performance to max. This is because such problems are
easy, meaning that in most cases both maxB and max can find complete solutions
to CL that violate many constraints in B within the time limit. In contrast, in
sudoku and latin square, there are differences. As we can see from column |CL|,
maxB helps to not only learn the complete target network, but also redundant
constraints. This results in more queries being asked and greater Tqueries. But
on the other hand, we gain in the total running time (Ttotal) because, having
learned the redundant constraints during the process, B is empty in the end, and
therefore the system does not have to prove that no solution of CL violates them.
In addition, with maxB we have fewer complete queries and smaller average query
size because near convergence, when it is time-consuming to find a complete
assignment, maxB returns a partial assignment.

Focusing on our main contribution, i.e. MQuAcq, and comparing it to QuAcq,
we observe that the use of FindAllCons to learn all the violated constraints from
a negative example reduces significantly the average waiting time per query and
the total time of the execution. QuAcq is 9 times slower in sudoku, 7.5 times in
latin square, 15 times in zebra and 8.5 times in murder. This is due to the fewer
generations of new examples in line 5 of MQuAcq, because the algorithm is able
to learn a maximum number of violated constraints from each negative example.
This is validated by looking at column #qc, which shows that far fewer complete
queries are generated. As a downside, MQuAcq requires more queries in total
than QuAcq to converge. However, the average size of the queries is smaller.

Comparing MQuAcq to MultiAcq, it is clear that the redundant searches
MultiAcq makes greatly affect the average time per query and total time needed.
MQuAcq needs far less time to ask a query to the user, and requires posting fewer
queries to converge, in most problems.

Regarding the cutoffs, neither of the two cutoffs was triggered by any method
on zebra or murder. On sudoku (resp. latin square), QuAcq triggered the first
cutoff twice on average (resp. once), and the second 170 times (resp. 46). The
corresponding numbers for MultiAcq were 11 (resp. 16) and 29 (resp. 27), and
for MQuAcq 10 (resp. 14) and 28 (resp. 25). Importantly, any method that used
maxB never trigger a cutoff. Hence, maxB can help alleviate the problem of
premature convergence.

Finally, the results obtained from MQuAcq with FindScope-2 and maxB (i.e.
integrating all our methods) confirm our intuitions. The integrated method is by
far superior to both QuAcq and MultiAcq considering all the important metrics,
especially on the harder problems. It cuts down the total number of queries by
50% or even more, and generates fewer complete queries than even MultiAcq, it
significantly reduces the average query waiting time for the user, and it is up to
one order of magnitude faster (or even more) in total run time.

388 D. C. Tsouros et al.

6 Conclusion

We have presented new methods that can boost the performance of constraint
acquisition systems. Our main algorithm, MQuAcq, extends QuAcq to discover
all the violated constraints from a negative example, just like MultiAcq does,
but with a better complexity bound. Our other methods help reduce the number
of queries and the time required to reach convergence. Experimental results
demonstrate that an algorithm which integrates all our methods significantly
outperforms the state-of-the-art algorithms on all the important metrics.

References

1. Freuder, E.C.: Modeling: the final frontier. In: The First International Conference
on The Practical Application of Constraint Technologies and Logic Programming
(PACLP), London, pp. 15–21 (1999)

2. De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In:
Proceedings in Thirty-Second AAAI Conference on Artificial Intelligence (2018)

3. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. 244, 315–342 (2017)

4. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30201-8 12

5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space
algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho,
R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol.
3720, pp. 23–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096 8

6. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), vol. 1, pp. 45–52. IEEE (2010)

7. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 13

8. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based match-
maker agents. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
192–204. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 15

9. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M., et al.: Query-driven constraint
acquisition. IJCAI 7, 50–55 (2007)

10. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
11. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,

Quimper, C.G., Walsh, T., et al.: Constraint acquisition via partial queries. IJCAI
13, 475–481 (2013)

12. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint aquisition. In: IJCAI:
International Joint Conference on Artificial Intelligence, pp. 698–704 (2016)

13. Paulin, M., Bessiere, C., Sallantin, J.: Automatic design of robot behaviors through
constraint network acquisition. In: 20th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2008, vol. 1, pp. 275–282. IEEE (2008)

14. Bessiere, C., Koriche, F.: Non learnability of constraint networks with membership
queries. Technical report, Technical report, Coconut, Montpellier, France (2012)

https://doi.org/10.1007/978-3-540-30201-8_12
https://doi.org/10.1007/978-3-540-30201-8_12
https://doi.org/10.1007/11564096_8
https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1007/3-540-49481-2_15

A Circuit Constraint for Multiple
Tours Problems

Philippe Vismara1,2(B) and Nicolas Briot1

1 LIRMM, Univ Montpellier, CNRS, Montpellier, France
2 MISTEA, Montpellier SupAgro, INRA, Univ Montpellier, Montpellier, France

philippe.vismara@supagro.fr

Abstract. Routing problems appear in many practical applications. In
the context of Constraint Programming, circuit constraints have been
successfully developed to handle problems like the well-known Traveling
Salesman Problem or the Vehicle Routing Problem. These kind of con-
straints are linked to the search for a Hamiltonian circuit in a graph. In
this paper we consider a more general multiple tour problem that con-
sists in covering a part of the graph with a set of minimal cost circuits.
We define a new global constraint WeightedSubCircuits that gener-
alizes the WeightedCircuit constraint by releasing the need to obtain
a Hamiltonian circuit. It enforces multiple disjoint circuits of bounded
total cost to partially cover a weighted graph, the subsets of vertices to be
covered being induced by external constraints. We show that enforcing
Bounds Consistency for WeightedSubCircuits is NP-hard. We pro-
pose an incomplete but polynomial filtering method based on the search
for a lower bound of a weighted Steiner circuit.

1 Introduction

Many real problems can be modeled as a tour problem, the best known is the
Travelling Salesman Problem (TSP). It consists in finding a Hamiltonian cycle
(i.e., passing by each vertex of a graph once) with a minimum weight. Many
works coming from Integer Linear Programming (ILP) or dynamic programming
allow to quickly solve large instances of TSP. In addition, some variations of the
TSP, such as the Vehicle Routing problem (VRP), have been the subject of
numerous studies proposing effective solving methods [1].

In this context, Constraint Programming has for a long time offered its
expressiveness to address variations of TSP. Initially limited to small instances,
the most recent filtering algorithms allow to compete with ILP approaches on
complex problems where complementary constraints restrict TSP solutions.

These good results are related to the definition of global constraints and
the associated filtering algorithms: the constraint Cycle (or Circuit) enforces
covering the graph with one circuit visiting all vertices once; the constraint
WeightedCircuit imposes, in addition, that the sum of the costs of the edges
of the circuit is lower than a cost variable. As enforcing arc consistency for these
constraints is generally NP-hard, the filterings used are inevitably incomplete but
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 389–402, 2018.
https://doi.org/10.1007/978-3-319-98334-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_26&domain=pdf

390 P. Vismara and N. Briot

in practice relatively efficient. For instance, the WeightedCircuit constraint
propagator can incorporate different methods based on TSP relaxation from
literature.

However, all these constraints are linked to the search for a Hamiltonian
cycle. Many real problems require searching for one or more cycles covering all
or part of the vertices of the graph. These problems correspond to two kinds
of relaxation in the definition of the Hamiltonian cycle. The classical relaxation
is the VRP where some vertices (depots) can be visited several times. This
problem is generally modeled by duplicating a few vertices in order to return to a
Hamiltonian cycle. The second relaxation consists in not covering all the vertices
of the graph, the set of the discarded vertices depending on external constraints.
In this case, the Cycle constraint can eventually be used by artificially adding
the discarded vertices to the end of the Hamiltonian cycle. However, it becomes
impossible to integrate them into a weighted cycle without disrupting the cost
of the solution. It is then impossible to benefit from all the filtering power of
constraint WeightedCircuit.

In this paper, we aim to generalize the WeightedCircuit constraint in case
some vertices can be discarded. We consider a more general multiple tour prob-
lem that consists in covering a part of the graph by a set of minimal cost circuits.
We define a new global constraint, called WeightedSubCircuits, that enforces
multiple disjoint circuits of bounded cost to partially cover a weighted graph.
This is a generalization of constraint WeightedCircuit where the Hamilto-
nian circuit can be divided into several disjointed subcircuits, with an additional
subset of discarded vertices.

The remainder of this paper is structured as follows. Section 2 surveys the
necessary preliminaries. Section 3 covers related work on global constraints for
tour problems. Section 4 gives the definition of WeightedSubCircuits con-
straint and proposes a decomposition of the constraint with standard constraints
and a cycle constraint adapted to multiple tours. Section 5 deals with the filter-
ing of this NoSubTours constraint and that of the WeightedSubCircuits
constraint. Finally, Sect. 6 presents some preliminary experimental results.

2 Preliminaries

We consider a weighted graph G = (V,E, c) where V is a set of vertices, E a set
of edges and a weight function c : E → Q+.

When the graph G respects triangle inequality, the weight of any edge (i, j)
is smaller or equal to the cost of any path from i to j.

Graphs are considered from an oriented point of view. In this context, the
term circuit should be used rather than cycle. However, a cycle is generally
described by a sequence of vertices or by defining, for each vertex i, the Nexti
vertex that follows i in the cycle. In both cases, the cycle is oriented and then it
is a circuit.

An elementary circuit of G is a circuit where no vertex appears more than
once. A Hamiltonian circuit is an elementary circuit of length |V |.

A Circuit Constraint for Multiple Tours Problems 391

For any subset W ⊆ V , G[W] is the subgraph of G induced by W .
For any set variable Set, the lower (respectively upper) bound of Set, denoted

by lb(Set) (respectively ub(Set)), is the set of required (respectively possible)
values in Set.

In the following, we will note OPTTSP (G) the cost of an optimal solution for
TSP (G).

3 Related Work

The Constraint Programming research community has long been interested in
the search for Hamiltonian circuits, which were already part of the Alice lan-
guage constraints [2]. A configurable Cycle constraint was also part of the global
constraints introduced in the CHIP solver [3].

The most common model is to define a variable Nexti for each vertex i of
the graph, where Nexti represents the vertex which follows i in the Hamilto-
nian circuit. To ensure that each vertex is visited only once, an AllDifferent
constraint can be posted on the Nexti and enforcing GAC for this constraint is
polynomial [4]. Conversely, checking that there is a Hamiltonian circuit is NP-
complete. The filtering used in solvers for the Circuit constraint is, therefore,
naturally incomplete. Two subconstraints are mainly used for this filtering on
the edges composing the circuit: the NoSubTour constraint which prohibits
the presence of subcircuits and the Connected constraint which ensures the
strong connectivity of the circuit. Other works have proposed a filtering based
on graph separators [5] or investigated how to add explanations to the Circuit
constraint in a lazy clause generation solver [6].

The NoSubTour constraint [7,8] is posted on graph G = (V,E). It ensures
that the Nexti variables do not form a subtour of length strictly smaller than
|V |. Combined with constraint AllDifferent, the NoSubTour constraint
enforces Nexti variables to form a Hamiltonian circuit of G.

The filtering generally associated with the NoSubTour constraint consists
in removing from Nexti any value that could close a path to form a subcircuit
strictly smaller than |V |. This is based on the following rule (Fig. 1) applied
when Nexti is instantiated with j:

Nexti = j ∧ (L(β(i)) + L(j) + 1) < |V | − 1 ⇒ Nextε(j) �= β(i) (1.1)

where, for any vertex z, β(z), ε(z) and L(z) are respectively the beginning, the
end and the length of the path induced by the Nexti variables and passing
through z. Due to constraint AllDifferent, we must have ε(i) = i and β(j) =
j when Nexti is instantiated with j.

The values of β(z), ε(z) and L(z) can be easily managed with backtrackable
variables and updated in O(1) for each instantiation of Nextz.

The Connected constraint has been less studied in literature. The simplest
approach is to use a O(|V | + |E|) search algorithm (like Tarjan’s) to find strong
connected components [9]. It is also possible to limit the number of searches by
maintaining a spanning tree [10].

392 P. Vismara and N. Briot

Fig. 1. Illustration of the filtering rule for the NoSubTour constraint.

Whatever the filtering used for the Circuit constraint, it is only concerned
with the connectivity of the graph without taking into account the edge weights.
However, the cost of the circuit is a key element in the optimization of a TSP or
VRP. Therefore, constraint WeightedCircuit (Next1, . . . , Nextn, Cost) has
been defined to enforce the rule that the circuit defined by the variables Nexti
has a lower cost than the variable Cost.

The filtering algorithms used for constraint WeightedCircuit are based
on TSP relaxations. This consists in reducing the TSP to a polynomial opti-
mization problem whose optimal cost is a lower bound of the initial TSP cost.
This bound can be used directly to update lb(Cost). It also filters the Nexti
variables by eliminating the edges which are not part of the optimal solution
and which, if they replace an edge of this solution, generate an additional cost
beyond ub(Cost).

Several relaxations can be used to filter the constraint WeightedCircuit [7,
8,11,12] and most of them are incomparable [13]. The Minimum Spanning Tree
(MST) and even better the Minimum Spanning Arborescence (MSA) directly
provide a lower bound to the TSP. In Assignment Problem (AP) relaxation,
the solution can be composed of several disjointed cycles. With Held and Karp
1-tree relaxation, the solution is a Minimum Spanning Tree of G[V \ {1}] plus
two edges connecting vertex 1 to this spanning tree.

4 The WeightedSubCircuits Constraint

The WeightedSubCircuits (WSC) constraint aims to generalize the
WeightedCircuit constraint. Instead of imposing a single Hamiltonian cir-
cuit on the whole graph, it enforces a Hamiltonian circuit for each subgraph
induced by one or more subsets of vertices.

For the sake of simplicity, we assume that these subsets are defined by K +1
set variables Set1,...,SetK , Setdummy, the last subset being the set of discarded
vertices. However, it is possible to adapt the definition with other representations
of these subsets, for example with integer variables.

The WeightedSubCircuits constraint is intended to be combined with
other constraints controlling the distribution of vertices in subsets Set1,..., SetK ,
Setdummy which must form a partition of the set of vertices. The number K
of subsets is an upper bound as some subsets may be empty. In addition,

A Circuit Constraint for Multiple Tours Problems 393

non-empty subsets must contain at least 2 vertices since the isolated vertices
must belong to Setdummy.

4.1 Definition

Definition 1. (WeightedSubCircuits)
Given a weighted graph G = (V,E, c), the constraint

WSC[G]([Set1, ..., SetK], Setdummy, [Next1, ..., Nextn], [Cost1, ..., CostK], Z)

holds on the set variables Set1, ...SetK , Setdummy and the integer variables
Next1, . . . , Nextn, Z and Cost1, ..., CostK if and only if:

1. the subsets Set1, . . . , SetK , Setdummy form a partition of V ;
2. ∀k ∈ 1..K, the set Ek = {(i,Nexti) | i ∈ Setk} defines a Hamiltonian circuit

of G[Setk] and
∑

(i,j)∈Ek

c(i, j) ≤ Costk;

3. ∀i ∈ V , i ∈ Setdummy ⇔ Nexti = i;

4.
K∑

k=1

Costk ≤ Z;

This definition is illustrated by Fig. 2. The set Setdummy contains all dis-
carded vertices. As in Minizinc [14] subcircuit constraint, we set Nexti = i
for all discarded vertices. This allows constraint AllDifferent to be applied
to all Nexti variables.

Because of the third rule, any subset Setk must be empty or contains at least 2
vertices. When K = 1, the constraint can be simplified since Setdummy = V \Set1
and Z is an upper bound of Cost1.

Fig. 2. An example of a weighted graph and a set of variables for which the constraint
WSC[G]([Set1, Set2], Setdummy, [Next1, ..., Next9], [Cost1, Cost2], Z) holds.

In the definition of the WeightedSubCircuits constraint we have assumed
that the subsets are represented by set variables. This can facilitate the addi-
tion of external constraints on the subsets, such as a maximum cardinality
to limit the number of vertices in each circuit. However, the constraint could
also be defined with subsets represented by n membership integer variables

394 P. Vismara and N. Briot

{memberi}i∈V . Moreover, the two representations can be combined thanks to
channeling constraints ∀i ∈ V,∀k ∈ 1..K, i ∈ Setk ⇔ memberi = k and
i ∈ Setdummy ⇔ memberi = K + 1.

The WeightedSubCircuits constraint is clearly a generalization of the
WeightedCircuit constraint:

WeightedCircuit[G](Next1, ..., Nextn, Z) ≡
WSC[G]([V], ∅, [Next1, ..., Nextn], [Z], Z)

Moreover, the WeightedSubCircuits constraint can also be used to imple-
ment some (but not all) variants of the generic Cycle constraint of CHIP [3]. For
instance, one variant of the CHIP Cycle constraint holds for K cycles with p
incompatible nodes (p ≤ K) that must belong to disjoint cycles with total cost
constrained by two bounds. This cycle constraint is equivalent to a Weight-
edSubCircuits constraint with additional unary constraints on the Costk and
Setk variables.

Since WeightedSubCircuits is a generalisation of WeightedCircuit, it
is not surprising that filtering WeightedSubCircuits is NP-hard:

Theorem 1. Achieving Bounds Consistency (BC) on WSC is NP-hard.

Proof. Deciding if a graph G = (V,E, c) has a Hamiltonian circuit of cost less
or equal to a given value p is NP-complete. Consider the constraint

WSC[G]([Set1], Setdummy, [Next1, ..., Nextn], [Cost1], Z)

where lb(Set1) = V and for each variable Nexti, dom(Nexti) = {j | (i, j) ∈ E}
and D(Cost1) = D(Z) = {0, ..., p}. BC empties the domain of Z if and only if
G does not admit a Hamiltonian circuit of cost less or equal than p. �

4.2 Decomposition

Before considering the development of specific propagators, we can try to decom-
pose the WSC constraint into a set of standard constraints. Except for line 1.6,
the WSC constraint can be decomposed into standard constraints as follows:

Proposition 1.

WSC[G](Set1, ..., SetK , Setdummy, Next1, ..., Nextn, Cost1, ..., CostK , Z) ⇔
AllDifferent(Next1, ..., Nextn) (1.2)

∧ Partition(Set1, ..., SetK , Setdummy) (1.3)
∧ ∀i ∈ V, i ∈ Setdummy ⇔ Nexti = i (1.4)
∧ ∀i ∈ V, ∀k = 1..K, i ∈ Setk ⇔ Nexti ∈ Setk (1.5)
∧ NoSubTours(Set1, ..., SetK , Next1, ..., Nextn) (1.6)
∧ ∀k = 1..K,

∑
i∈Setk

c(i,Nexti) ≤ Costk (1.7)

∧ ∑K
k=1 Costk ≤ Z (1.8)

A Circuit Constraint for Multiple Tours Problems 395

The AllDifferent constraint on the Next variables ensures that any vertex
must belong to a cycle or must be isolated and then, thanks to line 1.4, must
belong to Setdummy. We assume that the Partition constraints allows empty
sets. Thanks to line 1.5 each cycle must be included in a single subset Setk.
The NoSubTours constraint enforces that such a cycle is an Hamiltonian cycle
of the induced subgraph G[Setk]. This is not a standard constraint but it is a
generalization of the NoSubTour constraint [7,8]. The next section will discuss
NoSubTours filtering. The sum constraints (1.7) and (1.8) ensure that the cost
of each cycle is greater or equal to the sum of the weights of its edges and that
the total sum of Costk variables is less or equal to Z.

5 Propagation

First we will look at the filtering of constraint NoSubTours in order to be able
to implement constraint WeightedSubCircuits thanks to its decomposition.
We will then propose a specific additional filtering for constraint Weighted-
SubCircuits.

Since obtaining AC for these two constraints is NP-hard, the filtering algo-
rithms that we will study in this section are necessarily incomplete.

5.1 NoSubTours

When Nexti is instantiated with j, the filtering rule 1.1 used for the constraint
NoSubTour is dedicated to remove from the domain of Nextε(j) any value
leading to a cycle of size less that |V |.

For the NoSubTours constraints (1.6), the set {(i,Nexti), i ∈ Setk} must
form a cycle of size |Setk| in G[Setk]. Hence, if the path resulting from the
instantiation Nexti = j has a length smaller than the size of the lower bound
of Setk, this path cannot be closed at its ends to form a cycle. This corresponds
to the following filtering rule:

Nexti = j ∧ i ∈ lb(Setk) ∧ (L(β(i)) + L(j) + 1) < |lb(Setk)| − 1
⇒ Nextε(j) �= β(i) (1.9)

Conversely, if the resulting path passes through all vertices of the upper
bound of Setk, the cycle must be closed and Setk is instantiated:

Nexti = j ∧ i ∈ lb(Setk) ∧ (L(β(i)) + L(j) + 1) = |ub(Setk)| − 1
⇒ Nextε(j) = β(i) ∧ Setk = ub(Setk) (1.10)

NoSubTours filtering can also benefit from searching for connected compo-
nents to ensure that lb(Setk) is included in a connected (via Nexti variables)
component of ub(Setk).

Finally, we can notice that backtractable variables like β(i) can also be used
to filter constraint (1.5) since all the vertices in the path passing through i and

396 P. Vismara and N. Briot

connecting β(i) to ε(i) must be in the same Setk than i. This corresponds to
the following filtering rules:

i ∈ lb(Setk) ⇒ {β(i), Nextβ(i), . . . , i, Nexti, . . . , ε(i)} ⊆ lb(Setk) (1.11)

and

i �∈ ub(Setk) ⇒ {β(i), Nextβ(i), . . . , i, Nexti, . . . , ε(i)} ∩ ub(Setk) = ∅ (1.12)

5.2 WeightedSubCircuits

Previous works on the WeightedCircuit constraint have shown the benefit of
dedicated filtering compared to separate filtering on the Circuit constraint and
the cost of the circuit.

During the search, the vertices involved in the WeightedSubCircuits con-
straint can be divided in 4 categories (see Fig. 3):

A. The vertices in lb(Setdummy) will not be part of the circuits.
B. The vertices in lb(Setk) will necessarily contribute to the value of Costk

and Z.
C. The vertices in V \(ub(Setdummy) ∪ ⋃

k lb(Setk)) cannot be excluded but
are not yet assigned to a Setk. They cannot yet contribute to the value of a
specific Costk but will necessarily contribute to the value of Z.

D. For the vertices in ub(Setdummy)\lb(Setdummy) it is still too early to know
if they will be part of the circuits.

Fig. 3. Vertex distribution for constraint WeightedSubCircuits during the search:
A vertices are definitely discarted and inserted in subset Setdummy; B vertices are
definitely added to one subset Setk; C vertices can no longer be discarded but are not
yet assigned to any subset Sk; D vertices can belong to any subset.

Whether one considers a particular variable Costk or the global variable Z,
in both cases there is a subset of vertices that must be part of the solution and
other vertices that may participate.

For instance, to find a lower bound for lb(Costk), the subset of required
vertices is equal to lb(Setk). It is unfortunate that it is not possible to consider
only G[lb(Setk)] in order to find a lower bound for lb(Costk):

A Circuit Constraint for Multiple Tours Problems 397

Proposition 2. OPTTSP (G[lb(Setk)]) is not a lower bound for lb(Costk)

Proof. In the graph of Fig. 4, the subgraph induced by lb(Setk) is a cycle of
weight 24. With additional vertices 5 and 6 added to Setk, the induced subgraph
includes a cycle of weight 21. Moreover, G[lb(Setk)] may not contain a cycle
while G[ub(Setk)] does. �

Fig. 4. The optimal value for TSP (G[lb(Setk)]) is equal to 24 whereas
OPTTSP (G[lb(Setk) ∪ {5, 6}]) is equal to 21.

To find a lower bound for Costk, we must consider not only the mandatory
vertices but also the potential vertices. This question can be reduced to the
Steiner cycle problem, which is a generalization of the Steiner tree problem [15].

Definition 2 (Steiner Cycle Problem). Let H = (V,E, c) a weighted graph and
V ′ ⊆ V . The Steiner Cycle Problem SCP (H,V ′) consists in finding an elemen-
tary cycle of minimum cost that contains all nodes in V ′ (but may include addi-
tional vertices). The cost of an optimal solution will be noted OPTSCP (H,V ′).

The TSP is a specific case of SCP where V ′ = V .

Proposition 3. lb(Costk) ≥ OPTSCP (G[ub(Setk)], lb(Setk))

Proof. Costk is the cost of a Hamiltonian cycle in G[Setk]. Thus, this cycle
must necessarily pass through all the vertices of lb(Setk) and eventually
through some vertices of ub(Setk)\lb(Setk). This is the exact definition of
SCP (G[ub(Setk)], lb(Setk)). �

Proposition 3 gives a way to filter Costk. Since computing an optimal Steiner
cycle is NP-hard, a lower bound can be determined by relaxing a constraint of
SCP as is done for TSP. To do this, we start by defining an extended subgraph:

Definition 3 (Extended subgraph). Given a weighted graph H = (V,E, c) and a
subset V ′ ⊆ V , the extended subgraph G(H,V ′) is obtained by adding to H[V ′]
new edges (i, j), with weight c(i, j) = δi,j, such that (i, j) �∈ E and there is a
shortest path connecting i to j in H[(V \V ′) ∪ {i, j}] whose cost is equal to δi,j.

This definition is illustrated by Fig. 5. The edges added to H[V ′] correspond to
a shortest path outside V ′ and connecting two non-adjacent vertices of H[V ′].

398 P. Vismara and N. Briot

Fig. 5. Extended subgraph G(H,V ′) for a graph H = (V,E, c) and a subset V ′ ⊆ V

Proposition 4. Given a weighted graph H = (V,E, c) that respects triangular
inequality and V ′ ⊆ V with |V ′| ≥ 3 we have

OPTSCP (H,V ′) ≥ OPTTSP (G(H,V ′))

Proof. Any Hamiltonian cycle C that is solution of SCP (H,V ′) is composed of
paths included in V ′ and paths outside V ′. Let Pi,j = 〈i, x1, . . . , xt, j〉 be a sub-
path of C such that i, j ∈ V ′ and ∀p ∈ 1..t, xp �∈ V ′. If (i, j) ∈ E, the triangular
inequality imposes that c(i, j) is not greater than the cost of Pi,j . If (i, j) �∈ E,
by construction of G(H,V ′), there exists in G(H,V ′) an edge (i, j) whose weight
is lower or equal to the cost of Pi,j . Thus, the cycle obtained by replacing in
C all paths Pi,j by edge (i, j) is a Hamiltonian cycle of G(H,V ′) whose cost is
lower or equal to that of C. �

By combining Propositions 3 and 4 we obtain a filtering rule for Costk:

Corollary 1. lb(Costk) ≥ OPTTSP (G(G[ub(Setk)], lb(Setk)))

and therefore, a filtering rule for Z:

Corollary 2. lb(Z) ≥ ∑K
k=1 OPTTSP (G(G[ub(Setk)], lb(Setk)))

Since all Setk must be disjoined, all graphs G(G[ub(Setk)], lb(Setk)) are dis-
joined and so we have:

Proposition 5. lb(Z) ≥ OPTTSP (
⋃K

k=1 G(G[ub(Setk)], lb(Setk)))

Computing ∪K
k=1G(G[ub(Setk)], lb(Setk)) can be done in O(|V |(|E| +

|V | log |V |)) with at most |V \ub(Setdummy)| calls to Dijkstra’s algorithm. This
is comparable to the complexity of some relaxation algorithms. For example, the
Hungarian algorithm used for the Assignment Problem relaxation is in O(|V |3).

Thanks to Proposition 5, a lower bound of Z can be computed with a relax-
ation of the TSP, as in the case of constraint WeightedCircuit.

This bound is directly related to the state of variables Setk, which define
the vertices of the extended subgraphs, and to the domains of variables Nexti,
which fix adjacency in G. Depending on the relaxation used, it is also possible
to take into account variable Setdummy.

For example, suppose we use the relaxation corresponding to the Assignment
Problem (AP). For any graph H, a solution of AP (H) is a set of disjoined

A Circuit Constraint for Multiple Tours Problems 399

minimum cost elementary circuits covering all the vertices of H. Applying AP
to extended subgraphs results in a set of sub-cycles covering all type B vertices
of Fig. 3. However, type C vertices are not covered by these sub-cycles even
though they will necessarily be part of the final cycles. To take into account
these vertices we can expand the extended subgraphs to vertices of type C.

Let SB =
⋃K

k=1 lb(Setk) the set of type B vertices and SC the set of type C
vertices. We have SC = V \(ub(Setdummy) ∪ SB).

We define the global extended subgraph G∗ as follow:

Definition 4 (Global extended subgraph). The global extended subgraph G∗ is
an extended subgraph built on G[SB ∪ SC] by adding only edges between two
vertices of the same lb(Setk) or between a vertex of SB and a vertex of SC .

This definition is illustrated by Fig. 6.

Fig. 6. En example of global extended subgraph G∗, with SC = {4} and SB =
lb(Set1) ∪ lb(Set2) = {1, 2, 3, 8, 9, 10, 11} and Next1 = 2, Next2 = 3

Computing G∗ has the same complexity O(|V |(|E|+ |V | log |V |)) as comput-
ing all extended subgraphs.

Since G∗ is built from a subgraph that contains the C-type vertices, we have
a new lower bound for Z:

Proposition 6
lb(Z) ≥ OPTAP (G∗) (1.13)

The proof is similar to that of Proposition 4.
For the graph in Fig. 6, the cycle set {〈1, 2, 3, 4, 1〉, 〈8, 11, 8〉, 〈9, 10, 9〉} is an

optimal solution to AP (G∗). The cost (33) of this solution is a lower bound

400 P. Vismara and N. Briot

of Z, whatever the vertices added to Set1 or Set2. Moreover, according to the
upper bound of Z, some edges can be discarded because they cannot be part of
a solution. This filtering is based on computing a reduced cost for each arc (i, j)
not in the solution of AP (G∗), i.e., the minimum increase of the overall cost for
setting Nexti to j (see [12,13]). For instance, with ub(Z) = 40, edges (8, 10)
and (9, 11) could be eliminated. This filtering concerns only the edges of G∗ that
belong to G.

6 Experimental Results

This section presents some preliminary results to evaluate the benefits of the con-
straint WeightedSubCircuits. These preliminary experiments aim to measure
the interest of a filtering based on Steiner cycles.

Rather than generating random data we consider the Balancing Bike Sharing
Systems (BBSS). This problem is linked to the management of a shared bicycle
fleet. The objective is to optimize a tour of the stations in order to remove
bicycles from overfilled stations and refill empty stations. The capacity of the
transport vehicle and the time available do not allow all stations to be optimized.
We implemented the CSP model of [16,17] which uses a Cycle constraint. We
simply modified it in order to make dummy vertices appear: to ensure that some
stations will not be visited, we imposed that the demand for each visited station
be fully satisfied rather than partially handle all stations. The benchmark is
based on instances from the city of Vienna given by [16]. To generate additional
instances from size 12 to 18, we extracted a subset of vertices from instances with
20 vertices. Unlike the initial article which was based on a Large Neighborhood
Search (LNS) approach, we used a standard search procedure used with fixed
ordering of variables. This limits the size of instances that can be processed.

We compared 4 models based on:

– a simple Cycle constraint using the NoSubTour filtering.
– the decomposition of the WeightedSubCircuits constraint presented in

Sect. 5.1, with the filtering rules 1.9 to 1.12 for the NoSubTours constraint
– the NoSubTours constraint plus the filtering rule for Z based on AP (G∗)

(Proposition 6)
– the previous filtering rules with additional filtering on the Nexti variables

using reduced costs from AP (G∗).

We implemented these models in the Java library Choco 4 [18]. All the exper-
iments were executed on a Linux machine with Intel(R) Xeon(R) CPU E5-2680
(2.40 GHz). The time limit for each run was set to 2 h.

Table 1 summarizes the results obtained for series of 30 graphs of different
sizes. When all the graphs in a series have been resolved, the CPU time and the
number of nodes are an average over the 30 graphs. Otherwise, only the number
of resolved instances is displayed.

These preliminary results show that the model based on the decomposition
of the WeightedSubCircuits constraint allows to find an optimal solution for

A Circuit Constraint for Multiple Tours Problems 401

Table 1. Average results on BBS instances for the WeightedSubCircuits.

|V | Circuit Decomposition of
WSC

WSC filtering on Z
with AP (G∗) relaxation

WSC filtering
on Z and Nexti

solved Time (s) Nodes Time (s) Nodes Time (s) Nodes

10 12/30 13 201,658 6 78,735 6 66,984

12 6/30 89 1,415,712 16 228,809 12 159,703

14

0/30

381 6,035,049 49 723,136 40 522,914

16 1515 23,729,425 181 2,480,824 121 1,489,637

18 26/30 526 6,480,702 369 4,017,667

20 19/30 1523 16,147,092 1097 10,475,711

instances up to 20 vertices while the model based on the Circuit constraint
of Choco (NoSubTour) reaches the time limit for several small instances. In
addition, the filtering of the Z variable based on the AP (G∗) relaxation seems
to be quite effective. The last columns show that the computation of G∗ is even
more profitable if it is used to eliminate edges by filtering the Nexti variables.

7 Conclusion

In this paper, we considered circuit constraints that allow the modeling of tour
problems in a CP solver. We have proposed a new global constraint, named
WeightedSubCircuits, that enforces multiple disjoint circuits of bounded
total cost to partially cover a weighted graph. The constraint is posted on a
family of subsets of vertices to obtain a Hamiltonian circuit in each subgraph
induced by a subset. The WeightedSubCircuits constraint is intended to be
combined with other constraints that control the composition of these subsets
and the dummy set of discarded vertices.

We have shown that the WeightedSubCircuits constraint can improve
filtering where the WeightedCircuit constraint cannot be used because of the
dummy vertices. We have proposed an adaptation of the NoSubTour con-
straint filtering that is compatible with discarded vertices. We have shown that
computing a lower bound of the cost of each circuit can be reduced to a Steiner
circuit problem. We demonstrated how to obtain a lower bound of the Steiner
circuit by solving a TSP relaxation on an extended subgraph. To obtain a lower
bound of the total cost of all circuits, we have shown that it is possible to take
into account the required vertices that are not yet assigned to a subset, using AP
relaxation. Preliminary experiments have shown the potential of this approach
and encourage further exploration of filtering rules for the new constraint.

402 P. Vismara and N. Briot

References

1. Toth, P., Vigo, D.: Vehicle routing: problems, methods, and applications. In: SIAM
(2014)

2. Laurière, J.: A language and a program for stating and solving combinatorial prob-
lems. Artif. Intell. 10(1), 29–127 (1978)

3. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Model. 20(12), 97–123 (1994)

4. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceed-
ings of the National Conference on Artificial Intelligence, AAAI-94, pp. 362–367.
Seattle (1994)

5. Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 706–710. Springer, Heidelberg (2006). https://doi.
org/10.1007/11889205 55

6. Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1–29 (2014)

7. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Proceedings of
the 14th International Conference on Logic Programming, pp. 316–330. MIT Press
(1997)

8. Pesant, G., Gendreau, M., Potvin, J., Rousseau, J.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transp. Sci. 32(1), 12–29 (1998)

9. Dooms, G.: The CP (Graph) computation domain in constraint programming.
Ph.D. thesis, Université catholique de Louvain (2006)

10. Prosser, P., Unsworth, C.: A connectivity constraint using bridges. In: ECAI 2006:
17th European Conference on Artificial Intelligence, Frontiers in Artificial Intelli-
gence and Applications, vol. 141, pp. 707–708. IOS Press (2006)

11. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW.
INFORMS J. Comput. 14(4), 403–417 (2002)

12. Benchimol, P., Hoeve, W.J.V., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

13. Ducomman, S., Cambazard, H., Penz, B.: Alternative filtering for the weighted
circuit constraint: comparing lower bounds for the TSP and solving TSPTW. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3390–
3396 (2016)

14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessiere, C. (ed.) Principles and
Practice of Constraint Programming - CP 2007, pp. 529–543. Springer, Berlin
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 38

15. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. In: Annals of
Discrete Mathematics, vol. 53. Elsevier (1992)

16. Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing
bike sharing systems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 758–773.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 56

17. Di Gaspero, L., Rendl, A., Urli, T.: Balancing bike sharing systems with constraint
programming. Constraints 21(2), 318–348 (2016)

18. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-
solver.org

https://doi.org/10.1007/11889205_55
https://doi.org/10.1007/11889205_55
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-642-40627-0_56
http://www.choco-solver.org
http://www.choco-solver.org

Towards Semi-Automatic Learning-Based
Model Transformation

Kiana Zeighami1(B), Kevin Leo1, Guido Tack1,2,
and Maria Garcia de la Banda1,2

1 Faculty of IT, Monash University, Melbourne, Australia
{kiana.zeighami,kevin.leo,guido.tack,maria.garciadelabanda}@monash.edu

2 Data61/CSIRO, Melbourne, Australia

Abstract. Recently, [16] showed that the nogoods inferred by learning
solvers can be used to improve a problem model, by detecting constraints
that can be strengthened and new redundant constraints. However, the
detection process was manual and required in-depth knowledge of both
the learning solver and the model transformations performed by the com-
piler. In this paper we provide the first steps towards a (largely) auto-
matic detection process. In particular, we discuss how nogoods can be
automatically simplified, connected back to the constraints in the model,
and grouped into more general “patterns” for which common facts might
be found. These patterns are easier to understand and provide stronger
evidence of the importance of particular constraints. We also show how
nogoods generated by different search strategies and problem instances
can increase our confidence in the usefulness of these patterns. Finally,
we identify significant challenges and avenues for future research.

1 Introduction

Lazy Clause Generation (LCG) [3,11] is a powerful solving technique that com-
bines the strengths of Constraint Programming and SAT solving. It works by
instrumenting finite domain propagation to record the reasons for each prop-
agation step, thus creating an implication graph like the ones built by SAT
solvers [9]. This graph is used to derive nogoods (i.e., reasons for failure) that are
recorded as clausal propagators and propagated efficiently using SAT technology.
The combination of constraint propagation and clause learning can dramatically
reduce search and greatly improve performance (e.g., [14,15]).

Shishmarev et al. [16] have shown that the nogoods inferred by a learning
solver when executing a model may be used to design model transformations that
improve its execution. In hindsight, this should have been expected: a nogood is
introduced when the propagation achieved by the constraints in the model is not
strong enough to avoid a failure during search. By identifying the nogoods that
caused the biggest search reduction and connecting them back to the constraints
in the model, Shishmarev et al. were able to improve propagation for two models.
This was achieved by modifying the model constraint that generated the nogood,
and by adding a new redundant constraint (suggested by the nogood).

Inferring useful redundant constraints for a given model is extremely difficult.
Thus, using nogoods to achieve this and to strengthen the constraints already
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 403–419, 2018.
https://doi.org/10.1007/978-3-319-98334-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_27&domain=pdf

404 K. Zeighami et al.

in the model is an exciting new approach with significant potential. However,
Shishmarev et al. used a manual method to infer model improvements based on
the inferred nogoods. Further, the inference required in-depth knowledge of the
learning solver and of the transformation performed (in this case by the MiniZinc
[10] compiler) to the user’s model to become the input to the target solver. In this
paper we perform the first steps towards a semi-automatic process. In particular,
we show how the nogoods can be automatically renamed, simplified, connected
back to the constraints in the model, and grouped into more general patterns for
which common facts might be found. These patterns are easier to understand
by (expert) modellers than the raw nogoods, and their associated facts can help
these modellers find useful modifications to the model. Additionally, we show
how the generation of nogoods using different search strategies and instances
of a problem can be used to increase our confidence in the usefulness of these
patterns. We show the potential of the approach with two case studies, and finish
by identifying some of the significant challenges with which we are still faced,
and some avenues for future research that may help resolve them.

2 Background

Constraint Programming: A constraint problem P is a tuple (C,D, f), where
C is a set of constraints, D a domain which maps each variable x appearing in C
to a set of values D(x), and f an (optional) objective function. Set C is logically
interpreted as the conjunction of its elements, and D as the conjunction of unary
constraints x ∈ D(x), for each variable x appearing in C. A literal of P is a
unary constraint whose variable appears in C. A constraint solver starts from a
problem P ≡ (C,D, f) and applies propagation to reduce domain D to D′ as a
fixpoint of all propagators for C. If D′ is equivalent to false (D′(x) is empty for
some variable x), we say P is failed. If D′ is not equivalent to false and fixes all
variables, we have found a solution to P . Otherwise, the solver splits P into n
subproblems Pi ≡ (C ∧ ci,D

′, f), 1 ≤ i ≤ n where C ∧ D′ ⇒ (c1 ∨ c2 ∨ . . . ∨ cn)
and where ci are literals (the decisions), and iteratively searches these.

The search proceeds making decisions until either (1) a solution is found, (2)
a failure is detected, or (3) a restart event occurs. In case (1) the search either
terminates if the model has no objective function f , or computes the value of f ,
sets a bound for the next value of f to be better (greater or smaller, depending on
f) and continues the search for this better value. In case (2), the search usually
backtracks to a previous point where a different decision can be made. In case
(3) the search restarts, possibly incorporating new constraints previously learnt.

Lazy Clause Generation: LCG solvers [3,11] extend CP solvers by instru-
menting their propagators to explain domain changes in terms of equality (x = d
for d ∈ D(x)), disequality (x �= d) or inequality (x ≥ d or x ≤ d) literals. An
explanation for literal � is S → �, where S is a set of literals (interpreted as a con-
junction). For example, the explanation for the propagator of constraint x �= y
inferring literal y �= 5, given literal x = 5, is {x = 5} → y �= 5. Each new literal
inferred by a propagator is recorded together with its explanation, forming an
implication graph. Whenever the search reaches a failure, LCG solvers use the
implication graph to compute a nogood N , that is, a set of literals (interpreted as

Towards Semi-Automatic Learning-Based Model Transformation 405

a conjunction) that represents the reason for the failure and cannot be extended
to a solution. Then, they add its negation (¬N , a set of literals interpreted as
their disjunction) as a clausal propagator and backtrack, resuming the search.
These learnt clauses ensure the search cannot fail again for the same reasons.

Modelling: We distinguish between a constraint problem model, where the
input data is described in terms of parameters (i.e., variables that will be fixed
before the search starts), and a particular model instance, where the values of
the parameters are added to the model. Constraint models are usually defined
in a high level language, such as Essence [4] or MiniZinc [10], and their instances
are compiled into a flattened format, where loops are unrolled into the appro-
priate set of constraints, and global constraints are potentially decomposed into
a representation suitable for the selected solver. Note that the compiler may
introduce new variables and constraints during this flattening process, and the
solver can also introduce further variables and constraints during its execution
of the instance. The nogoods of an LCG solver will consist of literals that refer
to this fully flattened and decomposed instance of the problem. This makes their
analysis in terms of the high-level model particularly challenging.

Paths: We use the concepts of variable paths [6] and constraint paths [7], which
assign a unique identifier to each variable and constraint appearing in a flattened
instance. They allow us to connect the flattened variables and constraints to the
model’s source code. Each identifier describes the path the compiler took when
compiling a MiniZinc instance (that is, a MiniZinc model and its input data) to
FlatZinc, from the actual model to the point where a new variable or constraint
is introduced. For example, the following is a (simplified) constraint path:

�

�

�

�

14:12-15:61 forall:p1=1,p2=6
�

�

�

�

14:36-15:60 ->
�

�

�

	

14:37-14:74 /\
�

�

�

�

14:37-14:74 clause

Each of its components has two parts: four numbers denoting the span of
text in the MiniZinc model that the expression came from (with format from
line:column-to line:column); and a textual description of what the expression
represents. The above path represents a clause that was inserted into the final
FlatZinc, as a result of encoding a negated (thus the clause part) conjunction
/\ appearing in the left hand side of the implication (->) that appears in the
forall loop from lines 14 − 15, with index variables p1=1 and p2=6.

3 Towards Automation: The freepizza case

Shishmarev et al. [16] demonstrated how the clauses learnt by an LCG solver can
be used to improve a model. To achieve this, they executed the model using the
LCG solver Chuffed [2], replayed its search decisions (in the same order) using the
non-LCG solver Gecode [13], merged the two resulting search trees, counted the
number of nodes explored by Gecode that were not explored by Chuffed, and
assigned them to the learnt clause(s) that helped Chuffed fail before Gecode.
This formed a ranking of all clauses based on the total number of search nodes
avoided by each clause, with the top-ranked clauses being the most effective for
reducing search. Finally, they manually inspected the 10 most effective clauses
to learn information that could help improve the model.

This section introduces several techniques for automating part of the process
described in [16] using MiniZinc (the techniques can, however, be applied in other

406 K. Zeighami et al.

modelling languages). We use one of their case studies (free pizza) to illustrate
the manual process on a hard problem (Chuffed only solved 1 of 5 instances in
the 2015 MiniZinc Challenge [17]), and the issues faced when automating it. In
this problem customers get pizzas either by paying for them or by using vouchers.
Each voucher (a, b) allows customers to get b number of pizzas for free if they
pay for a number of pizzas, and none of the b pizzas are more expensive than the
a ones. A customer who has m vouchers and wants n pizzas aims to minimise
the amount paid for the n pizzas. Their MiniZinc model (called freepizza) is:
1 int: n; set of int: PIZZA = 1..n; % number of pizzas wanted

2 array[PIZZA] of int: price; % price of each pizza

3 int: m; set of int: VOUCH = 1..m; % number of vouchers

4 array[VOUCH] of int: buy; % buy this many to use voucher

5 array[VOUCH] of int: free; % get this many free

6

7 set of int: ASSIGN = -m .. m; % i -i 0 (free/paid with voucher i or not)

8 array[PIZZA] of var ASSIGN: how;

9 array[VOUCH] of var bool: used;

10

11 constraint forall(v in VOUCH)(used[v]<->sum(p in PIZZA)(how[p]=-v) >=buy[v]);

12 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);

13 constraint forall(v in VOUCH)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);

14 constraint forall(p1 , p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])

15 -> price[p2] <= price[p1]);

16 int: total = sum(price);

17 var 0.. total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

Lines 1–5 introduce the parameters: numbers n and m, an array for the
pizzas’ prices, and two arrays for vouchers s.t. (buy[i],free[i]) represents the
ith voucher (a, b). The next three lines define two arrays of decision variables:
used[v], which is true iff voucher v was used; and how[p], which is v if pizza p
was free thanks to voucher v, is 0 if p was paid for and not used in any voucher,
and is -v if p was paid for and used to get free pizzas with voucher v.

Constraints start in line 11, which states that if voucher v was used, then the
total number of pizzas bought and assigned to v must be greater than or equal to
the number of pizzas required by it. Line 12 states similar information but in the
opposite direction: the total number of pizzas bought and assigned to voucher v
must be less than or equal to used[v]*buy[v]. Together they constrain the total
number of pizzas bought for v to be equal to buy[v], if used. The constraint in
line 13 states that the total number of free pizzas obtained thanks to voucher
v must be smaller than or equal to the number of free pizzas allowed by v if
used (used[v]*free[v]). The last constraint states that if there are two pizzas
p1 and p2 assigned to the same voucher with p2 being free and p1 being paid
for (given how[p1] < how[p2] and how[p1] = -how[p2]), then the price of p2
must be lower than or equal to that of p1. Finally, the objective function is
defined as the sum of the prices of the pizzas that are bought.

Table 1 shows the top 10 clauses found in [16] for freepizza with data:

n = 10; m = 4; price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];
buy = [1, 2, 3, 3]; free = [1, 1, 2, 1];

Each clause is interpreted as the disjunction of its literals. For example,
the clause ranked 4th, {how[5]�=-3,how[3]�=3}, states that pizza 3 cannot be

Towards Semi-Automatic Learning-Based Model Transformation 407

obtained for free using voucher 3 by paying for pizza 5 with that voucher (this
might be easier to see in its equivalent form ¬(how[5]=-3 ∧ how[3]=3)).

Table 1. Taken from [16]: Most effective learnt clauses in freepizza

Rank Reduction Clause

1 3425 how[1]=-1 how[2]=-1 how[3]=-1 how[4]=-1 how[5]=-1

how[1]=-2 how[2]=-2 how[3]=-2 how[4]=-2 how[5]=-2

how[6]≤0 how[6]≥3

2 2068 how[7]≤2 how[7]≥4 how[1]�=-3 how[1]≥-2

3 1712 how[4]�=3 how[1]=-3 how[2]=-3 how[3]=-3 how[4]=-3

4 1636 how[5]�=-3 how[3]�=3

5 1636 how[8]�=-3 how[3]�=3

6 1636 how[9]�=-3 how[3]�=3

7 1636 how[10]�=-3 how[3]�=3

8 1489 how[6]≤2 how[6]≥4 how[1]�=-3 how[1]≥-2

9 1404 how[5]�=-3 how[4]�=3 how[4]≤2

10 1403 how[10]�=-3 how[4]�=3

3.1 Renaming Literals

The clauses in Table 1 are already the result of significant manual interpretation
and analysis. For example, the 4th clause came from renaming (and simplifying)
solver-level clause

{
X INTRODUCED 4 �=-3, X INTRODUCED 2 �=3,X INTRODUCED 2 ≤2

}
,

where the names X INTRODUCED 4 and X INTRODUCED 3 were introduced by the
MiniZinc compiler for the model variables in array positions how[5] and how[3],
respectively. Thus, our first step towards automation is to transform clauses to
refer to model-level variables and expressions. For simple renamings as in the
example above, we could instrument the MiniZinc compiler to keep a map from
solver-level to model-level names. New variables may, however, also be intro-
duced when flattening expressions. For example, the compiler may introduce an
auxiliary variable for the result of an addition, or the result of flattening a let
expression. Connecting such variables back to model-level names is more com-
plex. We propose to do this by using variable paths [6]. Consider, for example,
the literal X INTRODUCED 244 =true, which appears in one of the clauses generated
by Chuffed for freepizza. As variable X INTRODUCED 244 does not correspond
directly to any model-level variable, the compiler produces the following path:
�

�

�

	

14:12-15:61 forall:p1=1,p2=6
�

�

�

	

14:36-15:60 ->
�

�

�

	

14:37-14:74 /\
�

�

�

	

14:37-15:74 clause
�

�

�

	

14:58-14:74 =
�

�

�

	

14:58-14:74 int lin eq

The final entry in the path shows the location in the model of the expression that
corresponds to X INTRODUCED 244 : line 14, columns 58–74, which has expression
"how[p1]= -how[p2]". The path also shows that the expression is located within
the forall that spans lines 14:12–15:61, within the implication (->) that spans
lines 14:36–15:60, within the conjunction (/\) that spans line 14:37–14:75, within

408 K. Zeighami et al.

the clause that the negated conjunction was encoded as, and within the =
that spans line 14:58–14:74. Since the path ends with an int lin eq constraint
(integer linear =), we can deduce that the introduced variable is the Boolean
control variable for the reified version of expression "how[p1]= -how[p2]" in
the model. Since the path also records the values of loop variables p1 and p2,
these can be automatically substituted, yielding "how[1]= -how[6]"=true.

3.2 Simplifying Literals and Clauses

The readability of any clause can be further improved by simplifying its literals
based on their semantics. We do this in two different ways. First, we simplify
literals whose variables were introduced by the compiler, and which correspond
to Boolean expressions in the model, as follows:

positive: if the right-hand side of a literal is true (e.g. =true, =1, >=1),
and the left-hand side is a Boolean expression of the form e1op e2, where op
is a binary operator, then we can simply remove the right hand side.
negative: if the right-hand side of a literal is false (e.g. =false, =0, <=0),
and the left-hand side is a Boolean of the form x op v, where x is a variable,
op is a binary operator and v is an integer value, then we can negate the left
hand side and remove the right hand side.

For example, literal "how[1] < how[6]"=true becomes how[1] < how[6], and
literal "how[1]=-1"<=0 (which comes from the sum of reified equality constraints
in line 12 of the model) becomes how[1]�=-1. Simplifying literals with more
complex left-hand sides (i.e., arbitrary MiniZinc expressions), requires a deeper
integration with the MiniZinc compiler and is left for future work.

Second, we eliminate from each clause any literal that entails (i.e., implies)
other literals in the clause, since A∨B ∨C is equivalent to A∨B, if C entails B.
This makes the clause easier to understand and, as shown in Sect. 3.4, makes it
easier to automatically detect clause patterns. We automatically simplify a clause
by applying the following rules to literals that operate on the same variable x:

�= a literal of the form x �= v is entailed by any other literal x = v′ such that
v �= v′ and any literal x ≤ v′ (x ≥ v′) such that v′ ≤ v (v′ ≥ v). Thus, those
other literals are eliminated. For example, clause {x = 1, x ≤ 1, x ≥ 4, x �=
2, . . . } becomes {x �= 2, . . . }.

≥ (≤) a literal of the form x ≥ v (x ≤ v) is entailed by any other literal
x ≥ v′ (x ≤ v′) s.t. v < v′ (v > v′). Thus, we only keep the literal with the
lowest (highest) bound. For example, clause {x ≤ 1, x ≤ 2, x ≥ 3, x ≥ 4, . . . }
becomes {x ≤ 2, x ≥ 3, . . . }.

≤≥ if a clause contains two literals x ≤ v1 and x ≥ v2, s.t. v2 − v1 = 2, then
these two literals can be replaced by a single literal x �= v2 − 1. For example,
clause {x ≤ 1, x ≥ 3, . . . } becomes {x �= 2, . . . }.

Applying these rules to our clause {how[5]�=-3, how[3]�=3, how[3]≤2}
yields the one ranked 4th in Table 1: {how[5]�=-3, how[3]�=3}, since how[3]≤2
entails how[3]�=3, and is thus eliminated by the �= rule.

Towards Semi-Automatic Learning-Based Model Transformation 409

Note that all simplifications are done after renaming the introduced vari-
ables. This is useful, as literals that reference different introduced variables may
later become a single literal. This happens often in freepizza as, for example,
the sum function expects integer variables, but in the model it is given Booleans.
Each Boolean variable is coerced by the compiler to be integer by introducing a
new integer variable and posting a bool2int predicate equating the Boolean to
the integer one. For expression sum(p in PIZZA)(how[p]=-v), both the origi-
nal Boolean variables and the introduced integer variables refer to the expression
"how[p]=-v" in the model. However, before renaming, the literals may appear
different (e.g., X INTRODUCED 45 =false and X INTRODUCED 53 <=0) even though
they mean the same thing (how[p]�=-v). By performing the simplification after
the renaming, both variables are known to be (or come from) a Boolean expres-
sion, and are thus simplified to how[p]�=-v. Interestingly, if these simplifications
had been applied to the clauses in Table 1, Shishmarev et al. would have realised
that clauses 2, 8 and 9, can be further simplified to {how[7]�=3, how[1]�=-3},
{how[6]�=3, how[1]�=-3}, and {how[5]�=-3, how[4]�=3}.

3.3 Connecting Clauses to the Constraints in the Model

One of the main achievements of Shishmarev et al. was to use the learnt clauses
to identify the need to strengthen the constraint in line 14 of the model. This
need was discovered by realising that some of the top clauses were direct con-
sequences of a single constraint; the one in line 14. To do this, Shishmarev et
al. manually linked the learnt clauses (or more accurately, their literals) to the
model constraints they were derived from.

To automate this step, we instrumented Chuffed to record the solver-level
constraint directly responsible for adding any literal to the clause database.
That is, for each explanation S → � added by a constraint with identifier idc,
we record that � was directly generated from idc. Then, when a clause Cl is
generated, we obtain the constraint identifier of each literal � in Cl , ask that
constraint to provide us with the explanation S that was used to generate �, and
recursively apply the same method for all literals in S. This allows us to (lazily)
trace back all constraints involved in generating the literals of Cl .

For clause {how[5]�=-3, how[3]�=3}, our method identifies a single solver-
level constraint as responsible for all literals. Using constraint paths, we can trace
it back to the expression how[p1]=-how[p2] on line 14 of freepizza, with loop
variables p1=5 and p2=3. Thus, our automatic method successfully identifies the
line in which the constraint responsible for the clause appears. While connecting
the clauses to the model constraints via a textual path is already very useful,
it would be easier for users to get a visual connection. To achieve this, we have
modified the MiniZinc IDE to visually highlight the parts of the user’s model
responsible for a given clause (see Fig. 1).

3.4 Finding Patterns Among Clauses

At this point, our automatic method can make a clause clearer, simpler and
visually connect it to the constraints it came from. However, a single clause
may not be worth exploring, even if it led to a considerable search reduction.

410 K. Zeighami et al.

int: n; set of int: PIZZA = 1..n; % number of pizzas
array[PIZZA] of int: price; % price of each pizza
int: m; set of int: VOUCHER = 1..m; % number of vouchers
array[VOUCHER] of int: buy; % buy this many to use voucher
array[VOUCHER] of int: free; % get this many free

set of int: ASSIGN = -m .. m; % i -i 0 (pizza is free/paid with voucher i or not)
array[PIZZA] of var ASSIGN: how;
array[VOUCHER] of var bool: used;

constraint forall(v in VOUCHER)(used[v]<->sum(p in PIZZA)(how[p] = -v) >= buy[v]);
constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);
constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);
constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])
 -> price[p2] <= price[p1]);

int: total = sum(price);
var 0..total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

Fig. 1. Constraint responsible for learnt clause {how[5]�=-3, how[3]�=3}

The modeller may need stronger evidence to start what can be a lengthy explo-
ration (as clauses are in practice quite complex, even after renaming and sim-
plification). The evidence can be much stronger if several clauses with a similar
pattern can be found to have significantly reduced the search. For example,
Shishmarev et al. [16] focused on clause 4 ({how[5]�=-3,how[3]�=3}) not only
because it was one of the top clauses and it was short (and thus easier to under-
stand), but importantly, because it was part of several similar clauses in the top
10 (which they identified as clauses 5, 6, 7, and 10).

It is easy to show that these five clauses share the same pattern:
{how[A]�=-B , how[C]�=B }, where A and C are pizzas, and B is a voucher. For
example, clause 4 can be obtained by mapping A/5, C /3, and B/3. In fact, with
the simplifications provided above, all clauses in Table 1 except 1 and 3 can be
shown to share this pattern and to come from the same constraint. Grouping
clauses with the same pattern can help modellers in two ways: (a) while individ-
ual clauses may not seem to contribute much to the overall search reduction, a
group of clauses with the same pattern may do so; and (b) a pattern may identify
a general constraint, i.e., something that is true for a whole range of parame-
ters, and may therefore suggest a redundant constraint that can be added to the
model.

We define a pattern to be the most specific (or least) generalisation [12]
(MSG) of a set of clauses. To automatically obtain patterns, our method first
renames and simplifies each clause. Then, it sorts the literals in each clause by
variable name, operator and constant value. Finally, for all clauses that have the
same sequence of literal operators, and the same sequence of variable types, it
computes the MSG for all its subsets. For example, the following two (renamed,
simplified and sorted) clauses for our freepizza instance:
{how[1]=-1,how[2]=-1,how[3]=-1,how[4]=-1,how[6]�=1} and
{how[1]=-2,how[2]=-2,how[5]=-2,how[7]=-2,how[6]�=2}, have the same sequence
of literal operators (=,=,=,=, �=) and the same sequence of variable types (how[_
],how[_],how[_],how[_],how[_]). Our method computes the pattern {how[1]=-A

,how[2]=-A,how[B]=-A,how[C]=-A,how[6]�=A}, which can be mapped back to the
clauses by applying the name/constant maps {A/1,B/3,C/4} and {A/2,B/5,C/7},
respectively, where {B,C} are known to be pizzas and {A} a voucher. However, nei-
ther of the two clauses would form a pattern with {how[1]=-2,how[2]=-2,how[6]

Towards Semi-Automatic Learning-Based Model Transformation 411

�=2}, as they have a different number of literals, or with {how[1]=-1,how[2]=-1,

how[3]=-1,used[1]=true,how[6]�=1}, as they have different variable types.
Formally, each clause Cl is stored as a tuple (Id ,SeqLits ,Red ,Cons) contain-

ing the clause identifier Id , its renamed, simplified and sorted sequence of literals
SeqLits , its associated search reduction Red , and the constraints Cons that gen-
erated it. A pattern Pt is stored as a tuple (PId ,PSeqLits ,Maps,PRed ,PCons)
containing the pattern identifier PId , its sequence of literals PSeqLits , a set
Maps of tuples of the form (Map, Id), where applying Map to PSeqLits yields
the sequence of literals in the clause identified by Id , the total search reduction
PRed achieved by its clauses (the sum of the Red of each clause identified by
Maps), and the set of constraints Cons that generated any of its clauses (the
union of the Cons of each of the clauses identified by Maps).

Note that a clause may appear in many different patterns. In fact, this will
often be the case, as our algorithm can be seen as computing a pattern for each
subset of the set of (renamed, simplified and sorted) clauses that have the same
sequence of (a) literal operators and (b) variables types. The algorithm starts
with the set of renamed, simplified and sorted Clauses computed for a given
instance as described in previous sections, and an empty set of Patterns. Then,
for every clause Cl = (Id ,SeqLits ,Red ,Cons) in Clauses, it does the following:

1. Transform Cl into pattern Pt = (PId ,SeqLits , {([], Id)},Red ,Cons), where
PId is a new identifier.

2. Set NewPatterns to ∅
3. For each pattern Pt ′ = (PId ′,PSeqLits ,Maps,PReds ,PCons) in Patterns

with the same sequence of literal operators and variable types as SeqLits :
(a) Find a most specific generalisation PSeqLits ′ for SeqLit and PSeqLits ,

with associated mapping Map.
(b) Add (PId ′,PSeqLits ′,Maps∪{(Map, Id)},PRed +Red ,PCons∪Cons) to

NewPatterns.
4. Merge Patterns and NewPatterns.
5. Add Pt to Patterns.

Note that while the pattern Pt added in step 5 above is known to be different
from all others in Patterns (since Pt is essentially a clause and no two clauses
are identical), it is possible to have a pattern P1 in NewPatterns with a sequence
of literals identical (up to variable renaming Ren) to pattern P2 in Patterns. We
can detect this when merging Patterns and NewPatterns in step 4, and simply
merge P1 and P2 (by first applying Ren to them, and then computing the unions
of their mapping and constraint sets, and summing up their reductions).

Once all patterns are computed, our method ranks the results by the amount
of reduction associated with each pattern and presents it to the modeller. This
allows modellers to notice clauses that may not result in significant search reduc-
tions when considered individually, but do when considered together.

3.5 Inferring Facts for Clause Patterns

While patterns are a clearer way to condense the information provided by sev-
eral clauses, the insights obtained by Shishmarev et al. included information that
was not present in the clauses. For example, for clause {how[5]�=-3,how[3]�=3}

412 K. Zeighami et al.

they considered the fact that pizza 3 is more expensive than pizza 5, and for
{how[1]=-1,how[2]=-1,how[3]=-1,how[4]=-1,how[5]=-1,how[1]=-2,
how[2]=-2,how[3]=-2,how[4]=-2,how[5]=-2,how[6]≤0,how[6]≥3}, the fact
that pizza 6 is more expensive than any other pizza in the clause.

When generalising a set of clauses to a pattern, these additional facts can
serve as conditions under which the pattern is indeed a valid (implied) constraint.
For example, let us again consider the pattern {how[A]�=-B ,how[C]�=B } or, in
implication form, how[A]=-B → how[C]�=B . This pattern is clearly not valid
for arbitrary values of A, B, and C. However, for all clauses that contributed to
the pattern (including clauses 2,4–10), it is true that pizza A is cheaper than
pizza C. This yields a valid constraint: if pizza A is cheaper than pizza C, then
for any voucher B, if we use A with voucher B, then we cannot get pizza C for
free with voucher B. We have thus inferred the following constraint, which can
be added to the model (expressed as the contrapositive of the statement above
to make it more similar to the original formulation):

constraint forall(A,C in PIZZA , B in VOUCH) ((how[A]=-B /\ how[C]=B)
-> price[C]<=price[A]);

This constraint is logically equivalent to line 14 of the model, but it provides
stronger propagation, since it explicitly states that we cannot get pizza C for
free with voucher B, rather than stating this requirement indirectly. The manual
analysis in [16] resulted in a different reformulation:

constraint forall(A,C in PIZZA) ((0 < how[C] /\ how[A]= -how[C])
-> price[C] <= price[A]);

While they are equivalent, the automatically derived constraint is at a lower
level of abstraction, as it is stated for each individual voucher B, rather than
as a general statement on the how variables. An interesting direction for future
research is how to enable the automatic approach to perform such generalisations.

Automating the extraction of these facts is challenging, since it requires find-
ing relations in the model’s parameters that are true for a set of clauses. We
have implemented an approach that extracts relevant facts for a certain pattern.
A fact is relevant for a pattern if it concerns objects from it, e.g., if it relates the
prices of pizzas mentioned in a pattern, or the buy and free values of a voucher
mentioned in a pattern. The algorithm proceeds as follows for each pattern:

1. Extract the objects in the pattern; e.g., {how[A]�=-B, how[C]�=B} refers to
pizzas A and C, and voucher B.

2. Extract parameter values relating to all objects referred to by the clauses in
the pattern. For the example above, infer prices for all pizzas A and C in any
clause of the pattern, and buy/free information for all vouchers B.

3. For the extracted parameters, infer facts as simple unary relations on the
objects, such as p[X] = 0, p[X] < 0 or p[X] = max(p), for each parameter p
that is indexed by the type of object X. When there are two objects X and
Y of the same type in a pattern, additionally infer facts as binary relations
such as p[X] = p[Y], p[X] �= p[Y], p[X] ≤ p[Y], p[X] = −p[Y].

For the example with the most expensive pizza 6 above, we infer the
fact that price[A]=max(price) if a pattern exists where pizza A is the most
expensive one. For the example comparing two pizzas, we will infer that

Towards Semi-Automatic Learning-Based Model Transformation 413

price[C] > price[A] for all clauses in the pattern {how[A]�=-B ,how[C]�=B }.
Since patterns may contain many clauses, the extracted facts are unlikely to
always be true for all clauses. We therefore compute, for each extracted fact, the
percentage of clauses in the pattern that it matches, and only report facts that
match above a certain threshold. This is clearly a very incomplete and costly
method, and it will be interesting to pursue further research into how more
general facts can be extracted automatically in a reasonable amount of time.

3.6 Finding Patterns Across Searches and Across Instances

Finding a pattern whose cumulative search reduction is significant for a given
instance, provides the modeller with some confidence regarding the importance
of the pattern and the possibility of generalising it to a model constraint. Con-
fidence will be stronger if clauses with the same pattern appear in different
instances of the same model, as this suggests the pattern and its associated
information holds across different input data and is, thus, more likely to be a
general property of the model. Confidence would also be stronger if the pattern
significantly reduced the search across different searches, as this would indicate
the associated model modification may lead to speed-ups for all those searches.

To achieve this we have implemented a simple algorithm that, for each
instance, takes the union of all clauses obtained by the given set of searches,
and then finds the patterns (and facts) associated to them. For each identified
pattern, it then computes the percentage of instances that have produced this
pattern (up to renaming). Applying this method to the results obtained with
several instances and searches of the freepizza model, we found that the pat-
tern {how[A]�=B,how[C]=-B,how[D]=-B,how[E]=-B,how[F]=-B,how[G]=-B} appears
in at least two instances and most of their searches, with information price[A]>

price[C],price[A]>price[D],price[A]<price[E],price[A]<price[F], and price[

A]>price[G], having percentages between 79% and 55%. The pattern states that
if pizza A is free with voucher B, then one of the other pizzas needs to be paid for
with the same voucher. It is a weaker version of clause 1 in Table 1 and indicates
that pizza A can never be obtained for free by paying the cheaper pizzas. The
fact it appears so often suggests exploring a new constraint that, for each pizza
p, considers the subset of pizzas cheaper (or more expensive) than p.

Note however that the absence of a clause in a particular execution does
not mean the clause (and thus its associated pattern) is not valid. We therefore
need to be somewhat cautious when considering the importance of the patterns
obtained by the above method. Alternatively, we could modify our method to
do something similar to that of [8], by testing for each pattern Pt that does not
appear in some of the executions, whether at least one of its instantiations holds.

4 Preliminary Case Studies

While automating the method, we discovered new examples where the approach
is applicable. This section explores two such cases.

414 K. Zeighami et al.

4.1 Case Study 1: Redundant Constraints

Our semi-automated approach allowed us to discover a redundant constraint
that can be added to a model of the Grid Colouring problem. A grid colouring
is a colouring of an n × m grid x, where no sub-rectangle of the grid has all of
its corner cells assigned the same colour. A simplified version of the MiniZinc
model for this problem is presented below. The loop on lines 4 − 8 enumerates
all sub-rectangles of the grid, and states that at least one pair of orthogonally
adjacent corners must be assigned distinct colours.
1 int: n; int: m; % Width and height of grid
2 array [1..n,1..m] of var 1..min(n,m): x; % Colour in each cell
3
4 constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)(
5 (x[i,k]!=x[i,l] \/ x[i,l]!=x[j,l]
6 \/ x[j,k]!=x[j,l] \/ x[i,k]!=x[j,k]));
7
8 solve minimize max(x); % Number of colours used

Looking at the clauses produced for instances of this problem, we found a
frequent, high-ranking pattern with literals {x[A,B]�=x[A,C],x[A,B]�=x[D,B], x

[A,C]�=E,x[D,B]�=E,x[D,C]�=E}. One interpretation of the pattern states that if
corner x[A,B] is the same colour as x[A,C] and x[D,B], then one of x[A,C],x[D,B]
or x[D,C] must be assigned a different colour. Upon examination, it became clear
that the constraints in the model only indirectly compared diagonally adjacent
corners. To address this weakness, we added the following constraints:

constraint forall(i in 1..n, j in i+1..n, k in 1..m, l in k+1..m)
((x[i,l]=x[j,k] /\ x[i,l]=x[j,l]) -> (x[i,k]!=x[i,l]))

These constraints did not improve Chuffed’s performance but did improve
Gecode’s significantly. Table 2 shows Gecode’s solve time (in seconds) and node
count for several instances of the original model and the modified one. The
number of extra constraints result in Gecode spending more time at each node
but the added propagation leads to faster solve times.

Table 2. Gecode’s solving time for different instances of the Grid Colouring problem.

Original Modified
n m time (s) nodes time (s) nodes
5 5 0.10 34,987 0.07 5,452
5 6 0.13 35,223 0.09 5,468
6 6 0.55 131,661 0.29 16,773
6 7 1.53 9,484,042 0.77 37,727
7 7 65.47 11,565,900 23.15 904,148

4.2 Case Study 2: Strengthening Model Constraints

Our method also helped us discover a constraint in the time-changing graph
colouring problem model that could benefit from domain (rather than the com-
monly used bounds) consistency [1]. In this problem, the given initial colouring of

Towards Semi-Automatic Learning-Based Model Transformation 415

a graph must be transitioned to a given final colouring. The transition requires a
certain number s of steps, each performing at most k modifications to the colours
while maintaining a valid graph colouring. The objective is to first minimise the
number of steps required, and then the number of modifications.

The following shows an extract from the MiniZinc model we used, which
appeared in the annual MiniZinc Challenge as tcgc21. The model takes as input,
among others, the maximum number k of transformations per step, and sets the
maximum number of steps max_s to 10. It has an array of decision variables, where
a[i,n]=j represents the colour j of node n in step i, and a decision variable s

representing the final number of steps. The constraint displayed states that in
every non-final step i, the sum of all transformations must be less or equal to k.

int: k; % maximum colour changes per step
int: max_s = 10; % maximum number of steps
array [STEPS ,NODES] of var COLORS: a; % Colours of nodes at each time step
var 2.. max_s: s; % final number of steps
...

51 constraint forall(i in 1.. max_s -1)

52 (i < s -> sum (n in NODES) (
�

�

�

�

a[i,n] != a[i+1,n]) <= k);

53 ...

Our method identified pattern {a[A,B]�=a[A+1,B], a[A,B]=C, a[A+1,B]�=C}

as interesting, since its clauses are highly ranked across different searches
of different instances and, when combined, are responsible for a large search
reduction. Further, the pattern is short (and thus easy to understand) and
all its clauses come from a single model constraint (which often indicates
lack of expected propagation by the constraint). Upon examination, we felt
the pattern stated something so simple it should have already been captured
by the propagation of the model constraints. The first literal, derived from
the expression highlighted on line 52, represents the result of a reified not-
equals constraint. The literal is true when the variables take different val-
ues. If this is false, the remaining literals state that either the variables both
take the value C or they take some other value (this becomes clear when pre-
sented in implication form: {a[A,B]=a[A+1,B] ∧ a[A,B]�=C → a[A+1,B]�=C}
and {a[A,B]=a[A+1,B] ∧ a[A+1,B]=C → a[A,B]=C}). While this information
is obvious, the fact that the associated nogoods were being reported by the solver
indicated propagation was not performing as expected. We then realised that the
implementation of a reified not-equals constraint in Chuffed is bounds consistent
rather than domain consistent. To resolve this, we manually modified the model
to add the following information:
48 array [1.. max_s -1,NODES] of var bool: aa;
49 constraint forall (i in 1.. max_s -1, n in NODES)
50 (aa[i,n] <-> forall (c in COLORS) (a[i,n]=c <-> a[i+1,n]=c));
51 constraint forall (i in 1.. max_s -1)
52 (i < s -> sum (n in NODES) ((not aa[i,n])) <= k);
53 . . .

Table 3 shows solve times for instances of the original and modified model.
Three different search strategies with a 5 minute time limit were executed.
The strategies were the fixed strategy defined in the model, Chuffed’s free

1 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/tc-graph-color.

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/tc-graph-color

416 K. Zeighami et al.

search strategy, and, one that alternated between the two. The results show
the constraint can improve Chuffed’s solving performance on some (but not all)
instances of the problem. For a traditional CP solver with a domain consistent
reified not-equals constraint, these extra constraints will slow down propaga-
tion, and an annotation indicating the need for domain propagation would be
preferred. This shows the need for the modeller’s input.

Table 3. Solving times for different instances of tcgc2 using different search strategies.

Fixed Free Alternate
Instance Original Modified Original Modified Original Modified

k5 5 48.48 40.54 83.68 86.20 66.65 86.62
k9 39 ∞ ∞ ∞ ∞ 262.28 295.16

k10 31 ∞ ∞ ∞ ∞ 78.35 63.81
k10 34 23.66 21.18 80.65 91.60 77.57 69.59
k10 41 1.67 1.99 17.80 19.60 3.15 3.25

5 Status and Limitations

The semi-automatic method presented in the previous sections is a significant
improvement over the manual method presented in [16], making it much easier
and effective to explore the impact of the clauses learnt by a learning solver, and
the possible model modifications these clauses suggest. However, the current
implementation still has important limitations that are worth exploring. Here
we present some of these limitations and point to possible ways to address them.

Variable Paths: Our approach for reconstructing expressions based on paths is
purely textual. Thus, the paths for variables added by the compilation of a func-
tion/predicate call currently appear connected to the names of the parameters
or the local variables of the function/predicate. For example, a decomposition
of the alldifferent(array[int] of var int: x) predicate (from the MiniZinc
library) will contain expression x[i]!=x[j]. If the model contains a call to this
predicate, such as alldifferent(y), our purely textual approach would not be
able to rename x to y in any clauses resulting from this constraint. Therefore,
modellers cannot distinguish between different invocations of the same predicate.

We plan to address this limitation by using the MiniZinc compiler to hoist
local variables and parameters to be expressed in terms of the top level model
variables where possible, to apply simplification rules, and to deduce accurate
information about the types of expressions we have extracted.

Finding Patterns: Our current implementation has three main limitations.
First, to compute the patterns of a given model we must manually provide the
names of the decision variables that can appear in the literals, their possible val-
ues and their types. This is needed to correctly (a) parse the clauses produced
either by Chuffed or by our path-based renaming process, and (b) obtain the
most specific generalisation for two clauses. This manual step can be resolved by

Towards Semi-Automatic Learning-Based Model Transformation 417

integrating our method with the MiniZinc compiler, so that the required infor-
mation can be extracted directly from it. Second, our current implementation
can only handle very simple expressions in the clause literals, even though the
paths for introduced variables can result in complex ones.

Finally, and importantly, the current implementation of the most specific
generalisation of a pattern is very limited, as it (a) only matches sequences of
literals that have the same sequence of operators and variable types, and (b)
only matches the ith literal in each pair of clauses. Due to (a) we might miss
a relationship between clauses that have different numbers of literals but share
a parametric pattern. For example, clauses {w[1]<3,w[2]<3}, {w[1]<3,w[2]<3,w

[3]<3} and {w[1]<3,w[2]<3,w[3]<3,[w4]<3}, share the pattern {w[x]<3| x ∈ 1..

n}. Due to (b) we might miss patterns that were obscured by the sorting or
renaming of literals. For example, for clauses {w[10]=1,w[20]=2} and {w[40]=2,

w[50]=1} we currently only find a pattern with sequence of literals {w[A]=B,w[C

]=D}, and maps {A/10,B/1,C/20,D/2} and {A/40,B/2,C/50,D/1}, while matching
the first and second literal of each clause would yield a more specific pattern
with sequence: {w[A]=1,w[B]=2} and maps {A/10,C/20} and {A/50,C/40}. More
sophisticated algorithms (such as the anti-unification of [5]) can handle different
numbers of literals or matching any literals with the same operator. However,
given the computational cost, it might only be worth it for top-ranking clauses.

Finding Facts: This is one of the most difficult and interesting areas for future
research. As described above, our current implementation blindly collects all
simple relations between the parameter values that can be associated to objects
appearing in a clause. While the resulting information is a small subset of the
knowledge space, it is still costly to compute. Furthermore, other knowledge
may be missed (e.g., arbitrary parametric expressions not explicitly present in
the original constraints), which could help modellers understand the origin of
the clause and point to better ways to improve the model.

6 Conclusions

This paper presented improvements to and steps towards the automation of the
methods presented in [16]. In particular, we have shown how the literals in learnt
clauses can be automatically renamed, simplified and both textually and visu-
ally tied back to the parts of the model they originated from. This will make
it easier for modellers to understand the clauses. We have then shown how the
resulting clauses can be grouped by generic patterns, and how to derive infor-
mation regarding the objects present in these patterns. Further, we have shown
how these patterns can be inferred across searches and across instances. This
will help modellers determine the likelihood of a pattern being generalisable to
the model to either strengthen a constraint or as a new, redundant constraint.
We have also shown how the information associated with the patterns will help
modellers determine the particular strengthening that should be applied, or the
new constraint that should be added. We have provided two new case studies
that show the applicability of the approach. Finally, we have identified several
significant challenges our method still faces, and potential avenues for future

418 K. Zeighami et al.

research. We believe that by further automating this methodology, and poten-
tially taking advantage of other learning solvers (such as cuts in MIP solvers),
we will be able to provide tools that significantly simplify the task of finding
model refinements for users of the MiniZinc toolchain.

Acknowledgements. This research was partly sponsored by the Australian Research
Council grant DP180100151.

References

1. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consis-
tency revisited. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304,
pp. 49–58. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439 9

2. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011)

3. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04244-7 29

4. Frisch, A., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.: Essence:
a constraint language for specifying combinatorial problems. Constraints 13(3),
268–306 (2008)

5. Kutsia, T., Levy, J., Villaret, M.: Anti-unification for unranked terms and hedges.
J. Autom. Reasoning 52(2), 155–190 (2014)

6. Leo, K., Tack, G.: Multi-pass high-level presolving. In: Yang, Q., Wooldridge, M.
(eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 346–
352. AAAI Press (2015). http://ijcai.org/proceedings/2015

7. Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: Salvagnin, D.,
Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 77–93. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59776-8 7

8. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A method for detect-
ing symmetries in constraint models and its generalisation. Constraints 20(2), 235–
273 (2015)

9. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, pp. 530–535. ACM (2001)

10. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

11. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 39

12. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5(1), 153–163
(1970)

13. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2016). http://www.gecode.org

14. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–
761. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 58

https://doi.org/10.1007/11941439_9
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29
http://ijcai.org/proceedings/2015
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_39
http://www.gecode.org
https://doi.org/10.1007/978-3-642-04244-7_58

Towards Semi-Automatic Learning-Based Model Transformation 419

15. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
Principles and Practice of Constraint Programming - CP 2011, pp. 69–84. Springer,
Heidelberg (2011)

16. Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Learning from
learning solvers. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 455–472.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 29

17. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

https://doi.org/10.1007/978-3-319-44953-1_29

Finding Solutions by Finding
Inconsistencies

Ghiles Ziat1(B), Marie Pelleau2, Charlotte Truchet3, and Antoine Miné1

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

ghiles.ziat@gmail.com
2 Université Côte d’Azur, CNRS, I3S, Nice, France
3 TASC LS2N UMR 6004, Univ., Nantes, France

Abstract. In continuous constraint programming, the solving process
alternates propagation steps, which reduce the search space according
to the constraints, and branching steps. In practice, the solvers spend a
lot of computation time in propagation to separate feasible and infeasi-
ble parts of the search space. The constraint propagators cut the search
space into two subspaces: the inconsistent one, which can be discarded,
and the consistent one, which may contain solutions and where the search
continues. The status of all this consistent subspace is thus indetermi-
nate. In this article, we introduce a new step called elimination. It refines
the analysis of the consistent subspace by dividing it into an indetermi-
nate one, where the search must continue, and a satisfied one, where the
constraints are always satisfied. The latter can be stored and removed
from the search process. Elimination relies on the propagation of the
negation of the constraints, and a new difference operator to efficiently
compute the obtained set as an union of boxes, thus it uses the same
representations and algorithms as those already existing in the solvers.
Combined with propagation, elimination allows the solver to focus on the
frontiers of the constraints, which is the core difficult part of the problem.
We have implemented our method in the AbSolute solver, and present
experimental results on classic benchmarks with good performances.

1 Introduction

Constraint solvers generally alternate two steps: propagation and exploration.
The propagation step reduces the domains of the variables using the constraints.
The exploration step adds hypotheses to divide the problem into several smaller
sub-problems. In this article, we are interested in continuous constraint solving,
where the variables have real values. In this case, the resolution of a problem
usually consists in a paving of the solution space, which is not computer repre-
sentable in general, using elements which are simple enough to manipulate (often
floating-point boxes). This paving may correspond to an outer approximation or

The work was supported, in part, by the project ANR-15-CE25-0002 Coverif from
the French Agence Nationale de la Recherche, and in part by the European Research
Council under Consolidator Grant Agreement 681393 – MOPSA.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 420–435, 2018.
https://doi.org/10.1007/978-3-319-98334-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_28&domain=pdf

Finding Solutions by Finding Inconsistencies 421

over-approximation of solutions, as in Ibex [6], or may correspond to an inner
approximation or under-approximation as in [7].

The efficiency of a solver depends on the choices made by the exploration
process, these choices being often guided by heuristics. On discrete variables,
such heuristics can for example try and provoke early failures (such as fail-first
[9] or dom/w deg [4]).

On continuous variables, classic heuristics include: largest first [13], which
consists in splitting the largest domain; round robin, where the domains are
processed successively; or maximal smear [8], choosing the domain with the
greatest slope based on the derivatives of the constraints. More recently, and
closer to our work, Mind The Gaps [1] uses the idea from [8,13] and uses partial
consistencies to find interesting splitting points within the domain, according
to the “gaps” in the search space: splitting the domains by taking into account
such gaps reduces the search space.

In this paper, we focus on covering the entire solution space of continuous
problems. We propose to add a new step, complementary to constraint propa-
gation, in the solving process: the elimination step. This step divides the search
space into two sub-spaces: one containing only solutions, and the other where the
constraints are indeterminate—it may contain solutions as well as non-solutions.
Our solving method alternates three steps: propagation, elimination, and explo-
ration. It offers another way of reasoning on the constraints, since we are not
only exploiting the constraints’ consistencies (as does propagation) but also the
constraint inconsistencies. With this improved reasoning, the interesting zones
of the search space are better targeted: zones without solutions are discarded
by propagation, and zones with only solutions are set aside by elimination into
the solution space, which means in practice that they also are excluded from the
search. The search effort can then focus on the indeterminate space—the part
of the search space effectively requiring deeper exploration by the solver.

Our new step can be seen as a new contraction, in the same framework as
the contractors described in [10] and used in Ibex [6] to perform a smarter explo-
ration. We add an automatic propagation on the negation of the constraints, to
identify subspaces containing only solutions. We thus reason on the negation of
the constraints, hence we compute sets which are not boxes: to overcome this
issue, we also add an operator on boxes to efficiently compute the difference of
two boxes (or the complementary of one box in another) as a union of boxes.
Thus, our method can be integrated into any solver without changing its domain
representation nor modifying the propagators.

Our elimination phase relies on a notion of consistency to divide the search
space and guide the search, similarly to Mind The Gaps [1] where consistency
is also used to guide the search. But we go a step further by not only trying to
identify the inconsistent parts of the search space (the “gaps”), but by using set
complement to identify sub-spaces containing only solutions.

Our method is tailored to output an outer approximation as well as an inner
approximation of the solution set: when the size of the indeterminate part is
small enough and exploration stops, we can either include the indeterminate

422 G. Ziat et al.

part with the definite solution space found by elimination steps to get an outer
approximation, or return only the solution space found by elimination which is
an inner approximation.

In fact, our solver can provide within the same process both an inner and
an outer approximation, and due to the fact that the computed boxes better
fit the constraints’ shapes, this comes at no cost according to our experiments.
We have tested our method on both the Coconut [16] and the MinLPLib [5]
benchmarks. Our results show that first, our method computes both the inner
and outer approximation with no time overhead, and second, it produces fewer
boxes as an output, which makes the computed solution much more tractable.

This paper is organized as follows. Section 2 presents formally classic continu-
ous constraint solving, on which our work is based. Section 3 introduces our new
solving step: elimination. Section 4 presents experiments with our new solving
method. Finally, Sect. 5 concludes and discusses future work.

2 Preliminaries

This section recalls basic notions of continuous Constraint Programming (CP).
For a more detailed presentation, we refer the reader to [14, Chap. 16].

2.1 Constraint Satisfaction Problems

We consider a Constraint Satisfaction Problem (CSP) defined by: a set of n
variables X = {x1, . . . , xn}; the domain of each variable D = {d1, . . . , dn}, i.e.,
xk ∈ dk,∀k ∈ [1, n]; and a set of m constraints C = (C1, . . . , Cm). A possible
assignment of the variables is a tuple in D = d1×· · ·×dn. A solution of the CSP
is an element of D satisfying all the constraints in C. We denote as S the set of all
solutions, i.e., S = {(s1, . . . , sn) ∈ D | ∀i ∈ {1, . . . , m}, Ci(s1, . . . , sn)}. We also
denote as SC the solution set for the constraint C alone: SC = {(s1, . . . , sn) ∈
D | C(s1, . . . , sn)}.

In the CP framework, variables can either be discrete or continuous. In this
article, we focus on continuous, real-valued variables. Domains of variables are
intervals of R. We also assume that the bounds are (finite) floating point num-
bers, to be computer-representable. They can be either excluded or included.
Let F be the set of finite floating point numbers. For a, b ∈ F , we define a
real-interval as the conjunction of two half-spaces {x ∈ R | a � x � b} where
� ∈ {<,≤}, and let I be the set of all such intervals.

A Cartesian product of intervals is called a box. We note B = In the set of
boxes of dimension n. Note that our definition of interval encompasses intervals
with excluded end-points which will be useful later.

For continuous CSPs, with domains in I, the exact solution set S ⊆ Rn is
generally not computer-representable. Constraint solvers usually return a collec-
tion of boxes with floating-point bounds containing the solutions, the union of
these being an over-approximation of S.

Finding Solutions by Finding Inconsistencies 423

2.2 Consistency

The notion of local consistency is central in CP. We recall the definition of Hull-
consistency [3], one of the classic local consistencies for continuous constraints.

Definition 1 (Hull-Consistency). Let x1, . . . , xn be variables over continu-
ous domains represented by intervals d1, . . . , dn ∈ I, and C a constraint. The
domains are said to be Hull-consistent for C if and only if D = d1 × · · · × dn is
the smallest floating-point box containing the solutions for C in D.

Intuitively, no bound of a consistent box D can be tightened without losing a
solution of C. Given a constraint C over domains d1, . . . , dn, an algorithm that
computes locally consistent domains d′

1, . . . , d
′
n that contain the same solution set

as C in d1 ×· · ·×dn is called a propagator for C. Naturally, ∀k ∈ [1, n], d′
k ⊆ dk.

Given a constraint C and domains d1, . . . , dn, we will write HC(d1, . . . , dn) the
corresponding Hull-consistent domains and ρC : B → B a propagator for C.
While we only refer to the Hull-consistency in this work, our method is based
upon the propagator notion and holds for any kind of consistency.

The domains which are locally consistent for all constraints are the largest
common fixpoints of all the constraint propagators [2,15]. In practice, propaga-
tors often compute over-approximations of the locally consistent domains. In the
following, we will use the standard algorithm HC4 [3], which propagates contin-
uous constraints, relying on the syntax of the constraints and interval arithmetic
[11], although our method could be combined with other propagators. HC4 gener-
ally does not reach Hull consistency, in particular in case of multiple occurrences
of the variables in the constraints.

Local consistency computations can be seen as deductions, performed on
domains by analyzing the constraints. If the propagators return the empty set,
the domains are inconsistent and the problem has no solution. Otherwise, non-
empty local consistent domains are computed. This is often not sufficient to
accurately approximate the solution set. In that case, choices are made on the
variable values. For continuous constraints, typically a domain d is chosen and
split into two (or more) parts, which are in turn narrowed by the propagators.
The solver alternates propagation and split phases a given precision is reached,
i.e all the boxes which are still considered are smaller than a given parameter. Of
course, as soon as a box is proven to contain only solutions, it can be removed
from the search space and added to the solution set. Upon termination, the
collection of boxes returned covers the solution set S, under some hypotheses on
the propagators and splits [2].

A solving method is said to be complete if it returns an over-approximation
of the solution set (no solution is missed). It is said to be sound if it returns
an under-approximation of the solution set (only solutions are returned). For
problems with real variables, the solving method cannot be both complete and
sound in general asbeing sound (returning only solution), requires the result
to under-approximate the solution space, and being complete (returning all the
solutions) requires the result to over-approximate the solution space. In practice,
solving methods are often complete and not sound.

424 G. Ziat et al.

Algorithm 1. Solving without / with elimination (in pink)
1: function solve(D, C, r, elim) � D: domains, C: constraints, r: real, set elim to
2: false for classic solving, true for elimination
3: sols ← ∅ � sound solutions
4: undet ← ∅ � indeterminate solutions
5: explore ← ∅ � boxes to explore
6: e =init(D) � initialization
7: push e in explore

8: while explore �= ∅ do
9: e ← pop(explore)

10: e ← filter(e, C)
11: if e �= ∅ then
12: if satisfies(e, C) then
13: sols ← sols ∪ e
14: else
15: if τ(e) ≤ r then
16: undet ← undet ∪ e
17: else
18: if !elim then
19: push ⊕(e) in explore � Classic solving process
20: else
21: (S, E) = elimination(e, C) � Solving with elimination
22: sols ← sols ∪ S
23: push ⊕(E) in explore

2.3 Solving Method

In this article, we rely on the general abstract solving process described in [12],
instantiated with the interval domain. The solver thus operates on boxes, as
defined above. Algorithm 1 gives the pseudo-code of the abstract solving method,
where τ ∈ B → R is the precision measure and ⊕ ∈ B → ℘(B) is the split opera-
tor. In this section we have the elim parameter set to false, thus we do not con-
sider the part highlighted in pink. By alternating propagation and exploration,
Algorithm 1 builds a disjunction of boxes that covers the solution space. It uses
three auxiliary functions: init ∈ D → B, filter ∈ B → B, and satisfies
∈ B × C → {true, false}. Firstly, init creates a box from the initial domains of
the problem. Then, filter corresponds to the propagation loop: it applies the
propagator for each constraint in turn. Finally, satisfies checks whether a box
satisfies all the constraints, that is, if it contains only solutions. This function
corresponds to a contractor as defined in [6].

This solving method works as follows: at each step, the current box is tight-
ened using the propagators on the constraints (function filter). After propa-
gation, if the tightened box is not empty, three cases are possible:

– If the box contains only solutions (function satisfies), then it is directly
added to the set of solutions sols.

Finding Solutions by Finding Inconsistencies 425

– Otherwise, if the box is small enough with respect to a parameter r (τ(e) ≤
r), then it is added to the set of indeterminate solutions undet—i.e., the
box, which may contain both solutions and non-solutions, is considered small
enough to be left out of the search.

– Finally, if the size of the box is larger than r and may contain solutions, as
elim is set to false, then it is divided using a split operator ⊕ and the process
is repeated on the resulting boxes.

Fig. 1. (a): 127 inner boxes, 128 outer boxes. Inner boxes represent 59% of the coverage
area. Computation time 0.015s. (b): 18 inner boxes, 128 outer boxes. Inner boxes
represent 92% of the coverage area. Computation time: 0.008s

Figure 1(a) shows the result obtained with Algorithm 1 with elim set to false,
for a problem with two variables x1 ∈ [1, 50] and x2 ∈ [−1.5, 1] constrained by
cos(ln(x1)) > x2. Note that this solving method can either produce an under-
approximation of the solution set by considering only the inner elements, or an
over-approximation by considering all the resulting elements. Figure 1(b) shows
that by making different splitting choices, we could avoid computations and reach
the given precision with less iterations. We achieve that using Elimination, with
wich we obtain fewer, but larger inner boxes. We introduce this new step in the
next section and explain how it pushes the reasoning based on the constraints
one step further in order to avoid superfluous splitting steps.

3 Elimination

The propagation step reduces the search space by removing non-consistent sub-
spaces. Elimination aims at reducing the search space by focusing on the fron-
tiers of the problem. This is done in three steps: computing the elimination for
each constraint, combining the result with the domains with a new difference
operator, and finally integrate this mechanism in the solving process.

426 G. Ziat et al.

3.1 Elimination for One Constraint

We introduce here the concept of elimination for a single constraint. It relies on
the constraint propagator to over-approximate the set of instantiations that can
not be solutions. We will refer to these instantiations as inconsistent instantia-
tions. By elimination, the rest of the search space can only contain solutions.

In the remainder of the subsection, given a constraint C and a box D =
d1 × · · · × dn, we will write DC the set of instantiations of D that satisfy C
and DC and, the—complementary—set of inconsistent instantiations w.r.t C.
Thus, we have DC = D \ DC . As DC , DC can be uncomputable, so we compute
an over-approximation. For a single constraint, this can be achieved simply by
reusing the propagation, over the negation of the constraint.

Definition 2. Let x1, . . . , xn be variables in domains d1, . . . , dn, and C a
constraint on x1, . . . , xn. We define a function θC : B → B such that
θC(d1, . . . , dn) = ρ¬C(d1, . . . , dn).

Combining this function with propagation, we partition D relatively to the
satisfiability of C. Let SC = ρC(d1, . . . , dn) and SC = θC(d1, . . . , dn) be respec-
tively the over-approximation of Dc and DC , we differentiate three kinds of
instantiations:

– the ones that belong to SC and not to SC , which are inconsistent,
– the ones that belong to SC , and not to SC , which are consistent,
– the remaining ones that belong to both Sc and SC , which are indeterminate.

Fig. 2. Given the constraint y ≤ x3, in blue, the box R over-approximates the solutions
and the hatched box Θ over-approximates the inconsistencies. (Color figure online)

Figure 2(b) shows an example of this partitioning. For the constraint y ≤ x3

(filled with blue), the box SC (dashed), computed through propagation, over-
approximates the solutions and the box Θ (hatched in green), computed by
applying propagation over the negation of the constraint, over-approximates the
inconsistencies. We can see that the complement of Θ under-approximates the
set of solutions, while the complement of R under-approximates the set of incon-
sistencies. The intersection Θ∩R can contain both solutions and inconsistencies.

Once this partitioning is done, the inconsistent part can be discarded (as
usual) and the consistent one can be directly added to the set sols of solutions.

Finding Solutions by Finding Inconsistencies 427

What remains is the indeterminate space in which the solving process continues.
This principle is then generalized to the case of several constraints: the consistent
part is the intersection of all the consistent parts associated to each constraint.
Symmetrically, the inconsistent part is the union of all the inconsistent parts
associated to each constraint. What remains is the indeterminate part.

Remark. In practice, in the case of continuous constraints, elimination can rely
on the original propagation algorithms of the considered constraint, since we
can easily compute the negation of a constraint (based on predicates <,=,≤). It
would also be valid for discrete constraints provided that the same property holds.
Indeed, primitive constraints could be dealt with elimination, but handling global
constraints would require to specifically define their negations and introduce
dedicated propagators.

The indeterminate space is defined as an intersection of boxes, which results
in a box. Hence, the solving process continues within a box, as in a classic
propagation-based solver, except that the box is possibly smaller as we intersect
the result of propagation with the result of elimination. However, SC \SC is not
necessarily a box. Computing this set difference requires taking the complement
of a box relative to another box. In the following section, we define a set difference
operator over boxes. It computes the difference as a set of boxes, that can be
directly added to sols.

3.2 Difference Operator

Given two boxes B1 and B2, their difference B1 \ B2 is not necessarily a box.
However, we can express it as a collection of boxes that covers B1 \ B2. To
guarantee a non-redundancy property over the result, this cover should be a
partition. This would prevent boxes from overlapping and have instantiations
covered by several boxes. However, a cover is sufficient to have a sound and
complete resolution method, and is easier to build as we will see in the current
section. Our difference operator should satisfy the following properties:

Definition 3. (Difference operator). A difference operator 	 : B×B → ℘(B)
is a binary operator such that ∀B1, B2 ∈ B:

(1) |B1 	 B2| is finite;
(2) ∀b ∈ (B1 	 B2) ⇒ b ∩ B2 = ∅;
(3) B1 = (B1 ∩ B2) ∪ ⋃ { b ∈ B1 	 B2 }.
The first condition ensures that the solving method produces a finite set of boxes.
The second one ensures that the operator eliminates from the box B1 the values
inside the box B2. Finally, the third condition guarantees that the difference of
B1 and B2, union B2, covers the initial box B1. The second condition is related
to soundness and the third one to completeness.

428 G. Ziat et al.

Our difference operator on boxes works with constraints. A box can be defined
as a conjunction of constraints B =

∧
i=1,...,p ci, where each constraint ci =

±xi � ai, with � ∈ {<,≤}, gives a lower or an upper bound—not necessarily
included—on xi.

Note that it is mandatory to be able to express both strict and large inequal-
ities. Otherwise, a problem would arise as the negation of ±xi > ai would
not be exactly representable, and we would have no way to ensure property
Definition 3.(2). As the difference operator is used to compute S, an under-
approximation of the set of solutions, adding to S the closure of boxes which
should actually be open, could add to it points that are not solutions to the
problem, and thus break the soundness criterion.

Each ci defines a half-space, and the difference between a box and a half-
space is still a box. A first step is thus to compute the difference between two
boxes, by considering each half space independently, as shown on Fig. 3(b).

Definition 4 (Difference for boxes). Let B1 and B2 be two boxes, with B2

represented as the set of constraints C2. The difference of B1 and B2 is:

B1 	 B2 � {B1 ∩ (¬c) | c ∈ C2} (1)

This naive method can result in widely overlapping boxes in the output.
Nevertheless, it is an acceptable difference operator as it satisfies Definition 3:

(1) B1 	 B2 returns a set that, associates a box to each constraint in B2. The
number of constraints in B2 is finite, hence this set is finite (Definition 3.(1)).

(2) By definition of the intersection, the condition Definition 3.(2) is satisfied
as each box in the result is included in B1.

(3) Finally, Definition 3.(3) is also satisfied: B1	B2 can be rewritten as B1∩B2.
No solution is lost as B1 is entirely covered by B2 and B1 	 B2.

Figure 3 shows an example of the application of the difference operator on
two boxes. Figure 3(a) gives the initial boxes B1 and B2, with B2 represented by
the constraints {c1, . . . , c4}. Figure 3(a) shows the result of the naive difference
operator. Here, B1 \ B2 is covered by three elements, one per constraint of C2,
after removing the constraints that, intersected with B1, yield the empty set (c4
in this case). Overlapping boxes in the output appear in a darker shades. This
overlapping implies that some instantiations may be covered by more than one
box: the result is redundant.

We now propose an improved difference operator in order to obtain non-
overlapping boxes when building a partition of B1 \ B2.

Definition 5 (Non-redundant difference for boxes). Let B1 and B2 be
two boxes and B2 is represented by the set of constraints C2 = {c1, . . . , cp}. The
difference of B1 and B2 is defined as:

B1 	 B2 �

⎧
⎨

⎩
B1 ∩ (¬ci) ∩

⋂

j<i

cj | i ∈ {1, . . . , p}
⎫
⎬

⎭
(2)

Finding Solutions by Finding Inconsistencies 429

For similar reasons to the naive difference operator, Definitions 3.(1)–(3)
is also satisfied for the non-redundant difference operator. Additionally, we
strengthen the property that B1 	 B2 is a cover for B1 \ B2 by making this
cover a partition, i.e., the elements of B1 	 B2 are pairwise disjoints: we ensure
that, for any pair of boxes bi, bj ∈ B1 	 B2 such that i = j, we have bi ∩ bj = ∅.

Proposition 1. B1 	 B2 is a partition of B1 \ B2.

Proof. If |B1 	 B2| = 1 then, trivially, B1 	 B2 is a partition of B1 \ B2. If
|B1	B2| > 1, we have to prove that the elements of B1	B2 are pairwise disjoints.
Let C2 = {c1, ..., cp} be the constraints of B2, and bi, bj be respectively the i-th
and the j-th value of B1 	 B2 according to (2), with i, j ∈ 1..p and i = j. Then,
bi is constrained by ¬ci. Assuming w.l.o.g. that i < j, then bj is constrained by
ci, and bi∩bj = ∅. We also have to prove that B1 = B1 \B2∪B2, or equivalently,
∪ibi = B1 \B2: let x ∈ ∪ibi be an instanciation of B1. By definition of B2, there
is at least a constraint ci ∈ C2 such that x does not satisfy. Let i0 be the smallest
such i, then x ∈ bi0 . Thus, the whole of B1 \ B2 is covered by the boxes bi.

Fig. 3. Comparing naive and non-redundant difference operator: B1�B2. (Color figure
online)

Figure 3(c) shows the result of the non-redundant difference operator and
shows that there are no overlapping darker zones (shown in a darker shade).
Here, B1 \ B2 is now partitioned into three elements, one per constraint of C2

(once again ignoring c4 which leads to an empty box).

3.3 New Solving Step

Computing S̃ = θC(d1, . . . , dn) ∩ ρC(d1, . . . , dn) by employing both propagation
and elimination reduces the search space, because it allows the solver to quickly
identify parts of the solutions. In fact, when the propagation of ρC is done,
we propose an elimination step θC before splitting. Rather than performing
arbitrary splits anywhere on a box, the elimination identifies parts of the box
containing only solutions, and allows the solver to perform splits on the part of

430 G. Ziat et al.

Algorithm 2. Elimination function
1: function elimination(e, C) � e: box, C: constraints
2: enon−cons ← complement(e, C)
3: econs ← e � enon−cons

4: S ← ∅
5: for ei ∈ econs do
6: S ← S ∪ ei

return (S, ⊕(e ∩ enon−cons))

the search space that can not be discriminated as containing only solutions, nor
as containing no solution. More precisely, elimination makes the split happen
exactly at the frontier of the constraint.

Algorithm 2 gives the pseudo-code associated with the new elimination step.
This algorithm processes elements that do not satisfy at least one constraint.
The function complement computes enon−cons, an over-approximation of the
inconsistencies. Then, the difference operator is used to find the boxes containing
only solutions. Finally, solving continues in the indeterminate search space e ∩
enon−cons (instead of e).

Figure 1(b) shows the results obtained with our propagation/elimination/
split loop on the CSP given previously, and gives for the same precision, much
more satisfactory results: we require less elements to cover more space and in a
comparable amount of time, showing that this technique deduces more relevant
frontier than using a simple propagation/split loop.

In the following section, we analyze the performance of our solving method.

4 Experiments

We have implemented our technique for boxes in the open-source solver AbSo-
lute1. This solver is based on the method presented in [12], where we integrated
our elimination step. We rely on the abstract domain representation in AbSolute,
which is based on constraints, to efficiently implement the constraint negation
necessary for the elimination step. The unified constraint representation makes
it possible to have a lightweight and generic difference operator.

4.1 Protocol

We tested our method on problems with continuous variables from the MinLPLib
and the Coconut2 benchmarks. For minimization problems, we first transform
them into satisfaction problems, which can be handled by the solver. This trans-
formation consists in adding an objective variable to the problem that will act

1 https://github.com/mpelleau/AbSolute.
2 All informations about the problems can be found at http://www.gamsworld.org/

minlp/minlplib/minlpstat.htm and http://www.mat.univie.ac.at/∼neum/glopt/
coconut/Benchmark/Benchmark.html.

https://github.com/mpelleau/AbSolute
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

Finding Solutions by Finding Inconsistencies 431

as the value to minimize. Default bounds for unconstrained variables are set to
−107 for the lower bound and 107 for the upper bound as our method requires
the domains of the variables to be bounded. All of the runs are made with a
time limit set to 300 s and no memory limit. Precision was fixed to 10−3 (i.e.,
the size limit where exploration stops), and branching depth was limited by 50.
Note that limiting depth does not break soundness nor completeness as our algo-
rithm can be tailored to be produce either a complete or a sound output after the
same run: its output can be splitted into two sets: the boxes that contain only
solutions and the undetermined ones. At any point of the resolution, the union
of these two sets yield a complete solution, while taking into account only the
first gives a sound solution. Thus, stopping the search at a given depth, makes
the resolution faster, yet less precise, but does not break neither soundness nor
completeness. The solver was run on a Dell server with two 12-core Intel Xeon
E5-2650 CPU at 2.20 GHz, although only one core was used, and 128 GB RAM.

We have tested the solving with the elimination step against the default
solving method of the AbSolute solver over all of the problems that the solver’s
functionalities (types, constraint, arithmetic functions) are able to cover, that is
197 problems.

4.2 Description

Figure 4 summarizes the results obtained with our method compared to the
classic solving. Figure 4(a) compares the ratio δ of inner volume of the cover.
It corresponds to Vi/(Vi + Ve) where Vi and Ve are respectively the inner and
outer volume. This ratio is a quality measure of the solving method: the closer

Fig. 4. Comparison between the classic solving method and our method. On the left,
comparison of the ratio, a mark above the bisector (in plain blue) means that our
method is better than the classic solving. On the right, comparison of the computation
time, a mark above the bisector (in plain blue) means that our method is slower than
the classic solving. (Color figure online)

432 G. Ziat et al.

Table 1. Comparing solving with and without elimination step

with elimination without elimination
problem |X |, |C| #I #E δ t #I #E δ t

Coconut problems
abs1 1,2 2047 3072 0.99 0.04 4092 4096 0.99 0.06

aljazzaf 2,3 2309 19405 0.58 0.89 0 14319 0 0.54
allinitu 1,5 318 5066 0.07 3.26 0 5066 0 2.50

b 4,4 2 88 0.39 0.07 0 88 0.00 0.07
booth 1,2 90 45 0.12 0.11 0 45 0 0.13
bqp 1,1 4 1 0.99 0.01 8 1 0.99 0.01
chi 1,2 1.88e6 3.48e6 0.99 45.30 3.08e6 3.63e6 0.99 40.20

ex1411 2,5 1.78e6 2.59e6 0.98 217.08 1.95e6 3.74e6 0.98 237.89
ex1413 4,3 4884 34893 0.25 0.52 0 32698 0 0.78

ex newton 2,5 638 950 0.95 0.45 729 892 0.93 0.57
griewank 1,2 19972 31868 0.99 1.44 29645 35105 0.98 2.30

h76 3,4 24 174 0.04 0.05 0 82 0 0.05
hs23 6,2 825 2132 0.99 0.43 1315 1801 0.98 0.58
kear11 8,8 0 844 0 0.05 0 844 0 0.05
ladders 13,7 4 93 0.01 0.90 0 215 0.00 1.07
mickey 2,5 4315 12709 0.99 2.40 8372 9858 0.99 2.73
nonlin1 2,3 1550 1978 0.95 0.49 2059 1772 0.82 0.69
nonlin2 3,2 4238 10560 0.92 0.39 8643 10692 0.88 0.42
zy2 3,3 6260 28147 0.99 1.00 13179 22499 0.74 0.85

MinLPLib problems
csched1a 23,29 0 8192 0 6.44 0 8192 0 4.85
deb10 130,183 0 0 0 0.01 0 0 0 0.01

dosemin2d 119,166 0 0 0 0.181 0 0 0 0.177
ex1222 4,4 8 60927 0.01 1.39 0 61787 0 0.97
ex1223a 10,8 746 27097 0.01 20.60 0 48283 0 21.40
ex1223b 10,8 820 44084 0.01 40.22 0 500510 0 29.41
gbd 5,5 576 31829 0.19 1.27 0 22927 0 0.93

prob03 2,3 0 5.81e6 0 10.81 0 5.81e6 0 6.77
qapw 256,451 0 0 0 1.20 0 0 0 1.23
st e13 4,3 378 3102 0.02 0.05 0 18 0 0.50

st miqp2 4,5 1352 38104 0.38 2.29 0 4564 0 0.31
st miqp3 2,3 27 1117 0.24 0.03 0 1051 0 0.02
st miqp5 14,8 187 2080 0.01 4.71 0 6324 0 2.38
st test1 2,6 1559 2.44e6 0.03 18.70 0 2.31e6 0 15.97
st test5 12,11 22 29520 0.01 7.82 0 11167 0.00 7.55
synthes1 7,7 97 33747 0.01 4.18 0 1285 0 5.16

tls2 25,38 0 18030 0 27.46 0 18030 0 26.81
windfac 14,15 0 19561 0 6.66 0 19561 0 6.51

this ratio is to one, the bigger is the part of the coverage that will only contain
solutions. In this figure, a mark above the bisector means that our method is
better than the classic one. We can see that on most of the instances, our method
finds a coverage with a much smaller indeterminate space.

Finding Solutions by Finding Inconsistencies 433

Figure 4(b) compares the computation time of our method to the classic
one. In this figure, each mark above the bisector means that our method is
slower than the classic one. As can be seen on this figure, our method is slightly
slower, the elimination performing additional computation during one iteration.
However, solving all the 197 problems took 1157 s with our method against 1032 s
with the classic solving method.

For reasons of space, Table 1 highlights only some of the results representative
of the behavior of our method. Those are described with respect to solving times
(in seconds), cardinality of the partition and volume covered. We performed
experiments on the whole benchmarks (Coconut and MinLPLib), but we do not
show here the problems which time out for both methods.

The first two columns provide information about the problem: name, number
of variables |X |, and number of constraints |C|. The rest of the table provides
information on each solving methods: the number of inner (columns #I) and
outer (columns #E) boxes.

4.3 Analysis

These runs highlight one very crucial feature of our method: it is able to quickly
find boxes that contain only solutions of problems where the default solving
method fails to do so (problems aljazzaf, allintu, ex1222, gbd, ...): on the whole
benchmark, for almost 30% of the problems (58 out of 197), solving with the elim-
ination step exhibited at least one solution while the default solving method did
not succeed to do so. This comes with no time less in average: on the whole bench-
mark, solving with elimination was slightly slower than without (1157 s against
1032 s). In fact, 39% of the problems (39 out of 197) were solved faster with
the elimination than without (problems ex1411, mickey, ex1223a, synthes1...).
This illustrates the fact that results of the solver are more precise: elimination
avoids unnecessary splits, better identifies the constraints’ frontiers, and com-
pute within the same process inner and outer approximations for no (or little)
overhead. A deeper analysis of the results shows that the default solving method
spends time splitting variables with large ranges, while elimination focuses on
the shape of the constraints to locate areas than can be directly removed from
the search space and added to the solution set.

Another conclusion of the analysis of this benchmark is about the solution
coverage. The experiments show that the coverage of the solution space is signif-
icantly more accurate with the elimination step. On all of the runs, our method
always finds a greater or equal inner volume than the one found by the default
method. Moreover, it also reduces the number of elements involved in the parti-
tion in the same time, which means that the inner approximation is achieved with
fewer, bigger elements. This is shown by examples chi and mickey where both
methods achieve a 0.99 ratio of inner volume, only with elimination, we need
half the elements required by the default solving method to do so. On the whole
benchmark, on average, we need 40 times fewer elements to cover the same inner
volume with elimination. This property may become very handy as it allows a
better re-usability of the results since we need to treat fewer elements to cover

434 G. Ziat et al.

the solution space. The δ columns indicates the part of the returned elements
that corresponds to an inner approximation, i.e. contains only solutions. This
ratio is always greater with the elimination step. On the whole benchmark, the
average ratio is 0.49 of inner volume for the elimination while it is 0.27 without.
This confirms that the elimination step allows the solving process to target more
efficiently the parts of the search space that contain only solutions.

These good results confirm the intuition that cutting an element according
to the constraints it does not satisfy can be more interesting than cutting it
arbitrarily regardless of the constraints. Since solvers are often used as a pre-
computation for other programs, reducing the size of their output (i.e., reducing
the number of boxes required to represent a solution at a given precision) can
be an important feature. Also, note that, by quickly identifying solutions and
removing them from the search space, the elimination step makes it possible to
carry out fewer propagation and exploration steps.

5 Conclusion

In classic continuous constraint solvers, propagation is used to remove from the
search space values that can not be solutions. We presented in this paper a new
method to, symmetrically, eliminate from the search space values that can only
be solutions. We have incorporated the elimination mechanism to improve the
results in terms of a qualitative and quantitative criterion, also without a too
large time overhead. This technique, which delays a splitting heuristic that can
be inaccurate, makes it possible to take better advantage of the constraints of
a problem, by reusing and adapting the same tools as propagation, combined
with a difference operator we have introduced. Finally, it should be emphasized
that, although it is implemented in a specific solver using abstract domains, this
technique can perfectly be integrated into a more classic solver and combined
with any type of propagator.

We believe that this resolution technique can be useful in many cases. For
problems or zones of non-consistent instantiations forming “holes” in the solution
space, or more generally, when it is non-convex, it can avoid several cutting
steps by directly targeting the most relevant boundaries. This property may be
particularly interesting in the context of inner-approximation applications, as
shown by the experiments, or counter-example exhibition (feasibility proving)
when it comes to find at least one solution as our method outperforms the
default solving method in that competence.

Further research includes the development of elimination beyond boxes, for
instance on polyhedra which can also be defined as a conjunction of constraints,
making it possible to add a difference operator. It would also be interesting to
measure the performance of this technique with other consistency and splitting
heuristics.

Finding Solutions by Finding Inconsistencies 435

References

1. Batnini, H., Michel, C., Rueher, M.: Mind the gaps: a new splitting strategy for
consistency techniques. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 77–91.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564751 9

2. Benhamou, F.: Heterogeneous constraint solvings. In: Proceedings of the 5th Inter-
national Conference on Algebraic and Logic Programming, pp. 62–76 (1996)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revisiting hull and
box consistency. In: Proceedings of the 16th International Conference on Logic
Programming, pp. 230–244 (1999)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, (ECAI 2004), pp. 146–150. IOS Press (2004)

5. Bussieck, M.R., Drud, A.S., Meeraus, A.: Minlplib - a collection of test models
for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119
(2003)

6. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100
(2009)

7. Collavizza, H., Delobel, F., Rueher, M.: Extending consistent domains of numeric
CSP. In: Proceedings of the 16th International Joint Conference on Artificial Intel-
ligence, pp. 406–413 (1999)

8. Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York
(1992)

9. Haralick, R.M., G.L. Elliott. Increasing tree search efficiency for constraint sat-
isfaction problems. In: Proceedings of the 6th International Joint Conference on
Artificial intelligence (IJCAI 1979), pp. 356–364. Morgan Kaufmann Publishers
Inc. (1979)

10. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-
error estimation. Automatica 29(4), 1053–1064 (1993)

11. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
12. Pelleau, M., Miné, A., Truchet, C., Benhamou, F.: A Constraint Solver Based on

Abstract Domains. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 434–454. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35873-9 26

13. Ratz, D.: Box-splitting strategies for the interval Gauss-Seidel step in a global
optimization method. Computing 53, 337–354 (1994)

14. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier Science Inc., New York (2006)

15. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Trans. Pro-
gram. Lang. Syst. 31(1), 1–43 (2008)

16. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Bench-
marking global optimization and constraint satisfaction codes. In: Bliek, C., Jer-
mann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39901-8 16

https://doi.org/10.1007/11564751_9
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1007/978-3-540-39901-8_16

The Effect of Structural Measures
and Merges on SAT Solver Performance

Edward Zulkoski1(B), Ruben Martins2, Christoph M. Wintersteiger3,
Jia Hui Liang1, Krzysztof Czarnecki1, and Vijay Ganesh1

1 University of Waterloo, Waterloo, ON, Canada
ezulkosk@uwaterloo.ca

2 Carnegie Mellon University, Pittsburgh, PA, USA
3 Microsoft Research, Cambridge, UK

Abstract. Over the years complexity theorists have proposed many
structural parameters to explain the surprising efficiency of conflict-
driven clause-learning (CDCL) SAT solvers on a wide variety of large
industrial Boolean instances. While some of these parameters have been
studied empirically, until now there has not been a unified comparative
study of their explanatory power on a comprehensive benchmark. We cor-
rect this state of affairs by conducting a large-scale empirical evaluation
of CDCL SAT solver performance on nearly 7000 industrial and crafted
formulas against several structural parameters such as treewidth, com-
munity structure parameters, and a measure of the number of “merge-
able” pairs of input clauses. We first show that while most of these
parameters correlate well with certain sub-categories of formulas, only
the merge-based parameters seem to correlate well across most classes
of industrial instances. To further methodically test this connection, we
perform a scaling study of mergeability of randomly-generated formulas
and CDCL solver running time. We show that as the number of resolv-
able merge pairs are scaled up for randomly-generated instances while
keeping most properties invariant, unsatisfiable instances show a very
strong negative correlation with solver runtime. We further show that
there is strong negative correlation between the size of learnt clauses
and the number of merges as the number of merge pairs are scaled up.
A take-away of our work is that mergeability might be a powerful com-
plexity theoretic parameter with which to explain the unusual efficiency
of CDCL SAT solvers.

Keywords: SAT solving · Structural measures
Merge resolution · CDCL

1 Introduction

Modern conflict-driven clause-learning (CDCL) satisfiability (SAT) solvers rou-
tinely solve real-world Boolean instances with millions of variables and clauses,
despite the Boolean satisfiability problem being NP-complete and widely
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 436–452, 2018.
https://doi.org/10.1007/978-3-319-98334-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_29&domain=pdf

The Effect of Structural Measures and Merges on SAT Solver Performance 437

regarded as intractable in general. This has perplexed both theoreticians and
solver developers alike over the last two decades. A commonly proposed expla-
nation is that these solvers somehow exploit the underlying structure inherent
in industrial instances. Previous work has attempted to identify a variety of
structural parameters, such as backdoors [7,19], community structure modular-
ity [5,15], and treewidth [13]. Additionally, researchers have undertaken limited
studies to correlate the size/quality measures of these parameters with CDCL
SAT solver runtime. For example, Newsham et al. [15] showed that there is mod-
erate correlation between the runtime of CDCL SAT solvers and modularity of
community structure of industrial instances.

Although many studies of these parameters have been performed in isolation,
a comprehensive comparison has not been performed between them. A primary
reason for this is that most of these parameters are difficult to compute – often
NP-hard – and many take longer to compute than solving the original formula.
Hence, such parameters have often been evaluated on incomparable benchmark
sets, making a proper comparison between them difficult.

This state of affairs leads to the following research question: do previously
considered structural measures correlate with solving time “in the large,” i.e.,
do results generalize to diverse sets of instances? We address this issue by
designing a single comprehensive study of all proposed structural parameters
(including one of our own, namely, mergeable resolvable pairs) over a large
set of instances obtained from previous SAT competitions, specifically from the
application, crafted, and agile tracks [1]. Application instances are derived from
a wide variety of sources and can be considered as a sampling of the types
of SAT instances from applications as varied as verification, testing, program
analysis, and security. Crafted instances mostly contain encodings of combinato-
rial/mathematical properties, such as the pigeon-hole principle or pebbling for-
mulas. While many of these instances are much smaller than industrial instances,
they are often very hard for CDCL solvers. The agile track evaluates solvers on
bit-blasted quantifier-free bit-vector instances generated from the whitebox fuzz
tester SAGE [9]. In total, we consider approximately 1200 application instances,
800 crafted instances, and 5000 agile instances. While correlation results appears
to be weak in general, combinations of these features can lead to slightly stronger
regression results.

Since SAT competitions are comprised of a diverse set of instances, we
then performed a more fine-grained analysis by considering each individual sub-
category of the application track. Our results indicate that many of these mea-
sures correlate strongly with certain sub-categories, but not others.

Within this study, we introduce a measure called “mergeability,” and show
that it correlates moderately or strongly with many sub-categories. Mergeabil-
ity quantifies how many pairs of input clauses are mergeable. Two clauses are
mergeable if they resolve and share a common literal. Merge resolutions are par-
ticularly important, as they allow the resolvent clause to be smaller than the two
clauses being resolved. In order to further isolate the effects of mergeability on
solving time, we conduct controlled scaling studies over sets of random instances

438 E. Zulkoski et al.

while scaling the mergeability of the formula. We describe an algorithm which
takes a formula, and produces a series of increasingly more mergeable formulas,
while retaining many properties of the original instance. We experiment over
a set of randomly-generated industrial-like instances, as well as uniform 3SAT
instances, and show that as the number of merges increase, the solving time
tends to decrease for unsatisfiable instances.

1.1 Contributions

We make the following contributions in this paper:

1. Comprehensive Study of Complexity-theoretic Structural Param-
eters and SAT Solver Performance. We performed a comprehensive
study complexity-theoretic structural parameters over 7000 SAT competition
instances, and show that while many of the considered measures correlate well
in the small, i.e., over sub-categories of application instances, the correlations
are not strong when considering large sets of diverse instances. (See Sect. 4.)

2. The Mergeability Parameter and Method to Generate Scaling
Instances. We introduce the mergeability parameter (motivated by idea that
merges can result in smaller resolvents [2]), and show that it correlates well
with many categories of instances (See Sect. 4.1). Further, in order to iso-
late the effects of mergeability and perform scaling studies, we describe a
generator to produce instances scaled with the mergeability parameter (See
Sect. 5).

3. Scaling Study of Mergeability and SAT Solver Performance. In
Sect. 6, we describe scaling studies over randomly-generated instances, and
show that as the number of merges increase, the SAT solver’s run time tends
to decrease for unsatisfiable instances. We further show that the solver tends
to on average produce shorter learned clauses as we scale up the number of
mergeable clauses in randomly-generated instances.

2 Background

We assume basic familiarity with the satisfiability problem, CDCL solvers and
the standard notation used by solver developers and complexity theorists. For an
overview we refer to [6]. We assume that Boolean formulas are given in conjunc-
tive normal form (CNF). We refer to treewidth [18] and community structure [5]
as graph parameters. Unless otherwise stated, all graphs parameters are com-
puted over the variable incidence graph (VIG) of a CNF formula F [5]. There
exists a vertex for every variable in F , and edges between vertices if their cor-
responding variables appear in clauses together (weighted according to clause
size). The clause-variable incidence graph (CVIG) is a bipartite graph between
variables and clauses, such that variable node connects to a clause node exactly
when the variable occurs in the clause. Intuitively, the community structure of
a graph is a partition of the vertices into communities such that there are more

The Effect of Structural Measures and Merges on SAT Solver Performance 439

intra-community edges than inter-community edges. The modularity or Q value
denotes how easily separable the communities of the graph are. The Q value
ranges from [0, 1], where values near 1 means the communities are highly sepa-
rable and the graph intuitively has a better community structure. Treewidth intu-
itively measures how much a graph resembles a tree. Actual trees have treewidth
1. Further details can be found in [18]. The backbone of a SAT instance is the
set of variables such that all models of the instance contain the same polarity of
the variable [14]. The popularity of a variable measures how often it occurs in
the formula, normalized by the total number of variables occurrences. In [4], it
was shown that industrial formula variable occurrences tend to follow a power-
law distribution. We denote the exponent in the computed distribution as αv.
Intuitively, the fractal dimension of a graph measures self-similarity, in the sense
that if nearby nodes are collapsed into a single node according to some distance
metric, then the residual graph would have the same structure as the original
graph [3]. This property is measured by considering tilings of the graph that
cover all vertices, and then showing that the number of necessary tiles decreases
polynomially as the tile-size increases. More details can be found in [3]. For a
given graph G, we denote the dimension of the graph as DG.

Two clauses c1 and c2 are resolvable if there exists a single variable v such
that v ∈ c1 and ¬v ∈ c2. We say that the clauses are mergeable if they are
resolvable, and there also exists some literal l such that l ∈ c1 and l ∈ c2. We
consider two measures of formulas, namely, mergeability and resolvability, that
quantify basic semantic properties of the input. Let C be the number of clauses
in a formula F . Let r be the number of resolvable pairs of clauses in F , and
m be the number of mergeable clause pairs, such that if a pair merges n times
(i.e., it has n overlapping literals), then m is incremented n times. Then the
resolvability of the input formula is R = r/C2 and the mergeability M = m/C2.
Both measures can be computed in O(C2 · L2), where L is the length of the
longest clause.

3 Related Work

Mateescu computed lower and upper bounds on the treewidth of large appli-
cation formulas [13], and showed that treewidth did not correlate well over
large sets of application instances, however Pohl et al. showed strong correla-
tions between treewidth and solving time for feature models [17]. Ansótegui et
al. introduced community structure abstractions of SAT formulas, and demon-
strated that industrial instances tend to have much better structure than
other classes, such as random [5]. It has also been shown that community-
based features are useful for classifying industrial instances into subclasses [10].
Community-based parameters have also recently been shown to be one of the
best predictors for SAT solving performance [15]. A difference between [15] and
our work is that they group all application, crafted, and random instances into
a single study, while we evaluate them separately. We also consider several more
parameters and more instances. Kilby et al. demonstrated a moderate positive

440 E. Zulkoski et al.

Table 1. Adjusted R2 values for the given features, compared to log of MapleCOMSPS’
solving time. The number in parentheses indicates the number of instances that were
considered in each case.

Feature Set Application Crafted Random Agile

V ⊕ C ⊕ C/V 0.03 (1143) 0.04 (753) 0.08 (126) 0.85 (4968)

V ⊕ C ⊕ CM ⊕ Q ⊕ Q/CM 0.07 (889) 0.26 (613) 0.28 (126) 0.89 (4968)

V ⊕ C ⊕ Bones ⊕ Bones/V 0.17 (193) 0.40 (154) 0.04 (59) 0.43 (208)

V ⊕ C ⊕ TW ⊕ TW/V 0.05 (1087) 0.07 (753) 0.28 (126) 0.91 (4968)

V ⊕ C ⊕ DV ⊕ DC ⊕ αV 0.06 (1143) 0.19 (753) 0.25 (126) 0.88 (4901)

V ⊕ C ⊕ M ⊕ R ⊕ M/R 0.20 (823) 0.25 (604) 0.19 (126) 0.91 (4870)

C/V ⊕ Q ⊕ TW/V ⊕ M/R ⊕ R ⊕ DV 0.31 (823) 0.43 (604) 0.15 (126) 0.95 (4870)

Q ⊕ Q/CM ⊕ TW/V ⊕ M/R ⊕ DV ⊕ DC 0.30 (823) 0.56 (604) 0.39 (126) 0.95 (4870)

V ⊕ CM ⊕ Q ⊕ R ⊕ DV ⊕ αV 0.22 (823) 0.42 (604) 0.66 (126) 0.93 (4870)

V ⊕ C/V ⊕ Q ⊕ TW/V ⊕ M ⊕ DC 0.23 (823) 0.47 (604) 0.20 (126) 0.96 (4870)

correlations between backbone size and solving time on uniform random 3SAT
instances [11]. Andrews introduced resolution with merging, and demonstrated
a sound and complete proof system that exploits merges [2]. A clause-learning
scheme based on merges during conflict was considered in [16].

4 Relating SAT Measures to CDCL Performance

Our first set of experiments investigate the relationship between structural
parameters and CDCL solving time. Specifically, we pose the following ques-
tion: Do parameter values correlate with solving time? In particular, can we
build significantly stronger regression models by incorporating combinations of
these features? We focus on community structure, popularity, fractal dimension,
backbones, treewidth, and merge-resolvability of input.

We use off the shelf tools to compute community structure and modularity
[5], and treewidth [13]. Due to the difficulty of exactly computing these param-
eters the algorithms used in previous work (and our experiments) do not find
optimal solutions, e.g., the output may be an upper-bound on treewidth, how-
ever backbones were computed exactly. We use MapleCOMSPS, the 2016 SAT
competition main track winner as our reference solver for runtimes.

We include all instances from the application and crafted tracks of the SAT
competitions from 2009 to 2014, as well as the 2016 agile track. We also included
a small set of random instances from the 2007 and 2009 SAT competitions as
a baseline. As the random instances from recent SAT competitions are too dif-
ficult for CDCL solvers, we include a set of instances from older competitions.
All instances were simplified using MiniSat’s preprocessor before computing the
parameters. The preprocessing time was not included in solving time.

Experiments were run on an Azure cluster, where each node contained two
3.1 GHz processors and 14 GB of RAM. Each experiment was limited to 6 GB.
For the application, crafted, and random instances, we allotted 5000 s for Maple-
COMSPS solving (the same as used in the SAT competition) and 2 h for metric

The Effect of Structural Measures and Merges on SAT Solver Performance 441

computation. For the agile instances, we allowed 60 s for MapleCOMSPS solv-
ing and 300 s for metric computation. Due to the difficulty of computing these
parameters, we do not obtain values for all instances due to time or memory
limits being exceeded.

We construct linear regression models from subsets of features related to
these parameters, akin to [15]. We consider the following “base” features: num-
ber of variables (V), number of clauses (C), number of communities (CM), mod-
ularity (Q), treewidth upper-bound (TW), fractal-dimensions of the VIG and
CVIG (DV and DC), variable popularity (αv), resolvability (R), and mergeabil-
ity (M). We also include the ratio feature Q/CM , as used in [15]. All features
are normalized to have mean 0 and standard deviation 1. For a given subset of
these features under consideration, we use the “⊕” symbol to indicate that our
regression model contains these base features, as well as all higher-order combi-
nations of them (combined by multiplication), plus an “intercept” feature. Our
dependent variable is the log of runtime of the MapleCOMSPS solver [12].

In Table 1, we first consider sets of features defined with respect to a single
parameter type, e.g., only community structure based features, along with V and
C as baseline features. Each cell reports the adjusted R2 value of the regression,
as well as the number of instances considered in each case (which corresponds to
the number of instances for which we have data for each feature in the regression).
It is important to note that since different subsets of SAT formulas are used for
each regression (since our dataset is incomplete), we should not directly compare
the cells in the top section of the table. Nonetheless, the results do give some
indication if each parameter relates to solving time.

In order to show that combinations of these features can produce some-
what stronger regression models, in the bottom half of Table 1, we consider all
instances for which we have data for every feature, not including backbones
which are only defined over satisfiable instances. We considered all subsets of
base features of size 6, and report the best model for each benchmark, according
to adjusted R2 This results in notably stronger correlations than with any of the
feature sets defined over a single parameter (i.e. the top half of the table). We
also note that R2 values results tend to be higher for the agile instances, as com-
pared to application and crafted instances. This is somewhat expected, as the
set of instances are all derived from the SAGE whitebox fuzzer [9], as compared
to our other benchmarks which come from a heterogeneous set of sources.

Not too surprisingly, no single parameter is significantly predictive of SAT
solver performance across the wide variety of instances considered in this work.
While combinations of these parameters do produce notable improvements with
respect to R2 values, there is still much room for improvement, especially when
considering the application and crafted instances.

4.1 Relating Measures to Performance by Sub-category

From the above correlation results, it is clear that these features do not fully
explain CDCL performance “in the large.” Nonetheless, it is worth considering
how each measure relates to solving performance on a more fine-grained scale,

442 E. Zulkoski et al.

Table 2. Spearman correlation results between solving time and measures, for each
application sub-category. The number of satisfiable and total instances is given with
the category name. Blue cells with a single ‘+’ indicate moderate positive correlations
(0.4 ≤ r < 0.6); two ‘+’ symbols indicate 0.6 ≤ r < 0.8; three ‘+’ symbols indicate
r > 0.8. Red cells indicate negative correlations using the same system (e.g., two ‘–’
symbols indicate −0.6 ≥ r > −0.8). Blank cells have lower correlations of |v| < 0.4.

Category (#SAT/Total) C/V Q Bones/V TW/V M M/R
2d-strip-packing (5/11) ++ ++ – – – – –
argumentation (15/15) +++ – – – +++ +++ +++

bio (19/30) +++ –
crypto-aes (17/22)
crypto-des (15/15) – – ++ ++
crypto-gos (1/34) + + ++

crypto-md5 (10/17) + ++
crypto-sha (47/47)
crypto-vmpc (20/20) ++ – + – – – –
diagnosis (38/79) –

hardware-bmc (0/22) – –
hardware-bmc-ibm (8/12) + +

hardware-cec (0/44)
hardware-manolios (0/22) + – – – – –

hardware-velev (0/5) + – –
planning (3/11) – –

scheduling (29/50)
scheduling-pesp (2/24) – –
software-bit-verif (8/43) –
termination (26/38)

by considering the sub-categories of the SAT competition application instances.
Most application track instances can be classified into one of 20 sub-categories,
as listed in the first column of Table 2. These categories are loosely encompassed
by various types of cryptographic instances, software verification, and hardware
verification problems. Again, we consider all instances from the 2009–2014 com-
petitions for which we could accurately classify the instance into a category,
totalling 780 instances.

Table 2 summarizes Spearman correlation results between various features
and solving time. For ease of interpretation, instead of raw correlation values, we
label strong correlations as blue with ‘+’ symbols, with the strongest correlations
denoted by ‘+++’, as described in the table’s description.

For certain categories, many parameters seem to strongly relate to solving
time (e.g., argumentation), whereas for other categories solving time does not
relate well to any (e.g., scheduling). Interestingly, modularity often positively
correlates with solving time, indicating instances with intuitively better commu-
nity structure actually require longer solving time. Among our considered mea-
sures, mergeability and the ratio mergeable clauses to resolvable clauses (M/R)

The Effect of Structural Measures and Merges on SAT Solver Performance 443

seem to correlate strongly with many sub-categories, with mergeability having
at least a moderate correlation in 12 sub-categories. However, depending on the
sub-category, the correlation may be strongly positive or strongly negative. This
suggests that models beyond the linear ones considered previously may offer
better correlation results. Further, although not depicted, similar results were
found for Pearson correlations.

5 Generating Mergeable Formulas

From Table 2, mergeability tended to correlate with solving time for many sub-
categories of application instances. In the remaining sections, we test the effect
of mergeability by constructing scaling instances with varying numbers of merge-
able clause pairs.

We propose a greedy approach to increase the number of merges, as described
in Algorithm 1. Our approach works in the following main steps. We take as
input an arbitrary formula in CNF. Then, up until fixed-point, we seek pairs

Algorithm 1. Greedy Approach to Increase Mergeable Input Clauses
1: input: CNF Formula F
2: output: Modified CNF Formula F ′

3: set lockedLits, lockedClauses, flipPairs
4: bool formulaHasChanged ← true
5: while formulaHasChanged do
6: lockedLits, lockedClauses, flipPairs ← {}, {}, {}
7: formulaHasChanged ← false
8: for every pair of clauses ci, cj do
9: if (|ci ∩ {¬l|l ∈ cj}| ≥ 1) then

10: for every merge literal l ∈ ci ∩ cj do � lock literals that merge
11: lockedLits ← lockedLits ∪ {(ci, l), (cj , l)}
12: if (|ci ∩ {¬l1|l1 ∈ cj}| == 1) ∧ (∃l2 : l2 ∈ ci ∩ cj) then
13: lockedLits ← lockedLits ∪ {(ci, l1), (cj , ¬l1)} � lock literals that

resolve mergeable clauses
14: else if (|ci ∩ {¬l|l ∈ cj}| > 1) then
15: for every literal pair l ∈ ci and ¬l ∈ cj do
16: flipPairs ← flipPairs ∪ {((ci, l), (cj , ¬l))}
17: for ((ci, l), (cj , ¬l)) ∈ flipPairs do
18: if ci, cj
∈ lockedClauses ∧ (ci, l), (cj , l)
∈ lockedLits then
19: if ∃ck
∈ lockedClauses ∧ ¬l ∈ ck ∧ (ck, ¬l)
∈ lockedLits ∧ ck
= cj then
20: flip(ci, l) � Changes the polarity of l in ci
21: flip(ck, ¬l)
22: lockedClauses ← lockedClauses ∪ {ci, cj , ck}
23: formulaHasChanged ← true
24: else if ∃ck
∈ lockedClauses ∧ l ∈ ck ∧ (ck, l)
∈ lockedLits ∧ ck
= ci then
25: “Same as Lines 20-23, substituting cj for ci.”

444 E. Zulkoski et al.

of “tautologically resolvent” clauses, i.e., clauses that resolve on two or more
variables. Consider the following example clauses:

(x ∨ y) ∧ (¬x ∨ ¬y). (1)

This pair of clauses resolve on both x and y, and is therefore not mergeable nor
resolvable.1 However, if we flip the polarity of any one of the four literals:

(x ∨ y) ∧ (¬x ∨ y), (2)

then the clauses both resolve (on x) and merge (on y). This process repeats until
no more changes to the formula increase the number of overall merges. In order
to ensure progress, an additional invariant ensures that if two clauses merge on
the original instance, then they will also merge in the generated instance. While
either of the clauses may be modified (by flipping other literals in the clauses to
allow additional merges), a merge will still exist between them.

We represent literals as (clause id, literal) pairs in order to distinguish dif-
ferent instances of the same literal. There are three main sets that ensure our
invariants. The set lockedLits maintains all literals that are either merged by
two resolvable clauses, or are the literals that are actually resolved in a merge.
Suppose we have clauses ci = (a ∨ b ∨ c), cj = (¬a ∨ b ∨ d). Since the clauses
resolve on a single variable a and merge on b, Line 11 will add (ci, b) and (cj , b)
to lockedLits, and Line 13 will add (ci, a) and (cj ,¬a). This ensures that the
algorithm will never flip the polarity of any of these literals, ensuring that
the output formula retains these same merges. Suppose that two clauses, e.g.,
ci = (a ∨ b ∨ c), cj = (¬a ∨ b ∨ ¬c) contain multiple literals upon which to
resolve (a and c). Then on Lines 15–16, we add all resolving pairs of liter-
als to flipPairs (e.g., ((ci, a), (cj ,¬a)) and ((ci, c), (cj ,¬c))). The intuition is
that if any one of these literal’s polarities were flipped, then the two clauses
would merge on two literals instead of one, while still being resolvable (e.g.
ci = (a ∨ b ∨ ¬c), cj = (¬a ∨ b ∨ ¬c)).

In Lines 17–25, we iterate through all pairs of literals in flipPairs; in practice,
we randomize the ordering to ensure we do not prefer flipping literals in earlier
clauses. If the associated clauses and literals are not locked (Line 18), then we
may try to flip one of the literals to increase the overall number of merges. In
order to flip some literal, e.g., (ci, l) to (ci,¬l), there must exist some other
unlocked literal (ck,¬l) that we can flip, in order to ensure that the overall
literal counts remain constant. If so, we flip the corresponding literals and lock
the three involved clauses (Lines 20–23, and similarly on Line 25). This ensures
that we do not end up flipping too many literals in the same clause, to the point
where the clauses no longer resolve. This process repeats until fixpoint, clearing
the three involved sets at the start of each iteration (Line 6).

5.1 Properties of the Generator

We designed our algorithm to retain as many properties of the original instance
as possible while increasing mergeability. The following are known properties
1 Note that in the resolution proof system, any resolvent of these clauses (e.g., (x ∨

y ∨ ¬y)) is effectively useless since it is tautologically true.

The Effect of Structural Measures and Merges on SAT Solver Performance 445

retained by our approach: the number of variables and clauses, all community
structure properties based on the variable incidence graph (i.e. modularity), and
popularity of variables and literals. These properties follow simply since we only
ever flip the polarities of literals, and if we flip the polarity of a literal l in some
clause, we must flip ¬l in another clause. The following are known properties that
are not retained: satisfiability, resolvability, and community structure properties
if computed over the literal incidence graph. We discuss several other properties
in the following results. Finally, we demonstrate that a small change to the
algorithm can be used to decrease the mergeability of the formula instead.

Observation 1. Algorithm 1 terminates.

Proof. First, note that the only time that the formula is changed is in calls
to flip(. . .) on Lines 20–21, 25. We show that any time these sets of Lines are
invoked, the size of lockedLits must increase in the next iteration of the while-
loop, and since the formula is finite, the algorithm will eventually terminate.
Note that if flip is never invoked, then the while-loop must terminate as formu-
laHasChanged must be false.

We first show every element of lockedLits from the previous while-loop iter-
ation will still be in lockedLits in the next iteration. There are two cases to
consider. First, if two clauses resolve on a single literal and merge, then the
resolving literal is locked (Line 13) and all merging literals are locked (Lines
10–11). Since these literals can then never be flipped, the same literals will be
locked due to this clause pair in the next while-loop iteration. Further, flipping
any of the unlocked literals in the clause pair will not reduce the number of
merges (e.g., by creating a second pair of conflicting literals between the clauses,
thus making the clause pair no longer resolvable). Second, if the clause pair has
multiple conflicting literals (thus adding pairs to flipPairs), then only the liter-
als that are merges are added to lockedLits (unless added by a different pair of
clauses). Since a clause can only be changed on one literal at each iteration of
the while-loop (due to lockedClauses being updated on Lines 22, 25), there will
still exist at least one pair of conflicting literals to satisfy the if-statement on
Line 9 in the next iteration.

Assume w.l.o.g. that we flip (ci, l) and (ck,¬l) on Lines 20–21. Then in the
next iteration both ci and cj will contain the literal ¬l, and since they must still
have a conflicting literal, (ci,¬l) and (cj ,¬l) will be added to lockedLits. ��
Observation 2. Each iteration of the while-loop in Algorithm 1 (Lines 6–25)
cannot decrease the mergeability of the formula.

Proof. If a clause pair already merges on (potentially several) literals and
resolves, then all relevant literals will be locked and cannot be changed (through
similar arguments as in Observation 1). Thus, the mergeability will not decrease.
As literals get flipped, it will decrease the number of conflicting literals between
the clause pair, and increase the number of overlapping literals. If the number
of conflicting literals is ever reduced to one, the number of overall merges will
increase by the number of merge literals. ��

446 E. Zulkoski et al.

Observation 3. Algorithm 1 can be modified to decrease mergeability by chang-
ing how lockedLits and flipPairs are computed on Lines 9–16.

If a pair of clauses has exactly 2 pairs of opposing literals (as in Eq. 1), then
we lock all 4 literals. Essentially, if one of these literals were to be flipped,
the clause would resolve and merge. We do not lock any other literals. As for
flipPairs (which now constitute pairs of literals which we hope to flip to reduce
mergeability), if a clause pair merges, we add all pairs of merging literals, as
well as the pair of resolving literals to the data structure. As we will show in
the following subsection, for many uniform 3SAT formulas, we can reduce the
number of mergeable pairs to zero.

5.2 Mergeability of Random-kSat Instances

Before discussing our empirical results, we demonstrate properties of randomly
generated kSAT instances. Specifically, we find the expected number of merges a
random-kSAT instance will have, which depends on the clause size k, the number
of variables n, and the number of clauses m. We assume that all clauses have
exactly k variables, and each possible clause occurs with uniform probability. We
use these expected values, in conjunctions with the empirically computed vari-
ance of mergeability of the distribution, to contextualize our empirical results.

Theorem 1. Let F be a random-kSAT formula with n variables and m clauses.
Then the expected number of merges over input clause pairs is:

E(merges(F)) =
(

m

2

) k∑
i=1

i(i − 1)
2i

·
(
k
i

)(
n−k
k−i

)
(
n
k

) . (3)

6 The Effect of Merges on CDCL Performance

Here we consider the following question: as one scales Boolean formulas to
have more mergeable clause pairs (while keeping all other formula character-
istics invariant), are the formulas solved faster by a CDCL solver. Our experi-
ments suggest that mergeability strongly negatively correlates with solving time
when considering unsatisfiable instances. We test our hypothesis by taking pre-
generated formulas (i.e. from an off-the-shelf random instance generator), and
then modifying them to increase/decrease mergeability, while retaining as many
properties of the original instance as possible, using our approach in Sect. 5.

6.1 Experiment

We first use the popularity-similarity random instance generator described in
[8] to create our base formulas. The generator has several parameters related to
typical properties of industrial/application SAT instances. The temperature T
allows one to tune the similarity in the instance: intuitively, during generation,

The Effect of Structural Measures and Merges on SAT Solver Performance 447

Table 3. Correlations between mergeability and solving time for varying temperatures.
Min (resp. Max) refer to the number of mergeable clause pairs in the formula with the
least (resp. most) mergeable clause pairs in each formula series. Base is the number of
mergeable pairs in the original instance not modified by our generator. Min Time and
Max Time correspond to the times for the instance with the minimal (resp. maximal)
number of mergeable pairs.

T Spearman Pearson Min Base Max Min time (s) Max time (s)

T1.8 −0.9 −0.89 851.57 851.57 1155.86 1.23 0.6

T1.9 −0.92 −0.92 609 608.29 849.25 95.39 41.7

T2.0 −0.84 −0.89 332.6 363.89 508.9 8.53 5.89

T2.1 −0.92 −0.93 263 286.88 415.78 153.68 50.65

T2.2 −0.94 −0.93 95.4 224.9 326.7 6.88 2.63

T2.3 −0.97 −0.95 68.2 193.62 294.9 35.27 9.49

T2.4 −0.97 −0.94 70.3 183.22 261.7 126.07 18.31

T2.5 −0.98 −0.95 64.4 177.38 251.6 817.03 105.33

T5.0 −0.97 −0.98 42 99 137.4 12.98 4.94

T10.0 −0.97 −0.98 75.33 82 125 33.61 16.2

T100.0 −0.97 −0.95 69.43 82 119.14 94.43 35.24

Table 4. Results for traditional random kSAT instances, split by satisfiability.

Num Vars Spearman Pearson Min Base Max Min time (s) Max time (s)

200 (unsat) −0.92 −0.92 52.84 81.6 123.04 2.48 0.74

225 (unsat) −0.91 −0.91 65.46 83.46 123.11 5.84 2.61

250 (unsat) −0.91 −0.91 56.6 84.73 123.97 13.53 6.38

200 (sat) 0.26 0.27 2.33 80.42 82.85 0.29 0.46

225 (sat) 0.27 0.30 18.99 81.76 92.76 0.97 1.74

250 (sat) 0.37 0.33 0.68 81.33 89.76 2.52 4.80

each literal is assigned a random number, and if the temperature is low, literals
with small differences in their random numbers are more likely to appear in
the same clause. At higher temperatures, the generated formulas appear more
close to traditional random SAT instances. We consider different temperature
values between 1.8 − 100, as listed in Table 3. We use the default popularity
parameter β = 1, such that the variables are expected to occur according to a
power-law distribution, as witnessed in industrial instances [4]. We restrict the
formulas to be 3SAT instances. The clause popularity parameter β′ was set to
0, and the clause/variable ratio is always 4.25, as in [8]. Since formulas with
higher temperature are harder for CDCL solvers, formulas for T < 2 have 5000
variables, those with 2 ≤ T < 2.2 have 2000, those with 2.2 ≤ T < 5 have 1000,
and those with T ≥ 5 have 300. All other parameters are as default.

448 E. Zulkoski et al.

For each temperature value, we generate 10 base formulas for a total of 110
base formula. We then use these base formulas to generate a total of 1200 scaled
formulas. Importantly, all considered formulas (both base formulas and those
generated with our algorithm) are unsatisfiable. We then use our algorithm to
increase or decrease the number of merges in each instance, creating a series
of formulas associated with each base formula. We allot 1 h for each run of our
tool, and record the modified formula every 10 flips of literals, up to a limit
of 500 flips (both for decreasing and increasing merges). Although each flip
may cause many new merges, in our experiments, each flip tends to introduce
one or two merges. In total, we considered 110 base formulas, and 1200 total
formulas. We repeated this experiment for uniform random 3SAT instances at
the phase transition (clause/variable ratio of 4.26), generating 100 base instances
for each number of variables n ∈ {200, 225, 250} (allowing both satisfiable and
unsatisfiable instances in this case), and generating a new formula for every 5
flips of literals, in total producing 7043 formulas.

For each formula series (i.e., a base formula with its series of varied merge-
ability versions), we run MapleSAT as default with a 1 h timeout and record
solving time. We then compute the Spearman and Pearson correlations of merge-
ability versus solving time. Note that although pre-processing was used here, only
approximately 5–10% of clauses were changed. Each row in Table 3 is aggregated
over 10 formula series (correlations are aggregated using the Fisher transforma-
tion). Results are repeated for uniform 3SAT instances in Table 4, split by satis-
fiability. More specifically, if a given series of instances has both satisfiable and
unsatisfiable formulas, we distinguish each sub-series of instances with the same
satisfiability.

For the majority of formulas that are unsatisfiable, increasing the number
of merges decreases solving time. The correlations, which are frequently greater
in magnitude than 0.9, indicate a strong relationship over the benchmark. A
possible explanation for this is that the additional merges allow the solver to learn
smaller clauses faster, restricting the search space more quickly. Interestingly,
there is a slight positive correlation when considering satisfiable instances.

We further examined the set of uniform 3SAT instances with n = 200. In
Fig. 1a, we display the scatter plot of the number of mergeable clause pairs versus
solving time, distinguishing instances based on satisfiability and how they were
generated. From Eq. 3, the expected number of mergeable clause pairs is 82. We
then computed the sample variance of the number of mergeable clause pairs using
the original random 3SAT instances in order to compute the standard deviation
over the sample, which was 9.32. In Figs. 1b–d, we depict box plot distribution
where the y-axis is again solving time, and the instances are grouped according
to the number of standard deviations its merges are from the expected value of
82 merges, rounded toward zero. For example, an instance with 92 mergeable
pairs would be 1.07 standard deviations from the expected value, and would
fall into bucket 1. Note the clear downward slope over unsatisfiable instances in
(c). For satisfiable instances, there does not appear to be much correlation. Also
interestingly, the spread of solving times is much more significant if the number

The Effect of Structural Measures and Merges on SAT Solver Performance 449

Fig. 1. (a) Scatter plot depicting the distribution of 3SAT instances, comparing the
number of merges of the input clauses on the x-axis, and solving time on the y-axis.
Includes traditional random 3SAT instances at the phase transition with 200 variables,
as well as scaled instances using our generator. (b)–(d) Box plot distribution where the
y-axis is again solving time, and the instances are grouped according to the number of
standard deviations (rounded toward zero) its merges are from the expected value of 82
merges. Note the clear downward slope over unsatisfiable instances in (c). (e) Average
learned clause time tends to decrease as the number of mergeable pairs increases. (f) The
percentage of useful input clauses is not affected by mergeability in our experiments.

450 E. Zulkoski et al.

of mergeable pairs is small, as indicated by the many outliers on the left hand
side of Fig. 1b, whereas most instances are easily solvable when the number of
mergeable pairs is high.

Recall that an underlying motivation for studying mergeability was that the
solver could learn shorter clauses during merge resolutions. A natural question
is whether this occurs in practice. Figure 1e depicts a box plot comparing merge-
ability to the average learned clause size during search. As is apparent by the
downward trend, instances that have more mergeable input tend to on average
produce smaller learned clauses, supporting our intuition.

Last, although we intended to control for as many properties as possible
when generating more mergeable formulas, we clearly cannot ensure that only the
property of mergeability changes. A possible alternative explanation is that after
increasing mergeability we introduce trivial unsatisfiable cores (i.e., small subset
of input clauses that are sufficient to derive UNSAT), offering an alternative
explanation of the correlation. In Fig. 1f, we empirically verify that this is not
the case by measuring the number of useful input clauses for each SAT solver run
of an unsatisfiable instance. We define a useful clause to an unsatisfiable proof
as follows. Let P be the proof of unsatisfiability constructed by the SAT solver
represented as a graph G, such that nodes represent clauses, input clauses have
no incoming edges, and an edge exists from C1 to C2 iff the clause C1 was in the
implication graph used to derive C2. (Additional edges are needed to account for
extra components of real-world solvers, such as clause minimization.) The final
node added to the graph is the empty clause E. Then, if we reverse all edges in
the graph, the useful clauses correspond to the set of nodes reachable from E.

As can be seen by the graph, approximately 96% of the input clauses were
useful to the proof, regardless of mergeability. While this does not necessarily
calculate the minimal unsatisfiable core, it more closely reflects the actual run
of the SAT solver. Thus, we do not believe that unsatisfiable core size is a
confounding factor in determining the runtime of these instances.

7 Future Work and Conclusions

We conducted a large-scale comprehensive study of several well-known structural
parameters of SAT instances and their correlations with solver runtime over a
diverse and representative set of 7000+ SAT competition instances. We found
that while most of these features correlate with solving time for certain classes
of formulas, these correlations were not strong for the entire benchmark suite we
studied. We further introduced the mergeability parameter, and showed that it
correlates well with many categories of instances, although satisfiability seems to
affect this correlation. Finally, in order to isolate the effects of mergeability, we
performed scaling studies. Specifically, we describe a formula generator capable of
scaling the mergeability parameter, and showed that mergeability of unsatisfiable
instances tend to strongly correlate negatively with solver runtime (or strongly
correlate positively with solver performance). Also, we showed that the solver
tends to produce shorter learned clauses on average for instances with higher

The Effect of Structural Measures and Merges on SAT Solver Performance 451

mergeability. Given the strong correlations, we believe that mergeability may be
a useful measure in portfolio solvers.

References

1. The international SAT Competitions web page (2017). http://www.
satcompetition.org/

2. Andrews, P.B.: Resolution with merging. In: Siekmann, J.H., Wrightson, G. (eds.)
Automation of Reasoning, pp. 85–101. Springer, Heidelberg (1968). https://doi.
org/10.1007/978-3-642-81955-1 6

3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of
SAT formulas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 8

4. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04244-7 13

5. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8 31

6. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press (2009)

7. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors
to satisfiability: dynamic sub-solvers and learning during search. Ann. Math. Artif.
Intell. 70(4), 399–431 (2014). https://doi.org/10.1007/s10472-014-9407-9

8. Giráldez-Cru, J., Levy, J.: Locality in random sat instances. In: Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI 2017) (2017)

9. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: Network and Distributed System Security Symposium, pp. 151–166. Internet
Society (2008)

10. Jordi, L.: On the classification of industrial SAT families. In: International Con-
ference of the Catalan Association for Artificial Intelligence, p. 163. IOS Press
(2015)

11. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. In: AAAI Conference on Artificial Intelligence, pp. 1368–1373. AAAI Press
(2005)

12. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: Maple-COMSPS,
mapleCOMSPS LRB, maplecomsps CHB. SAT Competition, p. 52 (2016)

13. Mateescu, R.: Treewidth in Industrial SAT Benchmarks (2011). http://research.
microsoft.com/pubs/145390/MSR-TR-2011-22.pdf

14. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature
400(6740), 133–137 (1999)

15. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 252–268. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-09284-3 20

16. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsat-
isfiability proofs. In: AAAI Conference on Artificial Intelligence, pp. 1481–1484
(2008)

http://www.satcompetition.org/
http://www.satcompetition.org/
https://doi.org/10.1007/978-3-642-81955-1_6
https://doi.org/10.1007/978-3-642-81955-1_6
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.1007/978-3-319-08587-6_8
https://doi.org/10.1007/978-3-642-04244-7_13
https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1007/s10472-014-9407-9
http://research.microsoft.com/pubs/145390/MSR-TR-2011-22.pdf
http://research.microsoft.com/pubs/145390/MSR-TR-2011-22.pdf
https://doi.org/10.1007/978-3-319-09284-3_20
https://doi.org/10.1007/978-3-319-09284-3_20

452 E. Zulkoski et al.

17. Pohl, R., Stricker, V., Pohl, K.: Measuring the structural complexity of feature
models. In: Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 454–464. IEEE Press (2013)

18. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J Comb Theor
Series B 36(1), 49–64 (1984)

19. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: International Confer-
ence on Theory and Applications of Satisfiability Testing, pp. 222–230. Springer,
Heidelberg (2003). https://doi.org/10.1.1.128.5725

https://doi.org/10.1.1.128.5725

Learning-Sensitive Backdoors
with Restarts

Edward Zulkoski1(B), Ruben Martins2, Christoph M. Wintersteiger3,
Robert Robere4, Jia Hui Liang1, Krzysztof Czarnecki1, and Vijay Ganesh1

1 University of Waterloo, Waterloo, ON, Canada
ezulkosk@uwaterloo.ca

2 Carnegie Mellon University, Pittsburgh, PA, USA
3 Microsoft Research, Cambridge, UK

4 University of Toronto, Toronto, ON, Canada

Abstract. Restarts are a pivotal aspect of conflict-driven clause-
learning (CDCL) SAT solvers, yet it remains unclear when they are favor-
able in practice, and whether they offer additional power in theory. In this
paper, we consider the power of restarts through the lens of backdoors.
Extending the notion of learning-sensitive (LS) backdoors, we define a
new parameter called learning-sensitive with restarts (LSR) backdoors.
Broadly speaking, we show that LSR backdoors are a powerful para-
metric lens through which to understand the impact of restarts on SAT
solver performance, and specifically on the kinds of proofs constructed by
SAT solvers. First, we prove that when backjumping is disallowed, LSR
backdoors can be exponentially smaller than LS backdoors. Second, we
demonstrate that the size of LSR backdoors are dependent on the learn-
ing scheme used during search. Finally, we present new algorithms to
compute upper-bounds on LSR backdoors that intrinsically rely upon
restarts, and can be computed with a single run of a CDCL SAT solver.
We empirically demonstrate that this can often produce much smaller
backdoors than previous approaches to computing LS backdoors. We
conclude with empirical results on industrial benchmarks which demon-
strate that rapid restart policies tend to produce more “local” proofs
than other heuristics, in terms of the number of unique variables found
in learned clauses of the proof.

Keywords: SAT solving · Backdoors · Restarts · CDCL

1 Introduction

Restarts are a pivotal aspect of conflict-driven clause-learning (CDCL) SAT
solvers. Not only are they crucially important to the performance of CDCL
solver implementations, but foundational theoretical work on the power of CDCL
intrinsically relies on exploiting restarts [1,24]. For example, the powerful theo-
rems by Pipatsrisawat and Darwiche that show polynomial equivalence between

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 453–469, 2018.
https://doi.org/10.1007/978-3-319-98334-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_30&domain=pdf

454 E. Zulkoski et al.

CDCL SAT solvers (with perfect branching and restarts) and the general reso-
lution proof system seem to crucially rely on the use of restarts. Nevertheless, it
remains unclear when or why it is favorable to restart in practice, and whether
restarts truly make CDCL SAT solvers a more powerful proof system in theory.
Further, it is unclear whether restarts provide any additional power over back-
jumping, which is standard in all modern CDCL SAT solvers. Understanding
restarts can go a long way in explaining one of the most important problem in
SAT and SMT solver research, namely, “why are solvers efficient for a large class
of industrial applications?”

Complexity theorists have long proposed a variety of parameters in explaining
the surprising power of certain algorithms at solving NP-complete problems.
One such class of parameters, originally introduced by Williams, Gomes, and
Selman, are backdoors [29]. Since their seminal paper, a variety of backdoors
have been proposed in an attempt to understand why and for what kind of
instances SAT solving algorithms work efficiently. Intuitively, backdoors measure
how many variables need to be assigned such that a polynomial-time subsolver
can solve the residual formula. For “traditional” types of backdoors (i.e. strong
and weak backdoors [29]), if the backdoor is small, then efficient algorithms
can determine satisfiability by trying all possible assignments to the backdoor.
Unfortunately, traditional backdoors do not account for some pivotal aspects of
CDCL SAT solvers, such as clause-learning or restarts. Dilkina et al. extended
traditional backdoors to learning-sensitive (LS) backdoors in order to account
for the power of clause-learning during the search performed by a SAT solver
[9]. They showed that these learning-sensitive (LS) backdoors are exponentially
smaller than traditional strong backdoors on certain class of formulas. However,
they only considered a single configuration of a CDCL SAT solver, namely one
that uses the first unique implication point (1UIP) learning scheme and disallows
restarts.

In this work, we extend the notion of LS backdoors to allow restarts by
introducing the concept of learning-sensitive with restarts (LSR) backdoors. Our
main contribution is an exponential separation between LS and LSR backdoors
(using the 1UIP clause-learning scheme), under the condition that backjumping
during search is not allowed (only backtracking is allowed). Determining whether
or not restarts add significant power to CDCL SAT solvers in full generality
remains a major and important open problem. We hope that our work will be a
useful step toward tackling this problem.

We further consider the effect of different clause-learning schemes on the size
of LSR backdoors. We show that if a formula has a backdoor set B under the
decision learning (DL) scheme (an “LSR-DL backdoor”), then B is also an LSR-
1UIP backdoor. The converse however does not hold, and we show a family of
formulas where the smallest LSR-1UIP backdoor is exponentially smaller than
the smallest LSR-DL backdoor. This may indicate that 1UIP can allow the solver
to remain more “local” during search when compared to other heuristics.

In the context of strong and weak backdoors, if we are given a priori knowl-
edge of a backdoor B of size n, then we can simply invoke the subsolver on all 2n

Learning-sensitive Backdoors with Restarts 455

assignments to the backdoor to determine satisfiability. The situation is not so
simple in the context of LSR (and LS) backdoors, which rely upon the order in
which the search space is explored to learn clauses. We demonstrate pitfalls that
may arise for a solver trying to exploit a priori knowledge of LSR backdoors. We
describe formulas such that if the solver is given additional unit clauses for free
(thus shrinking the search space), then it is impossible to determine unsatisfia-
bility by only branching on the LSR backdoor (of the original formula without
the unit clauses). We also describe issues that can arise if multiple conflicts
can be learned after the same sequence of decisions. Under certain probabilistic
assumptions, we show that even if the solver is given a perfect branching sequence
witnessing the backdoor, it still may have to branch on additional variables. This
result exploits the fact that a typical CDCL solver only learns one clause per
conflict.

Finally, through an extension of results from [24], we show that the set of
variables found in the learned clauses used in the proof of unsatisfiability con-
stitute an LSR backdoor. We use this result to empirically compare the proofs
produced by various restart policies. Results suggest that rapid restart policies
tend to have more “local proofs” (in terms of the aforementioned measure) on
several classes of industrial SAT formulas.

2 Related Work

Williams et al. introduced traditional weak and strong backdoors for both SAT
and CSP [29]. The size of backdoors with respect to subsolvers different from
unit propagation (UP) was considered in [10,17]. Several extensions of traditional
strong and weak backdoors have been proposed. Backdoor keys measure certain
interdependencies of variables in the backdoor set [26]. Backdoor trees refine
strong backdoors by measuring what fraction of the total search of a strong
backdoor must be explored before determining satisfiability [27]. The backdoor
treewidth is a measure that is bounded above by both the strong backdoor size
and also the treewidth of certain graphical abstractions of the formula [11]. It
was shown in [16] that there is little relationship between weak backdoors and
the backbone of a formula. Dilkina et al. were the first to consider clause learning
in the context of backdoors and introduced learning-sensitive (LS) backdoors.
LS backdoors allow clause-learning to occur while traversing the assignment tree
of backdoor variables, which yield exponentially smaller backdoors than strong
backdoors for certain class of instances [8,9].

Our work is inspired by several lines of work aimed at relating the power
of CDCL to general resolution. Pool resolution was first introduced to model
CDCL without restarts [28], and it was shown that pool resolution is expo-
nentially stronger than regular resolution. Resolution trees with lemmas were
similarly introduced in [7], and more closely match clause-learning algorithms in
practice. In their seminal paper, Beame et al. formally defined CDCL as a proof
system and showed that CDCL can polynomially simulate natural refinements of
general resolution [2]. However, their approach required assumptions that do not

456 E. Zulkoski et al.

reflect typical CDCL implementations, such as choosing to ignore unit propaga-
tions when preferable. Hertel et al. also showed that CDCL without restarts can
effectively polynomially simulate general resolution, but required certain modi-
fications to input formulas [14]. It was also shown that a non-restarting CDCL
solver can polynomially simulate a restarting solver, but the approach requires
adding additional variables to the formula as a “counter,” based on the number
of variables in the original formula [4].

Recent approaches that show CDCL solving efficiently simulates general res-
olution require restarts. In their papers [24,25], the authors showed that CDCL
without the assumptions from [3] can polynomially simulate general resolution.
The approach relies upon the notion of 1-empowerment [23], which is the dual
of clause absorption [1]. However, crucially, they assume that the branching
and restarts in CDCL solvers are perfect (i.e., non-deterministic). In Atserias
et al. [1], the authors assume randomized branching and restarts, instead of non-
deterministic ones. Specifically, they demonstrate that rapidly restarting solver
with sufficiently many random decisions can effectively simulate bounded-width
resolution. Many questions in this context remain open. For example, can the
above simulations be modified to not require restarts? Further, can we construct
realistic models of CDCL solvers (with “realistic” branching and restarts) and
determine their relative power vis-a-vis well-known proof systems such as general
resolution.

On the empirical side, several works have studied the performance of various
restart policies. Huang reported on a comprehensive evaluation of several restart
policies [15], which demonstrated the strength of “dynamic” restart policies such
as those based on the Luby sequence [19]. Biere performed an evaluation of
restart strategies on more modern solvers [5]. Among their results, they showed
that static restart policies can perform as well as dynamic strategies. Haim
et al. showed that more rapid restart policies tend to require fewer conflicts
before determining satisfiability, however this does not always lead to faster
solving [13].

3 Background

We assume basic familiarity with the Boolean satisfiability problem, CDCL
solvers and the standard notation used by solver developers and complexity
theorists. For an overview we refer the reader to [6]. The CDCL model we used
is the same as the one presented by Pipatsrisawat and Darwiche in [24,25] (cf.
Algorithm 1 in [24]).

We assume that Boolean formulas are given in conjunctive normal form
(CNF). For a formula F , we denote its variables as vars(F). A model for a
formula F refers to a complete satisfying assignment to F . The term trail refers
to the sequence of variable assignments (either through decisions made by CDCL
solver’s branching heuristic, or through propagation), in the order they have been
assigned, at any given point in time during the run of a solver. The decision level
of a literal denotes how many decision variables occurred up to and including
the literal on the trail. Learned clauses are derived by analyzing the implication

Learning-sensitive Backdoors with Restarts 457

graph, which comprises the decisions and implications (propagations) that led
to a conflict. The first unique implication point clause-learning scheme (denoted
1UIP) is the most common in practice [20]. We also consider the decision learn-
ing scheme (denoted DL) which creates a conflict clause from the set of decision
literals which led to the conflict [30]. CDCL solvers typically backjump to the
second highest decision level in the conflict clause after reaching a conflict, which
allows the solver to quickly ignore large areas of the search space that are prov-
ably unsatisfiable. If backjumping is not allowed, the solver backtracks to the
most recent decision level where the opposite polarity of the literal has not been
explored. The learned (conflict) clause defines a cut in the implication graph; we
denote the subgraph on the side of the cut which contains the conflict node as
the conflict side, and the other side as the reason side.

We use the term “querying a variable” to mean that the solver assigns a
value to it and then performs unit propagations until saturation (i.e., no more
propagations are possible). For a set of clauses Δ and a literal l, Δ �1 l denotes
that unit propagation (UP) can derive l from Δ. If Δ �1 ⊥ (i.e. UP derives the
empty clause), then the solver is in a 1-inconsistent or conflicting state, else it
is in a 1-consistent or non-conflicting state.

Definition 1 (Absorption [1]). Let Δ be a set of clauses, let C be a non-
empty clause and let xα be a literal in C. Then Δ absorbs C at xα if every
non-conflicting state of the solver that falsifies the literals in C \ {xα} assigns x
to α. If Δ absorbs C at every literal, then Δ absorbs C.

The intuition behind absorbed clauses is that adding an already absorbed
clause C to Δ is in some sense redundant, since unit propagations that could be
realized with C have already been realized by the solver using clauses in Δ.

3.1 Backdoors

Backdoors are defined with respect to subsolvers, which are algorithms that can
solve certain classes of SAT instances in polynomial-time. Example subsolvers
include the unit propagation (UP) algorithm [10,29], which is also what we focus
on as it is a standard subroutine implemented in CDCL SAT solvers. Given
a partial assignment α : B → {0, 1}, the simplification of F with respect to
α, denoted F [α], removes all clauses that are satisfied by α, and removes any
literals that are falsified by α in the remaining clauses. A strong backdoor of a
formula F is a set of variables B such that for every assignment α to B, F [α]
can be determined to be satisfiable or unsatisfiable by the UP subsolver [29]. A
set of variables B is a weak backdoor with respect to a subsolver S if there exists
an assignment α to B such that the UP subsolver determines the formula to be
satisfiable. Backdoors were further extended to allow clause-learning to occur
while exploring the search space of the backdoor:

Definition 2 (Learning-sensitive (LS) backdoor [9]). A set of variables
B ⊆ vars(F) is an LS backdoor of a formula F with respect to a subsolver S if
there exists a search-tree exploration order such that a CDCL SAT solver without

458 E. Zulkoski et al.

restarts, branching only on B and learning clauses at the leaves of the tree with
subsolver S, either finds a model for F or proves that F is unsatisfiable.

Learning-sensitive with restarts (LSR) backdoors extend LS backdoors to
allow restarts. By allowing restarts, the solver may learn clauses from different
parts of the search-tree of B, which otherwise may not be accessible without
restarting. Where appropriate, we parameterize LSR backdoors by the learning
scheme: either LSR-1UIP or LSR-DL in this work. If no learning scheme is
explicitly mentioned, then 1UIP is assumed.

3.2 Two Formula Families

Dilkina et al. introduced two families of formulas that were used to demonstrate
an exponential separation between LS backdoors and strong backdoors [9]. We
describe them here, as several variations of the formulas will be useful for deriving
our results in the following sections.
The Gadget U : First, we introduce the following formula gadget (we use the
term gadget to refer to sub-formulas that we then use to build more complex
formulas):

U(q, a, b) := (q ∨ a) ∧ (q ∨ b) ∧ (q ∨ ¬a ∨ ¬b)

We describe the behavior of CDCL SAT solvers if it were to receive one of
these gadgets as input: observe that if the solver were to branch on ¬q (i.e.,
set q to false), it will immediately reach a conflict using these three clauses.
Clause-learning will then derive the unit clause (q) (for both 1UIP and DL).

The formulas below are both defined on variables x1, x2, . . . , xn (referred
as the “X” variables), and also three auxiliary sets of variables {qα}α∈{0,1}n ,
{aα}α∈{0,1}n , {bα}α∈{0,1}n . For any assignment α ∈ {0, 1}n let Cα = x1−α1

1 ∨
x1−α2
2 ∨ . . . ∨ x1−αn

n denote the clause on X variables which is uniquely falsified
by the assignment α, and let X 	→ α mean that we branch on each x variable,
such that xi = αi.

Let the parameter O define an ordering over the bit-strings in {0, 1}n. In [9],
this is assumed to be the lexicographic ordering, denoted as LEX. We are now
ready to define below the two families of formulas that Dilkina et al. introduced
in their paper.

The Family FO of Boolean Formulas: Consider the formula

FO =
∧

α∈{0,1}n

(Cα ∨
∨

α′≤Oα

¬qα′) ∧ U(qα, aα, bα). (1)

As described in the paper by Dilkina et al. [9], the smallest LS backdoor
when O is the lexicographic ordering, denoted FLEX , is the set of X variables
and therefore of size n, and works as follows. To see that X is an LS backdoor,
we first branch on all X variables setting them to false. This then propagates
¬q0...0, which leads to learning (q0...0) from the corresponding clauses in U(. . .).

Learning-sensitive Backdoors with Restarts 459

Since the learned clause is unit, the solver backjumps to decision level 0, at
which point we repeat the process by assigning X according to the next lexico-
graphic assignment 0 . . . 01 (i.e., we set x1, . . . , xn−1 to false, and xn to true).
Repeating this, we derive all (qα) clauses in lexicographic order and eventually
derive UNSAT. Note importantly that when deriving each (qα), all previously
learned clauses {(qα′) | α′ ≤ α} are used for propagation, so branching in lexico-
graphic order is essential in establishing that X variables constitute the smallest
LS backdoor.

The Family GO of Boolean Formulas: Now, consider the formula

GO =
∧

α∈{0,1}n,
α�=1n

(
(Cα ∨ ¬qα) ∧ U(qα, aα, bα)

)
∧

(C1n ∨
∨

α′
¬qα′) ∧ U(q1n , a1n , b1n).

(2)

We can lift the argument for formula FLEX to the formula GLEX to show
that X variables constitute the smallest LS backdoor in this case as well. We
iterate through all assignments to X variables in lexicographic order, learning
each unit clause (qα) along the way. However, the final assignment α = 1n

is treated differently, and importantly must be queried last. After learning all
previous (q) clauses and assigning the X variables according to 1n, we propagate
¬q1n , which again leads to conflict in the usual manner, ultimately proving the
formula to be UNSAT.

4 Extending Learning-Sensitive Backdoors

Dilkina et al. introduced LS backdoors in [9], however they only considered a sin-
gle CDCL solver configuration, namely, a non-restarting solver with the 1UIP
clause-learning scheme. They demonstrated that LS backdoors may be expo-
nentially smaller than strong backdoors using this configuration. Here, we pro-
vide several separation results, first comparing LS backdoors with and without
restarts, and then various clause-learning schemes. We also demonstrate some
pitfalls that may arise for a solver trying to exploit a priori knowledge of LSR
backdoors.

4.1 Separating LS and LSR Backdoors

In this section we prove that for certain kinds of formulas the minimal LSR
backdoors are exponentially smaller than the minimal LS backdoors under the
assumption that the learning scheme is 1UIP and that the CDCL solver is only
allowed to backtrack (and not backjump). Backjumping raises issues particularly
when unit clauses are learned. Since the solver with backjumping will return
to the second highest decision level in the clause (which defaults to level 0 in
unit clauses), these conflicts effectively allow the solver to get a “free” restart.

460 E. Zulkoski et al.

Further, while there is a general misconception that backjumping is always better
than backtracking, recent work by Nadel and Ryvchin demonstrate that solvers
that occasionally backtrack instead of backjump may perform better than state
of the art solvers [22]. Thus we do not find this assumption too unreasonable.

We show that the family of formulas F (but for a different ordering O) can
be used to separate LS backdoor size from LSR backdoor size. Observe that for
any ordering O the variables x1, x2, . . . , xn form an LSR backdoor for FO.

Lemma 1. Let O be any ordering of {0, 1}n. The X-variables form an LSR-
backdoor for the formula FO.

Proof. For each assignment α ∈ {0, 1}n (ordered by O), assign α to the X
variables by decision queries. By the structure of FO, as soon as we have a
complete assignment to the X variables, we will unit-propagate to a conflict
and learn a qα variable as a conflict clause; after that we restart. Once all of
these assignments are explored we will have learned the unit clause qα for every
assignment α, and so we can simply query the X variables in any order (without
restarts) to yield a contradiction, since every assignment to the X variables will
falsify the formula.

Note that the formula FO depends on N = O(2n) variables, and so the size of
this LSR backdoor is O(log N). Furthermore, observe that the X variables will
also form an LS backdoor if we can query the assignments α ∈ {0, 1}n according
to O without needing to restart — for example, if O is the lexicographic ordering.
This suggests the following definition, which captures the orderings O of {0, 1}n

that can be explored by a CDCL algorithm without restarts:

Definition 3. Let TX be the collection of all depth-n decision trees on X vari-
ables, where we label each leaf � of a tree T ∈ TX with the assignment α ∈ {0, 1}n

obtained by taking the assignments to the X variables on the path from the root
of T to �. For any T ∈ TX , let O(T) be the ordering of {0, 1}n obtained by
reading the assignments labeling the leaves of T from left to right.

To get some intuition for our lower-bound argument, consider an ordering O(T)
for some decision tree T ∈ TX . By using the argument in Lemma 1 the formula
FO(T) will have a small LS backdoor, obtained by querying the X variables
according to the decision tree T . Now, take any two assignments αi, αj ∈ O(T)
and let O(T)′ be the ordering obtained from O(T) by swapping the indices of
αi and αj . If we try and execute the same CDCL algorithm without restarts
(corresponding to the ordering O(T)) on the new formula FO(T)′ , the algorithm
will reach an inconclusive state once it reaches the clause corresponding to αj

in O(T)′ since at that point the assignment to the X variables will be αi. Thus,
it will have to query at least one additional variable (for instance qαj

), which
increases the size of the backdoor by one. We can generalize the above argument
to multiple “swaps” — the CDCL algorithm without restarts querying the vari-
ables according to O(T) would then have to query one extra variable for every
qα which is “out-of-order” with respect to O(T).

Learning-sensitive Backdoors with Restarts 461

This discussion leads us to the following complexity measure: for any ordering
O ∈ {0, 1}n (not necessarily obtained from a decision tree T ∈ TX) and any
ordering of the form O(T), let

d(O,O(T)) = |
{
α′ ∈ {0, 1}n | ∃α ∈ {0, 1}n : α′ <O α, α <O(T) α′} |.

Informally, d(O,O(T)) counts the number of elements of O which are “out-of-
order” with respect to O(T) as we have discussed above. We are able to show
that the above argument is fully general:

Lemma 2. Let O be any ordering of {0, 1}n, and let TX denote the collection of
all complete depth-n decision trees on X variables. Then any learning-sensitive
backdoor of FO has size at least

min
T∈TX

d(O,O(T)).

This reduces our problem to finding an ordering O for which every ordering
of the form O(T) has many elements which are “out-of-order” with respect to
O (again, intuitively for every mis-ordered element in the LS backdoor we will
have to query at least one more variable from Q).

Lemma 3. For any n > 3 there exists an ordering O of {0, 1}n such that for
every decision tree T ∈ TX we have

d(O,O(T)) ≥ 2n−2.

Proof Sketch. We define the ordering, and leave the full proof of correctness to
the companion supplemental material. Let β1, β2, . . . , βN be the lexicographic
ordering of {0, 1}n, and for any string βi define βi to be the string obtained by
flipping each bit in βi. Then let O be the ordering

β1, β1, β2, β2, . . . , βN/2, βN/2.

Theorem 1. For every n > 3, there is a formula Fn on N = O(2n) variables
such that the minimal LSR backdoor has O(log N) variables, but every LS back-
door has Ω(N) variables.

4.2 The Effect of Clause-Learning Schemes

We next show that the size of the minimal LSR backdoor is dependent on the
solver’s underlying clause-learning scheme. We draw comparisons between the
1UIP and DL schemes. Note that for all following results, we allow backjumping
(as opposed to just backtracking as in the previous subsection). A takeaway from
these results is that the LSR backdoor gives us a deeper theoretical understand-
ing of why DL learning schemes are weaker than 1UIP ones.

Theorem 2. Let F be a formula with an LSR-DL backdoor of size n. Then the
smallest LSR-1UIP backdoor for F has size at most n.

462 E. Zulkoski et al.

Proof. Consider the sequence of learned clauses in the proof that witnesses the
smallest LSR-DL backdoor. Then the DL-solver must have branched on all the
variables in the learned clauses given the nature of the DL scheme. Let B be
this set of variables. Then we can absorb them one-by-one by only branching on
the variables in those clauses. (This result is discussed further in Theorem 5).

Theorem 3. There exists an infinite family of formulas such that the smallest
LSR-DL (resp. LS-DL) backdoor for each instance is exponentially larger than
the smallest LSR-1UIP (resp. LS-1UIP) backdoor.

Proof. We show this using the formula family FLEX . The result follows anal-
ogously to the separation of LS-1UIP backdoors and strong backdoors in [9].
We have already demonstrated that the smallest LSR-1UIP backdoor is of size
|X| = n.

Since each formula in FLEX is minimally unsatisfiable, in order to derive
UNSAT we must “make use” of each clause through some propagation. Let Clong

be the clause with the largest number of qα literals. If our branching sequence
only branched previously on variables in X, then all learned clauses will only
include variables in X, and in particular could not propagate the Q variables in
Clong. The only way we could have derived (qα) clauses previously is through
branching on them, which would also increase the size of the backdoor. Thus,
we must branch on at least the n variables from X and 2n − 1 variables from Q
in order to propagate on Clong.

4.3 Properties of LS and LSR Backdoors

In the case of traditional strong or weak backdoors with UP as the subsolver, for
a given formula F , it is easy to show that adding clauses to F can only decrease
the size of the backdoor. This is not the case for LS and LSR backdoors. Note
that we believe this result relates to the notion of natural proof systems – proof
systems such that if unit clauses are added to the formula, it will not increase the
size of the smallest resolution proof [3]. It was shown in their work that, under
their theoretical model, clause learning without restarts is either not natural or
not as powerful as general resolution.

Observation 1. Given formulas F1 and F2, the formula F1 ∧ F2 may have a
larger LSR (or LS) backdoor than either individual formula.

Example 1. Consider F1 ∈ FLEX , and let F2 be the single unit clause (x1).
Note that F2 subsumes the first half of the clauses defined over Cα’s (since we
are using the lexicographic ordering). Therefore, we can no longer utilize those
clauses to derive conflicts, since the solver will never set x1 to false. It is easy
to show that the solver must begin branching on variables not in X in order to
solve the formula, and that the number of q variables that must be necessarily
branched on is larger than |X|.

Next, we show that even if the solver is given a perfect branching sequence
witnessing an LSR backdoor, there exist formulas where the solver may still need

Learning-sensitive Backdoors with Restarts 463

to branch on additional variables. Our result relies on the following probabilistic
assumption:

Definition 4 (Uniform Conflict Choice (UCC) Assumption). Let Δ be a
set of clauses and D be a sequence of decisions, such that for any proper prefix P
of D, Δ∧P is 1-consistent, but Δ∧D is 1-inconsistent, i.e., it causes a conflict.
Further, assume that there are n unique conflict clauses that can be derived after
branching on D, depending on the order in which literals are propagated. The
Uniform Conflict Choice assumption states that the solver always chooses the
conflict clause to learn uniformly at random from all possible conflict clauses.

Fig. 1. Example of multiple conflicts after making decisions x1 and x2. The number
after the ‘@’ symbol denotes the decision level of the literal.

Example 2. Consider Fig. 1. Depending on whether q or r is propagated first, a
solver using 1UIP may learn the unit clause (¬q) or (¬r), respectively. Under
the UCC assumption, each has a 50% likelihood of being derived. Since solvers
typically only learn one clause per conflict, after one of the two clauses is learned,
the solver will backjump to decision level 0 (since both clauses are unit), ignoring
the other possible clause.

Theorem 4. There exists an infinite family of formulas such that for any δ > 0,
the probability of realizing the minimal LS backdoor (or LSR backdoor), even
given the perfect branching sequence, is less than δ, under the UCC assumption.

Proof. We construct a new family of formulas G2LEX by starting with GLEX

and adding a duplicate set of clauses, where the X variables are reused in these
clauses, but each qα, aα, and bα is replaced by a fresh rα, sα, and tα, respectively:

G2O =
∧

α∈{0,1}n,α�=1n

(
(Cα ∨ ¬qα) ∧ U(qα, aα, bα

)
∧

∧

α∈{0,1}n,α�=1n

(
(Cα ∨ ¬rα) ∧ U(rα, sα, tα

)
∧

(C1n ∨
∨

α′
¬qα′) ∧ U(q1n , a1n , b1n)∧

(C1n ∨
∨

α′
¬rα′) ∧ U(r1n , s1n , t1n).

(3)

464 E. Zulkoski et al.

Note that the first and third lines are exactly the clauses from GO. We first
show that, as in the case for GLEX , the X variables constitute an LS backdoor
for G2LEX . Let P be the branching sequence that witnesses X as an LS backdoor
for GLEX (i.e. by branching on X lexicographically). For each assignment α to
X (α = 1n), the solver can derive one of two conflict clauses depending on the
order of propagations: either (qα) or (rα) (as in Example 1). If for every α = 1n

the solver derives some qα, then the solver can derive the same proof as derived
for the GLEX formula. This effectively ignores any clauses that contain some
rα. The same holds if rα is always chosen, and the clauses with qα are ignored.
Thus, the branching sequence P witnesses that X is an LS backdoor for G2LEX .
Further, it is clear that branching on any q, r, a, b, s, or t variables cannot reduce
the size of the backdoor through a similar argument as in the case for GLEX ,
and also given the fact that no q or r variables share a clause. Thus X is the
smallest backdoor for G2LEX .

Suppose that instead of either always learning qα, or always learning rα, that
a mix of the two are learned. Then, when the final lexicographic assignment is
reached, which sets X 	→ 1 . . . 1, we are not able to propagate the final literal
(either q1n or r1n), since the clauses listed on lines 3 and 4 of Eq. 3 will have
multiple unassigned literals. Thus, the solver is forced to branch on q or r literals
to derive UNSAT.

It remains to compute the probability of this occurring under the UCC
assumption. Given |X| = n, there are 2n−1 assignments to X that occur before
the conflict involving C1n , and for each assignment α, we can learn either (qα)
or (rα). Then the likelihood of picking either all qα’s or all rα’s is 1/2n−2. Given
a fixed δ, choosing any n ≥ �log2(1/δ)� + 2 completes our result.

5 Relating LSR Backdoors to CDCL Proofs

We next show connections to LSR backdoors and the proofs generated by CDCL
solvers on unsatisfiable instances. Specifically, we show that if B is the union of
all variables found in the “useful clauses” of the proof, then B is an LSR backdoor
for the formula. More importantly, we show that frequent restarts often result
in smaller and more “local” proofs.

Definition 5 (Useful clauses). Let P be the proof of unsatisfiability con-
structed by the SAT solver represented as a graph G, such that nodes represent
clauses, input clauses have no incoming edges, and an edge exists from C1 to
C2 iff the clause C1 was in the implication graph used to derive C2. (Additional
edges are needed to account for extra components of real-world solvers, such as
clause minimization.) The final node added to the graph is the empty clause E.
Then, if we reverse all edges in the graph, the useful clauses correspond to the
set of nodes reachable from E.

Theorem 5. Let S be a CDCL solver that has been used to determine a formula
F is unsatisfiable. Let Δ be the set of useful clauses learned by S while solving F .
Then a fresh CDCL solver S′ can absorb all clauses in Δ, thus deriving UNSAT,

Learning-sensitive Backdoors with Restarts 465

by only branching on the variables in Δ. (By fresh we mean that the solver starts
from an initial state on the input F , and branches only on the variables in Δ).

Proof. The result follows similarly to the result of [24], where they show that
CDCL can simulate general resolution. If every clause in Δ is absorbed, we are
done. Otherwise, there must exist some C ∈ Δ that is both 1-empowering and
1-provable (refer [24]). We can absorb C by a sequence of restarts and decisions
only on variables in C (cf. proof of Proposition 2 in [24]). This process repeats
until all clauses in Δ are absorbed.

The result can be easily extended to consider satisfiable instances, but here we
focus on unsatisfiable ones. We use the number of variables spanning the useful
clauses to intuitively measure an aspect of locality of CDCL proofs, in the sense
that proofs which spans fewer variables can be seen as more local. Theorem
5 indicates that this set of spanning variables constitutes an (not necessarily
minimal) LSR backdoor witnessing the proof of unsatisfiability for the formula.

Table 1. Locality of proofs through the lens of LSR backdoors. Values are normal-
ized by the number of variables in each instance. Standard deviations are given in
parentheses.

Heuristic Agile

Branching Restart LSR All Decisions Time (s) Conflicts

LRB Luby 0.21 (0.08) 0.38 (0.10) 0.45 (1.81) 13392.56 (48874.86)

Always 0.15 (0.05) 0.49 (0.13) 0.31 (1.21) 9320.84 (31384.02)

Never 0.34 (0.15) 0.39 (0.11) 1.29 (4.25) 30450.00 (91745.34)

VSIDS Luby 0.23 (0.09) 0.40 (0.11) 0.18 (0.73) 7783.51 (25684.43)

Always 0.14 (0.05) 0.45 (0.12) 0.16 (0.54) 6836.73 (20516.48)

Never 0.32 (0.14) 0.37 (0.10) 1.10 (5.23) 32665.29 (127482.25)

Random Luby 0.76 (0.25) 0.94 (0.11) 3.12 (9.17) 52963.82 (138268.52)

Always 0.29 (0.11) 0.96 (0.09) 2.96 (9.08) 51113.82 (139041.44)

Never 0.75 (0.24) 0.93 (0.12) 7.63 (13.86) 107275.56 (174531.05)

Table 2. Results for application instances.

Heuristic Application

Branching Restart LSR All Decisions Time (s) Conflicts

LRB Luby 0.62 (0.35) 0.61 (0.35) 526.64 (931.93) 1728644.37 (3476414.24)

Always 0.59 (0.35) 0.68 (0.33) 837.13 (1547.10) 2347710.94 (3935311.45)

Never 0.62 (0.35) 0.60 (0.34) 682.98 (1148.91) 2544999.84 (5911701.24)

466 E. Zulkoski et al.

5.1 Computing LSR Backdoors Using the LaSeR Tool

In this Section, we discuss a tool called LaSeR, built on top of MapleSat [18],
to compute the set of variables spanning the proof in each run. The tool runs
MapleSat as normal, but maintains additional logging to compute the backdoor.

For every conflicting state, let C ′ denote the clause that will be learned
through conflict analysis. We let RC′ be the set of clauses on the conflict side of
the implication graph used to derive C ′ where R∗

C′ = RC′ ∪
⋃

C∈RC′ R∗
C recur-

sively defines the set of clauses needed to derive C ′ (where R∗
original clause =

∅). For every learnt clause we define D∗
C′ = vars(C ′) ∪

⋃
C∈R∗

C′
D∗

C , where
D∗

original clause = ∅, as the set of variables in the clause itself as well as any
learnt clause used in the derivation of the clause (recursively). Intuitively, D∗

C′ is
a sufficient set of dependency variables, such that a fresh SAT solver can absorb
C ′ by only branching on variables in the set. For a set of clauses Δ, we let
R∗

Δ =
⋃

C∈Δ R∗
C and D∗

Δ =
⋃

C∈Δ D∗
C . Let Δ⊥ be the set of clauses involved

the final conflict, i.e., when the solver is about to derive UNSAT. Our invariant
ensures that

⋃
C∈Δ⊥ D∗

C constitutes a [not-necessarily minimal] LSR backdoor.

5.2 Empirical Results

We compare several solving and restart heuristics through the lens of this span-
ning variables metric, which we will refer to simply as the LSR backdoor of the
proof (LSR in Tables 1 and 2). Our experiments are conducted over all unsatis-
fiable instances from both the Application track of the SAT competition from
2009–2014, as well as the Agile 2016 instances. The Agile track contains smaller
instances generated from the quantifier-free bit-vector formulas derived from
the SAGE whitebox fuzzer [12]. The timeout in the SAT competition for these
instances was only 60 s.

We consider three restart policies: (1) the Luby heuristic; (2) restarting after
every conflict (“Always”); and (3) never restarting. For the Agile instances, we
considered three branching heuristics: LRB [18], VSIDS [21], and random branch-
ing (with phase-saving polarity selection), thus totaling 9 solver configurations in
combination with the restart policies. For the Application instances, we did not
include VSIDS or random branching in our experiments due to the cost of com-
putation and to avoid the random branching heuristic greatly limiting our set of
usable instances. We allotted 10,000 s for each Application instance, and 300 s
for each Agile instance. Experiments were run on an Azure cluster, where each
node contained two 3.1 GHz processors and 14 GB of RAM. Each experiment
was limited to 6 GB. We only include instances where we could compute data for
all heuristics being considered, in total, 1168 Agile instances, and 81 Application
instances. For each instance, the size of the LSR backdoor is normalized by the
total number of variables.

Tables 1 and 2 depict the results. On average, the always-restart policy seems
to produce more local proofs than the other policies, regardless of the branching
heuristic. This may provide further explanation as to why restarts are useful in
practice, particularly on unsatisfiable instances. Interestingly, the always-restart

Learning-sensitive Backdoors with Restarts 467

policy ends up requiring the most time and conflicts to solve the Application
instances; this may indicate that the usefulness of this locality is dependent on
the types of instances. We also wish to emphasize that although the average LSR
ratio is only 0.03 smaller for always-restart than the other policies on Application
instances, this amounts to approximately 390 variables on average.

Finally, we compare our above approach to computing LSR backdoors to the
previously proposed “All Decisions” approach to computing LS backdoors. In
[9], the authors compute LS backdoors by running a randomized non-restarting
CDCL solver to completion and recording the set of all variables branched upon
during search. This set constitutes an LS backdoor. The process is repeated many
times to try to find small backdoors. Due to the number of instances we consider,
we only use one run of the solver for each heuristic being considered. Tables 1
and 2 compare our above LSR approach to the set of all decision variables
(computed on the same solver run with restarts). Since many clauses learned
during search are not useful for the proof, the all-decisions approach records
many unnecessary decisions that are ultimately not useful. The result does not
hold on many types of crafted instances however, particularly when the formula
is designed to intrinsically require proofs spanning many variables. Nonetheless,
our approach seems to work for certain classes of instances found in industrial
settings.

6 Conclusions and Future Work

In this paper, we explored several important questions within the context of the
broad research program of trying to understand why Boolean SAT solvers are
so efficient for industrial instances obtained from verification, program analysis,
testing, and synthesis. All the questions we explored relate to restart techniques
in SAT solvers, new kinds of restart-aware backdoors we introduced, and perhaps
most importantly a characterization of the properties (e.g., locality) of proofs
produced by SAT solvers through the lens of such backdoors.

Specifically, we introduced the notion of LSR backdoors, and demonstrated
an exponential separation from LS backdoors (which in turn were shown to
be exponentially smaller than strong backdoors for certain class of instances
in previous work by Dilkina et al.). A takeaway of this result is that clause
learning together with restarts is capable of exploring the search space in ways
not possible with clause learning alone.

We further showed that LSR-1UIP backdoors may be exponentially smaller
than LSR-DL backdoors. The order in which the search space is explored is
crucial when branching over both LS and LSR backdoors, and we demonstrated
several issues that may arise during the search. Empirically, we demonstrated
that rapid restart strategies tend to produce significantly more local proofs than
other strategies on industrial instances.

Going forward, we would like to refine our empirical results further by com-
paring uniform restart policies (e.g., restarting every k conflicts or geometric
restarts) that are less “extreme” against the always-restart-at-conflicts policy.

468 E. Zulkoski et al.

We also plan to refine our notion of locality in proofs by considering the struc-
ture of (e.g., the variable-incidence graph) of Boolean formulas. Another line of
future work is to answer the big open question, namely, are CDCL SAT solvers
with restarts a more powerful proof system than CDCL without restarts?

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011)

2. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

3. Beame, P., Kautz, H., Sabharwal, A.: Understanding and harnessing the potential
of clause learning. J. Artif. Intell. Res. 22, 319–351 (2014)

4. Beame, P., Sabharwal, A.: Non-restarting sat solvers with simple preprocessing can
efficiently simulate resolution. In: AAAI Conference on Artificial Intelligence, pp.
2608–2615. AAAI Press (2014)

5. Biere, A., Fröhlich, A.: Evaluating CDCL restart schemes. In: Pragmatics of SAT
Workshop (2015)

6. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS
Press (2009)

7. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution
refinements that characterize DLL algorithms with clause learning. arXiv preprint
arXiv:0811.1075 (2008)

8. Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors
to combinatorial optimization: feasibility and optimality. In: van Hoeve, W.-J.,
Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 56–70. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01929-6 6

9. Dilkina, B., Gomes, C.P., Sabharwal, A.: Backdoors in the context of learning. In:
Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 73–79. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02777-2 9

10. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors
to satisfiability: dynamic sub-solvers and learning during search. Ann. Math. Artif.
Intell. 70(4), 399–431 (2014). https://doi.org/10.1007/s10472-014-9407-9

11. Ganian, R., Ramanujan, M.S., Szeider, S.: Backdoor treewidth for SAT. In:
Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 20–37. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 2

12. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: Network and Distributed System Security Symposium, pp. 151–166. Internet
Society (2008)

13. Haim, S., Heule, M.: Towards ultra rapid restarts. arXiv preprint arXiv:1402.4413
(2014)

14. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effec-
tively p-simulate general propositional resolution. In: AAAI Conference on Artifi-
cial Intelligence, pp. 283–290. AAAI Press (2008)

15. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Inter-
national Joint Conference on Artificial Intelligence, pp. 2318–2323. AAAI Press
(2007)

16. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. In: AAAI Conference on Artificial Intelligence, pp. 1368–1373. AAAI Press
(2005)

http://arxiv.org/abs/0811.1075
https://doi.org/10.1007/978-3-642-01929-6_6
https://doi.org/10.1007/978-3-642-02777-2_9
https://doi.org/10.1007/s10472-014-9407-9
https://doi.org/10.1007/978-3-319-66263-3_2
http://arxiv.org/abs/1402.4413

Learning-sensitive Backdoors with Restarts 469

17. Li, Z., van Beek, P.: Finding small backdoors in SAT instances. In: Butz, C., Lin-
gras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 269–280. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21043-3 33

18. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

19. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

20. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Design Automation Conference, pp. 530–535. ACM
(2001)

22. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 7

23. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsat-
isfiability proofs. In: AAAI Conference on Artificial Intelligence, pp. 1481–1484
(2008)

24. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with
restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 51

25. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175, 512–525 (2011). https://doi.org/10.1016/j.
artint.2010.10.002

26. Ruan, Y., Kautz, H., Horvitz, E.: The backdoor key: a path to understanding
problem hardness. In: AAAI Conference on Artificial Intelligence, pp. 124–130.
AAAI Press (2004)

27. Samer, M., Szeider, S.: Backdoor trees. In: AAAI Conference on Artificial Intelli-
gence, pp. 363–368. AAAI Press (2008)

28. Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005). https://doi.org/10.
1007/11591191 40

29. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: International Confer-
ence on Theory and Applications of Satisfiability Testing, pp. 222–230. Springer
(2003). https://doi.org/10.1.1.128.5725

30. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM
International Conference on Computer-Aided Design, pp. 279–285. IEEE Press
(2001)

https://doi.org/10.1007/978-3-642-21043-3_33
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-642-04244-7_51
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/11591191_40
https://doi.org/10.1007/11591191_40
https://doi.org/10.1.1.128.5725

Applications Track

Process Plant Layout Optimization:
Equipment Allocation

Gleb Belov1(B), Tobias Czauderna1, Maria Garcia de la Banda1,
Matthias Klapperstueck1, Ilankaikone Senthooran1, Mitch Smith2,

Michael Wybrow1, and Mark Wallace1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{gleb.belov,tobias.czauderna,maria.garciadelabanda,matthias.klapperstueck,

ilankaikone.senthooran,michael.wybrow,mark.wallace}@monash.edu
2 Woodside Energy Ltd., Perth, Australia

mitch.smith@monash.edu

Abstract. Designing the layout of a chemical plant is a complex and
important task. Its main objective is to find a most economical spatial
arrangement of the equipment and associated pipes that satisfies con-
struction, operation, maintenance and safety constraints. The problem
is so complex it is still solved manually, taking multiple engineers many
months (or even years) to complete. This paper provides (a) the most
comprehensive model ever reported in the literature for spatially arrang-
ing the equipment, and (b) a Large Neighbourhood Search framework
that enables complete solvers explore much larger neighbourhoods than
previous approaches to this problem. The two contributions are part of a
system being developed in collaboration with Woodside Energy Ltd. for
arranging their Liquefied Natural Gas plants. The results are indeed so
promising that Woodside are actively exploring its commercialisation.

1 Introduction

A chemical process plant produces chemicals by transforming or separating mate-
rials as they pass through different equipment via connecting pipes [10]. These
plants are common in many industries, such as oil and gas, and are very costly to
design, build and maintain, requiring multibillion-dollar budgets. When design-
ing the layout of a new plant, the objective is to find a most economical spatial
arrangement of the equipment and associated pipes that satisfies construction,
operation, maintenance, and safety constraints.

High-quality layout can have a very significant impact on the cost of these
plants. It can considerably reduce the cost of the pipes and associated support
structures, which are known to take the largest share: up to 80% of the purchased
equipment cost or 20% of the fixed-capital investment [12]. It also greatly reduces
the total amount of space/volume needed, which is crucial for offshore plants.
However, finding high-quality plant layouts is remarkably difficult due to the
size of these plants and the complexity of the associated constraints. As a result,

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 473–489, 2018.
https://doi.org/10.1007/978-3-319-98334-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_31&domain=pdf

474 G. Belov et al.

layouts are still designed manually, taking multiple engineers many months (or
even years) to complete. This process is inefficient, costly and the results may
vary in quality, since they largely depend on the experience of the piping and
layout engineers. For this reason, Woodside Energy Ltd. funded our project to
explore the use of optimisation and visualisation technology in improving the
current layout design process for their Liquefied Natural Gas plants.

Due to the complexity of this problem, most methods published in this area
divide it into independently solved two phases: the first phase spatially places
the equipment, while the second routes the connecting pipes. However, these
methods (e.g., [6,14,17,18]) are too simplistic to meet industry requirements
and/or do not scale. Our work aims to produce a comprehensive solution that
satisfies real-world needs. We reported a model for the pipe routing phase of the
problem in [3]. This paper presents two further contributions. The first one is the
most realistic model ever reported for solving the equipment allocation phase.
Prior to this, the most complete approach [6] only considered non-overlapping
constraints and the minimisation of approximate pipe lengths, elevation and
footprint. In addition to these, our model handles constraints on equipment
alignment, simplified maintenance access, and support structures. While vital
to model the real problem, all this (particularly the maintenance constraints)
considerably increases the complexity of the model and, thus, decreases the scal-
ability of the approach for complete search methods. The second contribution
helps in this regard: a Large Neighbourhood Search [16] (LNS) framework that
uses a modified neighbourhood definition and warm-start for several complete
solvers (via the MiniZinc [11] modelling language). The resulting framework is
highly efficient and can explore larger neighbourhoods than the only previous
LNS approach [18] for this problem.

The model and LNS framework are parts of a much larger system being
developed with Woodside Energy Ltd. This system aims at transforming the way
in which Woodside engineers approach plant-layout design, by allowing them to
get a global view of the plant layout quickly, and easily compare different design
decisions. As our experimental evaluation shows, our approach provides us with
the solution quality and scalability required for this application. The results are
so promising Woodside is actively exploring commercialisation of the system.

2 Literature Review

To solve the plant layout problem we are required to find 3D location coordinates
for the equipment and connecting pipes within a plant’s volume (referred to
as the container space), in such a way as to minimise the total cost of the
plant while, at the same time, ensuring its safety and correct functionality. For
small problem instances, one can apply integrated approaches (e.g., [14]) that
simultaneously place the equipment and route the pipes. For larger, more realistic
instances, current integrated approaches do not scale. For example, [14] fails to
find any solution for plants with just 10 pieces of equipment and 8 pipes.

Process Plant Layout Optimization: Equipment Allocation 475

As a result, methods to solve the plant layout problem often divide it into two
phases [6]. The first one finds the position and orientation of each piece of equip-
ment, minimising an approximate total cost for the plant. The second phase looks
for an optimal pipe routing to connect the already positioned equipment.There has
been a significant amount of research devoted to the first phase (e.g., [6,14,17,18]),
which is the focus of our paper. However, most methods are too simplistic, concen-
trating mainly on (often 2D) non-overlapping constraints. No method we know
of considers maintenance access constraints, alignment constraints, or the cost of
(not) using provided support structures for elevated equipment.

In addition, scalability is a difficult issue due to the high combinatorial nature
of the problem, given by the packing requirements. Approaches that use com-
plete methods (e.g., [6,14]) quickly become prohibitive as the number of objects
grow. Others achieve scalability by giving up on completeness and, for example,
iteratively constructing layouts that extend an initial, incomplete plant with
more and more equipment [17], or using a quadratic force minimisation model
of the problem that tries to compress an initial (complete) layout by minimiz-
ing “forces” between connected pieces of equipment [9]. As near-optimality is
important for Woodside, we looked at LNS solutions to the problem and only
found [18], which uses LNS to solve a simple 2D version of the problem.

The closest commercial product for plant layout is ASD Global’s Opti-
Plant [1], which performs automated pipe routing and can generate an initial
3D plant layout from an equipment list. However, this product only deals with
phase two (pipe routing), requiring users to specify equipment positions.

3 Full System and Key Role of Constraint Programming

As mentioned before, this paper describes components of a much larger system
being developed in collaboration with Woodside Energy Ltd. The system has
a 2D visual interface (see Fig. 1) for users to specify the input data needed
for the optimisation process. This information is stored in a JSON file and,
when users press the “Launch Optimisation” button, is sent to a C++ program
that generates the MiniZinc model for the first phase (described in this paper).
MiniZinc compiles this model to the target solver and executes it to obtain the
final positions and rotations of the equipment, writing these as additional entries
in JSON format. Then, the C++ program uses the stored solution to generate
a MiniZinc model for the second phase (described in [3]), compiles this to the
target solver and executes it to obtain the routing of every pipe, again storing
this in JSON format.

Once the equipment is placed and the pipes routed, a Python extension to
FreeCAD generates a 3D model of the solution with structural information for
navigating the equipment and pipes in the plant. An interactive 3D visualisation
of the 3D model (see Fig. 2) enables engineers to explore the produced layout
collaboratively, evaluate and validate the proposed solution in a familiar way,
and compare different solutions. Now that our LNS framework can produce high
quality solutions in a relatively short amount of time (see Sect. 6), the aim is to
support engineers in interactively re-optimising a given solution.

476 G. Belov et al.

Fig. 1. Process Editor interface for plant engineers to specify all input data.

The use of a constraint programming modelling language (MiniZinc) has been
critical to the success of our project for three main reasons. First, it has allowed
us to quickly modify the models and try different modelling alternatives. This
has been invaluable as our lack of knowledge regarding chemical plants often cre-
ated issues that were only resolved by constantly exploring model changes with
Woodside’s engineers. Further model changes occurred as Woodside’s engineers
became more familiar with the possibilities offered by optimisation technology
and we could increase the amount and quality of the constraints. Second, it has
allowed us to easily compare the efficiency of different solvers. This has been
particularly important since, as the models evolved, the efficiency of the solvers
varied greatly. Being able to quickly determine which solver is faster for the cur-
rent model allows us to give Woodside’s engineers the best efficiency. Finally, it
has allowed us to quickly build a system that far exceeds the capabilities of those
currently available both in the literature and commercially. As a result, Woodside
engineers can now obtain one or more near-optimal layouts for a plant signifi-
cantly faster than before, and can already explore the consequences of applying
simple modifications to the data (e.g., costs and safety distances).

4 An Optimization Model for Equipment Allocation

The model provided in this paper describes the first phase of the process plant
layout problem. That is, determining the 3D position coordinates and the ori-
entation of the given equipment within a given container space, that (a) satisfy
safety, maintenance and alignment constraints and (b) minimise the costs of the
land needed (the footprint), the supporting equipment, and the connecting pipes
(see Fig. 2 for a final solution to our small benchmark).

Process Plant Layout Optimization: Equipment Allocation 477

Fig. 2. Visualisation of the final layout for Unit 1000 as a 3D model. Coloured boxes
indicate different kinds of maintenance access zones (e.g., purple are truck access).
(Color figure online)

Our model considers the container space as a discretized cuboid with front-
left-bottom (FLB) corner at coordinates (0, 0, 0), and a (maximum) user-defined
length, width and height corresponding to axes x, y and z, respectively, where
x × y defines the footprint. The exact shape of each piece of equipment is
abstracted by a bounding box, also represented by the position of its FLB corner
and its user-defined (fixed) length, width and height. Boxes are positioned into
one of four different horizontal rotations around the vertical axis: 0◦, 90◦, 180◦

and 270◦.
Each nozzle connecting a pipe with diameter d to equipment b at a position

with centre p ∈ ZZ3 relative to the equipment box’s FLB corner, is represented
as a point located 3d units perpendicularly away from the surface containing p.
This roughly corresponds to the usual bend position of a nozzle segment. Every
pipe has a user-defined cost factor (per length of unit) that determines its cost.
In this phase, pipe length is approximated by the Manhattan distance obtained
from the position of its two connecting nozzles. The splitting of a pipe into two
(or merging of two pipes into one) is modelled by a special rotatable t-junction
box that inherits the pipe properties (e.g., size and safety distances).

User-defined safety distances between all equipment must be enforced.
Default safety distances are specified between equipment classes (each equip-
ment belongs to a class), and can be modified by providing a specific safety
distance between any two. Note that safety distances are directed : that from A
to B, where A is before B w.r.t. their projection on axis c, might be different
than that from B to A. This might be useful for expressing vertical relative posi-
tions, for example, between fin-fans and other equipment, as well as horizontal
positions from high-risk equipment in areas with well-defined wind directions.

478 G. Belov et al.

Some equipment (such as the pipe rack) can support other equipment without
further capital costs. Thus, equipment might be positioned on the ground (at no
cost), on some other equipment (again at no cost), or “in the air”, representing
the fact that a supporting structure must be built. The cost of this structure
is approximated using the cost (per height unit) associated to each piece of
equipment (see bph below). Some equipment is allowed to protrude by a given
amount (its support margin) over the sides of its support box. If the amount is
negative, the box should be that far inside the support box’s sides.

Some equipment should be located at a certain minimal level above the base-
line of another. For example, a vessel might need to be a certain distance above
a pump, if its flow into the pump needs to satisfy the Net Positive Suction Head
(NPSH) regulation. We formulate the corresponding constraint in terms of min-
imal height differences. Note that they cannot be expressed by safety distances,
as the size of the lower object might be larger than the elevation distance.

Some equipment has particular maintenance access requirements, such as the
need to be accessible from above/below, or by a truck (requiring a big empty
space to be attached to it and accessible from the road). The former is modelled
by a constraint that ensures no other equipment is positioned above or below.
The latter is modelled using additional (slave) boxes that satisfy the require-
ments in terms of size and location relative to the (master) equipment boxes.
Currently, our model handles three types of relative locations:

– Rigid (fixed) attachment : slave is at a specified position relative to the mas-
ter and the whole combination rotates together. Examples: access must be
provided to a particular side of the equipment.

– Rotatable attachment : as before, but slave can rotate around the master.
Example: access must be provided to any side of the equipment.

– Multi-zone disjunctive attachment : slave located in one of the given zones and
orientated as the master. Example: aligning a pipe header to a pump group
can be modelled by attaching one or several zone boxes to the pump group
and requiring the header to be in one of these zones.

The rest of the section provides a summary of the parameters (input and
derived data), variables, constraints and objective function used in our model.

4.1 Input and Derived Data

Input Index Sets.

– B = {1, . . . , NB}: set of boxes that need to be allocated.
– P = {1, . . . , NP}: set of pipes that connect the equipment.
– MAZ ⊂ B: subset of boxes that are maintenance access zones.
– BSupp ⊆ B ∪ {NB + 1}: subset of boxes that can support other boxes without

further construction costs (NB + 1 represents the ground).
– AT T ZN ⊂ B: subset of multi-zone attachment zones.

Process Plant Layout Optimization: Equipment Allocation 479

We currently assume there are two nozzles per pipe, and use input set P to
construct the set NZ = {(p, k)|p ∈ P, k ∈ {1, 2}} of nozzles. We also use index
set OH = {1, 2, 3, 4} to represent rotations {0◦, 90◦, 180◦, 270◦}, respectively.

Input Data.

– W
0

i ∈ ZZ×3: x, y and z sizes of box i ∈ B while in horizontal rotation 0◦.
– XFLB

LB

i ,XBRT
UB

i ∈ ZZ3: lower bound of the FLB corner of box i ∈ B, and
upper bound of its back-right-top (BRT) corner, respectively. Often deter-
mined by the container space.

– BOHi ⊆ OH: set of allowed horizontal orientations for box i ∈ B.
– bsdHi,j , bsd

V
i,j ∈ ZZ: horizontal and vertical directed safety distances, respec-

tively, between boxes i, j ∈ B.
– NPSH: set of tuples (i, j, h), where i, j ∈ B and h ∈ ZZ, indicating that the

base of box j must be above the base of i by at least h units.
– suppMrgi ∈ ZZ: support margins for box i ∈ B.
– bphi ∈ ZZ: height support penalty for box i ∈ B, in $ per height unit.
– batti ∈ {0, 1, 2, 3}: attachment type of box i ∈ B, where 0 indicates none, 1

rigid, 2 rotatable, and 3 multi-zone.
– batmi ∈ B: attachment master box of slave box i ∈ B (batmi = i if batti = 0).
– batpi ∈ ZZ3: attachment point of box i ∈ B relative to its master’s FLB corner

in orientation 0◦, for rigid and rotatable attachment types.
– Batzi ⊂ B: set of possible location zones (i.e., boxes, typically from AT T ZN)

for the FLB corners of slave box i ∈ B with multi-zone attachment.
– nzBoxi ∈ B: master box of nozzle i ∈ NZ.
– nzPoz

0

i ∈ ZZ3: position of nozzle i ∈ NZ in its master box (orientation 0◦).
– plci ∈ ZZ: cost factor for pipe i ∈ P, in $ per length unit.
– fpcc ∈ ZZ, c ∈ {x, y}: cost factor for perimeter length and width, respectively,

in $ per length unit.

4.2 Decision Variables

A solution to an instance of our model is expressed in terms of the values of the
following decision variables (the first two groups functionally define all others):

– rFi ∈ BOH〉: final orientations of each box i ∈ B.
– XFLBi,XBRT i = XFLBi+W ∈ ZZ3 positions of the FLB and BRT corners

of each box i ∈ B, respectively.
– W

F

i ∈ ZZ3: final sizes of each box i ∈ B according to its final rotation.
– relPosijc ∈ {0, 1} relative position variable (directed separation flag) for pair

of boxes i, j ∈ B along coordinate axis c ∈ {x, y, z}. It holds: relPosijc = 1 iff
box j is after i in projection on axis c, obeying their safety distance.

– suppIdxi ∈ BSupp: supporting box of each box i ∈ B s.t., bphi > 0.
– suppCosti ∈ ZZ: computed support cost for each box i ∈ B.
– nzPosi ∈ ZZ3: absolute position of each nozzle i ∈ NZ.
– pLeni ∈ ZZ3: approximated length along each axis, for each pipe i ∈ P.
– fpsc ∈ ZZ, c ∈ {x, y}: footprint length and width, respectively.
– obj ∈ ZZ: objective function value.

480 G. Belov et al.

4.3 Functions

The constraints in our model use the following five functions. Function
getBoxSafety : B × B × {x, y, z} → ZZ returns the minimal positive separation
from box i ∈ B to box j ∈ B along axis c:

getBoxSafety(i, j, c) =

{
bsdHi,j , c is x or y

bsdVi,j , c is z
(1)

Function hFindFLBCorner : ZZ3×OH → ZZ3 returns the new position of the
FLB corner of a box with sizes W = (Wx,Wy,Wz), once it is rotated according
to r. It uses the element constraint [2] to select a matrix column using r as index:

hFindFLBCorner(W, r) =

⎛
⎝ 0 Wy Wz 0

0 0 Wy Wx

0 0 0 0

⎞
⎠

·r

(2)

Note that the above function and several of the constraints defined later (e.g.,
(9) and (13b)) are non-linear and, thus, not directly supported by MIP solvers.
The MIP interface of MiniZinc [4] handles their MIP decomposition.

Function hRotateB : ZZ3 × OH → ZZ3 returns the new sizes of a box with
sizes W = (Wx,Wy,Wz), rotated according to r.

hRotateB(W, r) =

⎛
⎝Wx Wy Wx Wy

Wy Wx Wy Wx

Wz Wz Wz Wz

⎞
⎠

·r

(3)

Function hRotateBWB : ZZ3 ×ZZ3 ×ZZ3 × OH → ZZ3 receives the sizes W s

and Wm of boxes s and m, respectively, the point P where the FLB corner of
s is rigidly attached to m (relative to m’s FLB corner, which is always (0,0,0))
in their default orientation, and rotation r. Returns the relative position of the
FLB corner of s to that of m, once both are rotated by r around m’s centre.

hRotateBWB(W s,Wm, P , r) =⎛
⎝Px Wmy − Py − Wsy Wmx − Px − Wsx Py

Py Px Wmy − Py − Wsy Wmx − Px − Wsx

Pz Pz Pz Pz

⎞
⎠

·r

(4)

Function hRotateBAB : ZZ3×ZZ3×ZZ3×OH×OH → ZZ3 receives the sizes
W s and Wm of boxes s and m, respectively, the point P where the FLB corner of
s is attached to m (relative to m’s FLB corner, which is always (0,0,0)) in their
default orientation, and two rotations rs and rm. For efficiency, it returns an
approximation of the relative position of the FLB corner of s relative to m, once
s and m are rotated according to rs and rm, respectively, around the centre of m.
The approximation is done by “shrinking” the master box to a square footprint,

Process Plant Layout Optimization: Equipment Allocation 481

which is acceptable as long as we attach spacious MAZ.

hRotateBAB(W s,Wm, P , rs, rm) =

⎛
⎝�W rm

mx/2� − 	w/2

�W rm

my/2� − 	w/2

+0

⎞
⎠ +

hRotateBWB

⎛
⎝W s,

⎛
⎝ w

w
Wsz

⎞
⎠ , P +

⎛
⎝	w/2
 − �Wmx/2�

	w/2
 − �Wmy/2�
0

⎞
⎠ , rs

⎞
⎠ (5)

where w = min{Wmx,Wmy} is the minimum of the master’s horizontal sizes and
W

rm
m = hRotateB(Wm, rm) are the sizes of the master rotated according to rm.
Function hRotatePWB : ZZ3 × ZZ3 × OH → ZZ3 receives a rotation r and a

point P rigidly attached to a box with sizes W . Returns the relative position of
P to the box’s FLB corner, once both are rotated by r around the box’s centre.

hRotatePWB(P ,W, r) = hRotateBWB(0,W , P , r) (6)

4.4 Constraints and Objective Function

Box sizes: can be obtained from the original sizes and the final rotations:

W
F

b = hRotateB(W
0

b , r
F
b), b ∈ B (7)

Box position: should satisfy the given bounds.

XFLB
LB

b ≤ XFLBb, XRBT b ≤ XRBT
UB

b , b ∈ B (8)

Box disjointness: only needs to be enforced between boxes that are not main-
tenance access zones (which are allowed to overlap), and are not attached to each
other. If we had equal safety distances, we could have enforced disjointedness
by using the diffn k global constraint [2]. Since this is not the case, we enforce
the disjointness of boxes i, j ∈ B similarly to [6], as follows. First, we reify the
existence of the appropriate safety distance from i to j in each axis c as:

relPosijc = 1 ↔
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

True, i = j ∨ {i, j} ⊆ MAZ
∨ i and j are attached

∨ i ∈ AT T ZN ∨ j ∈ AT T ZN
XBRT ic + getBoxSafety(i, j, c) ≤ XFLBjc, otherwise,

i, j ∈ B, c ∈ {x, y, z} (9)

Then, for each pair of boxes i < j ∈ B, we demand the existence of such safety
distance in at least one coordinate direction, positive or negative:∨3

c=1 (relPosijc ∨ relPosjic) , i < j ∈ B (10)

482 G. Belov et al.

This allows us to easily model the “none above/below” constraints by providing
big enough vertical separations (ensuring they do not fit above each other).

Minimal Height Separation Constraints: they demand the base of box j
to be above the base of box i by at least h units:

XFLBiz + h ≤ XFLBjz, (i, j, h) ∈ NPSH (11)

Support Constraints: Box i ∈ B with positive height support cost (bphi > 0)
is considered as being supported by another box j ∈ BSupp \ {NB + 1} (not the
ground) if i’s “core footprint” is contained in the footprint of j:

suppIdxi = j ↔{
XFLBic + suppMrgi ≥ XFLBjc ∧ XBRT ic − suppMrgi ≤ XBRT jc

}
,

c ∈ {x, y}, i ∈ B, bphi > 0, j ∈ BSupp \ {NB + 1} (12)

The chosen form of the constraint implies that the support objects cannot be
stacked if they already support something (as suppIdxi can only have one value).
For efficiency, the domain of suppIdxi should be a priori reduced if possible.
Finally, the support costs penalize being higher than the support object:

suppCosti ≥ 0, (13a)

suppCosti ≥ bphi

(
XFLBiz − (XFLB·z ++(0))suppIdxi

)
, i ∈ B : bphi > 0

(13b)

which assumes the ground at level 0. This allows the modelling of objects that
overlap with their supports, as it is the case with the equipment placed in racks.

Box Attachment and MAZ: For a rigidly attached box (attachment type
battb = 1), its FLB corner is computed from that of the master and the position
of the attachment point, once rigidly rotated with the master to its final position.

XFLBb = XFLBbatmb + hRotateBWB(W
0
b ,W

0
batmb

, batpb, r
F
b), ∀b : battb = 1

(14a)

Moreover its final orientation must be equal to that of its master batmb:

rFb = rFbatmb
, b ∈ B : battb = 1 (14b)

For rotatable, attached boxes (battb = 2), where the master has a square
footprint, the modelling is the same as (14a). For rotation around a non-square-
footprint master, we only provide an approximation (see hRotateBAB):

Xb = Xbatmb
+ hRotateBAB(W

0

b ,W
0

batmb
, batpb, r

F
b , r

F
batmb

),

b : battb = 2, W
0

batmb,1
�= W

0

batmb,2
(15)

Process Plant Layout Optimization: Equipment Allocation 483

For multi-zone attachment (battb = 3), we require the slave’s FLB corner to be
in one of the specified zones (boxes in Batzb) and the rotation to be the same
as that of the master (batmb). This translates into the following system:

rFb = rFbatmb
, (16a)

∃i ∈ Batzb : XFLBb ∈ [XFLB
′
i,XFLB

′
i + W i], b : battb = 3 (16b)

where

XFLB
′
i = XFLBi + hFindFLBCorner(W

0

b , r
F
b), i ∈ Batzb (16c)

are the location zones’ origins corrected for the slave’s rotation.

Pipe Symmetry. A set of pipes S ⊂ P might need to be symmetric, e.g., due
to restrictions on the associated equipment. Our phase one model approximates
pipe symmetry by demanding the nozzle distances pLenp of all pipes p ∈ S to
be equal. Actual symmetry is enforced during pipe routing in the second phase.

Pipe Cost Approximation: uses the nozzle positions, which are computed
using its master box’s position and orientation:

nzPos(p,i) = XFLBnzBox(p,i)+

hRotatePWB
(
nzPos

0

(p,i),W
0

nzBox(p,i)
, rFnzBox(p,i)

)
, p ∈ P, i ∈ {1, 2} (17)

This allows us to compute the pipe end differences and their absolute values:

pLenp = |nzPos(p,2) − nzPos(p,1)|, p ∈ P (18)

Footprint Cost Approximation: similar to [6], we approximate footprint cost
by penalizing perimeter length. We measure the footprint as including all physi-
cal boxes (i.e., no MAZ and zones) and, for each direction x or y, we only include
boxes whose corresponding coordinate is not a priori fixed, as follows:

fpsc = max{XFLBbc|b ∈ BFc} − min{XBRT bc|b ∈ BFc},
where BFc = {b ∈ B|XFLBbc �≡ const} \ MAZ \ AT T ZN , c ∈ {x, y}

Objective Function: sum of the piping, footprint and support costs.

obj =
∑

p∈P,c∈{x,y,z} plcppLenpc +
∑

b∈B suppCostb +
∑

c∈{x,y} fpcc ·fpsc (19)

Optimisations: We reduce the domain of each suppIdxi by removing boxes
that are either too small to support box i, or (for a given neighbourhood) known
to be located in a different area of the plant. We remove any non-overlapping
constraints for pairs of boxes known not to overlap (for a given neighbourhood).

484 G. Belov et al.

5 Overall Approach and Implementation

LNS is a meta-heuristic search method that, from an initial seed solution, iter-
atively relaxes part of the current solution and re-optimises the corresponding
sub-problem obtaining a new solution. Our implementation uses a C++ program
that, in each iteration, creates a new MiniZinc model for the neighbourhood,
compiles it and executes it with a CP or MIP solver, using warm-starts when
possible. The following describes these steps in more detail.

Constructing a Seed Solution: In order to have some control over the amount
of time invested in finding a seed solution, we take two steps. First, we run the
chosen solver until a feasible solution is found. Then we warm-start the same
solver with that solution and run it with a given time limit.

Selecting the Boxes to Be Relaxed: When relaxing a solution, and given
input parameters L ≤ U , our LNS first selects a subset of boxes BNBH ⊂ B that
will be relaxed (i.e., allowed to move freely) as follows: First, as long as we have
not yet selected L boxes, a new box i is selected from set B and added to set
BNBH. For sequential LNS, i is a next biggest equipment box (starting from a
new one for each BNBH); for random LNS, i is selected randomly. Next, all slave
boxes attached to i and all boxes connected to i via pipes are added to BNBH,
stopping if its cardinality reaches U . We repeat the process until the minimum
number L of boxes is reached. This is different from [18] which constructs BNBH

by choosing the boxes based on various probabilistic selection schemes, from
random to those considering the number of box connections, the cost of the box,
or all boxes connected to the selected links.

Defining the Neighbourhood: Once BNBH is selected, we define the neigh-
bourhood of the current solution (subset of solutions to be explored in this
iteration) by fixing the orientations of all boxes not in BNBH, and tighten-
ing their separation constraints (10). The tightening is done for all pairs of
boxes i, j ∈ B \ BNBH such that i < j, by enforcing their relative posi-
tion along one of the six directions where they were most separated in the
last solution. That is, by setting relPosabc = 1 for one of the six tuples
in {(a, b, c)|{a, b} = {i, j}, c ∈ {x, y, z}}, one with the maximum value for
XFLBbc − XBRT ac − getBoxSafety(a, b, c). The other five relative position
variables (and, consequently, their reification constraints (9)) for i, j are omit-
ted, significantly simplifying the model and enhancing the solution space. This
differs from the neighbourhood described in [18] for a 2D version of the prob-
lem, which also fixes the relative position variables of each pair of boxes not in
BNBH, but does so for all four possible separation directions. By fixing only the
largest-separation relation variable, our LNS obtains larger neighbourhoods and
simpler models.

Process Plant Layout Optimization: Equipment Allocation 485

6 Evaluation

We have evaluated the practicality of our system by executing it as an 8-thread pro-
cess on an Intel(R) Core(TM) i7-4771 CPU @ 3.90 GHz on two benchmarks. The
first one extends the default benchmark of [3], which models the acid gas removal-
1100 unit of an existing plant, by adding maintenance access zone boxes and pipe t-
junctions, yielding 39 boxes and 47 pipes. The second benchmark is new and mod-
els the combined dehydration-1300 unit, mercury removal-1500 unit and propane
circuit of the liquefaction-1400 unit of the same plant. We believe this is the largest
plant layout benchmark ever considered in the literature.

Its container cuboid is sized 250 × 100 × 40 m length by width by height,
discretized by 200 mm, yielding 1250×500×200 position points along axes x, y, z,
respectively. It has 85 pipes in P, with diameters Dp between 50 and 1400 mm,
and 76 boxes in B including: 12 columns and vessels, with heights between 1.5
and 26 m; 2 heat exchanger groups and 8 individual heat exchangers including 4
fin-fan blocks (the groups have size 22 × 4 × 6 m, while the sizes of the individual
ones range from 6.5 × 1.5 × 1.5 m to 173 × 15 × 5 m); 1 source and 9 sink points
connecting the equipment to the outside; 2 pipe racks of size 75 × 15.5 × 18 m
and 186 × 15.5 × 18 m, where levels at heights 3, 6, 9, and 12 m provide support
without cost; a pump group of size 4 × 1 × 4.5 and two compressors of sizes 9
× 3 × 3 and 7 × 5.5 × 5.5 m; 3 general equipment of sizes 7.5 × 5.5 × 5.5, 12
× 10 × 39 and 25 × 27 × 13 m; 2 small mixers of size 0.7 × 0.6 × 0.6 m each;
7 strainers of sizes from 1 × 0.5 × 0.5 to 5.5 × 1.5 × 1.5 m; 17 pipe t-junctions;
and 10 maintenance access zones (4 truck, 4 landing and 2 extract zones).

The use of MiniZinc allowed us to try several solvers, including two state-of-
the-art MIP solvers (Gurobi 7.5.2 [7] and IBM ILOG CPLEX 12.8 [8]) and the
two CP solvers that gave the best performance for phase two in [3] (Chuffed [5]
and Gecode 6.0 [15]). For MIP solvers we warm-start the solver on each neigh-
bourhood, i.e., the last solution is not “destroyed” [13] by demanding a strictly
better objective value, but provided as a solution hint to the solver [7,8]. This
considerably sped-up MIP by allowing the efficient solving of much larger neigh-
bourhoods than in [18]. Note that only the variable values are provided for a
warm start.

Table 1 provides the results for our two benchmarks (denoted as Unit1100 and
Unit1300+) using the MIP solvers, with parameters L=15 and U=20 for building
the neighbourhoods. For each solver and type of neighbourhood, it shows the
time in getting the first solution and its associated objective value (×103); the
objective value and associated gap of the solution found by the warm-started
solver with the given timeout (30, 60 and 120 seconds for Unit1100, and 60,
300 and 600 for Unit1300+), and the objective value and associated gap of
the solution found after performing all LNS iterations (20 for Unit1100, 50 for
Unit1300+). Note that the gap shown is computed using the best lower bound
found in any run. For Unit1100 this is the optimal value, 546797, which is found
by Gurobi in 802 seconds. For Unit1300+ it is 1440125.44 after two days of
computation with 8 threads, and might still be suboptimal.

486 G. Belov et al.

Table 1. Unit 1100 with 20 LNS iterations and Unit 1300+ with 50 LNS iterations

First Solution
Sequential LNS Random LNS

Restart End (after LNS) Restart End (after LNS)

Solver
Time
(sec)

Total
Cost
(103)

Time
limit
(sec)

Obj
(UB)
(103)

Gap
(%)

End
Time
(sec)

Obj
(UB)
(103)

Gap
(%)

Time
limit
(sec)

Obj
(UB)
(103)

Gap
(%)

End
Time
(sec)

Obj
(UB)
(103)

Gap
(%)

U
n
it
1
1
0
0 CPLEX 13 751

30 728 24.90 186 561 2.46 30 728 24.90 220 618 11.54
60 673 18.75 260 556 1.60 60 673 18.75 188 558 1.97

120 654 16.42 294 556 1.66 120 654 16.42 275 555 1.53
180 572 4.46 303 558 2.07 180 630 13.17 370 557 1.81

GUROBI 18 660

30 585 6.48 146 550 0.53 30 585 6.48 122 555 1.53
60 567 3.53 173 550 0.53 60 567 3.53 152 555 1.53

120 567 3.53 234 550 0.53 120 567 3.53 212 555 1.53
180 567 3.51 295 550 0.53 180 567 3.51 276 555 1.53

U
n
it
1
3
0
0
+ CPLEX 146 2721

60 2698 47.23 3818 1597 10.87 60 2525 43.60 3901 1658 14.11
300 2336 39.06 3967 1657 14.10 300 2277 37.48 4152 1652 13.84
600 2283 37.63 4348 1654 13.93 600 2229 36.13 4446 1613 11.74

GUROBI 611 2480
60 2105 32.37 4174 1614 11.79 60 2164 34.20 4273 1553 8.35

300 1980 28.11 4453 1552 8.24 300 2038 30.14 4492 1555 8.47
600 1785 20.22 4739 1600 11.02 600 1849 23.01 4888 1609 11.53

Fig. 3. Intermediate MIP solutions for Unit1100 with and without LNS. (Color figure
online)

Process Plant Layout Optimization: Equipment Allocation 487

Fig. 4. Intermediate MIP solutions for Unit1300+ with and without LNS

In addition, Figs. 3 and 4 show information regarding the value of the objec-
tive function and the time (also in seconds) at which the associated solution was
found for each of the 20 and 50 LNS iterations summarised in the above Table
(all starting from the initial solution found by each solver). The rightmost figures
for each solver also show the solutions found by that solver without LNS in the
same time-frame. As the figures show, Gurobi consistently performs better than
CPLEX for our model, and seems to perform most efficiently when given a short
time to improve the initial feasible solution to build the seed. Its combination
with LNS allows us to provide Woodside engineers with high quality solutions
in under 2 minutes for Unit1100 and under 30 minutes for Unit1300+. This is
quite pleasing as it is well within the expectations of Woodside, not only for
obtaining a first solution, but also for performing interactive re-optimisations.
Still, we would like to reduce further the time taken for the second benchmark.
Thus, we plan to explore the use of other neighbourhoods, in combination with
hierarchical approaches to decompose big plants.

The experiments with CP solvers were not as successful. For Chuffed we
were not able to get a first solution in 1 hour, even for the smaller benchmark
and trying with a variety of searches (free, model, alternating, etc.). Thus, we
seeded it with a solution from Gurobi. Then, the best results were obtained
when warm-started with an upper bound on the objective, allowed to alternate

488 G. Belov et al.

between free/user-defined search (-f solving option), and the neighbourhood size
was reduced to 5–15. Even then, after 50 iterations it was only able to return an
objective of 574247 (and it took 4739 seconds). For Unit1300+ it never returned
a solution better than the seed. For Gecode we were again not able to find a first
solution for any of the two benchmarks, and seeding it with Gurobi (and setting
an upper bound for the objective function) did not produce any improvement,
perhaps due to its reliance on the search specified by the model.

7 Conclusions

We have presented the most realistic model ever described in the literature to
solve phase one of the plant-layout problem, which positions the equipment
ensuring it satisfies directional safety distances, equipment alignment, and var-
ious types of (rigid, rotatable and multi-zone) maintenance access constraints
in such a way as to minimise the piping and support costs of all equipment
and the overall footprint of the plant. Making the model sufficiently realistic to
satisfy industry standards has been very challenging and considerably increased
the search space and, thus, the time taken by the solvers to find a high-quality
solution. Thus, we also developed and implemented an LNS framework that
can explore larger neighbourhoods than any previous approach for this prob-
lem, thanks to the use of complete solvers able to explore the neighbourhoods
efficiently. Our experimental results show that the combination of MIP solvers
with LNS provides Woodside engineers with high quality solutions in under 2
and 30 minutes for our two benchmarks, respectively. The use of a constraint
programming modelling language (MiniZinc) was critical to be able to modify
the model as often as required, and execute it with the most efficient solver for
that model.

Acknowledgements. Funded by Woodside Energy Ltd. and the Australian Research
Council grant DP180100151. We thank our Woodside collaborators, particularly
Solomon Faka and Michelle Frayne, for the many useful discussions.

References

1. AMEC Paragon launches optimized FEED design process. Zeus Technology Mag-
azine, 4(2), 1–3 (2009)

2. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present and future. Constraints 12(1), 21–62 (2007)

3. Belov, G., et al.: An optimization model for 3D pipe routing with flexibility con-
straints. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 321–337. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 21

4. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint
programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49–65.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 4

5. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis (2011)

https://doi.org/10.1007/978-3-319-66158-2_21
https://doi.org/10.1007/978-3-319-44953-1_4

Process Plant Layout Optimization: Equipment Allocation 489

6. Guirardello, R., Swaney, R.E.: Optimization of process plant layout with pipe
routing. Comput. Chem. Eng. 30(1), 99–114 (2005)

7. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual Version 7.5.
Gurobi Optimization, Houston, Texas (2017)

8. IBM: IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual (2017)
9. Kar, Y.T., Shi, G.L.: A hierarchical approach to the facility layout problem. Int.

J. Prod. Res. 29(1), 165–184 (1991)
10. Mecklenburgh, J.C.: Process Plant Layout. Halsted Press; Wiley, New York (1985)
11. Nethercote, N., et al.: MiniZinc: Towards a standard CP modelling language. In:

Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74970-7 38

12. Peters, M.S., Timmerhaus, K.D.: Plant Design and Economics for Chemical Engi-
neers, 5th edn. McGraw-Hill Book Company, New York (2004)

13. Pisinger, D., Sigurd, M.M.: Using decomposition techniques and constraint pro-
gramming for solving the two-dimensional bin-packing problem. INFORMS J.
Comput. 19(1), 36–51 (2007)

14. Sakti, A., Zeidner, L., Hadzic, T., Rock, B.S., Quartarone, G.: Constraint program-
ming approach for spatial packaging problem. In: Quimper, C.-G. (ed.) CPAIOR
2016. LNCS, vol. 9676, pp. 319–328. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33954-2 23

15. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2017). www.gecode.org

16. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

17. Xu, G., Papageorgiou, L.G.: A construction-based approach to process plant layout
using mixed-integer optimization. Ind. Eng. Chem. Res. 46(1), 351–358 (2007)

18. Xu, G., Papageorgiou, L.G.: Process plant layout using an improvement-type algo-
rithm. Chem. Eng. Res. Des. 87(6), 780–788 (2009)

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-33954-2_23
https://doi.org/10.1007/978-3-319-33954-2_23
www.gecode.org
https://doi.org/10.1007/3-540-49481-2_30

A Constraint Programming Approach
for Solving Patient Transportation

Problems

Quentin Cappart1,2,3(B), Charles Thomas1, Pierre Schaus1,
and Louis-Martin Rousseau2,3

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
{charles.thomas,pierre.schaus}@uclouvain.be

2 Ecole Polytechnique de Montréal, Montréal, Canada
quentin.cappart@polymtl.ca

3 Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT), Montréal, Canada

louis-martin.rousseau@cirrelt.ca

Abstract. The Patient Transportation Problem (PTP) aims to bring
patients to health centers and to take them back home once the care has
been delivered. All the requests are known beforehand and a schedule
is built the day before its use. It is a variant of the well-known Dial-a-
Ride Problem (DARP) but it has nevertheless some characteristics that
complicate the decision process. Three levels of decisions are considered:
selecting which requests to service, assigning vehicles to requests and
routing properly the vehicles. In this paper, we propose a Constraint
Programming approach to solve the Patient Transportation Problem.
The model is designed to be flexible enough to accommodate new con-
straints and objective functions. Furthermore, we introduce a generic
search strategy to maximize efficiently the number of selected requests.
Our results show that the model can solve real life instances and outper-
forms greedy strategies typically performed by human schedulers.

1 Introduction

Over the years, there is an increasing demand for transports by disabled and
invalid people requiring health care but that do not have the ability to go to
hospitals by themselves. In this context, organizations managing the transporta-
tion of patients from their home to health centers are present in many cities.
Their goal is to provide a door-to-door transportation service to a set of patients
on a daily basis. Most of them are non-profit organizations that often have lim-
ited resources. Besides, they often do not have an expertise on decision support
tools in order to assist them in their operations. This leads to sub-optimal deci-
sions in most cases which has a direct negative impact on the patients and also
leads to financial losses. Therefore, minimizing the operational costs while main-
taining a sufficient quality of service is highly desirable and both aspects must
be properly balanced.
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 490–506, 2018.
https://doi.org/10.1007/978-3-319-98334-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_32&domain=pdf

A Constraint Programming Approach 491

The problem considered in this paper has been proposed by a non-profit
organization operating at Liège (Belgium) which provides a range of home help
services. One of them is transportation of people for medical appointments. We
refer to it as the Patient Transportation Problem, which is a specific case of
the well-known Dial-a-Ride Problem (DARP) [1]. The goal of this last problem
consists in designing routes and schedules for a set of users who specify pickup
and delivery requests between origins and destinations. It is especially present
for the transportation services in the medical domain [2–4].

However, a tremendous amount of variants are possible and have been exten-
sively studied in the literature: the fleet can be composed of several vehicles [5]
that can be heterogeneous [6], users can have different characteristics [7], avail-
ability of vehicles can be constrained [8], patients can require a return trip [9],
several depots can be present [10], etc. A large scope of objective functions can
also be considered such as minimizing the waiting time of users or maximizing the
number of accepted requests. Multi-objective approaches have also been intro-
duced [11]. Besides, the problem can either be solved offline [12] or online [13]. In
the former case, all the requests are known in advance whereas they appear grad-
ually in real-time in the latter. Aforementioned references are only few examples
of the broad literature dedicated to DARPs. A good summary of the different
variants and methods was nevertheless proposed by Cordeau and Laporte [1].
As a first observation, we can see that most of the approaches are based either
on Mixed Integer Programming, Local Search or Dynamic Programming. Con-
versely, solutions based on Constraint Programming (CP) seem to have been less
studied even if some recent works exist [14–18]. However, thanks to its flexibility,
we believe that CP can play an important role for solving practical DARPs.

The contribution of this paper is a flexible and efficient approach based on
CP for modeling and solving the static Patient Transportation Problem, which is
a specific case of the DARP. A general model is first proposed. Several extensions
that can be easily integrated to the model are then detailed. A generic search
strategy for maximizing the number of selected requests is also proposed. It
avoids branching on variables related to a request whenever it is not selected.
From a practical point of view, we provide a solution to a problem issued by a
non-profit organization, handling the transportation logistic of people requiring
health care. The solution we propose is usable in practice, thanks to its efficiency
and flexibility to accommodate new situations. Performances of the approach are
corroborated by both synthetic and real instances.

This paper is organized as follows. Next section describes the nature of the
problem we are considering. Section 3 presents some recent developments related
to the problem studied. A core model with its different components is firstly
detailed in Sect. 4. Additional features that can be easily integrated in the model
are then presented in Sect. 5. Finally, experiments on synthetic and real instances
are carried out in Sect. 6.

492 Q. Cappart et al.

2 Problem Description

The Patient Transportation Problem (PTP) is a static optimization problem
aiming to bring patients to health centers and to take them back home once the
care has been delivered. To do so, a fleet of vehicles is available. The fleet is
heterogeneous and is mainly composed of ambulances and private drivers oper-
ating as volunteers. Each patient has a set of characteristics and is represented
by a request. The objective is to satisfy as many requests as possible within a
fixed horizon, which is typically bounded by the working hours. Three aspects
of decision are considered in the PTP: (1) selecting which requests to service,
(2) assigning vehicles to requests and (3) routing and scheduling appropriately
the vehicles. An illustration of the PTP on a toy example with two patients
(A and B) and a single vehicle is shown in Fig. 1. A possible solution consists
in the following sequence: taking A (S1), bringing A to the hospital (S2), taking
B (S3), taking back A (S4), dropping A to its home (S5), bringing B to the
hospital (S6), waiting for B (S7) and dropping B to its home (S8). Some specific
characteristics must also be considered in the PTP. Here are some of them:

– Patients can have several constraints such as a maximum travel time or a
maximum waiting time at the hospital. The time to embark and disembark a
patient must sometimes be considered.

– The set of requests is heterogeneous. Some patients only require to go from
their home to a health center, while some of them also need a return trip once
the care has been delivered. In the latter case, they must be taken back home,
or to another place if requested. It is also possible to have patients requiring
only a return trip. Besides, requests can involve more than one passenger at
once. For instance, a child can be accompanied by his parents.

– The vehicle fleet is heterogeneous. Vehicles can differ by their capacity, their
initial/final location (typically a depot) and their availability. Some patients
can only be taken by particular vehicles. For instance, patients in wheelchairs
can only be transported by specific vehicles.

– Availability of vehicles can be non continuous. For instance, they can be avail-
able from 9am to 1pm and from 3pm to 6pm.

Fig. 1. Illustration of the PTP with one vehicle and two patients.

A Constraint Programming Approach 493

Let us finally notice that this version of PTP is static: the whole set of
requests is known beforehand and no new request is added in real time. it is
used by the organization for designing the first daily schedule given the pool of
requests received the previous days.

3 Related Work

To the best of our knowledge, the approach of Liu et al. [18] is the closest and
most recent work related to our problem. The authors model and solve the Senior
Transportation Problem (STP) using different approaches: CP, MIP and Logic
Based Benders Decomposition. The objective is also to maximize the sum of
the (weighted) served requests. Their results show that the CP model has the
best performances. The STP shares many similarities with our problem but has
nevertheless some differences:

– Requests are one-way only and there is no return trip.
– The problem is a transportation problem where the selection of each request

is constrained only by the vehicles availability and a maximum travel time,
there are no constraints related to the appointment for care.

– There are no constraints linking patients to specific vehicles.

While some constraints are straightforward to add in the STP model, the
integration of others would require more modifications. For instance, by properly
defining the time windows to make sure the patients arrive on time for their
care, appointment constraints for the care can be handled by the STP. However,
additional constraints would be necessary to link forward with backward trips
and preserve the consistency of the tour. Ensuring that vehicles are the same or
can be different for both trips also requires some modifications.

Besides, the modeling and solving parts are also different. In the approach of
Liu et al. [18], each decision variable is linked to a location and auxiliary variables
are introduced to express that a location is visited by a particular vehicle. In
our model, the decision variables are linked to trips instead of visited locations.
We express capacity constraints with the standard cumulative constraint [19]
and can take advantage of efficient propagators [20–24]. Conversely, Liu et al.
[18] enforce the capacity constraints of vehicles through renewable resources and
cumul functions using the StepAtStart functions from CP Optimizer. Those
abstractions are less standard in CP solvers and modeling languages such as
Minizinc or XCSP3 (renewable resources can be modeled with cumulative con-
straints [25]). Finally we use a custom search strategy combined with a Large
Neighborhood Search while Liu et al. rather uses the CP Optimizer default
search.

4 Modeling

This section presents a CP model for the PTP, flexible to easily handle different
variants of the problem, and efficient enough to solve real instances. The PTP
is modeled as a constrained based scheduling problem.

494 Q. Cappart et al.

Parameters. Let R be the set of requests and V the set of vehicles. Each
request is linked to a patient. The related parameters are depicted in Table 1.
Some of them correspond to a location (starti, desti and reti) and are used for
computing a travel time matrix (Ti,j) from location i to j. A request consists in
two trips: a forward trip from a start location to a destination (starti to desti)
and a backward trip from the previous destination to a return location (desti
to reti).

Table 1. Parameters used in the model.

Entity Parameter Meaning

Request starti Starting place of the patient linked to request i

desti Place where the care is delivered for the patient of request i

reti Return place of the patient linked to request i

li Number of places taken by the patient of request i

ui Time at which the health care service begins for request i

di Time needed to deliver the care for the patient of request i

pi Maximum travel time of the patient linked to request i

ci Category of patient of request i (wheelchair, without, etc.)

Vehicle kj Capacity of vehicle j (i.e. the number of places available)

Cj Set of patient categories that vehicle j can take

Decision Variables. The problem is to choose which requests will be selected,
the vehicles assigned to the requests, the route of the vehicles and their timetable.
We model it as a scheduling problem with conditional activities using the formal-
ism proposed by Laborie et al. [26–28]. In the standard form, each conditional
activity Ai is modeled with four variables, a start date s(Ai), a duration d(Ai),
an end date e(Ai) and a binary execution status x(Ai). If the activity is executed,
it behaves as a classical activity that is executed on its time interval, otherwise
it is not considered by any constraint. In our case, we also define v(Ai) as the
vehicle that has been assigned to an activity Ai. Each request (i) is attached to
a forward activity (AF

i) defining the time slot when the patient is brought from
its home to the health center (from starti to desti) and to a backward activity
(AB

i) for the time interval of the return trip (from desti to reti). Furthermore,
Ai denotes any activity, either forward or backward, AF the set of forward activ-
ities and AB the set of backward activities. Equation 1 defines Ao

i and Ad
i as the

origin and the destination locations of the activities linked to a request i.

∀i ∈ R :

⎧
⎪⎪⎨

⎪⎪⎩

Ao
i =

{
starti if Ai ∈ AF

desti if Ai ∈ AB

Ad
i =

{
desti if Ai ∈ AF

reti if Ai ∈ AB

(1)

A Constraint Programming Approach 495

Temporal relations between activities are illustrated in Fig. 2a for an arbi-
trary example. The focus is on activity AF

i . There are four specific transition
times (Tx,y) with any other activity (AF

j on this example), they correspond to
the time to go from Ao

i to Ao
j , from Ao

i to Ad
j , from Ad

i to Ao
j and from Ad

i to Ad
j .

Activity AF
i must also be completed before the appointment of the request (ui),

and the related backward activity cannot begin before the end of the appoint-
ment (ui + di). Finally, each activity is executed on a resource, representing the
vehicle assigned to the activity. At any moment, the load of the vehicle cannot
exceed its capacity. It is illustrated in Fig. 2b by a load profile for an arbitrary
set of 4 activities executed on the same vehicle.

Fig. 2. Illustration of the parameters of Table 1.

Decision variables related to the selection of requests are depicted in Eq. 2.
They are boolean variables defining whether the request is selected or not.

∀i ∈ R : Si ∈ {0, 1} (2)

Variables related to the conditional activities are shown in Eq. 3. Patients
cannot arrive at the health center after the time at which the appointment begins
(forward activity) and cannot leave it before the end of the care (backward
activity). Symbol H denotes the time horizon considered. The domain of the
vehicle selection variables (v) contains only the vehicles that are compatible
with the patient category of the request. Note that the duration variable (d)
is not a decision variable as its value depends on the start (s) and the end
(e) of the activity. Domains for forward activities implicitly handle the deadline
satisfaction for the care for each request. It ensures that the patients arrive to the
health center ahead of schedule for their care (e(AF

i) ≤ ui). Similarly, domains
for backward activities ensure that patients cannot leave the center before the
time at which the care has been delivered (s(AB

i) ≥ ui + di).

∀i ∈ R :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(AF
i) ∈ [0, ui]

e(AF
i) ∈ [0, ui]

d(AF
i) = e(AF

i) − s(AF
i)

x(AF
i) ∈ {0, 1}

v(AF
i) ∈ {

j | j ∈ V ∧ ci ∈ Cj

}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(AB
i) ∈ [ui + di, H]

e(AB
i) ∈ [ui + di, H]

d(AB
i) = e(AB

i) − s(AB
i)

x(AB
i) ∈ {0, 1}

v(AB
i) ∈ {

j | j ∈ V ∧ ci ∈ Cj

}

(3)

496 Q. Cappart et al.

Constraints

Binding Requests to Activities. A request is selected if and only if the forward
and backward activities are both completed (Eq. 4).

∀i ∈ R :
(
Si = 1

) ≡ (
x(AF

i) = 1 ∧ x(AB
i) = 1

)
(4)

Forward and Backward Selection. A forward and backward activity linked to
the same request must have the same execution status (Eq. 5). This constraint
is redundant with Eq. 4 but can nevertheless be used for a better pruning.

∀i ∈ R : x(AF
i) = x(AB

i) (5)

Inter-Activity Time Travel Consistency. The start/end of an activity cannot
overlap with the start/end of other activities when they are processed by the
same vehicle. The time interval between any two locations visited by a same
vehicle is at least the time required to travel between these two locations (Eq. 6).
It is also referred as setup time. It is illustrated in Fig. 2a. The ∨ relation is used
to consider situations where activity Ai occurs before or after Aj .

∀i, j ∈ R | i �= j :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
v(Ai) = v(Aj)

) → (
(s(Aj) − s(Ai) ≥ TAo

i
,Ao

j
) ∨ (s(Ai) − s(Aj) ≥ TAo

j
,Ao

i
)
)

(
v(Ai) = v(Aj)

) → (
(s(Aj) − e(Ai) ≥ T

Ao
i
,Ad

j
) ∨ (s(Ai) − e(Aj) ≥ T

Ao
j
,Ad

i
)
)

(
v(Ai) = v(Aj)

) → (
(e(Aj) − s(Ai) ≥ T

Ad
i
,Ao

j
) ∨ (e(Ai) − s(Aj) ≥ T

Ad
j
,Ao

i
)
)

(
v(Ai) = v(Aj)

) → (
(e(Aj) − e(Ai) ≥ T

Ad
i
,Ad

j
) ∨ (e(Ai) − e(Aj) ≥ T

Ad
j
,Ad

i
)
)

(6)

An alternative way to enforce the travel times is to use a NoOverlap with
transition time constraint imposed on activities created at each location [18]. In
particular, the propagator proposed by Dejemeppe et al. [29] could possibly be
extended to handle optional activities. But the decomposition approach relying
on reification and binary constraints is arguably the most portable formulation
for other solvers and modeling languages.

Intra-Activity Time Travel Consistency. The duration of each activity cannot
be lesser than the time required to go from the origin to the destination (Eq. 7).

∀i ∈ R : d(Ai) ≥ TAo
i ,A

d
i

(7)

Maximum Travel Time. It is also suitable to constraint the maximal travel time
of patients. It prevents situations where a patient stays too long in a vehicle. To
do so, the duration of each activity is constrained (Eq. 8).

∀i ∈ R : d(Ai) ≤ pi (8)

A Constraint Programming Approach 497

Cumulative Resource. At any moment, the number of places occupied by patients
in a same vehicle j cannot exceed its capacity kj (Eq. 9). This behaviour is
illustrated in the arbitrary example of Fig. 2b. This constraint is referred in the
literature as the cumulative resource global constraint [19]. In our case, each
activity Ai consumes li resources. We use the filtering algorithm of Gay et al.
[20]. The vehicle of a non-executed activity is not considered by the constraint.

∀j ∈ V : cumulative
({

(Ai, li) | i ∈ R ∧ v(Ai) = j
}

, kj

)
(9)

Objective Function. The first criterion considered for the objective function is
the satisfaction of requests. We want to maximize the number of served requests
(Eq. 10). Other objective functions can be considered. For instance, we could be
interested in minimizing the accumulated travel time for all the patients (Eq. 11).
The travel time of a request corresponds to the duration of its activities. It is also
possible to minimize the maximum travel time (Eq. 12). To do so, the maximal
duration of the whole set of activities has to be minimized. Other objective
functions are also proposed by Cordeau and Laporte [1]. They can be used
together inside the same model using either a lexicographic ordering or a Pareto
multi objective criterion [30].

max
(∑

i∈R

Si

)
(10)

min
(∑

i∈R

d(Ai)
)

(11)

min
(

max
i∈R

d(Ai)
)

(12)

Search Phase. The search tree is explored using a standard branch and bound
depth first search. The decision variables are divided into two categories: the
request variables (Eq. 2) and the activity variables (Eq. 3). Given the main objec-
tive of the problem (maximizing the number of served patients), our primal
heuristic is to select patients on the left branches (Si = 1) and discard them on
the right branches (Si = 0). Whenever a patient has been selected in a search
node, all its related activity variables are subsequently assigned (start time,
duration and end time and vehicle) before considering again the next patient
selection variable. On the contrary, whenever a patient is not selected (Si = 0
on the right branch), there is no need to consider the other decision variables
related to this patient. The idea is to branch on the activity variables only if
the related request variable has been selected (Si = 1). Otherwise, no search is
performed on the activity variables. We denote this search strategy as the Max-
imum Selection Search. The main asset of this search is that activity variables
are branched on only when they are relevant to a solution. It drastically reduces
the size of the search tree. An example of search tree is illustrated in Fig. 3.

498 Q. Cappart et al.

This meta-search strategy for optional activities can be combined with any
existing variable-value heuristic or used for similar applications such as packing
as most rectangles as possible. As a variable heuristic on the request variables
we use a Conflict Ordering Search heuristic (COS) [31]. A conflict is recorded
on a request only when it is impossible to assign in the sub-tree all its other
activity variables. The fallback heuristic combined with COS is to select the next
requests with the highest minimum slack, defined as the sum of the minimum
duration multiplied by the patient load for its forward and backward activities.
The subsearch on the other activity variables follows a min-domain first fail
strategy for the variable selection and a custom greedy value heuristic based on
the type of the corresponding variable which can be a time-related decision or
a vehicle choice. In the former case, the heuristic selects the closest time to the
corresponding appointment. In the latter case, the vehicle that has the most
remaining places is selected.

Fig. 3. Canonical shape of the search tree for two request variables (S0 and S1).

Large Neighborhood Search. In order to boost the performances on large
instances, a Large Neighborhood Search (LNS) [32] is also used. At each itera-
tion, a set of request variables is chosen randomly and then relaxed. The other
variables are fixed to their value in the last solution. For the request variables
that are selected (Si = 1), the corresponding activity variables are also fixed
based on the current solution. The remaining unbound variables form a smaller
search space which is explored using the search defined earlier. A new iteration
is started when the reduced search space is completely explored or once a fixed
number of backtracks is reached.

5 Extensions of the Model

One of the main asset of this model is its flexibility to easily accommodate new
constraints depending on the situation. This section presents some variants of
the problem and how they can be integrated in the core model.

A Constraint Programming Approach 499

Mandatory Requests. It is possible to enforce the selection of some requests
(Eq. 13). Parameter mj is a boolean value indicating if a request j is mandatory.

∀i ∈ {
j | j ∈ R ∧ mj = 1

}
: Si = 1 (13)

Maximum Waiting Time. The time that a patient has to wait at the health
center, either before or after his care, is often constrained. Parameter wi indicates
the maximum amount of time that a patient can wait. It is handled by adapting
the definition of domains in Eq. 3. It avoids situations where patients are dropped
to the health center too early or taken back too late (Eq. 14).

∀i ∈ R :

⎧
⎨

⎩

s(AF
i) ∈ [0, ui − wi]

e(AF
i) ∈ [0, ui − wi]

(...)

⎧
⎨

⎩

s(AB
i) ∈ [ui + di +wi ,H]

e(AB
i) ∈ [ui + di +wi ,H]

(...)
(14)

Integrating Service Time. Most often, the time required to embark or disembark
a patient is negligible. However in some cases, it could be more representative
to consider it. For instance, embarking a patient with a wheelchair can take a
significant amount of time. Such a dependency can be integrated in the inter-
activity time travel consistency constraints defined in Eq. 6.

Vehicles Availability. Vehicles can also have constraints on their availability.
They are available during a period and cannot leave their initial position (i.e.
a depot) before the period. Similarly, they have to go back to the depot before
the end of the period. Let us introduce startj the starting location of a vehicle
j, destj its return destination and [bj , rj] its availability window. The travel
time matrix (T) defined previously is extended in order to take into account
these new locations. We define Do

i = startv(Ai) and Dd
i = destv(Ai) as the

origin/destination location of the vehicle linked to activity Ai as defined in Eq. 3.
Constraints on vehicle availability are expressed in Eq. 15. It states that an
activity cannot begin before the availability of its vehicle plus the time required
to go from the initial depot to the patient place. Similarly, the vehicles must
have enough time to return to their depot in order to stay in the availability
window.

∀i ∈ R :
{

s(Ai) ≥ bv(Ai) + TDo
i ,A

o
i

e(Ai) ≤ rv(Ai) − TAd
i ,D

d
i

(15)

Finally, some vehicles can have non continuous availability. For instance, they
can be available from 9am to 1pm and from 3pm to 6pm. We handle this speci-
ficity by duplicating the vehicles for each continuous interval. The availability
of each vehicle is then composed by a unique interval. In practice, vehicles are
duplicated at most once (morning and afternoon shift).

500 Q. Cappart et al.

Same Vehicle Forward/Backward. The forward and the backward trips can be
constrained in order to be handled by the same vehicle (Eq. 16). Parameter qj
is a boolean value indicating if the forward and the backward trip of request j
must be handled by the same vehicle.

∀i ∈ {
j | j ∈ R ∧ qj = 1

}
: v(AF

i) = v(AB
i) (16)

Empty Locations. Some patients only require to go from their home to a health
center without return trip. It is also possible to have patients needing only a
trip from the health center to their home. A location can then be empty. When
the start location is empty the request has no forward trip. Similarly, there is
no backward trip when the return location is empty. This variant is handled by
extending the notion of requests. A request has no forward activity when the start
location is empty and no backward activity when the return location is empty. In
such cases, some constraints of the previous are simplified or removed in order
to consider only situations involving a forward or a backward activity. More
specifically, Eq. 4 is adapted as follows (Eq. 17, ∨ instead of ∧) and constraint in
Eq. 5 does not hold anymore.

∀i ∈ R :
(
Si = 1

) ≡ (
x(AF

i) = 1 ∨ x(AB
i) = 1

)
(17)

6 Experimental Results

This section evaluates the performance of the model on synthetic and real
instances. The model tested is referred as the Scheduling with Maximal Selection
Search (SCHED+MSS) approach. It corresponds to the core model described in
Sect. 4 with the following extensions: maximum waiting time, integrating service
time, vehicles availability and empty locations. No constraints on the maximum
travel time were asked by the partner organization. Finally, the objective con-
sidered is to maximize the number of requests satisfied (Eq. 10).

Approaches Considered. Our model is compared with four other approaches:
a greedy search, the same CP model without the maximal selection search, a
similar scheduling model implemented in CP Optimizer and a successor model,
more standard for solving routing problems with CP.

Greedy Search (GREEDY). It mimics the manual decision process used by the non-
profit organization. It consists in selecting first the requests having the smallest
starting time and choosing for them the closest compatible vehicle. The idea is
to minimize the time between the trips of each vehicle across the requests. Each
trip is inserted at the earliest possible time such that later trips can be inserted
with more flexibility. If a trip cannot be inserted, the request is discarded.

A Constraint Programming Approach 501

Successor Model (SUCC). As an alternative to our approach, a successor model
was considered. Similar models were used for solving DARPs using CP [15,17].
Each trip is represented by two stops which correspond to the place where the
patient is loaded and the place where they are unloaded. Each request has then
two or four stops depending on whether it is a single trip or a double trip.
The successor and the predecessor of each stop are both modeled by a variable
indicating the next and the previous stop. As in [17], ride time and vehicle
capacity constraints are modeled via auxiliary variables representing the load,
serving vehicle, and serving time for each requests. A circuit constraint [33]
ensures that the successor and predecessor variables form a circuit without sub-
tours for each vehicle. The requests that are not serviced are assigned to a same
dummy vehicle with infinite capacity. Finally, a maximum selection heuristic
wrapped under LNS and a COS variable heuristic are also used for the search.

CP Optimizer implementation (CPO). The scheduling model has been imple-
mented in IBM CP Optimizer in order to compare our search with the default
search proposed by this solver. This search combines LNS with a failure directed
search (FDS) strategy [34]. In order to accommodate the solver, the capacity
constraints of vehicles are modeled using cumul functions in the same way as in
the model of Liu et al. [18].

Scheduling Model with Simple Search (SCHED). It corresponds to the model pre-
sented in the previous section without the maximal selection search heuristic.
Additional reified constraints assign the activity variables to a default value when
a request is not served. It is used to avoid wasting time searching on activity
variables when the corresponding request is not selected.

Datasets Used. The experiments are based on two datasets, a synthetic and
a real one. The synthetic dataset has been randomly generated based on the
characteristics of the problem. Synthetic instances are classified according to
their size (number of patients, vehicles and health centers) and their difficulty
which is related to the amount of constraints and the availability of vehicles. The
real dataset has been provided by the non-profit organization. It corresponds to
one month of exploitation with one instance per day. Each of them contains the
requests received for the day, the vehicles available.

Experimental Protocol. Experiments have been carried out on an AMD
Opteron 6176 processor (2300 MHz). Execution time for a run is limited to
1800 s and memory consumption to 6 GB. The greedy search has been imple-
mented in Scala and the OscaR solver [35] is used for the other models except
for the CPO model that has been modeled and solved with the academic version
of IBM ILOG CPLEX CP Optimizer V12.8. For the reproducibility of results,
the models, the synthetic dataset and the random generator are available online
on CSPLib [36].

502 Q. Cappart et al.

The backtrack limit and relaxation size of the LNS are adaptive parameters
initially fixed to respectively 1000 failures and 10 requests. The backtrack limit
is increased by 20% when 100 consecutive iterations have failed to find a new
solution and to completely explore the search. The relaxation size is increased
by 20% when the relaxed search space is completely explored for 50 consecu-
tive iterations. Search parameters are set to their defaults for CPO. The greedy
solution is considered as the first solution of the LNS for each method.

Given the random nature of approaches based on LNS (SUCC, CPO, SCHED and
SCHED+MSS), 5 runs for each instance with a different seed have been performed
and the best solution obtained is recorded. The greedy search (GREEDY) is ran
only once due to its deterministic nature. The models are also compared using
the improvement ratio (ρm) of a method (m) defined as the relative improvement
of the solution obtained with the method (xm) compared to the solution found
using the greedy search (xGREEDY): ρm = xm−xGREEDY

xGREEDY
.

Results. Results for both synthetic and real instances are reported in Table 2.
Instances are ordered by their difficulty and the number of patients (|R|). The
best solution obtained for each instance is also reported. The number of patients
serviced is considered as the objective value. As the relaxation size is adaptive,
it can eventually grow to 100%. In this case, if the search space is completely
explored, the solution is proven optimal. Besides, if all the patients are serviced,
the upper bound is reached and the solution is also proven optimal. The domi-
nating model is highlighted for each instance.

Let us first focus on synthetic instances. As we can see, the scheduling model
with the maximal selection search (SCHED+MSS) obtains the best solution for
almost all the tests, even when the optimum is not reached. The improvement
ratio is up to 130% compared to the greedy solution. Interestingly, performance of
scheduling models is correlated with the difficulty of instances: the improvement
gap increases when the instances are getting harder. The greedy search (GREEDY)
gives poor solutions when the problem is strongly constrained. Results regarding
the scheduling model with the simple search (SCHED) shows the interest of the
custom search.

The successor model (SUCC) is outperformed by the scheduling approaches.
This is expected as the successor model has a larger search space due to the
additional decisions variables compared to the scheduling model. Furthermore,
the successor approach makes the insertion of new stops in routes more difficult
as it requires to change the value of the successor variables forming the routes
in addition to the vehicle variable. This limits the effectiveness of the LNS.

Concerning the CP Optimizer model (CPO), it is also outperformed by the
two other scheduling approaches. Such results are mainly due because of the
default search used in CPO model: it is generic and not designed for this specific
problem. However, it is important to point out that on harder instances, it
tends to perform better than the successor model. This could indicate that the
model used contributes more to the effectiveness of the approach than the search
method. Note that as the CPO approach is based on another solver, other factors
could also influence the performances.

A Constraint Programming Approach 503

Table 2. Experimental results (|R|, |V | and |H| are the number of requests, vehicles
and hospitals ; ρ is the improvement ratio in percent, � indicates that the solution has
been proven optimal).

Instances GREEDY SUCC CPO SCHED SCHED+MSS

Difficulty Name |H| |V | |R| BestSol Sol Sol ρ Sol ρ Sol ρ Sol ρ

Easy

RAND-E-1 4 2 16 �15 14 15 7.1 �15 7.1 �15 7.1 15 7.1
RAND-E-2 8 4 32 �32 32 32 0.0 �32 0.0 �32 0.0 �32 0.0
RAND-E-3 12 5 48 �28 26 26 0.0 �28 7.7 28 7.7 �28 7.7
RAND-E-4 16 6 64 62 58 61 5.2 59 1.7 62 6.9 62 6.9
RAND-E-5 20 8 80 74 72 73 1.4 72 0.0 73 1.4 74 2.8
RAND-E-6 24 9 96 95 91 93 2.2 92 1.1 92 1.1 95 4.4
RAND-E-7 28 10 112 106 100 101 1.0 100 0.0 103 3.0 106 6.0
RAND-E-8 32 12 128 �128 127 �128 0.8 127 0.0 �128 0.8 �128 0.8
RAND-E-9 36 14 144 142 141 142 0.7 141 0.0 142 0.7 142 0.7
RAND-E-10 40 16 160 157 154 154 0.0 157 1.9 157 1.9 157 1.9

Medium

RAND-M-1 8 2 16 �12 8 9 12.5 11 37.5 �12 50.0 11 37.5
RAND-M-2 16 3 32 19 16 18 12.5 17 6.3 19 18.8 19 18.8
RAND-M-3 24 4 48 32 25 25 0.0 26 4.0 30 20.0 32 28.0
RAND-M-4 32 4 64 37 25 25 0.0 33 32.0 35 40.0 37 48.0
RAND-M-5 40 5 80 55 45 45 0.0 48 6.7 51 13.3 55 22.2
RAND-M-6 48 5 96 52 36 40 11.1 40 11.1 50 38.9 52 44.4
RAND-M-7 56 6 112 63 46 47 2.2 48 4.3 63 37.0 63 37.0
RAND-M-8 64 8 128 83 65 70 7.7 65 0.0 81 24.6 83 27.7
RAND-M-9 72 8 144 81 62 62 0.0 64 3.2 72 16.1 81 30.6
RAND-M-10 80 9 160 99 73 75 2.7 75 2.7 88 20.5 99 35.6

Hard

RAND-H-1 16 2 16 �8 7 7 0.0 �8 14.3 �8 14.3 �8 14.3
RAND-H-2 32 3 32 19 15 15 0.0 18 20.0 19 26.7 17 13.3
RAND-H-3 48 4 48 32 18 19 5.6 23 27.8 32 77.8 29 61.1
RAND-H-4 64 4 64 23 10 12 20.0 22 120.0 20 100.0 23 130.0
RAND-H-5 80 5 80 42 29 31 6.9 29 0.0 38 31.0 42 44.8
RAND-H-6 96 5 96 38 22 22 0.0 27 22.7 38 72.7 38 72.7
RAND-H-7 112 6 112 39 25 27 8.0 32 28.0 37 48.0 39 56.0
RAND-H-8 128 8 128 75 57 63 10.5 61 7.0 71 24.6 75 31.6
RAND-H-9 144 8 144 72 50 54 8.0 53 6.0 67 34.0 72 44.0
RAND-H-10 160 8 160 72 46 48 4.3 50 8.7 63 37.0 72 56.5

Real

REAL-1 1 9 2 �2 2 �2 0.0 �2 0.0 �2 0.0 �2 0.0
REAL-2 1 9 2 �2 2 �2 0.0 �2 0.0 �2 0.0 �2 0.0
REAL-3 3 9 3 �1 1 �1 0.0 �1 0.0 �1 0.0 �1 0.0
REAL-4 2 9 4 �4 4 �4 0.0 �4 0.0 �4 0.0 �4 0.0
REAL-5 5 9 21 �21 21 �21 0.0 �21 0.0 �21 0.0 �21 0.0
REAL-6 5 9 22 �22 22 �22 0.0 �22 0.0 �22 0.0 �22 0.0
REAL-7 5 9 23 �23 23 �23 0.0 �23 0.0 �23 0.0 �23 0.0
REAL-8 7 9 24 �24 24 �24 0.0 �24 0.0 �24 0.0 �24 0.0
REAL-9 15 9 45 �44 44 44 0.0 �44 0.0 �44 0.0 �44 0.0
REAL-10 26 9 99 �98 98 98 0.0 �98 0.0 �98 0.0 �98 0.0
REAL-11 22 9 100 91 87 89 2.3 87 0.0 90 3.4 91 4.6
REAL-12 32 9 101 �100 97 98 1.0 97 0.0 �100 3.1 99 2.1
REAL-13 37 9 110 103 97 98 1.0 97 0.0 100 3.1 103 6.2
REAL-14 28 9 111 �102 99 99 0.0 100 1.0 100 1.0 �102 3.0
REAL-15 35 9 122 110 94 97 3.2 94 0.0 102 8.5 110 17.0
REAL-16 36 9 123 108 107 107 0.0 108 0.9 108 0.9 108 0.9
REAL-17 42 9 128 114 103 103 0.0 105 1.9 105 1.9 114 10.7
REAL-18 31 9 130 121 112 115 2.7 113 0.9 115 2.7 121 8.0
REAL-19 34 9 131 114 103 107 3.9 103 0.0 108 4.9 114 10.7
REAL-20 34 9 134 118 106 107 0.9 106 0.0 108 1.9 118 11.3
REAL-21 39 9 136 119 108 112 3.7 108 0.0 114 5.6 119 10.2
REAL-22 31 9 138 121 113 117 3.5 113 0.0 117 3.5 121 7.1
REAL-23 31 9 139 121 113 113 0.0 113 0.0 115 1.8 121 7.1
REAL-24 37 9 139 110 103 103 0.0 104 1.0 106 2.9 110 6.8
REAL-25 39 9 139 125 118 118 0.0 121 2.5 121 2.5 125 5.9
REAL-26 38 9 140 119 107 107 0.0 109 1.9 115 7.5 119 11.2
REAL-27 35 9 147 129 120 121 0.8 120 0.0 126 5.0 129 7.5
REAL-28 34 9 151 131 115 116 0.9 115 0.0 121 5.2 131 13.9
REAL-29 39 9 155 127 117 119 1.7 117 0.0 123 5.1 127 8.5
REAL-30 41 9 159 131 115 115 0.0 119 3.5 121 5.2 131 13.9

504 Q. Cappart et al.

Similar results are observed for the real instances. The scheduling model with
the maximal selection search is dominating again. However, the improvement
ratio is now up to 17% only. It happens because such real instances are easier to
solve compared to the medium and difficult synthetic instances. It shows both
the pertinence of the scheduling model and the search framework we introduced.

Finally, we also considered the waiting time minimization (Eq. 11) as a
secondary objective using a lexicographical search. However, it yielded only
minor improvements regarding the solution obtained using the main objective.
It mainly occurs because the value heuristic used already ensures that solutions
minimizing the waiting time are tried first.

7 Conclusion and Perspective

In many countries, there is an increasing demand for disabled people requir-
ing health care. Providing a door-to-door transportation to patients minimizing
the operational costs while maintaining a sufficient quality of service is still a
challenge nowadays. In this context, we introduced the Patient Transportation
Problem, which is a specific case of the well-known Dial-a-Ride Problem. This
paper proposes a CP approach based on scheduling for solving Patient Trans-
portation Problems. The focus was to design a flexible approach that can easily
handle different variants of the problem while being efficient enough to solve
real instances. Experimental results have shown that the scheduling models out-
performs greedy strategies and successor models often used in classical Vehicles
Routing Problems. A generic search strategy maximizing the number of selected
requests is also proposed and improves the results.

In practice, Patient Transportation Problems also have a dynamic aspect:
new requests, or modification/cancellation of old ones can occur online and a
new solution must be found in real time. As future work, we plan to extend our
approach in order to deal with such aspects. To do so, we plan to use the CP
solution as an initial solution and local search for quickly adapting the solution
as modifications are received.

Having discovered recently the approach of Liu et al. [18] developed in par-
allel with our work, we also wish to investigate experimentally the differences
of performances with both models. We also plan to design more advanced LNS
relaxations, for instance based on partial order schedules [37]. Lazy clause gen-
eration approaches relying on explaining the cumulative constraint [24] may also
be worth trying on this problem.

Acknowledgments. This research is financed by the Walloon Region (Belgium) as
part of PRESupply Project. The problem has been proposed by the CSD, a Belgian
non-profit organization operating at Liège.

A Constraint Programming Approach 505

References

1. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153, 29–46 (2007)

2. Melachrinoudis, E., Min, H.: A tabu search heuristic for solving the multi-depot,
multi-vehicle, double request dial-a-ride problem faced by a healthcare organisa-
tion. Int. J. Oper. Res. 10, 214–239 (2011)

3. Liu, R., Xie, X., Augusto, V., Rodriguez, C.: Heuristic algorithms for a vehicle
routing problem with simultaneous delivery and pickup and time windows in home
health care. Eur. J. Oper. Res. 230, 475–486 (2013)

4. Detti, P., Papalini, F., de Lara, G.Z.M.: A multi-depot dial-a-ride problem with
heterogeneous vehicles and compatibility constraints in healthcare. Omega 70, 1–
14 (2017)

5. Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transp. Res. Part B Methodol. 37, 579–594 (2003)

6. Parragh, S.N.: Introducing heterogeneous users and vehicles into models and algo-
rithms for the dial-a-ride problem. Transp. Res. Part C Emerg. Technol. 19, 912–
930 (2011)

7. Parragh, S.N., Cordeau, J.F., Doerner, K.F., Hartl, R.F.: Models and algorithms
for the heterogeneous dial-a-ride problem with driver-related constraints. OR
Spectr. 34, 593–633 (2012)

8. Psaraftis, H.N.: An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transp. Sci. 17, 351–357 (1983)

9. Melachrinoudis, E., Ilhan, A.B., Min, H.: A dial-a-ride problem for client trans-
portation in a health-care organization. Comput. Oper. Res. 34, 742–759 (2007)

10. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 30, 105–119 (1997)

11. Parragh, S.N., Doerner, K.F., Hartl, R.F., Gandibleux, X.: A heuristic two-phase
solution approach for the multi-objective dial-a-ride problem. Networks 54, 227–
242 (2009)

12. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and deliv-
ery problems: a classification scheme and survey. Top 15, 1–31 (2007)

13. Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuris-
tics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 377–
387 (2004)

14. Berbeglia, G., Pesant, G., Rousseau, L.M.: Checking the feasibility of dial-a-ride
instances using constraint programming. Transp. Sci. 45, 399–412 (2011)

15. Berbeglia, G., Cordeau, J.F., Laporte, G.: A hybrid tabu search and constraint pro-
gramming algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput.
24, 343–355 (2012)

16. Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Comput. Oper. Res. 40, 490–497 (2013)

17. Jain, S., Van Hentenryck, P.: Large neighborhood search for dial-a-ride problems.
In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 400–413. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23786-7 31

18. Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation
problem. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 412–428.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 30

19. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, (revision
a) (2012)

https://doi.org/10.1007/978-3-642-23786-7_31
https://doi.org/10.1007/978-3-319-93031-2_30

506 Q. Cappart et al.

20. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the
cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–
157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 11

21. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp.
230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-
3 22

22. Gay, S., Hartert, R., Schaus, P.: Time-table disjunctive reasoning for the cumula-
tive constraint. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 157–172.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 11

23. Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative
constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 42

24. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16, 250–282 (2011)

25. Simonis, H., Cornelissens, T.: Modelling producer/consumer constraints. In: Mon-
tanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 449–462. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-60299-2 27

26. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS
Conference, pp. 555–560 (2008)

27. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Reasoning with conditional time-
intervals. Part II: an algebraical model for resources. In: FLAIRS Conference, pp.
201–206 (2009)

28. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints, 1–41 (2018)

29. Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transition
times. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 89–104. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23219-5 7

30. Ngatchou, P., Zarei, A., El-Sharkawi, A.: Pareto multi objective optimization.
In: 2005 Proceedings of the 13th International Conference on Intelligent Systems
Application to Power Systems, pp. 84–91. IEEE (2005)

31. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 10

32. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

33. Lauriere, J.L.: A language and a program for stating and solving combinatorial
problems. Artif. Intell. 10, 29–127 (1978)

34. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 30

35. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
36. Thomas, C., Cappart, Q., Schaus, P., Rousseau, L.M.: CSPLib problem 082:

Patient transportation problem. http://www.csplib.org/Problems/prob082
37. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for

cumulative scheduling. ICAPS 5, 81–89 (2005)

https://doi.org/10.1007/978-3-319-23219-5_11
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-319-18008-3_11
https://doi.org/10.1007/978-3-642-40627-0_42
https://doi.org/10.1007/3-540-60299-2_27
https://doi.org/10.1007/978-3-319-23219-5_7
https://doi.org/10.1007/978-3-319-23219-5_10
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-319-18008-3_30
https://bitbucket.org/oscarlib/oscar
http://www.csplib.org/Problems/prob082

Unifying Reserve Design Strategies
with Graph Theory and Constraint

Programming

Dimitri Justeau-Allaire1,2,3(B), Philippe Birnbaum1,2,3, and Xavier Lorca4

1 CIRAD, UMR AMAP, 34398 Montpellier, France
{dimitri.justeau-allaire,philippe.birnbaum}@cirad.fr

2 Institut Agronomique néo-Calédonien (IAC), 98800 Noumea, New Caledonia
3 AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France

4 ORKID, Centre de Génie Industriel, IMT Mines Albi,
Campus Jarlard, 81013 Albi cedex 09, France

xavier.lorca@mines-albi.fr

Abstract. The delineation of areas of high ecological or biodiversity
value is a priority of any conservation program. However, the selec-
tion of optimal areas to be preserved necessarily results from a com-
promise between the complexity of ecological processes and managers’
constraints. Current reserve design models usually focus on few criteria,
which often leads to an oversimplification of the underlying conserva-
tion issues. This paper shows that Constraint Programming (CP) can be
the basis of a more unified, flexible and extensible framework. First, the
reserve design problem is formalized. Secondly, the problem is modeled
from two different angles by using two graph-based models. Then CP
is used to aggregate those models through a unique Constraint Satisfac-
tion Problem. Our model is finally evaluated on a real use case addressing
the problem of rainforest fragmentation in New Caledonia, a biodiversity
hotspot. Results are promising and highlight challenging perspectives to
overtake in future work.

1 Introduction

Human activities are exerting pressure on natural habitats, which generally
results in a loss of surface and an increase of fragmentation. As a consequence,
many species depending on those habitats are threatened, sometimes with extinc-
tion. In this context, it is essential to devote an important part of conservation
efforts in the protection of natural habitats through the establishment of nature
reserves [1–4]. Designing a reserve system is a difficult process involving a trade-off
between the conservation targets and the socioeconomic constraints. This prob-
lem is known as the reserve design problem. The associated questions are at the
crossroad between conservation biology, geography, mathematics, computer sci-
ence, decision theory and environmental philosophy [5]. In this paper, we focus on
the mathematical modeling and the computational solving of the reserve design

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 507–523, 2018.
https://doi.org/10.1007/978-3-319-98334-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_33&domain=pdf

508 D. Justeau-Allaire et al.

problem. From this point of view, it is a decision and/or optimization problem. In
almost all cases, the combinatorial complexity justifies the need of a systematic
approach based on mathematical modeling and computational tools.

In the literature, two major aspects of the reserve design problem usually
stand out: the feature covering and the spatial configuration. The first is often
referred as the reserve (or site) selection problem [6–9]. In extension, we refer
to the reserve design problem when spatial attributes are considered [10–14].
Current models usually focus on a few aspects of the problem because: (1) they
provide an ad-hoc solution to a specific instance of the problem, or (2) they are
limited by the modeling paradigm. However, there is a need for a more unified
and flexible framework [15] which, in our opinion and based on our experience
in New Caledonia, could help to reduce the gap between computer scientists,
conservation scientists, and practitioners.

In this paper, we show how the combination of graph-based models with
CP can be the basis of such a framework. After a detailed description of the
reserve design problem (Sect. 2), we presents two graph-based models (Sect. 3).
One model is dedicated to the constraint representation of the features covering
issues (Sect. 3.1) and the other one is dedicated to the constraint representation
of the spatial issues (Sect. 3.2). We then unify the models throughout a single
CP model based on the Choco constraint solver [16] (Sect. 4). Finally, a realistic
operational use case on the problem of rainforest fragmentation in New Caledonia
is depicted and first results are discussed (Sect. 5).

2 Description of the Problem

The reserve design is a decision and/or optimization problem in the discretized
geographical space. Given a set of geographical features (e.g., Fig. 2), we are
looking for a reserve system satisfying several criteria, in accordance to conser-
vation targets. In this section, we describe and formalize the problem precisely.
We start by defining the characteristics of the problem and then define a set of
criteria that can be required for a reserve system.

2.1 Characteristics of the Problem – Input Data

The Discretized Geographical Space. The geographical space is tessellated
into n granular parcels, which are the decision variables of the problem. Several
tessellation methods are possible [17,18]. The most commonly used is the regular
square grid (illustrated in Fig. 1). We choose to this method in this paper.

We denote the number of rows by r, the number of columns by c and the
set of parcels by P. We identify a single parcel with the letter i, and index the
parcels with integers from 0 to n − 1: P = { i | i ∈ �0, n� }. While this indexing
is not the most convenient for a grid, it has the advantage to be independent of
the tessellation method and thus offers extensibility for future work. Finally, we
use the 8-connected (cf. Fig. 1) neighborhood to define the adjacency between
the parcels, in opposition to the 4-connected neighborhood.

Unifying Reserve Design Strategies with Graph Theory 509

Fig. 1. Square grid tessellation and 8-connected neighborhood illustrations.

Fig. 2. Three feature examples.

The Environmental Features. The geographical space is characterized by a
set of m environmental features. A feature can be anything that can be spatially
represented (e.g. the presence of a species, a certain type of habitat, human
constructions). We denote by F the set of environmental features and use the
letter j to identify the features: F = { j | j ∈ �0,m� }.

The Values of the Features. To each feature j is associated a set Vj , repre-
senting the available data about j among the parcels: Vj = { vji ∈ R

+ | i ∈ P }.
Each vji ∈ Vj corresponds to a value describing the feature j in the parcel i.
Three types of data are possible: the presence-absence data, the abundance data
and the probability of presence data. An example for each data type is given in
Fig. 2, and below is a short description for each of them:

– Presence-absence: if j is present in the parcel i, vji = 1, else vji = 0. For
each (j, i) ∈ F × P we then have vji ∈ {0, 1}. The presence-absence data is
often used to describe the occurrence distribution of a species or a particular
characteristic of the landscape (e.g. forest, savanna, fields, roads, cities).

– Abundance: in this case, vji represents a quantitative value about the feature
j in the parcel i (e.g. density of trees per parcel, average annual rainfall). For
each (j, i) ∈ F × P we then have vji ∈ [0,+∞[.

– Probability of presence: it can be possible to evaluate the probability of presence
of a feature j for every parcel in P. The most common situation is the use of
Species Distribution Models (SDMs), that are able to combine observations of a
species with environmental data to predict its spatial distribution [19,20]. With
probability of presence data, for each (j, i) ∈ F × P we have vji ∈ [0, 1].

510 D. Justeau-Allaire et al.

Fig. 3. The values, domains and anti-domains associated with the features in Fig. 2.
The domains are represented with solid lines and the anti-domains with dashed lines.

The Domains/Anti-Domains of the Features. As illustrated in Fig. 3, to
each feature, is associated a set Dj and its complement Dj . Dj represents the
domain of j, that is, the parcels where j is present or where the probability of
presence of j is not null: Dj = { i ∈ P | vji > 0 }. Conversely, Dj represents
the anti-domain of j, that is, the parcels where j is not present or where the
probability of presence of j is null: Dj = { i ∈ P | vji = 0 }.

2.2 The Reserve System – Solution of the Problem

In the first place, we define the terms “parcel” (sometimes called “site” in the
literature), “reserve” and “reserve system”. As defined in the previous subsec-
tion, a parcel is a granular selection unit of the discretized geographical space.
On top of that, a reserve is a set of spatially continuous selected parcels (note
that a single selected isolated parcel is a reserve). Finally a reserve system is a
set of spatially disjoint reserves (note that a reserve system can be composed of
a single reserve). We illustrated the previous definitions in Fig. 4.

Fig. 4. Illustration of a reserve system, composed of four reserves, themselves made of
several adjacent parcels.

Given that, a solution to our problem is a reserve system whose attributes are
satisfying a set of criteria, themselves depending on the conservation question.
We denote such a reserve system by S, its number of reserves by nr and its kth

reserve by Xk: S = {Xk ⊆ P | k ∈ �0, nr� } (where P is the set of parcels).

Unifying Reserve Design Strategies with Graph Theory 511

2.3 Required Criteria for a Reserve System

According to the underlying conservation questions, several criteria can be
required for a reserve system. We distinguish between the feature covering cri-
teria and the spatial criteria.

Feature Covering Criteria. By providing one of the first formalization of
the reserve selection problems, ReVelle et al. [7] introduced three fundamental
feature covering criteria.

– Covered Features. Among the features that are covered (with certainty) by the
reserve system S, we want a set of mandatory features F ′ to be represented
(e.g. rare or endangered species).

– α-Covered Features. Assuming that the vji’s are pairwise independent, we
want a set of features F ′ to be covered by S with a probability of at least α.
This criterion is helpful when probability of presence data is available.

– k-Redundant Features. A feature j is k-redundant in the reserve system S if
and only if it is covered (with certainty) by at least k distinct parcels. We
want to enforce this property for a set of features F ′ (e.g. for increasing the
chances of persistence of vulnerable species).

Spatial Criteria. A list of six geometric principles had been defined by Dia-
mond [10] and Williams et al. [11] summarized them into six spatial attributes
to take into account when designing a reserve system: the number of reserves,
the reserve areas (by extension we define the reserve system area), the reserve
proximity, the reserve connectivity, the reserve shape and core areas and buffer
zones. Here we consider three of those spatial attributes (expressed as criteria)
and keep the remaining ones for future work.

– Number of reserves. Determining if the best suited is a “single large or several
small reserves” (SLOSS), or a “few large or many small reserves” (FLOMS)
is a well known debate in ecology [10,21]. The conclusion is that the answer
strongly depends on the context, and that flexibility is needed. We therefore
want to set a minimum value Nmin and/or a maximum value Nmax for the
number of reserves.

– Reserve Areas. Following the previous criterion, it is also essential to provide
control on the reserve areas by setting a minimum area Amin and a maximum
area Amax.

– Reserve System Area. It should also be possible to express this criterion on
the whole reserve system area, by setting a minimum total area ATmin

and a
maximum total area ATmax

.

3 The Graph-Based Models

In this section, we present two graph-based models. The first one is a resource
allocation model that will enable us to express the feature covering criteria in
the form of constraints. In the same way, the second one is a spatial model

512 D. Justeau-Allaire et al.

that will enable us to control the spatial criteria. In both models, each parcel
is represented by a vertex. This common characteristic is essential since it is
the one that makes the aggregation of the models possible, through a set of
appropriate channeling constraints.

3.1 The Resource Allocation Graph

We consider parcels as resources that can be allocated to the conservation of fea-
tures, then considered as tasks, and thus define the directed graph Gr = (Vr, Ar),
also called the resource allocation graph. The vertices of Gr are partitioned into
three disjoint sets Fr, Pr and {s, t}. Fr represents the feature (or task) vertices,
Pr represents the parcel (or resource) vertices, s is the source vertex and t the
sink vertex.

Vr = Fr ∪ Pr ∪ {s, t};
Fr = { fj | j ∈ F };
Pr = { pi | i ∈ P }.

(1)

Furthermore, using Ar(X,Y) as the notation for the set of all X-Y arcs, we
define the arcs of Gr in the following way:

Ar = Ar(s, Fr) ∪ Ar(Fr, Pr) ∪ Ar(Pr, t). (2)

Ar(s, Fr) and Ar(Pr, t) are defined such that there is an arc from s to each
feature vertex and an arc from each parcel vertex to t:

Ar(s, Fr) = { (s, fj) | fj ∈ Fr };
Ar(Pr, t) = { (pi, t) | pi ∈ Pr }.

(3)

Moreover, Ar(Fr, Pr) represent the possible allocations between Fr and Pr.
More precisely, there is an arc from a feature vertex fj to a parcel vertex pi if
and only if the feature j is represented in the parcel i, that is i ∈ Dj . We then
have:

Ar(Fr, Pr) =
⋃

j∈F
{ (fj , pi) | i ∈ Dj }. (4)

On the arcs of Gr, we define a lower bound (or demand) function l : Ar �→ R
+
∞

and an upper bound (or capacity) function u : Ar �→ R
+
∞ such that if f is a flow

in Gr:
∀a ∈ Ar, l(a) ≤ f(a) ≤ u(a). (5)

Finally, we define Hr : P(Pr) �→ P(Vr) × P(Ar) that associates to a set
X ⊆ Pr the subgraph of Gr induced by {s, t} ∪ Fr ∪ X, that is, the resource
allocation graph obtained when only considering a subset of parcels. We denote
by Vr[Hr(X)] the vertices of Hr(X) and by Ar[Hr(X)] the arcs of Hr(X). An
example is provided in Fig. 5.

Hr(X) = Gr[{s, t} ∪ Fr ∪ X]. (6)

Unifying Reserve Design Strategies with Graph Theory 513

Fig. 5. Hr({p2, p8}) associated with the example in Fig. 2. Lower and upper bounds
are represented on the arcs.

Expressing Feature Covering Criteria as Constraints. From this point,
to each feature covering criterion (as defined in the previous section) we associate
a constraint that can be applied on the resource allocation model. More precisely,
if S is a reserve system and Xs its associated set of parcel vertices, a criterion is
satisfied by S if and only if its associated constraint if satisfied by Hr(Xs). We
express these constraints as flow constraints by defining the value of l and u on
certain arcs. When the value of l is not explicitly defined, it is unconstrained and
then set to 0. Similarly, u is set to +∞ when its value is not explicitly defined.

Covered Features. In our resource allocation model, we can easily express this
criterion as a flow constraint on Hr(Xs).

Constraint 1: Covered Features.

Input parameter(s):A set of features F ′ ⊆ F .
The set of features F ′ is covered by S if and only if Hr(Xs) admits a feasible
flow f verifying (5) when:

⎧
⎪⎪⎨

⎪⎪⎩

l(s, fj) = 1, ∀fj ∈ F ′
r;

l(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr);
u(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji ≥ 1;
u(fj , pi) = 0, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1.

(7)

α-Covered Features. To express this criterion, we assume that the probabilities
of presence vji are pairwise independent. We then rely on the probability of
absence qji = (1 − vji) and express the constraint as:

∀j ∈ F ′ ,
∏

i∈ S
qji ≤ 1 − α. (8)

514 D. Justeau-Allaire et al.

We then express the α-presence constraint in the following way:

Constraint 2: α-Covered Features.

Input parameter(s):A set of features F ′ and a real α ∈ [0, 1].
The set of features F ′ is covered by S with a probability of at least α if and
only if Hr(Xs) admits a feasible flow f verifying (5) when:

{
l(s, fj) = − log(1 − α), ∀fj ∈ F ′

r;
u(fj , pi) = − log(qji), ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1.

(9)

k-Redundant Features. Since the k-redundancy is actually a generalization of the
covering features criterion, we can also express it as a flow constraint on Hr(Xs).

Constraint 3: k-Redundant Features.

Input parameter(s): A set of features F ′ and a positive integer k.
The k-redundancy of the set of features F ′ in the reserve S is satisfied if
and only if Hr(Xs) admits a feasible flow f verifying (5) when:

⎧
⎪⎪⎨

⎪⎪⎩

l(s, fj) = k, ∀fj ∈ F ′
r;

l(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr);
u(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji ≥ 1;
u(fj , pi) = 0, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1.

(10)

3.2 The Spatial Graph

We now define the undirected graph Gs = (Vs, Es), the spatial graph, which is
a representation of the discretized geographical space P (a r × c regular square
grid in our case). Once again, to each parcel i of P, we associate a vertex pi, we
then have:

Vs = { pi | i ∈ P }. (11)

Moreover, the edges of Gs are defined such that if pu and pv are two vertices,
there is an edge between pu to pv if and only if the parcels u and v are spatially
adjacent. The edges of Gs can be partitioned into four disjoint sets: the horizontal

Unifying Reserve Design Strategies with Graph Theory 515

edges (EH), the vertical edges (EV), the north-west to south-east diagonal edges
(ENWSE

) and the north-east to south-west diagonal edges (ENESW
).

Es = EH ∪ EV ∪ ENWSE
∪ ENESW

;
EH = { (pi, pi+1) | i ∈ P ∧ ¬ (i + 1) ≡ 0 (c) };
EV = { (pi, pi+c) | i ∈ P ∧ i < c(r − 1) };

ENWSE
= { (pi, pi+c+1) | i ∈ P ∧ i < c(r − 1) ∧ ¬ (i + 1) ≡ 0 (c) };

ENESW
= { (pi, pi+c−1) | i ∈ P ∧ i < c(r − 1) ∧ ¬ i ≡ 0 (c) }.

(12)

See Fig. 6 for an illustration of the above equation. Also note that it takes
into account the extremal positions of the grid. In fact, the parcels located in
the first column are the one whose index is a multiple of c, that is i ≡ 0 (c).
Moreover, the parcels located in the last column are the ones preceding those
that are located in the first column, that is (i + 1) ≡ 0 (c). Finally, the parcels
located in the last line are the ones satisfying i < c(r − 1).

Fig. 6. Illustration of a portion of a spatial graph Gs associated with a r × 4 square
grid, using the 8-connectivity neighborhood definition.

Expressing Spatial Criteria as Constraints. Similarly to what had been
defined for the resource allocation graph, to a solution S of the problem we
associate Xs ⊆ Vs. Moreover, to each reserve Xk ∈ S we associate Xs(k) ∈ Xs,
the vertices associated to the parcels of Xk. We now express each spatial criterion
as a constraint that can be applied on Gs[Xs].

Number of Reserves. We easily express this criterion by bounding the number
of connected components (NCC, [22–24]) in Gs[Xs].

Constraint 4: Number of Reserves.

Input parameter(s): Two positive integer Nmin and Nmax.
Ensuring that the number of reserves in S is bounded by Nmin and Nmax

is equivalent to bounding the NCC of Gs[Xs] with Nmin and Nmax.

Nmin ≤ NCC(Gs[Xs]) ≤ Nmax. (13)

516 D. Justeau-Allaire et al.

Reserve Areas. We express this criterion as a constraint on the number of
vertices of the smallest connected component of Gs[Xs] (MIN NCC, [23–25])
and on the number of vertices of the largest connected component of Gs[Xs]
(MAX NCC, [23–25]).

Constraint 5: Reserve Areas.

Input parameter(s): Two positive integer Amin and Amax.
Ensuring that the area of every reserve Xk ∈ S is bounded by Amin and
Amax is equivalent to constraining the lower bound of MIN NCC(Gs[Xs]) to
Amin and the upper bound of MAX NCC(Gs[Xs]) to Amax.

∀k ∈ �0, nr�, MIN NCC(Gs[Xs]) ≥ Amin;
MAX NCC(Gs[Xs]) ≤ Amax.

(14)

Reserve System Area. In the current case of a regular tessellation method, we
can control the whole reserve system’s area by bounding the norm of Xs.

Constraint 6: Reserve System Area.

Input parameter(s): Two positive integer ATmin
and ATmax

.
Ensuring that the total area of the reserve system is bounded by ATmin

and
ATmax

is equivalent to bounding |Xs|.

ATmin
≤ |Xs| ≤ ATmax

. (15)

4 The CP Model

In this section we present our CP model for the reserve design problem. For its
implementation, we rely on the solver Choco [16] and its extension Choco-graph
[26], which provides graph variables and constraints.

The Decision Variables. We naturally model the parcels with a boolean vari-
able array, named parcels. If the parcel i is selected in the reserve system,
parcels[i] = 1, else parcels[i] = 0.

BoolVar[] parcels = model.booVarArray("parcels", n);

These decision variables are the cornerstone of our CP model because they allow
us to aggregate the two models we introduced in the previous section.

Unifying Reserve Design Strategies with Graph Theory 517

The Feature Covering Constraints. Given the particular configuration of the
resource allocation graph, we are able to express each feature covering constraint
with several local flow conservation inequalities, one for each feature involved in
the constraint. Note that we would certainly benefit from the filtering of a global
flow constraint [27]. However, there is no such constraint implemented in Choco
at the time we are writing this paper. We thus keep this idea for future work.

Constraint 1, Covered Features (7): with local flow conservation inequalities, (7)
becomes:

∀j ∈ F ′,
n−1∑

i=0

bi × (vji ≥ 1) ≥ 1.

Below is the implementation with Choco 4, using the scalar constraint.

for (int j : featuresToCover) {

int[] coeffs = Arrays.stream(V[j])

.mapToInt(v -> (v >= 1) ? 1 : 0)

.toArray();

model.scalar(parcels, coeffs, ">=", 1).post();

}

Constraint 2, α-Covered Features (9): the coefficients in the scalar constraint
must be integers. We then retain only two digits of precision for the probabilities
of presence. If α ∈ [0, 0.99] then − log(1−α) ∈ [0, 2], moreover, with this precision
the order of the smallest variation between two values (α = 0 and α = 0.01) is
10−3, we thus multiply our local flow inequality by 103 in order to stay in the
integer domain. If vji ≥ 1, we set the flow upper bound to −103 log(1−0.999) =
3000 as a replacement for +∞ .Consequently, we reduce (9) to:

∀j ∈ F ′,
n−1∑

i=0

bi × min(−103 log(1 − vji), 3000) ≥ −103 log(1 − α).

Below is the implementation with Choco 4.

for (int j : featuresToCover) {

int[] coeffs = Arrays.stream(V[j])

.mapToInt(

v -> (v >= 1) ? 3000 : (int) (-1000 * Math.log10(1 - v)))

.toArray();

int scaled = (int) (-1000 * Math.log10(1 - alpha));

model.scalar(parcels, coeffs, ">=", scaled).post();

}

Constraint 3, k-Redundant Features (10): similarly, we reduce (10) to:

∀j ∈ F ′,
n−1∑

i=0

bi × (vji ≥ 1) ≥ k.

518 D. Justeau-Allaire et al.

And implement it the following way with Choco 4:

for (int j : featuresToCover) {

int[] coeffs = Arrays.stream(V[j])

.mapToInt(v -> (v >= 1) ? 1 : 0)

.toArray();

model.scalar(parcels, coeffs, ">=", k).post();

}

The Spatial Constraints. We rely on Choco-graph to express the spatial
constraints in our CP Model. First, we use a graph variable g to model the
reserve system. Its kernel is the empty graph (GLB in the code), and its envelope
is Gs (GUB in the code).

UndirectedGraph GLB = new UndirectedGraph(model, n, BIPARTITESET, false);
UndirectedGraph GUB = new UndirectedGraph(model, n, BIPARTITESET, false);
for (int i = 0; i < n; i++) {

GUB.addNode(i);

for (int ii : getNeighbors(i)) {

GUB.addEdge(i, ii);

}

}

UndirectedGraphVar g = model.graphVar("g", GLB, GUB);

Then, we link the graph variable g with the boolean variables parcels using
the nodesChanneling constraint.

model.nodesChanneling(g, parcels).post();

We also force the existence of an edge between two selected adjacent parcels
through an edgeChanneling constraint with a reified and constraint between
each pair (i1, i2) of adjacent parcels. Doing so, we ensure that every existing
edges between two selected vertices are also present in our graph variable.

BoolVar forceEdge = model.and(parcels[i1], parcels[i2]).reify();

model.edgeChanneling(g, forceEdge, i1, i2).post();

Constraint 4, Number of Reserves (13): we use the nbConnectedComponents
and the arithm constraints.

IntVar nbCC = model.intVar("nbCC", Nmin, Nmax);

model.nbConnectedComponents(g, nbCC).post();

Constraint 5, Reserve Areas (14): at the time we are writing this paper, there
is no constraint in Choco-graph for controlling the MIN NCC and MAX NCC graph
properties. We thus implemented the sizeConnectedComponents1 constraint,
which allows us to bound MIN NCC and MAX NCC.

1 https://gist.github.com/dimitri-justeau/8098af35824bbf8d52ef21282291e621.

https://gist.github.com/dimitri-justeau/8098af35824bbf8d52ef21282291e621

Unifying Reserve Design Strategies with Graph Theory 519

model.sizeConnectedComponents(g, Amin, Amax).post();

Constraint 6, Reserve System Area (15): we can control the number of vertices
of Gs (that is, the number of parcels) through the nbNodes graph constraint, or
through the sum constraint over the decision variables.

IntVar nbParcels = model.intVar(Atmin, Atmax);

model.nbNodes(g, nbParcels).post(); // Option 1

model.sum(parcels, "=", nbParcels).post(); // Option 2

5 Use Case: Rainforest Fragmentation in New Caledonia

New Caledonia is biodiversity hotspot located in the South Pacific, slightly north
of the tropic of the Capricorn. The flora of this large archipelago is distinguished
by an exceptionally high rate of endemism. Like most of the world’s remaining
natural forests, New Caledonian rainforests are endangered with surface loss and
fragmentation. A case study had been conducted in the south of New Caledonia
in order to highlight “how does forest fragmentation affect tree communities”
[28]. We relied on this case study and its associated dataset (up to date) for our
use case, and considered the following fictive but realistic operational scenario:

“We want to establish a reserve system in which a pool of endangered
species must be present. In addition, most of the other species known in the
area must have a high probability to occur, or a high habitat suitability. The
reserve system must be mostly covering rainforest areas. Its area and its
number of reserves must be limited because of budget limitation. Moreover,
each reserve must be large enough to ensure the persistence of the species.”

Note. In this scenario, the objective is to protect both existing and poten-
tial rainforest areas. To do so, we relied on SDM layers that were generated
with presence-only data and thus produce a score of habitat suitability rather
than a standardized probability of presence. A high habitat suitability in a non-
rainforest zone can then be interpreted as an adequate zone for recolonization.

5.1 Input Data, Constraints and Parameters

The original dataset consists of the mapping of a 60 km2 landscape where 97 tree
communities had been sampled in 88 digitized rainforest fragments (forest/non-
forest). The dataset gathers 5431 identified trees belonging to 223 species. More-
over, an SDM raster layer was available for 173 of the species [29,30]. Arbitrarily,
we considered the 50 species without SDM as the endangered ones. We then pre-
pared this dataset by tessellating the study area into a 46 × 75 regular square
grid and by rasterizing the dataset according to this grid. Each parcel then has

520 D. Justeau-Allaire et al.

an area of about 1.7 ha. Note that we also defined a set of forbidden parcels
corresponding to lakes and mining sites.

From this point, we defined a feature for each observed species in the area.
When available, we relied on the SDM layer for the feature data (probability of
presence data). We forced the values to 1 for the parcels where an observation is
available. When no SDM was available, we only relied on the occurrence dataset
(presence-absence). We represented the rainforest coverage as a presence-absence
feature.

We then applied the Covered Features constraint for the set of endangered
species, and the α-Covered Features constraint for the other species with α = 0.8.
In order to ensure a minimum rainforest area of 340 ha in the reserve system, we
applied the k-Redundant Features constraint for the rainforest coverage, with
k = 200 parcels. Moreover, we enforced the forbidden parcels on the enve-
lope of the graph variable g. We then set the minimum area of the reserves
to Amin = 176 parcels (about 300 ha) with the Reserve Areas constraint. In
addition, we limited the reserve system area using the Reserve System Area con-
straint, with Atmax

= 589 parcels (about 1000 ha). According to those restrictive
parameters, we allowed the number of reserve to be at most two, using the Num-
ber of Reserves constraint, with Nmin = 1 and Nmax = 2.

5.2 Questioning and Results

In the first place, the number of reserves and the number of parcels are criti-
cal parameters of our use case: the less the better. This is why we started by
implementing a search strategy that starts by branching on the lower bound of
the nbCC variable and continues by selecting the lower bound of the parcels
variables, sorted in descending order by a score corresponding to the number of
features with a value greater than 0.6 (cf. 7). The solver quickly found a solution

Fig. 7. Mapping of the use case best solutions. The parcel scores correspond to the
heuristic score and the mandatory occurrences to rare species observed only once in
the study area (they must then be covered by any solution).

Unifying Reserve Design Strategies with Graph Theory 521

Table 1. Use case results: resolution times and solution characteristics. All experiments
were run on an Intel Core i5-5200U CPU (2.20 GHz × 4), with 7.7 GB of RAM.

DP OP1 OP2

Resolution time 28 s 3 h 24 m 1 h 5 m

Number of solutions found 1 8 25

Number of reserves 1 1 1

Number of parcels 318 292 328

Number of rainforest parcels 200 200 224

to the decision problem (DP), as summarized in Table 1. Given that, we ran a
first optimization problem (OP1) where we tried to minimize the total area of
the reserve system, that is the nbParcels variable. We limited the computation
time to 4 h and retrieved the best solution found, which reduced the total area by
8% in comparison to DP (cf. Table 1). In order to cover more rainforest parcels,
we ran a second optimization problem (OP2) in which we forced the nbParcels
variable to be within 15% of the best value found in OP1, and tried to maximize
k (the number of forest parcels), thus defined as an integer variable. After a
limited run of 4 h, we could increase the area of rainforest by 12% (cf. Table 1).
A mapping of our results is provided in Fig. 7.

6 Conclusion and Challenges

To the best of our knowledge this paper tackles, for the very first time, the reserve
design problem from a constraint programming point of view. It is also the first
time that a reserve design model integrates such a diversity of constraints, simul-
taneously involving decisions based on occurrences, SDMs and spatial attributes
with an exact approach. Although performance enhancements are needed, the
combination of graph-based modeling and constraint programming reveals as a
powerful and promising framework for dealing with the reserve design problem.

Based on a challenging use case, our model highlighted a solution compatible
with the conservation strategy, namely a trend to link isolated forest patches in
order to enhance the functioning of tree communities. However, in this use case
we restrained to a binary landscape only composed of forest/non-forest while it
is often assumed that a reserve system must include an assemblage of several
landscape types. In such a mosaic, an important challenge lays in weighting and
balancing the reserve system characteristics and shape in order to maintain (or
restore) the functional connectivity inside and between the reserves. In fact, the
functional isolation of an habitat leads to a reduction of biological flows, which
tends to amplify its spatial isolation. Moreover, since the underlying processes
are dynamic, robust solutions must rely both on the current state and future
scenarios. It also remains to model the impacts of a reserve system on the off-
reserve area, such as the creation of boundaries or enclosed areas.

522 D. Justeau-Allaire et al.

These elements lead us to identify several lacks and challenges. First of all,
the main lack is that Choco solver does not offer an implementation of the flow
constraint [31,32]. We will focus on its implementation in future work. Next, a
bottleneck in the constraint propagation is the interaction between the constraint
on the number and the size of the connected components [25]. We actually treat
each one independently but we think that there is a possible enhancement of
the filtering by dealing with their interaction. A first challenge for future work
concerns our capacity to model constraints on the shape of the reserves by using
graph properties, such as graph diameter, in order to design reserves that are
compatible with the long-term persistence of species. A second challenge is more
oriented to decision making aspects such as identifying key areas that have to
be present in any solution. Finally, a last challenge is related to our capacity to
take a dual point of view: is it possible to take into account managers’ needs on
the off-reserve area by adding constraints on the same graph representation?

References

1. Beier, P., Spencer, W., Baldwin, R.F., McRAE, B.H.: Toward best practices for
developing regional connectivity maps. Conserv. Biol. 25(5), 879–892 (2011)

2. Baguette, M., Blanchet, S., Legrand, D., Stevens, V.M., Turlure, C.: Individual
dispersal, landscape connectivity and ecological networks. Biol. Rev. 88(2), 310–
326 (2013)

3. Haddad, N.M., et al.: Habitat fragmentation and its lasting impact on Earths
ecosystems. Sci. Adv. 1(2), e1500052 (2015)

4. Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., Gibbons, D.W.:
Rare species, the coincidence of diversity hotspots and conservation strategies.
Nature 365(6444), 335–337 (1993)

5. Sarkar, S.: Environmental philosophy: from theory to practice. Stud. History Phi-
los. Sci. Part C Stud. History Philos. Biol. Biomed. Sci. 45, 89–91 (2013)

6. Pressey, R.L., Humphries, C.J., Margules, C.R., Vane-Wright, R.I., Williams, P.H.:
Beyond opportunism: key principles for systematic reserve selection. Trends Ecol.
Evol. 8(4), 124–128 (1993)

7. ReVelle, C.S., Williams, J.C., Boland, J.J.: Counterpart models in facility location
science and reserve selection science. Environ. Model. Assess. 7(2), 71–80 (2002)

8. Billionnet, A.: Solving the probabilistic reserve selection problem. Ecol. Model.
222, 546–554 (2011)

9. Watts, M.E., et al.: Marxan with Zones: software for optimal conservation based
land- and sea-use zoning. Environ. Model. Softw. 24(12), 1513–1521 (2009)

10. Diamond, J.M.: The island dilemma: lessons of modern biogeographic studies for
the design of natural reserves. Biol. Conserv. 7(2), 129–146 (1975)

11. Williams, J.C., ReVelle, C.S., Levin, S.A.: Spatial attributes and reserve design
models: a review. Environ. Model. Assess. 10(3), 163–181 (2005)

12. Billionnet, A.: Designing connected and compact nature reserves. Environ. Model.
Assess. 21(2), 211–219 (2016)

13. Dilkina, B., et al.: Trade-offs and efficiencies in optimal budget-constrained multi-
species corridor networks. Conserv. Biol. 31(1), 192–202 (2017)

14. Jafari, N., Nuse, B.L., Moore, C.T., Dilkina, B., Hepinstall-Cymerman, J.: Achiev-
ing full connectivity of sites in the multiperiod reserve network design problem.
Comput. Oper. Res. 81, 119–127 (2017)

Unifying Reserve Design Strategies with Graph Theory 523

15. Rodrigues, A.S., Cerdeira, J.O., Gaston, K.J.: Flexibility, efficiency, and account-
ability: adapting reserve selection algorithms to more complex conservation prob-
lems. Ecography 23(5), 565–574 (2000)

16. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation (2017)
17. Sahr, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Car-

tography Geogr. Inf. Sci. 30(2), 121–134 (2003)
18. Birch, C.P.D., Oom, S.P., Beecham, J.A.: Rectangular and hexagonal grids used for

observation, experiment and simulation in ecology. Ecol. Model. 206(3), 347–359
(2007)

19. Guisan, A., Zimmermann, N.E.: Predictive habitat distribution models in ecology.
Ecol. Model. 135(2), 147–186 (2000)

20. Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and
prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009)

21. Etienne, R.S., Heesterbeek, J.A.: On optimal size and number of reserves for
metapopulation persistence. J. Theor. Biol. 203(1), 33–50 (2000)

22. Dooms, G.: The CP(Graph) Computation Domain in Constraint Programming.
Ph.D. thesis, UCL - Université Catholique de Louvain (2006)

23. Beldiceanu, N., Carlsson, M., Rampon, J.X., Truchet, C.: Graph Invariants as Nec-
essary Conditions for Global Constraints. Swedish Institute of Computer Science
(2005)

24. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Graph properties based
filtering. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 59–74. Springer,
Heidelberg (2006). https://doi.org/10.1007/11889205 7

25. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global Constraint Catalog, 2nd edn.,
(Revision A). Swedish Institute of Computer Science (2012)

26. Fages, J.G., Prud’homme, C., Lorca, X.: Choco Graph Documentation, February
2018

27. Bockmayr, A., Pisaruk, N., Aggoun, A.: Network flow problems in constraint pro-
gramming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 196–210. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7 14

28. Ibanez, T., Hequet, V., Chambrey, C., Jaffré, T., Birnbaum, P.: How does forest
fragmentation affect tree communities? a critical case study in the biodiversity
hotspot of New Caledonia. Landscape Ecol. 32(8), 1671–1687 (2017)

29. Pouteau, R., et al.: Accounting for the indirect area effect in stacked species distri-
bution models to map species richness in a montane biodiversity hotspot. Divers.
Distrib. 21(11), 1329–1338 (2015)

30. Schmitt, S., Pouteau, R., Justeau, D., Boissieu, F., Birnbaum, P.: SSDM: an R
package to predict distribution of species richness and composition based on stacked
species distribution models. Methods Ecol. Evol. 8(12), 1795–1803 (2017)

31. Steiger, R., van Hoeve, W.J., Szymanek, R.: An efficient generic network flow
constraint. In: Proceedings of the 2011 ACM Symposium on Applied Computing,
SAC 2011, pp. 893–900. ACM, New York (2011)

32. Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In:
Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp.
146–162. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-
8 10

https://doi.org/10.1007/11889205_7
https://doi.org/10.1007/3-540-45578-7_14
https://doi.org/10.1007/978-3-642-29828-8_10
https://doi.org/10.1007/978-3-642-29828-8_10

Self-configuring Cost-Sensitive
Hierarchical Clustering with Recourse

Carlos Ansotegui1, Meinolf Sellmann2, and Kevin Tierney3(B)

1 University of Lleida, Lleida, Spain
carlos@diei.udl.cat

2 General Electric, Global Research Center, Niskayuna, USA
meinolf@ge.com

3 Bielefeld University, Bielefeld, Germany
kevin.tierney@uni-bielefeld.de

Abstract. We revisit algorithm selection for declarative programming
solvers. We introduce two main ideas to improve cost-sensitive hierarchical
clustering: First, to augment the portfolio builder with a self-configuration
component. And second, we propose that the algorithm selector assesses
the confidence level of its own prediction, so that a more defensive recourse
action can be used to overturn the original recommendation.

1 Introduction

Constraint programming is the quintessential outcome of a consequent pursuit
of the declarative programming paradigm. The movement started with logic
programming half a century ago. The idea of declarative programming is, in
essence, to free the user from the task of directing the process flow of a computer.
Instead, the user can declare which properties a solution ought to have, and
leaves the task of providing such solutions entirely to the machine. The desired
properties can be understood as constraints on the solution, thus leading directly
to constraint programming.

If we take the word programming literally, the task of the compiler in con-
straint programming is to translate the constraint program into a process flow
that can be executed on a computer. One of the key aspects of constraint pro-
gramming research has therefore been the provisioning of ever more efficient
solvers, i.e., programs that find solutions for constraint programs.

A key observation has been that different algorithms for solving constraint
programs1 work with incomparable efficiency on different problem instances.
That is, one solver may work really well on instance A, but takes a very long
time to solve instance B, while another solver may solve that same instance B
very quickly and yet cannot solve instance A in any practically affordable time.

This work was financially supported in part by TIN2016-76573-C2-2-P.
1 We use the term constraint program to describe all related declarative programming

problems, such as mathematical programming, satisfiability, sat modulo theories,
quantified Boolean formulae, and of course actual constraint programming.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 524–534, 2018.
https://doi.org/10.1007/978-3-319-98334-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_34&domain=pdf

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 525

Consequently, in a seminal paper, [5] propose the use of an algorithm port-
folio and show that significant performance gains can be achieved even when
combining solvers, which each provide outstanding performance only on rather
specific types of instances. Combined in one portfolio, however, robust perfor-
mance across a wide range of instances can be provided, and by combining these
complementary islands of excellence, superior performance is achieved.

In this paper, we revisit algorithm selection by means of cost-sensitive hierar-
chical clustering (CSHC). We introduce the idea of assessing the self-confidence
of the classification model and propose two recourse actions that can be taken
when the confidence in the solver recommendation is low. We then show how
this technology, which we call Recourse-CSHC, can be customized and tuned
automatically for building highly efficient, specific solver portfolios for a variety
of declarative programming problems. Experiments on the standard algorithm
selection library [2] show that Recourse-CSHC defines a new state of the art in
solver portfolio generation.

2 Related Work on Algorithm Selection

The key ingredient for a solver portfolio is an algorithm selector and scheduler
(AS2). While not a constraint solver in or by itself, the AS2 handles the impor-
tant managerial front end to a solver portfolio and decides which solver or solvers
are best suited to tackle a given constraint programming instance. It thus turns
a set of solvers, each with specific capabilities that do not generalize holistically,
into one solver that works robustly across a wide range of instances. In this way
it catapults performance to an unknown level.

Since the inception of solver portfolios, our technological ability to provide
highly effective AS2s has drastically improved. In the beginning, so-called empir-
ical hardness models of solvers were used to predict how well the respective
solver would do on a given problem instance [6]. This led to a SAT portfolio
called SATzilla that dominated the international SAT competitions for many
years [14]. It was then discovered that the forecasting of the actual solver per-
formance on a given instance is an unnecessary and, in fact, detrimental detour.
Instead, a classification of which solver to run based on a cost-sensitive nearest
neighbor approach turned out to work better [4]. A follow-up paper to this work
was [12] where a sequence of cost-sensitive classifiers was used to provide more
robust classifications. A revised SATzilla-2012 [15] then proposed to use binary
cost-sensitive classification for each pair of solvers. The solver with the most
pairwise “wins” is then chosen for the instance at hand.

[4] also introduced a highly efficient method for building solver schedules
based on column generation. The fact that schedules can be highly effective had
already shown earlier by the CP-Hydra approach [13]. The reason why solver
schedules can be effective is precisely because an instance that takes one solver
hours or days to solve could be extremely easy to tackle for another solver that
provides a solution within seconds.

526 C. Ansotegui et al.

In [11], a static schedule of solvers is used for 10% of the total available time.
Only when no solver in the schedule is able to solve the instance, instance features
are computed and a direct, cost-based multi-classification approach called cost-
sensitive hierarchical clustering (CSHC) is used to determine which solver will
get run for the remaining allowed time.

The current most efficient AS2 for selecting the quickest solvers, according
to the Open Algorithm Selection Challenge from 2017 [7,8], is called SUNNY-
fkvar [10]. This approach combines the idea of cost-sensitive nearest-neighbor
classification with scheduling. Namely, for the given instance, the k nearest neigh-
bors are computed, and then a scheduler is built at runtime which would solve
the most of these neighbors in the shortest time.

3 Cost-Sensitive Hierarchical Clustering

CSHC [11] performs cost-sensitive multi-classification directly, without building
individual models for all pairs of solvers as in SATzilla-2012, which creates a
significant computational burden when training a new portfolio. The construc-
tion works very much like a random forest. For each new tree, only a subset of
features are allowed to be used, and a sub-sample (with replacement) is built
from the total training set. The training set for the solver selector consists of
two tables. The first provides features for each problem instance. The second
contains the performance of each solver in the portfolio for each instance.

To build a tree, we first put all sub-sampled instances into the root node.
Then, we consider instance features and respective feature values and assess how
well the corresponding bi-partition of instances in the node would affect some
surrogate objective function. Usually, this is done by iterating over all allowed
features for the current tree, and then considering splitting values as induced by
the set of instances in the current node.

In regular decision trees, we greedily aim to minimize entropy, which becomes
the surrogate when splitting each node recursively. In the case of cost-sensitive
hierarchical clustering, we aim to split the set of instances in the current node in
such a way that each of the two new subsets can agree on one compromise solver
that would solve all instances in the respective subset with best performance.
Note that this compromise solver may not be the best solver for any instance in
the respective subset of instances.

The process of splitting nodes in the tree is repeated until a stopping criterion
is reached. In CSHC there are three: A maximum depth limit, a limit on the
minimum number of instances that remain in each node, and a comparison of
the performance that is achieved when solving all instances in the current node
with the same solver and the performance that is achieved when solving each
partition with its respective best solver. Once the performance gained in this
way is no longer above a certain threshold, the recursive bi-partition stops.

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 527

At runtime, we compute the features of the given instance and run it through
each tree until we reach a leaf node. In [11], various methods are introduced for
selecting which solver to run. The method we use here is called rank-based
selection: For each leaf node, we order all solvers according to their performance
on the instances associated with that leaf, thus giving solvers a rank for each
leaf node. The solver that has the best sum of all ranks (over all leaves the test
instance falls into) is chosen to tackle the given instance.

4 Classification Confidence and Recourse

Whenever a machine learning model – such as the cost-sensitive classification
model we reviewed above – makes a recommendation, one might ask how confi-
dent we should be in the recommendation. Questions we might ask are: Was the
class that is recommended a narrow winner, or did it win by a large margin? In a
cost-sensitive setting, we might ask if the performance advantage of the winning
class was significant or was it very narrow?

When our confidence in the recommendation is low, the obvious next question
to ask is, what can we do about it? Is there more reasoning that we could do to
gain more confidence in our recommendation? Is there another recommendation
we could make that may not offer much probability for stellar performance but
that has a lower probability of causing a high penalty?

4.1 Confidence Assessment

To assess confidence in a recommendation, it is important to understand the
nature of cost-sensitive classification first. Just because a second solver might
also promise good performance does not mean that we need to be concerned
about our choice. There is not just one correct class we have to choose, and even
the second-best option may still give very good performance.

To compute a proxy for confidence, we consider the multi-set of training
instances that fall into the same leaves as the test instance. For this multi-set,
we compute the average solver performance, the standard deviation σ over the
various solver performances, and the performance of the best solver on these
instances. Then, we compute how many standard deviations above average the
best solver actually performs. We use this value as a proxy for confidence.

To give a concrete example, assume there are four solvers, with performances
50, 100, 200 and 250. The average performance is 150, the standard deviation σ
is slightly larger than 91. This means, the best solver (with performance 50) is
a bit more than one σ better than the average solver.

When the best solver is multiple σ better than the average, we may feel rather
confident in our choice. Once the advantage over an average solver becomes
slimmer, though, this may indicate that some solvers are really good on some
instances closely related to the test instance, while other solvers are good on
others. In this case, we should rightfully fear that the test instance is one of
those for which the solver recommended by CSHC does not do too well.

528 C. Ansotegui et al.

4.2 Recourse Actions

If confidence is low, we may want to consider hedging our risks. Choosing any
other solver is not going to make us feel any better about our choice, as obvi-
ously their advantage over average performance is even less pronounced than the
initially recommended solver. Instead, we can consider to invoke a schedule of
solvers. We suggest two concrete options for recourse actions.

Static Recourse Schedule: The first recourse action we can take, if we have
reason to believe that betting everything on just one solver is too risky, is to
invoke a static schedule of solvers that is computed up-front at training time. We
run this schedule for a certain percentage of the total time available (e.g., 40%),
and for the rest of the time we then invoke the solver recommended by CSHC.
The reasoning here is to use a robust schedule that works well across all training
instances in case we are not confident with choosing just one solver.

Dynamic Recourse Schedule: The second recourse alternative is to devise
a dynamic schedule that would perform well on the multi-set of instances most
closely related to the given test instance (defined exactly in the same way as we
did to assess CSHC confidence).

5 Configuring the Algorithm Selector

5.1 Importance of Calibration

The methodology outlined above has a number of parameters and, depending on
the portfolio at hand, we need to adjust them accordingly to obtain an effective
AS2. For example, what is the confidence threshold we should use to switch
from running a single recommended solver to a schedule of solvers? Or, consider
the time given to a static scheduler that runs for some duration of time at the
beginning. Two extreme cases illustrate the problem.

In the first case, assume we have a very long timeout and very few algorithms
in the portfolio, say, three. Assume further that each training instance can be
solved by only one solver, and that in a fraction of the timeout, say, less than
one tenth of the total time allowed. In this case, running each solver for 11%
of the time upfront seems like a really good idea, because we can expect that
this scheduler will effectively solve most test instances, which we expect to have
similar characteristics as our training instances. For the remaining two thirds of
the time, we may then run one selected solver.

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 529

Contrast this with the case where we again have three solvers in the portfolio,
and we find in the training data that each instance can be solved by at least
two solvers, but even the fastest needs at least 95% of the timeout. In that case,
running a scheduler for one third of the time upfront is obviously a terrible idea.

There are various ways to cope with the need for calibration. One is to let
the user set the parameters. Another is to put hard-coded rules into the training
process that will set the parameters accordingly. Our solution is to be completely
data-driven and exploit an automatic algorithm configurator for this purpose.
That is to say, we use the training data, split it into various base and validation
sets, then build an AS2 using the information in the base set, for a specific
setting of the parameters, and then evaluate the AS2 on the validation set, to
assess how well the AS2 can be expected to perform.

This self-configuration is in the same spirit as the AutoFolio approach
from [9]. In the latter, the authors train portfolio parameters, for example to
determine parameters for pre-schedulers, to select which selection mechanism
is used, for example cost-sensitive k-NN as in 3S, or an ensemble of pairwise
cost-sensitive random forests as in Satzilla’11, and to set the parameters of the
respective selection mechanism. In essence, AutoFolio is thus a portfolio of AS2s.
In contrast, we only tune one AS2 approach, namely CSHC, but the latter with
the ability to overrule its own recommendation and with an integrated scheduling
mechanism.

5.2 Gender-Based Genetic Algorithm Configuration

We use gender-based genetic programming (GGA) for tuning [1]. GGA splits
the population of parameterizations in two parts. One part is competitive and
fiercely fights for the right of mating, exerting great selection pressure and a
massive drive for improving parameterizations very quickly. The other gender is
non-competitive and is essential in providing diversity to balance the diversity
threatening optimization pressure that the competitive gender exerts on the
population. The use of an evolutionary approach offers the additional advantage
of being inherently parallel. For more details, we refer to [1].

5.3 Parameters of CSHC-Recourse

There are eleven core parameters, seven that regard the original CSHC, and four
new parameters that will guide the recourse actions. Below is a list of the original
CSHC parameters, followed by the four parameters for the recourse mechanism:

530 C. Ansotegui et al.

A1 Static Schedule Timelimit: Time limit for a short schedule up-front before a long-running

solver is chosen to get instances taken care of for which one solver is extremely efficient.

This parameter decides what percentage of the total available time will be used upfront.

Type: Continuous. Range: 0%–100%.

A2 Number of Trees: The forest built by CSHC consists of trees. This parameter determines

how many. Type: Ordinal. Range 20–500.

A3 Sub-sampling Size: To build a new tree, we sub-sample (with replacement) the training

instances first, to build a new randomized base set for training the tree. This parameter

determines the size of the sub-sample as a percentage of the total number of training

instances. Type: Continuous. Range: 65%–75%.

A4 Feature Set Size: To build a new tree, we also reduce the number of features by taking a

random subset of features that may be branched on by the tree. This parameter

determines the size of this subset as a factor of the square root of the total number of

instance features. Type: Continuous. Range: 0.25–4.0.

A5 Minimum Cluster Size: When building a new tree, we stop the recursive branching when

the number of instances in the current node falls below a certain threshold. This

parameter determines this threshold. Type: Ordinal. Range: 1–20.

Tree Depth Limit: We also stop the recursion when the tree would exceed a certain

depth, which this parameter specifies. Type: Ordinal. Range: 1–100.

A7 Minimum Improvement Threshold: This parameter determines when to stop the

recursion in the tree building procedure, defined as when splitting the current node no

longer gives any significant advantage. We consider the cost of solving all instances in

the current node with the best solver for this set, and divide it by the sum of the costs to

solve both suggested partitions if each were solved by its respective best solver. If this

ratio is above the threshold that this parameter represents, we stop the recursion. Type:

Continuous. Range: 0.5–1.0.

B1 Recourse Confidence Threshold: When the confidence falls below this threshold, we

trigger a recourse action. The confidence is computed as the number of standard

deviations that the performance of the recommended solver lies above the average

performance of all solvers. Type: Continuous. Range: 0.0–5.0.

B2 Dynamic Recourse Threshold: The default recourse is to fall back on a static schedule.

However, when the confidence falls even below the threshold given by this parameter, we

compute a dynamic schedule optimized for the instances most related to the current test

instance. Type: Continuous. Range: 0.0–5.0.

B3 Static Recourse Schedule Timelimit: When the confidence is below the Recourse

Confidence Threshold, but above the Dynamic Recourse Threshold, we run a static

schedule that is optimized for all training instances. This parameter specifies the time

limit for this schedule as a percentage of the total available time. Only after this

schedule is executed, the CSHC recommended solver is run for the remaining available

time. Type: Continuous. Range: 20%–100%.

B4 Dynamic Recourse Schedule Timelimit: When the confidence is below both the Recourse

Confidence and Dynamic Recourse Thresholds, we run a schedule of solvers specifically

optimized at runtime. This parameter determines the allowed time for this schedule, as a

percentage of the total time available. Only after this schedule is executed, the CSHC

recommended solver run for the remaining available time. Type: Continuous. Range:

20%–100%.

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 531

Table 1. OASC 2017 declarative programming scenarios

Name #Instances #Solvers #Features VBS Best single solver

MiniZinc-Time-2016 100 8 95 14 1274

SAT12-All 1614 31 115 376 11691

SAT03-16 Indu 2000 10 483 294 3544

QBF-2016 825 24 46 13 2328

MaxSAT-PMS-2016 601 19 37 42 1220

MaxSAT-WPMS-2016 630 18 37 93 1435

MIP-2016 218 5 143 246 2381

6 Experimental Analysis

In Table 1 we list the declarative programming scenarios from the 2017 Open
Algorithm Selection Challenge [7,8], which covered a wide array of declarative
programming domains: Three regard constraint programming and satisfiability,
one is on quantified Boolean formulae, two tackle maximum satisfiability, and
one is on mixed integer programming. The table shows the characteristics of
each benchmark. We use the same train/test split as was given in the algorithm
selection challenge, which consists of a specific two-third/one-third split of all
instances in the respective benchmark. Self-configuring CSHC-Recourse took
between 8 and 12 wall clock hours on a cluster with five 8-core CPUs, depending
on the respective OASC benchmark.

All solvers and portfolios are measured by their average PAR10 runtime over
all test instances. That is, if a solver or portfolio cannot solve an instance within
the benchmark specific time limit, then the penalty for this instance becomes
ten times the limit. For all other instances, the cost is exactly the time that was
needed to solve the instance.

Table 2. Parameters of CSHC-Recourse on OASC 2017 benchmarks

Name A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4

CSHC default 0.1 500 0.7 0.7 1 100 0.95 N/A N/A N/A N/A

MiniZinc-Time-2016 0.2 100 0.75 0.9 10 5 0.6 4.6 0.8 0.2 0.6

SAT12-All 1.0 200 0.71 0.25 9 4 0.5 3.0 1.0 0.22 0.6

SAT03-16 Indu 0.01 500 0.75 0.22 5 20 0.93 0.24 0.3 2.95 0.5

QBF-2016 0.15 200 0.68 1.2 3 100 0.95 3.66 0.9 0.8 0.8

MaxSAT-PMS-2016 0.1 500 0.74 1.1 2 15 0.9 3.8 0.6 1.5 0.6

MaxSAT-WPMS-2016 0.0 500 0.75 4.0 1 100 0.7 1.9 0.6 0.12 0.8

MIP-2016 0.1 500 0.7 0.7 1 100 1.0 4.98 0.8 3.4 0.4

532 C. Ansotegui et al.

Table 3. Comparison of various portfolio builders on OASC 2017

Name Sunny zilla CSHC

default

CSHC

no recourse

CSHC

recourse

MiniZinc-Time-2016 128 91.0% 473 63.6% 885 30.9% 112 92.2% 126 91.1%

SAT12-All 4248 65.8% 5072 58.5% 7848 34.0% 7848 34.0% 2734 79.2%

SAT03-16 Indu 3517 0.8% 2974 17.6% 3464 2.5% 2905 19.7% 2836 21.8%

QBF-2016 1011 56.9% 476 80.0% 382 84.1% 382 84.1% 286 88.2%

MaxSAT-PMS-2016 545 57.2% 639 49.3% 646 48.7% 778 34.5% 635 49.6%

MaxSAT-WPMS-2016 213 91.0% 872 41.9% 629 60.1% 495 70.0% 408 76.5%

MIP-2016 1459 43.2% 1365 47.6% 2344 1.8% 2246 6.3% 1299 50.7%

Average 57.99% 51.2% 37.4% 48.7% 65.3%

Table 1 shows the average PAR10 score on the test sets for the virtual best
solver (VBS), a perfect oracle that chooses the best solver for each instance. As
a further reference point, we show the average PAR10 performance of the single
best solver on each respective test set, regardless of whether this solver would
also perform best on the respective training set or not. In the competition, each
portfolio’s performance is normalized by these two values, with single best solver
at 0, and the VBS at 1.

In Table 3, we show the PAR10 and normed performance for Sunny-fkvar [10]
(the winner of the OASC 2017 for time tuning tasks as we are considering here),
the latest incarnation of zilla [3] (which most closely resembles the cost-sensitive
classification in the original CSHC), and three variants of CSHC: The non-tuned
default version, the tuned original version (where we split the training set 50 times
into 67% base and 33% validation to assess the effect of different parameter settings
that are tuned by GGA), and the tuned version of the new CSHC with recourse.

We first observe the benefits of using solver portfolios. Even without consid-
eration of the concrete benchmark, the un-tuned CSHC closes more than one
third of the gap between single best solver and VBS, leading to an average solver
speedup of a factor slightly larger than 2.

We further see, by comparing CSHC-Default performance with CSHC-No-
Recourse, that configuring CSHC is an important step for achieving near state-
of-the-art performance. In Table 2 we give an overview of the different param-
eterizations which shows that the different strategies that the automatic tuner
prescribed differ significantly for different benchmarks.

The table also shows the significant gains that can be obtained by falling back
to a more conservative recourse action when we do not have a significant front-
runner solver. A more detailed look into QBF-2016, e.g., reveals that we override
CSHC 194 times. Out of these, 191 overrides make no significant difference,
because CSHC would have already solved the instance within the timeout, and
so does the recourse scheduler. For 3 instances, however, CSHC would not have
solved the instance, while the recourse scheduler managed to do so. On the other
hand, on this benchmark we never observe that the recourse scheduler cannot
solve the instance in time, while the plain CSHC AS2 can. As the Minizinc-
Time-2016 benchmark shows, this is not necessarily the case in general, though.

Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse 533

Overall, we see that self-configuration and recourse scheduling lead to very
significant performance improvements. On average, the new methodology closes
about two thirds of the gap between single best solver (for the test set!), and a
perfect oracle that does not even compute instance features and yet miraculously
picks the best solver for each problem instance.

7 Conclusion

We introduced two ideas to improve cost-sensitive hierarchical clustering (CSHC)
portfolios: To augment CSHC with a recourse scheduler that kicks in when-
ever our confidence in CSHC’s recommendation is low, and to self-tune CSHC,
including its recourse behavior, with respect to the concrete training data at
hand. Experiments on seven different benchmarks show that these ideas lead to
a new state of the art when it comes to providing cutting edge solver selection
and scheduling for a wide range of declarative programming applications.

Acknowledgements. We thank the Paderborn Center for Parallel Computation
(PC2) for the use of their high throughput cluster and Marius Lindauer for his kind
help with the OASC benchmarks.

References

1. Ansotegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)

2. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell.
237, 41–58 (2016)

3. Cameron, C., Hoos, H.H., Leyton-Brown, K., Hutter, F.: OASC-2017: *zilla sub-
mission. In: Open Algorithm Selection Challenge 2017, pp. 15–18 (2017)

4. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: CP, pp. 454–469 (2011)

5. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: IJCAI, pp. 1542–1543 (2003)

6. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:
methodology and a case study on combinatorial auctions. J. ACM (JACM) 56(4),
22 (2009)

7. Lindauer, M., van Rijn, J., Kotthoff, L.: Open algorithm selection challenge 2017:
setup and scenarios. In: Open Algorithm Selection Challenge 2017, pp. 1–7 (2017)

8. Lindauer, M., van Rijn, J.N., Kotthoff, L.: The Algorithm Selection Competition
Series 2015–17. ArXiv e-prints, May 2018

9. Lindauer, M., Hutter, F., Hoos, H.H., Schaub, T.: AutoFolio: an automatically con-
figured algorithm selector (extended abstract). In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, 19–25 August 2017, pp. 5025–5029 (2017)

10. Liu, T., Amadini, R., Mauro, J.: Sunny with algorithm configuration. In: Open
Algorithm Selection Challenge 2017, pp. 12–14 (2017)

11. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI, pp. 608–614 (2013)

534 C. Ansotegui et al.

12. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Boosting sequential
solver portfolios: knowledge sharing and accuracy prediction. In: 7th International
Conference on Learning and Intelligent Optimization, LION 7, Catania, Italy, pp.
153–167 (2013)

13. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

14. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for sat. JAIR 32(1), 565–606 (2008)

15. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla2012: improved
algorithm selection based on cost-sensitive classification models. In: SAT Compe-
tition (2012)

CP and Data Science Track

User’s Constraints in Itemset Mining

Christian Bessiere1, Nadjib Lazaar1, and Mehdi Maamar2(B)

1 LIRMM, University of Montpellier, CNRS, Montpellier, France
{bessiere,lazaar}@lirmm.fr

2 CRIL-CNRS, University of Artois, Lens, France
maamar@cril.fr

Abstract. Discovering significant itemsets is one of the fundamental
tasks in data mining. It has recently been shown that constraint program-
ming is a flexible way to tackle data mining tasks. With a constraint pro-
gramming approach, we can easily express and efficiently answer queries
with user’s constraints on itemsets. However, in many practical cases
queries also involve user’s constraints on the dataset itself. For instance,
in a dataset of purchases, the user may want to know which itemset is
frequent and the day at which it is frequent. This paper presents a gen-
eral constraint programming model able to handle any kind of query on
the dataset for itemset mining.

1 Introduction

People have always been interested in analyzing phenomena from data by looking
for significant itemsets. This task became easier and accessible for big datasets
thanks to computers, and thanks to the development of specialized algorithms
for finding frequent/closed/... itemsets. Nevertheless, looking for itemsets with
additional user’s constraints remains a bottleneck nowadays. According to [11],
there are three ways to handle user’s constraints in an itemset mining problem.
We can use a pre-processing step that restricts the dataset to transactions that
satisfy the constraints. Such a technique quickly becomes infeasible when there is
a large number of sub-datasets satisfying the user’s constraints. We can integrate
the filtering of the user’s constraints into the specialized data mining process in
order to extract only the itemsets satisfying the constraints. Such a technique
requires the development of a new algorithm for each new itemset mining prob-
lem with user’s constraints. We can sometimes use a post-processing step to filter
out the itemsets violating the user’s constraints. Such a brute-force technique
does not apply to all kinds of constraints and is computationally infeasible when
the problem without the user’s constraints has too many solutions.

In a recent line of work [4–6,8,9], constraint programming (CP) has been
used as a declarative way to solve data mining problems. Such an approach
has not competed yet with state of the art data mining algorithms [10,12] for
simple queries. Nevertheless, the advantage of the CP approach is to be able
to add extra (user’s) constraints in the model so as to generate only interesting
itemsets at no other implementation cost.
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 537–553, 2018.
https://doi.org/10.1007/978-3-319-98334-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_35&domain=pdf

538 C. Bessiere et al.

The weakness of the CP approach is that the kind of user’s constraints that
can be expressed has never been clarified. It is easy to post constraints on the
kind of itemsets we are interested in but the user may be interested in mining
only in some particular transactions of the dataset. For instance, the user may
be interested in itemsets that are frequent in transactions corresponding to pur-
chases of less than 100¤. None of the current CP approaches is able to catch such
kind of constraints. Hence, as with specialized approaches, we need to preprocess
the dataset with an ad-hoc algorithm to generate a sub-dataset containing only
transaction of less than 100¤. It becomes more complex if the user is interested
in itemsets that are frequent in transactions corresponding to purchases of a
particular sequence of days (such as ‘the week of Christmas’, ‘every Saturday’,
etc.). Preprocessing the dataset can lead to the generation of a huge number of
sub-datasets, each corresponding to a potential sequence of days.

Another consequence of the lack of clarification of what the CP approach can
or cannot do is that some CP models can be flawed by the closedness property. As
shown in [1], non-monotone constraints interfere with closedness.1 For instance,
if we post the global constraint for frequent closed itemsets (FCIs) proposed
in [6] in a CP model and if in addition we post the constraint specifying that
the user is only interested in itemsets of size k, then frequent itemsets of size k
having a superset of same frequency will be lost.

In this paper we present a classification of user’s constraints with respect to
which itemsets are extracted and from where in the dataset they are extracted.
We then propose a generic CP model in which we can capture all these types
of user’s constraints. The interaction between constraints and closedness is
discussed.

The paper is organized as follows. Section 2 presents the background in data
mining and constraint programming. In Sect. 3 we propose a taxonomy of the
types of user’s constraints that can be useful in itemset mining. In Sect. 4, we
present a CP model able to capture all these user’s constraints. Section 5 gives
some case studies that can be expressed using our CP model. Section 6 reports
experiments.

2 Background

2.1 Itemset Mining

Let I = {1, . . . , n} be a set of n item indices and T = {1, . . . ,m} a set of
m transaction indices. An itemset P is a subset of I. The set of itemsets is
LI = 2I\∅. A transactional dataset is a set D ⊆ I × T . A sub-dataset is a
subset of D obtained by removing columns (items) and/or rows (transactions).
The set of possible sub-datasets is denoted by LD. The cover of an itemset
P in a sub-dataset D, denoted by cover(D,P), is the set of transactions in
D containing P . The frequency of an itemset P in D is the ratio |cover(D,P)|

|cover(D,∅)| .

1 A constraint c is monotone if any superset of an itemset P satisfying c also satisfies c.

User’s Constraints in Itemset Mining 539

Fig. 1. (a) A transaction dataset D1. (b) Queries on dataset D.

An itemset P is closed in a sub-dataset D if and only if the set of items common
to all transactions of cover(D,P) is P itself (that is,

⋂
t∈cover(D,P) t = P).

Example 1. Let us consider the dataset D1 involving 8 items and 6 transactions
and displayed in Fig. 1a. The cover cover(D1, BEF) of the itemset BEF in D1

is equal to {t1, t5, t6}. The frequency of BEF in D1 is thus 50%. The itemset
BEF is closed in D1. The itemset BE is not closed in D1 because F belongs to
all transactions in cover(D1, BE).

2.2 Constraint Programming (CP)

A constraint program is defined by a set of variables X = {X1, . . . , Xn}, where
Di is the set of values that can be assigned to Xi, and a finite set of constraints
C. Each constraint C(Y) ∈ C expresses a relation over a subset Y of variables
X. The task is to find assignments (Xi = di) with di ∈ Di for i = 1, . . . , n, such
that all constraints are satisfied.

2.3 CP Models for Itemset Mining

In [3,8], De Raedt et al. have proposed CP4IM, a first CP model for itemset
mining. They showed how some constraints (e.g., frequency and closedness) can
be formulated using CP. This model uses two sets of Boolean variables: (1) item
variables {X1,X2, ...,Xn}, such that (Xi = 1) if and only if the extracted itemset
P contains i; (2) transaction variables {T1, T2, ..., Tm}, such that (Tt = 1) if and
only if the extracted itemset P is in the transaction t. The relationship between
P and T is modeled by m reified n-ary constraints. The minimal frequency
constraint and the closedness constraint are also encoded by n-ary and m-ary
reified constraints.

540 C. Bessiere et al.

Recently, global constraints have been proposed to model and solve efficiently
data mining problems. The ClosedPattern global constraint in [6] compactly
encodes both the minimal frequency and the closedness constraints. This global
constraint does not use reified constraints. It is defined only on item variables.
The filtering algorithm ensures domain consistency in a polynomial time and
space complexity. The CoverSize global constraint in [9] uses a reversible sparse
bitset data structure to compute the subset of transactions that cover an itemset.
The filtering algorithm computes a lower and an upper-bound on the frequency.

3 User’s Constraints Taxonomy

For an itemset mining task we aim at extracting all itemsets P of LI satisfying a
query Q(P) that is a conjunction of (user’s) constraints. The set Th(Q) = {P ∈
LI | Q(P)} is called a theory [7]. Common examples of user’s constraints on
extracted itemsets are frequency, closedness, maximality, etc. However, it may
be desirable for a user to ask for itemsets extracted from particular parts of the
dataset. In the general case, a query predicate, denoted by Q(D,P), is expressed
both on the itemsets P it returns and on the sub-datasets D ∈ LD on which it
mines. The extracted elements forming a theory are now pairs:

Th(Q) = {(D,P) | D ∈ LD ∧ P ∈ LI ∧ Q(D,P)}.

To make the description of our user’s constraints taxonomy less abstract, we
suppose a categorization of items and transactions. Items are products belonging
to k categories (e.g., food, electronics, cleaning, etc), denoted by I = {I1, . . . ,
Ik}. Transactions are categorized into v categories of customers (e.g., categories
based on age/gender criteria), denoted by T = {T1, . . . , Tv}. It is important to
bear in mind that these categories are just examples provided for illustration
purposes. Example 2 presents the running example (with categories) that will
be used to illustrate each of the types of user’s constraints we present in this
section.

Example 2. Let us consider again the dataset D1 displayed in Fig. 1a. For
our running example, items belong to three categories {A,B}, {C,D,E} and
{F,G,H}, and transactions belong to three categories {t1, t2}, {t3, t4} and
{t5, t6}.

3.1 User’s Constraints on Itemsets

When the user comes with constraints only on the nature of the itemsets to
extract, the query, Q1, is equivalent to a standard itemset mining task. We mine
on the whole dataset. Figure 1b graphically illustrates this. The itemsets that
are solution for Q1 (i.e., P1, P2 and P3) are extracted from D1 = D.

An example of such a query where user’s constraints are expressed only on
itemsets is the query Q1 asking for FCIs:

Q1(D,P) ≡ frequent(D,P, θ) ∧ closed(D,P)

User’s Constraints in Itemset Mining 541

where frequent(D,P, θ) and closed(D,P) are predicates expressing user’s con-
straints on the frequency (with a minimum frequency θ) and the closedness of
an itemset P in D, where D is D in this case. The query Q1 on the dataset D1

of Fig. 1a with a minimum frequency θ ≥ 50% returns A, BEF , EF and G as
FCIs.

As a second example of such a query on itemsets, the user can ask a query
Q′

1 where the extracted itemsets are FCIs and the items are taken from at least
lb and at most ub categories:

Q′
1(D,P) ≡ Q1(D,P) ∧ atLeast(P, lb) ∧ atMost(P, ub)

where atLeast(P, lb) and atMost(P, ub) are user’s constraints ensuring that the
itemset P overlaps between lb and ub categories of items. The query Q′

1 on the
dataset D1 of Fig. 1a with lb = ub = 2 and minimum frequency θ = 50% only
returns EF . It does not return A and G because each of these itemsets belongs to
a single category. It does not return BEF because it belongs to three categories.

3.2 User’s Constraints on Items

In addition to constraints on itemsets, the user may want to put constraints
on the items themselves. Such constraints are constraints on the dataset. They
specify on which items/columns the mining will occur. In Fig. 1b, constraints on
items lead the query, Q2, to mine on the sub-dataset D2 satisfying constraints
on items, from which we extract the itemset P4 satisfying the constraints on
itemsets.

As an example, the user can ask a query Q2, where the extracted itemsets
are FCIs of sub-datasets containing at least lbI categories of items and at most
ubI categories:

Q2(D,P) ≡ Q1(D,P) ∧ atLeastI(D, lbI) ∧ atMostI(D,ubI)

where atLeastI(D, lbI) and atMostI(D,ubI) are user’s constraints ensuring that
the dataset D contains between lbI and ubI categories of items. As opposed to Q1

and Q′
1, Q2 seeks itemsets in sub-datasets satisfying a property on their items.

The query Q2 on the dataset D1 of Fig. 1a with lbI = ubI = 2 and minimum
frequency θ = 50% returns:

– A, BE and E on I1 + I2,
– A, BF , F and G on I1 + I3,
– EF and G on I2 + I3.

3.3 User’s Constraints on Transactions

The user may also want to put constraints on transactions. Such constraints
determine on which transactions/rows the mining will occur. In Fig. 1b, con-
straints on transactions lead the query, Q3, to mine on the subset D3 of trans-
actions from which we extract the itemsets P5 and P6.

542 C. Bessiere et al.

As an example, the user can ask a query Q3, where the extracted itemsets
are FCIs on at least lbT and at most ubT categories:

Q3(D,P) ≡ Q1(D,P) ∧ atLeastT (D, lbT) ∧ atMostT (D,ubT)

where atLeastT (D, lbT) and atMostT (D,ubT) are user’s constraints ensuring
that the dataset D contains between lbT and ubT categories of transactions.
The query Q3 on the dataset D1 of Fig. 1a with lbT = ubT = 2 and minimum
frequency θ = 50% returns:

– A, AD, CH, EF and G on T1 + T2,
– BEF , BEFG and G on T1 + T3,
– A, BEF and EF on T2 + T3.

3.4 User’s Constraints on Items and Transactions

Finally, the user may want to put constraints on both items and transactions. In
Fig. 1b, such constraints lead the query, Q4, to mine on D4 and D′

4 from which
we extract the itemsets P7 and P8.

The user can ask a query Q4, where the extracted itemsets are FCIs of sub-
datasets containing at least lbI and at most ubI categories of items and at least
lbT and at most ubT categories of transactions:

Q4(D,P) ≡ Q2(D,P) ∧ Q3(D,P)

The query Q4 on the dataset D1 of Fig. 1a with lbI = ubI = lbT = ubT = 2
and minimum frequency θ = 50% will have to explore nine possible sub-datasets
in which to look for frequent closed itemsets:

I1 + I2 I1 + I3 I2 + I3

T1 + T2 A, AD, C, E A, F , G, H CH, D, EF , G

T1 + T3 BE BF , BFG, G EF , EFG, G

T2 + T3 A, BE, E A, BF , F EF

Q4 is merely a combination of Q1 (user’s constraints on itemsets), Q2 (user’s
constraints on items), and Q3 (user’s constraints on transactions). We presented
it to show that our model allows any kind of combinations of user’s constraints.

3.5 A Simple Illustration: Where Ferrari Cars Are Frequently
Bought?

Consider a dataset of cars purchases in France, where each transaction/purchase
also contains items representing the city, the department, and the region where
the purchase was performed. (City/department/region is the way France is

User’s Constraints in Itemset Mining 543

administratively organized.) The user may be interested in finding where (city,
department or region) more than 10% of the purchases are Ferrari cars. This can
be done by the query:

RQ(D,P) ≡frequent(D,P, 10%) ∧ (Ferrari ∈ P)∧
(Reg(D) ∨ Dep(D) ∨ City(D))

where Reg(D), Dep(D) and City(D) are user’s constraints ensuring that the
dataset D corresponds to one of the administrative entities of France.

4 A General CP Model for Itemset Mining

We present ItemSet, a CP model for itemset mining taking into account any
type of user’s constraints presented in Sect. 3.

4.1 Variables

P , T , H and V are Boolean vectors to encode:

– P = 〈P1, . . . , Pn〉: the itemset we are looking for. For each item i, the Boolean
variable Pi represents whether i is in the extracted itemset.

– T = 〈T1, . . . , Tm〉: the transactions that are covered by the extracted itemset.
– H = 〈H1, . . . , Hn〉: The items in the sub-dataset where the mining will occur.

Hi = 0 means that the item/column i is ignored.
– V = 〈V1, . . . , Vm〉: The transactions in the sub-dataset where the mining will

occur. Vj = 0 means that the transaction/row j is ignored.

〈H,V 〉 circumscribes the sub-dataset used to extract the itemset. The CP
solver searches in different sub-datasets, backtracking from a sub-dataset and
branching on another. 〈P, T 〉 represents the itemset we are looking for, and its
coverage in terms of transactions.

4.2 Constraints

Our generic CP model consists of three sets of constraints:

ItemSet(P,H, T, V) =

⎧
⎪⎨

⎪⎩

DataSet(H,V)
Channeling(P,H, T, V)
Mining(P,H, T, V)

DataSet(H,V) is the set of constraints that express user’s constraints on items
(i.e., H) and/or transactions (i.e., V). This set of constraints circumscribes the
sub-datasets.

544 C. Bessiere et al.

Channeling(P,H, T, V) is the set of channeling constraints that express the
relationship between the two sets of variables 〈P, T 〉 and 〈H,V 〉:

Hi = 0 ⇒ Pi = 0
Vj = 0 ⇒ Tj = 0

These constraints guarantee that if an item (resp. a transaction) is not part of the
mining process, it will not be part of the extracted itemset (resp. the cover set).

Mining(P,H, T, V) is the set of constraints that express the (user’s) con-
straints on itemsets such as frequency, closedness, size, and more sophisticated
user’s constraints.

5 ItemSet Model: Cases Studies

In this section, we illustrate our CP model ItemSet on the queries detailed in
Sect. 3. For each query, user’s constraints can be written in the DataSet and/or
Mining parts of the ItemSet model. Channeling remains unchanged.

Query Q1

For query Q1, we have user’s constraints only on itemsets. That is, the mining
process will occur on the whole set of transactions. For such a case, we have:

DataSet(H,V) =

{
∀i ∈ I : Hi = 1
∀j ∈ T : Vj = 1

The user asks for FCIs:

Mining(P,H, T, V) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀j ∈ T : Ti = 1 ⇔
∑

i∈I
Pi(1 − Dij) = 0

∀i ∈ I : Pi = 1 ⇒ 1
|T |

∑

j∈T
TjDij ≥ θ

∀i ∈ I : Pi = 1 ⇔
∑

j∈T
Tj(1 − Dij) = 0

This corresponds to the model presented in [3] and how it can be written in
the Mining part of our ItemSet model. The first constraint represents the
coverage constraint, the second is the minimum frequency with respect to a given
minimum frequency θ, and the third one expresses the closedness constraint.
Note that to obtain an optimal propagation, this part can be replaced by the
global constraint ClosedPattern [6]:

Mining(P,H, T, V) = ClosedPatternθ(P, T)

User’s Constraints in Itemset Mining 545

Query Q′
1

For Q′
1, we have k item categories. The user asks for FCIs extracted from the

whole dataset but the items composing the extracted FCI must belong to at
least lb categories and at most ub categories where lb ≤ ub ≤ k. The DataSet
part is the same as in the case of Q1. The Mining part takes into account the
new user’s constraint on itemsets:

Mining(P,H, T, V) =

⎧
⎪⎨

⎪⎩

ClosedPatternθ(P, T)

lb ≤
k∑

j=1

max
i∈Ij

Pi ≤ ub

The first constraint is used to extract FCIs. The second constraint holds if and
only if the items of the extracted itemset belong to lb to ub categories.

Query Q2

For Q2, the user asks for FCIs not from the whole dataset as in Q1 and Q′
1,

but from a part of the dataset with lbI to ubI categories of items. Such user’s
constraints on items are expressed in the DataSet part of our model as:

DataSet(H,V) =
⎧
⎪⎨

⎪⎩

lbI ≤
k∑

j=1

min
i∈Ij

Hi =
k∑

j=1

max
i∈Ij

Hi ≤ ubI

∀j ∈ T : Vj = 1

For each category, the first constraint activates all items or none. The number of
categories with their items activated is between lbI to ubI . The second constraint
activates the whole set of transactions. The Mining part is the almost the same
as in the case of Q1. The only difference is that we need an adapted version of the
ClosedPatternθ where frequent closed itemsets are mined in the sub-dataset
circumscribed by the H an V vectors:

Mining(P,H, T, V) = ClosedPatternθ(P,H, T, V)

Query Q3

For Q3, we have v transaction categories. With Q3, the user asks for FCIs not
from the whole set of transactions but from at least lbT and at most ubT trans-
action categories. These user’s constraints on transactions are written in our
model as:

DataSet(H,V) =
⎧
⎨

⎩

∀i ∈ I : Hi = 1

lbT ≤
v∑

j=1

min
i∈Tj

Vi =
v∑

j=1

max
i∈Tj

Vi ≤ ubT

546 C. Bessiere et al.

The first constraint activates the whole set of items. For each category, the second
constraint activates all transactions or none. The number of categories with their
transactions activated is between lbT and ubT . The user asks for CFIs. That is,
the Mining part is the same as in the case of Q2.

Query Q4

Q4 involves the different types of user’s constraints presented in this paper. We
have k item categories and v transaction categories. The user asks for FCIs on
at least lbI and at most ubI categories of products and at least lbT and at most
ubT categories of customers.

DataSet(H,V) =
⎧
⎪⎪⎨

⎪⎪⎩

lbI ≤
k∑

j=1

min
i∈Ij

Hi =
k∑

j=1

max
i∈Ij

Hi ≤ ubI

lbT ≤
v∑

j=1

min
i∈Tj

Vi =
v∑

j=1

max
i∈Tj

Vi ≤ ubT

The first constraint ensures the sub-dataset satisfies the constraints on items
(categories activated as a whole and between lbI and ubI of them activated). The
second constraint ensures the sub-dataset satisfies the constraints on transactions
(categories activated as a whole and between lbT and ubT of them activated).
As we look for FCIs, the Mining part remains the same as in the case of Q2

and Q3.

Query RQ

We illustrate our model on the query presented in Sect. 3.5: Where Ferrari cars
are frequently bought?. To make it simple, suppose that transactions are catego-
rized into r regions T = {T1, T2, . . . , Tr}, each region is composed of d depart-
ments Ti = {Ti:1, Ti:2, . . . , Ti:d}, and each department is composed of c cities
Ti:j = {Ti:j:1, Ti:j:2, . . . , Ti:j:c}. (In the real case, the number of cities per depart-
ment and departments per region can vary).

The Channeling part of the model is the same as in our generic CP model
presented in Sect. 4. We need to define the Dataset and the Mining parts for
the RQ query. In the following, f refers to the item representing the fact that
the brand of the car is Ferrari.

DataSet(H,V) =

⎧
⎪⎨

⎪⎩

∀i ∈ I \ {f} : Hi = 0
Pf = 1
(1) ∨ (2) ∨ (3)

where (1), (2), and (3) are the constraints specifying that itemsets are extracted
from a region, a department, or a city. That is, (1), (2), and (3) are constraints

User’s Constraints in Itemset Mining 547

that we can express as in the second line of DataSet(H,V) of query Q3 with
lbT = ubT = 1.2

Mining(P,H, T, V) = frequent(P,H, T, V, 10%)

where frequent itemsets are mined in the sub-dataset circumscribed by the H an
V vectors. The V vector characterizes the places where Ferrari cars are frequently
bought. We thus observe that the interesting part of the solutions of this data
mining task is more in the value of the V variables than in the P variables.

An Observation on Closedness

As pointed out in the introduction and in [1], closedness can interfere with user’s
constraints when they are not monotone. Existing CP approaches can lead to the
loss of solutions because CP approaches extract closed itemsets that in addition
satisfy the user’s constraints. (Some itemsets may satisfy the user’s constraints
whereas not being closed, and closed itemsets may violate a user’s constraint.)
What we usually want is to extract itemsets that are closed with respect to
the user’s constraints. Our model allows us to specify on which sub-datasets
frequency and closedness will be computed. As a consequence, when these sub-
datasets satisfy some non-intersecting properties, we are able to safely combine
closedness with non-monotone constraints.

Take for instance Example 1 with a minimum frequency of 50%. If we want
itemsets not containing A, F , or G, and closed with respect to these constraints,
no system is able to return the only solution BE because it is not closed (BEF
has the same frequency). In our model, if we set HA = HF = HG = 0, BE
is returned as a closed itemset of the sub-dataset D1[BCDE]. Similarly, if we
want itemsets of size 2 and closed with respect to this constraint, all systems will
return EF and will miss BE and BF , which are not closed because BEF has the
same frequency. In our model, if we set

∑n
1 Hi = 2 (in addition to

∑n
1 Pi = 2),

BE and BF are returned as closed itemsets of the sub-datasets D1[BE] and
D1[BF] respectively. Observe that none of the constraints above are monotone.
Unfortunately, not all user’s constraints can be combined with closedness in our
model. If we want itemsets of size at most 2 and closed with respect to this
constraint, and if we set

∑n
1 Hi ≤ 2, A, BE, BF , EF , and G are returned, but

also B, E, and F because they are closed for the sub-datasets D1[B], D1[E] and
D1[F] respectively, whereas they are not closed for the constraint “itemset of
size at most 2”

2 A CP expert may object that disjunctions of predicates are not the most efficient way
to express constraints. This operational concern can be addressed by capturing (1)∨
(2) ∨ (3) into a single global constraint, or by simply adding redundant constraints
Vp = 1 → Vr = 1 for every pair (p, r) of transactions in the same city, and (Vp =
1 ∧ Vq = 1) → Vr = 1 for every triplet (p, q, r) of transactions in the same region
(resp. department) such that p and q are not in the same department (resp. city).

548 C. Bessiere et al.

Table 1. Properties of the used datasets

Dataset |T | |I| |T | ρ Domain

Zoo 101 36 16 44% Zoo database

Primary 336 31 15 48% Tumor descriptions

Vote 435 48 16 33% U.S voting Records

Chess 3196 75 37 49% Game steps

Mushroom 8124 119 23 19% Species mushrooms

Primary: Primary-tumor

6 Experimental Evaluation

We made experiments to evaluate the queries Q1, Q2, Q3 and Q4 on our generic
CP model ItemSet for itemset mining.

6.1 Benchmark Datasets

We selected several real-sized datasets from the FIMI repository3 and the CP4IM
repository4. These datasets have various characteristics representing different
application domains. For each dataset, Table 1 reports the number of trans-
actions |T |, the number of items |I|, the average size of transactions |T |, its
density ρ (i.e., |T |/|I|), and its application domain. The datasets are presented
by increasing size.

6.2 Experimental Protocol

We implemented the ItemSet model presented in Sect. 4. This implementation,
named cp-ItemSet, is in C++, on top of the Gecode solver (www.gecode.org/).
The frequency and closedness constraints are performed by a new implementa-
tion of the ClosedPattern global constraint taking into account the variables
H, V .5 For lcm, the state-of-the-art specialized algorithm for CFIs, we used the
publicly available version (http://research.nii.ac.jp/uno/codes.htm). All experi-
ments were conducted on an Intel Xeon E5-2665 @2.40 Ghz and a 48 Gb RAM
with a timeout of 900 s.

In all our experiments we selected a minimum support θ and a minimum
size of itemsets k in order to have constrained instances with less than 10 solu-
tions. The reason of this protocol is that a human cannot process millions of
solutions. The purpose of user’s constraints is to allow the user to focus on inter-
esting solutions only. But, whatever the desired number of solutions, lcm always

3 http://fimi.ua.ac.be/data/.
4 https://dtai.cs.kuleuven.be/CP4IM/datasets/.
5 http://www.lirmm.fr/∼lazaar/cpminer.html.

www.gecode.org/
http://research.nii.ac.jp/uno/codes.htm
http://fimi.ua.ac.be/data/
https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://www.lirmm.fr/{~}lazaar/cpminer.html

User’s Constraints in Itemset Mining 549

Table 2. lcm and cp-ItemSet on Q1 queries. (Times are in seconds.)

Instances #FCIs lcm cp-ItemSet

Zoo 50 5 4 0.01 0.01

Primary 60 6 1 0.01 0.01

Vote 50 2 1 0.01 0.01

Mushroom 50 5 8 0.02 0.10

Chess 80 10 4 0.03 0.29

needs to go through a lcm +(preprocessing and/or postprocessing) that gener-
ates millions of patterns and then filters out the ‘non-interesting’ ones. Even if
lcm is very fast to enumerate a huge number of itemsets, it cannot avoid the
combinatorial explosion of all possible sub-datasets.

An instance is defined by the pair frequency/minsize (θ, k). For example,
Zoo 50 5 denotes the instance of the Zoo dataset with a minimum support of
50% and solutions of at least 5 items. Note that the constraint on the size of the
itemset is simply added to the Mining part of our ItemSet model as follows:
minSizek(P) ≡

∑
i∈I Pi ≥ k. Note also that such a constraint is integrated in

lcm without the need to a post-processing to filter out the undesirable itemsets.

6.3 Query Q1

Our first experiment compares lcm and cp-ItemSet on queries of type Q1,
where we have only user’s constraints on itemsets. We take the Q1 of the example
in Sect. 3.1, where the user asks for FCIs. We added the minSize constraint in the
Mining part of the ItemSet model. Table 2 reports the CPU time, in seconds,
for each approach on each instance. We also report the total number of FCIs
(#FCIs ≤ 10) for each instance.

The main observation that we can draw from Table 2 is that, as expected,
the specialized algorithm lcm wins on all the instances. However, cp-ItemSet
is quite competitive. lcm is only from 1 to 9 times faster.

6.4 Query Q2

In addition to user’s constraints on itemsets, in Q2 the user is able to express
constraints on items. We take the Q2 of the example in Sect. 3.2, where items
are in categories and the user asks for FCIs extracted from at least lbI and at
most ubI categories. We again added the minSize constraint.

Table 3 reports the results of the comparison between pp-lcm (lcm with
a preprocessing) and cp-ItemSet on a set of instances. For each instance, we
report the number of item categories #Ii, the used lbI and ubI , the total number
#D of sub-datasets satisfying the constraints on items, the number of solutions
#FCIs, and the time in seconds. Note that the categories have the same size and
for a given #Ii = n′, and an (lbI , ubI), we have #D =

∑ubI
i=lbI

(
n′

i

)
.

550 C. Bessiere et al.

Table 3. pp-lcm and cp-ItemSet on Q2 queries. (Times are in seconds.)

Instance #Ii (lbI , ubI) #D #FCIs pp-lcm cp-ItemSet

Zoo 80 2 6 (2,3) 35 5 0.58 0.02

6 (3,4) 35 10 0.62 0.03

Primary 70 5 3 (2,3) 4 2 0.17 0.02

Vote 50 2 6 (2,3) 35 5 0.53 0.02

Mushroom 50 4 17 (2,2) 136 9 5.32 6.14

Mushroom 50 4 17 (2,3) 816 1 41.31 51.04

Chess 70 10 5 (2,3) 20 1 1.24 2.12

Chess 80 10 5 (2,5) 26 5 1.93 3.32

Chess 70 5 15 (2,2) 105 6 2.78 0.97

Chess 80 6 15 (2,3) 560 2 14.57 7.15

It is important to bear in mind for such a query, pp-lcm acts in two steps:
(i) pre-processing generating all possible sub-datasets with respect to the user’s
constraints on items; (ii) run lcm on each sub-dataset. The first step can be
very expensive in terms of memory consumption because the space complexity
of generating all sub-datasets is in O(n′ × n × m), where n′ is the number of
item categories, and n and m the number of items and transaction.

In Table 3 we observe that cp-ItemSet outperforms pp-lcm on 6 instances
out of 10.

6.5 Query Q3

Let us now present our experiments on queries of type Q3 where we have user’s
constraints on itemsets and transactions. We take the Q3 of the example in
Sect. 3.3 where transactions are in categories. We added the minSize constraint.

Table 4 reports the results of the comparison between pp-lcm and cp-
ItemSet. For each instance, we report the number of transaction categories
#Ti, the lower and upper bounds (lbT , ubT) on transaction categories, the num-
ber of sub-datasets #D, the number of extracted solutions #FCIs and the time
in seconds. Note that for a number of categories #Ti = m′ and a given (lbT , ubT),
we have #D =

∑ubT
i=lbT

(
m′

i

)
.

For Q3, pp-lcm acts again in two steps. The space complexity of the prepro-
cessing step is in O(m′ × n × m), with m′ transaction categories, n items and m
transactions.

In Table 4 we observe that cp-ItemSet is faster than pp-lcm on 6 instances
out of 10. cp-ItemSet wins on instances where #D is large. On Vote 80 3
with #Ti = 29 and (lbT , ubT) = (2, 5), pp-lcm reports a timeout whereas cp-
ItemSet solves it in 12 min.

User’s Constraints in Itemset Mining 551

6.6 Query Q4

Our last experiment is on queries of type Q4 where the user can put constraints
on both items and transactions in addition to the ones on the itemsets them-
selves. We take the Q4 of the example in Sect. 3.4 where items and transactions
are in categories. We added the minSize constraint.

Table 4. pp-lcm and cp-ItemSet on Q3 queries. (Times are in seconds.)

Instance #Ti (lbT , ubT) #D #FCIs pp-lcm cp-ItemSet

Zoo 70 10 10 (1,10) 1,023 2 7.95 1.12

Zoo 80 5 10 (2,10) 1,013 8 9.05 1.37

Primary 85 4 7 (2,7) 120 1 1.45 0.25

Vote 70 6 29 (2,3) 4,060 3 37.93 17.95

Vote 80 3 29 (2,4) 27,811 4 324.53 135.53

Vote 80 3 29 (2,5) 146,566 4 to 739.31

Mushroom 70 12 12 (2,2) 66 3 3.13 24.45

12 (3,3) 220 2 12.63 87.65

Chess 90 22 34 (2,2) 561 1 8.43 15.10

Chess 90 26 94 (2,2) 4,371 3 49.73 68.82

to: timeout

Table 5 reports results of the comparison between pp-lcm and cp-ItemSet
acting on different instances. We report the number of uniform categories of
items/transactions, the used (lbI , ubI) and (lbT , ubT), the number of sub-datasets
#D, the number of solutions #FCIs and the time in seconds. pp-lcm needs

Table 5. lcm and cp-ItemSet on Q4 queries. (Times are in seconds.)

Instances #Ii #Ti (lbI , ubI) (lbT , ubT) #D #FCIs pp-lcm cp-ItemSet

Zoo 70 6 6 10 (2,3) (2,3) 5,775 8 39.69 1.75

Zoo 50 11 6 10 (3,4) (3,4) 11,550 9 88.66 3.36

Zoo 85 5 6 10 (2,6) (2,10) 57,741 8 521.89 31.86

Primary 82 5 3 12 (2,3) (2,10) 16,280 8 199.58 36.13

Vote 70 6 6 29 (2,3) (2,3) 142,100 2 to 118.67

Vote 72 5 8 29 (2,3) (2,3) 341,040 2 to 201.79

Mushroom 80 5 17 12 (2,2) (2,2) 8,976 10 446.42 102.68

Mushroom 82 5 17 12 (2,2) (3,3) 29,920 7 to 455.19

Chess 90 16 5 34 (2,3) (2,2) 11,220 3 286.42 87.22

to: timeout

552 C. Bessiere et al.

to generate all possible sub-datasets #D =
∑ubT

i=lbT

(
m′

i

)
×

∑ubI
i=lbI

(
n′

i

)
, where

n′,m′, n and m are respectively the number of item categories, transaction cat-
egories, items and transactions. cp-ItemSet is able to deal with the different
queries Q4 just by changing the parameters k, lbT , ubT , lbI , ubI , whereas pp-lcm
needs a time/memory consuming preprocessing before each query.

We see in Table 5 that cp-ItemSet significantly outperforms pp-lcm. On
the instances where pp-lcm does not report a timeout, cp-ItemSet is from 4
to more than 26 times faster than pp-lcm. The pre-processing step of pp-lcm
can reach 90% of the total time. As #D grows exponentially, it quickly leads to
an infeasible preprocessing step (see the 3 timeout cases of pp-lcm).

7 Related Work

In [3,8], De Raedt et al. proposed CP4IM, a CP model to express constraints
in itemset mining. CP4IM is able to express user’s constraints on the itemset
P that is returned. Hence, CP4IM is able to deal with queries of type Q1, in
which user’s constraints are on itemsets only. However, in CP4IM, the variables
T representing transactions are internal variables only used to get the cover of
the itemset P that is returned, that is, Ti = 1 if and only if the itemset P is
covered by transaction i. These T variables are not decision variables that would
allow constraining the transactions. Adding user’s constraints directly on these
variables would generate incorrect models.

MiningZinc is a programming language on top of Minizinc. Several examples
of complex data mining queries using MiningZinc are discussed in [2]. However,
in these examples, when closedness is required, the user’s constraints are mono-
tone, and when the mining is performed on sub-datasets, these sub-datasets
are statically defined. If we need the mining process to dynamically specify on
which sub-datasets the frequency, closeness, and other properties are computed,
we believe that MiningZinc requires to implement a model similar to the one we
propose in this paper.

8 Conclusion

We have presented a taxonomy of the different types of user’s constraints for
itemset mining. Constraints can express properties on the itemsets as well as
on the items and transactions that compose the datasets on which to look. We
have introduced a generic constraint programming model for itemset mining.
We showed how our generic CP model can easily take into account any type
of user’s constraints. We empirically evaluated our CP model. We have shown
that it can handle the different types of constraints on different datasets. The
CP approach can find the itemsets satisfying all user’s constraints in an efficient
way compared to the specialized algorithm lcm, which requires a memory/time
consuming preprocessing step.

User’s Constraints in Itemset Mining 553

Acknowledgment. Christian Bessiere was partially supported by the ANR project
DEMOGRAPH (ANR-16-CE40-0028). Nadjib Lazaar is supported by the project I3A
TRACT (CNRS INSMI INS2I - AMIES - 2018). Mehdi Maamar is supported by the
project CPER Data from the region “Hauts-de-France” We thank Yahia Lebbah for
the discussions we shared during this work.

References

1. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Pro-
ceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004),
1–4 November 2004, Brighton, UK, pp. 35–42 (2004)

2. Guns, T., Dries, A., Nijssen, S., Tack, G., Raedt, L.D.: MiningZinc: a declarative
framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

3. Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

4. Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T.: Prefix-
projection global constraint and top-k approach for sequential pattern mining.
Constraints 22(2), 265–306 (2017)

5. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-
ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9 44

6. Lazaar, N., et al.: A global constraint for closed frequent pattern mining. In: Rue-
her, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44953-1 22

7. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

8. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, 24–27 August 2008, pp.
204–212 (2008)

9. Schaus, P., Aoga, J.O.R., Guns, T.: CoverSize: a global constraint for frequency-
based itemset mining. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 529–546.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 34

10. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS
2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004)

11. Wojciechowski, M., Zakrzewicz, M.: Dataset filtering techniques in constraint-
based frequent pattern mining. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.)
Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 77–91. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45728-3 7

12. Zaki, M.J., Hsiao, C.: CHARM: an efficient algorithm for closed itemset mining.
In: Proceedings of the Second SIAM International Conference on Data Mining,
Arlington, VA, USA, 11–13 April 2002, pp. 457–473 (2002)

https://doi.org/10.1007/978-3-642-15396-9_44
https://doi.org/10.1007/978-3-319-44953-1_22
https://doi.org/10.1007/978-3-319-66158-2_34
https://doi.org/10.1007/3-540-45728-3_7

On Maximal Frequent Itemsets Mining
with Constraints

Said Jabbour1, Fatima Ezzahra Mana1,3, Imen Ouled Dlala1,4,
Badran Raddaoui2, and Lakhdar Sais1(B)

1 CRIL-CNRS, Université d’Artois, 62307 Lens Cedex, France
{dlala,jabbour,sais}@cril.fr

2 SAMOVAR, Télécom SudParis, CNRS, Univ. Paris-Saclay, Evry, France
badran.raddaoui@telecom-sudparis.eu

3 INPT, Institut National des Postes et Telecommunications, Rabat, Morocco
4 LARODEC, University of Tunis, Tunis, Tunisia

Abstract. Recently, a new declarative mining framework based on con-
straint programming (CP) and propositional satisfiability (SAT) has
been designed to deal with several pattern mining tasks. The itemset
mining problem has been modeled using constraints whose models cor-
respond to the patterns to be mined. In this paper, we propose a new
propositional satisfiability based approach for mining maximal frequent
itemsets that extends the one proposed in [20]. We show that instead of
adding constraints to the initial SAT based itemset mining encoding, the
maximal itemsets can be obtained by performing clause learning during
search. A major strength of our approach rises in the compactness of the
proposed encoding and the efficiency of the SAT-based maximal item-
sets enumeration derived using blocked clauses. Experimental results on
several datasets, show the feasibility and the efficiency of our approach.

1 Introduction

Frequent Itemsets Mining (abbreviated as FIM) is well-known and essential in
data mining, knowledge discovery and data analysis. It plays an increasingly
important role in a series of data mining applications, such as the discovery of
associations rules, correlations, causality, sequential patterns, episodes, partial
periodicity, emerging patterns, gradual patterns, and many other important dis-
covery tasks. FIM has applications in various fields and becomes fundamental
for data analysis as datasets and datastores are becoming very large. Since the
first article of Agrawal [4] on association rules and itemset mining, the huge
number of works, challenges, datasets and projects show the actual interest in
this problem (see [3,15,25,30] and [29] for a survey).

Unfortunately, mining only frequent itemsets generates an overwhelming
number of patterns, from which it is difficult to retrieve useful informations.
Consequently, for practical data mining, it is important to reduce the size of
the output by exploiting the structure of the itemsets data. A well-known con-
densed representation is the closed sets [26,32]; an itemset is closed if it has no
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 554–569, 2018.
https://doi.org/10.1007/978-3-319-98334-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_36&domain=pdf

On Maximal Frequent Itemsets Mining with Constraints 555

superset with the same frequency. Nevertheless, in many applications, especially
in dense data, the set of all closed itemsets remains too large [13]. One of the
most known recourse is then to mine the so-called maximal itemsets, where an
itemset is maximal frequent if it has no superset that is frequent. So, maximal
frequent itemsets is a subset of closed frequent itemsets.

In this paper we introduce SATMax, a new algorithm that makes an original
use of SAT solvers for efficiently enumerating all maximal patterns embedded in
a transaction database. Technically, the idea is to represent a maximal frequent
itemset mining task as a propositional formula such that each of its models cor-
responds to a maximal pattern of interest. The main argument for this encoding
is that it allows us to incorporate domain knowledge in the mining process in
an easy and flexible manner, among which the maximal constraint, without pre-
supposing deep insights into the mining mechanism. We address this issue by
means of propositional satisfiability solving, a prime technology for knowledge
representation and reasoning. This extends earlier results in the application of
CP and SAT formalisms to data mining, by allowing to deal with optimization
problems. SATMax uses a number of optimizations to efficiently prune away a
large portion of the search space. It uses a novel progressive focusing technique
to eliminate non-maximal itemsets and exploits blocking clauses for fast fre-
quency checking. We conduct an extensive comparative experimental evaluation
of SATMax against DMCP [24] a declarative state-of-the-art maximal itemsets
mining approach and Eclat [5] a specialized algorithm.

2 Related Works

In the literature, various proposals have been introduced to mine maximal fre-
quent itemsets from a database of transactions. Many of these existing algorithms
are based on the enumeration of frequent itemsets. In [22], Bayardo proposed the
MaxMiner algorithm which extends the Apriori algorithm. MaxMiner employs
a breadth-first traversal of the search space to limit the database scanning. Fur-
thermore, it uses a dynamic heuristic to increase the effectiveness of superset-
frequency pruning. Later, several other enhancements have been suggested for
mining maximal frequent itemsets. Pincer-Search algorithm combined the top-
down and bottom-up techniques to discover the maximal frequent itemsets [23].
Agarwal et al. [2] implemented a depth-first search technique with bitmap rep-
resentation (DepthProject), in which columns denote the items and rows denote
the transactions. Like MaxMiner algorithm, the authors used dynamic reorder-
ing and look-ahead pruning. A projection mechanism is used to reduce the size of
the database. The authors efficiently find the support counts and give a super-
set of the maximal frequent itemsets. Burdick et al. introduced MAFIA [6],
an extension of DepthProject. They used vertical bit-vector data format. Com-
pression and projection on bitmaps are applied to increase the performance
of the proposed algorithm. Unlike DepthProject and MaxMiner pruning tech-
niques, MAFIA used Parent Equivalence Pruning. Also, GenMax [13] is a back-
track search based algorithm for identifying maximal frequent itemsets from a

556 S. Jabbour et al.

transactional database. More specifically, this algorithm integrates numerous
optimization techniques to prune the search space including progressive focus-
ing that perform maximality checking and diffset propagation for fast support
counting. To search maximal frequent itemsets, SmartMiner [33] records at each
step tail information to guide the search for new maximal frequent itemsets.
Moreover, Eclat algorithm [5] is proposed to find maximal frequent itemsets in
transaction databases. This method carries out a depth first search on the subset
lattice and determines the support of itemsets by intersecting transaction lists.

Several recent contributions to pattern mining exploit constraint program-
ming and propositional satisfiability [7,9,12,18,20,21,27]. In this context, Guns
et al. [14] studied the problem of mining maximal frequent itemsets using CP
formalism. More precisely, the authors show how the typical constraint of maxi-
mality used in itemset mining can be formulated for use in CP. Besides, in [28],
the authors formulate the problem of maximal frequent itemset mining as the
enumeration of a set of models of a constraint network by adding a constraint
to force the required models to be maximal.

3 Technical Background

This section introduces the preliminaries related to propositional satisfiability,
maximal frequent itemset mining and its associated encoding in propositional
logic.

3.1 Propositional Satisfiability (SAT)

We consider a standard propositional logical language L built on a finite set of
Boolean variables p, q, r, . . . and usual connectives ¬, ∨, ∧, → and ↔ standing
for negation, disjunction, conjunction, implication and equivalence connectives,
respectively. A literal is either a Boolean variable p or its negation ¬p. The two
literals p and ¬p are called complementary. A clause is a formula that consists of
a finite disjunction of literals. A conjunctive normal form formula (abbreviated as
CNF) is defined over a set of Boolean variables as a conjunction (also represented
as a set) of clauses. Let Φ be a CNF formula. We refer to the set of Boolean
variables appearing in Φ as V ar(Φ). Any formula in L can be represented (while
preserving satisfiability) in CNF using a set of clauses interpreted conjunctively.

A truth assignment, or boolean interpretation B assigns truth values from
{0, 1} (0 corresponds to false and 1 to true) to every Boolean variable. An
interpretation can be also seen as conjunctions or sets of literals. It is lifted
to clauses and CNF formulas of L following usual compositional rules. A CNF
formula Φ is satisfiable when there exists at least one boolean interpretation B
satisfying it, i.e., B(Φ) = 1. Otherwise, it is unsatisfiable. If B satisfies a formula
Φ, B is then called a model of Φ and is represented by the set of variables that
it satisfies. We refer to the set of models of Φ as M(Φ).

SAT is the decision problem of determining the satisfiability of a CNF for-
mula, i.e., whether or not there exists a model of all clauses in the CNF.

On Maximal Frequent Itemsets Mining with Constraints 557

This well known NP-Complete problem has seen spectacular progress these
recent years. Interestingly, state-of-the-art SAT solvers have been shown of prac-
tical use, solving real-world instances encoding industrial problems up to millions
of variables and clauses. As a consequence, providing SAT encoding for a given
problem allows us to benefit from this continous and spectacular progress.

3.2 Frequent Itemset Mining

We are given a set of distinct items (symbols) denoted as Ω = {a, b, c, . . .}. A
transaction database D is a set of transactions {t1, t2, . . . , tn} such that each
transaction ti ∈ D (i ∈ [1..n]) is a subset of Ω, i.e., ti ⊆ Ω. Transactions
can represent things such as the supermarket items purchased by a customer
during a shopping visit, or the characteristics of a person as described by his or
her replies in a census questionnaire. For instance, Table 1 gives a transaction
dataset containing seven transactions {t1, t2, t3, t4, t5, t6, t7} described by five
items, which will be used as a running example. Besides, each transaction ti ∈ D
(i ∈ [1..n]) has an associated unique identifier i called TID. A non-null finite
subset of items I of Ω is more succinctly called an itemset (or pattern). An
itemset with k items is called a k-itemset. The notation I ⊆ t will be used to
denote that the itemset I is a subset of the set of items that t contains. For
convenience, we will often directly refer to a transaction as the set of items that
it contains.

Classical data mining problems are usually concerned with itemsets that
frequently occur in a database of transactions. The number of occurrences of an
itemset in a database is commonly referred to as the support of this itemset.
Informally, the support of an itemset measures how often an itemset X occurs
in the database. In other words, the support of an itemset is the number of
transactions in which that itemset occurs as a subset.

Definition 1. Given a transaction database D and an itemset X, the cover of X
in D, denoted Cover(X), is defined as follows: {J ∈ D and X ⊆ J}. The support
of X in D, denoted Supp(X), corresponds to the cardinality of Cover(X), i.e.,
Supp(X) = |Cover(X)|.
Example 1. Let us consider the transaction database D stated in Table 1. There
are five different items {a, b, c, d, e} and seven transactions {t1, t2, t3, t4, t5, t6, t7}.
Then, the support of the itemset X = abc is equal to 2, since X occurs in the
transactions t1 and t2.

Given a transaction database D over Ω and a minimum support threshold
set as λ according to users’ preference, the problem of finding the complete set
of frequent itemset is called the frequent itemset mining problem defined as:

FI(D, λ) = {X ⊆ Ω | Supp(X) � λ}.

Unfortunately, identifying the complete set of frequent itemsets may lead to
a huge number of patterns. In order to overcome this problem, the concept of
closed itemsets is afterward proposed.

558 S. Jabbour et al.

Table 1. A transaction database D

TID Itemset

t1 a b c d

t2 a b c e

t3 a e

t4 a e d

t5 a b

t6 b d

t7 b e

Definition 2 (Closed Frequent Itemset). Let D be a transaction database
and X an itemset. Then, X is a closed itemset if there exists no itemset X ′ such
that X ⊆ X ′, and ∀t ∈ D, X ∈ t → X ′ ∈ t.

That is, enumerating all closed itemsets allows us to reduce the size of the
output.

Extracting all the elements of FI(D, λ) can be obtained from the closed
itemsets by computing their subsets. Then, we have CFI(D, λ) ⊆ FI(D, λ).

Example 2. Let us consider again our example described in Table 1. The set
of closed frequent itemsets with the minimal support threshold equal to 2 is:
CFI(D, 2) = {a, d, ab, ae, abc}.

In order to reduce the large number of extracted closed frequent itemsets,
another condensed representation, called maximal frequent itemsets, has been
introduced.

Definition 3 (Maximal Frequent Itemset). Let D be a transaction database
over Ω and X ⊆ Ω an itemset. We say that X is a maximal frequent itemset
in D given a minimum threshold λ, if X ∈ FI(D, λ), and there exists no other
itemset Y s.t. X ⊂ Y and Y ∈ FI(D, λ).

That is, if the itemset X is frequent and no superset of X is frequent, then
we say that X is a maximal frequent itemset. This condensed representation is
the one which store most of the information contained in frequent itemsets using
less space.

In this work, we are interested in the problem of mining maximal frequent
itemsets, abbreviated as MFI. More formally,

MFI(D, λ) = {X ⊆ Ω | Supp(X) � λ and
 ∃Y ⊃ X, s.t. Y ∈ FI(D, λ)}

Given a transaction database D, it is important to note that the set of max-
imal frequent itemsets is a subset of frequent closed ones, i.e., MFI(D, λ) ⊆
CFI(D, λ).

On Maximal Frequent Itemsets Mining with Constraints 559

3.3 SAT-Based Itemset Mining

This section presents a brief overview of the SAT-based approach for enumerating
all frequent itemsets in a transaction database proposed in [16,20]. The authors
have shown that such mining task can be encoded as a propositional formula
whose models are in bijection with the patterns to be mined.

The basic idea consists in the use of two kinds of propositional variables: the
i-variable pa to represent each item a ∈ Ω, and the t-variable qi to represent
each transaction ti.

Next, the SAT encoding is based on the following three CNF formulas built
over the previous propositional variables.

n∧

i=1

(¬qi ↔
∨

a∈Ω\ti

pa) (1)

The first constraint (1) allows to model the transaction database and then
to catch the itemsets. So, an itemset appears in a transaction ti (i.e., qi = 1)
iff the boolean variables associated to items not involved in ti are set to false.
Notice that the formula (¬qi ↔ ∨

a∈Ω\ti
pa) can be translated into the following

CNF formula: ∧

a∈Ω\ti

(¬qi ∨ ¬pa) ∧ (qi ∨
∨

a∈Ω\ti

pa)

n∑

i=1

qi � λ (2)

Constraint (2) allows us to consider the itemsets having a support greater
than or equal to the minimum threshold λ. This encoding is defined as a 0/1
linear inequality, usually called cardinality constraint. Because of the presence of
such constraint in several applications, many efficient CNF encodings have been
proposed over the years. Mostly, such encodings try to derive the best compact
representation while maintaining constraint propagation (e.g. [19]).

∧

a∈Ω

((
∨

a�∈ti

qi) ∨ pa) (3)

Formula (3) expresses the closure property. Intuitively, if the itemset is
involved in all transactions containing the item a, then a must be added to
the candidate itemset. In other words, when in all the transactions where a does
not appear, the candidate itemset is not included, this implies that the candidate
itemset appears only in transactions containing the item a. Consequently, to be
closed, the item a must be added to the final candidate itemset.

The main advantage of the SAT-based approach is its ability to easily inte-
grate other user constraints. For instance, enumerating itemsets of size at most
k can be expressed by simply adding the linear constraint

∑
a∈Ω pa � k.

560 S. Jabbour et al.

4 SAT-Based Approach for Efficient MFI Mining

In this section, we introduce our SAT-based formuation that enables us to spec-
ify in term of constraints maximal frequent pattern mining problem. Given a
transaction database and a user specified threshold value, our goal is to pro-
vide a simple and efficient way to model and enumerate all maximal frequent
itemsets.

As mentioned in Sect. 3.2, an itemset X is maximal if X is frequent and each
superset of X is not frequent. Clearly, this requirement can be expressed by the
following constraint: ∧

a∈Ω

¬pa → (
∑

ti|a∈ti

qi < λ) (4)

That is, formula (4) expresses that if the item a is not added to the final
candidate itemset X, this means that the occurrence frequency of X in the
transactions containing a is lower than the minimum threshold λ. Notice that
the constraint (4) represents a conditional cardinality constraint.

Interestingly, we can naturally translate the formula (4) to a Pseudo Boolean
constraint1 as follows:

∧

a∈Ω

(((λ − Supp({a}) − 1) × ¬pa +
∑

ti|a∈ti

qi) < λ) (5)

In the literature, various approaches proposed different efficient encodings
of Pseudo Boolean constraints as CNF formula [1,11,31]. This transformation
can be useful if the number of items and their associated transactions are small.
Unfortunately, it is ineffective for large datasets, since it can lead to large CNF
formulas. Indeed, each item will be associated with a Pseudo Boolean constraint
(5). Consequently, the weakness of SAT-based approaches resides in the size of
the encoding, which for large formulas can outgrow available memory or can
make SAT solving otherwise inefficient.

Alternatively, another way to manipulate such Pseudo Boolean constraints is
to associate a propagator to each constraint of the form (5), as done in constraint
programming. However, this case can be challenging since we have to go through
each constraint at each decision to check the satisfiability of such constraints.

In order to avoid the addition of conditional cardinality constraints to our
initial encoding, we propose in the sequel an original method that allows to insert
additional clauses in an incremental manner, throughout the search process, with
the aim of ensuring that the found models correspond exactly to the maximal
frequent itemsets of the given transaction database. For this purpose, we consider
as our SAT solver a DPLL-like procedure that firstly assigns the i -variables. To
illustrate our approach, we assume that the solver assigns the truth value true
to the i -variables. Let us refer to a given model of the CNF formulas encoding

1 A pseudo Boolean constraint over boolean variables is defined by
∑

i ci.li�k where ci

are the coefficients, k an integer constant, li are literals and � is one of the operators
{=, <, �, >, �}.

On Maximal Frequent Itemsets Mining with Constraints 561

the FIM task as B, and P (B) = {a | B(pa) = 1} will denote the corresponding
frequent itemset. Clearly, the first found model B corresponds to a maximal
frequent itemset P (B). In fact, assigning to true the i -variables is a way to
derive a maximal itemset.

Now, in order to discard retrieving a model B′ such that P (B′) ⊂ P (B), one
need to eliminate (or block) all itemsets X ⊂ P (B). To do so, it is sufficient
to add the blocking clause C = (

∨
a∈Ω\P (B) pa) to the original encoding. The

solver can then backtrack and explore new search space by performing positive
assignment of the i -variables.

So, the main idea of our approach consists in adding blocking clauses every
time a model is found. It is worth to remark that such clauses are composed of the
literals that are assigned to false under the current assignment. This means that
such clauses are false before backtracking. In order to enumerate more effectively
the set of all maximal frequent itemsets, one need to take the level of literals of
each blocking clause C into account to backtrack at the adequate level. This can
be seen as a new form of clause learning.

For real-word problems, the items not taking part in each transaction ti are
generally more numerous than those involved in ti, i.e., |ti| � |Ω \ ti|. Conse-
quently, each blocking clause C used to discard non-maximal itemsets can be
large. For example, let us suppose that the current itemset appears in the trans-
action ti. Clearly, the clause C can be written as C = (

∨

a∈ti\P (B)

pa ∨
∨

a∈Ω\ti

pa).

On the other hand, using the constraint (1), the size of C can be considerably
reduced by rewriting it as C = (

∨

a∈ti\P (B)

pa ∨ ¬qi).

Additionally, we can choose the most suitable clause C by choosing the smallest
transaction ti containing P (B). Roughly speaking, the size of the blocking clause
C clearly depends on the choice of the transaction ti.

Example 3. Let us consider the transaction database depicted in Table 1. We
further assume a minimum threshold λ = 2. Now, suppose that the SAT solver
chooses the following variables ordering during the search process: pa, pb, pc,
¬pd, and ¬pe (see the search tree depicted by Fig. 1). Then, a first model B =
{pa, pb, pc,¬pd,¬pe} can be obtained by assigning pa at level 1, pb at level 2,
and pc at level 3. Hence, the added blocking clause is C = (pd ∨pe). In this case,
the solver must backtrack to the level 2 since C becomes falsified in level 3 and
causes a conflict.

Next, we show the potential behind using blocking clauses in order to sig-
nificantly improve the mining efficiency. Let us first remark that the blocking
clauses involve positive i -variables. More specifically, let C = (pa1 ∨ . . . ∨ pak

)
be a blocking clause. According to the constraint (1), each item ai is involved in
many negative binary clauses of the form:

∧

tj∈D|ai �∈tj

(¬pai
∨ ¬qj)

562 S. Jabbour et al.

Fig. 1. Search tree of Example 3

Now, one of the most known form of resolution called hyper binary resolution
[17] can be applied between C and the previous set of negative binary clauses.
This gives us the following general constraint of the form:

∧

i1 �∈Cover({a1})...ik �∈Cover({ak})
(¬qi1 ∨ . . . ∨ ¬qik) (6)

Interestingly enough, the constraint (6) involves only negative clauses (i.e.,
disjunction of negative literals) over t-variables. These clauses can help improv-
ing the efficiency of the frequency constraint (2) by requiring that at least one
of the t-variables {qi1 , . . . , qik} must be false. Unfortunately, when the length
of C is large, a great number of clauses can be derived by hyper binary resolu-
tion, which leads to excessive space complexity that might slowdown the solver.
An alternative is to limit the application of hyper binary resolution to the case
where the derived clauses are relevant or of small size. For efficiency reason, we
consider the case where the constraint (6) gives rise to a unit clause:

∧

i�∈⋃
1≤j≤k Cover({aj})

(¬qi) (7)

Intuitively, the constraint (7) aims to exclude each transaction that does not
contain none of the i-variables of the blocking clause C. Indeed, any t-variable
that do not belong to

⋃
1≤j≤k Cover({aj}) must be assigned to false by unit

propagation. In fact, the clause C = (pa1 ∨ . . .∨pak
) requires that at least one of

its literal must be true and consequently the transactions not involving none of
items corresponding to literals of C must be assigned to false. Doing so, we are
able to effectively improve the resolution process when

⋃
1≤j≤k Cover({aj})
= ∅.

On Maximal Frequent Itemsets Mining with Constraints 563

Example 4. Let us take the transaction database of Example 1. Assume that
the first found model is {pa, pb, pc,¬pd,¬pe}. Then, using the blocking clause
(pd ∨ pe) and the constraint (7), we deduce that q5 and q6 must be assigned to
false.

As mentioned previously, our method requires the addition of a blocking
clause once a model is found. Then, the maximum number of blocking clauses
that can be added is equal to the number of maximal frequent itemsets. Fortu-
nately, even if the number of added blocked clauses might be large, the experi-
ments show that it is feasible in practice.

Let us now present our general SATMax algorithm for SAT-based MFI enu-
meration task. To summarize the idea behind Algorithm 1, we first encode the
closed frequent itemset mining task, then we use a DPLL-like algorithm, while
adding a blocking clause each time a model is found. In this way, the models
are restricted to those corresponding to maximal frequent itemsets in the given
transaction database.

At first, our algorithm encodes the closed frequent itemsets mining task
CFI(D, λ) into CNF (line 1). Then, a DPLL procedure is called. It iteratively
picks an i-variable (line 22), assigns it to true and performs unit propagation
(line 5). Then, we can distinguish two cases: (1) when a conflict occurs (line 6),
in this case if the level of the conflict is 0, the enumeration terminates and the set
of MFI is returned. Otherwise, a simple backtrack is performed; (2) when there
is no conflict. Here, the procedure continues by checking the satisfiability of the
frequency constraint (line 15). Then, the same later steps are performed. If all
the i-variables are assigned without conflict, then a model is found and a maxi-
mal frequent itemset is extracted (line 16). Then, a blocking clause is built (line
17) and analyzed (line 18) to determine the backtracking level. A backtracking
is performed accordingly and the procedure loops.

Proposition 1 (Correctness). SATMax returns all and only the maximal fre-
quent itemsets in the given transaction database.

5 Experimental Validation

In this section, we evaluate the performance of SATMax. Our mining solver
is implemented using a model enumeration MiniSAT solver based on the DPLL
(Davis-Putnam-Logemann-Loveland) procedure [8], as described in Algorithm 1.
All our experiments were performed on a 2.66 Ghz Intel Xeon quad-core PC with
32 GB of memory, running Ubuntu Linux.

In our SATMax algorithm, the i-variables are firstly assigned. Note that
our SAT solver does not branch on t-variables. In fact, the i-variables consti-
tute a strong backdoor, i.e., the t-variables are boolean functions of i-variables
(constraint (1)). In our algorithm, each time a model is found, we add a block-
ing clause and perform a backtracking after analyzing the blocking clause as
described in Sect. 4. For the variable ordering heuristic, we follow the one used
in [10]. We empirically evaluated our novel approach using different datasets

564 S. Jabbour et al.

Algorithm 1. SAT-based MFI enumeration (SATMax)
Input: D: a transaction database, λ: a minimum support threshold
Output: M: maximal frequent itemsets of D

1 Φ ← encodeCFI(D, λ);
2 B = ∅ ; /* Current interpretation */

3 M = ∅ ; /* Set of Maximal Frequent Itemsets */

4 while (true) do
5 C = propagate(Φ);
6 if (C!=null) then
7 if (decisionLevel == 0) then return M;
8 backtrack();

9 else
10 if (

∑n
i=1 qi < λ) then

11 if (decisionLevel == 0) then return M;
12 else
13 backtrack();
14 end
15 if (Satisfiable(Φ) == true) then
16 M = M ∪ {B ∩ Ω};
17 C ← ∨

a∈Ω | ¬pa∈B pa;

18 Φ ← Φ ∧ C;
19 k ← analyze(C);
20 backtrackUntil(k);

21 else
22 selectV ariable(Φ);
23 end

24 end

25 end

coming from FIMI2 and CP4IM3 repositories. A CPU time limit is fixed to 1200
seconds per instance. We also use the symbol (-) in Table 2 to mention that the
algorithm is not able to scale on the considered dataset under the time limit.
In our experiments, we considered different minimum support threshold values.
For baseline comparison, we retain the dedicated algorithm Eclat [5] and also
DMCP [24], a custom CP bitvector solver. For each method, we report the time
needed to enumerate all MFI. Table 2 summarizes our empirical results.

While conducting experiments comparing the three different algorithms, we
observed that the performance can vary significantly depending on the dataset
characteristics and especially the minimum support threshold values. In many
cases our SATMax solver is able to compute all MFI, and improves or meets the
dedicated solver Eclat. More interesting enough, SATMax achieves better perfor-
mances than the CP-based baseline on most considered datasets. In addition, on
BMS-WebView-1 we find that SATMax is significantly faster than DMCP for all the

2 http://fimi.ua.ac.be/data/.
3 http://dtai.cs.kuleuven.be/CP4IM/datasets/.

http://fimi.ua.ac.be/data/
http://dtai.cs.kuleuven.be/CP4IM/datasets/

On Maximal Frequent Itemsets Mining with Constraints 565

Table 2. Maximal Itemsets: SATMax vs Eclat vs DMCP

instance (#item, #trans, density) min supp

λ

Eclat

time(s)

DMCP

time(s)

SATMax

time(s)

chess (75, 3196, 49%) 2000 0.11 0.09 0.28

1500 1.09 1.44 0.52

1000 5.67 10.56 3.75

500 33.35 104.56 85.46

connect (129, 67558, 35.62%) 40000 0.29 1.29 5.14

30000 0.66 2.11 6.06

20000 3.4 4.65 9.22

10000 36.83 90.95 22.21

5000 94.46 – 51.38

kosarak (41267, 990002, 0.01%) 3000 2.52 – 30.00

2500 3.08 – 32.96

2000 7.97 – 42.94

1500 31.52 – 59.03

1000 67.96 – 100.31

pumsb (2113, 49046, 3%) 40000 0.30 2.92 5.51

35000 1.05 11.43 6.44

30000 3.48 32.71 11.23

25000 89.29 473 49.66

20000 878.02 – 202.71

retail (16470, 88162, 0.06%) 400 0.29 1.67 1.87

350 0.26 1.19 2.62

300 0.33 1.48 2.68

250 0.58 2.34 2.09

200 1.19 3.67 4.95

T10I4D100K (870, 100000, 1.0%) 500 0.21 1.77 2.88

400 0.22 1.87 3.28

300 0.24 2.48 4.14

200 0.28 3.63 5.62

100 0.32 6.44 12.43

T40I10D100K (8942, 100000, 4.31%) 10000 0.45 1.09 2.73

8000 0.62 0.93 4.03

6000 1.06 1.68 6.53

4000 1.85 3.03 9.48

2000 3.50 7.72 21.53

BMS-WebView-1 (497, 59602, 0.5%) 48 0.07 20.51 2.94

36 0.22 195.68 5.56

34 0.28 335.13 7.05

32 0.36 553.39 7.43

30 0.49 1049.28 7.14

accidents (468, 340183, 7%) 100000 12.92 33.59 54.73

80000 46.41 50.22 92.29

60000 128.85 407.75 174.34

40000 324.49 – 361.40

20000 1206.27 – 994.07

566 S. Jabbour et al.

considered support threshold values. For the dataset accidents, our approach
outperforms considerably DMCP. Moreover, for some minimum support threshold
values, DMCP fails to get the maximal frequent itemsets in some instances under
the time limit.

Compared with the specialized solver Eclat, this latter is generally the best.
Nevertheless remarkably, for some dataset and minimum support threshold val-
ues our approach outperforms Eclat. This is the case for connect, pumsb and
accidents when the minimum threshold becomes smaller, Eclat becomes worst.

Finally, we run our SATMax solver on large problem instances to evaluate its
robustness and scalability. For this, we used the kosarak instance containing
990002 transactions. We find that DMCP for such dataset is not able to scale for
all the minimum support threshold values under the time limit. Interestingly,
SATMax enumerates all MFI for the different support values.

Overall, on maximal frequent itemsets task, the results seem to strongly
suggest that SATMax is very promising.

Finally in Fig. 2, we compare the number of closed and maximal frequent
itemsets for some datasets when the minimum support threshold is varied. We
have observed that the number of maximal frequent itemsets is limited relatively
to closed ones. For the considered datasets, the maximal frequents itemsets does

Fig. 2. Frequent itemsets: Closed vs Maximal

On Maximal Frequent Itemsets Mining with Constraints 567

not exceed 10% of closed frequent patterns. More interesting enough, this number
can be much more limited. This is the case for connect and kosarak datasets.

6 Conclusion

In this paper, we presented an efficient and scalable approach for computing all
maximal frequent itemsets using propositional satisfiability. Based on the closed
frequent itemset SAT encoding, an original DPLL-based model enumeration
algorithm combined with clauses learning from models allows us to restrict the
models to maximal frequent itemsets. Experimental results on several datasets
have shown that our approach is very effective compared to Eclat and DMCP,
a specialized and CP-based algorithms, respectively. Interestingly, our approach
allows us reduce the size of the encoding by avoiding the integration of the
maximality constraints.

As a future work, we plan to pursue our investigation in order to improve
MFI task using propositional satifiability. For example, it would be interesting to
parallelize our SATMax based approach. Finally, clause learning, an important
component for the efficiency of modern SAT solvers, admits several limitations
in the context of model enumeration. An important issue is to study how such
pivotal mechanism can be efficiently integrated when maximal itemset generation
is considered.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at bdds for pseudo-boolean constraints. J. Artif. Intell.
Res. (JAIR) 45, 443–480 (2012)

2. Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: Depth first generation of long
patterns. In: Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2000, pp. 108–118 (2000)

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York
(1993)

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large Data
Bases VLDB 1994, pp. 487–499 (1994)

5. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rew.: Data Min. Knowl.
Disc. 2(6), 437–456 (2012)

6. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm
for transactional databases. In: ICDE, pp. 443–452 (2001)

7. Coquery, E., Jabbour, S., Säıs, L., Salhi, Y.: A sat-based approach for discovering
frequent, closed and maximal patterns in a sequence. In: Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI 2012), pp. 258–263 (2012)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5, 394–397 (1962)

568 S. Jabbour et al.

9. Dlala, I.O., Jabbour, S., Raddaoui, B., Sais, L., Yaghlane, B.B.: A sat-based app-
roach for enumerating interesting patterns from uncertain data. In: Proceedings of
28th IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2016, San Jose, CA, USA, pp. 255–262, 6–8 November 2016

10. Dlala, I.O., Jabbour, S., Sais, L., Yaghlane, B.B.: A comparative study of SAT-
based itemsets mining. In: Bramer, M., Petridis, M. (eds.) Research and Develop-
ment in Intelligent Systems XXXIII, pp. 37–52. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47175-4 3

11. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

12. Gebser, M., Guyet, T., Quiniou, R., Romero, J., Schaub, T.: Knowledge-based
sequence mining with ASP. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July
2016

13. Gouda, K., Zaki, M.J.: GenMax: an efficient algorithm for mining maximal frequent
itemsets. Data Min. Knowl. Discov. 11(3), 223–242 (2005)

14. Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

15. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
SIGMOD Rec. 29, 1–12 (2000)

16. Henriques, R., Lynce, I., Manquinho, V.M.: On when and how to use sat to mine
frequent itemsets. CoRR, abs/1207.6253 (2012)

17. Heule, M., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In: Inter-
national Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming, pp. 77–93 (2013)

18. Jabbour, S., Sais, L., Salhi, Y.: Boolean satisfiability for sequence mining. In:
Proceedings of 22nd ACM International Conference on Information and Knowledge
Management (CIKM 2013), pp. 649–658. ACM (2013)

19. Jabbour, S., Sais, L., Salhi, Y.: A pigeon-hole based encoding of cardinality con-
straints. TPLP, 13(4-5-Online-Supplement) (2013)

20. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using
top-k sat problem. In: European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD 2013), pp. 403–418 (2013)

21. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework.
Artif. Intell. 244, 30–47 (2017)

22. Bayardo, Jr R.J.: Efficiently mining long patterns from databases. In: Proceedings
ACM SIGMOD International Conference on Management of Data SIGMOD 1998,
Seattle, Washington, USA, pp. 85–93, 2–4 June 1998

23. Lin, D.-I., Kedem, Z.M.: Pincer-search: a new algorithm for discovering the maxi-
mum frequent set. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT
1998. LNCS, vol. 1377, pp. 103–119. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0100980

24. Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining. In:
Machine Learning and Knowledge Discovery in Databases, European Conference,
ECML PKDD 2010, Proceedings, Part II, Barcelona, Spain, pp. 467–482, 20–24
September 2010

25. Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure
mining of frequent patterns in large databases. In: Proceedings IEEE International
Conference on Data Mining ICDM 2001, pp. 441–448 (2001)

https://doi.org/10.1007/978-3-319-47175-4_3
https://doi.org/10.1007/978-3-319-47175-4_3
https://doi.org/10.1007/BFb0100980
https://doi.org/10.1007/BFb0100980

On Maximal Frequent Itemsets Mining with Constraints 569

26. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent
closed itemsets. In: 2000 ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pp. 21–30 (2000)

27. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: ACM SIGKDD, pp. 204–212 (2008)

28. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, pp. 204–212, 24–27 August
2008

29. Tiwari, A., Gupta, R., Agrawal, D.: A survey on frequent pattern mining: current
status and challenging issues. Inform. Technol. J 9, 1278–1293 (2010)

30. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for fre-
quent/closed/maximal itemsets. In: Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations FIMI 2004, Brighton, UK, 1 November
2004

31. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

32. Zaki, M.J., Hsiao, C.: CHARM: an efficient algorithm for closed itemset mining.
In: Proceedings of the Second SIAM International Conference on Data Mining, pp.
457–473 (2002)

33. Zou, Q., Chu, W.W., Lu, B.: Smartminer: a depth first algorithm guided by tail
information for mining maximal frequent itemsets. In: Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM 2002), Maebashi City,
Japan, pp. 570–577, 9–12 December 2002

A Parallel SAT-Based Framework
for Closed Frequent Itemsets Mining

Imen Ouled Dlala1,3, Said Jabbour1, Badran Raddaoui2, and Lakhdar Sais1(B)

1 CRIL-CNRS, Université d’Artois, 62307 Lens Cedex, France
{dlala,jabbour,sais}@cril.fr

2 SAMOVAR, Télécom SudParis, CNRS, Univ. Paris-Saclay, Evry, France
badran.raddaoui@telecom-sudparis.eu

3 LARODEC, University of Tunis, Tunis, Tunisia

Abstract. Constraint programming (CP) and propositional satisfiabil-
ity (SAT) based framework for modeling and solving pattern mining
tasks has gained a considerable audience in recent years. However, this
nice declarative and generic framework encounters a scaling problem. The
huge size of constraints networks/propositional formulas encoding large
datasets is identified as the main bottleneck of most existing approaches.
In this paper, we propose a parallel SAT based framework for itemset
mining problem to push forward the solving efficiency. The proposed app-
roach is based on a divide-and-conquer paradigm, where the transaction
database is partitioned using item-based guiding paths. Such decomposi-
tion allows us to derive smaller and independent Boolean formulas that
can be solved in parallel. The performance and scalability of the pro-
posed algorithm are evaluated through extensive experiments on several
datasets. We demonstrate that our partition-based parallel SAT app-
roach outperforms other CP approaches even in the sequential case, while
significantly reducing the performances gap with specialized approaches.

1 Introduction

Frequent itemset mining (abbreviated as FIM) [1,4] is a fundamental research
topic in data mining (DM). It aims to discover important relationships between
items in a database arising from numerous applications, ranging from market-
ing to scientific data analytics. Different kinds of interesting patterns and con-
straints have been introduced, including closeness and maximality constraints,
association rules and its variants [1,3,36]. Such progress results in various scal-
able algorithms designed to deal with specific data mining tasks or constraints.
However, such dedicated data mining systems are highly difficult to maintain
when additional or combination of constraints came into play. This observation
together with the increasing need in terms of user-preference led to the first and
seminal paper by De Raedt et al. [28], opening a research avenue on the design
of declarative approaches for itemset mining and for pattern mining in general.
This new framework offers a flexible representation model that does not require
any deep changes in the implementations. In other words, new constraints can be
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 570–587, 2018.
https://doi.org/10.1007/978-3-319-98334-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_37&domain=pdf

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 571

easily integrated without developing specialized methods. These existing declar-
ative approaches for data mining clearly help pattern selection strategies such as
minimizing the redundancy or combining patterns on the basis of their usefulness
in a given context.

Encouraged by these promising results, several contributions addressed dif-
ferent data mining tasks using the well-known constraint programming (CP),
propositional satisfiability (SAT) and answer set programming (ASP) AI for-
malisms, such as frequent sequence mining [11,18,26], frequent itemset mining
[15], closed frequent itemset mining [22,30], association rules mining [5], cluster-
ing [6,7], and community detection [10,16]. A high-level language for constraint-
based mining, called MiningZinc, is introduced by Guns et al. [12]. It supports
a wide variety of different solvers, including DM algorithms and general pur-
pose solvers, and uses a significantly more high-level modeling language. This
combination of generic and specialized solvers gives MiningZinc the ability to be
both generic and efficient with respect to the performance of the state-of-the-art
algorithms on common data mining tasks.

In the first CP-based proposal for itemset mining [13], the problem is
expressed through different linear and reified constraints over Boolean variables.
This widely adopted model does not exploit some of the well established algo-
rithmic skills from the state-of-the-art specialized algorithms. For the closed
itemset mining task, to enhance the efficiency of such CP model, Lazaar et al.
[22] proposed a new formulation using a global constraint that incorporates
some of the propagation properties borrowed from specialized algorithms. This
approach allows to capture the closed frequent itemset mining problem with-
out requiring reified constraints or extra variables, leading to significantly better
performances. More recently, Schaus et al. [30] introduced the CoverSize con-
straint for the itemset mining problem, a global constraint for counting and
constraining the number of transactions covered by the itemset decision vari-
ables. The authors showed that compared to the ClosedPattern approach [22]
using a global constraint for frequent closed itemset mining, both generality and
efficiency can be significantly improved. A relation is established between the
CoverSize constraint and the well-known table constraint, where the underlined
filtering algorithm internally exploits the reversible sparse bitset data structure
used for the filtering table. By expressing the size of the cover as a variable,
the proposed approach opens up new modelling perspectives. Moreover, a SAT-
based framework for enumerating Top-k Motifs in both transaction databases,
sequences and sequences of itemsets is proposed in [20]. As a summary, this
new framework offers a nice declarative and flexible representation model, while
facing a real challenge in terms of scalability. Indeed, all these CP/SAT-based
itemset mining approaches flag out good performance on datasets of reason-
able size and high support threshold. However, the performance decreases as
the database increases in size or the support threshold turns to be low. In this
latter case, the size of constraints network/propositional formulas encoding the
itemset mining task tends to be huge. Space complexity is clearly identified as

572 I. O. Dlala et al.

the main bottleneck behind the competitiveness of these new declarative and
flexible models w.r.t. specialized data mining approaches.

Some early efforts tried to speed up the specialized pattern mining algorithms
by running them in parallel [24,27,35]. Several parallel approaches use Spark or
MapReduce frameworks [23,33,38], through multi-core processors or distributed
computing platforms. For an overview of parallel FIM specialized methods, read-
ers are kindly referred to [25]. Moreover, Savasere et al. [29] adressed the problem
of generating association rules from large databases by introducing a new algo-
rithm which divides the database into a number of non-overlapping partitions.
The partitions are considered one at a time and all large itemsets for that par-
tition are generated.

In spite of the significance of the declarative framework for frequent pat-
tern mining, and despite of their main scalability bottleneck, no advances have
been made on parallelizing CP/SAT-based pattern mining approaches. To avoid
the generation of a single huge propositional formula encoding the whole trans-
action database, in [19], the authors proposed an incremental approach allow-
ing to partition the whole problem into sub-problems of reasonable size while
maintaining incremental solving. It takes as input a transaction database and
a partition of the set of items, then it incrementally generates and sequen-
tially solves a sequence of sub-problems while ensuring completeness. In this
paper, we propose a new parallel SAT based framework for Closed Frequent
Itemset Mining (in short paraSatMiner). Our proposed method is based on a
divide-and-conquer paradigm. The main idea is to decompose the input trans-
action database, using item-based guiding paths, leading to sub-formulas that
can be solved independently in parallel. Our paraSatMiner approach is carefully
implemented on a multicore architecture, while maintaining workload balanced
between the different processor units. Extensive experimental comparative eval-
uation on several datasets achieves significant performance improvements w.r.t.
the two most recent and effective CP approches [22,30] even on the sequential
case, while reducing the performance gap against LCM, one of the state-of-the-
art specialized algorithms. We also show additional performance gains up to 8
cores. Contrary to CP mining systems based on the design of specific global
constraints, our approach does not integrate any technique or property from
specialized algorithms.

2 Technical Background and Preliminary Definitions

2.1 Propositional Logic and SAT Problem

Let L be a propositional language defined from a finite set PS of propositional
symbols (p, q, r, etc.). The set of formulas is defined inductively from PS, the
constant ⊥ denoting false, the constant � denoting true, and using the classical
logical connectives ¬, ∧, ∨, → and the equivalence connective ↔. For every
two propositional formulas Φ and Ψ from L, the connective ↔ is defined by
Φ ↔ Ψ ≡ (Φ → Ψ)∧ (Ψ → Φ). Moreover, we refer to the set of symbols from PS
that occur in the formula Φ as S(Φ).

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 573

A boolean interpretation B of a formula Φ is a truth assignement of PS, that
is, a total function from S(Φ) to {0, 1} (0 corresponds to false and 1 corresponds
to true). For every two formulas Φ and Ψ from L, we have the following equiv-
alences: B(⊥) = 0, B(�) = 1, B(¬Φ) = 1 − B(Φ), B(Φ ∧ Ψ) = min(B(Φ),B(Ψ)),
B(Φ ∨ Ψ) = max(B(Φ),B(Ψ)), and B(Φ → Ψ) = max(1 − B(Φ),B(Ψ)).

A model of a formula Φ is a boolean interpretation B that satisfies Φ, i.e.,
B(Φ) = 1. A formula Φ is satisfiable if there exists a model of Φ. We denote
by M(Φ) the set of all models of Φ. Let X ⊆ S(Φ) and B ∈ M(Φ), we define
BX = {x ∈ X | B(x) = 1} and MX(Φ) = {BX | B ∈ M(Φ)}.

As usual, every finite set of formulas is considered as the conjunctive formula
whose conjuncts are the elements of the set. A formula in conjunctive normal
form (CNF) is a (finite) conjunction of clauses. A clause is a (finite) disjunction
of literals. A literal is either a propositional variable x of PS or its negation
¬x. Let us also mention that any propositional formula can be translated to a
CNF formula equivalent w.r.t. satisfiability, using linear Tseitin’s encoding [32].
The propositional satisfiability problem, called SAT, is the decision problem of
determining the satisfiability of a CNF formula.

2.2 Parallel SAT Solving

Parallel SAT solving has received a lot of attention in the last years. This comes
from several factors like the wide availability of cheap multicore platforms com-
bined with the relative performance stall of sequential SAT solvers.

Many parallel SAT solvers have been previously proposed. Most of them are
based on the divide-and-conquer principle. These solvers either divide the search
space using for example guiding-paths [31,37] or the formula itself using decom-
position techniques. The main issue behind these approaches rises in (i) getting
the workload balanced between the different processing units, and (ii) selecting
the most relevant guiding paths.

Portfolio-based parallel SAT solving has been recently introduced [14]. It
avoids the previous problem by letting several DPLL engines compete and coop-
erate to be the first to solve a given instance. Each solver works on the original
formula, and search spaces are not split or decomposed anymore. To be efficient,
the portfolio has to use diversified search engines. This maximizes the chance of
having one of them solving the problem. However, when clause sharing is added,
diversification has to be restricted in order to maximize the impact of a foreign
clause whose relevance is more important in a similar or related search effort.
A challenging question is to maintain a good and relevant distance between the
parts of the search space explored by the different search efforts which is equiv-
alent to finding of a better diversification and intensification tradeoff.
These two parallel solving paradigms are complementary and admit their own
strengths and weaknesses. As our goal is to partition the transactions database
in order to generate several formulas of reasonable size, the divide-and-conquer
based paradigm is clearly the most convenient for our purpose.

574 I. O. Dlala et al.

2.3 Itemset Mining Problem Based on Boolean Satisfiability

Let Ω denote a universe of items (or symbols), called alphabet. A transaction
database is a finite set of n data records, called transactions, denoted by D =
{T1, T2, ..., Tn}. Each transaction Ti (1 � i � n) is defined as a couple (tidi, Ii),
where tidi is the transaction identifier and Ii ⊆ Ω an itemset, i.e., unordered
collection of items from Ω. We use 2Ω to denote the set of all possible itemsets
over Ω. Let a ∈ Ω, we define D ↓a= {T | T = (tid, I) ∈ D, a ∈ I} the set of
transactions containing a. We also define D ↑a= {(tid, I\{a}) | (tid, I) ∈ D}.

We associate to each a ∈ Ω a propositional variable denoted la. We note P
such set of variables encoding the items in Ω and representing the candidate
pattern. We also associate with each transaction Ti (1 � i � n) a propositional
variable qi. We also note Q the set of variables associated to transactions. These
variables will be used to express the following notions as propositional formulas.

Definition 1 (Cover). Let D = {T1, T2, ..., Tn} be a transaction database. The
cover of an itemset I ⊆ Ω in D, denoted C(I,D), corresponds to the following
set of transaction identifiers: C(I,D) = {tid | (tid,J) ∈ D and I ⊆ J }.

For instance, if we consider the transaction database of Table 1, we have
C({b} ,D) = {1, 2, 3, 4} while C({a, b} ,D) = {1, 2, 3}.

Table 1. Transaction database

TID Transactions

T1 a b c d

T2 a b c e

T3 a b e

T4 b d

T5 d f g

T6 f g h

T7 h

Cover constraint: The following constraint allows us to capture all the trans-
actions where the candidate itemset does not appear:

Φcov
D =

n∧

i=1

(¬qi ↔
∨

a∈Ω\Ii

la) (1)

This constraint means that qi is true if and only if the candidate itemset is
in the transaction Ti.

Definition 2 (Support). Let D = {T1, T2, ..., Tn} be a transaction database.
The support of an itemset I ⊆ Ω in D, denoted by S(I,D), is defined as follows:
S(I,D) = |C(I,D)|.

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 575

From the transaction database of Table 1, we have S({a, b} ,D) = 3.

Definition 3 (Frequent Itemset Mining). Given a transaction database
D and θ an explicit frequency user-specified support threshold. The problem of
frequent itemset mining, denoted FIM(D, θ), can be defined as follows:

FIM(D, θ) = {I ⊆ Ω | S(I,D) � θ}
As an example, consider again the transaction database depicted by Table 1,

we have FIM(D, 2) = {{a}, {b}, {c}, {d}, {e}, {g}, {h}, {a, b}, {a, c}, {a, e},
{b, c}, {b, e}, {b, d}, {f, g}, {a, b, c}, {a, b, e}}.

Let us note that the frequency is a monotonic property w.r.t. set inclusion,
meaning that if an itemset is not frequent, none of its supersets are frequent.
Similarly, if an itemset is frequent, all of its subsets are frequent.

Frequency constraint: To express that the candidate pattern occurs at least
θ times, we use the following 0/1 linear inequality:

Φfreq
D,θ =

n∑

i=1

qi � θ (2)

Then, the SAT-based encoding of FIM(D, θ) is expressed as: Φfim
D,θ = Φcov

D ∧
Φfreq

D,θ . Obviously, the monotonic property is implicitly satisfied by the frequency
constraint. Notice also that the constraint (2) corresponds to the well known
boolean cardinality constraint, subject of several efficient CNF encoding that
maintain generalized arc consistency via unit propagation [2,17,34].

Now, in order to reduce the size of the huge number of extracted itemsets,
condensed representations have been introduced, by exploiting the structure of
the itemsets data. We define below closed frequent itemsets as one of these con-
densed representations.

Definition 4. (Closed Itemsets): Let D be a transaction database. We say that
the itemset I is closed if and only if for all J ⊃ I, S(I,D) > S(J ,D).

Closeness constraint: The constraint allowing to force the candidate itemset
to be closed can be expressed by the following propositional formula:

Φclos
D =

∧

a∈Ω

((
∨

(tidi,Ii)∈D, a�∈Ii

qi) ∨ la) (3)

That is, this formula means that if we have S(I,D) = S(I∪{a},D), then a ∈
I holds. This condition is necessary and sufficient to force the candidate itemset
to be closed. Let us note that an expression of the form a ∈ Ii corresponds to a
constant, i.e., a ∈ Ii corresponds to � if the item a is in Ii, to ⊥ otherwise.

The closed frequent itemset mining task CFIM can then be encoded as
Φcfim

D,θ = Φclos
D ∧ Φfim

D,θ , i.e., the conjunction of the formulas (1), (2) and (3). In
the sequel, for clarity reasons and when there is no ambiguity, we simply note
Φcfim

D,θ as ΦD.

576 I. O. Dlala et al.

Let us consider again the transaction database D of Table 1. Assume that
the minimum support threshold θ = 2. Then, the closed frequent itemsets are:
{b}, {h}, {a, b}, {b, d}, {f, g}, {a, b, c} and {a, b, e}.

3 Partition-Based Parallel SAT Approach for CFIM

Through an illustrative example, we start by highlighting some weaknesses of
the SAT-based encoding of CFIM task described in Sect. 2.3.

Example 1. Let D be a transaction database made of two sub-bases D1 and D2

built over two disjoint sets of items Ω1 and Ω2, respectively. Formally, let D1 =
{T1, T2, ..., Tj} and D2 = {Tj+1, Tj+2, .., Tn}, such that for each Ti = (tidi, Ii),
we have Ii ⊆ Ω1 (resp. Ii ⊆ Ω2) for 1 � i � j (resp. j + 1 � i � n). In the SAT
encoding of CFIM(D, θ), the propositional variables associated to the items in
Ω1 are used in the encoding of the sub-base D2 and vis-versa. Indeed, the cover
constraint Φcov

D (resp. closeness constraint Φclos
D) involves for each transaction

Ti = (tidi, Ii) ∈ D the propositional variables associated to the items a ∈ Ω \ Ii

(resp. a ∈ Ω), whereas D is made of two independent transaction databases
D1 and D2. In this worst case illustrative example, the encoding leads to a
formula with a high number of large clauses. Indeed, the weakness of SAT-based
approaches is the size of the encoding, which for large formulas can outgrow
available memory or can make SAT solving otherwise inefficient.

To overcome this drawback, a possible encoding is to express the problem as
two independent propositional formulas ΦD1 and ΦD2 . An alternative compact
encoding of the itemset mining task on the whole database D can be expressed
as a single propositional formula:

ΦD = [y → (ΦD1 ∧
∧

la∈Ω2

¬la)] ∧ [¬y → (ΦD2 ∧
∧

la∈Ω1

¬la)] (4)

The formula (4) allows us to split in an efficient way the patterns of D1 and
D2. Assigning y to true (resp. false) leads to the enumeration of the models
of ΦD1 (resp. ΦD2), where the propositional variables associated to the items
from Ω2 (resp. Ω1) are assigned by unit propagation to false. Interestingly, the
formula (4) can be easily translated into clausal form.

Clearly, the previous example illustrates the motivation behind partitioning
the transaction database for an efficient SAT based itemsets enumeration tasks.
The benefits are twofold: the size of the encoding can be reduced significantly
while improving solving efficiency. Unfortunately, disjoint sub-bases are not very
common in real datasets and there recognition is not an easy task. Nevertheless,
partitioning can be performed differently. In fact, for a transaction database D
and an item a, the set of frequent closed itemsets can be partitioned into those
containing a (models of ΦD ∧ la) and those without a (models of ΦD ∧ ¬la).
Interestingly, the models of ΦD ∧ la are those of ΦD↓a

. While the models of

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 577

ΦD ∧ ¬la correspond to those of ΦD↑a
∧ ΨD,a, where ΨD,a is defined as:

ΨD,a =
∨

(tidi,Ii)∈D, a�∈Ii

qi

Adding ΨD,a allows to avoid such redundancies. In this way, any model of ΦD↑a
∧

ΨD,a must correspond to a pattern that covers at least one transaction not
containing a. Let us note that the constraint ΨD,a can be derived from the
closure constraint (3) by assigning la to false.

As a summary, the assignment of the variable la to true allows to restrict
the mining process to the transactions containing the item a, while setting la
to false allows to remove the item a from the database D with the addition of
ΨD,a, so that to avoid redundancy.

Clearly, a less frequent item a1 might lead to a CNF formula ΦD ∧ la1 of
reasonable size. But, ΦD ∧ ¬la1 can remain very huge. Fortunately, the previous
partitioning principle can be applied recursively on ΦD ∧ ¬la1 by choosing other
items. For example, if we choose a second item a2, the formula ΦD ∧¬la1 can also
be divided into ΦD∧¬la1 ∧la2 and ΦD∧¬la1 ∧¬la2 . Let us note that ΦD∧¬la1 ∧la2

is equivalent to ΦD↑a1↓a2
. Figure 1 shows this recursive partitioning process.

Fig. 1. Item-based guiding paths tree

Finally, if Ω = {a1, . . . , am}, then the models of ΦD can be partitioned into
disjoint sets of models as stated in Proposition 1.

Proposition 1. Let D be a transaction database over Ω. Then,

MP(ΦD) =
m⋃

i=1

MP(Φai

D), and MP(Φai

D) ∩ MP(Φaj

D) = ∅ (1 � i < j � m)

where Φai

D = (ΦD↓ai
↑a1 ...↑ai−1

∧ ∧
1�j<i(ΨD↓ai

,aj
)).

Proof (Sketch). Using the sequence of totally ordered set of items a1, a2, . . . , am,
the formula ΦD can be decomposed into a sequence of formulas Φa1

D , Φa2
D ,. . . ,

and Φam

D . This partition by the set of item-based guiding paths is complete as

578 I. O. Dlala et al.

depicted in Fig. 1. Indeed, starting with the item a1, the models of Φa1
D correspond

to the patterns of D restricted to transaction containing a1. The models of Φa2
D

correspond to the patterns of D restricted to transactions containing a2 while
removing the item a1. The constraint ΨD↓a2 ,a1 =

∨
(tidi,Ii)∈D↓a2 , a1 �∈Ii

qi allows
us to generate patterns that cover at least one additional transaction containing
a2 and not a1, and so on.

Remark 1. As ΦD corresponds to the SAT-based encoding of CFIM(D, θ), the
constraint ΨD,a avoiding patterns redundancy is derived from the closeness con-
straint (3) each time an item a is removed from D (i.e., D ↑a) or equivalently
la is assigned to false (i.e., ΦD ∧ ¬la). Obviously, the formulas Φai

D ∧ lai
and

ΦD ∧ lai
∧¬la1 ∧· · ·∧¬lai−1 admit the same models over P. However, as our goal

is to partition the encoding of D into several independent formulas of reasonable
size, it is better to consider Φai

D , where the encoding is done after restricting D to
transactions containing ai, removing the items a1, . . . , ai−1 and adding the con-
straint

∧
1�j<i(ΨD↓ai

,aj
), than propagating the literals lai

∧ ¬la1∧, . . . ,∧¬lai−1

on the formula encoding the whole transaction database.

As explained in Sect. 2.2, divide-and-conquer is an usual way for parallelizing
SAT solvers. This strategy uses the notion of guiding path to split the search
space. Each derived sub-formula is solved using a sequential SAT solver running
on a particular processor. In fact, partitioning the search space can be done
statically or dynamically in order to avoid the idleness of threads. Additionally,
workload balancing is another criteria allowing to distribute approximately equal
amounts of work among processors over time. In this paper, we consider a static
divide-and-conquer approach, i.e., the set of guiding paths are generated in a
preprocessing step. Our partition-based approach is based on the set of formulas
Φai

D (see Proposition 1). We denote by gai the ith guiding path defined as:
gai = ¬la1 ∧ . . .∧¬lai−1 ∧ lai

. The guiding path gai allows us to both restrict the
search on a subset of transactions involving only ai, with the items aj (1 � j < i)
removed. Each guiding path gai leads to a formula Φgai = ΦD ∧gai associated to
the ith branch of the item-based guiding paths tree depicted in Fig. 1. As ΦD is
the propositional formula encoding CFIM(D, θ), the two formulas Φgai and Φai

D
are equivalent. Naturally, each guiding path gai can be extended with additional
items to further reduce the size of the associated formula.

Notice that the total ordering over Ω used to generate the guiding paths
greatly impacts the size of the associated sequence of formulas and therefore it
can significantly affect the performance. Finding the best ordering for an efficient
parallelization is clearly a challenging issue. Our goal is then to decompose the
encoding into smaller propositional formulas in order to efficiently balance the
load between the different cores. Definitions 5 and 6 formalize this issue.

Definition 5. Given a transaction database D on Ω = {a1, . . . , am}. Let σ be a
permutation over Ω. We define GΩ,σ = {gσ(a1), . . . , gσ(am)} as the set of guiding
paths over Ω w.r.t. σ. We also define Φ(D, σ) as the set of propositional formulas
encoding D w.r.t. σ, i.e., Φ(D, σ) = {Φgσ(a1) , . . . , Φgσ(am)}.

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 579

Finding an appropriate permutation is a hard task. In fact, the relevance of
such permutation depends on the overall complexity of the model enumeration
process on the associated formulas. Considering the size of the formula as a
complexity measure, the issue can be formulated as an optimization problem:

Definition 6. Let D be a transaction database on Ω. We define the Best Items
Decomposition Ordering Problem as the problem of finding the best permuta-
tion σ that leads to a set of formulas encoding D while minimizing the size of
the largest formula in Φ(D, σ): σ∗ = arg minσ∈Perm(Ω) max{|φ|, φ ∈ Φ(D, σ)},
where Perm(Ω) is the set of all permutations over Ω.

The main idea is to reduce the overall computational complexity of the model
enumeration task among all the generated formulas under the set of guiding
paths. Note that the size of each formula Φgσ(ai) depends on the number of
transactions involving σ(ai) and on the the frequency of σ(aj) for (j < i) in such
transactions. From this observation, as a decomposition ordering we consider
items from the less frequent to the most frequent one. This static ordering, easy
to compute, proved to be a good compromise as shown in our experiments.

Algorithm 1, called paraSatMiner, summarizes the main components of our
partition-based parallel SAT approach for CFIM. It takes as input a transac-
tion database D over Ω, a permutation σ on Ω, a minimum support threshold
θ and a fixed number of threads (cores), and returns the set of closed frequent
itemsets as output. The number of threads is less or equal to the number of
items (n � m). The set of items are sorted in ascending order according to
their frequency, i.e., the permutation σ over Ω satisfies the following condition:
∀1 � i < j � m,S(D, {σ(ai)}) � S(D, {σ(aj)}). First, the SAT-based model
enumeration solvers are initialized. Each one is associated to a given thread or
core i, while initializing the set of models Mi returned by each thread i to
an empty-set (lines 1–4). Now, the n model enumeration solvers are launched
in parallel (lines 7–11). For example, the solver i is run successively on the
formulas Φ

σ(ai+k×n)
D corresponding to the guiding paths (or branches) num-

ber (i + k × n) � m. The set of models computed by the solver i are col-
lected in the set variable Mi. In this way, the solver i is run on the formulas
Φ

σ(ai)
D , Φ

σ(ai+n)
D , Φ

σ(ai+2×n)
D , . . . , Φ

σ(ai+k×n)
D , with i + k × n � m. As the items are

ordered according to their frequency, the sequences of formulas associated to the
n model enumeration solvers are approximately of closer sizes. This allow us to
ensure load balancing between the different solvers. Finally, in lines 12–14, the
set of closed frequent itemsets are collected by merging the model enumerated
by each thread, projected on the variables encoding the itemsets P.

4 Experimental Results

In this section, we evaluate the performance of paraSatMiner. The proposed par-
allel SAT mining solver is implemented using a model enumeration solver based
on MiniSAT [9]. As our approach is based on the enumeration of all models of a

580 I. O. Dlala et al.

Algorithm 1. Parallel SAT for Closed Frequent Itemset Mining (paraSat-
Miner)
Input: D: a transaction database, Ω = {a1, . . . , am}: a set of items, σ: a

permutation over Ω (ordering), θ: a minimum support threshold, n:
number of Threads

Output: The set of Closed Fequent Itemsets CFIM(D, θ)
1 foreach i ∈ {1, . . . , n} do
2 initEnumSatSolver(i);
3 Mi = ∅;

4 end
5 S = ∅;
6 k = 0;
7 # in parallel;
8 if (i + k × n ≤ |Ω|) then

9 Mi ← Mi ∪ enumModels(enumSatSolveri, Φ
σ(ai+k×n)

D);
10 k++;

11 end
12 foreach i ∈ {1, . . . , n} do
13 S = S ∪ MP

i ;
14 end
15 Return S

propositional formula, we propose an extension of MiniSAT solver based on the
DPLL (Davis-Putnam-Logemann-Loveland) procedure [8] to deal with this fun-
damental problem, marginally explored in the SAT community. More precisely,
each time a model is found, a chronological backtracking is performed while
inhibiting the restart component to ensure completeness. We also use OpenMP as
an API that supports multi-platform shared memory multiprocessing program-
ming in C and C++. Let us note that the cardinality constraints representing
the support constraint is managed on the fly inside the solver. We also use the
well-known MOMS variable ordering heuristic [21].

All the experiments were done on Intel Xeon quad-core machines with 32GB
of RAM running at 2.66 Ghz. To evaluate the practical performance of our
approach, we run the experiments on different datasets, taken from FIMI 1 and
CP4IM2 repositories. For each instance, we fix a timeout of 1000 s of CPU time.
Table 2 presents the characteristics of the evaluated datasets. For each instance,
we report the number of transactions (#Transactions), the number of items
(#Items), the density, and the size of the dataset in bytes.

For our experiments, we denote by paraSatMiner-*c3 our parallel SAT
solver based itemset enumeration where (∗) indicates the number of threads. We
compare the performance of our approach with the following most prominent

1 http://fimi.ua.ac.be/data/.
2 http://dtai.cs.kuleuven.be/CP4IM/datasets/.
3 http://www.cril.univ-artois.fr/decMining/.

http://fimi.ua.ac.be/data/
http://dtai.cs.kuleuven.be/CP4IM/datasets/
http://www.cril.univ-artois.fr/decMining/

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 581

state-of-the-art CP-based CFIM systems: ClosedPattern45 and CoverSize6.
As mentioned previously, ClosedPattern and CoverSize encode the closeness
constraint as global constraints. These CP mining systems are implemented in
C++ and Java using the or-tools solver [22] (or choco for the recent version)
and the OscaR solver [30], respectively. In addition, we consider LCM7 known as
the best specialized solver for frequent (closed) itemset mining. We perform two
kinds of experiments. In the first evaluation, we carry out a comparison with all
the considered itemset mining systems. In this case, paraSatMiner is run using
1 core as a sequential solver. In the second, we show that the performance of
our paraSatMiner can be improved by increasing the number of threads. In this
case, we vary the number of cores from 1 to 8.

Table 2. Data characteristics

Instance #Transactions #Items Density Size

chess 3196 75 49.0% 340K

mushroom 8124 119 19.0% 516K

BMS-WebView-1 59601 497 0.5% 940K

T10I4D100K 100000 870 1.0% 3.9M

retail 88162 16470 0.06% 4,2M

connect 67558 129 35.62% 8.9M

T40I10D100K 100000 942 4.31% 15M

pumsb 49046 2113 3.0% 16,7M

kosarak 990002 41267 0.01% 32M

accidents 340183 468 7.0% 34M

4.1 Sequential Evaluation

Table 3 reports the comparative results of the considered systems using different
minimum support threshold values. For each dataset, the number of models
(patterns) and the total CPU time (in seconds) are given. For CoverSize, we
also mention in parenthesis the solving CPU time without including the time
spent for loading and encoding the instance. (− −) means that the solver is
not able to finish the enumeration under the fixed time out. According to the
results, our ParaSatMiner-1c (with 1 core) solver outperforms considerably the
CP approaches on almost all the datasets with several factors of magnitudes of
gain. For instance, our approach allows to enumerate all the models of connect
data in 180 s for θ = 5000 when both ClosedPattern and CoverSize timed out.
Except for T10I4D100K and θ = 50, where CoverSize is the best. For all the
4 http://www.lirmm.fr/∼lazaar/cpminer.html.
5 https://lemierev.users.greyc.fr/closedpattern/.
6 https://www.info.ucl.ac.be/∼pschaus.
7 http://research.nii.ac.jp/∼uno/code/lcm.html.

http://www.lirmm.fr/~lazaar/cpminer.html
https://lemierev.users.greyc.fr/closedpattern/
https://www.info.ucl.ac.be/~pschaus
http://research.nii.ac.jp/~uno/code/lcm.html

582 I. O. Dlala et al.

Table 3. paraSatMiner vs (ClosedPattern, CoverSize, LCM)

Instance θ Closed pattern Cover size paraSat Miner-1c LCM #Models

retail 80 – 265.10 (42.84) 14.06 0.21 > 8.103

60 – 295.47 (72.04) 18.07 0.24 > 1.104

40 – 334.23 (113.14) 25.33 0.28 > 2.104

20 – 439.94 (216.68) 41.93 0.35 > 5.104

10 – 586.16 (361.71) 76.49 0.56 > 1.105

connect 40000 7.54 14.95 (9.67) 7.25 0.17 > 7.104

20000 50.22 75.48 (70.40) 22.73 0.55 > 5.105

10000 526.43 431.19 (426.34) 68.88 2.68 > 3.106

5000 – – 179.17 9.82 > 1.107

chess 2000 1.51 1.22 (0.51) 0.25 0.04 � 7.104

1500 6.30 4.09 (3.38) 0.8 0.20 > 5.105

1000 51.35 28.62 (27.93) 5.52 1.75 > 4.106

500 577.29 311.47 (310.74) 49.50 18.25 > 45.106

250 – – 186.11 72.96 � 2.108

100 – – 484.41 215.30 > 5.108

accidents 100000 101.68 145.96 (81.84) 74.14 1.72 � 1.105

80000 319.25 283.98 (220.86) 141.29 3.53 � 4.105

60000 – 866.21 (804.33) 299.94 5.66 > 1.106

40000 – – 735.39 10.59 � 6.106

pumbs 40000 20.99 389.43 (1.83) 4.78 0.13 > 2.104

35000 103.20 325.42 (19.54) 10.33 0.25 � 2.105

30000 434.25 404.26 (97.85) 27.72 0.59 � 9.105

25000 – 994.35 (690.09) 147.64 3.18 � 6.106

20000 – – 669.93 17.69 > 3.107

T40I10D100K 10000 4.16 51.43 (0.145) 3.15 0.34 � 1.102

8000 5.08 51.13 (0.352) 4.07 0.54 > 1.102

6000 10.38 52.39 (0.912) 6.43 0.79 > 2.102

4000 30.51 53.26 (2.221) 9.59 1.00 > 4.102

2000 144.89 58.22 (7.378) 22.74 1.64 > 1.103

T10I4D100K 500 106.87 24.04 (6.91) 2.90 0.35 > 1.103

400 147.14 25.56 (8.32) 3.32 0.37 > 1.103

300 217.40 27.73 (10.69) 4.31 0.40 > 4.103

200 314.17 29.12 (11.98) 6.16 0.44 > 1.104

100 497.10 32.40 (15.14) 14.66 0.48 > 2.104

50 – 45.05(27.80) 76.37 0.58 > 4.104

Online-Retail 70 – 211.71 (97.76) 31.66 0.82 � 6.103

40 – 233.34 (120.48) 34.64 0.85 > 6.103

10 – 253.64 (141.61) 39.94 0.82 � 8.103

5 – 267.96 (156.74) 41.79 0.90 > 8.103

Kosarak 4000 – – 29.37 1.32 > 2.103

3000 – – 39.98 1.61 > 4.103

2000 – – 65.12 2.16 > 3.104

1000 – – 145.65 3.43 � 5.105

mushroom 250 1.14 2.54 (0.50) 1.33 0.05 > 1.104

100 1.64 1.91 (1.07) 1.94 0.06 > 3.104

50 2.70 2.47 (1.63) 2.44 0.09 > 5.104

25 2.82 3.16 (2.27) 2.90 0.11 � 8.104

5 5.57 4.20 (3.33) 3.90 0.17 > 1.105

BMS-WebView-1 48 203.51 220.67 (1.43) 8.69 0.06 > 9.103

36 833.76 220.20 (3.32) 10.08 0.16 > 6.104

34 – 219.19 (4.79) 10.50 0.21 > 8.104

32 – 227.80 (8.19) 10.89 0.32 > 1.105

30 – 231.89 (14.88) 11.37 0.53 > 1.105

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 583

remaining tested values, ParaSatMiner-1c is clearly the best. Interestingly, on
the kosarak data with 990002 transactions the two CP systems are not able
to enumerate the whole set of models under the time limit for all θ values. For
the comparison with specialized algorithms, even if our approach reduced the
performance gap, the LCM algorithm remains the best system.

4.2 Parallel Evaluation

On the parallel side, we perform the same experiments by varying the number of
cores from 1 to 8 and by considering several minimum support threshold values.
Figure 2 shows the obtained results on a representative sample of dataset. A
first remark is that the parallel approach allows us to reduce considerably the
computation time. By increasing the number of cores, the time always decreases.
The impressive gain is obtained from 1 to 2 cores as shown by Fig. 2. For the

Fig. 2. Performance gain w.r.t. the number of cores

584 I. O. Dlala et al.

transition from 4 to 8 cores, the gain is not very impressive. Overall, the strategy
used to generate guiding paths by considering the less frequent items first is
successful. For instance for pumsb data and θ = 2000, the time is reduced from
700 s with 1 core to less than 200 s with 8 cores.

4.3 Load Balancing

Finally, to assess the suitability of our load balancing strategy, we consider the
datasets pumsb and T10I4D100K and we provide an empirical analysis of the
number of models discovered by the different cores. Using the 4 (resp. 8) cores
configuration, for each value of θ we report the average number of models among
the 4 (resp. 8) cores (the curve), while mentioning the minimum and the max-
imum number of models (the interval) (see Fig. 3). We note that the load bal-
ancing strategy is better when the minimum and maximum number of models
among those returned by the different cores are close to the average number of
models. As we can observe, for T10I4D100K, our strategy is clearly interesting.
Indeed, the relative load unbalancing is very limited. All the cores find approxi-
matively the same number of models. However, the load unbalancing is relatively
high for pumsb, mainly for the transition between 4 to 8 cores.
Overall, our guiding paths generation strategy allows to balance the number of
models between the different threads. These results indicate that our method is
both efficient and scalable.

Fig. 3. Load unbalancing between cores

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 585

5 Conclusion

In this paper, we proposed a parallel SAT-based framework for CFIM. We show
that partitioning the formula using predefined guiding paths allows to push
forward the performance of SAT-based itemset mining frameworks. Even in
the sequential configuration, our approach outperforms the existing CP-based
approaches while reducing considerably the time needed to compute all the item-
sets. We have shown that such approach scales well and presents good load
balancing among the different cores.

This work can be extended in different ways. First, we would like to consider
a dynamic partitioning strategy. We also plan to implement a distributed version
to handle very large datasets. Last, we plan to tackle other DM problems like
discriminative itemsets, association rules mining, and skypatterns tasks.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD International Conference on Manage-
ment of Data, pp. 207–216 (1993)

2. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: International Conference on Principles and Practice of Constraint
Programming CP, pp. 108–122 (2003)

3. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Lloyd, J., et al.
(eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44957-4 65

4. Borgelt, C.: Frequent item set mining. Wiley Int. Rev.: Data Min. Knowl. Disc.
2(6), 437–456 (2012)

5. Boudane, A., Jabbour, S., Sais, L., Salhi, Y.: A sat-based approach for mining
association rules. In: IJCAI, pp. 2472–2478 (2016)

6. Boudane, A., Jabbour, S., Sais, L., Salhi, Y.: Clustering complex data represented
as propositional formulas. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon,
Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 441–452. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57529-2 35

7. Dao, T., Duong, K., Vrain, C.: Constrained clustering by constraint programming.
Artif. Intell. 244, 70–94 (2017)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5, 394–397 (1962)

9. En, N., Srensson, N.: An extensible sat-solver. In: Proceedings of the Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
pp. 502–518 (2002)

10. Ganji, M., Bailey, J., Stuckey, P.J.: A declarative approach to constrained com-
munity detection. In: International Conference on Principles and Practice of Con-
straint Programming, pp. 477–494 (2017)

11. Gebser, M., Guyet, T., Quiniou, R., Romero, J., Schaub, T.: Knowledge-based
sequence mining with ASP. In: International Joint Conference on Artificial Intelli-
gence, pp. 1497–1504 (2016)

https://doi.org/10.1007/3-540-44957-4_65
https://doi.org/10.1007/978-3-319-57529-2_35

586 I. O. Dlala et al.

12. Guns, T., Dries, A., Tack, G., Nijssen, S., Raedt, L.D.: Miningzinc: a modeling lan-
guage for constraint-based mining. In: International Joint Conference on Artificial
Intelligence, pp. 1365–1372 (2013)

13. Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

14. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4),
245–262 (2009)

15. Henriques, R., Lynce, I., Manquinho, V.M.: On when and how to use sat to mine
frequent itemsets. CoRR, abs/1207.6253 (2012)

16. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A sat-based framework for over-
lapping community detection in networks. In: Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining, pp. 786–798 (2017)

17. Jabbour, S., Sais, L., Salhi, Y.: A pigeon-hole based encoding of cardinality con-
straints. TPLP 13(4-5-Online-Supplement) (2013)

18. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using
top-k SAT problem. In: ECML/PKDD, pp. 403–418 (2013)

19. Jabbour, S., Sais, L., Salhi, Y.: Decomposition based SAT encodings for itemset
mining problems. In: Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining, pp. 662–674 (2015)

20. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a SAT-based framework.
Artif. Intell. 244, 30–47 (2017)

21. Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math.
Artif. Intell. 1, 167–187 (1990)

22. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizu-
mault, P.: A global constraint for closed frequent pattern mining. In: International
Conference on Principles and Practice of Constraint Programming, pp. 333–349
(2016)

23. Lin, Y.C., Wu, C., Tseng, V.S.: Mining high utility itemsets in big data. In: Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining, pp. 649–
661 (2015)

24. Liu, L., Li, E., Zhang, Y., Tang, Z.: Optimization of frequent itemset mining on
multiple-core processor. In: International Conference on Very Large Data Bases
(2007)

25. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for big data. In:
IEEE International Conference on Big Data, pp. 111–118 (2013)

26. Négrevergne, B., Guns, T.: Constraint-based sequence mining using constraint pro-
gramming. In: International Conference on Integration of AI and OR Techniques
in Constraint Programming, pp. 288–305 (2015)

27. Négrevergne, B., Termier, A., Méhaut, J., Uno, T.: Discovering closed frequent
itemsets on multicore: parallelizing computations and optimizing memory accesses.
In: International Conference on High Performance Computing & Simulation, pp.
521–528 (2010)

28. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: ACM SIGKDD, pp. 204–212 (2008)

29. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining asso-
ciation rules in large databases. In: International Conference on Very Large Data
Bases, pp. 432–444 (1995)

30. Schaus, P., Aoga, J.O.R., Guns, T.: Coversize: a global constraint for frequency-
based itemset mining. In: International Conference on Principles and Practice of
Constraint Programming, pp. 529–546 (2017)

A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining 587

31. Schubert, T., Lewis, M.D.T., Becker, B.: Pamiraxt: parallel SAT solving with
threads and message passing. JSAT 6(4), 203–222 (2009)

32. Tseitin, G.: On the complexity of derivations in the propositional calculus. In:
Studies in Mathematics and Mathematical Logic, pp. 115–125 (1968)

33. Wang, S., Yang, Y., Gao, Y., Chen, G., Zhang, Y.: Mapreduce-based closed fre-
quent itemset mining with efficient redundancy filtering. In: IEEE International
Conference on Data Mining Workshops ICDM, pp. 449–453 (2012)

34. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf Process Lett 68(2), 63–69 (1998)

35. Zäıane, O.R., El-Hajj, M., Lu, P.: Fast parallel association rule mining without
candidacy generation. In: IEEE International Conference on Data Mining, pp.
665–668 (2001)

36. Zaki, M.J.: Mining non-redundant association rules. Data Min. Knowl. Discov.
9(3), 223–248 (2004)

37. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover
and its application to quasigroup problems. J. Symbolic Comput. 21(4), 543–560
(1996)

38. Zitouni, M., Akbarinia, R., Yahia, S.B., Masseglia, F.: Massively distributed envi-
ronments and closed itemset mining: the DCIM approach. In: International Con-
ference on Advanced Information Systems Engineering, pp. 231–246 (2017)

Towards Effective Deep Learning
for Constraint Satisfaction Problems

Hong Xu(B) , Sven Koenig, and T. K. Satish Kumar

University of Southern California, Los Angeles, CA 90089, USA
{hongx,skoenig}@usc.edu, tkskwork@gmail.com

Abstract. Many attempts have been made to apply machine learning
techniques to constraint satisfaction problems (CSPs). However, none
of them have made use of the recent advances in deep learning. In this
paper, we apply deep learning to predict the satisfiabilities of CSPs. To
the best of our knowledge, this is the first effective application of deep
learning to CSPs that yields >99.99% prediction accuracy on random
Boolean binary CSPs whose constraint tightnesses or constraint densities
do not determine their satisfiabilities. We use a deep convolutional neural
network on a matrix representation of CSPs. Since it is NP-hard to solve
CSPs, labeled data required for training are in general costly to produce
and are thus scarce. We address this issue using the asymptotic behavior
of generalized Model A, a new random CSP generation model, along
with domain adaptation and data augmentation techniques for CSPs.
We demonstrate the effectiveness of our deep learning techniques using
experiments on random Boolean binary CSPs. While these CSPs are
known to be in P, we use them for a proof of concept.

1 Introduction

A lot of research has been dedicated to applying machine learning techniques
to constraint satisfaction problems (CSPs), such as support vector machines [5],
linear regression [27], decision tree learning [10,12], clustering [15,23], k-nearest
neighbors [21], and so on [16]. However, there are a few drawbacks in these
methods. First, they do not consistently produce extremely high (>99%) pre-
diction accuracies. Secondly, to the best of our knowledge, they critically rely on
handcrafted features. For different distributions of CSPs coming from different
application domains and for different tasks of interest, the optimal features need
to be carefully selected by humans accordingly [16]. How to select good features
thus requires dedicated research [3,4].

Deep learning is a class of machine learning methods based on multi-layer
(deep) neural networks (NNs). Thanks to the advent of “Big Data,” it has sig-
nificantly advanced during the past decade and achieved great success in many

The research at the University of Southern California (USC) was supported by
National Science Foundation (NSF) under grant numbers 1724392, 1409987, and
1319966.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 588–597, 2018.
https://doi.org/10.1007/978-3-319-98334-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_38&domain=pdf
http://orcid.org/0000-0001-7874-4518

Towards Effective Deep Learning for Constraint Satisfaction Problems 589

areas, such as computer vision and natural language processing [11]. In these
applications, it consistently produces extremely high prediction accuracies, and
often approaches or even surpasses human-level performance in many human
perception tasks, such as object recognition [8,14] and speech recognition [6].
Furthermore, it does not rely on handcrafted features. One of the key reasons
for the success of deep learning is the availability of huge amounts of training
data. However, due to the NP-hardness of CSPs, it is costly to label CSPs with
properties such as their satisfiabilities and the best algorithms to solve them.
This has become a roadblock for effective deep learning for CSPs. Indeed, a
recent study shows that, without a huge amount of labeled data, a convolutional
NN (cNN) for algorithm selection is ineffective for CSPs [19].1

In this work, we successfully apply deep learning to predict the satisfiabilities
of random Boolean binary CSPs with high prediction accuracies (>99.99%). To
the best of our knowledge, this is the first effective application of deep learning to
random CSPs whose constraint tightnesses or constraint densities do not deter-
mine their satisfiabilities. Accurately predicting satisfiabilities might improve the
dynamic variable ordering in a backtracking algorithm for CSPs to increase the
likelihood of choosing a variable that results in a satisfiable subproblem so as
to minimize backtracking. Further adapting our current method to qualitatively
predict the number of solutions, e.g., “0,” “1,” and “≥1,” might further improve
the dynamic variable ordering. In addition, transfer learning may be potentially
used to enable effective deep learning for other tasks such as predicting the most
efficient algorithm and its best parameter settings for a given CSP.

In this paper, first, we describe the architecture of our cNN. Then, we address
the issue of the lack of labeled data using the asymptotic behavior of generalized
Model A, a new random CSP generation model, along with domain adaptation
and data augmentation techniques for CSPs. We demonstrate the effectiveness
of our techniques using experiments on random Boolean binary CSPs. While
these CSPs are known to be in P, we use them as a proof of concept.

Preliminaries. A CSP is formally defined as a tuple 〈X ,D, C〉, where X =
{X1, . . . , Xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains
corresponding to their respective variables, and C = {C1, . . . , Cm} is a set of
constraints. Each constraint Ci ∈ C is a pair 〈S(Ci), Ri〉, where S(Ci) is a subset
of X and Ri is a |S(Ci)|-ary relation that specifies incompatible and compatible
assignments of values to variables in S(Ci). In a table constraint Ci, Ri is a set
of tuples, each of which indicates the compatibility of an assignment of values to
variables in S(Ci). A tuple is compatible if it specifies a compatible assignment
of values to variables, and is otherwise incompatible. We focus on CSPs where
all constraints are table constraints.

1 Another related work [9] using a different approach was only publicly available after
this paper was accepted, before which we had no access to it. Nevertheless, it only
demonstrated low training and test accuracies in the experiments when the number
of variables in a CSP is non-trivial (≥5) and we do not consider it effective (yet).

590 H. Xu et al.

Fig. 1. The architecture of our CSP-cNN.

The concept of a cNN, a class of deep NN architectures, was initially proposed
for an object recognition problem [18] and has recently achieved great success
[8,14]. It is a multi-layer feedforward NN that takes a multi-dimensional (usually
2-D or 3-D) matrix as input. While cNNs are mainly used for classification, they
are also used for regression [24]. A cNN has three types of layers: convolutional
layers, pooling layers, and fully connected layers. A convolutional layer performs
a convolution operation. A pooling layer combines the outputs of several nodes
in the previous layer into a single node in the current layer. A fully connected
layer connects every node in the current layer to every node in the previous layer.

2 Enabling Deep Learning for CSPs

In the context of deep learning for CSPs, each data point is a CSP (instance). If
a data point is labeled, its label is a property of this CSP, such as its satisfiability,
its K-consistency, the best algorithm to solve it, or the amount of time required
to solve it with a specific algorithm. Our cNN takes a data point (a CSP) as
input and predicts its label. In order to enable a cNN to take a CSP as input, we
represent a binary CSP using a matrix as follows. Each row/column represents a
variable-value pair (Xi, xi). The element in (Xi, xi)’s row and (Xj , xj)’s column
is zero if {Xi = xi,Xj = xj} is disallowed; otherwise, the element is one. We
refer to this matrix as a CSP matrix.

The rationale behind using a CSP matrix is the observation that it resembles
a 2-D array of pixel values in a gray-scale image. cNNs are known to recognize
patterns in a multi-dimensional array of numbers, such as patterns in an image
in computer vision applications. Our intuition is that many properties of a CSP
depend on the patterns of compatible and incompatible tuples in its constraints.
Therefore, we expect a cNN that takes a CSP matrix as input to be able to
recognize patterns of compatible and incompatible tuples to make its predictions.

Our cNN has the following architecture. Each node in the input layer cor-
responds to an element of the input CSP matrix. It has 4 convolutional layers
with 3-by-3 kernels with stride 1, each of which is followed by a MaxPool layer
with a 2-by-2 kernel with stride 2. We used “same” padding for all convolutional
layers and “valid” padding for all MaxPool layers. Following these layers, there
are 2 fully connected hidden layers. Finally, there is an output layer with a single
node. The node in the output layer uses the sigmoid activation function, and all
other neurons are rectified linear units (ReLUs) [13]. The output layer uses L2
regularization with a coefficient of 0.1, and all other layers use L2 regularization
with a coefficient of 0.01. We refer to this cNN as CSP-cNN as shown in Fig. 1.

Towards Effective Deep Learning for Constraint Satisfaction Problems 591

2.1 Efficient Massive Training Data Generation

One of the key reasons for the success of deep learning is its power to use huge
amounts of training data, such as hundreds of thousands of data points. However,
since CSPs are NP-hard, it is in general elusive to generate such a huge amount
of labeled data. In this subsection, we develop a new method that efficiently
generates massive amounts of labeled data.

We generalize Model A [26] to create a random binary CSP generation model,
henceforth referred to as generalized Model A. Model A generates a binary CSP
as follows [26]. It independently selects each one of the n(n− 1)/2 pairs of vari-
ables with a given probability p, and, for each selected pair of variables Xi and
Xj , it marks each one of the |Di| · |Dj | possible pairs of values as incompatible
independently with a given probability q. Here, p characterizes how many con-
straints exist in a CSP, and q characterizes how restrictive the constraints are.
In generalized Model A, q can vary from constraint to constraint (denoted by
qij for the pair of variables Xi and Xj). Model A has an important property: It
always generates CSPs that are unsatisfiable when n → ∞ if p, q > 0 [2]. Gener-
alized Model A also has this property if p > 0 and ∀Xi,Xj ∈ X : qij > 0, since
it generates CSPs that are more constrained than those generated by Model A
with the same p and q = minXi,Xj∈X qij .

By making use of this property of generalized Model A, we are able to gener-
ate data points with a low mislabeling rate as follows. To generate a data point
with label UNSATISFIABLE, we simply follow generalized Model A with non-zero p
and qij ’s. To generate a data point with label SATISFIABLE, we use the same pro-
cedure but update the compatibilities of tuples in generated constraints to allow
for a randomly selected solution. We refer to this data generation method as gen-
eralized Model A-based method (GMAM). To avoid data imbalance, we generate
comparable numbers of data points labeled SATISFIABLE and UNSATISFIABLE.
Using this approach, we can efficiently generate huge amounts (such as millions)
of labeled data points for training. The main intuitive reason that we use gen-
eralized Model A instead of Model A is that it leads to a distribution of CSPs
that is more spread out and may be beneficial for training cNNs.

Although generalized Model A always generates CSPs that are unsatisfiable
when n → ∞ if p > 0 and ∀Xi,Xj ∈ X : qij > 0, it is still desirable to have some
bounds on the probability of mislabeling a CSP for finite n, which can be used
to guide the choice of p and qij . Among all data points labeled SATISFIABLE,
there are no mislabeled data points since a solution is guaranteed during data
generation. For a data point labeled UNSATISFIABLE, we prove that:

Theorem 1. Consider a data point with binary CSP P = 〈X ,D, C〉. If it is
generated using GMAM and is labeled UNSATISFIABLE, the probability of it being
mislabeled is no greater than

∏
Xi∈X |D(Xi)|

∏
Xi,Xj∈X (1 − pqij).

Proof. The probability of mislabeling the CSP equals the probability that it has
at least one solution, denoted by P (nsol ≥ 1). Using Markov’s inequality, we

592 H. Xu et al.

have P (nsol ≥ 1) ≤ E(nsol), where E(nsol) is the expected number of solutions
of the CSP. We also have

E(nsol) = E

⎛
⎝ ∑

a∈A(X)

1a is a solution

⎞
⎠ =

∑
a∈A(X)

E (1a is a solution)

=
∑

a∈A(X)

P (a is a solution) =
∑

a∈A(X)

∏
Xi,Xj∈X

(1 − pqij) =
∏

Xi∈X
|D(Xi)|

∏
Xi,Xj∈X

(1 − pqij) ,

where A(X) is the set of all assignments of values to variables in X . Therefore,
the probability that a data point labeled UNSATISFIABLE is mislabeled is no
greater than

∏
Xi∈X |D(Xi)|

∏
Xi,Xj∈X (1 − pqij).
�

2.2 Training and Prediction on General CSP Datasets

Applying a deep NN to a small dataset directly may cause overfitting due to the
large number of training parameters. Although we can use GMAM to efficiently
generate huge amounts of training data, training a deep NN on a dataset from a
distribution different from the dataset of interest usually does not lead to good
results, even if the training dataset is huge. To overcome this issue, there are
two common classes of techniques: domain adaptation and data augmentation.

Domain adaptation refers to learning from one source of data and predicting
on a different source of data with a different distribution, due to the scarcity
of available labeled data from the latter source. By using domain adaptation
techniques, a small set of labeled data of interest, assumingly generated from
an arbitrary distribution different from generalized Model A, can still be made
viable. In particular, we can train on a mix of these available data and data
generated using GMAM, and then evaluate on the test data of interest.

Data augmentation refers to transforming data without changing their labels,
known as label-preserving transformations. For example, in object recognition
tasks in computer vision applications, to generate more training data, we can
augment an image by translating or reflecting horizontally without changing its
label [17]. In the context of CSP-cNN, we can augment an input CSP by changing
the order of variables or their domain values, i.e., exchanging their corresponding
rows and columns of the CSP matrix. This does not alter the satisfiabilities of
the CSPs and therefore does not change their labels.

3 Experimental Evaluation

We evaluated CSP-cNN and the relevant methods mentioned above experimen-
tally. We used Keras [7] with the TensorFlow [1] backend, that uses the GPU to
accelerate forward and backward propagation to implement NNs.

Evaluation on Data Generated Using GMAM. Using GMAM, we gener-
ated 200,000 training data points, 10,000 validation data points, and 10,000 test
data points. Each data point is a binary CSP of 128 Boolean variables limited

Towards Effective Deep Learning for Constraint Satisfaction Problems 593

by the computational capacity of our hardware and the size of our CSP-cNN.
For each data point, we randomly chose p and all qij ’s between 0.12 and 0.99.
Theorem 1 guarantees that the probability of mislabeling an UNSATISFIABLE

data point is ≤ 2128 × (1 − 0.12 × 0.12)128×(128−1)/2 = 2.14 × 10−13. Half of
the data points in each of the training, validation, and test datasets are labeled
SATISFIABLE and the others UNSATISFIABLE.

We first trained our CSP-cNN using the training data generated above. We
initialized all parameters using He-initialization [14]. We trained our CSP-cNN
using stochastic gradient descent (SGD) with a mini-batch size of 128 for 59
epochs. In each epoch, we randomly shuffled all data points. We used a learning
rate of 0.01 for the first 5 epochs and a learning rate of 0.001 for the last 54
epochs. We used binary cross entropy as the loss function. Each epoch took
about 520 seconds to finish on a GPGPU “NVIDIA(R) Tesla(R) K80.”

After training, all training, validation, and test accuracies were greater than
99.99%. Therefore, we conclude that, while constraint tightnesses and constraint
densities do not determine the satisfiabilities of CSPs, deep NNs, such as our
CSP-cNN, can be capable of accurate predictions when a huge amount of training
data are available, at least on Boolean binary CSPs.

To further demonstrate the effectiveness of our CSP-cNN on GMAM gen-
erated data, we also compared our CSP-cNN with three other NNs. The first
NN, referred to as NN-image, had the same architecture as our CSP-cNN, but
its input was a gray-scale image converted from the ASCII codes of its input
text file as described in [19]. The other two NNs were plain, i.e., had only fully
connected hidden layers. The first plain NN, referred to as NN-1, had only 1 fully
connected hidden layer with 256 ReLUs and 1 output layer with a single neuron
with a sigmoid activation function, i.e., the last two layers of our CSP-cNN.
This is a classical shallow NN architecture. The second plain NN, referred to as
NN-2, was constructed by inserting 1 more fully connected hidden layer with 1024
ReLUs after the input layer in NN-1. Both plain NNs used the same parameter
initialization and regularization as our CSP-cNN. We trained NN-image using
a training procedure similar to that of CSP-cNN except that it used one more
epoch with a learning rate of 0.01. We trained both plain NNs for 120 epochs
using SGD with a learning rate of 0.01 for the first 60 epochs and 0.001 for the
last 60 epochs. They both used a mini-batch size of 128.

Our experimental results are shown in Table 1. The test accuracy of our
CSP-cNN was better than those of NN-1 and NN-2 and far better than that
of NN-image. Thus, the CSP matrix of a CSP seems to provide a better input
representation than the approach in [19] and seems to reveal useful structure of
the CSP. We also compared with an approach that predicts a CSP’s satisfiability
using its number of incompatible tuples, referred to as “M” in Table 1. It selects
a threshold and predicts CSPs with a number of incompatible tuples above this
threshold to be unsatisfiable and other CSPs to be satisfiable. The best threshold
for the test data is 13435 and led to an accuracy of 64.79%.

594 H. Xu et al.

Table 1. Test accuracies on GMAM
generated data.

CSP-cNN NN-image NN-1 NN-2 M

Acc (%) >99.99 50.01 98.11 98.66 64.79

Table 2. First two columns show test accura-
cies of CSP-cNN in all 3 rounds of cross vali-
dation. Last column shows the test accuracy of
CSP-cNN (trained on GMAM generated data)
on MMEM generated data.

Data Trained Mixed MMEM GMAM

Acc (%) 100.00/100.00/100.00 50.00/50.00/50.00 50.00

Evaluation of Domain Adaptation and Data Augmentation. Due to the
lack of small (n ≤ 128) benchmark instances of Boolean binary CSPs where
satisfiabilities need to be determined, we randomly generated 1,200 binary CSPs
with 128 Boolean variables using a model similar to Model E [2]. We generated
only 1,200 CSPs to mimic most real-world scenarios where labeled CSPs are
costly to obtain. We generated these CSPs as follows. We divided all CSPs into
two groups. For each CSP in the first group, (a) we divided the 128 Boolean
variables into two partitions, with 64 variables each; (b) for each pair of vari-
ables from different partitions, we randomly added a binary constraint between
them with probability 0.99; (c) within each constraint, we randomly marked
exactly 2 (out of 4) tuples as incompatible. For each CSP in the second group,
we generated it using a similar approach, except that, in Step (c), we also guar-
anteed that incompatible tuples do not rule out a randomly generated solution
(while it remains that exactly 2 tuples are incompatible in each constraint).
We refer to this random CSP generation method as Modified Model E-based
method (MMEM). Using Choco [22], we labeled 600 CSPs SATISFIABLE and
600 UNSATISFIABLE.

The distribution of CSPs resulting from using MMEM is different from that
of the ones resulting from using GMAM, for the following reasons. There are for-
mally proven significant differences between the asymptotic satisfiability proper-
ties of Model A and Model E [2]. Step (a) yields a bipartite variable interaction
structure. Step (c) guarantees the same tightness in each constraint, which makes
the satisfiabilities of the CSPs unrecognizable from their tightnesses. For these
reasons, these random CSPs suffice for a proof of concept.

We evaluated the effectiveness of domain adaptation and data augmentation
for our CSP-cNN on the CSPs generated by MMEM using stratified 3-fold cross
validation, i.e., we divided the 1,200 CSPs into 3 sets with equal numbers of
satisfiable and unsatisfiable CSPs. Since there are only 400 data points in each
of these 3 sets, for each data point in the training set, we used the augmentation
method in Sect. 2.2 124 times to produce 124 more data points each. Therefore, in
each round of cross validation, we used 125×800 = 100, 000 training data points.
We mixed these 100,000 data points with the 200,000 data points generated using
GMAM and trained our CSP-cNN on them. We used SGD and trained for 30
epochs. We used a learning rate of 0.01 in the first 10 epochs and a learning
rate of 0.001 in the last 20 epochs. As a baseline, we also trained CSP-cNN by
augmenting each data point for 324 times so that the number of training data

Towards Effective Deep Learning for Constraint Satisfaction Problems 595

Table 3. Test accuracies of all three rounds of cross validation for different percentages
of MMEM generated data when domain adaptation is used.

Percentage of MMEM (%) 0.00 33.33 36.00 40.00 46.66 53.33 66.67 70.67 78.67 100.00

Average Accuracy (%) 50.00 100.00 100.00 83.33 66.67 83.33 66.67 66.67 50.00 50.00

points was also 325 × 800 = 300, 000 in each round. The training procedure was
the same. We also directly applied the CSP-cNN previously trained on GMAM
generated data to all 1,200 data points.

Our experimental results are shown in Table 2. Our mixed data points pro-
duced test accuracies of 100% in all three rounds of cross validation. On the
other hand, CSP-cNNs trained only on augmented MMEM or GMAM gener-
ated data have high test errors in (cross) validation and always produced the
same prediction regardless of their input. When training our CSP-cNN only on
augmented MMEM generated data, we were unable to reduce the test error even
by tuning hyperparameters, such as the learning rate, initialization, and the opti-
mization algorithm. This shows that our GMAM generated data seem to play
a key role in enabling effective deep learning for CSPs via domain adaptation.
To further confirm this, we ran similar experiments with various percentages
of MMEM generated data in the training data by varying the number of times
each data point is augmented. In these experiments, GMAM generated data
points were randomly selected to fill the total number of training data points to
300,000. Table 3 shows our experimental results. When MMEM generated data
points constituted 33.33–36.00% of the training data, the average test accuracies
reached 100%. However, when MMEM generated data points constituted more
than 40.00% of the training data, the test accuracies became lower and unstable.

4 Conclusions and Future Work

In this paper, we effectively applied our CSP-cNN, a deep NN architecture, to
predict satisfiabilities of CSPs with prediction accuracies higher than 99.99%. To
the best of our knowledge, this is the first effective application of deep learning
to random CSPs whose constraint tightnesses and constraint densities do not
determine their satisfiabilities. Due to the NP-hardness of CSPs, training data
are usually too scarce to be effectively used by deep learning. We addressed this
issue by generating huge amounts of labeled data using GMAM. We experimen-
tally demonstrated the high effectiveness (>99.99% test accuracy) of applying
our CSP-cNN to these data on random Boolean binary CSPs. While these CSPs
are known to be in P, we used them as an initial demonstration. For CSPs drawn
from a distribution different from that of GMAM, we once again addressed the
issue of lack of training data. We did this by augmenting the training data and
mixing them with GMAM generated CSPs. Finally, we experimentally demon-
strated the superior effectiveness of these techniques on MMEM generated CSPs.

So far, we have only experimented on small easy random CSPs that were gen-
erated in two very specific ways. One future research direction is to understand

596 H. Xu et al.

the generality of our approach, for example, by experimenting on larger, hard,
and real-world CSPs, analyzing what our CSP-cNN learns, and evaluating how
robust our approach is with respect to the training data and hyperparameters.
A second future research direction is to understand exactly how our approach
should be used, for example, how the effectiveness of our CSP-cNN depends on
the amount of available training data and the amount of data augmentation used
to increase them. A third future research direction is to generalize our CSP-cNN
to accommodate more types of constraints. (a) For non-binary table constraints,
we could naively increase the dimensionality of the CSP matrix to be equal to
the maximum arity of the constraints. A more practical method might be to
represent input CSPs as constraint graphs and adapt the graph representation
methods in [20]. (b) For symmetric global constraints, we could adapt the meth-
ods that apply recurrent NNs (rNNs) to Boolean satisfiability [25]. Then, an NN
architecture that combines cNNs and rNNs could be used.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems. software (2015). https://www.tensorflow.org/

2. Achlioptas, D., Molloy, M.S.O., Kirousis, L.M., Stamatiou, Y.C., Kranakis, E.,
Krizanc, D.: Random constraint satisfaction: a more accurate picture. Constraints
6(4), 329–344 (2001). https://doi.org/10.1023/A:1011402324562

3. Amadini, R., Gabbrielli, M., Mauro, J.: An empirical evaluation of portfolios
approaches for solving CSPs. In: The International Conference on Integration of
Artificial Intelligence and Operations Research Techniques in Constraint Program-
ming, pp. 316–324 (2013). https://doi.org/10.1007/978-3-642-38171-3 21

4. Amadini, R., Gabbrielli, M., Mauro, J.: An enhanced features extractor for a port-
folio of constraint solvers. In: The Annual ACM Symposium on Applied Comput-
ing, pp. 1357–1359 (2014). https://doi.org/10.1145/2554850.2555114

5. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint program-
ming. In: The IEEE International Conference on Tools with Artificial Intelligence,
pp. 53–60 (2010). https://doi.org/10.1109/ICTAI.2010.17

6. Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition. Springer, New
York (1994). https://doi.org/10.1007/978-1-4615-3210-1

7. Chollet, F., et al.: Keras (2015). https://keras.io
8. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for

image classification. In: The IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3642–3649 (2012). https://doi.org/10.1109/CVPR.2012.6248110

9. Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs
via deep learning: a preliminary study. In: The International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pp. 254–262 (2018). https://doi.org/10.1007/978-3-319-93031-2 18

10. Gent, I.P., et al.: Learning when to use lazy learning in constraint solving. In: The
European Conference on Artificial Intelligence, pp. 873–878 (2010). https://doi.
org/10.3233/978-1-60750-606-5-873

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

https://www.tensorflow.org/
https://doi.org/10.1023/A:1011402324562
https://doi.org/10.1007/978-3-642-38171-3_21
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1109/ICTAI.2010.17
https://doi.org/10.1007/978-1-4615-3210-1
https://keras.io
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1007/978-3-319-93031-2_18
https://doi.org/10.3233/978-1-60750-606-5-873
https://doi.org/10.3233/978-1-60750-606-5-873

Towards Effective Deep Learning for Constraint Satisfaction Problems 597

12. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio
selection. In: The European Conference on Artificial Intelligence, pp. 475–479
(2004)

13. Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405, 947–951 (2000). https://doi.org/10.1038/35016072

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: The IEEE International Confer-
ence on Computer Vision, pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.
2015.123

15. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: The European Conference on Artificial Intelligence,
pp. 751–756 (2010). https://doi.org/10.3233/978-1-60750-606-5-751

16. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In:
Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary
Approach, pp. 149–190 (2016). https://doi.org/10.1007/978-3-319-50137-6 7

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: The Neural Information Processing Systems Con-
ference, pp. 1097–1105 (2012). https://doi.org/10.1145/3065386

18. LeCun, Y.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

19. Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.: Deep learning for algo-
rithm portfolios. In: The AAAI Conference on Artificial Intelligence, pp. 1280–1286
(2016)

20. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks
for graphs. In: The International Conference on Machine Learning, pp. 2014–2023
(2016)

21. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: The Irish Con-
ference on Artificial Intelligence and Cognitive Science (2008)

22. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017). http://www.choco-solver.org

23. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas.
In: The International Conference on Principles and Practice of Constraint Pro-
gramming, pp. 574–589 (2007). https://doi.org/10.1007/978-3-540-74970-7 41

24. Sateesh Babu, G., Zhao, P., Li, X.L.: Deep convolutional neural network based
regression approach for estimation of remaining useful life. In: The International
Conference on Database Systems for Advanced Applications, pp. 214–228 (2016).
https://doi.org/10.1007/978-3-319-32025-0 14

25. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. arXiv:1802.03685 [cs.AI] (2018)

26. Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint sat-
isfaction problems. Artif. Intell. 81(1), 155–181 (1996). https://doi.org/10.1016/
0004-3702(95)00052-6

27. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008). https://doi.org/
10.1613/jair.2490

https://doi.org/10.1038/35016072
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1145/3065386
https://doi.org/10.1162/neco.1989.1.4.541
http://www.choco-solver.org
https://doi.org/10.1007/978-3-540-74970-7_41
https://doi.org/10.1007/978-3-319-32025-0_14
http://arxiv.org/abs/1802.03685
https://doi.org/10.1016/0004-3702(95)00052-6
https://doi.org/10.1016/0004-3702(95)00052-6
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

CP and Music Track

Extending the Capacity of 1/f Noise
Generation

Guillaume Perez(B), Brendan Rappazzo, and Carla Gomes

Department of Computer Science, Cornell University, Ithaca, NY 14850, USA
guillaume.perez06@gmail.com, bhr54@cornell.edu

Abstract. From the emissions of massive quasars scattered across the
universe, to the fluctuations in the stock market and the melodies of
music, several real world signals have a power spectral density (PSD) that
follows an inverse relationship with their frequency. Specifically, this type
of random process is referred to as a 1/f signal, and has been of much
interest in research, as sequences that have this property better mimic
natural signals. In the context of constraint programming, a recent work
has defined a constraint that enforces sequences to exhibit a 1/f PSD,
as well as a corresponding constraint propagator. In this paper we show
that the set of valid solutions associated with this propagator misses an
exponential number of 1/f solutions and accepts solutions that do not
have a 1/f PSD. Additionally, we address these two issues by proposing
two non-exclusive algorithms for this constraint. The first one can find
a larger set of valid solutions, while the second prevents most non-1/f
solutions. We demonstrate in our experimental section that using the
hybrid of these two methods results in a more robust propagator for this
constraint.

1 Introduction

The power spectral density (PSD) of a signal describes the distribution of power
over its consisting frequency components, and is an extremely useful metric for
the analysis of stochastic processes. Interestingly, the PSD of many real world
phenomena, including quasar emissions, the firing of neurons and the resistivity
of semiconductors, exhibit a signal that gives a PSD that is inversely proportional
to its frequency [7]. To be precise this means that the PSD value follows a
1/f shape, where f is the frequency, and is called 1/f noise accordingly. The
synthetic generation of 1/f signals can be of much use in content generation,
for example it can help improve the digital generation of images [14]. Another
example, and one of the most interesting phenomena observed, is that music
that follows a PSD of 1/f empirically sounds better than music that has other
distributions [23,24]. Specifically, music generated using 1/f sequences sounds
less artificial [5]. Given the potential benefits of generating 1/f noise, several
methods have been proposed [6,7]. A notably interesting algorithm is the Voss
algorithm, which was developed by the physicist Richard Voss and then later
published by Gardner [4]. While this method can generate sequences that have
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 601–610, 2018.
https://doi.org/10.1007/978-3-319-98334-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_39&domain=pdf

602 G. Perez et al.

the 1/f property, it only captures a subset of possible solutions [1]. Furthermore,
some of the generated sequences are not guaranteed to be 1/f . One particularly
interesting attempt in CP to embed the 1/f property into generated music uses
the Voss algorithm to produce the Voss constraint [9]. This is interesting as while
there are many works in CP that develop efficient models for generating music
and text [3,9–11,18,21,22], embedding the constraint of generating 1/f noise
in constraint programming solvers has been less explored. Specifically, the Voss
constraint is a hard constraint defined over a list of variables that enforces that
the assignment of the variables follows 1/f noise and utilizes the Voss algorithm.
It therefore inherits the limitations of the Voss algorithm, namely the fact that
it misses several valid sequences and can generate invalid solutions. The first
issue of missing valid sequences is a problem that results from using the same
initial synchronization for all sequences, and of hard encoding the frequency of
change in the sequence. The second issue of generating invalid solutions is a
typical problem of probabilistic modeling in CP.

Out Contributions: (1) We propose to tackle the synchronization problem by
allowing a “shifting effect” in our constraint and can thus generate an exponen-
tially larger set of 1/f sequences [1]. (2) Additionally, we address the frequency
problem by modeling the problem in a completely probabilistic way. We note
that the use of the statistical properties to enforce constraints has been demon-
strated in many works [8,10,12,13,16,17,19,20]. (3) We address the second issue
of not generating invalid solutions by proposing a hybrid method of our two mod-
els. (4) We demonstrate the better performance of our two methods and hybrid
method experimentally, by generated sequences.

2 Preliminaries

1/f Spectrum Fourier Analysis is an extremely useful analysis tool that decom-
poses a signal into its frequency components. In particular, one powerful metric
that uses Fourier Analysis, called power spectral density (PSD), analyzes how
the power of a signal is distributed over its frequency components. Typically,
the metric is displayed graphically with the power of the signal plotted against
frequency. The PSD of a signal can give intuition into how the signal behaves,
and if it is primarily made up of low or high frequencies. For example, a signal
with a flat PSD, meaning an even power distribution across all frequencies, rep-
resents an entirely random process. A real world example of this kind of signal
would be white noise, where each successive value in the sequence is picked in a
random way. On the opposite end of the spectrum is Brownian Motion, which
is a process where each successive value in a sequence is assigned by a small
random fluctuations in the previous value. The result is that Brownian Motion
is primarily described by lower frequencies and thus the PSD of such a signal
follows the curve of 1

f2 , where f is frequency. Using the same style of descrip-
tion, i.e. 1

fα , white noise is simply the case when α = 0 and Brownian noise is
described when α = 2. Thus 1/f spectrum is just the case in this description
where α = 1, and is sometimes called pink noise. Intuitively, it describes a signal

Extending the Capacity of 1/f Noise Generation 603

Fig. 1. Each segment represents a rolled die value. In red, no shift (previous model).
In green, all possible shifts (our model). (Color figure online)

that is a hybrid of white noise and Brownian motion, in that it is mostly made up
of low frequencies, but still has some high frequency components. As discussed
before 1/f noise is an interesting special case because many natural signals have
PSD’s that follow the 1/f curve. For this reason it is highly valuable to have an
algorithm capable of generating 1/f sequences.

Voss Algorithm. The Voss algorithm generates 1/f sequences by modeling
the problem using dice. Essentially, to generate a sequence of length n it uses
n iterations of rolling ≈ log2(n) dice, where each die is re-rolled every 2i turns
and i is the number of the die. At each iteration, the value assigned to the
corresponding variable in the sequence is given by the summation of the dice
values. To better illustrate the algorithm we unroll it in the table on the right
of this paragraph to generate a 1/f sequence of length 8, using 3 dice referred
to as the red (R), green (G) and blue (B) die as described by Gardner [4].

Iter Binary Dice Roll Val

i R G B R G B v

0 0 0 0 3 2 5 10

1 0 0 1 3 2 4 9

2 0 1 0 3 1 2 6

3 0 1 1 3 1 6 10

4 1 0 0 6 5 3 14

5 1 0 1 6 5 4 15

6 1 1 0 6 1 2 9

7 1 1 1 6 1 5 12

In the first iteration the R, G and B dice are
rolled and have values of 3, 2 and 5 respectively.
The first value in the sequence is just the sum-
mation of the three values and is thus ten. Addi-
tionally, the Binary representation of the iteration
number is shown, where each bit corresponds to a
die. Since we are starting at iteration 0, all the
bits are set to 0. For each successive iteration,
the binary representation is incremented by 1, to
reflect the new iteration value. Then the dice are
re-rolled if their respective bit in this representa-
tion flips value, resulting in one, two or all three
dice changing value. Lastly, the new dice values
are summed and the resulting value is assigned to
the next variable in the sequence. This algorithm
provides a framework for generating 1/f sequences by assigning each successive
variable each iteration, but in order to be used in CP it needs to be adapted
into a constraint.

Voss Constraint. The Voss constraint has been introduced in [9] and is named
after the physicist Richard Voss, because its implementation uses the Voss
algorithm. It is defined in the following way, let X = {x1, x2, ..., xn} be a list of

604 G. Perez et al.

variables, let K be the number of dice and R be the maximum value of the dice.
Then the Voss constraint, applied to X, ensures that the values of the variables
X could have been obtained by rolling dice following the Voss algorithm [4]. Red
segments from Fig. 1 represent rolled dice values. As shown, the rolled die value
d0,1 is defined only for x1, while the rolled die value d1,1 is define for both x1

and x2. For a given variable, its value is defined by the sum of all the rolled dice
values above. For example x1 = d0,1 + d1,1 + d2,1, while x5 = d0,5 + d1,3 + d2,2.
Specifically, the constraint is defined by the following: let d be the list of dice
and let di,j be the jth rolling value of the ith die then solutions of the constraint
ensure that variables in xi ∈ X follow the equation:

xi =
K−1∑

j=0

dj,� i

2j � (1)

The tree shaped structure emanating from the red segment is called the
Voss tree, and it represents all the possible solutions of the propagator proposed
by [9]. Their propagator consists in constructing the tree shaped ternary sum
constraint network. While this method does generate 1/f sequences, it only
captures a subset of possible solutions [1] as it does not consider different initial
conditions or what this paper refers to as dice shifting.

3 Shifted Dice

As known and explicated in [1], the dice rolling configuration from [9] is not
the only method to generate 1/f sequences. In the original method each die is
re-rolled exactly every 2i turns, where i is the number of the die. While this
ensures the generation of 1/f noise, it fails to consider that the dice do not need
to have the same count for the number of turns. For example die 2 and die 3
should be re-rolled every 22 and 23 turns respectively, but there is no reason
they must have the same count of turns. By allowing for a different counting of
turns for each die, this essentially allows for the dice to be shifted with respect
to one another. In terms of the algorithm show in 2, this has the same effect as
starting with a non zero iteration, i.e. non zero binary representation. In this
way, the previous method is actually a special case of the shifted version, where
all the dice are in phase with one another. Whereas, in this method we allow
each die to be treated independently and we allow for all possible initial shifted
conditions.

Green segments from Fig. 1 represent the missing shifts. From a CP point of
view, this implies that the proposed definition and propagator are too restric-
tive and miss an exponential number of solutions. In this section, we aim to
model this shifting behaviour and translate it into constraints. Given a vector
S = {s1, ..., sK} representing the shift of each die, the general formula value of
a variable is given by:

xi =
K−1∑

j=0

d
j,� i+sj

2j � (2)

Extending the Capacity of 1/f Noise Generation 605

We used a modified formula derived from [9] as it allows us to have each
die indexed by its frequency. First, the S values represent the current state of
a die. It is important to note that values of sj that are ≥ 2j or are sj < 0, are
equivalent to the value sj mod 2j . Let the following conditional variable C be
defined by: C = i + sj < 2j . Then the equation for any variable becomes:

xi =
K−1∑

j=0

Cdj,� i

2j � + Cdj,1+� i

2j � (3)

Proposition 1. Domain propagation of the Voss constraint with shift is
NP-Complete.

Proof. Consider the subset sum problem, let V = {v1, v2, ..., vk} be the set pos-
sible values and a be the desired value for the sum. The subset sum problem
consists in finding a subset V ′ ∈ V such that

∑
v∈V ′ v = a. Consider the Voss

constraint, applied to the variables list X, using the following fixed values for
the dice, di,1 = vi and di,2 = 0 for all i in [1, k]. Let x2 = a, enforcing domain
consistency implies solving the subset sum problem. The hint here is that for a
given variable we will have to choose between the non-shifted dice or the next
one, resulting in an exponential number of choices.

While this propagator can generate an exponentially larger set of solutions com-
pared to the previous definition, it still fails to generate all the ≈1/f sequences.
This is mainly because even this shifted version is a 1/f approximation algo-
rithm, and the exact distance of 2i for each die is restrictive. Moreover, by only
defining the dice variable to be independent, this may end up in sequences that
are not 1/f , because we do not enforce the dice to actually change value. This
means that it is possible, for example, that a dice i could have the same value
for all variables, which would give a signal that does not have a 1/f PSD. To
combat these issues we developed a probabilistic version of this model that can
enforce the dice to change value.

4 Probabilistic Dice

The important part of the Voss algorithm is the frequency in which dice are
re-rolled. In this section we translate the re-rolling frequency into a probability,
and use the probability as a constraint. First, we define the notion of state,
which represents the current value of the dice. A state, defined by S, is a list of
value Si ∈ [a, b]. Thus each Si represents the value of a die. Then, the value of
a variable xj is given by: xj =

∑|Sj |
i=0 Sj

i .
The frequency of re-rolling dice i is 2i, thus the probability of modifying Si,

from one state to another is P (Sj
i �= Sj+1

i) = 1
2i . This gives us the probability

to change the value of each element of S. The new values are chosen using a
uniform random distribution, ∀v ∈ [a, b], P (v) = 1

b−a+1 . Using the probability of
changing a value and the probability for getting a new value, we define the state
transition process.

606 G. Perez et al.

Definition 1. Given a state St, the next state St+1 is defined as follow:

∀v �= St
i , P (St+1

i = v) = P (St
i �= St+1

i) ∗ P (v) =
1

2i(b − a + 1)
(4)

P (St+1
i = St

i) = 1 −
b−a∑

j=1

P (St
i �= St+1

i) ∗ P (j) = 1 − b − a

2i(b − a + 1)
(5)

Let M (Eqs. (4, 5)) be a Markov process, let di,∀i ∈ [1, P] be the a list
of variables of size n representing the value of the ith die for each variable. We
define a Markov constraint, using M and its automaton, by list di with lower and
upper bounds on the product of their probability [12,13]. By using the bounding
of the probability as a constraint we can control the number of times the dice
are re-rolled. Using this definition, we can generate all possible solutions, in
fact without any constraint on the bound, we can generate any sequence, even
non-1/f solutions.

The density of 1/f solutions becomes a problem with this method as the
sequence length becomes large. By setting an upper bound and/or a lower bound
on the probability, we can constrain the number of time a dice is rolled to a new
value. However, we do not constrain, how the re-rolls are distributed throughout
the sequence. Given a die i with probability 1

2i to be rolled, we can accept
k = � n

2i 	 re-rolling over a sequence of size n. The number of possible sequences
where the die is rerolled k times is

(
n
k

)
. Consider that we are looking for the

sequence where the space between two re-rolls is exactly 2i.

Proposition 2. Let the solution density be defined by D(n, i) = 2i

(n
k)
. Then

lim
n→∞ D(n, i) = 0

Proof. Since 2i is fixed, we need to prove that
(
n
k

)
grows to infinity as n grows.

While k does depend on n, it can only have two values when n is incremented,
k or k + 1. Thus we need to prove both that

(
n
k

)
<

(
n+1

k

)
and

(
n
k

)
<

(
n+1
k+1

)
. The

first case is trivial. For the second case, we have
(

n

k

)
.
n + 1
k + 1

=
n!

k!(n − k)!
.
n + 1
k + 1

=
(n + 1)!

(k + 1)!(n − k)!
=

(
n + 1
k + 1

)

Finally, k < n =⇒ n+1
k+1 > 1 =⇒ (

n
k

)
<

(
n+1
k+1

)
.

Thus with longer sequences, it becomes more likely that this method will find
a non-1/f solution. Such an issue can be solved by using higher order Markov
processes and manually remove some state/transition, which is close to define
a regular constraint on the time-series constraint [2] on die using the regular
expression = [0,2i] �= (=2i±ε �=)∗. For example, if ε = 1 the generated sequences
have distances of 2i−1, 2i, or 2i+1 between reroll. Given that the shifted version
of our propagator cannot constrain that the dice actually change value, and

Extending the Capacity of 1/f Noise Generation 607

that the probabilistic model cannot constrain the distributions of dice re-rolls,
it seemed natural that a hybrid method of the two would give the best results.

The Hybrid Method. In order to solve the issue of solution density in the
probabilistic model, and the issue of non-1/f solutions produced by the dice
shifting model, we propose to combine the two methods into a single hybrid
method. The hybrid method we propose uses the model defined for the shifted
dice, but in addition, applies the Markov constraint to the shifting dice. In this
way the Markov constraint will be used to give a lower bound to the probability
that the dice change value in the shifted dice framework. Specifically we know
that the probability to change a dice value is pc = b−a

b−a+1 , and to keep the
same value is pk = 1

b−a+1 . One of the advantages to this method is that there
are less variables in the di lists from the shifted version than the probabilistic
model. However, one drawback of this method is that we are enforcing there to
be exactly 2i turns between re-rolling, which is restrictive.

5 Sequence Generation

In the same manner as [9], we sample 1/f sequences using a CP solver and the
newly introduced propagators. Our goal is to show the following points: (1) The
shifted version of our propagator generates 1/f sequences, while being able to
generate a larger scope of solution than its predecessor. (2) The probabilistic
version, while working well outside of CP, fails to generate 1/f sequences. (3)
Our hybrid approach is able to generate 1/f sequences, and is more robust than
the simple shifted version.

Protocol. We aim at generating sequences of length 10,000 using 13 ≈
log2(10, 000) dice. We use Google ORtools solver [15], and we use arithmetic
constraints for the shifted model and the Markov constraint [13] for the proba-
bilistic model. The search is a fully random one.

Results. We tested our three methods, the shifted dice, the probabilistic formu-
lation and the hybrid method, both in CP solvers and in a stand alone process.
Specifically we want to compare how the fixed frequency methods, i.e. the shifted
dice, and hybrid method, compare to the probabilistic method. As seen in Fig. 3
we show the PSD of the original algorithm, the shifted dice version and the
hybrid method, all plotted in log-log scale, where a line with slope −1 indicates
1/f noise. As can be seen in the figure the shifted dice method successfully
produces 1/f noise both using a CP solver and as a standalone process. Addi-
tionally, the hybrid method successfully produces 1/f noise using a CP solver.
This result is expected as the shifted dice method is simply a generalization of
the original method which was already shown to produce 1/f sequences. With
these results we believe we have shown that our general shifted dice method,
and our hybrid method successfully generate 1/f . Further, because of their the-
oretical formulation we know that they are capable of capturing an exponen-
tially larger set of viable 1/f solutions. The time for generating a 10,000 long

608 G. Perez et al.

Fig. 2. PSD of probabilistic method in Left: standalone generation Right: in CP solver.

sequences is less than 2 s. For this sample the shift of each dice is given by
[0, 0, 3, 4, 9, 23, 41, 13, 182, 198, 263, 1794, 949].

Figure 2 shows the PSD of signals produced using only the probabilistic
method, both within a CP solver and as a standalone process. As can be seen
as a standalone process the probabilistic method is successful at generating 1/f
sequences. However, when formulated for use in a CP solver, this approach fails
to generate 1/f noise. In fact, it appears to generate white noise, given the small
slope. Upon closer inspection of our results, it seems the random search very

Fig. 3. Top left: PSD of Voss algorithm. Top right: PSD of shifted dice method outside
of CP solver. Bottom left: PSD of shifted dice method using CP solver. Bottom Right:
PSD of hybrid method using CP solver.

Extending the Capacity of 1/f Noise Generation 609

quickly modifies the dice values, and within a relatively small number of assign-
ments reaches its maximum number of modifications as given per the probability
constraint. Thus such a constraint alone is not enough for solving the 1/f prob-
lem. Additionally, because of the larger number of variables (#dice * sequence
length) the time required for generating is substantially larger, but remains less
than 2 min.

We believe, given these results, that the hybrid model is the most promis-
ing for generating 1/f sequences. This method uses the shifted model with the
additional Markov constraints, which enforce that the dice change values. We
found that this model is as fast as just the shifted method and we believe that
it ensures a certain robustness for generating 1/f sequences, as well as prevent-
ing outlier solutions. Specifically it removes the ability of the shifted version to
produce non-1/f solutions. Moreover, the Markov constraint on the dice is less
restrictive than a GCC, enforcing to know in advance the values.

6 Conclusion

In this paper we extend the capacity of the Voss constraint definition and give two
different propagators, as well as a hybrid of the two, for enforcing it. Specifically,
we show how to generalize a Voss tree, to allow each shifted version. Additionally,
we answer an open question from [9] by proposing an entirely probabilistic CP
model for generating 1/f sequences. We experimentally show that this approach
fails to generate 1/f sequences in a CP solver, as the solution density is very
low. However, this method does work outside of CP solvers. Finally, we define
a hybrid method combining the strengths of both propagators, and show its
robustness for generating 1/f sequences.

References

1. Herriman, A., McCartney, J., Burk, P., Downey, A., Whittle, R., Kellet, P.: Gen-
eration of pink (1/f) noise. http://www.firstpr.com.au/dsp/pink-noise/

2. Arafailova, E., et al.: Global constraint catalog, vol. II, time-series constraints.
arXiv preprint arXiv:1609.08925 (2016)

3. Chemillier, M., Truchet, C.: Computation of words satisfying the rhythmic oddity
property (after simha arom’s works). Inf. Process. Lett. 86(5), 255–261 (2003)

4. Gardner, M.: White and brown music, fractal curves and one-over-f fluctuations.
Sci. Am. 238(4), 16–32 (1978)

5. Hennig, H., et al.: The nature and perception of fluctuations in human musical
rhythms. PLoS ONE 6(10), e26457 (2011)

6. Kasdin, N.J.: Discrete simulation of colored noise and stochastic processes and
1/f/sup/spl alpha//power law noise generation. Proc. IEEE 83(5), 802–827 (1995)

7. Keshner, M.S.: 1/f noise. Proc. IEEE 70(3), 212–218 (1982)
8. Morin, M., Quimper, C.-G.: The markov transition constraint. In: Simonis, H. (ed.)

CPAIOR 2014. LNCS, vol. 8451, pp. 405–421. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07046-9 29

http://www.firstpr.com.au/dsp/pink-noise/
http://arxiv.org/abs/1609.08925
https://doi.org/10.1007/978-3-319-07046-9_29
https://doi.org/10.1007/978-3-319-07046-9_29

610 G. Perez et al.

9. Pachet, F., Roy, P., Papadopoulos, A., Sakellariou, J.: Generating 1/f noise
sequences as constraint satisfaction: the voss constraint. In: IJCAI, pp. 2482–2488
(2015)

10. Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular
and markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015.
LNCS, vol. 9255, pp. 341–350. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23219-5 24

11. Perez, G., Régin, J.-C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: IJCAI, pp. 374–380 (2015)

12. Perez, G., Régin, J.-C.: MDDs are efficient modeling tools: an application to
some statistical constraints. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017.
LNCS, vol. 10335, pp. 30–40. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-59776-8 3

13. Perez, G., Régin, J.-C.: MDDs: sampling and probability constraints. In: Beck, J.C.
(ed.) CP 2017. LNCS, vol. 10416, pp. 226–242. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66158-2 15

14. Perlin, K.: An image synthesizer. ACM Siggraph Comput. Graph. 19(3), 287–296
(1985)

15. Perron, L.: Or-tools. In: Workshop CP Solvers: Modeling, Applications, Integra-
tion, and Standardization (2013)

16. Pesant, G.: Achieving domain consistency and counting solutions for dispersion
constraints. INFORMS J. Comput. 27(4), 690–703 (2015)

17. Rossi, R., Prestwich, S., Tarim, S.A.: Statistical constraints. arXiv preprint
arXiv:1402.5161 (2014)

18. Roy, P., Pachet, F.: Enforcing meter in finite-length markov sequences. In: AAAI
(2013)

19. Schaus, P., Deville, Y., Dupont, P., Régin, J.-C.: The deviation constraint. In: Van
Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 260–274.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72397-4 19

20. Schaus, P., Régin, J.-C.: Bound-consistent spread constraint. EURO J. Comput.
Optim. (2013)

21. Truchet, C., Assayag, G.: Constraint Programming in Music. ISTE-Wiley, Hoboken
(2011)

22. Truchet, C., Codognet, P.: Musical constraint satisfaction problems solved with
adaptive search. Soft. Comput. 8(9), 633–640 (2004)

23. Voss, R.F., Clarke, J.: 1/f noise in music and speech. Nature 258(5533), 317–318
(1975)

24. Voss, R.F., Clarke, J.: 1/f noisein music: Music from 1/f noise. J. Acous. Soc. Am.
63(1), 258–263 (1978)

https://doi.org/10.1007/978-3-319-23219-5_24
https://doi.org/10.1007/978-3-319-23219-5_24
https://doi.org/10.1007/978-3-319-59776-8_3
https://doi.org/10.1007/978-3-319-59776-8_3
https://doi.org/10.1007/978-3-319-66158-2_15
https://doi.org/10.1007/978-3-319-66158-2_15
http://arxiv.org/abs/1402.5161
https://doi.org/10.1007/978-3-540-72397-4_19

CP and Operations Research Track

Securely and Automatically Deploying
Micro-services in an Hybrid Cloud

Infrastructure

Waldemar Cruz, Fanghui Liu, and Laurent Michel(B)

Computer Science and Engineering Department, School of Engineering,
University of Connecticut, Storrs, CT 06269-4155, USA

{waldemar.cruz,fanghui.liu,laurent.michel}@uconn.edu

Abstract. Modern cloud-based services help deliver distributed soft-
ware and aim to deliver a cost-effective solution while ensuring that
application requirements are met. Deploying a Cloud-based implemen-
tation demands the resolution of a resource allocation problem to deter-
mine where and how software modules are deployed. For instance, one
must decide, for each module, whether to deploy on a commercial elastic
cloud provider or an in-house data-center as well as how to secure the
communication channels that exist between services hosted with differ-
ent providers. Each application is a collection of communicating micro-
services that provides load-balancing and fault-tolerance to ensure qual-
ity of service requirements. There exists many choices as to what to
deploy, where and which communication technologies to use. The pur-
pose of this paper is to simultaneously solve the deployment of software
services, the selection of suitable technologies for communication chan-
nels to meet the functional, performance and security requirements while
minimizing economic costs.

1 Introduction

Modern applications are increasingly moving to Software as a Service (SaaS)
over Platform as a Service (PaaS) implemented through a collection of com-
municating micro-services running on a medium to large distributed system.
This allow system designer to handle scalability (for load-balancing) as well as
fault-tolerance. Vendors typically adopt some form of virtualization technology
to host those micro-services for ease of deployment and encapsulation of all
the required software dependencies to build a micro-service. Cloud provider like
Amazon (AWS) or Microsoft (Azure) deliver elastic infrastructures on which to
run such software.

At the same time, micro-services must communicate with each other to imple-
ment their function and, when they are deployed via VMs hosted by cloud-service
provider, their communication channels should be secured in a way that matches
the requirements of the data owners and service developers. Small applications
with a few micro-service instances can be readily implemented by engineers
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 613–628, 2018.
https://doi.org/10.1007/978-3-319-98334-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_40&domain=pdf

614 W. Cruz et al.

and deployed with secure communication layers covering the required proto-
cols for each channel. However, larger applications and deployments spanning
over multiple data-centers and created by multiple developer teams are much
more challenging to deploy efficiently. Developers routinely over-provision their
requirements to “be safe” and this leads to considerable waste.

In addition, expecting software engineers to anticipate all security measures
and protocols to secure such channels is excessive and largely unrealistic. It is
better to ask developers and data owners to specify requirements on the security
to adopt for each class of data, and therefore the services, and have optimization
systems automatically select the right compromise for any pair of communicating
services. This achieves an automatic adoption of security measures and relieves
the developers from low level details relating to the adoption of the proper
technology.

The purpose of this paper is, therefore, to simultaneously address the deploy-
ment of services and the selection of suitable security stacks in each VM to
protect each communication channel. The problem can be defined by a set of
servers, a set of VMs, and a set of services.

Observe, that this level of flexibility entails that the size of the virtual
machine does depend on the set of security protocols adopted for the peer-
ing services and precludes the use of a direct formulation with knapsack-style
constraints as the “weights” are no longer constant leaving the variant of bin
packing as proposed in [3] unadapted to this setting.

The paper investigates IP, CP and hybrid formulations suitable for instances
with up to 50 services. The CP approach leverages large neighborhood search
to obtain good solutions in short run times but is unable to deliver optimality
proofs. While the IP approach can sometimes produce an optimality proof, it
usually takes a considerable amount of time and memory. The hybrid is an
attempt at leveraging CP’s ability to deliver high incumbents quickly to support
the IP formulation.

The remainder of the paper is organized as follows. Section 2 discusses rel-
evant work in the context of data centers. Section 3 discusses the mathemati-
cal formulation in a technology agnostic style. Section 4 touches on the resolu-
tion and search procedures while Sect. 5 offers preliminary experimental results.
Section 6 wraps up the paper.

2 Related Work

Energy management of data center is a prevalent topic in recent years. In [6] one
can find an optimization model that minimizes the power consumption while
optimally balancing the load between working and cooling server. The problem
is represented as a non-linear energy utilization function and is solved using
local search and a decomposition-based approach detailed in [4]. To consider
optimally allocating workload while minimizing the energy cost, in a geograph-
ically distributed context, Wahbi et al. [18] use Distributed Constraint Opti-
mization (DCOP) and introduce a DCOP algorithm AGAC-ng (nogood-based
asynchronous generalized arc-consistency) to solve the model.

Securely and Automatically Deploying Micro-services 615

The bin Packing (BP) [16] problem and its variations have been extensively
studied for allocating resources in data center. In [3], the authors consider a vari-
ant of BP where the use of bins are associated with linear costs, denoted as Bin
Packing with Usage Cost (BPUC). BPUC is used to model the management of
data center where all servers are viewed as bins and virtual machines are viewed
as items, the energy consumption is represented as linear cost in BPUC. To min-
imize the linear cost, a linear relaxation of BPUC is used to calculate a lower
bound for the objective, which is further strengthened with filtering algorithm
for updating lower/upper bound of each bin. Another Variance of Bin Packing
problem, referred to as Temporal Bin Packing (TBP) [5], was used to minimize
the total allocated resources (CPU cycles) in a data center. Armant et al. [1]
adopted semi-online bin packing (also know as batch bin packing) [9], and came
up with a solution to semi-online task assignment where the data center performs
a real-time allocation of users’ tasks. Hermenier et al. [10] consider the alloca-
tion and reconfiguration problem which focuses on the bin packing of services for
migration. In [14], the Dynamic Cache Distribution Problem is formulated as a
bin packing problem and the solver finds an allocation that provides load balanc-
ing and a fault tolerant deployment. In [11] Hermenier et al., present a scheme
for dynamically reallocation of virtual machines to hosts with the objective of
minimizing migration costs. Kadioglu et al., introduced in [12] the Core Group
Placement Problem (CGPP) which is formulated as a bin-packing problem that
minimizes the total load for the deployment of heterogeneous services.

While this prior work is clearly relevant to data centers, it does not con-
sider that the size of virtual machine is itself a variable that depends upon the
deployment decision where co-location of VMs on the same host can spare the
deployment of costly –from a memory standpoint– communication protocols.
Perhaps, even more fundamentally, none of these consider the problem from the
point of view of application architects with security concerns. What sets this
work apart is its focus on simultaneously addressing the deployment problem in
light of the overhead induced by the security requirements on the deployment.

3 Model

Given a set of compute nodes C with available memory CM and available band-
width CB, allocate a set of service instances to compute nodes minimize the
total cost of implementation. Namely, deploy each service instance in a VM
by itself and host the VMs on servers such that the connectivity and demand
requirements are met. The security requirements for each micro-service (VM) is
met and the security requirements on the connecting links between services are
met.

Consider a cloud based video service as shown in Fig. 1, each service type
in the network diagram performs a function within the system. The inter-
connections between the service types ensures that the functional requirements
are met. For instance, the web front-end (Service Type 0) communicates with the
video content server (Service Type 2) to deliver video to a web client. Each ser-
vice type exist within the confines of a security zones based upon the sensitivity

616 W. Cruz et al.

Fig. 1. A network diagram for a video content cloud service.

of the data sources it manipulates. For instance, the video content server exist
within zone 3. Accessing the service from the same zone can be done at minimal
cost. However, accessing it from a less secure zone mandates the adoption of
a VPN to implement the communication channel between the two endpoints.
Observe that the content store exist within zone 2, while the web front-end and
the authentication server exist within zone 1. To cope with system load, multi-
ple instances of each service type must be deployed. For instance, four distinct
instances must be deployed for the web front-end. Note that the demands for the
service types do not have to be equal. Indeed, 2 instances of the video content
server are sufficient to meet the needs of the four authentication server.

The purpose of this paper is to deploy the instances of those service types on a
cloud platform, meeting demands, resource capacities and security requirements
for the communication channels connecting those instances.

Figure 2 demonstrates an example deployment of the cloud based application
shown in Fig. 1. Compute nodes are represented as the square boxes and the
service instances are represented as the rounded boxes. Each service type (e.g.,
T0, T1, T2, and T3) with respective demands (4, 3, 2, 4) is associated with a set
of instance identifiers. Namely,

{I1, I2, I3, I4} is the set of instances for T0,
{I5, I6, I7} is the set of instances for T1,

Securely and Automatically Deploying Micro-services 617

Fig. 2. Deployment of service instances to facilitate the cloud service.

Fig. 3. View of compute node hosting two application instances.

{I8, I9} is the set of instances for T2 and
{I10, I11, I12, I13} is the set for T3.

In each box, Z represents the security zone for that service. The lines repre-
sent the communication channels between each pair of instances. The placement
of the service instances consumes both memory and bandwidth resources on the
hosting machine. Each service instance must adhere to its security and connec-
tivity requirements. Service instances can be shared between multiple applica-
tions allowing to spread the demand and ensure sensible load balancing. Figure 3
shows two set of instances {I1, I5, I8, I10} and {I2, I5, I8, I10} that, together,
form two applications whose boundaries are shown with the thick black outline.
Clearly, Fig. 3 also shows that the services contributing to these two applications
are hosted on the same machine. This does not have to be true. Services could be
spread across several machine and require networked communication channels.

Figure 4 illustrates three service instances, namely I9, I3, I4 deployed across
Host2 and Host3. Within Host2, two virtual machine are used to host services
I3 and I9. The boundaries of those virtual machines are the rounded boxes. Host-
ing these two services in co-located virtual machines allows for the creation of
a communication channel with no additional security measures such as encryp-
tion. This is expected since that communication channel itself is virtual and

618 W. Cruz et al.

Fig. 4. Implementation of security adapters for communication across compute nodes.

only exists within Host2. In contrast, the deployment of I9 and I4 in virtual
machines on different hosts requires the adoption of a suitable security layer for
their communication channel. Specifically, I9 being of type T2 requires a zone 3
(i.e., VPN) communication channel while I4 (of type T0) only needs SSL for its
channel. The most stringent requirement is therefore adopted and this mandates
the deployment of copies of the A3 adapter (VPN) in the two virtual machines.
Observe how different hosting decisions may lead to the usage or sharing of
several adapters, each of which carries a cost. In this example, the adoption of
A3 within those virtual machines incurs a memory overhead illustrated by the
non-dashed boxes SO3.

3.1 Problem Definition

Each problem is define with the following parameters:

– T ⊂ N: a set of service types defines the unique service components required
for the application.

– I ⊂ N: a set of service instances, where is defined as the set of service instances
belonging to type t.

I = ∪t∈TIt

It is defined as the set of service instances belonging to type t. Formally,

∀t ∈ T, It = {(
∑

j∈1..t−1

Dj) + 1, ...,
∑

j∈1..t

Dj}

– Z ⊂ N: a set of security zones defines the security requirements for service
types.

– C ⊂ N: a set of compute nodes defines the compute nodes available for service
deployment.

– FM ⊂ N: a set of fixed memory usage for each service type.
– FB ⊂ N: a set of fixed bandwidth usage for each service type.
– D ∈ N: a demand for each service type.

Securely and Automatically Deploying Micro-services 619

– conn ∈ NN×N: a adjacency matrix describes the network architecture between
service types. connt1,t2 is the connectivity between service type t1 and t2,
where t1, t2 ∈ T .

– SM ⊂ N: a set of scaling factors for service memory usage for each service
type.

– SB ⊂ N: a set of scaling factors for service bandwidth usage for each service
type.

– AB ⊂ N: a set of bandwidth cost for each security adapter in each security
zone.

– AM ⊂ N: a set of memory costs for each security adapter in each security zone.
– VO ∈ N: overhead associated with running a VM.
– wm ∈ N: the cost of memory per MB.
– wb ∈ N: the cost of bandwidth per Mb/s.
– t(i): the service type associated with service instance i.

3.2 Variables

– hi ∈ C: The compute node that service i is deployed on.
– H: The set containing the placements of the service instances.

H = {hi|i ∈ C}

– Oi ∈ N: is the overhead associated to the deployment of adapters for service
i.

– SOi ∈ N: is the overhead of implementing security options for service i.
– UBi ∈ N: the bandwidth usage for machine i.
– UMi ∈ N: the memory usage for machine i.
– zij ∈ Z: security technology for securing channel ij between services i and j.
– Aij ∈ B: implementation of security adapter responsible for securing a com-

munication channel for service instance i and service zone j.
– links: a matrix of active link connections between two service instances.
linksij define the number of links between service instance i and j.

– CC denotes the sum connections of service instance across different machines.
CCijk defines the all the external connections out of machine i ∈ C, connect-
ing to service j ∈ T , and protected with security zone k ∈ Z.

– V : the set containing all the variables in the model.

3.3 Constraints

Connection Constraints. The problem definition includes how the service
types are connected within the network architecture. The demand requirements
are defined by D. Each instance represents a single unit of demand for a particular
service type. Each service type with a demand of Dt requires Dt service instances
for service type t. To meet the demand of a service type, it is required that the

620 W. Cruz et al.

sum of the connections into all the service instances of a service type is equal or
exceeds the required demand on that service.

∑

j∈It2

linksij ≤ Dt2 ,∀ i ∈ It1 , t1, t2 ∈ T st. connt1,t2 > 0

∑

i∈It1

linksij ≤ Dt1 ,∀ j ∈ It2 , t1, t2 ∈ T st. connt1,t2 > 0

Ensure that each instance of type t1 is connected to at least one service instance:
∑

j∈It2

linksij ≥ connt1,t2 ,∀ i ∈ It1 , t1, t2 ∈ T st. connt1,t2 > 0

∑

i∈It1

linksij ≥ connt1,t2 ,∀ j ∈ It2 , t1, t2 ∈ T st. connt1,t2 > 0

To ensure that the demand for each of the service instances are uniformly dis-
tributed, a set of load balancing constraints defined:

(Dt2 ≥ Dt1) →
∑

j∈It2

linksij ≥ Dt2
Dt1

,∀ i ∈ It1 , t1, t2 ∈ T st. connt1,t2 > 0

(Dt2 ≥ Dt1) →
∑

i∈It1

linksij ≤ Dt2
Dt1

+(Dt2 mod Dt1), ∀ j ∈ It2 , t1, t2 ∈ T st. connt1,t2 > 0

The connection demand of each instance must be connected uniformly among
the connected instances. This applies load balancing to the network and ensure
that the demand is met from multiple service instances.

Security Constraints. Each service is required to implement a security tech-
nology to ensure security requirements for a particular aspect of the applica-
tion. A service type is assigned to a security zone that enforces the use of the
appropriate security technology. Security zones are a hierarchical structure, a
service within a security zone must communicate with security technology that
is stronger or equivalent to the security requirements of the zone. Two service
instances that belong to different services must communicate with the secu-
rity technology of the highest security protocol. Suppose there are two services
instances i and j, i belongs to service zone 1 and j belongs to service zone 2, there-
fore the communication channel should be secured with the security requirements
of security zone 2. The maximum security policy for two communicating service
is given by:

∀i, j ∈ I, i 	= j : zij = max(zi, zj) · (hi 	= hj) · (linkij > 0)

This ensures that the communication channel is secured with the highest security
protocol. A service instance is required to implement a security adapter A, only

Securely and Automatically Deploying Micro-services 621

if there exists a link to another service instance that does not belong to the same
machine.

∀i ∈ I, k ∈ Z : Aik = (
∑

j∈I

(zij = k) > 0)

If two services are located on the same machine, then the security adapter does
not need to be implemented as the communication channel does not leave the
hosting machine. This ensures that connections between hosting machines are
secured with the required security technology for each service type.

Memory Consumption Constraints. Each service type implements a suite
of software that introduces a fixed amount of memory usage for its instance. A
service instance that is connected via an external connection to a service instance
with a higher security zone must implement the most stringent security adapter
to meet its security requirements for the communication channel. Deployment
of the adapter increases the memory usage of the service by a scaling factor and
imposes a fixed memory cost.

The overhead is therefore:

∀i ∈ I : Oi =
∑

k∈Z

Aik · AMk

Consider that SM is an array of percentages that model the relative overhead.
The overhead caused by the scaling of the memory consumption of the service:

∀i ∈ I : SOi = FMi · (1 +
∑

k∈Z

(Aik · SMk))

Finally, The total sum of memory usage from each host is bounded above by
the host memory size. Recall that each service instance is contained on a VM by
itself. Therefore the total overhead for a service in a VM is Oi and SOi depicted
by:

∀k ∈ C : (
∑

i∈Ist.hi=k

SOi + Oi) + |I| · VO ≤ UMk

The memory constraint ensures that the total memory usages on all service
deployed on a particular machine do not exceed the memory capacity of the
hosting machine.

Bandwidth Constraints. When two connected services are deployed on dis-
tinct hosts, their network traffic contributes to the bandwidth utilization of the
network link. Securing the communication channel increases the overhead on the
bandwidth usage. The total bandwidth for the host is the sum of the bandwidth
usage of all the external connections. The external connections from out of each
machine can be counted by summing all the connections from services instances
communicating to service instance deployed on different machines. Each exter-
nal connection is secured with a security technology defined by each security

622 W. Cruz et al.

Fig. 5. A deployment configuration that presents 6 symmetric solutions.

zone. CC defines the number of external connections for each service type and
security zone for a particular machine.

CCxyz =
∑

i∈Sst.hi=x

∑

j∈Ss.t.i�=j

(zij = z) · (t(j) = y) · linksij ∀x ∈ C, y ∈ T, z ∈ Z

The total bandwidth is encoded with the following constraint:

∀i ∈ C : UBi ≥
∑

j∈T

∑

k∈Z

((CCijk · FBj · SBk) + ABk · (CCijk > 0))

Symmetry Breaking Constraints. Suppose a service deployment scenario
where one or more of the hosts are unused. Assume that hosts are strictly equiv-
alent (same memory or bandwidth). As shown in Fig. 5, each host is denoted
as the square box, and service instances are represented as circles. The solution
presented in the Figure shows three hosts where one of the compute nodes con-
tains no service instance. The number of deployed service instances with respect
to the hosts are {3, 1, 0}; this configuration presents 6 symmetric solutions. To
reduce the number of symmetric solutions relative to the number of deployed
instances, hosts can be arranged such that if host hi has no deployed instances,
then host hi+1 should also have no deployed instances. Formally,

∀i ∈ C :
∑

j∈I

(hj = i) = 0 →
∑

k∈I

(hk = i + 1) = 0

Objective Function. The goal is to assign service instances to compute nodes
such that the cost of deployment is minimized. The cost is determined by the
total memory usage and bandwidth usage required to implement the application
across C hosts. Note how the memory usage UMi and the bandwidth usage UBi

are weighted with wm and wb respectively

min :
∑

i∈C

(wm · UMi + wb · UBi)

Securely and Automatically Deploying Micro-services 623

4 Search Strategy

Finding a satisfiable solution requires finding a deployment configuration for
placing service instances on compute nodes, and setting the links between
each of the connected service instances. The paper explores three search meth-
ods/strategies for attempting to find the optimal configuration, Integer Program-
ming, CP with LNS and an hybrid.

4.1 MIP

Integer programming could be tempting given the packing aspects of the prob-
lem. Naturally, Integer Programming expects a linear model and it is thus nec-
essary to linearize components of the model that are not linear. To convert the
model, each non-linear constraint must be re-formulated to a linear encoding.
Recall, for example, the constraint responsible for channel security:

∀i, j ∈ I, i 	= j : zij = max(zi, zj) · (hi 	= hj) · (linkij > 0)

Since zi and zj are constants, hi 	= hj is a boolean and linkij > 0 is a boolean,
it has the form:

N = c · B · B
and it must be linearized with:

b3 ≤ b1
b3 ≤ b2
b3 ≤ b1 + b2 − 1

In this case, b3 ∈ B is the output and b1 ∈ B and b2 ∈ B are the inputs and
the variable product in the original can be replaced by b3. Similar rewrites are
completely automated by the linearization module of Objective-CP [7].

4.2 CP with LNS

Large Neighborhood Search (LNS) [15] is a local search strategy that aims to
find high quality local minima quickly. The premise behind LNS is to re-optimize
on the current best solution by “locking” a subset of variables with the values
obtained in the incumbent solution. The set of variables that are not “locked”
become the branching variables for the next attempt. The search relies on two
phases. The first phase focuses on labeling the host variables to deploy the
services on the hardware. It uses a simple dynamic degree heuristic (weighted
degrees is effective as well) [2]. The second phase considers the remaining vari-
ables (those in X \ {hi|i ∈ I}) and adopts the same variable selection heuristic.
In both phases, the value selection heuristic is a simple minimum domain value.
In other words, the search prioritizes branching over variables with the smallest
domain and that are connected to the most unbounded variables, yet it favors

624 W. Cruz et al.

deployment decisions over connectivity. In isolation, the CP search strategy rep-
resents a complete search tree and therefore can obtain the optimal solution
(given enough time).

The search attempts to find high quality solutions by first locating an initial
solution and then iteratively relaxing a subset of the variables and re-optimizing
it locally. This is best achieved by freezing the complement of the relaxed set
to their value in the incumbent solution. Clearly, LNS is incomplete and cannot
deliver an optimality proof. Yet it shows good behavior on the synthetic instances
considered so far.

4.3 Hybrid

As the problem scales with the number of service instances and the number
of available machines, the size of the linearized model will increase. This will
results in the expansion of the number of variables and constraints required to
encode the model, this will make it difficult for the MIP to scale up. Knowing
that LNS has the capability of finding improving solutions quickly, It becomes
advantageous to combine the efforts of the LNS and the MIP solver to aid in
finding the optimal solution. Using a combinator [7], the LNS and MIP model
can be combined to share information about incumbent solutions. This will allow
the two solvers to update their bounds on the objective. In this context, LNS
provides the MIP solver with high quality solution sooner allowing the solver to
update its bounds and prune away any subtree that will not yield a solution.
LNS solver will not be able to close the problem, and will rely on the MIP solver
to find and prove the optimal solution.

5 Results

While this work is motivated by applications from Comcast, Inc. we are not at
liberty to share actual instances. To investigate the approaches proposed here,
several synthetic instances were created. They correspond to small to medium
applications composed of a handful of services. Demands for the services are
driven by the need for fault-tolerance and load balancing. The ultimate objective
is consider instances with hundreds of services and use the tool both in an
operational setting, but also for capacity planning and deciding whether to build
up internal data centers or rely on elastic cloud providers.

The implementations all rely on Objective-CP [13,17] as they rely on Integer
Programming, Constraint Programming and an hybrid. The combinator abstrac-
tions [7] were particularly effective to easily construct LNS and the parallel
hybrid in a style reminiscent of [8].

The remainder of this section contrast results from the IP , LNS(CP) and
the hybrid on 8 synthetic instances of various sizes. While still modest in size,
these prove challenging for all solvers and show that further efforts are needed.
All times are reported in seconds. All benchmarks were executed on a Xeon(R)
CPU E5-2640 v4 @ 2.40 GHz on a single core running Linux kernel 4.4.0-119-
generic. The MIP solver is Gurobi 7.5.2.

Securely and Automatically Deploying Micro-services 625

Fig. 6. LNS Performance profile (quality vs. time for 10 runs of 8 instances).

LNS(CP). The performance profile for LNS is probably the most eloquent ren-
dering of the search’s ability to deliver. Figure 6 shows 8 plots (left-right, top-
bottom for the 8 synthetic instances. Each box shows the trajectory followed by
all 10 runs. For the smaller instances, LNS tends to deliver an excellent (if not
the optimal) solution in under 3 min. The behavior is slightly less uniform for
the bigger instances, yet the ability to get good solutions is retained.

626 W. Cruz et al.

Table 1. Performance for MIP, LNS and Hybrid

Benchmark MIP LNS Hybrid

T μT σT μT σT

1 4,178.00 180.01 96.07 409.01 92.8

2 249.00 171.54 71.21 349.40 143.7

3 343.00 178.08 92.87 264.52 217.9

4 290.00 164.93 90.05 349.57 90.8

5 4,251.00 118.66 84.98 358.69 183.4

6 4,629.00 108.55 90.25 269.98 213.5

7 344.00 218.16 70.22 335.47 141.2

8 5,326.00 192.58 77.30 300.18 157.1

Table 2. Quality for MIP, LNS and Hybrid

Benchmark MIP LNS Hybrid

Q μQ σQ μQ σQ

1 2,732.00 2,739.20 16.28 2,752.22 25.8

2 2,642.00 2,676.90 6.69 2,674.71 2.6

3 2,591.00 2,620.00 30.36 2,620.50 32.5

4 2,667.00 2,682.40 15.07 2,684.38 15.8

5 4,903.00 5,002.44 81.52 4,985.50 110.8

6 4,925.00 4,951.40 93.27 4,978.00 92.3

7 5,317.00 5,213.20 73.73 5,229.25 96.9

8 5,142.00 5,042.60 51.49 5,096.30 48.8

Comparative. Figure 7 offers a comparison between the IP , LNS(CP) and the
hybrid solvers. The two plots are histograms with one group of 3 bars for each
benchmark. Each triplet reports on LNS(CP) (red), the MIP (blue) and the
hybrid (green). The left plot is an absolute performance comparison that matches
the results in Table 2. The right plot is also an absolute comparison of the running
times and matches the content of Table 1. What is abundantly clear from the
graphs is that, if quality is the sole objective, the three methods are pretty close.
In fact, they are within ±4% of each other with LNS(CP) sometimes beating
the IP and vice-versa. This percentage is obtained by doing

X − MIP

min(X,MIP)

where X is either LNS(CP) or the Hybrid. The remarkable difference is, as
expected, the runtime. It is clear that hardness for the IP does not depend on
the instance size with some of the easy instances taking a long time to produce a
high-quality solution. LNS(CP) does not appear to suffer from this. Naturally,

Securely and Automatically Deploying Micro-services 627

Fig. 7. Comparison between IP , LNS(CP) and Hybrid both in absolute solution
quality and runtime performance. (Color figure online)

the hybrid brings the best of both worlds and delivers a far more robust behavior
consistently delivering good solutions quickly. In most cases, however, the IP ran
for 5400 s terminating prematurely (by timeout) without a proof of optimality.

6 Conclusion

This paper investigated three optimization approaches to solve the simultane-
ous deployment of micro-services in a cloud-based infrastructure and the auto-
matic selection of security layers for their communication channels. It offers
a technology-neutral model, search procedures and an hybrid. The synthetic
instances used for the evaluation show that the problem can be quite challeng-
ing for state of the art solvers. Yet, empirical results demonstrate that LNS is
capable of delivering high-quality solutions in short execution times, a capability
that is critical in an operational setting. Future work will be needed to adapt to
larger instances and increasingly comprehensive resource consumption models.

Acknowledgment. This work was supported under the award SOW BL 7891 and
project CSI Selected Projects 2017: Securing Virtualization Configuration and Manag-
ing the Attack Surfaces funded by Comcast Corporation. Special thanks to Jim Fahrny
and Vaibhav Garg from Comcast.

References

1. Armant, V., Cauwer, M.D., Brown, K.N., O’Sullivan, B.: Semi-online task assign-
ment policies for workload consolidation in cloud computing systems. Future
Gener. Comput. Syst. 82, 89–103 (2018). http://www.sciencedirect.com/science/
article/pii/S0167739X17319143

2. Boussemart, F., Hemery, F., Lecoutre, C.: Revision ordering heuristics for the con-
straint satisfaction problem. In: First International Workshop: Constraint Prop-
agation and Implementation (2004). http://www.cril.univ-artois.fr/∼lecoutre/
research/publications/2004/CPW2004.ps

3. Cambazard, H., Mehta, D., O’Sullivan, B., Simonis, H.: Bin packing with linear
usage costs. CoRR abs/1509.06712, http://arxiv.org/abs/1509.06712 (2015)

http://www.sciencedirect.com/science/article/pii/S0167739X17319143
http://www.sciencedirect.com/science/article/pii/S0167739X17319143
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://arxiv.org/abs/1509.06712

628 W. Cruz et al.

4. Castiñeiras, I., Chisca, D.S., Mehta, D., O’Sullivan, B.: Trichotomic search for
thermal-aware data centre workload optimisation. In: 2015 IEEE/ACM 8th Inter-
national Conference on Utility and Cloud Computing (UCC), pp. 528–533, Decem-
ber 2015

5. Cauwer, M.D., Mehta, D., O’Sullivan, B.: The temporal bin packing problem: an
application to workload management in data centres. In: 2016 IEEE 28th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), pp. 157–164,
November 2016

6. Chisca, D.S., Castineiras, I., Mehta, D., OSullivan, B.: On energy- and cooling-
aware data centre workload management. In: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 1111–1114, May 2015

7. Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid opti-
mization. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 25

8. Fontaine, D., Michel, L., Van Hentenryck, P.: Parallel composition of scheduling
solvers. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 159–169.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2 12

9. Gutin, G., Jensen, T., Yeo, A.: Batched bin packing. Discrete Optim. 2(1), 71–82
(2005). http://www.sciencedirect.com/science/article/pii/S1572528605000058

10. Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized
datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 5

11. Hermenier, F., Lawall, J., Muller, G.: BtrPlace: a flexible consolidation manager
for highly available applications. IEEE Trans. Dependable Sec. Comput. 10(5),
273–286 (2013)

12. Kadioglu, S., Colena, M., Sebbah, S.: Heterogeneous resource allocation in cloud
management. In: 2016 IEEE 15th International Symposium on Network Computing
and Applications (NCA), pp. 35–38. IEEE (2016)

13. Michel, L., Van Hentenryck, P.: A microkernel architecture for constraint pro-
gramming. Constraints 22(2), 107–151 (2017). https://doi.org/10.1007/s10601-
016-9242-1

14. Sebbah, S., Bagley, C., Colena, M., Kadioglu, S.: Availability optimization in cloud-
based in-memory data grids. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp.
666–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 42

15. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

16. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-
puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, HotPower 2008, p. 10. USENIX Association, Berkeley, CA, USA (2008).
http://dl.acm.org/citation.cfm?id=1855610.1855620

17. Van Hentenryck, P., Michel, L.: The objective-CP optimization system. In: Pro-
ceedings of the 19th International Conference on Principles and Practice of Con-
straint Programming, September 2013

18. Wahbi, M., Grimes, D., Mehta, D., Brown, K.N., O’Sullivan, B.: A distributed
optimization method for the geographically distributed data centres problem. In:
Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 147–166.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8 12

https://doi.org/10.1007/978-3-642-40627-0_25
https://doi.org/10.1007/978-3-319-33954-2_12
http://www.sciencedirect.com/science/article/pii/S1572528605000058
https://doi.org/10.1007/978-3-642-23786-7_5
https://doi.org/10.1007/s10601-016-9242-1
https://doi.org/10.1007/s10601-016-9242-1
https://doi.org/10.1007/978-3-319-44953-1_42
https://doi.org/10.1007/3-540-49481-2_30
http://dl.acm.org/citation.cfm?id=1855610.1855620
https://doi.org/10.1007/978-3-319-59776-8_12

Improving Energetic Propagations
for Cumulative Scheduling

Alexander Tesch(B)

Zuse Institute Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany
tesch@zib.de

Abstract. We consider the Cumulative Scheduling Problem (CuSP) in
which a set of n jobs must be scheduled according to release dates, due
dates and cumulative resource constraints. In constraint programming,
the CuSP is modeled as the cumulative constraint. Among the most com-
mon propagation algorithms for the CuSP there is energetic reasoning
[1] with a complexity of O(n3) and edge-finding [21] with O(kn log n)
where k ≤ n is the number of different resource demands. We consider
the complete versions of the propagators that perform all deductions
in one call of the algorithm. In this paper, we introduce the energetic
edge-finding rule that is a generalization of both energetic reasoning
and edge-finding. Our main result is a complete energetic edge-finding
algorithm with a complexity of O(n2 log n) which improves upon the
complexity of energetic reasoning. Moreover, we show that a relaxation
of energetic edge-finding with a complexity of O(n2) subsumes edge-
finding while performing stronger propagations from energetic reasoning.
A further result shows that energetic edge-finding reaches its fixpoint in
strongly polynomial time. Our main insight is that energetic schedules
can be interpreted as a single machine scheduling problem from which
we deduce a monotonicity property that is exploited in the algorithms.
Hence, our algorithms improve upon the strength and the complexity
of energetic reasoning and edge-finding whose complexity status seemed
widely untouchable for the last decades.

1 Introduction

In the CuSP, we are given a set of non-preemptive jobs i ∈ {1, . . . , n} with
processing times pi > 0, resource demands ci > 0, release dates ri, due dates
di and a resource capacity C. We assume that 0 ≤ ri ≤ di − pi for all jobs
i = 1, . . . , n without loss of generality. In the CuSP, we compute start times Si

for every job i = 1, . . . , n such that every job is scheduled within its time interval
and the resource capacity is never exceeded. More formally, it can be stated as

∑

i=1,...,n:
Si≤t<Si+pi

ci ≤ C ∀t ∈ [0, T] (1)

ri ≤ Si ≤ di − pi ∀i = 1, . . . , n (2)
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 629–645, 2018.
https://doi.org/10.1007/978-3-319-98334-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_41&domain=pdf

630 A. Tesch

where T is an upper bound on the time horizon. In general, the CuSP can be
seen as a decision variant of the scheduling problem P |rj , sizej |Lmax in which a
set of n non-preemptive multiprocessor jobs is scheduled onto C machines where
every job j allocates cj = sizej machines at the same time. The objective is
to minimize the maximum lateness Lmax = maxn

j=1 max{0, Sj + pj − dj} where
Lmax = 0 if and only if the CuSP is feasible. The CuSP is NP-complete since
already the scheduling problem 1|rj |Lmax is strongly NP-hard [11].

In practice, the CuSP often occurs as a dedicated subproblem in more com-
plex scheduling or optimization problems [9,17]. In order to reduce the size of
the search tree, the idea is to derive stronger bounds on the release and due
dates of the jobs without violating the feasibility of the problem in general. For
the CuSP, many propagation algorithms have been suggested in the literature
where one can observe a general trade-off between their propagation power and
running time.

1.1 Previous Work

Many different propagators exist for the CuSP in the literature as well as relax-
ations and hybrids of them. In this paper, we focus on complete propagation
algorithms that perform all reductions according to their respective rule. The
energetic reasoning propagation rule has been first introduced in [6] where the
methods were refined in [1] to give a complete O(n3) algorithm. Since energetic
reasoning counts to the most powerful propagation rules for the CuSP many
efforts have been made to improve the general O(n3) complexity, for example
by reducing the number of considered intervals [2,5]. In [3] an algorithm is pre-
sented that detects at least one energetic reasoning propagation in O(n2 log n)
that was improved in [20] to an algorithm that detects at least one possible
energetic reasoning propagation for every job in O(n2 log n). Both algorithms,
however, remain incomplete and do not compute all the maximum propagations
in one run. However, they converge to the same fixpoint of energetic reasoning.

Another common propagation rule is edge-finding where a first complete
algorithm was introduced in [14] with complexity O(kn2) and also a stronger
variant called extended edge-finding with the same complexity. This complexity
was improved in [21] to O(kn log n) and in [16] they use a modification of similar
techniques to integrate propagations from extended edge-finding and timetabling
also in O(kn log n). In general, energetic reasoning yields stronger propagations
than (extended) edge-finding. However, its high complexity of O(n3) prevents it
from being used in practice where edge-finding or hybrids such as time-table edge-
finding [19,22] are preferred. Thus, a major open question is whether the O(n3)
complexity of energetic reasoning can be improved to lower the discrepancy
between the different propagation schemes.

Further propagation algorithms for the CuSP are timetabling [7,12] and not-
first/not-last [18] where the latter is incomparable to energetic reasoning.

Improving Energetic Propagations for Cumulative Scheduling 631

1.2 Results

In this paper, we introduce the novel energetic edge-finding propagation rule
that generalizes and combines ideas from energetic reasoning and edge-finding.
We first show that energetic edge-finding reaches its fixpoint in strongly poly-
nomial time. But our main contribution is a complete energetic edge-finding
algorithm that runs in O(n2 log n) and therefore improves upon the previous
O(n3) complexity of energetic reasoning. Moreover, by excluding some difficult
time intervals, we obtain a relaxed version of energetic edge-finding that runs
in O(n2) and subsumes the edge-finding rule while simultaneously performing
stronger propagations from energetic reasoning. This also improves the general
O(kn log n) complexity of edge-finding [21]. A major component in our algo-
rithms is the interpretation of energetic schedules as a single machine scheduling
problem with release dates [8]. Energy profiles of single machine problems yield a
monotonicity property that we highly exploit in our algorithms. We implemented
and tested the algorithms on instances of the well-established PSPLIB [13]. We
believe that the given approaches yields new insights for the development of
more efficient propagation algorithms for the CuSP.

2 Energetic Edge-Finding

In this section we formally introduce the energetic edge-finding rule. It can be
seen as a generalization and combination of both energetic reasoning and edge-
finding. It takes advantage of the propagation strength of energetic reasoning
and the stable fixpoint behavior of edge-finding by integrating additional prop-
agations from subintervals. Our version of energetic edge-finding is not to be
mixed-up with the one given in [10] who consider a similar but incomplete rule.

We begin with some notation. Let the minimum left-right-shift duration of
a job i in a time interval [t1, t2] be defined as

pi(t1, t2) = max{0,min{pi, t2 − t1, ri + pi − t1, t2 − di + pi}} (3)

where only the left-shift duration of job i in [t1, t2] is given by

pl
i(t1, t2) = max{0,min{t2 − t1, pi, ri + pi − t1, t2 − ri}}. (4)

Moreover, let e(t1, t2) =
∑n

i=1 ci · pi(t1, t2) denote the energy in the interval
[t1, t2] where the energy overload in [t1, t2] is given by

ω(t1, t2) = e(t1, t2) − C · (t2 − t1) (5)

that equals the slack between the minimum consumed energy and available
energy in [t1, t2]. If there exists an interval [t1, t2] with ω(t1, t2) > 0 then the
CuSP is already infeasible. Thus we assume that ω(t1, t2) ≤ 0 for all intervals
[t1, t2]. Analogously, for a job i and time interval [t1, t2] let

ωl
i(t1, t2) = ω(t1, t2) + ci ·

(
pl

i(t1, t2) − pi(t1, t2)
)

(6)

632 A. Tesch

be the energy overload under the condition that job i is left-shifted. If there
exists a time interval [t1, t2] with ωl

i(t1, t2) > 0 then the release date of job i is
invalid and can be increased to ri = t2 − pi(t1, t2) + ω(t1,t2)

ci
in order to pull the

exceeding energy out of the interval [t1, t2]. One could also consider right-shifts
but they are symmetric to left-shifts at time t = 0, so we will stick to left-shifts
if not mentioned otherwise. This propagation concept can be formalized by the
following rules.
Energetic Reasoning [1]. A complete energetic reasoning algorithm computes
for every job i = 1, . . . , n the release dates

r∗
i = max

(t1,t2)∈T :

ωl
i(t1,t2)>0

(
t2 − pi(t1, t2) +

ω(t1, t2)
ci

)
(7)

where T is a set of relevant time intervals that is specified later.
In [1] it is shown that |T | ∈ O(n2) and they present a complete algorithm

with running time O(n3) to perform all propagations.
In this paper, we consider an even stronger variant of energetic reasoning that is
highly inspired by the edge-finding rule [21] that takes into account additional
propagations from subintervals.

Energetic Edge-Finding. A complete energetic edge-finding algorithm com-
putes for every job i = 1, . . . , n the release dates

r∗
i = max

(t1,t2)∈T :

ωl
i(t1,t2)>0

max
(t′

1,t′
2)∈T :

[t′
1,t′

2]⊆[t1,t2],

ω(t′
1,t′

2)+ci·(t′
2−t′

1−pi(t
′
1,t′

2))>0

(
t′2 − pi(t′1, t

′
2) +

ω(t′1, t
′
2)

ci

)
(8)

where T is the same set of time intervals as for energetic reasoning. The ener-
getic edge-finding rule can be explained as follows. Once a left-shift overload
with ωl

i(t1, t2) > 0 for a job i and interval (t1, t2) ∈ T is detected, it includes
propagations of a subinterval [t′1, t

′
2] if the energy of all jobs different from i in

[t′1, t
′
2] prevent an earlier processing of i. In this case, its release date ri can be

updated accordingly for [t′1, t
′
2]. For the set of relevant time intervals T let

T1 = {ri, di − pi : i = 1, . . . , n}
T2 = {di, ri + pi : i = 1, . . . , n}

T3(t) = {ri + di − t : i = 1 . . . , n}

and from these sets we define

T12 = {(t1, t2) : t1 < t2, t1 ∈ T1, t2 ∈ T2}
T13 = {(t1, t2) : t1 < t2, t1 ∈ T1, t2 ∈ T3(t1)}
T23 = {(t1, t2) : t1 < t2, t2 ∈ T2, t1 ∈ T3(t2)}

where T = T12 ∪ T13 ∪ T23. Note that there exist tighter characterizations for
the set of relevant time intervals for energetic reasoning [5,20] but since they

Improving Energetic Propagations for Cumulative Scheduling 633

are more complex we will stick to this definition. Moreover, in the first sections
we only consider propagations for intervals in T12 and T23. The integration of
intervals in T13 needs special treatment and is examined separately in Sect. 3.4.

Since propagations from energetic edge-finding are not idempotent in general,
we apply the rule until a fixpoint is reached. Because their overload conditions
are equivalent, energetic edge-finding converges to the same fixpoint as energetic
reasoning. However, we show that the additional integration of subintervals in
energetic edge-finding leads to a strongly polynomial fixpoint convergence. To
the best of our knowledge, the fixpoint complexity for only energetic reasoning
(as stated) is unknown. The paper [15] claims a non-strongly polynomial fixpoint
complexity for energetic reasoning but they use a weaker update function that
can lead to slower convergence.

Theorem 1. A complete energetic edge-finding algorithm reaches its fixpoint
after at most O(n2) iterations.

Proof. Let T2 = {t12, . . . , t
N
2 } with tb2 < tb+1

2 for all b = 1, . . . , N − 1. We show
that after at most b · n iterations no further propagation can be detected in any
interval [t1, tb2] with t1 < tb2.

Consider an arbitrary fixpoint iteration q of the complete energetic edge-
finding algorithm and assume by induction hypothesis that no propagation can
be found in any interval [t1, tb

′
2] for all tb

′
2 < tb2. If job i is propagated in iteration

q due to an interval [t1, tb2] with ωl
i(t1, t

b
2) > 0 then since ωl

i(t1, t
b
2) = ω(t1, tb2) +

ci · (pl
i(t1, t

b
2) − pi(t1, tb2)) we have that ω(t1, tb2) or pl

i(t1, t
b
2) − pi(t1, tb2) increased

from iteration q − 1 to q.
If pl

i(t1, t
b
2) − pi(t1, tb2) has increased then job i must have been propagated

in iteration q − 1. If ω(t1, tb2) has not changed for all t1 < tb2 from iteration q − 1
to q then energetic edge-finding would have found the propagation already in
iteration q − 1 giving a contradiction1.

Hence, ω(t1, tb2) must have changed from iteration q − 1 to q. This happens
if and only if a job j �= i with dj − pj < tb2 < dj is propagated to end after time
tb2. Then job j has a fixed part2 in the interval [dj − pj , t

b
2] to the beginning of

iteration q. Moreover, the value pj(t1, tb2) cannot be increased further by prop-
agations from other intervals [t′1, t

b
2], so job j cannot further increase ω(t1, tb2).

Because at most n jobs can increase ω(t1, tb2) this way, we have that q ≤ b · n.
Since N ∈ O(n) the fixpoint is reached after O(n2) iterations. ��

It is an open question whether this fixpoint complexity is tight and if there
exist examples where energetic reasoning needs Ω(n) more iterations to reach
the fixpoint.

1 Unlike energetic reasoning that may need additional iterations to reach the maximum
propagation for tb2.

2 Unlike standard edge-finding that does not consider partial overlaps, which gives a
short proof of its O(n) fixpoint complexity [14].

634 A. Tesch

3 Algorithm

Our main algorithm iterates over all t2 ∈ T2 in an outer loop. We focus on
the resulting subproblem in the time horizon [0, t2] for times t ∈ T1 ∪ T3(d).
Time intervals (t1, t2) ∈ T23 are integrated separately in Sect. 3.4. Throughout
the rest of the paper we will consider a fixed t2 value and set the due date
d = t2 as a global constant. For abbreviation, we therefore omit d = t2 as
function argument and rewrite pi(t) = pi(t, d), pl

i(t) = pl
i(t, d), e(t) = e(t, d),

ω(t) = ω(t, d), ωl
i(t) = ωl

i(t, d) and T = {t : t < d, t ∈ T1 ∪ T3(d)}.
Our algorithm is divided into three phases: decomposition phase, detection

phase and update phase.

3.1 Decomposition Phase

In the decomposition phase, we will decompose the available energy e(0) in the
interval [0, d] into energy blocks B1, . . . , Bm in order to get a stronger represen-
tation for the overload function ω(t).

Let the energy envelope at time t < d be defined as

E(t) = t +
e(t)
C

(9)

that is a lower bound on the maximum completion time of jobs i with pi(t) > 0.
Then we have ω(t) = C · (E(t) − d).

From this definition, we create energy blocks as follows. Let T = {t1, . . . , tH}
with th < th+1 for all h = 1, . . . , H − 1. Starting with h = 1, we compute
the next greater h′ > h such that E(th) < E(th′). If e(th) > e(th′) > 0 we
create a new canonical block B with release date r(B) = th, processing time
p(B) = e(th)−e(th′)

C and resource demand C. Then we set h = h′ and repeat the
procedure. If no h′ can be found we finally set p(B) = e(th)

C and stop.
The set of all canonical blocks B1, . . . , Bm is also denoted as the canonical

decomposition [8]. In the following, let TB = {r(B1), . . . , r(Bm)} be the set of
release dates of the canonical blocks. Since every canonical block Bl has resource
demand C, the canonical decomposition can be interpreted as a scaled single
machine schedule, see Fig. 1. Moreover, the energy values e(th) can be computed
and maintained by the algorithm of Baptiste et al. [1] in O(n), so the canonical
decomposition can be computed in O(n) time.

A further important observation is that we can restrict to non-dominated
energy envelopes. That is, if E(t′) > E(t) for t′ < t then we can consider E(t′)
instead of E(t) for time t. Hence, we can replace the function E(t) by

Ẽ(t) = max
t′≤t

E(t′) (10)

where ω̃(t) = C · (Ẽ(t) − d) is a stronger lower bound on the overload in [t, d].
Consequently, we can replace ω(t) by ω̃(t) in our energetic edge-finding rule. In
particular, we have ω(t) = ω̃(t) for all t ∈ TB and since Ẽ(t) is monotonically

Improving Energetic Propagations for Cumulative Scheduling 635

Fig. 1. Canonical decomposition: the three energy blocks (above) show the energy
envelopes E(t) for t ∈ {0, 1, 3} with due date d = 6 for some CuSP instance. We
obtain the canonical decomposition B1, B2 (below) that shows more precisely where
the energy is induced. If there exists an energy overload for any interval [t, d] then it
is always generated by the last canonical block Bm.

non-decreasing in t we also have that ω̃(t) is monotonically non-decreasing in t.
We will highly exploit this fact in our algorithms.

We can further use the canonical decomposition to efficiently compute ω̃(t).
For given time t, let Bl be the canonical block with smallest index l such that
t ≤ r(Bl) + p(Bl) then we have

ω̃(t) = C ·

⎛

⎝min{t, r(Bl)} +
∑

l′≥l

p(Bl′) − d

⎞

⎠ (11)

where this definition depends only on the canonical decomposition. We will use
the canonical decomposition for the next phases that depend only on TB ⊆ T .

3.2 Detection Phase

In the detection phase, we check for every job i = 1, . . . , n if there exists a time
t ∈ T such that ωl

i(t) > 0. In this case, job i must end strictly after time d
and this relation is stored in an n-dimensional array end by setting end[i] = d,
similar to [21]. For given due date d, we compute all such relationships as follows.
The condition ωl

i(t) > 0 is equivalent to

ci ·
(
pl

i(t) − pi(t)
)

> −ω(t) (12)

where both left- and right-hand side are non-negative since ω(t) ≤ 0 for all t ≤ d.
We replace ω(t) by the stronger overload function ω̃(t) which yields

ci ·
(
pl

i(t) − pi(t)
)

> −ω̃(t) (13)

and this is still a valid condition since ω(t) ≤ ω̃(t) and thus not less intervals are
checked for energetic edge-finding (8).

Moreover, both functions on the left- and right-hand side of (13) are piece-
wise linear in t. Let ps

i = pl
i(0) − pi(0) then the function on the left-hand side

decomposes into the segments:

636 A. Tesch

ci · (pl
i(t) − pi(t)) =

⎧
⎪⎨

⎪⎩

ci · ps
i , t ≤ ri

ci · (ps
i − t + ri), ri ≤ t < ri + ps

i

0, else

(14)

for all jobs i = 1, . . . , n where we only consider jobs i with ps
i > 0 or jobs with

positive left-shift slack respectively.
We have to compute for every i = 1, . . . , n the time t ∈ T for which inequal-

ity (13) is maximally satisfied. For this, we compute the upper envelope of the
line segments (14) of all jobs i = 1, . . . , n by using a sweep line approach [4]. The
sweep line data structure comprises a binary status tree W and an event heap
H. The status tree W changes dynamically with t and stores the line segments
as leaves while maintaining the line segment of maximum value ci · (pl

i(t)−pi(t))
for the current t in the root node using a bottom-up approach. The event heap
H stores time events at which the order of two line segments in W is changing
or the maximum line segment of W must be retrieved from the root node. New
events are added dynamically to H. Since there are O(n) line segments, one line
segment can be added or deleted in O(log n) and sweeping over all t ∈ T takes
O(n log n) since for every node in W at most one event is added dynamically to
H. In particular, we can restrict to TB ⊆ T since ω̃(t) is locally maximal there.

Thus, in our algorithm we sweep over all t ∈ TB in decreasing order and
retrieve the maximum function value vi = ci · (pl

i(t) − pi(t)) of the currently
dominating job i from the root node of W . While the currently dominating
job i satisfies vi > − ω̃(t) we set end[i] = d and delete all line segments that
belong to job i (the dominating job may change) and store the update value
rd
i = d − pi(t) + ω̃(t)

ci
. Hence, for the given due date d the detection phase takes

O(n log n) time, compare Algorithm 1.

Algorithm 1. detection phase
Input: due date d, canonical decomposition B1, . . . , Bm

Output: end[i] and rdi for all i = 1, . . . , n,
1 initialize sweep line tree W for all jobs i with ri < d < di

2 E ← 0

3 forall the l = m, . . . , 1 do
4 E ← E + C · p(Bl)
5 t ← r(Bl)
6 sweep to(W, t)

7 while i ← W.root.job and E + ci · (pl
i(t) − pi(t)) > C · (d − t) do

8 end[i] ← max{end[i], d}
9 rdi ← d − pi(t) + 1

ci
· (E − C · (d − t))

10 delete line segments of i from W

11 return end[i] and rdi for all i = 1, . . . , n

Improving Energetic Propagations for Cumulative Scheduling 637

An improvement can be made by omitting the constant line segment for t ≤ ri

in (14) since ω̃(t) is monotonically non-decreasing and therefore inequality (13)
is maximally satisfied at t = ri but this point is also covered by the second line
segment. In this case, we need to add an event at t = ri to H to retrieve possible
overloads from W .

A special case occurs when we have c = ci for all i = 1, . . . , n respectively. In
this case, all line segments have the same slope so we can use a simple queue to
process the line segments from right to left where the first line segment that is
added remains the dominating one until it is deleted. This allows a processing
in O(n) and will yield a complete O(n2) energetic edge-finding algorithm.

Proposition 1. Let t∗ ∈ TB be the time where we set end[i] = d for a job i.
Then we have t∗ < ri + ps

i and t∗ also maximizes

max
t∈T :

ω̃(t)+ci·(pl
i(t)−pi(t))>0

(
d − pi(t) +

ω̃(t)
ci

)
. (15)

Proof. As mentioned, we can replace T by TB in the given formula. Whenever
the algorithm sets end[i] = d for t∗ ∈ TB , we have ω̃(t∗)+ci ·(pl

i(t
∗)−pi(t∗)) > 0

and therefore pl
i(t

∗) − pi(t∗) > 0 which holds only if t∗ < ri + ps
i .

For all t < ri + ps
i we have pi(t) = pi(0) is constant. Thus, the overload

function turns into ω̃(t) + ci · (pl
i(t) − pi(0)) > 0 and the update function into

d−pi(0)+ ω̃(t)
ci

that is equivalent to maximizing ω̃(t). Since the update function is
monotonically non-decreasing in t, the maximum t that satisfies ω̃(t)+ci ·(pl

i(t)−
pi(0)) > 0 is optimal for (15). Since the algorithm iterates over all t ∈ TB in
decreasing order, we obtain the optimal time t = t∗. ��

Adding the O(n) iterations of every due date d from the outer loop and
adding the intervals in T23 treated later yields the following result.

Corollary 1. Computing the detection phase for every due date d ∈ T2 yields a
complete energetic reasoning algorithm with running time O(n2 log n).

In Practice. The sweep line algorithm improves the theoretical performance
of energetic reasoning. The necessity of computing the upper envelope is due to
the fact that there might exist instances in which, say O(n) many, line segments
are active at the same time t. In this case, we always need to keep track of the
maximum line segment that may change for small deviations of t such that the
upper envelope needs to be explored completely. In practice however, the line
segments of the jobs are mostly disjoint and generally only few are active at
the same time. Moreover, upper envelope computations involve complex data
structures that need to be build in every iteration that generates overhead for
instances where n is small.

Thus, we decided to implement the following more output-sensitive but still
complete version: we sweep from right to left but whenever a line segment
becomes active we add it into a list L. If it becomes inactive we delete it from
L, both can be done in O(1) by storing job pointers. Then for every t ∈ TB we

638 A. Tesch

iterate all elements in L to detect the line segment of maximum value. As men-
tioned, the size of L is practically small (mostly zero). This leads to a complete
complexity of O(n + m · h) for the detection phase where h is the maximum
number of simultaneously active line segments. Multiplying the O(n) iterations
of the outer loop, this is O(n3) in general but much faster on practical instances.

In order to guarantee a stable fixpoint behavior we additionally include pos-
sible propagations from all subintervals. The next section describes how to com-
pute them efficiently in an additional phase.

3.3 Update Phase

For a given due date d, the update phase computes for every job i = 1, . . . , n
with ps

i > 0 and d ≤ end[i] stronger release dates by including propagations
from subintervals. Again, let ps

i = pl
i(0)−pi(0). By Proposition 1, the maximum

propagation for all t ∈ TB with t < ri + ps
i is already found in the detection

phase. Thus, assume that t ≥ ri + ps
i which leads to the problem of computing

rd
i = max

t∈T :
t≥ri+ps

i

ω(t)+ci·(d−t−pi(t))>0

(
d − pi(t) +

ω(t)
ci

)
. (16)

Again, we replace ω(t) by its stronger version ω̃(t) and set

rd
i = max

t∈TB :
t≥ri+ps

i

ω̃(t)+ci·(d−t−pi(t))>0

(
d − pi(t) +

ω̃(t)
ci

)
(17)

where we can restrict to t ∈ TB by the same argument as for the detection phase.
We want to simplify formula (17). Consider the parametrization

rd(c) = max
t∈TB :

ω̃(t)+c·(d−t)>0

(
d +

ω̃(t)
c

)
(18)

for variable resource demands c. We use the following lemma.

Lemma 1. Given a job i ∈ {1, . . . , n} then t ∈ TB with t ≥ ri + ps
i is optimal

for (17) if and only if t is optimal for (18) with rd
i = rd(ci) − pi(t) > t.

Proof. Assume first that t ∈ TB with t ≥ ri + ps
i is optimal for (17). Then

rd
i + pi(t) = d + ω̃(t)

ci
and since rd

i > t we also have that rd
i + pi(t) > t that

yields ω̃(t) + ci · (d − t) > 0, hence the point t ∈ TB is valid for (18) that implies
rd
i + pi(t) ≤ rd(ci).

Now assume that t′ ∈ TB is optimal for rd(ci) with rd(ci) > rd
i + pi(t)

where t′ > t by monotonicity of ω̃(t). Since t ≥ ri + ps
i it holds pi(t) − pi(t′) =

max{0, t′ − t}. Thus, if pi(t′) = pi(t) − t + t′ we get ω̃(t′) + ci · (d − t′ − pi(t′)) ≥
ω(t)+ci · (d− t−pi(t)) > 0 by feasibility of t for (17). Otherwise, if pi(t′) = pi(t)

Improving Energetic Propagations for Cumulative Scheduling 639

Algorithm 2. update phase
Input: due date d, canonical decomposition B1, . . . , Bm,
resource demands {c1, . . . , ck}
Output: td(c) and rd(c) for all c ∈ {c1, . . . , ck}

1 h ← k, l ← m, E ← 0
2 while h ≥ 1 and l ≥ 1 do
3 t ← r(Bl)

4 if E − (C − ch) · (d − t) > 0 then

5 rd(ch) ← d + 1
ch

· (E − C · (d − t))

6 td(ch) ← t
7 h ← h − 1

8 else
9 l ← l − 1

10 E ← E + p(Bl) · C

11 return td(c) and rd(c) for all c ∈ {c1, . . . , ck}

we also have ω̃(t′) + ci · (d − t′ − pi(t′)) ≥ ω̃(t) + ci · (d − t − pi(t)) > 0. Hence,
the solution at t′ ∈ TB is also feasible for (17) and its objective value is equal to
rd(ci)−pi(t′) > rd

i which contradicts the assumption that rd
i is optimal for (17).

It follows that rd(ci) ≤ rd
i + pi(t) and therefore rd(ci) = rd

i + pi(t) which shows
the statement. ��

Lemma 1 allows us to work with the parametrized version (18): if we have
computed rd(ci) with optimal time t ∈ TB we only have to verify that rd(ci) −
pi(t) > t and set rd

i = rd(ci) − pi(t), otherwise there exists no better update.
In the following we show how to compute rd(c) for all c ∈ {c1, . . . , cn} with

k = |{c1, . . . , cn}| efficiently. Substituting g(c, t) = d + ω̃(t)
c yields

rd(c) = max
t∈TB :

g(c,t)>t

g(c, t) (19)

that now has a quite simple form. For fixed c, the function g(c, t) is piecewise
linear and non-decreasing in t. Thus, for given resource demand c ∈ {c1, . . . , cn}
the largest value t ∈ TB with g(c, t) > t is optimal for rd(c). However, g(c, t)
is also non-decreasing in c since ω̃(t) ≤ 0. Hence, we iterate over all t ∈ TB in
decreasing order as long as g(c, t) ≤ t. Starting with the last considered resource
demand c, we set rd(c) = g(c, t) as long as g(c, t) > t for all c in decreasing
order. We repeat the same search starting with the next smaller t until either
rd(c) is determined for the smallest c value or the minimum of TB is reached.
This procedure takes O(k + m) to compute all rd(c), see also Algorithm 2.

Since the full algorithm iterates over all due dates d ∈ T2 in an outer loop and
by including the detection phase every inner iteration takes O(n log n+k+m) we
get a final running time of O(n2 log n) for energetic edge-finding that is subsumed
in Algorithm 3. After termination of the outer loop, we finally update the release
date of every job i = 1, . . . , n with ps

i > 0 by

640 A. Tesch

Algorithm 3. energetic edge-finding
Input: CuSP instance
Output: propagated release dates r∗

i from energetic edge-finding

1 end[i] ← −∞ for all i = 1, . . . , n

2 forall the d ∈ T2 in decreasing order do
3 B1, . . . , Bm ← decomposition phase(d)

4 (end, rd) ← detection phase(d, B)

5 (td(c), rd(c)) ← update phase(d, B)

6 forall the i = 1, . . . , n do

7 ri = max{rdi , rd(ci) − pi(t
d(ci)) : d ≤ end[i], d ∈ T2}

8 return ri for all i = 1, . . . , n

r∗
i = max{ri,max{rd

i : d ≤ end[i], d ∈ T2}} (20)

that takes an additional O(k · n) time.

3.4 Integration of Symmetric Intervals

In this section, we show how the remaining set of time intervals T23 can be
integrated into the given concepts. The main problem here is that d depends on
t and not vice versa. A first important observation is that left-shift propagations
on T23 are symmetric to right-shift propagations on T13. Thus, our approach
is to include the line segments of the corresponding right-shift slack function
ci · (pr

i (t) − pi(t)) > −ω̃(t) with pr
i (t) = max{0,min{pi, d − t, di − t, d − di + pi}}

with the propagation d∗
i = t+pi(t)− ω̃(t)

ci
and set start[i] = t. In order to perform

the update phase we have to build the canonical decomposition in [t,∞) but now
according to due dates and from right to left and proceed symmetrically. The
last step is not implemented in our algorithm. However, it yields a complete
energetic reasoning algorithm. In respect to the scope of this paper, we will not
explicitly formulate this case during the next sections.

4 Relation to Standard and Extended Edge-Finding

Energetic edge-finding is strongly motivated by standard edge-finding [21]. In
particular, energetic edge-finding can be slightly modified to give a complete
O(n2) edge-finding but that additionally performs stronger propagations from
energetic reasoning.

For every interval [t, d] standard edge-finding considers only propagations of
jobs i with t ≤ ri < d. We can replace our detection phase to include all such
intervals for fixed d in linear time as follows: we iterate over all ri with ri < d
in non-increasing order and check immediately if ω̃(t) + ci · (pl

i(t) − pi(t)) > 0
holds at t = ri. Under the condition t ≤ ri, we have by monotonicity of ω̃(t)
that t = ri maximally satisfies this inequality. If the inequality is satisfied we set

Improving Energetic Propagations for Cumulative Scheduling 641

end[i] = d, otherwise, no propagation can be found for job i. The update phase
is executed as previously introduced. Note that we simultaneously iterate over
t ∈ TB in decreasing order to get the ω̃(t) values.

Consequently, for fixed due date d the detection phase takes O(n+m), see also
Algorithm 2. In total, this yields a complete edge-finding algorithm in O(n2) time
but that additionally performs stronger propagations because the basic energy
in every interval [t, d] is taken from energetic reasoning. Since the currently best
complete edge-finding algorithm has complexity O(kn log n) [21], our algorithm
constitutes a further improvement in the landscape of energetic propagators.

Corollary 2. There exists a complete O(n2) algorithm for edge-finding that
additionally takes energetic reasoning as energy lower bound in each time
interval.

A further open question asks for the relation to extended edge-finding [14]
that includes propagations for partially overlapping jobs. In particular, the case
of partially overlapping jobs is exactly the bottleneck of our algorithm since
by the ’usual’ approach of fixing one interval limit, say t2 = d, and computing
the partially overlapping job i in an interval [t, d] with ri < t < ri + ps

i that
maximally contributes to the energy in [t, d] will always lead to an upper envelope
problem. Hence, it is unlikely that there exists a complete O(n2) algorithm for
extended edge-finding by using known techniques. In turn, if there exists an
efficient method to compute such propagations then we believe it can also be
used for energetic reasoning, thus indicating that extended edge-finding and
energetic reasoning are of the same complexity.

5 Improving Propagations by Detectable Precedences

In this section we present a relaxation of energetic edge-finding and a possible
improvement for energetic edge-finding.

In every propagation that is performed for job i due to a left-shift overload
in the time interval [t, d] we can improve the propagation by considering the
minimum earliest completion time of the jobs that are contributing to the energy
in [t, d]. In other words, if ω̃(t) + ci · (pl

i(t) − pi(t)) > 0 then we can propagate

rd
i = min

j 	=i:
pj(t)>0

(rj + pj). (21)

To the best of our knowledge, we believe that this rule, in its generality to ener-
getic reasoning, has not been investigated so far. Since our algorithms iterates
over all t in non-increasing order we can include such propagations by storing
an update value that is set to rj + pj whenever t = rj + pj for jobs j with
pj(0) > 0. As for energetic edge-finding, we can extend this rule by propagations
from subintervals of [t, d] or subsets of jobs respectively.

In the following we show that detectable precedences naturally extends ener-
getic edge-finding since both propagations are incomparable.

642 A. Tesch

Example 1. Given a CuSP instance of four jobs with p1 = p2 = p3 = p and
p4 = 2p for some large p. Moreover, let ci = 1 for all i = 1, . . . , n and C = 2. The
scheduling intervals [ri, di] for i = 1, . . . , 4 are given by [0, 3p − 1], [0, 2p], [0, 2p]
and [0,∞). Energetic reasoning propagates job 4 according to the interval [0, 2p]
since for d = 2p we have ω̃(0)+c4 ·(pl

4(0)−p4(0)) = (2p+1−4p)+(2p−0) = 1 > 0
and thus we propagate r2p

4 = d−p4(0)+ ω̃(0) = 2p−0+(2p+1−4p) = 1. After
that, no further propagation is detected, so the fixpoint is reached for energetic
edge-finding and all dominated rules. In contrast, detectable precedences (21)
finds that min{rj + pj : pj(0) > 0, j �= 4} = p and thus we propagate r2p

4 =
p. This is the strongest possible propagation. Note that the not-first/not-last
rule [18] does not consider the partial overlap of job 1, so nothing is propagated.

Example 2. Given a CuSP instance of three jobs with p1 = p2 = p and p3 = 1
for some p > 0. Moreover, let c1 = c2 = c3 = 1 and C = 1. The scheduling
intervals [ri, di] for i = 1, 2, 3 are given by [0, 2p], [0, 2p], [0,∞). The interval
[0, 2p] contains full energy of 2p. Thus, detectable precedences updates r3 =
p while energetic reasoning (even edge-finding) updates the strongest possible
propagation r3 = 2p.

Corollary 3. Detectable precedences and energetic reasoning are incomparable.

The given examples reveal the weakness of current energetic approaches:
the lack of knowledge about the inner structure of an interval and its possible
realizations. Future propagators should make stronger predictions by analyzing
how possible realizations of a certain interval may look like.

6 Computational Results

In the following we give a rough analysis of the computational performance of
the presented methods. We use the test sets J30, J60 and J120 that contain 480,
480 and 600 instances respectively from the well-established PSPLIB [13] for
the Resource-Constrained Project Scheduling Problem (RCPSP). The name of
the test set indicates the number of considered jobs and every instance has four
resources with additional precedence constraints.

Our algorithms are programmed in C language with GCC compiler version
7.3.0 and executed on a Intel Xeon CPU E5-2660 with 2.60 GHz using a single
thread. We compute lower bounds to the RCPSP by destructive improvement,
that is we start with a lower bound on the makespan and increase it as long as
we detect infeasibility or the time limit of 600 seconds is reached.

We use a static branching rule [17] that schedules the jobs in order of earliest
release dates. Ties are broken by minimum domain value di−pi−ri. Additionally,
we apply a dominance rule that skips the right branch of the currently branched
job i if it does not contribute to the earliest resource conflict when all jobs are
scheduled at their release dates. We consider a static branching rule rather than a
dynamic one to compare the real performance between the different propagators.
For the computation of best possible solutions to the RCPSP, we need more
sophisticated methods [17] that exceed the scope of this paper.

Improving Energetic Propagations for Cumulative Scheduling 643

In every search node we first apply timetabling [7,12] in combination with
one of the following: energetic reasoning as given in [1] with complexity O(n3),
energetic edge-finding, energetic edge-finding without the update phase and the
incomplete O(n2) energetic edge-finding algorithm of Sect. 4. All energetic edge-
finding propagators include propagations from detectable precedences.

Table 1 displays the number of optimal solutions found (opt), the deviation in
the total sum of lower bounds (Δ LB) normed to the weakest propagator and the
average number of backtracking nodes per second for instances that took longer
than five seconds to solve. As expected the O(n3) energetic reasoning propagator
is slower than energetic edge-finding (EnEF) such that energetic edge-finding is
able to compute better lower bounds in total. The exclusion of the update phase
and the relaxed variant yield speedups only on small instances. We conclude
that integrating all subintervals has mainly a theoretical rather than practical
relevance. Surprisingly, the relaxed version of energetic edge-finding cannot profit
from its O(n2) complexity on large instances. The reason is that our output-
sensitive implementation of the detection phase runs in almost the same time
because the left-shift slack intervals of the jobs are mostly disjoint.

Table 1. Computational results for the J30, J60 and J120 test sets.

J30 J60 J120

Opt Δ LB Nodes/s Opt Δ LB Nodes/s Opt Δ LB Nodes/s

ER 384 0 48.70 347 0 15.96 141 0 8.32

EnEF 393 126 581.35 349 86 249.68 143 77 92.93

EnEF (w/o up) 394 174 662.76 349 86 246.44 143 77 94.12

EnEF (relaxed) 405 221 680.25 348 85 245.26 143 79 96.63

7 Conclusion

We believe that the monotonicity in the single machine interpretation of ener-
getic schedules can lead to new ideas for faster propagation algorithms for the
CuSP and related problems. Since energetic arguments have natural limitations,
one future direction can be to combine energetic propagations with arguments
about the inner structure of time intervals to derive stronger propagations. A
first approach is made with detectable precedences. Another open question is to
resolve the fixpoint complexity of energetic reasoning.

Acknowledgements. The author would like to thank anonymous reviewers for their
helpful comments on the paper, especially for the advice to take a simpler representa-
tion of ω̃(t) as given in the current version of the paper.

644 A. Tesch

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound adjust-
ments for cumulative scheduling problems. Ann. Oper. Res. 92, 305–333 (1999)

2. Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of
energetic reasoning. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011.
LNCS, vol. 6595, pp. 229–239. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19754-3 23

3. Bonifas, N.: A O(n2log(n)) propagation for the Energy Reasoning, Conference
Paper, Roadef 2016. (2016)

4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational
Geometry. In: de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.
(eds.) Computational Geometry. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-662-04245-8 1

5. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 22

6. Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and
resources constraints. In: 2nd International Workshop on Project Management and
Scheduling, pp. 115–121 (1990)

7. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the
cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–
157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 11

8. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In:
Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS,
vol. 1084, pp. 288–300. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61310-2 22

9. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 24

10. Kameugne, R., Fetgo, S.B., Fotso, L.P.: Energetic extended edge finding filtering
algorithm for cumulative resource constraints. Am. J. Oper. Res. 3(06), 589 (2013)

11. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
Ann. Discrete Math. 1, 343–362 (1977)

12. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumu-
lative constraint. In: Milano, M. (ed.) CP 2012. LNCS, pp. 439–454. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 33

13. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library: OR
software-ORSEP operations research software exchange program. Eur. J. Oper.
Res. 96(1), 205–216 (1997)

14. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling.
INFORMS J. Comput. 20(1), 143–153 (2008)

15. Mercier, L., Van Hentenryck, P.: Strong polynomiality of resource constraint prop-
agation. Discrete Optim. 4(3–4), 288–314 (2007)

16. Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative
constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 42

17. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250–282 (2011)

https://doi.org/10.1007/978-3-642-19754-3_23
https://doi.org/10.1007/978-3-642-19754-3_23
https://doi.org/10.1007/978-3-662-04245-8_1
https://doi.org/10.1007/978-3-662-04245-8_1
https://doi.org/10.1007/978-3-319-10428-7_22
https://doi.org/10.1007/978-3-319-23219-5_11
https://doi.org/10.1007/3-540-61310-2_22
https://doi.org/10.1007/3-540-61310-2_22
https://doi.org/10.1007/978-3-540-30201-8_24
https://doi.org/10.1007/978-3-540-30201-8_24
https://doi.org/10.1007/978-3-642-33558-7_33
https://doi.org/10.1007/978-3-642-40627-0_42

Improving Energetic Propagations for Cumulative Scheduling 645

18. Schutt, A., Wolf, A.: A new O(n2 log n) not-first/not-last pruning algorithm for
cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp.
445–459. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-
9 36

19. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propaga-
tion for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.)
CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38171-3 16

20. Tesch, A.: A nearly exact propagation algorithm for energetic reasoning in
O(n2 log n). In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 493–519. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 32

21. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in
O(knlogn). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 62

22. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp.
230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-
3 22

https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/978-3-319-44953-1_32
https://doi.org/10.1007/978-3-642-04244-7_62
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22

CP, Optimization, and Power System
Management Track

A Fast and Scalable Algorithm
for Scheduling Large Numbers of Devices

Under Real-Time Pricing

Shan He1,2(B), Mark Wallace1, Graeme Gange1, Ariel Liebman1,
and Campbell Wilson1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{shan.he,mark.wallace,graeme.gange,ariel.liebman,

campbell.wilson}@monash.edu
2 Data61/CSIRO, Melbourne, Australia

Abstract. Real-time pricing (RTP) is a financial incentive mechanism
designed to encourage demand response (DR) to reduce peak demand
in medium and low voltage distribution networks but also impacting the
generation and transmission system. Though RTP is believed to be an
effective mechanism, challenges exist in implementing RTP for residen-
tial consumers wherein manually responding to a changing price is dif-
ficult and uncoordinated responses can lead to undesired peak demand
at what are normally off-peak times. Previous research has proposed
various algorithms to address these challenges, however, they rarely con-
sider algorithms that manage very large numbers of houses and devices
with discrete consumption levels. To optimise conflicting objectives under
RTP prices in a fast and highly scalable manner is very challenging. We
address these issues by proposing a fast and highly scalable algorithm
that optimally schedules devices for large numbers of households in a
distributed but non-cooperative manner under RTP. The results show
that this algorithm minimises the total cost and discomfort for 10,000
households in a second and has a constant computational complexity.

1 Introduction

Demand response (DR) refers to activities performed by consumers to reduce or
time-shift electrical demand in response to appropriate, often financial, incen-
tives. It has been proposed and trialled over several decades as an effective
low-cost way to improve the efficient utilisation of electricity infrastructure. A
key goal of DR is to reduce peak electricity demand, which requires significant
infrastructure to support.

Real-time pricing (RTP) is a type of financial incentive proposed for DR that
mirrors the type of pricing seen in deregulated wholesale electricity markets. This
method offer ‘dynamic prices’ that increase with increasing demand and change
over time. Economists argue that RTP is the most effective way to incentivise
peak demand reduction [1]. However, it is difficult to implement for residential
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 649–666, 2018.
https://doi.org/10.1007/978-3-319-98334-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_42&domain=pdf

650 S. He et al.

consumers due to three challenges [18,21,22,24,28]: (1) manually responding
to a constant changing price is difficult, (2) the lack of insights into existing
consumption patterns of consumers and (3) load synchronization or rebound
peak, referring to undesired demand peaks that may be higher than the original
peak as a result of uncoordinated responses.

In recent years much work has been done to overcome these challenges. Many
algorithms have been designed to shift electrical demand from peak to off-peak
times in ways that minimise total cost for all consumers or best balance the
needs for comfort and cost savings.

Existing methods for shifting demand can be categorized into two types: cen-
tralised and distributed. Centralised methods concentrate all decisions within
a single agent that schedules all households’ devices to minimise electricity
costs against prices provided a day in advance. Many argue that these meth-
ods are impractical because they are not computationally scalable and require
the details of all shiftable devices in advance [12,13,15,23,25,29,31,33,35]. Dis-
tributed methods attempt to address these drawbacks by allowing consumers to
independently schedule devices to by minimising their own cost and discomfort
locally while providing some central coordination. However, the naive distributed
alternative without any coordination leads to each household optimising their
schedules against a common RTP, leading to load synchronization problem where
consumption will be concentrated during the cheaper periods [11,18,21,23,32].

Improved distributed methods have been proposed to address load synchro-
nization problem that can be divided into two types: cooperative and non-
cooperative. Cooperative methods coordinate consumers by requiring them to
iteratively broadcast their demand profiles to all other consumers. One of the
criticisms of this approach is that this process poses an extra data communica-
tion burden on the network and consumers may not want to share their demand
information due to privacy concerns. In response other research has focussed
on non-cooperative methods that only require iterative communication with a
central agent hosted by their utility or a specialised demand aggregator entity.

Our work focuses on distributed non-cooperative (DN) methods. Some exist-
ing methods focus on a central agent calculating the optimal demand levels for
households that will minimise the overall costs and reduce the peak demand with-
out considering details of devices. In this sort of scheme a household is required
to schedule its own shiftable devices to ensure their peak demand remains below
the given optimal demand level. Other DN methods focus on finding the best
times to use devices for each household. However, the problem of minimising
total costs by scheduling devices of multiple households with discrete consump-
tion constraints and preferences against prices that are not known in advance is
NP-hard. Some DN methods either drop the integer constraint nature of device
demand and solve a relaxed version of the original problem or use heuristic meth-
ods resulting in sub-optimal solutions. Moreover, some require manual parame-
ter tuning to ensure convergence. Additionally, existing methods rarely consider
multiple global constraints for each household such as the maximum demand con-
straint or sequential constraints that defines the order of some shiftable devices,

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 651

e.g. dryers can only start after washing machines have finished. Finally, most
existing methods schedule devices at every half-hour or hour period, which pro-
vides an unrealistically limited flexibility for demand shifting and thus limited
potential for peak demand reduction.

We therefore developed a new DN method based on the Frank-Wolfe algo-
rithm, which can schedule devices for large numbers of households under RTP
without requiring manual parameter tuning. Particularly, this method has low
computation time and high scalability while allowing devices to be scheduled at
smaller time slots under both the maximum demand constraint and the sequen-
tial constraint and minimising multiple conflicting objectives including the over-
all cost and discomfort, which has not been achieved by existing methods. The
results show that this algorithm minimises the total cost and discomfort for
10,000 households in a second and has a constant computational complexity.

2 Related Work

Centralised methods schedule devices, against prices given 24 h ahead, optimally
to minimise the cost and discomfort, while assuming complete knowledge of all
households. These methods often employ a mixed integer linear programming
(MILP) model or a linear programming (LP) model to schedule devices within
single households [2,4,21,28] or devices, distributed generators (DG’s) (e.g. diesel
generators, solar panels and small wind turbines) and electricity storage systems
(or batteries) within a microgrid [14,20].

While centralised scheduling methods operating across many consumers pro-
vide a way to optimise demand by minimising costs and discomfort, many argued
that centralised methods are impractical for scheduling devices for many house-
holds [12,13,15,23,25,29,31,33,35]. First, these methods require knowledge of all
devices and user preferences across all consumers in advance, which is impractical
and can cause privacy concerns for some consumers. Second, centralised methods
do not scale well. The size of the optimisation problem for multiple households
is very large leading to very long computation times, because the computational
complexity of MILP models increases exponentially with the problem size.

Alternatives such as distributed methods have been proposed to address the
issues of practicality and scalability of centralised methods. Distributed meth-
ods allow consumers to schedule their devices independently without needing to
expose their device details and preferences while remaining coordinated to ensure
the cost and peak demand is reduced. Coordination is essential in distributed
methods. A naive distributed alternative without coordination will lead to each
household optimising their schedules against a common RTP. Thus peak demand
can increase above normal levels as consumers schedule devices at the same
cheapest times, causing the known load synchronization issue of implementing
RTP for residential consumers [11,18,21,23,32]. Two types of distributed meth-
ods with coordination have been proposed to address this load synchronization
issue: cooperative and non-cooperative methods.

Cooperative methods assume consumers are willing to communicate with
each other about their aggregate demand profiles for the next 24 h. Based on the

652 S. He et al.

demand profiles of all other consumers, each consumer will selfishly decide the
optimal schedule for its devices to minimise its own costs. When all consumers
iteratively communicate with others about their aggregate demand profiles and
optimally and selfishly reschedule their devices based others’ demand profiles,
they will eventually reach a Nash equilibrium when no consumer can reschedule
its devices to further reduce its cost. These methods are also known as cooper-
ative game theoretic methods [9,16,21,32]. However, some other research argue
that cooperative methods will cause privacy issues and introduce large commu-
nication burden on communications networks as a result of the constant data
exchange among consumers [13,19,34].

Similarly to cooperative methods, non-cooperative methods allow consumers
to selfishly optimise their consumption schedules, however, the households are
coordinated by a third-party entity, such as an utility company or distributed
electricity service operator, instead of through iterative communication among
consumers [6–8,17,19,25,27,30,33]. This third-party (referred to as ’utility’ for
the rest of this paper) collects demand profile forecasts from all consumers, cal-
culates the total demand and provides feedback that may encourage consumers
to reschedule their devices. This information often includes prices that reflect
the actual cost of supplying electricity for the aggregate demand profile across
all consumers in the scheme. Using these prices, consumers will reschedule their
devices based on their consumption preferences and constraints to reduce their
costs and report the updated demand back to the utility. Then, as in the case
of cooperative methods, consumers and the utility will iteratively communicate
with each other until no consumer can reschedule a device to receive a lower price
from the utility. Although consumers are required to reveal their demand profiles
in uncooperative methods, they reveal them only to the utility that already as
access to their consumption data.

Many distributed and non-cooperative (DN) methods involve decomposing
the device scheduling problems with unknown prices into sub-problems and a
master problem that can be solved independently by consumers and the util-
ity, respectively. The master problem solved by the utility calculates the total
demand profile, the prices, the total cost and any other feedback information.
The sub-problem solved by consumers is the scheduling of devices based on the
prices and other feedback information given by the utility, which can be consid-
ered equivalent to the device scheduling problem in centralised methods.

Some DN methods focus on computing the optimal demand level for every
time period, at a given resolution, over the next 24 h for each household and
ignore the devices details [7,8,25,33]. Some other DN methods include the
devices by calculating the best start times for devices while considering con-
sumption constraints and preferences for each device. [6] proposes an iterative
method where each household use a greedy algorithm to schedule devices given
prices from the utility. The utility then calculates the total cost of the total
demand profile using a convex cost function and a penalty cost function. This
penalty cost penalises undesired differences between the total demand profiles
found at the previous and the current iterations, which is designed to prevent

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 653

the start times of devices oscillate between iterations and ensure the conver-
gence of the algorithm. [17] proposes a gradient-based iterative algorithm where
households optimally schedule devices at each iteration against prices given by
the utility. They also consider various types of devices such as electric vehicles,
heating and cooling devices, entertainment devices, shiftable devices and must-
run devices. However, this research assume the power rates of devices can be
varied continuously between minimum and maximum levels, which allows the
iterative algorithm to improve the total demand profile with a fixed step size.
[19] proposes a fast iterative method that first applies dual decomposition with
Lagrange relaxation to the original problem, then a double smoothing techniques
to the non-differentiable dual function to obtain a Lipschitz-continuous gradient
for the dual function, and finally a fast gradient method to recover a near-
optimal solution for the original problems in fewer iterations. It also includes
a penalty cost for the changes between the total demand profiles found at the
previous and current iterations. Their experiment results show that this fast gra-
dient algorithm has very low computational time—requiring only 0.15 s for each
iteration. However, this algorithm requires a fixed step size to ensure conver-
gence. Moreover, devices are scheduled at hourly resolution only offering limited
potential for peak demand reduction.

3 Models

Two types of participants are modelled in this research: households and a utility
company. All households are served by the utility that purchases electricity from
the wholesale market on behalf of their consumers and then sell electricity to
consumers using a retail real-time price (RTP).

Devices are scheduled at the beginning of each ten-minute interval and the
RTP is calculated based on the average demand across a thirty-minute period.
The half-hour pricing resolution is designed to reflect the wholesale electricity
price in Australia to date. The length of a scheduling interval is shorter than
the typical length in the existing research, providing more flexibility for demand
shifting and more potential for demand reduction. Let us write T s = 144 as
the total number of scheduling intervals per day, s as the index of a scheduling
interval, T p = 48 as the total number of pricing periods per day and t as the
index of a pricing period.

Each household contains two types of devices: must-run and shiftable devices.
Must-run devices must be turned on when required, such as lights and fridges.
Shiftable devices can be used at different times of a day without significant
negative effect on comfort and they can be further divided into interruptible and
non-interruptible categories. For example, dish washers and washing machines
are non-interruptible and shiftable devices that can be used in the middle of the
night instead of evening and they are usually not interrupted once turned on,
heating and cooling are interruptible and shiftable devices that can be suspected
and resumed at a later time.

This research models shiftable devices with eight attributes: (1) an earliest
start time (EST), (2) a latest finish time (LFT), (3) a preferred start time (PST),

654 S. He et al.

(4) a care factor (CF), (5) a duration, (6) a power rate, (7) predecessors and (8)
a maximum succeeding delay (MSD). Each device must start after its EST and
finish before the LFT. If the device does not start at its PST, a discomfort cost
will incur weighted by its CF. This CF can be one which means full flexibility
is allowed for rescheduling this device, ten which means very little flexibility is
allowed or anything between one and ten. The duration of any device is assumed
to be a whole number of scheduling intervals. Each device may have predecessors
that must finish running before this device and this device may have a MSD,
which limits the time between the finish of its predecessors and the start of this
device. Not all devices have predecessors or a MSD. Precedences and MSDs
are used to model dependency or interruptibility of devices. For example, an
interruptible device can be considered as multiple small non-interruptible devices
that must be operated in a certain sequence, or a device (e.g. clothes dryer)
must be turned on after another device (e.g. washing machine). For simplicity,
this research does not consider different operating modes for each device or
thermal loads such heating and cooling devices, therefore the power rate of each
device is a constant. However, the method proposed in this research does allow
incorporating these two features without changing the algorithms.

This research uses a step function to set the price for each pricing period
based on the total demand of all consumers in that period. This step function
is strictly increasing, which reflects the wholesale electricity price that indeed
increases in steps with the number of and types of electricity generators required
in each pricing period. This pricing step function include several demand thresh-
olds and a price level for each demand threshold. A demand threshold can be
interpreted as the total supply capacity of all required electricity generators
whose unit costs of providing electricity are lower than the associated price
level.

4 Fast, Scalable, Distributed and Noncooperative Device
Scheduling Method

This fast, scalable, distributed and noncooperative device scheduling (FSDN-
DS) method schedules devices of large numbers of households to minimise the
expected total cost and discomfort cost under RTP prices while flattening the
expected total peak demand. These RTP prices are calculated based on the
total demand in real time. This device scheduling problem for multiple house-
holds under RTP (DSP-MH-RTP) considers multiple global constraints for each
household, such as the maximum demand constraint and sequential constraint
and discrete power rate for each device.

This FSDN-DS method is designed based on Frank-Wolfe (FW) algorithm
that solves optimisation problems by solving its linear approximation problem
iteratively, as described in [10,26]. We adopt FW for three reasons: it is fast,
for linearly constrained convex problems (such as DSP-MH-RTP) it converges
to the global optimum, and does not require tuning of step-sizes.

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 655

This section will firstly explain the iterative communication process in the
FSDN-DS method, secondly the device scheduling problem for households (DSP-
H) and the pricing problem (PP) solved at each iteration as part of the FW
algorithm, and lastly the method for creating the probability distribution.

4.1 Iterative Communication Process and Frank-Wolfe

Based on the FW algorithm, FSDN-DS finds the actual schedules for devices
through an iterative communication process between households and the utility
in an uncooperative manner described as Algorithm 1 and Fig. 1. At each itera-
tion, FW calculates a tentative solution and a step size that will best improve
the objective value of the tentative solution. When this step size becomes zero
or very small (e.g. less than 0.001) at any iteration, it means the objective value
cannot be improved any further, therefore the optimal solution is found and the
iterative process is converged.

FSDN-DS interprets the step size at each iteration as the probability for the
tentative solution found at that iteration to be the optimal solution, and the
optimal solution as the solution that optimises the expected objective value. In
our research, this optimal solution of FW is the expected total demand profile
that minimises the expected total cost and discomfort. When the FW algorithm
converges, FSDN-DS uses all step sizes to compute a probability distribution,
which is then used by each household to select one from all the tentative solutions
as the actual solution (the actual device schedule). The resulting actual total
demand profile will be very close to the optimal expected total demand profile.

Algorithm 1. Iterative Communication Process
1: initialisation:

(a) each household schedules each device at its PST and reports its initial demand

profile l
(0)
h to the utility company.

(b) the utility calculates the total demand profile l̄(0) and updates the price profile
p(0), and then returns p(0) to each household.

2: at each iteration k > 0:
(a) each household solves a device scheduling problem and reports its new demand

profile l
(k)
h and the discomfort cost U

(k)
h to the utility company.

(b) the utility calculates the total demand profile l̄(k) and total discomfort cost
Ū (k), then solves a pricing problem and returns a new price profile p(k) and a
new step size α(k) to each household.

(c) go to (a) if α(k) > ε where ε is a very small number.
3: each household will use {α(k) | k > 0} to calculate the optimal probability distri-

bution for selecting the actual device schedule.

This design of FSDN-DS is inspired by the averaging algorithm, which is the
traditional mechanism for achieving convergence [5]. For each iteration k, the
averaging algorithm calculates the total demand per period not simply from the

656 S. He et al.

Fig. 1. Iterative communication process

device schedules of households at this iteration, but an average of all demands
yielded by the device schedules at iteration 1 up to k. The utility finds the
new prices based on the average total demand per period and send them to
households. The averaging method can be a mathematical manipulation that, at
each iteration, can be understood as moving partial demands of the devices, or
moving the devices with a certain probability (assuming the number of similar
devices is large). However, this method converges slowly, and is dependent on the
maximum electricity price level, which could be very high if a punitive price is
imposed above a grid-imposed maximum total demand. For this reason, we seek
for another method that converges faster. Frank-Wolfe was chosen for its fast
convergence, low computational complexity and automatic tuning of step-sizes.

4.2 Device Scheduling Problem for Households

The device scheduling problem for households (DSP-H) schedules devices against
the price profile given by the utility to minimise the cost and discomfort of a
household and the consumption constraints and preferences given by the con-
sumer. Solving this problem is understood as solving the linear approximation of
the original problem at each iteration of the FW algorithm. Once a new device
schedule is found, each household send its demand profile to the utility.

Problem Formulation. Similarly to [9], this DSP-H considers both local con-
straints (constraints that only involve one device) and global constraints (con-
straints that involve multiple devices). The local constraint in this DSP-H is the
start time constraint. The global constraints include the maximum demand con-
straint and the sequential constraint. The input parameters, decision variables,
constraints and objective functions are written as the following:

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 657

Input Parameters - Let us write H as the total number of households, h as the
index of one household, Dh as the total number of devices in household h, d as
the index of one device, se

h,d ∈ [1, 144] as the EST of device d in household h,
sl

h,d ∈ [1, 144] as the LFT, sp
h,d ∈ [1, 144] as the PST, eh,d ∈ R+ as the power

rate when a device is turned on, ηh,d ∈ [1, 10] as the CF, θh,d ∈ [1, 144] as the
duration, Dp

h,d is the indices of the preprocessing devices and θ̄h,d as the MSD.
Note that Dp

h,d = ∅ if the device has no predecessor.

Decision Variables and Constraints - Let us write sa
h,d as the decision variables—

the optimal start time for the device d in the household h. The start time con-
straints of devices can be written as the following:

se
h,d ≤ sa

h,d ≤ sl
h,d + 1 − θh,d (1)

If this device has predecessors, the sequential constraint can be written as the
following:

∀d̂ ∈ Dp
h,d : sa

h,d̂
+ θh,d̂ ≤ sa

h,d ≤ sa
h,d̂

+ θh,d̂ + θ̄h,d (2)

Let us write the maximum demand of a household h as Eh. The maximum
demand constraint can be written as the following:

∀s ∈ [1, T s] :
∑

{eh,d | d ∈ [1,Dh], sa
h,d ≤ s < sa

h,d + θh,d} ≤ Eh (3)

Objectives - Costs and discomfort are two conflicting objectives considered in
this DSP-H. This DSP-H aims to schedule devices in a way that best balances
the needs for savings and comfort. Let us write Ch as the cost of the household h,
ps as the price of the scheduling interval s and this cost function as the following:

Ch =
144∑

s=1

∑
{ps × eh,d | d ∈ [1,Dh], sa

h,d ≤ s < sa
h,d + θh,d} (4)

The discomfort is an additional cost that penalties the difference between the
actual start time (AST) and the PST of each devices weighted by its CF. This
cost, denoted as Uh, is a linear function designed as the following:

Uh =
Dh∑

d=1

| sp
h,d − sa

h,d | × ηh,d (5)

This DSP-H can be written as the following:

minimise fh = Ch + Uh

subject to (1), (2), (3)
(6)

Note that the objective function for each household is linear in the amount of
energy required at each period, since the price per period is fixed. However, the
overall cost of all consumers is discrete convex, because the overall cost is cal-
culated the total demand profile and the price profile and the price profile is

658 S. He et al.

calculated form a strictly increasing step function. The overall objective func-
tion is therefore piece-wise linear or discrete convex. Plus the constraints are
all linear. These conditions allow us to solve the DSP-MH-RTP with the FW
algorithm. This DSP-H can be considered as the linear approximation of the
original problem at each iteration of FW.

Solution Methods. Solving this DSP-H includes two steps: a pre-processing
algorithm and a scheduling algorithm. Two versions of the household scheduling
algorithm have been proposed: an Optimal Scheduling algorithm and a Opti-
mistic Greedy Search algorithm (OGS). The implementation of these versions can
be found at https://tinyurl.com/yak8anmm and https://tinyurl.com/ydy5s6s2,
respectively.

Pre-processing - This algorithm pre-computes the objective value of schedul-
ing each device at each scheduling interval. Particularly, the objective value
is increased to a big number if the scheduling interval violates the start time
constraint. This way, the start time constraint is ensured implicitly by this algo-
rithm without needing to be incorporated in the scheduling algorithm. The out-
come of this algorithm is a matrix of precomputed objective values, written as
obj = {objh,d,s | d ∈ [1,Dh] and s ∈ [1, 144]}.

Optimal Scheduling Algorithm - This is an optimisation model that finds the best
start time for each device that has the smallest objective value and satisfies all
constraints. This is a mixed integer linear programming (MILP) model, described
as the following:

minimise
∑

d∈[1,Dh],s∈[1,144]

objh,d,s · xd,s

s.t.
∑

s∈[1,144]

xd,s = 1 ∀d ∈ [1,Dh]

∑

d∈[1,Dh]

eh,d · xd,s ≤ Eh ∀s ∈ [1, 144]

sd =
∑

s∈[1,144]

s · xs,d ∀d ∈ [1,Dh]

sd̂ + θh,d̂ ≤ sd ≤ sh,d̂ + θh,d̂ + θh,d ∀d ∈ D, d̂ ∈ Dp
h,d

Optimistic Greedy Search Algorithm - this is a heuristic algorithm that searches
for a good start time for each device in sequence. First, this algorithm schedules
a device at the interval that has the smallest objective value and satisfies the
sequential constraints if predecessors exist. Second, the algorithm checks if the
maximum demand constraint is violated. If yes, the algorithm will re-schedule
this device to the next cheapest interval that satisfies all constraints or satisfies
the sequential constraint but violates the maximum demand constraint the least.

https://tinyurl.com/yak8anmm
https://tinyurl.com/ydy5s6s2

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 659

4.3 Pricing Problem

This pricing problem (PP) calculates the optimal step size that best reduces the
total cost and discomfort of all households, which is equivalent to calculating
the optimal step size of FW at each iteration.

Problem Formulation. First, PP calculates the total demand profile from the
demand profiles of all households. This total demand profile is the new tentative
solution at the current iteration. Second, PP calculates the optimal step size
using the current tentative solution and the improved tentative solution from
the previous iteration. Third, this step size is applied to improve the current
tentative solution. The resulting improved tentative solution is then used to
calculate a new price profile for the next iteration and a new step size in the
next iteration.

Input Parameters - Let us write l̄(k) (which is the total demand profile of all
households) as the tentative solution at the iteration k, l̄

(k)
t as the tentative

total demand at period t, x(k) as the improved tentative solution, x
(k)
t as the

improved tentative total demand at period t, Ū (k) as the total discomfort of l̄(k)

and Û (k) as the total discomfort of x(k). Note that each pricing period has three
scheduling intervals. The demand of one pricing period is the average demand
of all scheduling intervals in that period.

Decision Variables and Objectives - The step size α(k) ∈ [0, 1] is the decision
variable. The objective is to minimise the total cost and discomfort given x(k−1)

and l̄(k). Let us write g(·) as this objective function. Based on the FW algorithm,
PP first calculates a descent direction d(k) as the following:

d(k) = l̄(k) − x(k−1) (7)

Then it finds the optimal step size by solving the following optimisation problem:

α(k) = argmin
α∈[0,1]

g(x(k−1) + αd(k))

= argmin
α∈[0,1]

(x(k−1) + α(̄l(k) − x(k−1))) · p(k)(x(k−1) + α(̄l(k) − x(k−1)))

+ Û (k) + α(Ū (k) − Û (k))

(8)

This problem is equivalent to finding α(k) at which the gradient of g(xk−1+αdk)
reaches zero, described as the following:

h(α) = ∇g(x(k−1) + αd(k))

= (̄l(k) − x(k−1))) · p(k)(x(k−1) + α(̄l(k) − x(k−1))) + (Ū (k) − Û (k))
= 0

(9)

However, the cost function in this research is piece-wise linear, therefore the
gradient changes in steps instead of continuously and it may turn from negative

660 S. He et al.

to positive without reaching zero. The optimal α(k) is instead found at which the
gradient is before turning positive. This optimal α(k) is then used for improving
the current tentative solution as the following:

x(k) = x(k−1) + α(k)(̄l(k) − x(k−1)) (10)

At last, a new price profile P(k) is calculated from the x(k) using the pricing step
function. P(k) and α(k) are then returned to each household.

Solution Method. The solving method for PP involves two steps: calculat-
ing (1) the price profile from a demand profile and (2) α(k). Calculating the
price requires simply comparing the total demand of each pricing period with
the demand thresholds. The price level associated with the smallest demand
threshold that is above the total demand of a period is the price for that period.
Calculating α(k) requires an iterative algorithm that involves three main steps:
(1) for each pricing period, move the total demand to the next higher demand
threshold if (l̄(k)t −x

(k−1)
t) > 0 or to the next lower demand threshold otherwise,

(2) compute the fractions of demand movements in each period, (3) move the
demands in all periods by the smallest fraction. This iterative process continues
until the gradient h(α) become positive. The implementation of this method can
be found at https://tinyurl.com/y7ek738o.

4.4 Schedule Probability Distribution

Once the iterative communication process converges, each household uses the
α(k) computed at each iteration to construct the optimal probability distribution.
Let us write pd as the probability distribution, K as the number of iteration
where the iterative process converges at and pdk is the probability of choosing
the schedule calculated at iteration k. The calculation of pd is as the following:

pd = {pdk | k ∈ [1,K]}

pdk =

⎧
⎪⎨

⎪⎩

∏K
i=1(1 − α(i))), if k = 1

α(k)
∏K

i=k+1(1 − α(i)), if 1 < k < K

α(K), if k = K

(11)

pdk is understood as the probability for the device schedule found by the house-
hold at the kth iteration to be the optimal schedule. Households use this prob-
ability distribution to select one schedule from those computed at all iterations
to be the final schedule. When large numbers of households schedule devices in
this way, the resulting total demand profile of all households will be very close
to the expected optimal total demand profile [29] found by the FW algorithm.

https://tinyurl.com/y7ek738o

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 661

5 Experiments

Experiment Data and Environment. This research requires preference data,
such as EST, PST, LST and CF for each device, which does not yet exist. Exist-
ing research that considers preference data generates synthetic data based on
assumptions of the real-world and real device data [19,29]. This research adopts
the same method and generated experiment data in the following steps: (1)
derive a probability distribution from a typical total demand profile in summer
of Queensland, Australia (2) this probability distribution was used to sample
PSTs for devices, (3) the Rayleigh distribution was used to sample durations for
devices, (4) a list of commonly used devices, created by Ausgrid in Australia [3],
was used to sample the power rates, (5) the ESTs and the LFTs were randomly
selected with a uniform distribution, (6) the CFs were randomly chosen between
1 and 10 with a uniform distribution, (7) a 0 or 1 was selected from a uniform
distribution to decide if a device had predecessors. If yes, the maximum suc-
ceeding delay would then be randomly selected from 1 to 144 with an uniform
distribution. For simplicity, the experiments assume the maximum demand limit
of each household is set to the sum of all devices in that household. Note that
each device was allowed to start yesterday or finish tomorrow. When calculating
the demand profile, the demand occurred yesterday would be added to the end
of today and the demand occurred tomorrow would be added to the start of
today. This method was used to ensure the resulting demand profile was realis-
tic, otherwise very little demand would occur at the beginning and the end of the
day. The device data generated by this method yield a total demand profile that
matches those published in the Australian Electricity Market Operator website
before optimisation.

The pricing step function was derived from a supply curve based on a years
historical data from the Australian National Energy Market where we used the
average relationship between the wholesale market spot price and the total sup-
ply. This is the price that changes every half hour, and is paid by all electricity
retailers for all the bulk purchases they make on behalf of their retail customers.
It is also the price that all power station operators earn for power generated in
the same half hour.

The optimisation model for solving DSP-H was implemented in the Python
interface for Gurobi. The rest of the FSDN-DS method was implemented in
Python and tested on a computer with a CORE i5 4690 quad core.

5.1 Results

Peak and Cost Reductions and Run Times. These experiments show the
results of two versions of the FSDN-DS method: one uses the MILP model for
solving the DSP-H of households and the other uses the OGS algorithm. 60 prob-
lem instances were generated for these experiments. The number of households
ranged from 2,000 to 10,000, with each number of households had 12 instances.
The results for each number of households was averaged of its 12 instances.
Table 1 show the average iterations for the FSDN-DS method to converge, the

662 S. He et al.

Table 1. Experiment results

Num of
houses

Method
version

Average
iterations

Average run
time (second)

Average peak
reduction

Average cost
reduction

2000 MILP 12.25 0.21 17% 56%

OGS 12.00 0.01 17% 55%

4000 MILP 13.83 0.24 17% 60%

OGS 14.58 0.01 17% 59%

6000 MILP 16.58 0.30 18% 60%

OGS 15.92 0.01 17% 59%

8000 MILP 17.75 0.32 18% 61%

OGS 17.25 0.01 17% 60%

10000 MILP 17.00 0.30 18% 62%

OGS 16.83 0.01 17% 60%

average run time (assuming all households run in parallel), the average peak
reduction and the average cost reduction. The run time corresponded to one run
for a household of all iterations. The results show that on average the FSDN-DS
method, regardless of which version, converges in 20 iterations under a sec-
ond. The average run time and iteration increases slightly from 2,000 to 6,000
households but remains almost the same from 6,000 to 10,000 households. The
average peak reduction is almost the same for any number of households. The
peak reduction rates of both version are very close, however, the MILP version
outperformed the OGS version by 1%. The cost reduction rates increases slightly
with the number of devices. The cost reduction rates of both versions are again
very close, however, the MILP version outperformed the OGS version by 1–2%.

Sampling Actual Schedules. These experiments show the actual total
demand profiles of all households that are calculated from the actual device
schedules chosen using the optimal probability distribution. Two optimal prob-
ability distributions were calculated for these experiments. One was calculated
from the results of the FSDN-DS method with the OGS version and the other
is from the results of the MILP version. Figure 2 shows the actual total demand
profiles generated by sampling actual device schedules from these two probability
distributions for ten times, and the expected total demand profiles calculated by
both versions. The problem instance used for generating these results had 10000
households.

5.2 Analysis

The results show that the FSDN-DS method proposed in this research indeed
has fast convergence, low computational time and high scalability, making it
suitable for scheduling devices in real time. On average, this method converges

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 663

Fig. 2. Actual and optimal expected total demand profiles

in 20 iterations under a second for any number of households. Although the
MILP version of the FSDN-DS method outperforms the OGS version by 1–2%,
the average run time of the OGS version is more than 20 times faster than the
MILP version. Moreover, the implementation of the OGS version requires no
optimisation solvers, making it easier to be implemented in practice than the
MILP version.

6 Conclusions

This paper describes the solution of a device scheduling problem for multiple
households under RTP (DSP-MH-RTP) where the total cost and discomfort of
all households are minimised. In particular, we focus on the case where the prices
considered are not known in advance but are a function of the total demand.
Moreover, multiple global constraints such as the maximum demand constraint
and the sequential constraint are considered in this problem. Additionally, this
research considers each device to be scheduled at every ten-minute interval,
which provide more flexibility and potential for peak demand reduction than
the thirty-minute or one-hour interval that is commonly used in the literature.

To solve the problem we develop a fast, scalable, distributed and non-
cooperative device scheduling method (FSDN-DS) based on Frank-Wolfe Algo-
rithm. This method finds the optimal expected total demand profile that min-
imises the expected total cost and discomfort through an iterative communi-
cation process between households and the utility company. Particularly, this
method has low computation time and high scalability while allowing devices to
be scheduled at smaller time slots under the maximum demand constraint and
the sequential constraint, which has not been achieved by existing methods.

Two versions of the FSDN-DS method have been presented in this paper:
FSDN-DS with a mixed-integer programming model version and FSDN-DS with
an optimistic greedy search algorithm version. The experiment results show that
both versions have fast convergence, low computational time and high scalability,
making them suitable for scheduling devices in real time. Although the results
of the MILP version outperforms the OGS version by 1–2%, the run time of the

664 S. He et al.

OGS version is 20 times faster than the MILP version. Moreover, the implemen-
tation of the OGS requires only a programming language with no optimisation
solvers, making it easier and more practical for individual households than the
MILP version.

The full implementation of the FSDN-DS method and a website for visual-
ising full experiment results can be found at https://bitbucket.org/monash-dr/
deterministic-rtp-ad/src/master/.

References

1. Albadi, M.H., El-Saadany, E.F.: Demand response in electricity markets: an
overview, June 2007

2. Anvari-Moghaddam, A., Monsef, H., Rahimi-Kian, A.: Optimal smart home energy
management considering energy saving and a comfortable lifestyle. IEEE Trans.
Smart Grid 6(1), 324–332 (2015)

3. Ausgrid: Appliance usage guide. http://www.ausgrid.com.au/Common/Customer-
Services/Homes/Energy-efficiency/Energy-efficiency-at-home-tips/Energy-usage-
calculators/∼/media/Files/Customer

4. Barbato, A., Capone, A., Carello, G., Delfanti, M., Merlo, M., Zaminga, A.: House
energy demand optimization in single and multi-user scenarios. In: 2011 IEEE
International Conference on Smart Grid Communications (SmartGridComm), pp.
345–350, October 2011

5. Chapman, A.C., Rogers, A., Jennings, N.R., Leslie, D.S.: A unifying framework
for iterative approximate best-response algorithms for distributed constraint opti-
mization problems. Knowl. Eng. Rev. 26(4), 411–444 (2011)

6. Chavali, P., Yang, P., Nehorai, A.: A distributed algorithm of appliance schedul-
ing for home energy management system. IEEE Trans. Smart Grid 5(1), 282–290
(2014)

7. Chen, L., Li, N., Low, S.H., Doyle, J.C.: Two market models for demand response
in power networks. In: 2010 First IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 397–402, October 2010

8. Fan, Z.: Distributed demand response and user adaptation in smart grids. In:
12th IFIP/IEEE International Symposium on Integrated Network Management
(IM 2011) and Workshops, pp. 726–729, May 2011

9. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling
devices in smart homes. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, pp. 981–989. International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2017).
http://dl.acm.org/citation.cfm?id=3091125.3091265

10. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist.
Q. 3(1–2), 95–110 (1956)

11. Goudarzi, H., Hatami, S., Pedram, M.: Demand-side load scheduling incentivized
by dynamic energy prices. In: 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 351–356, October 2011

12. He, S., Liebman, A., Rendl, A., Wallace, M., Wilson, C.: Modelling RTP-based
residential load scheduling for demand response in smart grids. In: Ansotegui, C.
(ed.) Proceedings of the Thirteenth International Workshop on Constraint Mod-
elling and Reformulation (ModRef 2014), pp. 36–51. Universitat de Lleida (2014)

https://bitbucket.org/monash-dr/deterministic-rtp-ad/src/master/
https://bitbucket.org/monash-dr/deterministic-rtp-ad/src/master/
http://www.ausgrid.com.au/Common/Customer-Services/Homes/Energy-efficiency/Energy-efficiency-at-home-tips/Energy-usage-calculators/~/media/Files/Customer
http://www.ausgrid.com.au/Common/Customer-Services/Homes/Energy-efficiency/Energy-efficiency-at-home-tips/Energy-usage-calculators/~/media/Files/Customer
http://www.ausgrid.com.au/Common/Customer-Services/Homes/Energy-efficiency/Energy-efficiency-at-home-tips/Energy-usage-calculators/~/media/Files/Customer
http://dl.acm.org/citation.cfm?id=3091125.3091265

A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices 665

13. Joe-Wong, C., Sen, S., Ha, S., Chiang, M.: Optimized day-ahead pricing for smart
grids with device-specific scheduling flexibility. IEEE J. Sel. Areas Commun. 30(6),
1075–1085 (2012)

14. Kanchev, H., Lu, D., Colas, F., Lazarov, V., Francois, B.: Energy management and
operational planning of a microgrid with a PV-based active generator for smart
grid applications. IEEE Trans. Ind. Electron. 58(10), 4583–4592 (2011)

15. Kim, S.J., Giannakis, G.B.: Scalable and robust demand response with mixed-
integer constraints. IEEE Trans. Smart Grid 4(4), 2089–2099 (2013)

16. Kuschel, C., Köstler, H., Rüde, U.: Multi-energy simulation of a smart grid with
optimal local demand and supply management. Smart Grid Renew. Energy 06(11),
303–315 (2015)

17. Li, N., Chen, L., Low, S.H.: Optimal demand response based on utility maximiza-
tion in power networks. In: 2011 IEEE Power and Energy Society General Meeting,
pp. 1–8, July 2011

18. Li, Y., Ng, B.L., Trayer, M., Liu, L.: Automated residential demand response:
algorithmic implications of pricing models. IEEE Trans. Smart Grid 3(4), 1712–
1721 (2012)

19. Mhanna, S., Chapman, A.C., Verbic, G.: A fast distributed algorithm for large-
scale demand response aggregation. CoRR abs/1603.00149 (2016). http://arxiv.
org/abs/1603.00149

20. Mohamed, F.A., Koivo, H.N.: Microgrid online management and balancing using
multiobjective optimization. In: 2007 IEEE Lausanne Power Tech, pp. 639–644,
July 2007

21. Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price
prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid
1(2), 120–133 (2010)

22. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J., Schober, R., Leon-Garcia, A.:
Autonomous demand-side management based on game-theoretic energy consump-
tion scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331
(2010)

23. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.: Agent-based control for
decentralised demand side management in the smart grid. In: The 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011,
vol. 1, pp. 5–12. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2011). http://dl.acm.org/citation.cfm?id=2030470.2030472

24. Ren, D., Li, H., Ji, Y.: Home energy management system for the residential load
control based on the price prediction. In: 2011 IEEE Online Conference on Green
Communications, pp. 1–6, September 2011

25. Samadi, P., Mohsenian-Rad, A.H., Schober, R., Wong, V.W.S., Jatskevich, J.:
Optimal real-time pricing algorithm based on utility maximization for smart grid.
In: 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm), pp. 415–420, October 2010

26. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathemat-
ical Programming Methods. Prentice-Hall, Englewood Cliffs (1985)

27. Shi, W., Xie, X., Chu, C.C., Gadh, R.: Distributed optimal energy management in
microgrids. IEEE Trans. Smart Grid 6(3), 1137–1146 (2015)

28. Sou, K.C., Weimer, J., Sandberg, H., Johansson, K.H.: Scheduling smart home
appliances using mixed integer linear programming. In: 2011 50th IEEE Confer-
ence on Decision and Control and European Control Conference, pp. 5144–5149,
December 2011

http://arxiv.org/abs/1603.00149
http://arxiv.org/abs/1603.00149
http://dl.acm.org/citation.cfm?id=2030470.2030472

666 S. He et al.

29. Van Den Briel, M., Scott, P., Thiébaux, S.: Randomized load control: a sim-
ple distributed approach for scheduling smart appliances. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013,
pp. 2915–2922. AAAI Press (2013). http://dl.acm.org/citation.cfm?id=2540128.
2540548

30. Veit, A., Xu, Y., Zheng, R., Chakraborty, N., Sycara, K.: Demand side energy man-
agement via multiagent coordination in consumer cooperatives. J. Artif. Int. Res.
50(1), 885–922, May 2014. http://dl.acm.org/citation.cfm?id=2693068.2693091

31. Voice, T.D., Vytelingum, P., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Decen-
tralised control of micro-storage in the smart grid. In: Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, pp. 1421–1427. AAAI
Press (2011). http://dl.acm.org/citation.cfm?id=2900423.2900648

32. Vytelingum, P., Voice, T.D., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Agent-
based micro-storage management for the smart grid. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: Vol-
ume 1, AAMAS 2010, vol. 1, pp. 39–46. International Foundation for Autonomous
Agents and Multiagent Systems, Richland (2010). http://dl.acm.org/citation.cfm?
id=1838206.1838212

33. Wang, Y., Mao, S., Nelms, R.M.: Distributed online algorithm for optimal real-
time energy distribution in the smart grid. IEEE Internet Things J. 1(1), 70–80
(2014)

34. Yu, R., Yang, W., Rahardja, S.: Optimal real-time price based on a statistical
demand elasticity model of electricity. In: 2011 IEEE First International Workshop
on Smart Grid Modeling and Simulation (SGMS), pp. 90–95, October 2011

35. Zhang, W., Xu, Y., Liu, W., Zang, C., Yu, H.: Distributed online optimal energy
management for smart grids. IEEE Trans. Ind. Inform. 11(3), 717–727 (2015)

http://dl.acm.org/citation.cfm?id=2540128.2540548
http://dl.acm.org/citation.cfm?id=2540128.2540548
http://dl.acm.org/citation.cfm?id=2693068.2693091
http://dl.acm.org/citation.cfm?id=2900423.2900648
http://dl.acm.org/citation.cfm?id=1838206.1838212
http://dl.acm.org/citation.cfm?id=1838206.1838212

Multiagent and Parallel CP Track

Balancing Asymmetry in Max-sum
Using Split Constraint Factor Graphs

Liel Cohen and Roie Zivan(B)

Ben Gurion University of the Negev, Beer Sheva, Israel
{lielc,zivanr}@post.bgu.ac.il

Abstract. Max-sum is a version of Belief Propagation, used for solv-
ing DCOPs. On tree-structured problems, Max-sum converges to the
optimal solution in linear time. When the constraint graph represent-
ing the problem includes multiple cycles, Max-sum might not converge
and explore low quality solutions. Damping is a method that increases
the chances that Max-sum will converge. Damped Max-sum (DMS) was
recently found to produce high quality solutions for DCOP when com-
bined with an anytime framework.

We propose a novel method for adjusting the level of asymmetry in
the factor graph, in order to achieve a balance between exploitation and
exploration, when using Max-sum for solving DCOPs. By converting
a standard factor graph to an equivalent split constraint factor graph
(SCFG), in which each function-node is split to two function-nodes, we
can control the level of asymmetry for each constraint. Our empirical
results demonstrate that by applying DMS to SCFGs with a minor level
of asymmetry we can find high quality solutions in a small number of
iterations, even without using an anytime framework. As part of our
investigation of this success, we prove that for a factor-graph with a sin-
gle constraint, if this constraint is split symmetrically, Max-sum applied
to the resulting cycle is guaranteed to converge to the optimal solu-
tion and demonstrate that for an asymmetric split, convergence is not
guaranteed.

1 Introduction

The Max-sum algorithm [4] is an incomplete inference (GDL-based) algorithm
for solving Distributed Constraint Optimization Problems (DCOP), a general
model for distributed problem solving that has a wide range of applications
in multi-agent systems. Max-sum has drawn considerable attention in recent
years, including being proposed for multi-agent applications such as sensor sys-
tems [20,23] and task allocation for rescue teams in disaster areas [16]. Max-sum
is actually a version of the well known Belief propagation algorithm [25], used
for solving DCOPs. Agents in Max-sum propagate cost/utility information to all
neighbors. This contrasts with other inference algorithms such as ADPOP [13],
which only propagate costs up a pseudo-tree structure overlaid on the agents.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 669–687, 2018.
https://doi.org/10.1007/978-3-319-98334-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_43&domain=pdf

670 L. Cohen and R. Zivan

As is typical of inference algorithms, Max-sum is purely exploitive both in the
computation of its beliefs and in its selection of values based on those beliefs.

Belief propagation in general (and Max-sum specifically) is known to con-
verge to the optimal solution for problems whose constraint graph is acyclic. On
problems with cycles, the agents’ beliefs may fail to converge, and the result-
ing assignments that are considered optimal under those beliefs may be of low
quality [4,25,30]. This occurs because cyclic information propagation leads to
inaccurate and inconsistent information being computed by the agents. Unfor-
tunately, many DCOPs that were investigated in previous studies are dense and
indeed include multiple cycles (e.g., [6,10]). However, in contrast to most DCOP
algorithms, Max-sum was found to produce solutions with similar quality when
applied to symmetric and asymmetric problems [31].

Damping is a method that decreases the effect of cyclic information prop-
agation in Belief propagation by balancing the weight of the new calculation
performed in each iteration and the weight of calculations performed in previ-
ous iterations. As a result it increases the chances for convergence [8,14,19,21].
A recent investigation of the effect of damping on Max-sum when applied to
DCOPs revealed that damping generates efficient exploration that, when com-
bined with an anytime framework, produces high quality results [2]. However,
without the anytime framework [29], a large number of iterations is required for
damped Max-sum (DMS) to reach a high quality solution.

In this paper we contribute to the development of incomplete inference algo-
rithms for solving DCOPs by proposing a novel degree of freedom for balancing
between exploration and exploitation, in Max-sum. This degree of freedom, is
the level of asymmetry in function-nodes representing constraints in the fac-
tor graph. The ability to control the level of asymmetry for each constraint is
achieved by shifting a standard factor graph to an equivalent split constraint fac-
tor graph (SCFG), where each constraint is represented by two function-nodes
instead of one1.

Our empirical evaluation reveals that the level of asymmetry in SCFGs can
determine the level of exploration that the algorithm performs. When combining
damping with low levels of asymmetry, Max-sum converges very fast to high
quality solutions, without the need of an anytime framework.

As part of our investigation of this success, we investigate the effect of a split
on a single constraint factor graph. We prove that when the cost table of the
single function-node is split symmetrically, Max-sum is guaranteed to converge
on the resulting cycle to the optimal solution, regardless of the damping factor
used, and demonstrate that this is not the case when the constraint is split
asymmetrically.

2 Related Work

The first paper to propose the use of Belief propagation for solving DCOPs
and named it Max-sum was [4]. This work was followed by a number of studies
1 A similar factor graph was used in [31] for representing asymmetric DCOPs.

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 671

that addressed the in-convergence of the algorithm on graphs that include mul-
tiple cycles, including [17], which proposed Bounded Max-sum and [30] which
proposed Max-sum ADVP.

Max-sum was applied to sensor nets both with mobile and static sen-
sors [5,20,26], to supply chain management [1] and teams of rescue agents [16].
A number of papers made an attempt to overcome its most apparent draw-
back, the exponential computation of the content of messages sent by function-
nodes [9,20]. For specific applications with cardinality constraints, the Tractable
High Order Potentials (THOP) method [22], which was adjusted to DCOPs,
and implemented by [15] can be used. It reduces the computation runtime of
function-nodes to O(Klog(K)), where K is the number of neighboring variable-
nodes of the calculating function-node.

Max-sum was applied to asymmetric DCOPs in [31], by having each agent
involved in a constraint hold a function-node representing its personal costs for
that constraint. Thus, for each binary constraint there were two representing
function-nodes. In contrast to other DCOP algorithms, Max-sum versions were
found to maintain the quality of solutions they produce when applied to asym-
metric problems. The main difference from our work is that, while they have
used more than one function-node for a single constraint in order to represent
the given natural structure of an asymmetric problem, we initiate a split of a
standard function-node to two function-nodes representing the same constraint
as an algorithmic method.

The possibility to encourage convergence of Max-sum by splitting nodes in
the factor-graph was first suggested in [18]. This study investigated the theoret-
ical conditions for convergence of the algorithm when using constant even splits.
It further proposes a sequential version of the algorithm which, under some
conditions, is guaranteed to converge to a local optimum and specifies the con-
ditions in which this algorithm converges to the global optimum. They mention
that by using damping with damping factor of 1

n , this algorithm converges in a
distributed synchronous execution as well. The main difference from our work is
that we investigate the use of splitting nodes to control the level of symmetry in
the factor graph and to balance exploitation and exploration, and therefore we
investigate theoretical and empirical implications of constant even and uneven,
random and limited random splits.

Recently, the effect of the use of damping within Max-sum was investi-
gated [2]. It was found to immensely improve the quality of solutions traversed
by Max-sum, and when combined with an anytime framework [29], produce high
quality solutions. However, the use of Max-sum within an anytime framework,
requires agents to exchange their value assignments in each iteration. This is not
a requirement of the algorithm and therefore, such an exchange reduces the pri-
vacy of the algorithm. When an anytime framework is not used, a large number
of iterations is required for Max-sum to find solutions with low costs.

672 L. Cohen and R. Zivan

3 Background

In this section we present background on DCOPs, the Max-sum algorithm and
the damping method.

3.1 Distributed Constraint Optimization

Without loss of generality, in the rest of this paper we will assume that all
problems are minimization problems (as in many DCOP papers, e.g., [10]). Thus,
we assume that all constraints define costs and not utilities.2

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents {A1, A2, ..., An}.
X is a finite set of variables {X1, X2, ..., Xm}. Each variable is held by a
single agent (an agent may hold more than one variable). D is a set of domains
{D1, D2, ..., Dm}. Each domain Di contains the finite set of values that can
be assigned to variable Xi. We denote an assignment of value d ∈ Di to Xi

by an ordered pair 〈Xi, d〉. R is a set of relations (constraints). Each constraint
Rj ∈ R defines a non-negative cost for every possible value combination of a set
of variables, and is of the form Rj : Dj1 ×Dj2 × . . .×Djk → R

+ ∪{0}. A binary
constraint refers to exactly two variables and is of the form Rij : Di × Dj →
R

+ ∪ {0}.3 A binary DCOP is a DCOP in which all constraints are binary. A
partial assignment (PA) is a set of value assignments to variables, in which each
variable appears at most once. vars(PA) is the set of all variables that appear in
PA, vars(PA) = {Xi | ∃d ∈ Di∧〈Xi, d〉 ∈ PA}. A constraint Rj ∈ R of the form
Rj : Dj1 ×Dj2 × . . .×Djk → R

+ ∪{0} is applicable to PA if each of the variables
Xj1 ,Xj2 , . . . , Xjk is included in vars(PA). The cost of a partial assignment PA
is the sum of all applicable constraints to PA over the value assignments in
PA. A complete assignment (or a solution) is a partial assignment that includes
all the DCOP’s variables (vars(PA) = X). An optimal solution is a complete
assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds
exactly one variable, i.e., n = m, and we concentrate on binary DCOPs, in
which all constraints are binary. These assumptions are customary in DCOP
literature (e.g., [12,27]). In our description of algorithms and their properties,
we will assume that there are no ties, i.e., that each entry in the constraint
tables held by function-nodes has a unique numeric value. This can easily be
achieved by using a method similar to the one proposed in [3], which we use in
our empirical study.4

2 The inference algorithm for minimization problems is actually Min-sum. However,
we will continue to refer to it as Max-sum since this name is widely accepted.

3 We say that a variable is involved in a constraint if it is one of the variables the
constraint refers to.

4 For an example of the need to break ties in the factor-graph see [30].

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 673

3.2 The Max-Sum Algorithm

5Max-sum operates on a factor-graph, which is a bipartite graph in which the
nodes represent variables and constraints [7]. Each variable-node representing a
variable of the original DCOP is connected to all function-nodes that represent
constraints, which it is involved in. Similarly, a function-node is connected to all
variable-nodes that represent variables in the original DCOP that are involved in
the constraint it represents. Variable-nodes and function-nodes are considered
“agents” in Max-sum, i.e., they can send and receive messages, and perform
computation.

A message sent to or from variable-node x (for simplicity, we use the same
notation for a variable and the variable-node representing it) is a vector of size
|Dx| including a cost for each value in Dx. Before the first iteration, all nodes
assume that all messages they previously received (in iteration 0) include vectors
of zeros. A message sent from a variable-node x to a function-node f in iteration
i ≥ 1 is formalized as follows:

Qi
x→f =

∑

f ′∈Fx,f ′ �=f

Ri−1
f ′→x − α

where Qi
x→f is the message variable-node x intends to send to function-node f

in iteration i, Fx is the set of function-node neighbors of variable-node x and
Ri−1

f ′→x is the message sent to variable-node x by function-node f ′ in iteration
i− 1. α is a constant that is reduced from all costs included in the message (i.e.,
for each d ∈ Dx) in order to prevent the costs carried by messages throughout
the algorithm run from growing arbitrarily.

A message sent from a function-node f to a variable-node x in iteration i
includes for each value d ∈ Dx:

minPA−x
cost(〈x, d〉, PA−x)

where PA−x is a possible combination of value assignments to variables involved
in f not including x. The term cost(〈x, d〉, PA−x) represents the cost of a partial
assignment a = {〈x, d〉, PA−x}, which is: f(a) +

∑
x′∈Xf ,x′ �=x,〈x′,d′〉∈a Qi−1

x′→f .d′,
where f(a) is the original cost in the constraint represented by f for the partial
assignment a, Xf is the set of variable-node neighbors of f , and Qi−1

x′→f .d′ is the
cost that was received in the message sent from variable-node x′ in iteration
i − 1, for the value d′ that is assigned to x′ in a. x selects its value assignment
d̂ ∈ Dx following iteration k as follows:

d̂ = arg min
d∈Dx

∑

f∈Fx

Rk
f→x.d

5 For lack of space we describe the algorithm briefly and refer the reader to more
detailed descriptions in [4,17,30].

674 L. Cohen and R. Zivan

Introducing Damping into Max-Sum. In order to add damping to Max-
sum a parameter λ ∈ [0, 1) is used. Before sending a message in iteration k an

agent performs calculations as in standard Max-sum. Denote by ̂mk
i→j the result

of the calculation made by agent Ai of the content of a message intended to be
sent from Ai to agent Aj in iteration k. Denote by mk−1

i→j the message sent by
Ai to Aj at iteration k − 1. The message sent from Ai to Aj in iteration k is
calculated as follows:

mk
i→j = λmk−1

i→j + (1 − λ)̂mk
i→j

Thus, λ expresses the weight given to previously performed calculations with
respect to the most recent calculation performed. Moreover, when λ = 0 the
resulting algorithm is standard Max-sum.

Applying Max-sum to Asymmetric Problems. When Max-sum is applied
to an asymmetric problem, the representing factor graph has each (binary) con-
straint represented by two function-nodes, one for each part of the constraint
held by one of the involved agents. Each function-node is connected to both
variable-nodes representing the variables involved in the constraint [31]. Figure 1
presents two equivalent factor graphs that include two variable-nodes, each with
two values in its domain, and a single binary constraint. On the left, the fac-
tor graph represents a (symmetric) DCOP including a single constraint between
variables X1 and X2, hence, it includes a single function node representing this
constraint. On the right, the equivalent factor graph representing the equivalent
asymmetric DCOP is depicted. It includes two function-nodes, representing the
parts of the constraint held by the two agents involved in the asymmetric con-
straint. Thus, the cost table in each function-node includes the asymmetric costs
that the agent holding this function-node incurs. The factor graphs are equiva-
lent since the sum of the two cost tables held by the function-nodes representing
the constraints in the factor graph on the right, is equal to the cost table of the
single function-node representing this constraint in the factor graph on the left
(see [31] for details).

Exploration and Exploitation in Max-sum. In local search algorithms, an
agent commonly selects an assignment that minimizes the cost according to the
information available to it, i.e., it exploits the information. On the other hand,
the agent can select an assignment that does not minimize (and even enlarges)
its cost, hoping this will allow it to find assignments with lower cost in following
iterations. Such actions, which do not result in immediate benefit are aka explo-
ration. In distributed local search, even if each agent performs only exploitive
actions, concurrent actions by a number of agents can generate exploration, e.g.,
in DSA when neighboring agents replace assignments concurrently.

In inference algorithms such as Max-sum agents do not propagate assign-
ments. However, each variable-node can select an assignment at each iteration
based on the costs it receives. Thus, as in the distributed stochastic algorithm

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 675

Fig. 1. An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the
right).

(DSA) [28], a global view that examines the quality of the global assignment
that can be inferred in each iteration, can reveal whether the agents are improv-
ing the global assignment or involuntarily, selecting assignments that are with
higher costs and hence, exploring.

4 Split Constraint Factor Graphs

Damping can be used as a degree of freedom, to balance exploration and exploita-
tion in Max-sum [2]. However, when using damping, thousands of iterations are
required for the algorithm to find high quality solutions. By combining damped
Max-sum (DMS) with an anytime framework [29], the number of iterations
required in order to find high quality solutions is an order of magnitude smaller.

We aim at shortening the process of producing high quality solutions by
Max-sum and eliminating the dependency on the anytime framework, which
requires agents to share value assignments in contrast to the requirements of
the algorithm. Thus, we propose an additional degree of freedom, the level of
asymmetry of constraints in the factor graph. To this end, we propose the use
of Split Constraint Factor Graphs (SCFGs) in which each constraint that was
represented by a single function-node in the original factor graph, is represented
by two function-nodes. The SCFG is equivalent to the original factor graph, if the
sum of the cost tables of the two function-nodes representing each constraint in
the SCFG is equal to the cost table of the single function-node representing the
same constraint in the original factor graph. By tuning the similarity between
the two function-nodes representing the same constraint we can determine the
level of asymmetry in the SCFG.

Formally, an SCFG G′ is equivalent to a factor graph G, if their sets of
variable-nodes (and their domains) are equal, and if for each function-node F
in G with cost table CF , there exist function-nodes F ′ and F ′′ in G′, which are
connected to the same variable-nodes as F , and their constraint tables satisfy
CF = CF ′ + CF ′′ . Thus, each SCFG has a single equivalent DCOP factor graph
to which its function-nodes’ constraints sum up to, however, a standard DCOP
factor graph can have countless equivalent SCFGs.

676 L. Cohen and R. Zivan

Returning to the example portrayed in Fig. 1, given a standard factor graph
of a symmetric DCOP as presented on the left, the cost table of the function-node
F12 in this factor graph is split using a different random ratio for each entry, thus
generating a new equivalent SCFG (on the right) containing 2 function-nodes
F ′
12 and F ′

21.
We differentiate between constant SCFGs, in which constraint costs are split

according to a predetermined constant ratio, and random SCFGs, in which each
cost in each constraint table is split according to a randomly generated ratio.

It is important to notice the difference between the use we make of SCFGs and
the use made of factor graphs with two function-nodes representing a constraint
in [31]. There, they assume this type of factor graph is required to represent the
asymmetric state of the world, while we assume the input problem is symmetric,
and the generation of the SCFG is an algorithmic action (represented by the
small black arrow between the factor graphs in Fig. 1).

5 Splitting a Single Constraint

In Sect. 6 we present empirical evidence of the success of applying DMS to sym-
metric SCFGs and SCFGs with minor asymmetry. As part of an attempt to
explain this success we investigate the different effect of a symmetric split and
an asymmetric split in a single constraint factor graph.6

Lemma 1. On a factor graph with two variable-nodes X1 and X2 and two iden-
tical function-nodes, F12 and F21, each connected to both variable-nodes, Max-
sum is guaranteed to converge to the optimal solution after the first iteration.

Proof: We prove by induction on the number of iterations. If the smallest cost
c in the cost table held by both function-nodes7 is in entry i, j representing the
cost when the value assignments selected are the i’th value in the domain of
X1 and the j’th value in the domain of X2, then in the first iteration of the
algorithm, each function-node will send to X1 a vector where the i’th cost in it
is c, and the messages sent to X2 will include c in the j’th cost of the vector.
All other costs in these vector must be larger than c. Thus, following the first
iteration values i and j are selected. The induction assumption is that in the
k’th iteration8, k > 1, the i’th cost in the messages sent to X1 and the j’th cost
in the messages sent to X2 will be k+1

2 c, while all other costs in these vectors will
be larger. In the next iteration (k+1), X1 and X2 will send forward the message
received from each function-node, to the other function-node. In iteration k + 2
in the vector sent in each message to X1 the i’th cost will include a sum of the
smallest cost in the vector received, which according to the induction assumption
6 Although Lemmas 1 and 2 can be implied from Lemma 3, for simplicity of presenta-

tion we enclose all three, provide complete proof for Lemma 1, and intuitive expla-
nations how to generalize the proof so it will apply to Lemmas 2 and 3.

7 Recall that we assumed in Sect. 3.1 that there are no ties, so such a cost is unique.
8 Without loss of generality, we assume that k is odd. If it was even, then the assump-

tion was that the cost is k
2
c.

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 677

is k+1
2 c, and the smallest cost in the cost table, c. Thus, the resulting cost, which

must still be smallest in the vector, is k+1
2 c + c = k+3

2 c. For similar reasons, the
smallest cost in the vectors sent to X2 in iteration k + 2 are the j’th costs and
they are equal to k+3

2 c. �

Lemma 2. On a factor graph with two variable-nodes X1 and X2 and two
function-nodes, F12 and F21, each connected to both variable-nodes. If for any
real number m, the cost tables held by the two function-nodes maintain the rela-
tion CF12 = mCF21 then Max-sum is guaranteed to converge to the optimal solu-
tion after the first iteration.

The main difference is that in the first iteration, X1 is sent one message with
the i’th cost equal to c and another where it is equal to mc and this is true
for the j′th costs in the messages sent to X2. In iteration k the i’th cost in a
message sent to X1 and the j’th cost in the messages sent to X2 will include
alternating summations of c and mc, while all other costs in the vectors will
include corresponding summations of other (larger) numbers.

Lemma 3. On a factor graph with two variable-nodes X1 and X2 and two
function-nodes, F12 and F21, each connected to both variable-nodes. If for any
real number m, the cost tables held by the two function-nodes maintain the rela-
tion CF12 = mCF21 then DMS is guaranteed to converge to the optimal solution
after the first iteration, regardless of the damping factor being used.

In each iteration the costs calculated are multiplied by 1 − λ and added to the
previous message sent, multiplied by λ. Thus, in the first iteration the costs we
mention in the proofs for the lemmas above will be multiplied by 1 − λ, but the
smallest entries will remain i for X1 and j for X2. The same will be true for the
k + 2 iteration in the induction step. The smallest entry will not change as a
result of multiplying all messages by the same factor.

Proposition 1. If DMS is applied to a constant SCFG generated from a factor
graph including two variable-nodes and a single function-node representing the
constraint among them, it will converge after the first iteration, regardless of the
damping factor used.

Proof: Immediate from Lemma 3.

It is important to notice that previous works on the behavior of Belief propa-
gation on single cycle graphs, only prove the optimality of the solutions obtained
when the algorithm converges [24]. Moreover, when damping is used (as in DMS),
the algorithm might converge to sub-optimal solutions on single cycle graphs.
Thus, the fact that on constant split cycles both Max-sum and DMS are guar-
anteed to converge after a single cycle to the optimal solution is novel and
significant.

In contrast, when Max-sum is applied to an SCFG generated by a random
split of a single constraint, function-nodes might choose in their calculations min-
imal costs, which do not correspond with identical value assignments, and further

678 L. Cohen and R. Zivan

calculations may be based on inconsistent assignment choices for the same vari-
able, producing impossible belief costs for the variable-nodes. Hence, Max-sum
does not necessarily converge to the optimal solution. We empirically observed
this behavior in experiments on 20,000 randomly generated, single cycle factor
graphs, in which Max-sum did not converge to the optimal solution in many
problem instances. Interestingly, DMS always converged, but not necessarily to
the optimal solution. For example, when applied to the SCFG portrayed in Fig. 1,
standard Max-sum alternates endlessly between solutions of costs 120, 190 and
360. The optimal solution incurs a cost of 120. DMS, however, converges after
18 iterations to the suboptimal solution of cost 190.

Nevertheless, as demonstrated in Sect. 6, in SCFGs based on DCOPs contain-
ing multiple cycles, this pathology can induce exploration, which can be adjusted
by determining the level of asymmetry of split constraints, and exploited by using
a high damping factor.9

6 Experimental Evaluation

In order to investigate the advantages of the use of SCFGs when applying Max-
sum to DCOPs, we present a set of experiments comparing standard Max-sum
and DMS, both when applied to different SCFGs and two versions that guarantee
convergence: Bounded Max-sum and Max-sum ADVP (for detailed descriptions
of these algorithms see [17,30]). We also include in our experiments the results
of the well known DSA algorithm (we use type C with p = 0.7 [28]), in order
to give an insight on the quality of the results, in comparison with local search
DCOP algorithms.

We evaluated the algorithms on random uniform minimization DCOPs and
on structured and realistic problems, i.e., graph coloring, meeting scheduling and
scale-free nets (see details below). At each experiment we randomly generated 50
different problem instances and ran the algorithms for 2,000 iterations on each
of them. The results presented in the graphs are an average of those 50 runs.
For each iteration we present the sum of costs of the constraints involved in the
assignment that would have been selected by each algorithm at that iteration.
The statistical significance of the results was verified using paired t-tests with
significance level of p = 0.05. In order to maximize the benefit of the algorithms
exploration property we implemented all algorithms within the anytime frame-
work proposed in [29]. This allowed us to report for each of the algorithms the
best result it traverses within 2,000 iterations. Also, in all versions of Max-Sum,
we used personal value preferences, selected randomly for the purpose of tie
breaking, as was suggested in [3].

All problems were formulated as minimization problems. The uniform ran-
dom problems were generated by adding in each problem a constraint for each
pair of agents (variables) with probability p1. For each constrained pair we set a

9 further insights on the relation between the success of our empirical results and the
properties presented in this section are detailed in Sect. 6.2.

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 679

cost for each combination of value assignments, selected uniformly between 100
and 200.10 Each problem included 50 variables with 10 values in each domain.

Graph coloring problems include random constraint graph topologies and all
constraints Rij ∈ R are “not-equal” cost functions where an equal assignment of
neighbors in the graph incurs a cost of 50 and non equal value assignments incur
0 cost. Following the literature, we used p1 = 0.05 and three values (i.e., colors)
in each domain to generate these problems, which included 50 agents [4,28,29].

Scale-free network problems were generated using the Barabási–Albert (BA)
model with an initial set of 7 connected agents, and additional 43 agents, which
were added sequentially and connected to 3 other agents with a probability
proportional to the number of links that the existing agents already had. The
rest of the problem parameters were identical to the random uniform problems.

Meeting scheduling problems included ninety agents, which scheduled 20
meetings into 20 time slots. Each agent was a participant in two randomly cho-
sen meetings. For each pair of meetings, a travel time was chosen uniformly at
random between 6 and 10. When the difference between the time slots of two
meetings is less than the travel time between them, participants in both meet-
ings are overbooked, and a cost equal to the number of overbooked agents is
incurred.

Space limitations do not allow us to present all results obtained in our com-
prehensive experimental study, therefore we focus on the most significant results.
We present results when applying Max-sum and DMS to two constant SCFGs,
one splitting the costs evenly among the two function-nodes (0.5 version) and one
in which the split had 95% of the cost in one function-node and 5% on the other
(0.95 version). For random SCFGs we specify the range of costs from which the
cost for the first function-node was selected, i.e., version 0.4–0.6 includes SCFGs
where for each entry including cost c in the original constraint cost table, the
cost for the corresponding entry of the first function-node was selected randomly
between 0.4c and 0.6c. Following [2] we present results of DMS with λ = 0.9.
Our experiments with other λ values (0.5 and 0.7) validated that this version
indeed performs best.

Figure 2 presents the costs per iteration and the costs of the anytime solu-
tion per iteration, when applying Max-sum, DSA, Bounded Max-sum and Max-
sum ADVP to SCFGs. For constant SCFGs and random SCFGs where costs were
selected from a small range, the solutions found have lower cost than standard
Max-sum. However, the results are of much lower quality (higher costs) than
DSA. In order to avoid density we only depict the best anytime results among
all versions of the algorithm presented in this graph, which were obtained when
applying Max-sum to constant SCFGs 0.95. They are significantly better than
the costs per iteration when applying Max-sum to any of the SCFGs but are
far worse than the results produced by DSA and Max-sum ADVP. The results

10 This range was selected so that the numbers do not become too small and due to
precision, generate distorted SCFGs. Obviously, if the input costs are between 0 and
100, adding 100 to each cost can be the first step of the splitting method.

680 L. Cohen and R. Zivan

Fig. 2. Solution costs for Max-sum solving SCFGs of random uniform problems.

Fig. 3. Solutions costs for DMS solving SCFGs of random uniform problems.

Fig. 4. Solution and anytime costs for DMS solving SCFGs of random uniform prob-
lems.

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 681

Max-sum produces on random SCFGs 0–1, are consistent with the results in [31],
where only random splits were considered and damping was not used.

Figure 3 presents results for DMS applied to the same SCFGs. While the
trends are the same, and the best results are achieved using constant SCFGs and
random SCFGs with a small range for selecting the first cost, here the best results
significantly outperform DSA. When using SCFG 0.5 and SCFG 0.4–0.6 the
algorithm finds high quality solutions in a small number of iterations. When using
SCFG 0.95, the algorithm performs more exploration, and after approximately
500 iterations it averagely finds solutions of higher quality than when the 0.5
and the 0.4–0.6 SCFGs are used. Notice that all results presented in Fig. 3 are
cost per iteration and not the anytime costs. Figure 4 provides a closer look on
the differences of the most successful versions of the algorithm and their anytime
results. The anytime results of DMS on standard factor graphs are similar to the
results per iteration of DMS on the SCFG 0.95 version. However, the anytime
results of the 0.95 version converge must faster. When applied to SCFG 0.5 the
algorithm converges very fast, yet the costs of the solutions are higher. When
applied to random SCFGs 0.4–0.6, solutions with lower costs are also reached
very fast. The small level of additional exploration gives an advantage in this
case.

Fig. 5. Costs per iteration and anytime costs for DMS solving SCFGs of scale free nets.

The general trends were similar for denser uniform random problems with
p1 = 0.7 and for all other problem types, therefore, only selective graphs that
give a closer view on the results of the most successful versions of DMS for these
problems are presented. On scale free nets (Fig. 5), both the cost per iteration and
the anytime costs of solutions found by DMS when applied to constant SCFGs
and random SCFGs 0.4–0.6, converge much faster than the anytime result of
DMS solving standard factor graphs. In addition, the costs per iteration and the
anytime costs when applying DMS to random SCFGs 0.3–0.7 of scale free nets
were lower than for constant SCFGs 0.5 and random SCFGs 0.4–0.6, thus, we
depict them as well. On constant SCFGs 0.95, DMS found high quality solutions
very fast.

682 L. Cohen and R. Zivan

Fig. 6. Costs per iteration and anytime costs for DMS solving SCFGs of graph coloring
problems.

Fig. 7. Costs per iteration and anytime costs for DMS solving SCFGs of meeting
scheduling problems.

For graph coloring problems (Fig. 6) DMS on standard factor graphs produces
solutions with relatively high costs, and its anytime results are similar to the
results of DSA. On the other hand the solutions found by DMS when applied to
constant SCFGs 0.5 and to random SCFGs 0.4–0.6 are of significantly lower costs
per iteration and anytime costs. The 0.95 version performs more exploration and
the resulting anytime costs are lowest. The results for the meeting scheduling
problems (Fig. 7) show a similar trend. When DMS is applied to constant SCFGs
0.95 it performs more exploration than when applied to SCFGs 0.5 and 0.4–0.6.

Figure 8 presents the time for convergence for each of the 50 runs of each of
the algorithms and the percentage of problems on which the algorithm converged
among the 50 runs on each problem type. The random SCFGs with larger ranges
than 0.3–0.7 do not appear because they never converge. It is clear that constant
SCFGs and the 0.4–0.6 random version have higher convergence rate than when
DMS is applied to standard factor graphs. Moreover, it is also apparent that
the constant 0.5 version converges very fast. Both the constant SCFG 0.95 and
the random SCFG 0.4–0.6 versions converge slower and with slightly lower rates
than the SCFG 0.5 version. Thus, they have more opportunities to perform

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 683

Fig. 8. Number of iterations for convergence and convergence rate on relatively sparse
random uniform problems p1 = 0.2.

Fig. 9. Number of iterations for convergence and convergence rate on graph coloring
problems.

exploration, which can explain the advantage they have in solution quality, as
can be seen in Fig. 4.

Figure 9 presents the time for convergence and the convergence rate for graph
coloring problems. Here, it is clear that fast convergence prevents the algorithm
from finding solutions with low cost, when applied to standard factor graphs. On
the other hand, when applied to SCFGs, DMS performs balanced exploration,
which results in solutions with low costs. The constant SCFG 0.95 version trig-
gers more exploration that results in lower anytime costs.11

6.1 Runtime Overhead

If we consider each node in the factor graph as a separate agent, the overhead in
runtime caused by splitting function-nodes is only for the variable-nodes, since

11 For lack of space we do not present convergence graphs for the other problems. As
expected the meeting scheduling convergence results were similar to graph coloring
while the results for the other problem types were similar to the convergence results
of the sparse uniform random problems.

684 L. Cohen and R. Zivan

they need to produce and send a double amount of messages. On the other
hand, splitting function-nodes does not create a delay in the computation of
function-nodes, since they are performed concurrently. However, commonly it is
assumed that the role of the nodes in the factor-graphs are performed by the
original (“real”) DCOP agents. Thus, when adding function-nodes to the graph
we increment the runtime of each iteration. We note that a factor 2 increase in
runtime can be easily achieved by having each agent that performed the role
of a function-node in the original factor graph to perform the role of the two
function-nodes resulting from its split. Our results indicate that for Symmetric
SCFGs and SCFGs with limited randomness, the convergence of DMS is orders
of magnitude faster than when using standard factor graphs and that is still true
when each iteration takes a double amount of time.

6.2 Discussion

Our results indicate success in combining damping and asymmetry for balancing
exploration and exploitation. Damping alone is enough to trigger Max-sum to
explore solutions with low cost, however, it does not converge to high quality
solutions within two thousand iterations. However, when using constant SCFGs
split evenly (0.5), convergence is achieved within a few tens of iterations. The
use of an uneven split of a constant SCFG (0.95 version) or random SCFGs with
small ranges (0.4–0.6), allows limited exploration that results in solutions with
both per iteration and anytime lower costs.

In order to explain this success one needs to look back at the results presented
in Sect. 5. In problems with two variables and a single constraint, when splits
are symmetric both Max-sum and DMS converge after a single iteration. Thus,
in the general case, the difference between a single function-node representing
a constraint and its symmetric split to two function-nodes is the ratio between
the costs sent from the variable-nodes to the function-nodes and the costs in the
function-nodes’ tables. Consider a variable-node v and its neighboring function-
node f in factor graph G, which is symmetrically split to f ′ and f ′′ in factor
graph G′ (for simplicity assume that other function-nodes are not split). Let
vc be the vector that holds the sum of costs v has received from function-node
neighbors, which are not f , in iteration i. In G, in iteration i+1, vc will be sent
to f . In G′, vc will be sent to both function-nodes f ′ and f ′′. However, each cost
in the table of f is cut by half in the tables of f ′ and f ′′. Thus, f ′ and f ′′ will
make different calculations than f giving more consideration to the differences
between costs in vc.

This phenomenon allows DMS to converge faster. Damping allows Max-sum
to explore high quality solutions because it reduces the effect of multiple counting
of information as observed by Pearl [2,11]. On the other hand, it slows the
aggregation of costs in the propagated cost vectors, and thus the differences
between costs in the vectors are less pronounced in the beginning of the run.
In contrast, the function-node cost tables are fixed throughout the run. Thus,
damping delays assignment replacements, which are required for convergence.
Symmetric SCFGs reduce the differences in the cost tables by half but do not

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 685

reduce the costs in the propagated vectors and thus, allow the required changes
to take place faster.

On the other hands, as demonstrated in Sect. 5, random splits might generate
oscillations. When such oscillations occur in multiple cycles in the graph, the
beliefs propagated are inconsistent and prevent convergence.

7 Conclusion

We introduced a novel degree of freedom for balancing exploration and exploita-
tion when using Max-sum for solving DCOPs, the level of asymmetry in the
factor graph. To this end, we proposed to shift standard factor graphs repre-
senting a DCOP to equivalent split constraint factor graphs (SCFGs), in which
each constraint is represented by two function-nodes. The level of asymmetry
in SCFGs is determined by the similarity between table costs of function-nodes
representing the same constraint.

We proved that Max-sum is guaranteed to converge to the optimal solution
on cycles generated as a result of a constant split of a single constraint factor
graph, regardless of the constant fraction and the damping factor used. This is
in contrast to the general case where Max-sum is not guaranteed to converge on
single cycle factor-graphs, and DMS might converge to a sub-optimal solution.
Empirical results indicate that by tuning the two degrees of freedom, the damp-
ing factor and the level of asymmetry, Max-sum can produce solutions of high
quality within a small number of iterations, even when an anytime framework
cannot be used. When the level of exploration is too high, e.g., without damping,
the algorithm fails to find solutions of high quality. On the other hand, limited
exploration results in solutions of higher quality than immediate convergence.

References

1. Chli, M., Winsper, M.: Using the max-sum algorithm for supply chain emergence in
dynamic multiunit environments. IEEE Trans. Syst. Man Cybern. 45(3), 422–435
(2015)

2. Cohen, L., Zivan, R.: Max-sum revisited: the real power of damping. In:
Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol.
10643, pp. 111–124. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71679-4 8

3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, vol. 2, pp. 639–646. International Foundation for Autonomous Agents
and Multiagent Systems (2008)

4. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralized coordination
of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp.
639–646 (2008)

5. Farinelli, A., Rogers, A., Jennings, N.R.: Agent-based decentralised coordination
for sensor networks using the max-sum algorithm. Auton. Agents Multi-Agent
Syst. 28(3), 337–380 (2014)

https://doi.org/10.1007/978-3-319-71679-4_8
https://doi.org/10.1007/978-3-319-71679-4_8

686 L. Cohen and R. Zivan

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding. J. Artif.
Intell. Res. 34, 25–46 (2009)

7. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47(2), 181–208 (2001)

8. Lazic, N., Frey, B., Aarabi, P.: Solving the uncapacitated facility location prob-
lem using message passing algorithms. In: International Conference on Artificial
Intelligence and Statistics, pp. 429–436 (2010)

9. Macarthur, K.S., Stranders, R., Ramchurn, S.D., Jennings, N.R.: A distributed
anytime algorithm for dynamic task allocation in multi-agent systems. In: AAAI
(2011)

10. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraints optimizationwith quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

12. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI, pp. 266–271 (2005)

13. Petcu, A., Faltings, B.: Approximations in distributed optimization. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 68

14. Pretti, M.: A message-passing algorithm with damping. J. Stat. Mech. Theory Exp.
11, P11008 (2005)

15. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J.A., Tambe,
M.: Engineering the decentralized coordination of UAVs with limited communica-
tion range. In: Bielza, C., et al. (eds.) CAEPIA 2013. LNCS (LNAI), vol. 8109, pp.
199–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40643-
0 21

16. Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized coor-
dination in robocup rescue. Comput. J. 53(9), 1447–1461 (2010)

17. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate
decentralized coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–
759 (2011)

18. Ruozzi, N., Tatikonda, S.: Message-passing algorithms: reparameterizations and
splittings. IEEE Trans. Inf. Theory 59(9), 5860–5881 (2013)

19. Som, P., Chockalingam, A.: Damped belief propagation based near-optimal equal-
ization of severely delay-spread UWB MIMO-ISI channels. In: 2010 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–5. IEEE (2010)

20. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination
of mobile sensors using the max-sum algorithm. In: IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, 11–17 July 2009, pp. 299–304 (2009)

21. Tarlow, D., Givoni, I., Zemel, R., Frey, B.: Graph cuts is a max-product algorithm.
In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence
(2011)

22. Tarlow, D., Givoni, I., Zemel, R.: Hop-map: efficient message passing with high
order potentials. In: AISTATS, vol. 9, pp. 812–819 (2010)

23. Teacy, W.T.L., Farinelli, A., Grabham, N.J., Padhy, P., Rogers, A., Jennings, N.R.:
Max-sum decentralized coordination for sensor systems. In: AAMAS, pp. 1697–
1698 (2008)

24. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Comput. 12(1), 1–41 (2000)

https://doi.org/10.1007/11564751_68
https://doi.org/10.1007/978-3-642-40643-0_21
https://doi.org/10.1007/978-3-642-40643-0_21

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs 687

25. Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief
propagation - an empirical study. J. Mach. Learn. Res. 7, 1887–1907 (2006)

26. Yedidsion, H., Zivan, R., Farinelli, A.: Explorative max-sum for teams of mobile
sensing agents. In: International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2014, Paris, France, 5–9 May 2014, pp. 549–556 (2014)

27. Yeoh, W., Felner, A., Koenig, S.: Bnb-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. Artif. Intell. Res. (JAIR) 38, 85–133 (2010)

28. Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraints
optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–88 (2005)

29. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed
constraint optimization. Artif. Intell. 211, 1–21 (2014)

30. Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint
optimization. Auton. Agents Multi-Agent Syst. 31(5), 1165–1207 (2017)

31. Zivan, R., Parash, T., Naveh, Y.: Applying max-sum to asymmetric distributed
constraint optimization. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31
July 2015, pp. 432–439 (2015)

A Large Neighboring Search Schema
for Multi-agent Optimization

Khoi D. Hoang1, Ferdinando Fioretto2(B), William Yeoh1, Enrico Pontelli3,
and Roie Zivan4

1 Washington University in St. Louis, St. Louis, USA
{khoi.hoang,wyeoh}@wustl.edu

2 University of Michigan, Ann Arbor, USA
fioretto@umich.edu

3 New Mexico State University, Las Cruces, USA
epontell@cs.nmsu.edu

4 Ben Gurion University of the Negev, Beersheba, Israel
zivanr@cs.bgu.ac.il

Abstract. The Distributed Constraint Optimization Problem (DCOP)
is an elegant paradigm for modeling and solving multi-agent problems
which are distributed in nature, and where agents cooperate to optimize
a global objective within the confines of localized communication. Since
solving DCOPs optimally is NP-hard, recent effort in the development
of DCOP algorithms has focused on incomplete methods. Unfortunately,
many of such proposals do not provide quality guarantees or provide a
loose quality assessment. Thus, this paper proposes the Distributed Large
Neighborhood Search (DLNS), a novel iterative local search framework
to solve DCOPs, which provides guarantees on solution quality refin-
ing lower and upper bounds in an iterative process. Our experimental
analysis of DCOP benchmarks on several important classes of graphs
illustrates the effectiveness of DLNS in finding good solutions and tight
upper bounds in both problems with and without hard constraints.

Keywords: Multiagent Systems
Distributed Constraint Optimization · Large Neighborhood Search

1 Introduction

In a cooperative Multi-Agent System (MAS), multiple autonomous agents inter-
act to pursue personal interests and to achieve common objectives. Distributed
Constraint Optimization Problems (DCOPs) [8,24,30] have emerged as a promi-
nent agent model to govern the agents’ behavior in cooperative MAS. In this
context, agents control variables of a weighted constrained problem and coordi-
nate their value assignments to maximize the overall sum of resulting constraint
utilities. DCOPs are suitable to model problems that are distributed in nature
and where a collection of agents attempts to optimize a global objective within
the confines of localized communication. They have been employed to model
distributed versions of meeting scheduling problems [22,39], allocation of targets
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 688–706, 2018.
https://doi.org/10.1007/978-3-319-98334-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_44&domain=pdf

A Large Neighboring Search Schema for Multi-agent Optimization 689

to sensors in a network [5], channel selection in wireless networks [41], coordina-
tion of multi-robot teams [43], optimization in smart grids [13,19,23], generation
of coalition structures [37], and device scheduling in smart homes [12,18,34].

DCOP algorithms are classified as either complete or incomplete. Complete
DCOP algorithms find optimal solutions at the cost of large runtimes, while
incomplete approaches trade optimality for faster runtimes. Since finding opti-
mal DCOP solutions is NP-hard [24], incomplete algorithms are often neces-
sary to solve larger problems’ instances. Unfortunately, several local search
algorithms (e.g., DSA [42] and MGM [21]) and local inference algorithms
(e.g., Max-Sum [5]) do not provide guarantees on the quality of the solutions
found. More recent developments, such as region-optimal algorithms [17,28,38],
sampling-based algorithms [10,25,27] and (Improved) Bounded Max-Sum [32,33]
alleviate this limitation. Region-optimal algorithms allow the specification of
regions with a maximum size of k agents or t hops from each agent, and they
optimally solve the subproblem within each region. Solution quality bounds are
provided as a function of k [28], t [17], or a combination of both [38]. Sampling-
based algorithms such as DUCT [27] and D-Gibbs [10,25] extend the centralized
UCT [1] and Gibbs [14] sampling algorithms, respectively. They are able to
bound the quality of solutions found as a function of the number of samples
used by the algorithms. Bounded Max-Sum [32] extends Max-Sum by solving
an acyclic version of the DCOP graph and bounding its solution quality as a
function of the edges removed from the graph. Improved Bounded Max-Sum [33]
further provides tighter upper bounds. Although good quality assessments are
essential for sub-optimal solutions, many incomplete DCOP approaches provide
poor quality assessments and are unable to exploit domain-dependent knowledge
and/or hard constraints present in problems.

We address these limitations by introducing the Distributed Large Neigh-
borhood Search (DLNS) framework.1 DLNS solves DCOPs by building on the
strengths of LNS [35], a centralized meta-heuristic algorithm that iteratively
explores complex neighborhoods of the search space to find better candidate
solutions. LNS has been shown to be very effective in solving a number of opti-
mization problems [15]. While typical LNS approaches focus on iteratively refin-
ing lower bounds of a solution, we propose a method that refines both lower and
upper bounds, imposing no restriction on the objective and constraints.

Contributions: This paper makes the following contributions: (1) We provide
a novel distributed local search framework for DCOPs, which provides quality
guarantees by refining both lower and upper bounds of the solution found dur-
ing the iterative process; (2) We introduce a novel distributed search algorithm
called Tree-based DLNS (T-DLNS), which is built within the DLNS framework
and characterized by the ability to exploit the problem structure—T-DLNS pro-
vides also a low computational complexity per agent; and (3) Evaluations against
state-of-the-art incomplete DCOP algorithms that also return bounded solu-
tions show that T-DLNS converges to better solutions providing tighter quality
bounds.
1 An extended abstract of this work [6] appeared at AAMAS 2015.

690 K. D. Hoang et al.

2 Background

DCOP: A Distributed Constraint Optimization Problem (DCOP) is a tuple
〈X ,D,F ,A, α〉, where: X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn}
is a set of finite domains (i.e., xi ∈ Di); F = {f1, . . . , fe} is a set of utility func-
tions (also called constraints), where fi :

∏
xj∈xfi Di → R+∪{−∞} and xfi ⊆ X

is the set of the variables (also called the scope) relevant to fi; A = {a1, . . . , ap}
is a set of agents; and α : X → A is a function that maps each variable to one
agent. fi specifies the utility of each combination of values assigned to the vari-
ables in xfi . To ease readability, in the following, we assume all constraints are
binary, and all agents control exactly one variable. Thus, we will use the terms
“variable” and “agent” interchangeably and assume that α(xi)=ai. The exten-
sions to the n-ary constraint and multi-variable agents are straightforward [11].

A partial assignment σ is a value assignment to a set of variables Xσ ⊆ X that
is consistent with the variables’ domains. The utility F(σ) =

∑
f∈F,xf ⊆Xσ

f(σ)
is the sum of the utilities of all the applicable utility functions in σ. A solution
is a partial assignment σ for all the variables of the problem, i.e., with Xσ =X .
We will denote with x a solution, while xi is the value of xi in x. The goal is to
find an optimal solution x∗ = argmaxx F(x).

Given a DCOP P , G = (X , E) is the constraint graph of P , where (x, y) ∈
E iff ∃fi ∈ F s.t. {x, y} = xfi . A DFS pseudo-tree arrangement for G is
a spanning tree T = 〈X , ET 〉 of G s.t. if fi ∈ F and {x, y} ⊆ xfi , then x and y
appear in the same branch of T . Edges of G that are in (resp. out of) ET are
called tree edges (resp. backedges). Tree edges connect a node with its parent
and its children, while backedges connect a node with its pseudo-parents and its
pseudo-children. We use N(ai) = {aj ∈ A| (xi, xj) ∈ E} to denote the neighbors
of the agent ai. We denote with Gk = 〈Xk, Ek〉, the subgraph of G used in the
execution of our iterative algorithms, where Xk ⊆ X and Ek ⊆ E.

Figure 1 depicts: (a) the constraint graph of a DCOP with agents a1, . . . , a4,
each controlling a variable with domain {0,1}, (b) a pseudo-tree (solid lines iden-
tify tree edges, dotted lines refer to backedges), and (c) the DCOP constraints.

Fig. 1. Example DCOP.

A Large Neighboring Search Schema for Multi-agent Optimization 691

LNS: In (centralized) Large Neighborhood Search (LNS) [35], an initial solution
is iteratively improved by being repeatedly destroyed and repaired. Destroying
a solution means selecting a subset of variables whose current values will be
discarded. The set of such variables is the large neighborhood (LN). Repairing
a solution means finding a new value assignment for the LN variables, given that
the non-destroyed variables maintain their values from the previous iteration.
The peculiarity of LNS, compared to other local search techniques, is the (larger)
size of the neighborhood to explore at each step. It relies on the intuition that
searching over a larger neighborhood allows the process to escape local optima
and find better candidate solutions.

3 The DLNS Framework

In this section, we introduce DLNS, a general distributed LNS framework to solve
DCOPs. It takes into account the restriction that each agent is only aware of its
local subproblem (i.e., its neighbors and constraints) which makes centralized
LNS techniques unsuitable and infeasible for solving DCOPs.

Algorithm 1 shows the general structure of DLNS, as executed by each agent
ai ∈ A. After initializing its iteration counter k (line 1), its current value assign-
ment x0

i (as a random choice, solving a relaxed problem, or by exploiting domain
knowledge, when available), and its current lower and upper bounds LB0

i and
UB0

i of the optimal utility (line 2), the agent, like in LNS, iterates through the
destroy and repair phases (lines 3–7). Next, the agent executes a bound phase
(line 8) which updates the current lower and upper bounds. If the solution is
not satisfiable (i.e., if it has a negative infinite lower bound utility), the agent
restores its value assignment to that of the previous iteration (line 9). The pro-
cess repeats until a termination condition occurs (line 3). Possible termination
conditions include reaching a maximum value of k, a timeout limit, or a confi-
dence threshold on the error of the reported best solution.

Algorithm 1. DLNS

1 k ← 0;
2 〈x0

i ,LB
0
i ,UB0

i 〉 ← Value-Initialization();
3 while termination condition is not met do
4 k ← k + 1;

5 zk
i ← Destroy-Algorithm();

6 if zk
i = ◦ then xk

i ← NULL; else xk
i ← xk−1

i ;

7 xk
i ← Repair-Algorithm(zk

i);

8 〈LBk
i ,UBk

i 〉 ← Bound-Algorithm(xk
i);

9 if LBk
i = −∞ then xk

i ← xk−1
i ;

692 K. D. Hoang et al.

Fig. 2. DLNS with T-DBR example trace.

3.1 Destroy Phase

The result of this phase is the generation of a LN, which we refer to as LNk

as the subset of variables in X that will need to be repaired in each iteration
k. This step is executed in a distributed fashion, having each agent ai calling a
Destroy-Algorithm to determine if its local variable xi should be destroyed
(◦) or preserved (�), as indicated by the flag zk

i (line 5). We say that destroyed
(resp. preserved) variables are (resp. are not) in LNk. In a destroy process, such
decisions can be either random or made by exploiting domain knowledge. DLNS
allows the agents to use any destroy schema to achieve the desired outcome.
Once the destroyed variables are determined, the agents reset their values and
keep the values of the preserved variables from the previous iteration (line 6).

Example 1. Figure 2 illustrates the execution of the DLNS algorithm (whose
details will be discussed later) over the first 3 iterations. The value of each
variable is shown on its right. Gray shaded nodes denote variables that have been
preserved, while white nodes denote those that have been destroyed, and thus
are in the LN of that iteration. The values for the variable x2 in iteration 1 and
x3 in iteration 2 are preserved to their values in iterations 0 and 1, respectively.

3.2 Repair Phase

In the repair phase, the DLNS agents seek to find a new value assignment for
the destroyed variables by calling the Repair-Algorithm function (line 7).
This process is carried out exclusively by the destroyed agents with the goal
of finding an improved solution by searching over the large neighborhood. The
DLNS framework imposes no restriction on the choice of algorithms by agents.
In each iteration k, the agents coordinate the resolution of two problems: P̌ k and
P̂ k, which we call relaxations of the original DCOP problem P . They are used
to compute, respectively, a lower and an upper bound on the optimal utility for
P , and are defined as follows. Let Ek

LN ={(x, y) | (x, y) ∈ E;x, y ∈ LNk} be the
set of constraints involving exclusively destroyed variables (i.e., those in LNk),

• Ĝk = 〈LNk, Êk〉 is the relaxation graph of P̂ in iteration k, where
Êk ⊆ Ek

LN , is any subset of Ek
LN . The decision which edges to include in

Êk characterizes the subproblem to solve in iteration k.

A Large Neighboring Search Schema for Multi-agent Optimization 693

• Ǧk = 〈LNk, Ěk〉 is the relaxation graph of P̌ , where Ěk = Êk ∪ {(x, y) |
(x, y) ∈ E;x ∈ LNk, y �∈ LNk}. It is the union of Êk and the set of constraints
whose scope has at least one destroyed variable.

Selecting Êk and Ěk is algorithmically dependent, and it is the factor that
affects, in general, the algorithm’s complexity—we show later a simple choice
for Êk which allows our agents to solve each iteration in polynomial time.

In the problem P̌ k, we wish to find a partial assignment:

x̌k = argmax
x

[∑

f∈Êk

f(xi,xj) +
∑

f∈F, xf={xi,xj}
xi∈LNk, xj �∈LNk

f(xi, x̌k−1
j)

]

where x̌k−1
j is the value assigned to the preserved variable xj for problem P̌ k−1

in the previous iteration. The first summation is over all functions in Êk, while
the second is over all functions between a destroyed and a preserved variable.
Thus, solving P̌ k means optimizing over all the destroyed variables given that
the preserved ones take on their previous value, and ignoring the set of edges
E \ Ěk that are not part of the relaxation graph. This partial assignment is used
to compute lower bounds during the bounding phase.

In the problem P̂ k, we wish to find a partial assignment:

x̂k = argmax
x

∑

f∈Êk

f(xi,xj)

Thus, solving P̂ k means optimizing over all the destroyed variables consid-
ering exclusively the set of edges Êk that are part of the relaxation graph. This
partial assignment is used to compute upper bounds during the bounding phase.
Note that the partial assignments returned while solving these two relaxed prob-
lems involve exclusively the variables in LNk.

Example 2. Consider again the example of Fig. 2. The relaxation graphs Ǧ1

(in red), Ĝ1 (in blue) and Ǧ2, Ĝ2 are illustrated in subfigures (b) and (c),
respectively, with the nodes colored white and edges represented by bold solid
lines. All other constraints (of the original problem P) are represented by
black dotted lines. In more detail, LN1 = {x1, x3, x4}, Ê1 = {f13, f34},
Ě1 = {f13, f34, f12, f24}, and LN2 = {x1, x2, x4}, Ê2 = {f12, f24}, Ě2 =
{f12, f24, f13, f34}. At each step, the resolution of the relaxed problems involves
the functions represented by bold lines—P̂ is solved optimizing over the blue
colored functions, and P̌ over the red ones. Recall that while solving P̂ focuses
solely on the functions in Gk, solving P̌ further accounts for the functions that
involve a destroyed and a preserved variable.

694 K. D. Hoang et al.

3.3 Bounding Phase

Once the relaxed problems are solved, all agents start the bounding phase,
which results in computing the lower and upper bounds based on the partial
assignments x̌k and x̂k. To do so, both solutions to the problems P̌ k and
P̂ k are extended to a solution x̌k and x̂k, respectively, for P , where the pre-
served variables xj �∈ LNk are assigned the values x̌k−1

j from the previous iter-
ation. The lower bound is computed by evaluating F(x̌k). The upper bound
is computed by combining the optimal solution costs of two relaxed problems
P̂ k and P̂ �, solved in two different iterations. We focus on the case where
� < k is the iteration with the smallest upper bound found so far. Notice that∑

f∈Êk f(xi,xj) ≥ ∑
f∈Êk f(x∗

i ,x
∗
j), where x∗ is the optimal solution of P ;

therefore, reporting the optimal solutions found in two iterations will result in
a larger utility, which is guaranteed to be an upper bound, albeit a conservative
estimate. Thus, if a constraint is optimized in both iterations, we sum up the
two solution qualities and subtract the minimum utility of that constraint. That
will make the upper bound F̂ k(x̂k) =

∑
f∈F f̂k(x̂k

i , x̂k
j) smaller while preserving

the correctness of the bound where:

f̂k(xi,xj)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f̂k(x̂k
i , x̂k

j), if f ∈ Êk \ Ê�

f̂ �(x̂�
i , x̂

�
j), if f ∈ Ê� \ Êk

f̂k(x̂k
i , x̂k

j) + f̂ �(x̂�
i , x̂

�
j) − min

di∈Di,dj∈Dj

f(di, dj), if f ∈ Êk ∩ Ê�

max
di∈Di,dj∈Dj

f(di, dj), otherwise.

In other words, the utility of F̂ k(x̂k) is composed of four parts. The first part
involves the constraints considered while solving P̂ k at iteration k, excluding
those involved at iteration �. The second part includes the constraints consid-
ered at iteration �, excluding those involved at current iteration k. The third
part involves the constraints adopted in both problems’ iterations � and k, and
the fourth part involves the remaining constraints which where excluded when
constructing both problems P̂ � and P̂ k at iterations � and k, respectively. We
illustrate this process with the following example.

Example 3. Consider our example in Fig. 2. When k = 0, in subfigure (a), each
agent randomly assigns a value to its variable, which results in a solution
with utility F(x̌0)= f(x̌0

1, x̌
0
2) + f(x̌0

1, x̌
0
3) + f(x̌0

1, x̌
0
4) + f(x̌0

2, x̌
0
4) + f(x̌0

3, x̌
0
4)=

0 + 10 + 0 + 0 + 0=10 to get the lower bound. Moreover, P̂ 0 chooses the max-
imum utility of every constraint at iteration 0 and yields an upper bound as
F̂ 0(x̂0) = max f̂0(x̂0

1, x̂
0
2) + max f̂0(x̂0

1, x̂
0
3) + max f̂0(x̂0

1, x̂
0
4) + max f̂0(x̂0

2, x̂
0
4) +

max f̂0(x̂0
3, x̂

0
4)=10 + 10 + 10 + 10 + 10=50.

In the first iteration (k = 1), the destroy phase preserves x2, thus x̌1
2 =

x̌0
2 =1. In this example, the chosen algorithm builds the spanning tree with the

remaining variables choosing f13 and f34 as tree edges, so E1 = {f13, f34} ⊂
E1

LN = {f13, f34, f14}. Thus the relaxation graph for P̌ 1 involves the edges
{f13, f34, f12, f24} (in red), and the relaxation graph for P̂ 1 involves the edges

A Large Neighboring Search Schema for Multi-agent Optimization 695

{f13, f34} (in blue). Solving P̌ 1 yields a partial assignment x̌1 with utility
F̌ 1(x̌1) = f(x̌1

1, x̌
1
3) + f(x̌1

3, x̌
1
4) + f(x̌1

1, x̌
1
2) + f(x̌1

2, x̌
1
4) = 10 + 6 + 0 + 10 = 26,

which results in a lower bound F(x̌1) = F̌ 1(x̌1) + f(x̌1
1, x̌

1
4) = 26 + 6 = 32.

Solving P̂ 1 yields a solution x̂1 with utility F̂ 1(x̂1) = f̂1(x̂1
1, x̂

1
3) + f̂1(x̂1

3, x̂
1
4) +

max f̂1(x̂1
1, x̂

1
2) + max f̂1(x̂1

1, x̂
1
4) + max f̂1(x̂1

2, x̂
1
4)=10 + 6 + 10 + 10 + 10=46,

which is the current upper bound. After the first iteration, we have � = 1 as
F̂ 1(x̂1) < F̂ 0(x̂0).

Finally, in the second iteration (k=2), the destroy phase retains x3’s value in
the previous iteration x̌2

3= x̌1
3=0, and the repair phase builds the new spanning

tree with the remaining variables choosing f12 and f24 as tree edges with E2 =
{f12, f24}. Thus the relaxation graph for P̌ 2 involves the edges {f12, f24, f13, f34},
and the relaxation graph for P̂ 2 involves the edges {f12, f24}. Solving P̌ 2 and
P̂ 2 yields partial assignments x̌2 and x̂2, respectively, with utilities F̌ 2(x̌2) =
10 + 6 + 10 + 6 = 32, which results in a lower bound F(x̌2) = 32 + 6 = 38, and
an upper bound F̂ 2(x̂2) = f̂2(x̂2

1, x̂
2
2) + f̂1(x̂2

2, x̂
2
4) + f̂1(x̂1

1, x̂
1
3) + f̂1(x̂1

3, x̂
1
4) +

max f̂1(x̂1
1, x̂

1
4)=10 + 6 + 10 + 6 + 10=42. After this iteration, � = 2.

Crucially, this framework enables DLNS to iteratively refine both lower and
upper bounds of the solution, without imposing any restrictions on the form of
the objective function and of the constraints adopted.2

4 Tree-Based DLNS (T-DLNS)

Having discussed the general DLNS framework, we now introduce an efficient
(polynomial-time) DLNS algorithm by specifying the construction of the prob-
lem relaxation graphs.

Tree-based DLNS (T-DLNS) defines the relaxed DCOPs P̌ k and P̂ k using a
spanning tree T k = 〈LNk, ET k〉, computed from G and LNk and ignoring back
edges. Solving the problem P̌ k means optimizing over T k and considering edges
connecting destroyed and preserved variables. Thus, Ǧk = 〈LNk, Ěk〉 where
Ěk = ET k ∪ {(x, y) | (x, y) ∈ E;x ∈ LNk, y �∈ LNk}. Solving the problem P̂ k

means optimizing over the spanning tree Ĝk = T k.
T-DLNS uses a complete inference-based algorithm composed of two phases

operating on a tree-structured network [30]. This algorithm is complete on tree
networks. Thus, while it will solve optimally and efficiently our relaxations, it
will not guarantee to find an optimal solution for the original DCOP problem:

• In the utility propagation phase, each agent, starting from the leaves of the
pseudo-tree, projects out its variable and sends its projected utilities to its
parent. These utilities are propagated up the tree induced from ET k until they
reach the root. The hard constraints of the problem are handled in this phase
by pruning all inconsistent values before sending a message to its parent.

2 However, it does not imply that the lower and upper bounds will converge to the
same value.

696 K. D. Hoang et al.

• Once the root agent receives the utilities from all its children, it starts the
value propagation phase by selecting the value that maximizes its utility and
sends it to its children, which repeat the same process. The problem is solved
as soon as the values reach the leaves.

The solving schema of T-DLNS is similar to that of DPOP [30] in that
it uses utility and value propagation phases; however, the different underlying
relaxation graph adopted imposes several important differences. Algorithm 2

Algorithm 2. T-DLNS(zk
i)

10 Tk
i ← Relaxation(zk

i)

11 Util-Propagation(Tk
i)

12 〈χ̌k
i , χ̂k

i 〉 ← Value-Propagation(Tk
i)

13 〈LBk
i ,UBk

i 〉 ← Bound-Propagation(χ̌k
i , χ̂k

i)

14 return 〈x̌k
i ,LBk

i ,UBk
i 〉

Procedure. UTIL-Propagation(Tk
i)

15 receive Utilac(Ǔc, Ûc) from each ac ∈ Ck
i

16 forall values xi,xPk
i
do

17 Ǔi(xi,xPk
i
) ← f(xi,xPk

i
)+

∑
ac∈Ck

i
Ǔc(xi) +

∑
xj �∈LNk f(xi, x̌

k−1
j)

18 Ûi(xi,xPk
i
) ← f(xi,xPk

i
) +

∑
ac∈Ck

i
Ûc(xi)

19 forall values xPk
i
do

20 〈Ǔ ′
i(xPk

i
), Û ′

i(xPk
i
)〉←〈max

xi

Ǔi(xi,xPk
i
), max

xi

Ûi(xi,xPk
i
)〉

21 send Utilai(Ǔ
′
i , Û

′
i) msg to Pk

i

Function. VALUE-Propagation(Tk
i)

22 if Pk
i = NULL then

23 〈x̌k
i , x̂k

i 〉 ← 〈argmaxxi
Ǔi(xi), argmaxxi

Ûi(xi)〉
24 send Valueai(x̌

k
i , x̂k

i) msg to each aj ∈ N(ai)
25 forall aj ∈ N(ai) do

26 receive Valueaj (x̌
k
j , x̂k

j) msg from aj

27 Update xj in 〈χ̌k
i , χ̂k

i 〉 with 〈x̌k
j , x̂k

j 〉
28 else
29 forall aj ∈ N(ai) do

30 receive Valueaj (x̌
k
j , x̂k

j) msg from aj

31 Update xj in 〈χ̌k
i , χ̂k

i 〉 with 〈x̌k
j , x̂k

j 〉
32 if aj = Pk

i then

33 〈x̌k
i , x̂k

i 〉←〈argmaxxi
Ǔi(xi), argmaxxi

Ûi(xi)〉
34 send Valueai(x̌

k
i , x̂k

i) msg to each aj ∈N(ai)

35 return 〈χ̌k
i , χ̂k

i 〉

A Large Neighboring Search Schema for Multi-agent Optimization 697

Procedure. BOUND-Propagation(χ̌k
i , χ̂k

i)

36 receive Boundsac(LB
k
c ,UBk

c) msg from each ac ∈ Ci

37 LBk
i ←f(x̌k

i , x̌k
Pi

) +
∑

aj∈PPi
f(x̌k

i , x̌k
j) +

∑
ac∈Ci

LBk
c

38 UBk
i ←f̂k(x̂i, x̂Pi) +

∑
aj∈PPi

f̂k(x̂i, x̂j) +
∑

ac∈Ci
UBk

c

39 send Boundsai(LB
k
i ,UBk

i) msg to Pi

shows the pseudocode of T-DLNS. We use the following notations: P k
i , Ck

i , PP k
i

denote the parent, the set of children, and pseudo-parents of the agent ai, at
iteration k. The set of these items is referred to as Tk

i , which is ai’s local view
of the pseudo-tree T k. χ̌i and χ̂i denote ai’s context (i.e., the values for each
xj ∈ N(ai)) with respect to problems P̌ and P̂ , respectively. We assume that
by the end of the destroy phase (line 6) each agent knows its current context as
well as which of its neighboring agents has been destroyed or preserved.

In each iteration k, T-DLNS executes these phases:

Repair Phase. It constructs a pseudo-tree T k (line 10), which ignores, from
G, the preserved variables as well as the functions involving these variables in
their scopes. The construction prioritizes tree-edges that have not been chosen in
previous pseudo-trees over the others. The T-DLNS solving phase is composed of
two phases operating on the relaxed pseudo-tree T k, and executed synchronously:

1. Utility Propagation: After the pseudo-tree T k is constructed (line 11), each
leaf agent computes the optimal sum of utilities in its subtree considering
exclusively tree edges (i.e., edges in ET k) and edges with destroyed variables.
Each leaf agent computes the utilities Ǔi(xi,xPk

i
) and Ûi(xi,xPk

i
) for each

pair of values of its variable xi and its parent’s variable xPk
i

(lines 16–18), in
preparation for retrieving the solutions of P̌ and P̂ , used during the bounding
phase. The agent projects itself out (lines 19–20) and sends the projected
utilities to its parent in a Util message (line 21). Each agent, upon receiving
the Util message from each child, performs the same operations. Thus, these
utilities will propagate up the pseudo-tree until they reach the root agent.

2. Value Propagation: Once the utility propagation is compleated (line 12) the
root agent computes its optimal values x̌k

i and x̂k
i for the relaxed DCOPs P̌

and P̂ , respectively (line 23). Then, it sends its values to all its neighbors in
a Value message (line 24). When any of its children receive this message,
they also compute their optimal values and sends them to all their neighbors
(lines 32–34). Thus, these values propagate down the pseudo-tree until they
reach the leaves, at which point every agent has chosen its respective values. In
this phase, in preparation for the bounding phase, when each agent receives a
Value message from its neighbor, it will also update the corresponding value
in its contexts χ̌k

i and χ̂k
i (lines 25–27 and 30–31).

Bounding Phase. Once the relaxed DCOPs P̌ and P̂ have been solved,
the algorithm starts the bound propagation phase (line 13). Each leaf agent

698 K. D. Hoang et al.

of the pseudo-tree T computes the lower and upper bounds LBk
i and UBk

i

(lines 37–38). These bounds are sent to the agent’s parent in T (line 39). When its
parent receives this message from all its children (line 36), it performs the same
operations. The lower and upper bounds of the whole problem are determined
when the bounds reach the root agent.

5 Theoretical Properties

Theorem 1. For each LNk, F(x̌k) ≤ F(x∗) ≤ F̂ k(x̂k).

Proof. The result F(x̌k) ≤ F(x∗) follows from that x̌k is an optimal solution of
the relaxed problem P̌ whose functions are a subset of F .

By definition of F̂ k(x), it follows that:

F̂ k(x̂k) =
∑

f∈F
f̂k(x̂k

i , x̂k
j)

=
∑

f∈Êk\Ê�

f̂k(x̂k
i , x̂k

j) +
∑

f∈Ê�\Êk

f̂ �(x̂�
i , x̂

�
j) +

∑

f /∈Êk∪Ê�

max
di∈Di,dj∈Dj

f(di, dj)

+
∑

f∈Êk∩Ê�

(

f̂k(x̂k
i , x̂k

j) + f̂ �(x̂�
i , x̂

�
j) − min

di∈Di,dj∈Dj

f(di, dj)

)

=
∑

f∈Êk

f̂k(x̂k
i , x̂k

j) +
∑

f∈Ê�

f̂ �(x̂�
i , x̂

�
j)

+
∑

f /∈Êk∪Ê�

max
di∈Di,dj∈Dj

f(di, dj) −
∑

f∈Êk∩Ê�

min
di∈Di,dj∈Dj

f(di, dj)

≥
∑

f∈Êk

f(x̂∗
i , x̂∗

j) +
∑

f∈Ê�

f(x̂∗
i , x̂∗

j) +
∑

f /∈Êk∪Ê�

f(x̂∗
i , x̂∗

j) −
∑

f∈Êk∩Ê�

f(x̂∗
i , x̂∗

j)

≥
∑

f∈Êk∪Ê�

f(x̂∗
i , x̂∗

j) +
∑

f /∈Êk∪Ê�

f(x̂∗
i , x̂∗

j)

≥
∑

f∈F
f(x̂∗

i , x̂∗
j)

≥ F(x∗)

and, thus, F(x̌k) ≤ F(x∗) ≤ F̂ k(x̂k) for each LNk. �

Corollary 1. An approximation ratio for the problem is

ρ = mink F̂ k(x̂k)
maxk F(x̌k)

≥ F(x∗)
maxk F(x̌k)

.

Theorem 2. In each iteration, T-DLNS requires O(|F|) number of messages of
size in O(d), where d = maxai∈A |Di|.
Proof. In the Value Propagation Phase of Algorithm 2, each agent sends a mes-
sage to its neighbors (lines 24 and 34). Thus, the overall amount of messages

A Large Neighboring Search Schema for Multi-agent Optimization 699

sent in this phase by the agents is 2‖F‖. All other phases use up to |A| mes-
sages (which are reticulated from the leaves to the root of the pseudo-tree and
vice-versa). Therefore, T-DLNS requires O(|F|) messages in each iteration. The
largest messages are sent during the Utility Propagation Phase, where each agent
(excluding the root agent) sends a message containing a value for each element
of its domain (line 21). Thus, the size of the DLNS messages is in O(d). �

Theorem 3. In each iteration, the number of constraint checks of each T-DLNS
agent is in O(d2), where d=max

ai∈A
|Di|.

Proof. The largest amount of constraint checks per iteration is performed during
the Util-Propagation Phase. In this phase, each agent (except the root agent)
computes the lower and upper bound utilities for each value of its variable xi

and its parent’s variable xP k
i

(lines 17–18). Therefore, the number of constraint
checks per iteration of each agent is in O(d2). �

6 Related Work

In addition to the algorithms described in the introduction, several extensions to
complete search-based algorithms that trade solution quality for faster runtimes
have been proposed [24,40]. Another line of work has investigated non-iterative
versions of inference-based incomplete DCOP algorithms, such as ADPOP [29]
and p-OPT [26]. These algorithms operate on relaxations of the original DCOP.
ADPOP is an incomplete version of DPOP that bounds the maximal message
size transmitted over the network, trading off message size for better runtimes.
p-OPT ignores some edges of the induced chordal graph of the DCOP and solves
exactly the problem over such subgraphs to generate an approximate solution.
Both algorithms are different from DLNS in that they operate in a single iteration
only and, thus, do not refine the solution found. The algorithm that shares most
similarities with DLNS is LS-DPOP [31]. LS-DPOP runs several local searches
on pseudo-trees. However, unlike DLNS, it operates in a single iteration, does
not change its neighborhood, and does not provide quality guarantees.

7 Experimental Results

We evaluate the DLNS framework against representative state-of-the-art incom-
plete DCOP algorithms, with and without quality guarantees. We choose T-
DLNS as a representative algorithm of the DLNS framework. We select DSA as
a representative incomplete search-based DCOP algorithm; Max-Sum (MS) and
Bounded MS (BMS) as representative inference-based DCOP algorithms; and
k-optimal algorithms (KOPT2 and KOPT3) as representative region optimal -
based DCOP methods. All algorithms are selected based on their performance
and popularity. We use the FRODO framework [20] to run MS and DSA,3 the

3 We use DSA-B and set p = 0.6.

700 K. D. Hoang et al.

authors’ code of BMS [32], and the DALO framework [17] for KOPT. We also
force T-DLNS first large neighboring exploration to use the same tree as that
used by BMS. We experimentally observed that using this option improves the
effectiveness of T-DLNS in finding high quality solutions.

Random DCOPs. First, we evaluate the algorithms on random DCOPs over
random, grid, and scale-free topologies. The instances for each topology are
generated as follows: For random networks, we create an n-node network, whose
density p1 produces �n (n−1) p1� edges in total. We do not bound the tree-width,
which is based on the underlying graph. For grid networks, we create an n-node
network arranged in a rectangular grid, where internal nodes are connected to
four neighboring nodes and nodes on the edges (resp. corners) are connected
to two (resp. three) neighbors. Finally, for scale-free networks, we create an n-
node network based on the Barabasi-Albert model [2]. Starting from a connected
2-node network, we repeatedly add a new node, randomly connecting it to two
existing nodes. In turn, these two nodes are selected with probabilities that are
proportional to the numbers of their connected edges. The total number of edges
is 2 (n − 2) + 1.

We generate 50 instances for each topology, ensuring that the underlying
graph is connected. The utility functions are generated using random utilities
in [0, 100]. We set as default parameters, |Di| = 10 for all variables, p1 = 0.5,
and for instances with hard constraints, p2 = 0.5. We use a random destroy
strategy for the T-DLNS algorithms, in which each agent destroies a variable
with probability p = 0.5. The runtime of all the algorithms is measured using the
simulated runtime metric [36], and averaged over all instances. The experiments
are performed on an Intel i7 Quadcore 3.4 GHz machine with 16GB of RAM.

Tables 1, 2 and 3 report the approximation ratio ρ, simulated runtime t, the
normalized lower bound (LB), and the normalized upper bound (UB) values. The
LB (UB) value of each algorithm is normalized over the LBs (UBs) reported by
all algorithms. A normalized lower (upper) bound of 0 means that it is the worst
lower (upper) bound among all lower (upper) bounds. Similarly, a normalized
lower (upper) bound of 1 means that it is the best lower (upper) bound. The best
approximation ratios, normalized lower (upper) bounds, and runtimes are shown
in bold. All tables report results for problem with and without hard constraints
(HC).

Table 1. Experimental results on random networks. Times are in ms.

A Large Neighboring Search Schema for Multi-agent Optimization 701

Table 2. Experimental results on grid networks. Times are in ms.

Table 3. Experimental results on scale-free networks. Times are in ms.

Table 1 tabulates the results for random networks. Among all algorithms that
do provide upper bounds (i.e., T-DLNS, BMS, KOPT2, and KOPT3), T-DLNS
find the highest values. Additionally, T-DLNS also provides the best approxima-
tion ratios among all such algorithms. However, this comes at a cost of increased
runtimes compared to the other algorithms. The quality of the solutions reported
by DSA exceeds, albeit slightly, that of T-DLNS. However, DSA provides no
quality guarantees. In general, all algorithms that do provide upper bounds have
larger runtimes than those that do not provide these bounds. This behavior is
not surprising since these algorithms require additional computation to compute
and provide these bounds.

Table 2 tabulates the results for grid networks. These results are similar to the
ones on random networks. Additionally, T-DLNS also outperforms DSA in find-
ing solutions of high qualities (i.e., large LBs). However, this dominance comes
at a price: T-DLNS has the largest runtime, on average, among all algorithms.
Also, whereas DSA is the fastest algorithm for solving random networks, MS is
the fastest for solving grid networks. This is due to that the computational time
for MS is exponential in the arity of each variable and in grid networks each
variable has significantly fewer neighbors than in random networks.

Finally, Table 3 tabulates the results for scale-free networks. The trend in
this topology is similar to those in random and grid networks: T-DLNS provides
better lower and upper bounds and, consequently, better approximation ratios
compared to all other algorithms.

While T-DLNS does have larger runtimes than its competitors, it consistently
outperforms state-of-the-art incomplete DCOP algorithms that do provide error

702 K. D. Hoang et al.

bounds: It finds both higher solutions’ qualities and tighter upper bounds. In
the majority of the cases, it also outperforms state-of-the-art incomplete DCOP
algorithms that do not provide error bounds.

Distributed Meeting Scheduling. Next, we evaluate the ability of T-DLNS
to exploit the domain knowledge over distributed meeting scheduling problems.
In such problems, one wishes to schedule a set of events within a time range.
We use the event as variable formulation [21], where events are modeled as deci-
sion variables. Meeting participants can attend different meetings and have time
preferences that are taken into account in the problem formulation. Each vari-
able can take on a value from the interval [0, 100]. The problem requires that
no meetings sharing some participants can overlap. We generate the underlying
constraint network using the random network model described earlier. Our anal-
ysis focuses on compare T-DLNS using a random (RN) destroy and a domain-
knowledge (DK) destroy strategies. The former randomly selects a set of variables
to destroy, while the latter destroys the set of variables that are in overlapping
meetings. Table 4 reports the percentage of satisfied instances reported (% SAT)
and the time needed to find the first satisfiable solution (TF), averaged over 50
runs. The domain-knowledge destroy has a clear advantage over the random one,
being able to effectively exploit domain knowledge. All other local search algo-
rithms tested failed to report satisfiable solutions for any of the problems—only
KOPT3 was able to find some solutions for problem instances with 20 meetings.

Thus, our experiments suggest that DLNS can bring a decisive advantage on
both general and domain-specific problems, where exploiting structure can be
done explicitly within the destroy phase.

Table 4. Experimental results on meeting scheduling.

Meetings 20 50 100

% SAT t (ms) % SAT t (ms) % SAT t (ms)

DK destroy 80.05 78 54.11 342 31.20 718

RN destroy 12.45 648 1.00 52207 0.00 –

KOPT3 4.30 110367 0.00 – – –

8 Conclusions

In this paper, we proposed a Distributed Large Neighborhood Search (DLNS)
framework to find quality-bounded solutions in DCOPs. DLNS is composed of
a destroy phase, which selects a neighborhood to search, and a repair phase,
which performs the search over such neighborhood. Within DLNS, we proposed
a novel distributed algorithm, T-DLNS, characterized by low network usage and
low computational complexity per agent. Our experimental results showed that
T-DLNS finds better solutions compared to representative search-, inference-,
and region-optimal-based incomplete DCOP algorithms. The proposed results

A Large Neighboring Search Schema for Multi-agent Optimization 703

are significant—the anytime property and the ability to refine online quality
guarantees makes DLNS-based algorithms good candidates to solve a wide class
of DCOP problems. We strongly believe that this framework has the potential
to solve very large distributed constraint optimization problems, with thousands
of agents, variables, and constraints. In the future, we plan to investigate other
schemes to incorporate into the repair phase of DLNS, including constraint prop-
agation techniques [3,7,16] to better prune the search space, techniques that
actively exploit the bounds reported during the iterative procedure, as well as
the use of general purpose graphics processing units to parallelize the search for
better speedups [4,9], especially when agents have large local subproblems.

Acknowledgments. The research at the Washington University in St. Louis was
supported by the National Science Foundation (NSF) under grant numbers 1550662
and 1540168. The research at New Mexico State University was supported by the NSF
under grant numbers 1458595 and 1345232. The views and conclusions contained in
this document are those of the authors only.

References

1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2002)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Bessiere, C., Gutierrez, P., Meseguer, P.: Including soft global constraints in
DCOPs. In: Milano, M. (ed.) CP 2012. LNCS, pp. 175–190. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 15

4. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of
large neighborhood search for solving constraint optimization problems. In: Pro-
ceedings of the European Conference on Artificial Intelligence (ECAI), pp. 189–194
(2014)

5. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 639–646 (2008)

6. Fioretto, F., Campeotto, F., Dovier, A., Pontelli, E., Yeoh, W.: Large neighborhood
search with quality guarantees for distributed constraint optimization problems.
In: Proceedings of the International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pp. 1835–1836 (2015)

7. Fioretto, F., Le, T., Yeoh, W., Pontelli, E., Son, T.C.: Improving DPOP with
branch consistency for solving distributed constraint optimization problems. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 307–323. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 24

8. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)

9. Fioretto, F., Pontelli, E., Yeoh, W., Dechter, R.: Accelerating exact and approx-
imate inference for (distributed) discrete optimization with GPUs. Constraints
23(1), 1–43 (2018)

https://doi.org/10.1007/978-3-642-33558-7_15
https://doi.org/10.1007/978-3-319-10428-7_24

704 K. D. Hoang et al.

10. Fioretto, F., Yeoh, W., Pontelli, E.: A dynamic programming-based MCMC frame-
work for solving DCOPs with GPUs. In: Proceedings of the International Confer-
ence on Principles and Practice of Constraint Programming (CP), pp. 813–831
(2016)

11. Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agents decomposition for
DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 2480–2486 (2016)

12. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to schedul-
ing devices in smart homes. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)

13. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to
the economic dispatch with demand response. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 999–
1007 (2017)

14. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6),
721–741 (1984)

15. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), vol. 5, pp. 81–89 (2005)

16. Gutierrez, P., Lee, J.H.M., Lei, K.M., Mak, T.W.K., Meseguer, P.: Maintaining
Soft Arc Consistencies in BnB-ADOPT+ during Search. In: Proceedings of the
International Conference on Principles and Practice of Constraint Programming
(CP), pp. 365–380 (2013)

17. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: Proceed-
ings of the International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pp. 133–140 (2010)

18. Kluegel, W., Iqbal, M.A., Fioretto, F., Yeoh, W., Pontelli, E.: A realistic dataset
for the smart home device scheduling problem for DCOPs. In: Sukthankar, G.,
Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 125–
142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4 9

19. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with struc-
tured resource constraints. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930 (2009)

20. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: an open-source framework
for distributed constraint optimization. In: International Workshop on Distributed
Constraint Reasoning (DCR), pp. 160–164 (2009)

21. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a
graphical game-based approach. In: Proceedings of the Conference on Parallel and
Distributed Computing Systems (PDCS), pp. 432–439 (2004)

22. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking
DCOP to the real world: efficient complete solutions for distributed event schedul-
ing. In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 310–317 (2004)

23. Miller, S., Ramchurn, S., Rogers, A.: Optimal decentralised dispatch of embedded
generation in the smart grid. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 281–288 (2012)

24. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

https://doi.org/10.1007/978-3-319-71679-4_9

A Large Neighboring Search Schema for Multi-agent Optimization 705

25. Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed Gibbs: a memory-bounded
sampling-based DCOP algorithm. In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 167–174 (2013)

26. Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., Faltings, B.: Pseudo-tree-based
incomplete algorithm for distributed constraint optimization with quality bounds.
In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 660–674. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23786-7 50

27. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: an upper confidence bound
approach to distributed constraint optimization problems. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 528–534 (2012)

28. Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 1446–1451 (2007)

29. Petcu, A., Faltings, B.: Approximations in distributed optimization. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 68

30. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimiza-
tion. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1413–1420 (2005)

31. Petcu, A., Faltings, B.: A hybrid of inference and local search for distributed com-
binatorial optimization. In: Proceedings of the International Conference on Intel-
ligent Agent Technology (IAT), pp. 342–348 (2007)

32. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.: Bounded approximate decen-
tralised coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759
(2011)

33. Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed constraint opti-
mization. In: Milano, M. (ed.) CP 2012. LNCS, pp. 624–632. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 45

34. Rust, P., Picard, G., Ramparany, F.: Using message-passing dcop algorithms to
solve energy-efficient smart environment configuration problems. In: Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 468–
474 (2016)

35. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

36. Sultanik, E., Modi, P.J., Regli, W.C.: On modeling multiagent task scheduling as
a distributed constraint optimization problem. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1531–1536 (2007)

37. Ueda, S., Iwasaki, A., Yokoo, M.: Coalition structure generation based on dis-
tributed constraint optimization. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 197–203 (2010)

38. Vinyals, M., et al.: Quality guarantees for region optimal DCOP algorithms. In:
Proceedings of the International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 133–140 (2011)

39. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)

40. Yeoh, W., Sun, X., Koenig, S.: Trading off solution quality for faster computation
in DCOP search algorithms. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 354–360 (2009)

41. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Mag. 33(3), 53–65 (2012)

https://doi.org/10.1007/978-3-642-23786-7_50
https://doi.org/10.1007/11564751_68
https://doi.org/10.1007/978-3-642-33558-7_45
https://doi.org/10.1007/3-540-49481-2_30

706 K. D. Hoang et al.

42. Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint opti-
mization problems in sensor networks. Artif. Intell. 161(1–2), 55–87 (2005)

43. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed con-
straint optimization for teams of mobile sensing agents. J. Auton. Agents Multi
Agent Syst. 29(3), 495–536 (2015)

Distributed Constrained Search by Selfish
Agents for Efficient Equilibria

Vadim Levit and Amnon Meisels(B)

Department of Computer Science, Ben-Gurion University, Beersheba, Israel
am@cs.bgu.ac.il

Abstract. Search for stable solutions in games is a hard problem that
includes two families of constraints. The global stability constraint and
multiple soft constraints that express preferences for socially, or other-
wise, preferred solutions. To find stable solutions (e.g., pure Nash equilib-
ria - PNEs) of high efficiency, the multiple agents of the game perform a
distributed search on an asymmetric distributed constraints optimization
problem (ADCOP). Approximate (local) distributed search on ADCOPs
does not necessarily guarantee convergence to an outcome that satisfies
the stability constraints, as well as optimizes the soft constraints. The
present paper proposes a distributed search algorithm that uses transfer
of funds among selfish agents. The final outcome of the algorithm can be
stabilized by transfer of funds among the agents, where the transfer func-
tion is contracted among the agents during search. It is shown that the
proposed algorithm - Iterative Nash Efficiency enhancement Algorithm
(INEA) - guarantees improved efficiency for any initial outcome.

The proposed distributed search algorithm can be looked at as an
extension to best response dynamics, that uses transfer functions to guar-
antee convergence and enforce stability in games. The best-response-like
nature of INEA establishes its correct behavior for selfish agents in a
multi-agents game environment. Most important, unlike best response,
the proposed INEA converges to efficient and stable outcomes even in
games that are not potential games.

1 Introduction

A common solution concept for games played by multiple agents is the Nash
equilibrium, i.e, a stable state in which no participant can gain by a unilateral
change of strategy (cf. [1]). Finding a PNE in a general game and in particular an
efficient one forms a constrained search problem, where stability is a global hard
constraint and efficiency is composed of soft constraints for which a good solution
(e.g., of higher social welfare) is sought (cf. [2]). The problem of finding a Nash
equilibrium has been shown to be computationally intensive [1,3] and heuristic
search algorithms for this constrained problem have been recently proposed [4,5].
Additionally, it is known that equilibria states are not necessarily efficient with
respect to a global objective [3,6] or even with respect to the personal payoffs
of the agents [7].
c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 707–724, 2018.
https://doi.org/10.1007/978-3-319-98334-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_45&domain=pdf

708 V. Levit and A. Meisels

The distributed nature of games, played by multiple agents, requires dis-
tributed search methods to find solutions. Several distributed complete search
algorithms for finding stable states in games were proposed [8–10]. However, for
games among a large number of agents the problem of finding a PNE becomes
computationally intractable [1] and one needs to rely on approximate search
which can find a PNE in reasonable time (cf. [2]). Complete distributed search
assumes cooperation among the participating agents [11], but this assumption is
not always acceptable for selfish agents. One simple way of avoiding the assump-
tion of cooperation among the searching agents is to apply specially designed
local search. However, the major problem of approximate (local) search is its
ability to converge, as well as guarantee that the resulting solution will be
stable.

On a different theme, approximate search methods were shown to converge
to a stable state in Potential games [12], where best-response dynamics converge
to a PNE. When an approximate search method like best response converges to
a stable solution, the efficiency of the solution can be arbitrarily low. In con-
trast, it is well known that outcomes of high efficiency are not necessarily stable
(e.g. “the prisoners’ dilemma”). This tradeoff between efficiency and stability
motivates the use of an incentive mechanism to promote stability in efficient
states. Jackson and Wilkie [13] have studied the efficiency of equilibria that
are achieved by using side payments. The side payments mechanism enables to
incentivize unsatisfied agents to agree on some preferred outcomes. Side pay-
ments allow transfers of funds (payoffs) between agents, such that agents who
gain from some outcome may want to pay others that are unsatisfied by it.

The present paper proposes an incomplete decentralized search algorithm for
selfish agents, to find a stable state of higher efficiency. One can view the pro-
posed Iterative Nash Efficiency-enhancement Algorithm (INEA) as an enhance-
ment to the best-response dynamics (cf. [12]). The innovation of INEA is that it
enables participating agents to sacrifice part of their payoff at a certain outcome
in order to convince other agents to play a certain strategy. In this sense, the
inter-agent transfers of funds are used in order to ensure the convergence of the
algorithm to outcomes which are both stable and efficient. The outcome result-
ing from the run of the INEA algorithm is ensured to be at least as efficient
as the original outcome. Most importantly, it is guaranteed that the resulting
outcome can be transformed into a stable state by the use of the transfers of
funds that were contracted by the agents during the run of the algorithm.

The proposed INEA algorithm uses a fixed order of all the agents. Each agent
in its turn exchanges messages with its neighbors and decides on its selected
strategy. The messages may include proposed transfers of funds among the inter-
acting agents. The game is assumed to have interactions among a limited number
of agents at each step, which is equivalent to assuming some underlying graph or
social network. This compact general structure for multi-agents games has been
termed graphical games in the past [14] and they are known to have a compact
representation. For clarity, the term multi-agents games (MAGs) will be used
through the rest of the paper. Since the distributed search algorithm proposed

Distributed Constrained Search by Selfish Agents 709

by the present paper uses strategic reasoning by the agents that compute their
transfers of payoffs, transfer functions can be thought of as side payments [13].
Side payments that are contracted by the agents during the run of the algorithm,
to be transferred for its final outcome [13,15,16].

An extensive experimental evaluation of the INEA algorithm demonstrates
two main results. First, that for multi-agents games that are also potential games,
the proposed algorithm produces stable states that are more efficient than best
response and in fact that the resulting stable states are close to optimal. Second,
that for randomly generated MAGs the fairness of the efficient stable states that
are produced by the INEA algorithm is highly affected by the nature of the
transfer function used.

Section Preliminaries introduces the needed concepts of games and their
stable states, pure Nash equilibria (PNEs). It emphasizes the equivalence of
multi-agents games with distributed constraints search. Preliminaries includes
the definitions of transfers of funds among agents as well as the definition of
outcomes which can be stabilized by the use of side payments. The proposed
Iterative Nash Efficiency enhancement Algorithm is described in detail in section
Finding Efficient Equilibria together with proofs for the main guarantees of
the algorithm. A detailed example of the run of the proposed algorithm on an
example problem is also provided. The following section presents the experimen-
tal evaluation of INEA. First, the INEA algorithm is compared to best-response
on problems that are potential games. Next, two forms of transfer functions are
compared on randomly generated problems that are not necessarily potential
games.

2 Preliminaries

2.1 Multi-agents Games

Multi-agents games (MAGs) consist of a set of agents A = {1, . . . , n}, where
each agent i has a set of strategies Vi from which it can select a strategy vi ∈
Vi to play. In the terminology of distributed constraints problems, strategies
are assignments [8] and the games among agents are equivalent to asymmetric
constraints [9,11]. An outcome of the multi-agents game, v = (v1, . . . , vn) ∈
V1 × . . . × Vn, is a collection of strategies (e.g., assignments), one for each agent.
Each agent i interacts (plays) with some set of other agents, which we term Ni

(e.g., its neighborhood in graphical games terms [14]) and can be a small subset
of A. Agent i’s payoff function is denoted ui : ×j∈Ni∪iVj → R, where Ni is
usually limited to a small subset of A.

Multi-agents games that have agents interacting with a small numbers of
“neighboring” agents are commonly termed graphical games and have a compact
representation [14]. The agents can be thought of as if they are connected by
some underlying graph (e.g., social network) G = {N,E}. Each vertex in N
represents an agent and edges in E represent the interaction structure of the
game. As stated above, game-like interactions are asymmetric constraints. Given
an agent i ∈ N , the set of i’s neighbors Ni are the agents whose actions impact

710 V. Levit and A. Meisels

i’s payoff [17]. Note that the classical Normal-form game can be represented as
a MAG having a complete underlying graph. The assumption of a small size of
Ni is used in order to improve the run-time of the computation of the transfers
of payoffs and to simplify the presentation of the proposed distributed search
algorithm.

The pure Nash Equilibrium (PNE) is a central concept in game theory
(cf. [1,3]). We say that an outcome is a PNE, if every agent does not prefer
to change its strategy (assignment), given the strategies (assignments) of all
other agents in this outcome. Formally, an outcome v is a PNE if the following
holds:

∀i ∈ N, � ∃v′
i ∈ Vi s.t., ui(vi, v−i) < ui(v′

i, v−i) (1)

where v−i is the standard notation for the combined strategies (assignments) of
all agents except i.

Finding a PNE in the above description of a MAG is equivalent to solving
an Asymmetric Constraints Optimization Problem (ADCOP) [11], where the
agents’ domains of values are the palettes of strategies of agents in the MAG
and the constraints among neighbors of an ADCOP are represented by the values
in the normal form game matrix (cf. [8,16,18]). Stability is represented by the
above global constraint of the ADCOP. Once an ADCOP is constructed, the
finding of an efficient PNE can be solved by an appropriate algorithm (cf. [8,19]).
The present paper focuses on local search algorithms that can be run by rational
agents, emphasizing a distributed search protocol that bears similarities to the
game theoretic best-response dynamics [12].

2.2 Transfer Functions and Side Payments

Transfer functions endow agents with the possibility of sacrificing part of their
payoff in order to convince other agents to play a certain strategy. Given a
multi-agents game, transfers of payoff are defined by a function τ : N × N × V1×
. . . × Vn → R

+, where τi,j(v) denotes the payment being transferred from agent
i to agent j in outcome v. In order to take transfer functions into consideration
while deciding on the action to take, an agent’s utility must reflect the change
in its payoff. The net loss that is incurred on agent i at outcome v when using
the transfer function τ is defined by Eq. 2.

τi(v) :=
∑

j∈Ni

(τi,j(v) − τj,i(v)) (2)

We restrict our attention to transfer functions such that if j /∈ Ni then
∀v : τi,j(v) = 0. In words, side payments take place between neighbors in the
game. Note again that neighbors are connected by a two-players game which is
an asymmetric binary constraint. Given the definition of net loss (Eq. 2), one
can update the definition of the utility that agent i obtains from outcome v as
follows:

uτ
i (v) := ui(v) − τi(v) (3)

Distributed Constrained Search by Selfish Agents 711

Transfer functions have been termed Side payments by Jackson and
Wilkie [13] when their values are decided upon by the agents that strategically
reason about their values. Side payments enable games to be transformed from
the inside and are defined as transfers of payoffs between agents, where each
agent may pay (or receive payment from) each one of its neighbors. Since the
distributed search algorithm proposed by the present paper uses strategic rea-
soning by the agents that compute their offered and accepted transfers of payoffs,
we will use the terms transfer functions and side payments interchangeably.

The use of transfer functions in the present study is mainly motivated by
the goal to obtain a stable state (PNE) with certain properties. Let us start by
differentiating between outcomes that can be transformed into a PNE and those
that cannot.

Definition 1. An outcome v in a multi-agents game G is side payments enforce-
able (SPE) if there exists a transfer function τ , such that:

∀i ∈ N, � ∃v′
i ∈ Vi s.t., uτ

i (vi, v−i) < uτ
i (v′

i, v−i)

Definition 1 ensures that the updated agents utilities (according to the trans-
fer function τ) result in a PNE at outcome v, satisfying Eq. 1.

The intuitive argument for how transfers of payoffs have the ability to obtain
stable outcomes goes as follows: An agent can offer a neighboring agent compen-
sation which is a function of the second agent’s action, such that the compensa-
tion effectively reflects any utility loss that the second agent’s action incurs on
the first agent. Take for example the following case. The utility loss of agent i is
x if agent j takes action v′

j rather than its current action vj , while the benefit of
agent j of taking action v′

j rather than vj is only y where x > y. Agent i in this
example can offer to agent j a monetary compensation of z, where x ≥ z ≥ y, if
agent j will not deviate from its current strategy vj . Note that any z such that
x ≥ z ≥ y will provide a sufficient incentive for agent j.

3 Finding Efficient Equilibria

The proposed distributed search algorithm, Iterative Nash Efficiency enhance-
ment Algorithm (INEA), relies on inter-agent transfers of payoffs which is a
key element in the proposed procedure. The INEA search algorithm is iterative,
where each iteration goes over all agents in a predefined fixed order. Each agent
in its turn proposes its selected strategy by sending messages to its neighbors
and receiving from them response messages if they wish to transfer funds to the
proposing agent in order to convince it to avoid taking the proposed strategy.
The algorithm is proven to converge to an SPE global state with improved (or
at least the same) global efficiency. In addition, this distributed method may be
complemented by existing heuristics that find initial outcomes of high efficiency.
The resulting combination (which is not pursued in the present study) has the
potential to produce in its end result PNEs of even higher efficiency.

712 V. Levit and A. Meisels

3.1 The INEA Algorithm

The INEA algorithm is composed of two consecutive stages. Starting from an
initial outcome v, the main stage iterates over all agents (in a predefined fixed
order) until it converges to an outcome v∗. The efficiency of outcome v∗ is proven
to be at least as high as the efficiency of the initial outcome v. Outcome v∗ is
not necessarily a stable one, but is guaranteed to be side payments enforceable
(SPE). A set of transfers that can be used as side payments among the agents
to enforce a PNE is computed by the agents during the iterations and is guar-
anteed to not worsen the utility of all agents. It therefore can be thought of as a
binding contract among the agents during the iterative search, computed by the
neighboring (e.g., interacting) agents during each step. In that sense one can call
them side payments [13] and think of the proposed INEA algorithm as an iter-
ative method for searching for both an efficient outcome and the side payments
that can guarantee its stability. Each iteration ends with an outcome and side
payments that were computed during the iteration. The final outcome is reached
when for a complete iteration over all agents no agent wishes to change its strat-
egy. Exchanging messages with neighbors on the graph of the game makes the
INEA algorithm a distributed local search algorithm (cf. [20–22]). It is important
to understand that the major problem of standard local (approximate) search
in DCOPs and ADCOPs is its ability to converge, as well as guarantee that the
resulting solution will be stable [20,21].

In the second stage of the run of the proposed INEA algorithm the transfers
of payoffs among the agents are applied according to the computed contracts so
that the outcome v∗ is transformed into a stable state (i.e., a PNE). One can
think of the proposed INEA algorithm as an iterative computation of the final
outcome and the side payments that guarantee its stability, where all computa-
tions are performed by the agents in a distributed manner.

Main Stage
One can view the INEA algorithm (Algorithm 1) as an extended version of the
best-response dynamics, extended with payoff transfers (contracts) among selfish
agents. During the iterative run of the algorithm the participating agents decide
on their transfer contracts to the other agents as well as the outcome which can
be stabilized by applying these contracts.

All agents perform the main stage in a predefined fixed order, and each
agent in turn executes the function onStrategySelect(). We will term the
agent performing function onStrategySelect() the current agent. During the
execution of Algorithm 1 the agents agree on contracts with their neighbors
which are the incentive to the agents to remain with their choices (i.e., not change
their strategy to the proposed one). Therefore, in order to decide regarding the
choice of action, the current agent must take into consideration not only its
own utility but also the compensation (contracts) from its neighbors as can be
observed from lines 1–4 of Algorithm 1. Contracts are dissolved only due to the
decision of an agent to change its strategy. Consequently, if an agent notifies
its neighbors regarding the desire to change its strategy (line 5), all contracts

Distributed Constrained Search by Selfish Agents 713

concluded between its neighbors and itself are considered to be nullified. As a
response to the message from the current agent, proposing to change its strategy,
each neighbor decides upon the payoff transfer it wishes to sacrifice in order to
convince the current agent to remain with its choice. These choices are sent
back to the current agent and considered as new contracts only in case the agent
remains with its choice. When the current agent receives responses from all of
its neighbors, the agent will not choose the strategy that improves its utility
only in the case that the agent’s neighbors can secure for it a larger payoff
(lines 7–8). This is a completely selfish (e.g., rational) decision when taking into
consideration transfer functions.

Algorithm 1. Iterative Nash efficiency enhancement algorithm
onStrategySelect()
1: let T ← ∑

j∈Ni
Tj,i

2: if � ∃v′
i s.t. ui(v

′
i, v−i) > ui(vi, v−i) + T then

3: return
4: select v′

i s.t. ui(v
′
i, v−i) > ui(vi, v−i) + T

5: send(choice, v′
i) to all j ∈ Ni

6: let T
′ be the sum of replies from all j ∈ Ni

7: if ui(v
′
i, v−i) > ui(vi, v−i) + T

′ then
8: update v ← (v′

i, v−i)

when received(choice, v′
j)

9: chose Ti,j

10: reply Ti,j

Algorithm 1 defines the communication protocol among agents which enables
them to decide about the transfers of payoff that can be used to stabilize the
final outcome. Nevertheless, INEA does not explicitly specify how the decision
about the exact monetary transfer is made (line 9). Such a decision can have
a great impact on the ability of the contracts to transform the outcome into a
stable one. We will restrict our attention only to admissible contracts (defined
below).

Definition 2. Given an outcome v and a beneficial deviation v′
i of the current

agent i, the contracts Tj,i are admissible if the following conditions hold:

1. ∀j ∈ Ni, 0 ≤ Tj,i ≤ uj(v′
i, v−i) − uj(vi, v−i)

2. if
∑

j∈Ni,uj(vi,v−i)>uj(v′
i,v−i)

uj(vi, v−i) − uj(v′
i, v−i) ≥ ui(v′

i, v−i) − ui(vi, v−i)

then
∑

j∈Ni

Tj,i ≥ ui(v′
i, v−i) − ui(vi, v−i)

Condition 1 restricts the proposed compensations to be “acceptable” by ratio-
nal agents. It will be greater than zero only in the case that i’s proposed change
of strategy will incur a negative utility change for the responding neighbor.

714 V. Levit and A. Meisels

Additionally, an agent will not propose a transfer of payoff that exceeds its loss
of utility. Condition 2 ensures that if the sum of the negative utility changes
to neighbors exceeds the benefit of the current agent from its proposed uni-
lateral deviation, so should the compensations. In other words, the proposed
side-payments reflect the loss to the neighbors (from the proposed change of
strategy of the current agent) and is therefore large enough to compensate for
them.

Note that the contracts among agents do not affect the social welfare of
outcomes. Therefore, one can omit the payoff transfers (i.e., take into consid-
eration only the “original” utilities of the agents) when computing the social
welfare. However, it is necessary to take the payoff transfers into consideration
when reasoning about the stability of an outcome.

3.2 Correctness

Proposition 1. Every update of an agent’s strategy, performed by following
Algorithm 1, improves the social welfare of the outcome v.

Proof. According to Algorithm 1 only a current agent i which can improve its
payoff by deviating from strategy vi to v′

i can update its strategy. Such an update
occurs only in the case where the sum of transfers offered by the responses of
i’s neighbors is smaller than the improvement in i’s utility resulting from the
strategy change (lines 7–8).

Suppose by contradiction that the current agent i updated its strategy from
vi to v′

i (running Algorithm 1) which improves i’s utility but decreases the global
social welfare. Clearly, all transfers do not change the social welfare because they
represent only movement of funds from one agent to another. Consequently, the
change in social welfare for the above case can be defined irrespective of the
transfers as follows:

∑

j∈N

uj(v′
i, v−i) −

∑

j∈N

uj(vi, v−i) (4)

and will affect only the utilities of agent i and its neighbors. Therefore, Eq. 4
can be simplified to:

(ui(v′
i, v−i) − ui(vi, v−i)) +

∑

j∈Ni

(uj(v′
i, v−i) − uj(vi, v−i)) (5)

Since the social welfare was decreased by deviation from vi to v′
i, Eq. 6 must

hold.
ui(v′

i, v−i) − ui(vi, v−i) <
∑

j∈Ni

(uj(vi, v−i) − uj(v′
i, v−i))

≤
∑

j∈Ni,uj(vi,v−i)>uj(v′
i,v−i)

(uj(vi, v−i) − uj(v′
i, v−i))

(6)

Since only admissible contracts are considered, condition 2 of the admissi-
ble contracts requires that

∑
j∈Ni

Tj,i ≥ ui(v′
i, v−i) − ui(vi, v−i). Consequently,

Distributed Constrained Search by Selfish Agents 715

ui(v′
i, v−i) ≤ ui(vi, v−i) +

∑
j∈Ni

Tj,i holds. As a result, the decrement in social

welfare results in a contradiction to the condition of line 7 of Algorithm 1 and
cannot be true.

Corollary 2. Algorithm 1 converges in a finite number of steps.

The correctness of Corollary 2 follows directly from Proposition 1. Since each
update of an agent’s strategy according to Algorithm 1 improves the Social wel-
fare of the outcome v and the Social welfare is bounded, the proposed algorithm
terminates in a finite number of steps.

Corollary 3. For every outcome v ∈ V , the social welfare of v∗ obtained by
running Algorithm 1 is greater than or equal to the social welfare of v.

Since Proposition 1 ensures that the social welfare of outcome v is non-
decreasing (at each step), then so is the social welfare of the final outcome v∗,
which is at least as high as the social welfare of v.

Observation 4. A graphical game updated by admissible contracts is an ordinal
potential game where the potential function is the social welfare.

The correctness of Proposition 1 directly leads to Observation 4. Namely, if
an agent can change its strategy so as to increase its utility then the social welfare
will be improved. Note that the opposite direction does not necessarily hold, i.e.,
a strategy change which decreases the agent’s payoff does not necessarily result
in a decrease of the overall social welfare.

In order to get some intuition about the differences between best-response
dynamics and Algorithm 1, consider the following example:

Example 1. Three agents are connected by edges, each representing a two-
players game (e.g, an asymmetric constraint) on the graph in Fig. 1. Every agent
has exactly two strategies, a or b. The utilities of agents are the sum of payoffs
of the two-player games (constraints) in Fig. 1.

Fig. 1. An example game with three agents

716 V. Levit and A. Meisels

Table 1. The utilities of agents a1, a2 and a3 in the example game.

v1 v2 v3 u1 u2 u3

a a a 1 3 2

a a b 3 0 3

a b a 0 1 5

a b b 2 4 0

b a a 2 4 0

b a b 0 1 5

b b a 3 0 3

b b b 1 3 2

Consider an outcome v = (v1 = a, v2 = a, v3 = a), the payoff of agent a1 is 1
in the game with a2 and 0 in the game with a3, leading to a total utility of 1 for
agent a1 in outcome v. The utility of agent a2 is 0 in the game/constraint with a1

and 3 against a3, summing up to a total utility of 3 for a2 in v. Finally, the utility
of a3 in outcome v is 2 since its payoff is 2 in the two-player game/constraint
against a1 and 0 in the game against a2.

Let us start by following the run of the best response algorithm, where agents
are ordered according to their indexes and the initial outcome is v = (v1 = a, v2 =
a, v3 = a). To simplify the following of the agents reasoning in both algorithms,
Table 1 presents the utilities of every agent in all 8 possible outcomes of the
example game. Best response for agent a1 is the unilateral deviation to strategy
b which will increase its utility to 2. In the resulting outcome agent a2 has no
strategy which can improve its utility. Agent a3 can change its strategy to b which
will result in outcome (v1 = b, v2 = a, v3 = b). Now a1 can improve its utility by
changing to v1 = a which will be followed by agent a2’s move to strategy v2 = b
and then agent a3 will switch its strategy to a. Having arrived at the outcome
(v1 = a, v2 = b, v3 = a), agent a1 will benefit from deviating to v1 = b. In the
resulting outcome a2 whose turn is next will change its strategy to a. It is easy
to see that for our example game and outcome best-response dynamics has just
closed a loop of states and does not converge.

Let us now follow the run of Algorithm 1 on the same game and outcome
v = (v1 = a, v2 = a, v3 = a) and in the same order. The use of admissible con-
tracts is assumed. Initially there are no transfers contracted and for all agents,
Ti,j = 0.

As before, agent a1 can improve its utility by deviating from a to b. Execut-
ing function onStrategySelect(), it will send message 〈choice, v1 = b〉 to its
neighbors a2 and a3 (line 5 of Algorithm 1). The benefit to a1 from this change of
strategy is 1 (i.e., u1(v1 = a, v−1) = 1 and u1(v1 = b, v−1) = 2) but it will reduce
the utility of agent a3 from 2 to 0. For the admissibility of the contracts, agent
a3 will select a transfer of 1 ≤ T3,1 ≤ 2 as incentive to agent a1 to remain in its
current strategy (line 7). The payoff of a2 increases from the proposed change of
a1, so it does not respond at all. Since the outcome remains, a2 has no strategy

Distributed Constrained Search by Selfish Agents 717

which improves its utility and it does not propose any (line 2 and 3). Agent a3

will benefit from unilateral deviation from v3 = a to v3 = b. However, a2 will
propose a sufficient incentive (2 ≤ T2,3 ≤ 3) for a3 to remain with its current
choice. This will suffice for a3. No agent changed its strategy during this com-
plete round and Algorithm 1 terminates with the stability enforceable outcome
v∗ = (v1 = a, v2 = a, v3 = a).

It is easy to see that the final outcome of Example 1 is not a stable state.
Agent a1, for example, can change its strategy to b unilaterally and improve its
gain from 1 to 2. However, this final state can be stabilized by using the transfers
of funds that were contracted during the run of the algorithm as described above.
In other words, it is guaranteed to be side payments enforceable. For example,
agent a3 can pay 1 to agent a1 to secure its strategy and retain a stable state
(a PNE).

Second Stage
When Algorithm 1 terminates there may be agents which have an incentive to
unilaterally deviate from their strategy and improve their utility (similarly to
Example 1). To stabilize outcome v∗ the contracted transfers during the execu-
tion of Algorithm 1 need to be applied. The payoff transfers computed during
the run of Algorithm 1 are as follows:

τj,i(v) :=

{
Tj,i, if vi = v∗

i

0, otherwise
(7)

Proposition 5. For every outcome v ∈ V , the outcome v∗ of Algorithm 1 is
side payments enforceable.

Proof. The correctness of Proposition 5 follows directly from the termination
condition of Algorithm 1. When Algorithm 1 terminates, the only agents which
must be incentivized in order to stabilize outcome v∗ are those which can gain
from unilateral deviation.

Formally, given outcome v an agent i has an incentive to unilaterally deviate if
there exists a choice v′

i for it, such that ui(v′
i, v−i) > ui(vi, v−i). The termination

of Algorithm 1 implies that for each agent i it holds that

�v′
i, ui(v′

i, v−i) > ui(vi, v−i) +
∑

j∈Ni

Tj,i

which implies that

�v′
i, ui(v′

i, v−i) −
∑

j∈Ni

Ti,j > ui(vi, v−i) +
∑

j∈Ni

(Tj,i − Ti,j)

and consequently, for each agent i the following holds:

�v′
i, u

τ
i (v′

i, v−i) > uτ
i (vi, v−i)

718 V. Levit and A. Meisels

Observation 6. An outcome v that maximizes social welfare is side payments
enforceable.

By Corollary 3, applying Algorithm 1 to an outcome v that maximizes social
welfare will return the exact same outcome v∗ ≡ v. By Proposition 5, this
outcome is SPE.

The payoff transfer contracts defined by Algorithm 1 are sufficient in order
to convince unsatisfied agents to stay in outcome v∗ (Proposition 5). However,
the INEA algorithm does not specify explicitly the actual exact transfer of pay-
off. It only assumes the admissibility of the contracts. Let us view two distinct
admissible contract schemes which can be efficiently computed during the run
of the INEA algorithm.

The first one does not make any assumption regarding the knowledge of
agents about the utilities and the contracts of other agents. The agents also
do not perform any negotiation with other agents in order to decide about the
amount of payoffs.

Consider the maximal payoff transfer that agent j is willing to secure for its
neighbor i in outcome v in order to prevent i’s change of strategy to v′

i:

δj,i(v, v′
i) :=

{
uj(vi, v−i) − uj(v′

i, v−i), if uj(vi, v−i) > ui(v′
i, v−i)

0, otherwise

(8)

Using Eq. 8 admissible contracts are:

Tj,i = δj,i(v, v′
i) (9)

These contracts are termed maximal payoff contracts and their computation does
not need interaction among agents.

Observation 7. Maximal payoff contracts are admissible.

The admissibility of the maximal payoff contracts arises directly from the
definition. Agent j will sacrifice a payoff transfer of exactly Tj,i = uj(vi, v−i) −
uj(v′

i, v−i) to agent i only if it equals the decrement in its utility due to the
unilateral deviation of agent i from vi to v′

i.
Another contracts scheme - cooperative contracts - assumes full knowledge of

the game and cooperation among the agents in a neighborhood and the contracts
are defined as follows:

Tj,i :=

⎧
⎪⎨

⎪⎩

0, if
∑

l∈Ni

δl,i(v, v′
i) < ui(v′

i, v−i) − ui(vi, v−i)

δj,i(v, v′
i) · ui(v

′
i,v−i)−ui(vi,v−i)∑

l∈Ni

δl,i(v,v′
i)

, otherwise
(10)

The size of cooperative transfers is proportional to the loss in the agent’s utility,
which is analogous to Shapley’s value [23].

Distributed Constrained Search by Selfish Agents 719

Observation 8. Cooperative contracts are admissible.

This follows immediately from the definition in Eq. 10. Non-zero transfers are
only proposed if their sum compensates the deviating agent and no neighboring
agent transfers more than its loss.

4 Experimental Evaluation

To empirically demonstrate the effectiveness of the INEA algorithm (Algo-
rithm 1), two families of experiments were run. One family compares the per-
formance of the INEA algorithm to best-response dynamics. Both algorithms
converge to a stable point – best-response to a PNE and Algorithm 1 to an
SPE. The other family of experiments studies the behavior of different admissible
transfer functions. All the games that are used in the experimental evaluation
fall under the description of graphical games [9,14], where interaction among
players/agents is limited to a small fraction (i.e., a neighborhood) of the overall
large number of players.

4.1 Problem Generation

The first set of experiments uses “best-shot” public goods games [17,24], which
were proven to be potential games [18]. In “best-shot” public goods games each
agent chooses an action vi ∈ {0, 1}. For example, the action might be buying a
book or some other product that is easily lent from one agent to another. Taking
the action 1 is costly and an agent prefers a neighbor j ∈ Ni taking the action
than having to take it (Ni is i’s neighborhood) But, taking the action and paying
the cost is better than having nobody take the action. More formally, agent i’s
utility at outcome v is

ui(v) :=

⎧
⎪⎨

⎪⎩

1 − c, if vi = 1
1, if vi = 0 ∧ ∃j ∈ Ni, vj = 1
0, if vi = 0 ∧ ∀j ∈ Ni, vj = 0

(11)

where 0 < c < 1 is the cost of taking the action (in all experiments c = 1
2).

For the second set of experiments random games are used, that are not nec-
essarily potential games. These random games were generated with 10 possible
strategies for each agent and the utilities in the game matrices of each neighbor-
hood are randomly chosen from a uniform distribution in the range [0,1).

4.2 Experimental Results

The performance of the best response algorithm and of Algorithm 1 is measured
by the social welfare of the final outcome. Social welfare is simply the sum of all
utilites.

SW (v) =
∑

i∈N

ui(v)

720 V. Levit and A. Meisels

The first set of experiments uses relatively small games of up to 20 agents in order
to compare the performance of both best-response and INEA to the optimal effi-
ciency of stable outcomes which have to be found by exhaustive search. Given our
theoretical guarantees on the efficiency of the outcomes of INEA (Corollary 3),
the gap from the most efficient outcomes can in principle be unbounded.

The average efficiency of the outcomes of INEA is higher than those obtained
by best-response (Fig. 2). Moreover, the efficiency of the outcomes of INEA is
similar and sometimes better than that of PNEs of maximal social welfare. In
contrast, best-response converges to outcomes with social welfare that is only
slightly better than that of PNEs which minimize the social welfare.

The second set of experiments is performed on large games that are not
necessarily potential games and are randomly generated. These games are used
to study the dependency of the outcomes of INEA on the transfer function used.
An interesting measure is the fairness of the outcome (degree of inequality),
measured by the Gini Index

GI(v) =

∑
i∈N

∑
j∈N

|ui(v) − uj(v)|

2
∑

i∈N

∑
j∈N

uj(v)

The fairness of the outcome is highly affected by the type of contracts that
are used during search (Fig. 3). Outcomes obtained by maximal payoff contracts
are less fair than those that use cooperative contracts. When using maximal
payoff, multiple agents may secure a payoff transfer to a single change-proposing
player which may result in a compensation for the player that is much higher

Fig. 2. Social welfare of “best-shot” public goods games

Distributed Constrained Search by Selfish Agents 721

Fig. 3. Fairness of stable outcomes on random networks

than its benefit from unilateral deviation. This can lead to a deterioration in the
fairness of the solution, as is evident by the increase of the Gini index with the
size of the problem, in Fig. 3.

It is interesting to see that cooperative contracts are also able to provide out-
comes of greater efficiency than maximal payoff contracts (Fig. 4). When using
cooperative contracts the neighbors of a deviating agent may secure less payoff
in order to convince it to stay with its current choice. Consequently, a greater
improvement in social welfare is possible but needs more improvement steps.
The percentage of improvement of social welfare over that of the initial state

Fig. 4. Social welfare of stable outcomes on random networks

722 V. Levit and A. Meisels

decreases with problem size. Inspecting Fig. 4 one can see that for games with
500 agents the improvement is still sizeable - 20% for maximal payoff contracts
and 40% for cooperative contracts.

5 Conclusions

An iterative distributed search algorithm for finding a stable outcome of
improved efficiency in multi-agents games (MAG) is proposed – the Iterative
Nash efficiency Enhancement Algorithm (INEA). The algorithm searches for a
solution to the global constraint of stability and performs heuristic distributed
optimization search on the soft constraints of efficiency for a good solution (e.g.,
of higher social welfare).

The INEA algorithm iterates among all agents in the game in a fixed order
and each agent in its turn exchanges messages with the agents that interact with
it (e.g., its neighbors). Messages propose the selected change of strategy of the
agent and in response other agents that are affected by it, may offer transfer
of funds in order to compensate the proposer for not changing its strategy and
secure a desired outcome.

The INEA algorithm is guaranteed to converge to a state that is of higher
efficiency than its initial state and that can be stabilized by the use of transfers
of funds among the agents who run the algorithm. A transfer function that can
achieve stability is computed by the agents running the algorithm. Since the
transfers that secure stability form a binding contract among agents, computed
during the search, it is natural to think of them as side payments [13]. The agents
playing the game can start from any initial outcome and by running INEA are
guaranteed to arrive at a state of higher efficiency that can be stabilized by the
use of side payments.

One can think of the proposed INEA algorithm as an extension to the well
known best response mechanism (cf. [25,26]). The proposed method uses trans-
fer of payoffs to extend the standard best-response. The use of this extension
guarantees convergence to a stable state in general MAGs, whereas best response
is only guaranteed to converge to a PNE for games that are potential games [12].
More importantly, the proposed INEA procedure is guaranteed to converge to a
stable state of improved efficiency. This is in contrast to standard best response
that does not address efficiency at all.

References

1. Osborne, M., Rubinstein, A.: A Course in Game Theory. The MIT Press, London
(1994)

2. DallAsta, L., Pin, P., Ramezanpour, A.: Optimal equilibria of the best shot game.
J. Public Econ. Theory 13(6), 885–901 (2011)

3. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

Distributed Constrained Search by Selfish Agents 723

4. Nguyen, T.-V.-A., Lallouet, A.: A complete solver for constraint games. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 58–74. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10428-7 8

5. Palmieri, A., Lallouet, A.: Constraint games revisited. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne,
AU, pp. 729–735 (2017)

6. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press, Cam-
bridge (2005)

7. Monderer, D., Tennenholtz, M.: Strong mediated equilibrium. Artif. Intell. 173(1),
180–195 (2009)

8. Grubshtein, A., Meisels, A.: Finding a nash equilibrium by asynchronous back-
tracking. In: Milano, M. (ed.) CP 2012. LNCS, pp. 925–940. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 66

9. Litov, O., Meisels, A.: Distributed search for pure nash equilibria in graphical
games. In: Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems (AAMAS-2016), pp. 1279–1280 (2016)

10. Wahbi, M., Brown, K.N.: A distributed asynchronous solver for nash equilibria in
hypergraphical games. In: ECAI, pp. 1291–1299 (2016)

11. Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric
distributed constraint optimization problems. JAIR 47, 613–647 (2013)

12. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

13. Jackson, M.O., Wilkie, S.: Endogenous games and mechanisms: side payments
among players. Rev. Econ. Stud. 72(2), 543–566 (2005)

14. Kearns, M.J.: Graphical games. In: Vazirani, V.V., Nisan, N., Roughgarden, T.,
Tardos, É. (eds.) Algorithmic Game Theory, pp. 159–178. Cambridge University
Press (2007)

15. Jackson, M.O.: Social and Economic Networks, vol. 3. Princeton University Press,
Princeton (2008)

16. Levit, V., Komarovsky, Z., Grinshpoun, T., Meisels, A.: Tradeoffs between incen-
tive mechanisms in Boolean games. IJCA I, 68–74 (2015)

17. Jackson, M.O., Zenou, Y.: Games on networks. In: Young, P., Zamir, S. (eds.)
Handbook of Game Theory , vol. 4, pp. 102–191 (2014)

18. Komarovsky, Z., Levit, V., Grinshpoun, T., Meisels, A.: Efficient equilibria in a
public goods game. In: WI-IAT, pp. 214–219 (2015)

19. Grubshtein, A., Meisels, A.: A distributed cooperative approach for optimizing a
family of network games. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier,
M., Badica, C. (eds.) IDC 2011. Studies in Computational Intelligence, vol. 382,
pp. 49–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24013-
3 6

20. Grubshtein, A., Zivan, R., Grinshpoun, T., Meisels, A.: Local search for distributed
asymmetric optimization. In: AAMAS, pp. 1015–1022 (2010)

21. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed
constraint optimization. Artif. Intell. 212, 1–26 (2014)

22. Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint
optimization. Auton. Agents Multi Agent Syst. 31, 1165–1207 (2017)

23. Shapley, L.: A value for n-person games. In: kunh, H.W., Tucker, A.W. (eds.)
Contributions to the Theory of Games. Annals of Mathematical Studies, vol. 28,
pp. 307–317 (1953)

https://doi.org/10.1007/978-3-319-10428-7_8
https://doi.org/10.1007/978-3-642-33558-7_66
https://doi.org/10.1007/978-3-642-24013-3_6
https://doi.org/10.1007/978-3-642-24013-3_6

724 V. Levit and A. Meisels

24. Hirshleifer, J.: From weakest-link to best-shot: the voluntary provision of public
goods. Public Choice 41(3), 371–386 (1983)

25. Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In:
Innovations in Computer Science - ICS, Beijing, China, pp. 155–165 (2011)

26. Nisan, N., Schapira, M., Valiant, G., Zohar, A.: When is it best to best-respond?
SIGecom Exch. 10, 16–18 (2011)

Testing and Verification Track

Metamorphic Testing of Constraint
Solvers

Özgür Akgün(B), Ian P. Gent, Christopher Jefferson, Ian Miguel,
and Peter Nightingale

School of Computer Science, University of St Andrews, St Andrews, UK
{ozgur.akgun,ian.gent,caj21,ijm,pwn1}@st-andrews.ac.uk

Abstract. Constraint solvers are complex pieces of software and are
notoriously difficult to debug. In large part this is due to the difficulty
of pinpointing the source of an error in the vast searches these solvers
perform, since the effect of an error may only come to light long after
the error is made. In addition, an error does not necessarily lead to
the wrong result, further complicating the debugging process. A major
source of errors in a constraint solver is the complex constraint propaga-
tion algorithms that provide the inference that controls and directs the
search. In this paper we show that metamorphic testing is a principled
way to test constraint solvers by comparing two different implementa-
tions of the same constraint. Specifically, specialised propagators for the
constraint are tested against the general purpose table constraint propa-
gator. We report on metamorphic testing of the constraint solver Minion.
We demonstrate that the metamorphic testing method is very effective
for finding artificial bugs introduced by random code mutation.

1 Introduction

Metamorphic testing [24] involves generating new test cases from existing ones,
where the expected result of a new test case can be generated from the result
of an existing test via a metamorphic relation. By comparing the results of the
original test with the new one we can identify cases where the metamorphic
relations are broken, indicating the presence of errors in the implementation. As
an illustrative example in the context of a constraint satisfaction problem (CSP),
given any unsolvable CSP, adding a constraint or removing domain values from
a variable should result in another unsolvable CSP.1

Metamorphic testing cannot be used completely in isolation — a solver that
immediately returns that a problem is unsolvable would pass all of the meta-
morphic tests given in this paper. However, the big advantage of metamorphic
testing of a constraint solver is that it transforms the relatively hard problem
of validating the behaviour of a constraint solver against an independent oracle
into comparing a solver against its own behaviour on a different problem.

1 The authors have experienced both of these conditions being violated in both their
own, and other, solvers.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 727–736, 2018.
https://doi.org/10.1007/978-3-319-98334-9_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_46&domain=pdf

728 Ö. Akgün et al.

One major area of constraints research is the creation of new propagation
algorithms for constraints. Here metamorphic testing shines — we can check
the correctness and propagation level of a new propagation algorithm for a con-
straint by comparing it with a previously existing algorithm. Assuming the two
algorithms do not contain exactly the same bug (which is unlikely, if the two algo-
rithms were independently designed and implemented), comparing one against
the other provides us with a high level of confidence that both are correct.

The central argument of this paper is that metamorphic testing is a good fit
for constraint solving. While it can be difficult to solve a constraint problem, it
is easy to generate one randomly, and there are simple transformations that can
take one constraint problem and produce another with the same set of solutions.

2 The Constraint Solver Minion

Throughout this paper, we use the Minion constraint solver to illustrate meta-
morphic testing in constraint solvers. We begin with an overview of the most
important features of Minion’s input language, for a more extensive discussion
of Minion’s features see [10].

Variable Types: Minion provides four implementations of integer variables.
BOOL (Initial domain must be {0, 1}), DISCRETE and BOUND (Initial domain
must be a range {x..y}) and SPARSEBOUND. BOUND and SPARSEBOUND only
support changing the bounds of a variable during search.

Constraints: The current release of Minion features 72 constraints, includ-
ing arithmetic and logical constraints, element [8], alldiff [11] and gcc [19].
Constraints can also be combined, either disjunctively or conjunctively [14].

Reification: Every constraint in Minion can be reified or reifyimplied [14] (also
called half reification [6]): these combine a constraint C and a Boolean b into
the new constraint b ⇐⇒ C and b =⇒ C respectively.

Search Orders: Minion provides ten variable orderings, including static order-
ings, smallest domain first, conflict ordering [18] and weighted degree [2].

Global Propagation Level: Minion can perform higher levels of consistency,
including Singleton Arc Consistency [5].

Some of Minion’s features make testing particularly challenging. Several con-
straints have different implementations for the different types of variables. Also,
Minion allows propagators to dynamically change the set of variables whose
changes they are informed of. Further, these changes can either automatically
revert when search backtracks, or remain in their new location [8]. This means
testing must verify how a propagator behaves over an entire search.

3 Instance-Based Testing in Minion

The original method of testing Minion involved a set of small test instances, for
which the following information was derived by hand:

Metamorphic Testing of Constraint Solvers 729

SOLCOUNT n The number of solutions to the problem is n.
NODECOUNT n The number of search nodes until the first solution under Minion’s

default search strategy is n.
CHECKONESOL sol The first solution with Minion’s default search strategy is

sol (given as a list).

SOLCOUNT tests are used to test variable and value ordering heuristics, while
NODECOUNT is used to check that a constraint propagator achieves an expected
level of consistency. At the time of writing, this test suite includes 312 instances.
New tests are added whenever a bug is discovered in Minion.

For illustration, the bugs found in the inequality constraint (
∑

ci×xi ≤ y for
constants ci and variables xi and y) before metamorphic testing was introduced
include: Summing a list of Boolean variables to ≥ −1; summing variables to
greater than 65,536 (which overflowed the unsigned short type in C); crashing
if any ci = 0; and sums where all variables were assigned at the root node.

This test-based approach is effective at preventing the reintroduction of pre-
viously identified bugs. However, we still found users discovering a large number
of errors. This motivates the adoption of the more proactive metamorphic app-
roach. Instance-based testing remains in use to complement the metamorphic
tester described in the following section, and remains the primary means of test-
ing variable and value ordering heuristics.

4 Metamorphic Testing in Minion

In this section we explain how Minion uses metamorphic testing for prop-
agators. Given a constraint propagator to test, testing begins by generating
a problem instance consisting of a single occurrence of that constraint with
a random domain for each variable in its scope. As an example, consider
difference(x,y,z), which implements the constraint |x − y| = z. The left-
most instance in Fig. 1 shows a corresponding instance. The tester adds several
random additional constraints, as presented in the middle instance of Fig. 1.
These extra constraints are necessary because many bugs only occur when mul-
tiple propagators interact. Optionally, the tester may at this stage create an
optimisation problem by MAXIMISING or MINIMISING a randomly chosen vari-
able. Finally, the tester transforms this instance into another instance with the
same set of solutions by replacing the constraint being tested with an equivalent
table constraint, as presented in the rightmost instance of Fig. 1. The tester
then compares the searches of the middle and rightmost instances.

We test the reified version of each constraint propagator separately. The
production of metamorphic instances proceeds similarly, but differs in the con-
struction of the table constraint. The scope of the table constraint includes that
of the reified constraint, and the reification variable.

The rationale for using a table constraint is that it can represent any
other constraint and many propagators for the table constraint achieve GAC
[15]. Any errors in Minion’s implementation of the table constraint propaga-
tor would likely be found while testing it against all other constraints. Also,

730 Ö. Akgün et al.

Fig. 1. Stages of production of metamorphic instances.

Minion includes several implementations of table constraints [15,20], which are
compared.

The testing process is automated in Python. For each propagator, there is a
Python function that, given a list of domains for each variable, returns the list of
allowed tuples. Minion is run on the original and transformed instances with the
default static variable ordering. The search trees of both instances are compared
according to the metamorphic relations described in the following section.

5 Tree Comparison

The tester compares the search trees explored by Minion in solving two different
instances, which differ only in the expression of the constraint being tested. If
the tested propagator achieves GAC, Minion will explore identical search trees
for both instances. If the propagator achieves less than GAC then the search tree
may include extra nodes and values but will still find the same set of solutions.

We begin with a formal definition of a two-way branching search tree, which
is commonly employed in modern constraint solvers, including Minion:

Definition 1. Consider a CSP with a list of variables V and a function D which
gives the initial domain of every variable. A search node contains a function N
which maps each v ∈ V to a subset of D(v) and one of the following labels:

Fail: A fail node has no children and represents no solutions. In this case ∀v ∈
V.|N(v)| = 0 (some solvers do not empty all domains at a failure node. We
require this to make node comparison easier).

Solution: In a solution node, |N(v)| = 1 for all v ∈ V . N then represents a
single assignment to every variable, which is a solution to the CSP.

Branch: In a branch node, there is a branching literal 〈v, x〉, where v ∈ V and
x ∈ D(v) and two child nodes, where in the left v is assigned x, and in the
right x is removed from the domain of v. |D(v)| must be > 1.

Metamorphic Testing of Constraint Solvers 731

This definition is purposely loose — we could easily place (and check) extra
requirements on search trees, in particular between a search node and its children
in the case of branching nodes but this has not appeared necessary thus far.

When the tester compares two propagators which achieves GAC, comparing
search trees is easy – check the search trees are identical, including equality of the
variable domains at each node. For weaker propagators we need a more complex
method of comparing trees, which is given in Definition 2.

Definition 2. Consider a set of variables V with initial domains D and search
nodes N1, N2 from two search trees of CSPs with variables V with initial domains
D (but possibly different constraints). The tree rooted on N1 is a subtree of the
tree rooted on N2 if ∀v ∈ V.N1(v) ⊆ N2(v) and the following are true:

– If N2 is a solution node, so is N1, similarly if N2 is a fail node, so is N1.
– If N2 is a branch node with branch literal l = 〈v, x〉, then one of the following

cases is true:
• N1 is also a branch node, N1 also branches on l, and N1’s left child is a

subtree of N2’s left child (and similarly for right child).
• x /∈ N1(v), there are no solutions in the subtree under N2’s left child and

N2’s right child is a subtree of N1.

The most complex part of Definition 2 is the final branching case. In this
case, we branch on a literal in N2 that does not occur in N1. All we know about
the left branch of this node is that it will contain no solutions. We will show
later this is equivalent to being a supertree of a fail node.

We also need to define propagators, and how they change search states. The
property the tester uses to compare search trees is given in Lemma 1 below.
Intuitively, Lemma 1 shows that if we run propagators on a search state, then
either adding more literals to the search state, or replacing one or more propa-
gators with weaker propagators, never leads propagation removing more literals.
This lemma uses the fact that a GAC propagator removes every literal which
can correctly be removed and that propagators are inflationary (they never add
literals to the search state). This lemma applies to a wide range of propagators,
including non-monotonic propagators or propagators which use randomised algo-
rithms [23]. This paper does not contain a full discussion of propagators: for a
general overview see [1,22].

Lemma 1. Consider two search states N and M on the same set of variables
V , where ∀v ∈ V.N(v) ⊆ M(v) (from here denoted by N ⊆V M), and two lists
of inflationary propagators P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 where for all
i, pi and qi are both propagators for a constraint ci and the pi achieves GAC. If
NP is a result of applying elements of P to N until a fixed point is reached, and
similarly for MQ, then NP ⊆V MQ.

Proof. We proceed by induction. Consider a search state S where NP ⊆V S ⊆V

M , and a propagator qi ∈ Q. Then the result SQ of applying qi to S must
be contained in M as qi is inflationary, and must satisfy NP ⊆V SQ, because
NP ⊆ S, and NP is a fixed point for P and therefore all of the pi.

732 Ö. Akgün et al.

Given Lemma 1, we can now prove our main result, which is that the def-
inition of subtrees given in Definition 2 is correct, and the tester uses this in
metamorphic testing to check the correctness of propagators.

Lemma 2. Consider a set of variables V with initial domains D, and two lists
of propagators P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉, where for all i pi and qi
are both propagators for a constraint ci, and the pi achieves GAC. Given a static
variable and value ordering, a search tree generated by P is a subtree of a search
tree generated by Q.

Proof. We will proceed inductively. To begin, apply P and Q to D to get the root
nodes of the search states. By Lemma 1 we know that ∀v ∈ V.P (D) ⊆ Q(D),
and as correct propagators never remove solutions, the set of assignments to
P (D) and Q(D) which are solutions will be the same. Now consider any pair of
search states NP and NQ where ∀v ∈ V.NP (v) ⊆ NQ(v) and the assignments to
NP and NQ which are solutions are the same. We then continue our induction
by considering the possible types of NQ.

If NQ is a branch node with branching literal l = 〈v, x〉, there are two
possibilities: either x ∈ NP (v) or x �∈ NP (v). If x �∈ NP (v), then the left child of
NQ is created from NQ by reducing the domain of v to {x} and then applying
Q. None of the assignments to this search state will be solutions, as x �∈ NP (v)
and the set of assignments to NP and NQ which are solutions are the same.
Therefore this child and all of its children are not solution nodes.

If x ∈ NP (v), then the branching literal we pick for NP must also be l, as
the value and variable order is static. The left child of NP is created by reducing
the domain of v to {x} and then running P to a fixed point. The left child of
NQ is created similarly, and by Lemma 1 these children will satisfy our inductive
hypothesis. Similarly, the right children also satisfy the inductive hypothesis.

If NQ is a fail node, then as ∀v ∈ V.NP (v) ⊆ NQ(v), NP is also a fail node.
Similarly, if NQ is a solution node, then as the assignments to NQ and NP

which are solutions are the same, then NP must also be a solution node.

6 Practical Experience

Metamorphic testing was introduced into Minion in 2007. It is impossible to
measure reliably the number of bugs it has discovered over time, as it has
been used during the development of every constraint [9,11–15,19,20] added to
Minion since 2007 and many bugs will be found at this stage. We can say no
bug has been reported in any propagator which was published after development
in Minion, except for one which was not added to the metamorphic tester.

6.1 Mutation Testing

In order to test the robustness of metamorphic testing, we performed muta-
tion testing [4,16]. We tested three constraints: strict (lexless) and non-strict
(lexleq) lexicographic ordering, difference, and the reified and reifyimplied

Metamorphic Testing of Constraint Solvers 733

variants of these three constraints. difference is an example of a propaga-
tor with complex arithmetic, while lexless and lexleq are global constraints.
These constraints were still simple enough to check which mutations actually
introduced bugs. We ran the tester for the difference constraints for 1000
tests, and the lex constraints for 100 tests (the metamorphic tester tests global
constraints less as tests take much longer to run). We ran the tester 10 times on
each mutation. After filtering out non-compiling mutations, for each constraint
we have 20 mutations generated by changing a random Boolean operator (an
ROR mutation [17]) and 10 mutations generated by removing a random line of
code (an SDL mutation [17]).

The tester found each bug in at least one out of the ten test runs. The non-
buggy mutations fall into three groups. Five mutations introduced inefficiencies
without changing propagation. Three mutations changed the propagation level of
a non-GAC propagator, which is not currently be detected. Finally, one mutation
improved performance by removing unnecessary code!

Three mutations were only detected in some runs of the tester. Two lex
bugs passed more than half of the time, each passing six out of ten test runs.
These bugs only affected the first invocation of the constraint, and required
several variables already to be assigned by other constraints. This demonstrates
the importance of introducing extra constraints to the models. One difference
instance passed eight out of ten times. This bug introduced a problem in reifying
the constraint, by acting as if the domain of the first variable had no holes in it.
This problem only very occasionally resulted in an incorrect solution.

Fig. 2. Number of tests before detecting a bug introduced by a code mutation

Figure 2 shows the median number of tests that were needed before detecting
a bug that was introduced by a source code mutation, sorted by first failing test.
In many cases bugs are detected with less than 25 test instances.

734 Ö. Akgün et al.

6.2 Limitations of Metamorphic Testing

There have been three wrong-answer bugs found in released versions of Minion
since the introduction of metamorphic testing. One involved a constraint which
was not added to the metamorphic tester. The other two involved large domains
– the first involved domain values larger than 230, the second searches with
more than 231 search nodes. Another source of occasional bugs has been bad
behaviour on inputs which were supposed to be rejected – the tester only tests
valid constraint problems.

6.3 Related Work

Many large A.I. systems have developed similar test frameworks, where many
problems, sometimes randomly generated, are tested for correctness. We discuss
a few of the most relevant here.

Testing of the Gecode solver [7] has evolved similarly to Minion’s. Gecode has
an extensive list of fixed tests and a tester which uses random problems. Gecode’s
random tests creating a random search state which contains a known solution.
Literals not in the known solution are removed one by one and the propagator
is run, checking no literals from the known solution are ever removed. Other
properties of propagators (such as if reaching a fixed point) are also checked.
This approach has some limitations compared to Minion, such as not testing
multi-solution problems, optimisation problems, or if the propagator works when
backtracking. Also, search-tree comparison metamorphic testing should be easier
to add to other solvers, as it only requires solvers to output their search tree.

Brummayer and Biere [3] generate random inputs for SMT solvers. They
compare the results of multiple solvers looking for inconsistencies. This was very
successful, but not useful for solvers like Minion with a unique input format. Also,
their technique could not be used to detect the level of propagation achieved.

Reger, Suda and Voronkov discuss the testing of the Vampire theorem prover
[21]. They use a fixed set of benchmarks, testing the solver’s many configuration
options against each other, and also validating the generated proof.

7 Conclusions

Overall, metamorphic testing has been a great success for Minion. It is impossi-
ble to measure the number of bugs it has discovered, as it is used by developers
when creating new propagators, when large numbers of bugs are found and fixed
during development.

While metamorphic testing has been very useful in Minion, it is not imme-
diately applicable to all solvers. One major limitation is learning solvers, where
new constraints are added during search. Significant metamorphic tests could
still be performed in such solvers by checking that the solver produces the same
set of solutions, and optimisation problems achieve the same optimal solution. It
would be interesting to investigate if more subtle forms of metamorphic testing
would be beneficial in such cases.

Metamorphic Testing of Constraint Solvers 735

Acknowledgements. We thank EPSRC for funding this work via the grants
EP/P015638/1 and EP/P026842/1. Dr Jefferson holds a Royal Society University
Research Fellowship.

References

1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, New
York (2003)

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI 2004, pp. 482–486 (2004)

3. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories, SMT
2009, pp. 1–5. ACM, New York (2009)

4. Budd, T.A.: Mutation analysis of program test data. Ph.D. thesis, New Haven,
CT, USA (1980)

5. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint
satisfaction problem. In: Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI 1997), pp. 412–417 (1997)

6. Feydy, T., Somogyi, Z., Stuckey, P.J.: Half reification and flattening. In: Lee, J.
(ed.) CP 2011. LNCS, vol. 6876, pp. 286–301. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23786-7 23

7. Gecode Team: Gecode: Generic constraint development environment (2006).
http://www.gecode.org

8. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006). https://doi.org/10.1007/11889205 15

9. Gent, I.P., Jefferson, C., Linton, S., Miguel, I., Nightingale, P.: Generating
custom propagators for arbitrary constraints. Artif. Intell. 211, 1–33 (2014).
http://www.sciencedirect.com/science/article/pii/S000437021400023X

10. Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. In:
ECAI, vol. 141, pp. 98–102 (2006)

11. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldiffer-
ent constraint: an empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

12. Gent, I., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised
arc consistency for extensional constraints. In: AAAI (CPPOD-19-2006-A), pp.
191–197 (2007). http://www.aaai.org/Papers/AAAI/2007/AAAI07-029.pdf

13. Jefferson, C., Kadioglu, S., Petrie, K.E., Sellmann, M., Živný, S.: Same-relation
constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 470–485. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 38

14. Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E.: Implementing logical
connectives in constraint programming. Artif. Intell. 174(16–17), 1407–1429 (2010)

15. Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short sup-
ports. In: IJCAI (2013)

16. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

17. King, K.N., Offutt, A.J.: A fortran language system for mutation-
based software testing. Softw. Pract. Exp. 21(7), 685–718 (1991).
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380210704

https://doi.org/10.1007/978-3-642-23786-7_23
https://doi.org/10.1007/978-3-642-23786-7_23
http://www.gecode.org
https://doi.org/10.1007/11889205_15
http://www.sciencedirect.com/science/article/pii/S000437021400023X
http://www.aaai.org/Papers/AAAI/2007/AAAI07-029.pdf
https://doi.org/10.1007/978-3-642-04244-7_38
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380210704

736 Ö. Akgün et al.

18. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Reasoning from last con-
flict(s) in constraint programming. Artif. Intell. 173(18), 1592–1614 (2009).
http://www.sciencedirect.com/science/article/pii/S0004370209001040

19. Nightingale, P.: The extended global cardinality constraint: an empirical survey.
Artif. Intell. 175(2), 586–614 (2011)

20. Nightingale, P., Gent, I.P., Jefferson, C., Miguel, I.: Short and long sup-
ports for constraint propagation. J. Artif. Int. Res. 46(1), 1–45 (2013).
http://dl.acm.org/citation.cfm?id=2512538.2512539

21. Reger, G., Suda, M., Voronkov, A.: Testing a saturation-based theorem prover:
experiences and challenges. In: Gabmeyer, S., Johnsen, E.B. (eds.) TAP 2017.
LNCS, vol. 10375, pp. 152–161. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61467-0 10

22. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, New York (2006)

23. Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 723–730. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04244-7 56. http://www.gecode.org/paper.
html?id=SchulteTack:CP:2009

24. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases. Technical report HKUST-CS98-01 (1998)

http://www.sciencedirect.com/science/article/pii/S0004370209001040
http://dl.acm.org/citation.cfm?id=2512538.2512539
https://doi.org/10.1007/978-3-319-61467-0_10
https://doi.org/10.1007/978-3-319-61467-0_10
https://doi.org/10.1007/978-3-642-04244-7_56
http://www.gecode.org/paper.html?id=SchulteTack:CP:2009
http://www.gecode.org/paper.html?id=SchulteTack:CP:2009

Algebraic Fault Attack on SHA Hash
Functions Using Programmatic

SAT Solvers

Saeed Nejati1(B), Jan Horáček2, Catherine Gebotys1, and Vijay Ganesh1

1 University of Waterloo, Waterloo, ON, Canada
{snejati,cgebotys,vganesh}@uwaterloo.ca

2 University of Passau, Passau, Germany
Jan.Horacek@uni-passau.de

Abstract. We present an algebraic fault attack (AFA) solver for recov-
ering secret bits from hardware implementations of the SHA family of
hash functions. The crucial insight in our method is the use of SHA-
based propagation and conflict-analysis methods in the inner-loop of a
Boolean conflict-driven clause-learning SAT solver, à la the DPLL(T)
paradigm. In our method the fault-injected part of the hash function
is translated into a Boolean formula (which is then fed as input to the
SAT solver), while the rest is encoded via a programmatic interface as
part of the SAT solver’s propagation and conflict analysis routines. Such
an approach enables the addition of learnt clauses to the SAT solver in
an on-demand and lazy fashion. We evaluated our tool under a variety
of fault models, and showed that we can recover the secret bits faster
and with far fewer number of injected faults compared to previous best
work. AFA is a powerful way of empirically verifying the strength of a
cryptographic function’s implementation.

1 Introduction

Cryptographic hash functions, such as the SHA family, play a critical role in
a variety of settings in cryptography (e.g., authenticated encryption, pseudo
random number generation, digital signatures, etc.) [27]. While there is some
recent progress on practical collision attacks on SHA-1 [33], inversion attacks
on the full version of the standard SHA family of functions are still impractical
[11]. Given that these functions seem highly resistant to direct inversion attacks,
many researchers have turned to implementation inversion attacks1, wherein,
the attacker gathers information on implementations of these hash functions

1 There are two basic approaches to implementation attacks, namely, passive and
active implementation attacks. In passive attacks, the attacker measures some aspect
of the computations on a target implementation via side-channel such as power
consumption or timing, to find patterns that can be exploited. By contrast, in active
attacks the target implementation is manipulated as part of the attack. In this paper,
we consider only active attacks.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 737–754, 2018.
https://doi.org/10.1007/978-3-319-98334-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_47&domain=pdf

738 S. Nejati et al.

(or any cryptographic primitive) in an attempt to reduce the size of search
space. One form of this type of attack, called fault injection analysis, involves
intentionally introducing faults in the operation of cryptographic devices and
analyzing the incorrect outputs to recover the embedded secret key. These faults
could be injected via a variety of methods, like heating or varying the voltage of
the power supply in a controlled fashion to attack hardware implementing these
functions [1,4,5]. Fault attacks were first proposed in 1997 as a way to break
RSA-CRT cipher (cf. [7]).

There are broadly two classes of fault attacks that researchers have studied,
namely, differential fault attacks (DFA) and algebraic fault attacks (AFA). The
DFA method was first used in breaking DES [6], and has been applied to many
block ciphers [2,21,23], stream ciphers [20], and hash functions [15,19,26]. At a
high level, the DFA method exploits the differences in the relation between the
faulty outputs and the intermediate variables compared to the correct outputs
in order to recover an inner state. Propagation of induced faults in forward
direction and deduction of fault differences, backward from the output to the
fault location, so-called fault equations, is examined manually by a cryptanalyst.

Algebraic fault attack methods combine fault injections with algebraic crypt-
analysis [10]. In this approach, the cryptographic function and faults are trans-
lated into algebraic equations over a finite field, and the secret key or message is
recovered by solving these equations using a SAT or SMT solver. Fault equations
refer in this case to an algebraic representation of the cryptographic function
starting from the injected fault location up to its output. The advantage of AFA
over DFA is that the solver takes care of propagation of the fault, and thus
significantly reducing the human effort required to launch a successful attack.
AFA has been used to automate DFA methods on block ciphers [35,36], stream
ciphers [28] and hash functions [18,25].

AFA methods are a powerful way of empirically verifying the strength of
cryptographic function’s implementation through fault analysis. AFA methods
have significant advantages over previous approaches since they leverage the
continuous scalability improvements in SAT and SMT solvers. Having said that,
it is well known that merely using the solver as a blackbox (à la the eager
approach) is not going to yield the best results. The efficacy of AFA methods
broadly rely on three important factors that any SAT/SMT solver user would
readily recognize, namely, the type of encoding of the cryptographic primitive in
Boolean or suitable SMT logic, the underlying solver, and the effectiveness with
which the user is able to tune or modify the underlying solver’s heuristics.

In their original paper on AFA [10], the authors describe a lazy approach
to AFA, wherein, part of the cryptographic primitive (more precisely, the fault-
injected part) is translated into a Boolean formula, and the rest of the primitive is
used to verify solutions generated by the solver. If the solution is incorrect, their
tool blocks it by adding an appropriate clause to the solver, and repeats until
the correct solution is found. While their method is clearly sound, complete, and
terminating, the authors do not exploit the solver’s power in a whitebox fashion
nor do they explore encodings that may be best suited for an algebraic fault

Algebraic Fault Attack on SHA Hash Functions 739

attack. While researchers have explored different kinds of encodings subsequent
to the paper by Courtois et al. [10], none of them use the underlying SAT/SMT
solver in DPLL(T) fashion (cf. [18,35,36]).

1.1 High-Level Overview of Our Method to Algebraic Fault Attack

In this paper, we propose a DPLL(T)-style AFA method, wherein, we extend
both the Boolean constraint propagator (BCP) and the conflict-analysis heuris-
tics in a state-of-the-art SAT solver, MapleSAT [24]. More precisely we propose
a programmatic SAT solver-based method [17] for AFA. Our extension of BCP
is similar to theory propagation in DPLL(T), and we refer to this extension
as the SHA propagator. The conflict-analysis extension is similar to the theory
conflict analysis in DPLL(T), and we refer to this extension as the SHA con-
flict analyzer. Programmatic SAT solving is a particular variation of DPLL(T),
and differs from the general concept in 3 ways: first, the theory solver in the
context of programmatic SAT can be an arbitrary piece of code, in that we
place no requirements of completeness on it; second, this code might in turn
be particularized to every input to the solver. That is, unlike the T -solver in
DPLL(T) which remains invariant for all formulas from the language of T , the
code added via the programmatic interface in a programmatic SAT solver can be
specific and unique to each input; and finally, the interface of programmatic SAT
solvers is much simpler than that of SMT solvers which are the quintessential
implementation of DPLL(T).

How our Method Works. At a high level, in our method the fault-injected
part of the hash function, along with a target, is translated into a Boolean for-
mula (which is then fed as input to the SAT solver), while the full implementation
of SHA is encoded via a programmatic interface as part of the SAT solver’s prop-
agation and conflict analysis routines. Such an approach enables the addition of
conflict clauses to the appropriate database in an on-demand and lazy fashion.
We refer to our addition to the solver’s propagation routine as the SHA propa-
gator, and the one to the solver’s conflict analysis routine as the SHA conflict
analyzer. We evaluate our tool under a variety of fault models and show that
we can recover the secret bits (in our setting, the secret bits correspond to any
message that hashes to the given target) with fewer number of injected faults
compared to previous best work (reducing the cost of attack). Although fault
injections are done on hardware devices, in this work we are simulating the fault
injection in software, by picking a random value as embedded secret bits and
XORing random values to the intermediate state words as fault injection.

SHA Propagator. While analyzing different encodings of the SHA hash func-
tions in Boolean logic, we noticed that the native BCP in SAT solvers does not
propagate all the input bits (once set) all the way to the output bits of the SHA
function for certain kinds of encodings of SHA in Boolean logic. More precisely,
given a Boolean function f over input variables x and output variables y, there
exist encodings φf (in conjunctive normal form) such that the standard-issue
BCP does not propagate the values assigned to x all the way to y. A natural

740 S. Nejati et al.

and cost-effective way to strengthen the native BCP in SAT solvers would then
be to add a SHA propagator that propagates inputs to the encoding of SHA
to all its output bits, and adds clauses to the clause database appropriately. In
our experiments, this method alone gave a massive boost to the performance of
MapleSAT over AFA instances.

SHA Conflict Analyzer. As alluded to above, the SHA conflict analyzer is the
checker that verifies whether the solution found by the solver is indeed a valid
message for the given target. If not, a conflict clause is added to the conflict clause
database of the solver. This mechanism prunes the search space dramatically
according to our experiments. Otherwise, the validated solution is output by the
solver. Unlike the AFA method proposed by Courtois et al. [10], our SHA conflict
analyzer is called in the inner loop of the SAT solver thus taking advantage to
both its inherent incrementality and conflict analysis capabilities.

1.2 Contributions

1. We present a new AFA method (see Sect. 4), implemented as part of the
MapleSAT solver via its programmatic interface. We define and implement a
SHA propagator and a SHA conflict analyzer as part of MapleSAT1. We note
that our method can be easily extended to other cryptographic primitives
such as symmetric ciphers.

2. Further, we evaluate our tool under several different fault models from single
bit to words, and show that we can recover the secret bits (in our setting, the
secret bits correspond to any message that hashes to the given target) with
far fewer number of injected faults in both SHA-1 and SHA-2 hash functions
compared to previous approaches (see experiments in Sect. 5).

3. Finally, we show that our programmatic approach to AFA is up to an order
of magnitude faster than using a SAT solver as a black box (see experiments
in Sect. 5).

Paper Structure. The paper is structured as follows: In Sect. 2 we recall the
SHA-1 and SHA-256 functions algebraically, together with notions such as gen-
eralized arc consistency. In Sect. 3 we describe the programmatic interface in
the MapleSAT solver [24]. In Sect. 4 we describe our AFA in general and our
programmatic SAT solver-based AFA method. In Sect. 5 we present our results
on attcking SHA-1 and SHA-2 and demonstrate that our programmatic app-
roach outperforms the previous best AFA both in terms of number of faults and
scalability. We present related work in Sect. 6. Finally, we conclude in Sect. 7.

1 Additional resources can be found at
https://sites.google.com/view/crypto-sat/algebraic-fault-analysis.

https://sites.google.com/view/crypto-sat/algebraic-fault-analysis

Algebraic Fault Attack on SHA Hash Functions 741

2 Background

2.1 Arc Consistency and SAT

The following definition is motivated by the notion of arc consistency in Con-
straint Satisfaction Problems (CSP). We spell out a modified version of general
arc consistency given in [3].

Definition 1. Let R be an inference rule of propositional logic. Let φ be a
Boolean formula which encodes a constraint C in CNF. We say that the encod-
ing of C into φ R-maintains Generalized Arc Consistency (GAC) if for
all partial assignments α, i.e., a conjunction of literals, and for all literal � the
following holds

C ∧ α � � ⇒ φ ∧ α �R � (i.e., � is derived from φ ∧ α by R).

The following example illustrates the fact that some encodings do not main-
tain GAC under unit propagation (UP), which is the default propagation pro-
cedure in SAT solvers.

Example 1. Consider the pseudo-Boolean constraint: x+y ≤ 0, i.e., x, y ∈ {0, 1}
and “+” denotes integer addition. We can encode this constraint into a CNF
formula φ by using a half-adder with inputs x and y and forcing the outputs to
be zero. The half-adder relations for carry and sum outputs c and s are x ∧ y,
x ⊕ y. The final encoding of C = (c ↔ x ∧ y) ∧ (s ↔ x ⊕ y) ∧ (¬s ∧ ¬c) in CNF
is φ = (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y). It is clear that x and y should be set to
zero. But these values are not discovered by applying UP on φ.

One would naturally expect that the assignment α to the input variables,
fully unit propagate to the output bits, but this may not always be the case and
depends on the encoding φ.

2.2 Description of SHA-1

SHA-1 was designed by NSA and standardized by NIST in 1995 (see the standard
in [14]). It was widely used in many applications, but after the recent full collision
reported in [33], security practitioners moved away to stronger alternatives such
as SHA-2 or SHA-3, although SHA-1 seems to be still resistant against preimage
and second preimage attacks.

SHA-1 uses the Merkle-Damg̊ard construction, where each block has 512 bits.
Each block is given to a compression function that outputs 160 bits, which is
used as part of the input to the next block. We recall only a part of the SHA-1
specification. For the full description of SHA-1, we refer to [14]. The internal
state of SHA-1 is 160 bits. More precisely, five 32-bit words ai, . . . , ei for each
round i. There are 80 rounds, and in each round a 32-bit message word Wi will be

742 S. Nejati et al.

mixed in to update the state bits. The round function for the round i = 0, . . . , 79
is defined as follows

(ai+1, bi+1,ci+1, di+1, ei+1) ← (I-R)
(
Fi(bi, ci, di) � ei � (ai ≪ 5) � Wi � Ki, ai, bi ≪ 30, ci, di

)
,

where ≪ is left rotation, � is addition modulo 232 and Ki is the round constant.
The function Fi is a Boolean map operating on three 32-bit words and generating
a 32-bit word. This function changes every 20 rounds and will be one of these:
Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z), XOR(x, y, z) = x ⊕ y ⊕ z or Maj(x, y, z) =
(x ∧ y) ⊕ (y ∧ z) ⊕ (x ∧ z).

The message expansion relation for expanding the initial message words
W0, . . . , W15 from the 512 input bits to 32-bit message words for 80 rounds
of SHA-1 is defined by

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1, for i ∈ {16, . . . , 79}. (I-M)

2.3 Description of SHA-256

SHA-256 is in the standard hash function family of SHA-2 [12]. Its structure is
similar to SHA-1, but with a more complex round function and message expan-
sion. The input block size is 512 bits and it has 64 rounds. Using the following
message expansion relation, the 16 32-bit input words, will be expanded to 64
32-bit words.

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16, for i ∈ {16, . . . , 63}, (II-M)

where
σ0(x) = (x ≫ 7) ⊕ (x ≫ 18) ⊕ (x � 3),
σ1(x) = (x ≫ 17) ⊕ (x ≫ 19) ⊕ (x � 10).

The internal state is 256 bits consisting of eight 32-bit words labeled as
ai, bi, . . . , hi for each round i. The state update relations is described with the
following equations:

(ai+1, bi+1, ci+1, di+1, ei+1, fi+1,gi+1, hi+1) ← (II-R)
(T1 + T2, ai, bi, ci, di + T1, ei, fi, gi)

with
T1 = hi + Σ1(ei) + Ch(ei, fi, gi) + Ki + Wi,
T2 = Σ0(ai) + Maj(ai, bi, ci),

Σ0(x) = (x ≫ 2) ⊕ (x ≫ 13) ⊕ (x ≫ 22),
Σ1(x) = (x ≫ 6) ⊕ (x ≫ 11) ⊕ (x ≫ 25),

where the functions Ch and Maj are the same as in SHA-1, Ki denotes the
SHA-2 round constant, and Wi denotes the processed expanded message block.

Algebraic Fault Attack on SHA Hash Functions 743

3 Programmatic Interface in SAT Solvers

We call a SAT solver programmatic [17] if it is augmented with a set of callback
functions that allow the user to add functionality to the solver’s propagation
and conflict analysis routines on the fly. The idea is inspired by the DPLL(T)
architecture, in which a theory solver provides support for theory propagation
and theory conflict analysis to the base Boolean DPLL solver. Programmatic
SAT solving [17] is a particular variation of DPLL(T) which is more flexible and
differs from the general concept as described in Sect. 1.1. The main advantage of
using programmatic SAT is that it allows easy customization of the SAT solver
to specific Boolean instances rather than an entire theory. The SAT developer
thus has more fine-grained control over the power of SAT. This architecture has
also been found useful in solving some problems in combinatorics [8], and much
more effective than using a normal CNF encoding [9].

3.1 Programmatic Conflict Analysis

We are only interested in the values of message bits, which are a very small sub-
set of all of the variables needed to encode the algebraic fault equation system
into CNF. Whenever we solve the instance and find the message bits, we should
check if it is a legitimate solution (hashes to the same correct hash output).
Normally one could wait for the solver to finish solving the whole equation set
and then check for the correctness, but we can do this verification as soon as
the variables corresponding to the message bits are set. The sooner we reject
a spurious solution, the faster the search process becomes. The programmatic
conflict analysis callback is invoked when the solver’s Boolean propagation rou-
tine reaches an inconclusive state or all of the variables are assigned, and there
is no conflict. First it recovers the original input message bits, if all message
bit variables are set, then hashes the input message bits and checks it against
the correct hash output. In case of mismatch, a conflict clause that blocks the
current spurious message bits will be returned to the solver. The solver has the
reason clauses that led to this partial assignment, thus it can further optimize
the returned clause using the implication graph, which makes the blocking clause
more effective. The solver then goes through the procedure of backjumping, as
in the typical conflict analysis.

3.2 Programmatic Propagation

It is known that when encoding a problem into CNF, we might lose some struc-
tural information about the original problem. For example, setting a subset of
variables in a CSP instance might imply the value of another variable. But if
the encoding of that CSP problem into CNF is not UP-maintaining GAC, then
by setting the corresponding variables in the Boolean formula, BCP may not be
able to derive the value for the target variables. An example of such an encoding
is listed in Example 1 in Sect. 2. It is also mentioned in [13,32] that encoding of
a pseudo-Boolean constraint into CNF using adder networks does not maintain

744 S. Nejati et al.

GAC, although these encodings are small and scalable. To overcome this prob-
lem, one might use arc-consistent encodings for a particular constraint, or use
enhanced propagation routines, e.g., bitvector propagators [34].

In this work, we deal with cryptographic functions having multi-operand
additions in each round. There are several encodings for these operations in
the literature. Nossum’s encoding2 [30] gives a very compact CNF, which works
very well in practice. Unfortunately, a curious side effect of having this minimal
encoding is that after setting all of the input bits, BCP might not be able to
set all output bits. There are two options to work around this problem, either
empower the encoding, or strengthen the unit propagation. Based on our initial
experiments and experiments in [30] with straightforward Tseitin encoding of
adders, empowered encoding of adders can become very expensive (reaching time
limit on all instances). Better propagation (based on SHA1) would be effective
no matter the encoding. We therefore explored the latter option in this paper.

Our programmatic propagation (PP) is called in the main search loop of
the solver after BCP is done, and no conflicts are detected. The callback looks
at the least significant bits of the operands and output in each of the multi-
operand additions. If all bits up to some bit position k are set, it checks if the k
least significant bits of the output are set as well. If they are not set, it returns
clauses that encode the direct implication between input bits and output bit
in the missing output bit positions. For an example of encoding implications, if
x = T , y = F is an assignment to the inputs of z = x + y relation, and z is not
set, we return x = T ∧ y = F → z = T or ¬x ∨ y ∨ z. These implications force
the solver to set the output bits in the next cycle. Although our implementation
finds more implications than unit propagation does, it is not guaranteed that
every encoding PP-maintains GAC according to Definition 1.

Definition 2. Let φ be a CNF encoding of a Boolean function f , and let
R be an inference rule of propositional logic. We say that φ R-maintains
Input/Output GAC3 if for an assignment α that contains assignments to
the input variables of f , the assignment of the output variables of f are derived
from φ ∧ α by R.

For example, a direct Tseitin encoding of a CIRCUIT-SAT instance to CNF
has the property given in Definition 2. Our implementation of programmatic
propagation looks at the inputs of the multi-operand addition and generates
direct implications between input and output bits. If any subset of the input bits
is set, and a subset of the output bits can be determined (through addition),
those output bits are set either by unit propagation through formula clauses
or through the direct implication clauses. Therefore we can say that any CNF
encoding of multi-operand addition PP-maintains Input/Output GAC.

2 A brief description about this encoding and our adaptation can be found here:
https://sites.google.com/view/crypto-sat/algebraic-fault-analysis.

3 GAC refers to Generalized Arc-Consistency defined in Definition 1.

https://sites.google.com/view/crypto-sat/algebraic-fault-analysis

Algebraic Fault Attack on SHA Hash Functions 745

4 Algebraic Fault Attack on SHA-1 and SHA-2

Here we describe how the attack is mounted on the SHA-1 and SHA-256 com-
pression functions, and where programmatic callbacks fit in. For encoding of
SHA in CNF, we used an adapted version of Nossum’s encoding [30].

4.1 Algebraic Fault Attack

In practice, faults are induced on a hardware implementation using a device that
can generate perturbation, e.g., radiation, heat, laser, etc. The attacker chooses a
specific register and applies the fault, which changes the input to the subsequent
operations. The choice of which register to apply fault is important, and we refer
to that register by fault location. The change to the targeted register’s value is
usually unknown. But with more sophisticated (and more expensive) devices it
is possible to narrow down the number of bits in the state that the fault injector
is affecting. Therefore the number of bits that can be flipped is a parameter
that represents how strong is the attacker. The number of flipped bits shows the
hamming weight of the fault vector applied, and is usually referred to as fault
model. Another parameter in our AFA model is the number of faults that the
attacker is capable of injecting. This parameter represents the cost of the attack,
and thus the fewer injections the better.

In the algebraic setting, the transformations from the fault location to the
output are encoded as constraints (in our case in CNF), and we refer to it
as correct equations. For each injected fault, the transformations from the fault
location to the output are again encoded but the output value is fixed to the cor-
responding faulty output, and we refer to them as faulty equations. The variables
corresponding to the secret message bits are shared between all of these equa-
tion sets. Depending on the device that is used for fault injection, the attacker
can assume an upper bound on the hamming weight of the difference between
correct and faulty values of the fault location register. This can also be encoded
as a constraint.

4.2 Attack Model

We assume that the attacker picks and knows the location of the fault, but does
not have control over the value of the fault. We also assume that the chaining
value at the input of the compression function is fixed to the initialization vector.
Note that we do not perform actual hardware fault injections, and the process
is simulated in software by XORing random values to the inner state variables.

4.3 Attack on SHA-1

In our attack described in Algorithm 1, we target the last 16 rounds of SHA-
1. The message expansion is invertible, provided we have 16 consecutive words
(see Eq. I-M). This means that recovering the last 16 expanded message words

746 S. Nejati et al.

Algorithm 1. AFA-SHA (An Algebraic Fault Attack on SHA)
Input: f : a SHA compression function, g: a reverse message expansion of SHA, d: the

maximal weight of faults, L: a list of fault locations, k: the number of faults (k is
divisible by #L), H: the correct SHA hash image.

Output: M ′: a message, such that f(M ′) = H.
1: function AFA(f, g, d, L, k, H)
2: Let M represent the embedded secret SHA message
3: Let n be the number of rounds in f .
4: Let φ be a CNF encoding of H = f(n−15)..n(x).
5: Φ := φ
6: for � in L do
7: for i = 1, . . . , k/#L do
8: Generate a random fault value δi with wH(δi) ≤ d.
9: H ′

i := f(�+1)..n(f1..�(M) ⊕ δi) � Calculate the faulty output
10: Let φi be a CNF encoding of H ′

i = f(�+1)..n(x ⊕ δi).

11: Φ := Φ ∧ ∧
φi.

12: repeat
13: Find a model α for Φ.
14: Extract the assignment for Wn−15, . . . , Wn from α.
15: for j = n − 16, . . . , 1 do
16: Wj := g(Wj+1, . . . , Wj+16)

17: M ′ := W0‖ . . . ‖W15

18: Φ := Φ ∧ ¬M ′

19: until f(M ′) = H
20: return M ′

21:
22: function g-SHA-1(W0, . . . , W15) � SHA-1 Message expansion in reverse
23: return ((W15 ≫ 1) ⊕ W12 ⊕ W7 ⊕ W1) � see Eq. I-M

24:
25: function g-SHA-2(W0, . . . , W15) � SHA-256 Message expansion in reverse
26: return (W15 − σ1(W13) − W8 − σ0(W0)) � see Eq. II-M

enables us to recover all message bits. Therefore we inject faults to the input
of the last 16 rounds, and more particularly in b64. This fault location is more
desirable because of the way the fault propagates in the next rounds. For more
details we refer to [19].

Let f be the compression function of SHA-1. Let f1..64 (resp. f65..82) be the
Boolean map representing the first 64 rounds of f (resp. the last 16 rounds of
f). Thus we have the following composition f = f65..80 ◦ f1..64. Let M be a
SHA-1 message. Consider the correct hash value H = f(M). We can encode
fault outputs as H ′

i = f65..80(f1..64(M) ⊕ δi), where δi is a random fault value.
These are the steps that we follow:

– We obtain the correct hash output H and several faulty outputs H ′
i for the

given M .

Algebraic Fault Attack on SHA Hash Functions 747

Fig. 1. A high-level diagram of the SHA-1 attack. The values δ1 and δ2 represent
the injected faults. H denotes the correct hash output and H ′

1 and H ′
2 are the faulty

outputs. The dashed circle is the part that is being encoded into CNF. The shaded
boxes are copies of the white 16 rounds, and W64, · · · , W79 variables are shared between
all of them.

– Then we encode the set of correct and faulty equations for the last 16 rounds
in CNF. Figure 1 shows the parts of the compression function that are being
encoded into CNF.

– The composed formula Φ is then given to the SAT solver to find a solution
for the last 16 message words.

– The verification loop is implemented in the SHA conflict analyzer. As soon as
the corresponding variables to W65, . . . , W80 are set, the analyzer will derive
the first 16 message words M ′ by applying the Eq. I-M in reverse (see g-SHA-1
in Algorithm 1). This value is given to the compression function to see if it
hashes to H. If there is a match, the found M ′ is the final solution, otherwise
the last 16 message words will be returned as conflict clauses to the SAT
solver, and the search loop continues.

The attack is run by calling the AFA function from Algorithm 1 with the following
arguments: AFA(fSHA1, d, g-SHA-1, L:{64}, k, H), where fSHA1 is the SHA-1
compression function.

4.4 Attack on SHA-256

Our attack on SHA-256 shares the same framework as in the SHA-1 attack. Our
approach is outlined in Algorithm 1. Just like in the SHA-1 attack, we target
the last 16 rounds of SHA-256 and the deepest fault location is c48. For details
on the impact of choosing this location, we refer to [18]. Since the state update
operations in SHA-256 are more complex, the size of encoding is much bigger
and the instances are harder to solve. We set a higher time limit and use a
multi-stage fault injection approach to limit the effect of fault propagation.

748 S. Nejati et al.

Hao et al. [18] presented an AFA on SHA-256. They first target the last
four rounds, inject faults and solve the equations to recover W61, . . . , W64. Then
they fix the message words to the found solution and repeat the same procedure
for the next four message words. Which means that with another set of fault
injections, they recover W57, . . . , W60, and so on, to find the last 16 message
words. We follow the same approach to keep the size of instances small. An
immediate challenge in this approach is to check the consistency of the solutions
for each set of four message words with the hash values. In our approach when we
encode all of the relations from the fault injection location to the output, instead
of solving the instances in each step, and fixing the solution in other instances,
we conjunct all of the encoded instances together and let the solver handle the
consistency of solutions. Following this method, we target the last four message
words by injecting faults in round 60, and encoding the fault equations. Next we
inject faults in round 56 to target the last 8 rounds. Similarly we target the last 12
rounds and last 16 rounds. All of the encoded fault equations together with the
correct hash function relations for the last 16 rounds make our SAT instance.
We inject the same number of faults in each of those fault locations. Similar
to SHA-1, the verification process is implemented in the SHA conflict analysis
callback, with the difference of using Eq. II-M (see g-SHA-2 in Algorithm 1), for
deriving the first 16 words of M ′ and SHA-256 compression function is applied
to check with the correct output H. Using the AFA function from Algorithm 1,
the attack is launched with this call:
AFA(fSHA2, d, g-SHA-2, L:{60, 56, 52, 48}, k, H), where fSHA2 is the SHA-256
compression function.

5 Experimental Results

5.1 Experimental Setup

All experiments were conducted on Intel Xeon CPUs at 3.2 GHz and 16 GB of
RAM. We used MapleSAT [24] to implement the programmatic callbacks. There
are other SAT solvers like CryptoMiniSAT and lingeling that implement XOR
reasoning which could be beneficial in solving ARX4 cryptographic functions
like SHA-1 and SHA-2. Also SMT solvers that handle bitvectors, like STP, are a
good candidate in solving these kinds of instances. But in practice, according to
the study in [29], MapleSAT outperforms them on SHA-1 preimage instances.
Because of the similarity of SHA-1 preimage instances to our fault instances
we picked the best solver and implemented our programmatic interface in it.
We have also decided to use the multi-armed bandit restart (MABR) policy
[29] in MapleSAT, which adds an additional performance gain on cryptographic
instances. We experimented with various assumptions on the number of the
injected faults and on the maximal weight of the faults. For each experiment we
generated 100 random message-target pairs, and the timeout was set at 4 h for
SHA-1 instances and 12 h for SHA-256 instances. For the sake of completeness

4 Addition-Rotation-XOR.

Algebraic Fault Attack on SHA Hash Functions 749

and fair comparison, we have added an external loop around MapleSAT that
does the verification (repeat-until loop in Algorithm 1) and adds blocking clauses
to the solver if an inconsistent solution is found. In this section, whenever we
mention the base version of MapleSAT, we mean MapleSAT with the verification
loop.

5.2 Attack on SHA-1 and SHA-256

Table 1 shows the results of applying AFA on SHA-1 and SHA-2. Its rows cor-
respond to the maximal weight of the injected faults. Its columns correspond to
the number of injected faults during the attack. Starting from a single bit, going
to a nibble, a single byte, single word and the most relaxed one is the 32-bit
random fault model. Each element in Table 1 represents the number of instances
out of 100 randomly generated AFA instances that our solver was able to solve
within the time limit. From Table 1b we can see that we are able to recover the
message bits with as few as 8 faults in the single byte fault model. In previous
attacks on SHA-1, Hemme et al. [19], apply a DFA that uses 1002 faults. In the
same fault model (32-bit fault model), we use only 11 faults.

Table 1. The number of solved AFA instances out of 100 for different number of faults
and maximal weight of the faults

As described in Sect. 4.4, we inject faults in four different rounds and collect
information about the correct and faulty hashes. We experimented with equal
number of faults in each of those four rounds. As listed in Table 1b, we were able
to recover the target bits using 32 faults in the 24-bit fault model. While Hao
et al. [18] use 65 faults in a 32-bit random fault model, our method is able to
finish the search with 48 faults in the same fault model. These two data points
are highlighted in Table 1b.

5.3 Performance of the Solver

Here we discuss the performance of our programmatic AFA solver on solving SHA
fault instances. In Fig. 2 you can see the cactus plot of MapleSAT solver and the
extended versions of MapleSAT with programmatic interface. We have turned

750 S. Nejati et al.

each of the programmatic callbacks on and off to see which of them contributes
more to the performance of solver. There are four solvers compared in the plot.
The base version of MapleSAT, MapleSAT with the SHA propagator, MapleSAT
with SHA conflict analyzer and MapleSAT with both of these callbacks. We also
experimented with Opturion CPX [31], which is a constraint solver that combines
CP and SAT solving techniques, and won several medals in Minizinc challenge
2015. But unfortunately it performed very poorly on our benchmark, and could
solve only a few of instances of 32-bit fault model. The timings in the plot
belong to the 32-bit fault model with 11 faults injected in SHA-1, and 48 faults
in SHA-2. The plot shows that by embedding the external verification loop inside
the SHA conflict analyzer and early detection of inconsistent solutions (rather
than waiting for the instance to be completely solved), we can solve two more
instances in SHA-1 and 14 more instances in SHA-2. But the main performance
boost belongs to the propagation enhancement, in which the solver solves 6 more
instances within the time limit in SHA-1, and 28 more instance in SHA-2. From
the point of view of number of faults, the lowest number of faults that base
version of MapleSAT can recover the secret bits for all of the random messages,
is 14, where with the programmatic MapleSAT, it is 11. For the case of SHA-2
the gap is larger and base version needs at least 64 faults, versus 48 faults needed
by programmatic MapleSAT. Comparing the total timings for solving all of the
instances in a fault model, between MapleSAT and programmatic MapleSAT, if
we set the runtime of timed out instances to the time limit, we can see a 2.48x
speedup in SHA-1 and 7.73x speedup in SHA-256. If we use the PAR-2 method
(penalizing the timed out instances by setting their runtime to double the time
limit), which was used in SAT competition 2017, we see a 3.16x speedup in
SHA-1 and 14.3x speedup in SHA-2.

Fig. 2. The cactus plot comparing MapleSAT with the MapleSAT after adding each
of the programmatic callbacks. Each data point (X, Y) on this plot means X fault
instances are solved under Y seconds.

Algebraic Fault Attack on SHA Hash Functions 751

5.4 Discussion

Our results show the versatility of programmatic SAT solver architecture. The
key insight is that by taking a state-of-the-art general purpose SAT solver and
tailoring it to our cryptographic problem, we achieved considerable performance
improvement. Looking at Table 1, one can observe that the data in certain rows
suggests that when more faults are injected, fewer instances are solved. At first
it might seem counterintuitive because adding more faults helps restrict the
search space and hence should improve solver performance. However, note also
that with every added fault equation, the number of clauses in the input to the
solver grows rapidly (especially in the case of SHA-256), which can crucially slow
down propagation. Thus there is a tradeoff between search space reduction and
formula size that the cryptanalyst has to contend with.

6 Related Work

The research on fault attacks on SHA-like cryptographic structures was started
by Li et al. [23], where they applied a DFA on SHACAL-1, a block cipher based
on the structure of SHA-1. Hemme et al. [19] extended their attack to SHA-1.
The challenge of applying DFA on SHA-1 is the following: after applying the
compression function of SHA-1 on the initialization vector (IV) and the message
words, the value of IV is added to the output to make the chaining value for
the next block. Hemme et al. handled this addition layer with separate fault
injections, and then launched an attack similar to [23]. This is a key reason as to
why their attack needs more than thousand faults to be applicable. Our results
show that an AFA can succeed with far fewer number of injected faults. In the
same fault model of 32 bits, we can find the secret bits with 11 faults.

Jeong et al. [22] proposed a fault attack on the HMAC setting of SHA-2
and showed that key values of size n can be recovered with approximately n/3
faults. Hao et al. [18] presented an AFA on SHA-2. They first perform a round of
fault injections to recover the last internal state before the final addition. Then
they inject some more faults, encode and solve 4 rounds of SHA-256 at a time,
fixing the found values at each step for the next solving step. This approach
keeps the size of each fault instance small, but the problem is that if the found
solution is inconsistent with the chaining input and correct hash value in the
final solution, there is no comeback and no fixing mechanism is used. They use
65 faults in total for recovering the last 16 message words and hence full state
recovery of SHA-256. They use STP [16] for solving the algebraic equations. For
the same fault model, we can recover the secret bits with far fewer faults than
their work. In the 32-bit fault model, we achieve the same results with 48 faults.

7 Conclusion and Future Work

We present a new approach to algebraic fault-injection attack on SHA-1 and
SHA-2, based on a programmatic version of the MapleSAT solver with SHA-
enhanced conflict clause analysis and propagation tailored to the AFA setting.

752 S. Nejati et al.

We evaluated our attack under different assumptions, i.e., the number of injected
faults and the maximal weight of faults, and presented results showing that we
can recover the secret bits with far fewer injected faults compared to the previous
best fault attack methods aimed at SHA-1 and SHA-2. Our programmatic solver
can achieve a speedup of up to 14x compared to the baseline solver. Furthermore,
our method scales much better than previous AFA approaches. In the future we
plan to extend our work to SHA-3, HMAC, and block ciphers.

Acknowledgments. The authors would like to thank Jia Hui Liang for his support
with MapleSAT. The second author was financially supported by the DFG project
“Algebraische Fehlerangriffe” [KR 1907/6-2].

References

1. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12510-2 13

2. Ali, S.S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES:
towards reaching its limits. J. Crypt. Eng. 3(2), 73–97 (2013)

3. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 19

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

8. Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., Czarnecki, K.: Math-
Check2: A SAT+CAS verifier for combinatorial conjectures. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp.
117–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6 9

9. Bright, C., Kotsireas, I., Ganesh, V.: A SAT+CAS method for enumerating
Williamson matrices of even order. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2–7 February
2018, pp. 6573–6580 (2018)

10. Courtois, N.T., Jackson, K., Ware, D.: Fault-algebraic attacks on inner rounds of
DES. In: e-Smart 2010 Proceedings: The Future of Digital Security Technologies.
Strategies Telecom and Multimedia (2010)

https://doi.org/10.1007/978-3-642-12510-2_13
https://doi.org/10.1007/978-3-642-02777-2_19
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-319-45641-6_9

Algebraic Fault Attack on SHA Hash Functions 753

11. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
612–630. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 25

12. Eastlake 3rd, D., Hansen, T.: US secure hash algorithms (SHA and SHA-based
HMAC and HKDF). Technical report (2011)

13. Eén, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2, 1–26 (2006)

14. FIPS Publication: 180–4. Federal Information Processing Standards Publication,
Secure Hash (2011)

15. Fischer, W., Reuter, C.A.: Differential fault analysis on Grøstl. In: 2012 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 44–54. IEEE
(2012)

16. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

17. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: a programmatic SAT solver for the RNA-folding problem. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 12

18. Hao, R., Li, B., Ma, B., Song, L.: Algebraic fault attack on the SHA-256 compres-
sion function. Int. J. Res. Comput. Sci. 4(2), 1 (2014)

19. Hemme, L., Hoffmann, L.: Differential fault analysis on the SHA-1 compression
function. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 54–62. IEEE (2011)

20. Hojśık, M., Rudolf, B.: Differential fault analysis of trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

21. Jeong, K., Lee, C.: Differential fault analysis on block cipher LED-64. In: (Jong
Hyuk) Park, J.J., Leung, V., Wang, C.L., Shon, T. (eds.) Future Information Tech-
nology, Application, and Service. LNEE, vol. 164, pp. 747–755. Springer, Dordrecht
(2012). https://doi.org/10.1007/978-94-007-4516-2 79

22. Jeong, K., Lee, Y., Sung, J., Hong, S.: Security analysis of HMAC/NMAC by using
fault injection. J. Appl. Math. 2013, 6 (2013)

23. Li, R., Li, C., Gong, C.: Differential fault analysis on SHACAL-1. In: 2009 Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 120–126.
IEEE (2009)

24. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

25. Luo, P., Athanasiou, K., Fei, Y., Wahl, T.: Algebraic fault analysis of SHA-3. In:
2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
151–156. IEEE (2017)

26. Luo, P., Fei, Y., Zhang, L., Ding, A.A.: Differential fault analysis of SHA3-224 and
SHA3-256. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 4–15. IEEE (2016)

27. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

28. Mohamed, M.S.E., Bulygin, S., Buchmann, J.: Improved differential fault analysis
of Trivium. In: COSADE 2011, pp. 147–158 (2011)

https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-642-31612-8_12
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-94-007-4516-2_79
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9

754 S. Nejati et al.

29. Nejati, S., Liang, J.H., Gebotys, C., Czarnecki, K., Ganesh, V.: Adaptive restart
and CEGAR-based solver for inverting cryptographic hash functions. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 120–131. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 8

30. Nossum, V.: SAT-based Preimage Attacks on SHA-1 (2012)
31. Opturion: Opturion CPX 1.0.2. http://cpx.opturion.com/cpx.html. Accessed 30

Mar 2018
32. Philipp, T., Steinke, P.: PBLib – a library for encoding pseudo-boolean constraints

into CNF. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 9–16.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 2

33. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

34. Wang, W., Søndergaard, H., Stuckey, P.J.: A bit-vector solver with word-level
propagation. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 374–
391. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2 27

35. Zhang, F., Zhao, X., Guo, S., Wang, T., Shi, Z.: Improved algebraic fault analysis:
a case study on piccolo and applications to other lightweight block ciphers. In:
Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 62–79. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40026-1 5

36. Zhao, X., Guo, S., Zhang, F., Shi, Z., Ma, C., Wang, T.: Improving and evaluating
differential fault analysis on LED with algebraic techniques. In: 2013 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 41–51. IEEE (2013)

https://doi.org/10.1007/978-3-319-72308-2_8
http://cpx.opturion.com/cpx.html
https://doi.org/10.1007/978-3-319-24318-4_2
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-33954-2_27
https://doi.org/10.1007/978-3-642-40026-1_5

Correction to: PW-CT: Extending
Compact-Table to Enforce Pairwise
Consistency on Table Constraints

Anthony Schneider and Berthe Y. Choueiry

Correction to:
Chapter “PW-AC: Extending Compact-Table to Enforce
Pairwise Consistency on Table Constraints”
in: J. Hooker (Ed.): Principles and Practice of Constraint
Programming, LNCS 11008,
https://doi.org/10.1007/978-3-319-98334-9_23

The original version of the chapter was revised. The title has been corrected.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-98334-9_23

© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, p. E1, 2018.
https://doi.org/10.1007/978-3-319-98334-9_48

https://doi.org/10.1007/978-3-319-98334-9_23
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_48&domain=pdf
https://doi.org/10.1007/978-3-319-98334-9_23

Correction to: MLIC: A MaxSAT-Based
Framework for Learning Interpretable

Classification Rules

Dmitry Malioutov and Kuldeep S. Meel

Correction to:
Chapter “MLIC: A MaxSAT-Based Framework for Learning
Interpretable Classification Rules” in: J. Hooker (Ed.):
Principles and Practice of Constraint Programming,
LNCS 11008, https://doi.org/10.1007/978-3-319-98334-9_21

In the original version of this paper there was a typing error in the family name of the
first author. “Dmitry Maliotov” should have been “Dmitry Malioutov”. This has now
been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-319-98334-9_21

© Springer Nature Switzerland AG 2019
J. Hooker (Ed.): CP 2018, LNCS 11008, p. C1, 2018.
https://doi.org/10.1007/978-3-319-98334-9_49

https://doi.org/10.1007/978-3-319-98334-9_21
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_49&domain=pdf
https://doi.org/10.1007/978-3-319-98334-9_21

Abstracts

Encoding Cardinality Constraints Using
Multiway Merge Selection Networks

Micha�l Karpiński(B) and Marek Piotrów

Institute of Computer Science, University of Wroc�law,
Joliot-Curie 15, 50-383 Wroc�law, Poland

{karp,mpi}@cs.uni.wroc.pl

Abstract. Boolean cardinality constraints (CCs) state that at most (at
least, or exactly) k out of n propositional literals can be true. We propose
a new, arc-consistent, easy to implement and efficient encoding of CCs
based on a new class of selection networks. Several comparator networks
have been recently proposed for encoding CCs and experiments have
proved their efficiency. In our construction we use the idea of the mul-
tiway merge sorting networks by Lee and Batcher that generalizes the
technique of odd-even sorting ones by merging simultaneously more than
two subsequences. The new selection network merges 4 subsequences in
that way. Based on this construction, we can encode more efficiently
comparators in the combine phase of the network: instead of encoding
each comparator separately by 3 clauses and 2 additional variables, we
propose an encoding scheme that requires 5 clauses and 2 variables on
average for each pair of comparators. We also extend the model of com-
parator networks so that the basic components are not only comparators
(2-sorters) but more general m-sorters, for m ∈ {2, 3, 4}, that can also
be encoded efficiently. We show that with small overhead (regarding
implementation complexity) we can achieve a significant improvement in
SAT-solver runtime for many test cases. We prove that the new encoding
is competitive to the other state-of-the-art encodings.

We present a detailed description of 4-way merge selection networks, where a
set of n inputs is split into 4 subsets, from which the k largest elements are
recursively selected and the results are merged to obtain the k largest items of
the set. We show how to translate such a network into an efficient CNF encoding
of a less-than-k cardinality constraint over n literals and estimate the numbers
of variables/clauses used in it. We calculate that the CNF encoding based on
our network is smaller than the CNF encoding based on the previously-known
2-way merge version. Finally, the new encoding is compared with the selected
state-of-the-art encodings based on comparator networks, adders and binary
decision diagrams as well as with two popular general constraints solvers –
PBLib and npSolver. The experimental evaluation shows that the new encod-
ing yields better speed-up and overall runtime in the SAT-solver performance.

Full paper to be published in Constraints.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 757–758, 2018.
https://doi.org/10.1007/978-3-319-98334-9

758 M. Karpiński and M. Piotrów

The construction is parametrized by any values of k and n, so they can be
further optimized by mixing them with other constructions. For example, in our
experiments we mixed them with the direct encoding of subproblems with small
values of the parameters.

Not All FPRASs Are Equal: Demystifying
FPRASs for DNF-Counting

(Extended Abstract)

Kuldeep S. Meel1, Aditya A. Shrotri2(B), and Moshe Y. Vardi2

1 National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

2 Rice University, Houston, USA
{as128,vardi}@rice.edu

Constrained counting is a fundamental problem in artificial intelligence with
a wide variety of applications ranging from network reliability, probabilistic
inference, quantified information flow, and the like. We focus on the variant
of constrained counting known as DNF-Counting or #DNF, in which the con-
straints are expressed in Disjunctive Normal Form (DNF). #DNF is important
in practice, as problems like query evaluation in probabilistic databases and
failure-probability estimation of networks reduce to it. Due to the intractabil-
ity of the exact version, however, efforts have focused on the design of approxi-
mate techniques for #DNF. Consequently, several Fully Polynomial Randomized
Approximation Schemes (FPRASs) based on Monte Carlo techniques have been
proposed [1]. Recently, it was discovered that hashing-based techniques too lend
themselves to FPRASs for #DNF. Despite significant improvements, the com-
plexity of the hashing-based FPRAS is still worse than that of the best Monte
Carlo FPRAS by polylog factors [2]. Two questions were left unanswered in pre-
vious works: Can the complexity of the hashing-based techniques be improved?
How do the various approaches stack up against each other empirically?

In this paper, we first propose a new search procedure for the hashing-based
FPRAS that removes the polylog factors from its time complexity. We then
present the first empirical study of runtime behavior of different FPRASs for
#DNF. We tested the FPRASs across parameters such as formula-size, tolerance
and confidence. We measured running time, accuracy, scalability and the number
of instances solved. The result of our study produces a nuanced picture. Firstly,
we observe that there is no single best algorithm that outperforms all others for
all classes of formulas and parameters. Second, we observe that the worst-case
complexity analysis is a poor guide to the actual performance of the algorithm.

References

1. Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability prob-
lems. In: Proceedings of FOCS (1983)

2. Meel, K.S., Shrotri, A.A., Vardi, M.Y.: On hashing-based approaches to approximate
DNF-counting. In: Proceedings of FSTTCS (2017)

Full version to appear in Constraints.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, p. 759, 2018.
https://doi.org/10.1007/978-3-319-98334-9

Constraint Games for Stable and Optimal
Allocation of Demands in SDN

Anthony Palmieri1,2, Arnaud Lallouet1,2(B), and Luc Pons1

1 Huawei Technologies Ltd., French Research Center, Boulogne-Billancourt, France
{anthony.palmieri,arnaud.lallouet,luc.pons}@huawei.com

2 GREYC - Université de Caen , Normandie, France

Software Defined Networking (or SDN) allows to apply a centralized control
over a network of commuters in order to provide better global performances [1].
One of the problem to solve in this context is the multi-commodity path rout-
ing (MCPRP) where a set of demands have to be routed at minimum cost in
presence of congestion. We study centralized routing with Constraint Program-
ming and selfish routing with Constraint Games. Selfish routing is important for
the perceived quality of the solution since no user is able to improve his cost
by changing only his own path. A common measure of the loss induced by a
decentralized equilibrium with respect to a centralized optimum is the Price of
Anarchy.

For each demand a single route from the source to the destination node is to
be computed such that the sum of bandwidth routed by a link does not exceed its
capacity. Solving a MCPRP to optimality means finding a solution minimizing
the global cost of the demands. For the problem of finding a Nash equilibrium,
each demand is considered as a player and its individual solution path should
also be optimal.

We have used a constraint path model (var array with alldiff + subpath) and
several heuristics based on Dijkstra’s shortest path to ensure that the search
space will be explored in a meaningful way. In addition to the heuristics, a
specific lower bound for the remaining sub-problem is computed and used in the
branch and bound procedure to drastically cut the search space. Selfish routing
is modeled using Constraint Games and the solver Conga [2].

Results on synthetic and real instances show that the performance of CP
with the given heuristics and branch and bound is able to solve the classical
industrial instances. Results on games show that the Price of Anarchy is close
to 1 for many instances, meaning that decentralized algorithms are likely to
perform well for this type of problems. Moreover, Constraint games allow to
solve up to optimality meaningful games of unprecedented size up to more than
a thousands of players with a large space of strategies.

This article will be published in Constraints.

c© Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 760–761, 2018.
https://doi.org/10.1007/978-3-319-98334-9

Constraint Games for Stable and Optimal Allocation of Demands in SDN 761

References

1. Mendiola, A., Astorga, J., Jacob, E., Higuero, M.: A survey on the contributions
of software-defined networking to traffic engineering. IEEE Commun. Surv. Tutor.
19(2), 918–953 (2017). https://doi.org/10.1109/COMST.2016.2633579

2. Palmieri, A., Lallouet, A.: Constraint games revisited. In: Sierra, C. (ed.) IJCAI
2017, Melbourne, Australia. pp. 729–735 (2017). ijcai.org

https://doi.org/10.1109/COMST.2016.2633579
https://ijcai.org/

Author Index

Aïmeur, Esma 229
Akgün, Özgür 3, 362, 727
Amadini, Roberto 13
Ansotegui, Carlos 524

Belov, Gleb 473
Bessiere, Christian 537
Birnbaum, Philippe 507
Bit-Monnot, Arthur 30
Bono, Massimo 47
Boughaci, Dalila 229
Briot, Nicolas 389

Cappart, Quentin 490
Choueiry, Berthe Y. 345
Chu, Geoffrey 99
Cohen, David A. 64
Cohen, Liel 669
Cooper, Martin C. 64
Cruz, Waldemar 259, 613
Czarnecki, Krzysztof 436, 453
Czauderna, Tobias 473

de la Banda, Maria Garcia 81, 403, 473
Dekker, Jip J. 81
Demirović, Emir 99
Dlala, Imen Ouled 554, 570

Egly, Uwe 276

Fichte, Johannes K. 109
Fioretto, Ferdinando 688
Fossé, Rohan 128

Ganesh, Vijay 436, 453, 737
Gange, Graeme 13, 144, 649
Gebotys, Catherine 737
Gent, Ian P. 3, 727
Gerevini, Alfonso Emilio 47
Glorian, Gael 160
Gomes, Carla 601

He, Shan 649
Hebrard, Emmanuel 179

Hecher, Markus 109
Hoang, Khoi D. 688
Hoos, Holger H. 195
Horáček, Jan 737

Ingmar, Linnea 210

Jabbour, Said 554, 570
Jefferson, Christopher 3, 727
Jguirim, Wafa 64
Joshi, Saurabh 219
Justeau-Allaire, Dimitri 507

Karpiński, Michał 757
Katsirelos, George 179
Khelifa, Meriem 229
Klapperstueck, Matthias 473
Koenig, Sven 588
Kumar, Prateek 219
Kumar, T. K. Satish 588

Lagniez, Jean-Marie 160
Lallouet, Arnaud 760
Lazaar, Nadjib 537
Lee, Jasper C. H. 242
Lee, Jimmy H. M. 242
Leo, Kevin 403
Levit, Vadim 707
Liang, Jia Hui 436, 453
Liebman, Ariel 649
Liu, Fanghui 259, 613
Lodha, Neha 109
Lonsing, Florian 276
Lorca, Xavier 507

Maamar, Mehdi 537
Madelaine, Florent 295
Malioutov, Dmitry 312
Mana, Fatima Ezzahra 554
Martins, Ruben 219, 436, 453
Meel, Kuldeep S. 312, 759
Meisels, Amnon 707
Michel, Laurent 259, 613
Miguel, Ian 3, 362, 727

Miné, Antoine 420
Montmirail, Valentin 160

Nejati, Saeed 737
Nightingale, Peter 3, 727

Palmieri, Anthony 328, 760
Peitl, Tomáš 195
Pelleau, Marie 420
Perez, Guillaume 328, 601
Piotrów, Marek 757
Pons, Luc 760
Pontelli, Enrico 688

Raddaoui, Badran 554, 570
Rao, Sukrut 219
Rappazzo, Brendan 601
Robere, Robert 453
Rousseau, Louis-Martin 490

Sais, Lakhdar 554, 570
Salamon, András Z. 3
Sarigiannidis, Panagiotis G. 373
Schaus, Pierre 490
Schneider, Anthony 345
Schulte, Christian 210
Schutt, Andreas 81
Secouard, Stéphane 295
Sellmann, Meinolf 524
Senthooran, Ilankaikone 473
Shrotri, Aditya A. 759
Simon, Laurent 128

Sioutis, Michael 160
Slivovsky, Friedrich 195
Smith, Mitch 473
Spracklen, Patrick 362
Stergiou, Kostas 373
Stuckey, Peter J. 13, 81, 99, 144
Szeider, Stefan 109, 195

Tack, Guido 81, 403
Tesch, Alexander 629
Thomas, Charles 490
Tierney, Kevin 524
Truchet, Charlotte 420
Tsouros, Dimosthenis C. 373

Vardi, Moshe Y. 759
Vismara, Philippe 389

Wallace, Mark 473, 649
Wilson, Campbell 649
Wintersteiger, Christoph M. 436, 453
Wybrow, Michael 473

Xu, Hong 588

Yeoh, William 688

Zeighami, Kiana 403
Zhong, Allen Z. 242
Ziat, Ghiles 420
Zivan, Roie 669, 688
Zulkoski, Edward 436, 453

764 Author Index

	Preface
	Workshops and Tutorials
	Conference Organization
	Abstracts of Invited Talks
	Potential Applications of CP in Industrial Scheduling
	Towards the Holy Grail in Machine Learning
	Constraints at the Heart of Classical Planning
	Contents
	Main Technical Track
	Automatic Discovery and Exploitation of Promising Subproblems for Tabulation
	1 Introduction
	2 Identifying Promising Subproblems for Tabulation
	3 Experimental Evaluation: Baseline
	4 Experimental Evaluation: New Case Studies
	5 Conclusions
	References

	Propagating Regular Membership with Dashed Strings
	1 Introduction
	2 Preliminaries
	2.1 Dashed Strings
	2.2 G-Strings Solver
	2.3 Automata and Regular Expressions

	3 Propagating regular on Dashed Strings
	3.1 Propagation

	4 Regular Expressions Decomposition
	5 Evaluation
	5.1 AppScan and Stranger Benchmarks
	5.2 Norn Benchmark

	6 Conclusion
	References

	A Constraint-Based Encoding for Domain-Independent Temporal Planning
	1 Introduction
	2 Background
	2.1 A Distilled Planning Problem
	2.2 Temporal Planning as Chronicles

	3 Planning as a Constraint Satisfaction Problem
	3.1 Building Blocks
	3.2 Constraints for Plan Consistency
	3.3 Symmetry Breaking Constraints

	4 Instantiation in a Domain-Independent Planner
	4.1 The ANML Language
	4.2 Solving with SMT
	4.3 Limitations

	5 Experiments
	5.1 Comparison with State of the Art Temporal Planners
	5.2 Comparison with SMTPlan+

	6 Related Work
	7 Conclusion
	References

	Decremental Consistency Checking of Temporal Constraints: Algorithms for the Point Algebra and the ORD-Horn Class
	1 Introduction
	2 Background, Terminology and Notation
	3 Decremental Consistency Checking
	3.1 An Algorithm for D-PSAT: Dpasat
	3.2 An Algorithm for D-OHSAT: Dohsat

	4 Experimental Results
	5 Conclusions and Future Work
	References

	Domain Reduction for Valued Constraints by Generalising Methods from CSP
	1 Introduction, Notation and Definitions
	1.1 Definitions

	2 Value-Merging Rules
	2.1 Applying GASBTP Value Merging

	3 Combining Soft Arc Consistency and SBT-Merging
	4 Effect on Search-Tree Size of Merging
	5 Soft Snakes
	6 Conclusion
	References

	Solver-Independent Large Neighbourhood Search
	1 Introduction
	2 Background
	3 Modelling of Neighbourhoods and Meta-Heuristics
	3.1 LNS in MiniSearch
	3.2 Restart Annotations
	3.3 Neighbourhood Selection
	3.4 Meta-Heuristics

	4 Compilation of Neighbourhoods
	4.1 Compilation Overview
	4.2 Compiling the New Built-Ins
	4.3 Solver Support for LNS FlatZinc

	5 Experiments
	6 Related Work and Conclusion
	References

	Solution-Based Phase Saving for CP: A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers
	1 Introduction
	2 Preliminaries
	3 Experiments
	3.1 Comparison

	4 Relationship with Large Neighbourhood Search
	4.1 Restarts Versus Neighbourhood Size
	4.2 Dynamic Search and Phase Saving Versus Neighbourhoods
	4.3 Further Differences

	5 Related Work and Conclusion
	References

	An SMT Approach to Fractional Hypertree Width
	1 Introduction
	2 Preliminaries
	3 Ordering-Based Characterization of Fractional Hypertree Width
	4 SMT Encoding
	5 Preprocessing
	6 Symmetry Breaking and Lower Bounds with Cliques
	7 Experimental Work
	7.1 Implementation
	7.2 Benchmark Instances
	7.3 Benchmark Setting
	7.4 Results

	8 Discussion and Conclusions
	References

	On the Non-degeneracy of Unsatisfiability Proof Graphs Produced by SAT Solvers
	1 Introduction
	2 Preliminaries
	2.1 Dependency Graph Induced by the Proof
	2.2 Selection of UNSAT Problems
	2.3 Basic Dependency Graph Properties

	3 Characterization of K-Cores
	3.1 Evolution of K-Cores Along the Computation
	3.2 K-Cores Structure

	4 On Predictions Based on Dependency Graph Analysis
	4.1 Predicting Useful Clauses
	4.2 Detecting Future Learnt Clauses

	5 Analysis of Parallel Proofs
	6 Fast Dependency Graph Analysis
	7 Conclusion
	References

	Sequential Precede Chain for Value Symmetry Elimination
	1 Introduction
	2 The Common Case: value-precede-chain ([1, 2, …, k], X)
	2.1 Propagation
	2.2 Incrementality
	2.3 Explanation

	3 Domain Consistent Decomposition for seq-precede-chain
	4 Mapping value-precede-chain to seq-precede-chain
	5 Experimental Results
	5.1 Concert Hall
	5.2 Capacitated Concert Hall
	5.3 Graph Colouring

	6 Conclusion
	References

	An Incremental SAT-Based Approach to Reason Efficiently on Qualitative Constraint Networks
	1 Introduction
	2 Preliminaries
	2.1 Region Connection Calculus
	2.2 Propositional Logic
	2.3 CEGAR Preliminaries

	3 Encoding RCC8 into SAT
	4 Translating Parsimoniously the Transitivity Constraints
	5 Experimental Results
	6 Conclusion
	References

	Clause Learning and New Bounds for Graph Coloring
	1 Introduction
	2 Clause-Learning Approach
	2.1 Triangle Consistency Propagation
	2.2 Clique-Based Lower Bound
	2.3 Mycielski-Based Bound
	2.4 Branching Heuristic
	2.5 Solution Strategies

	3 Experimental Evaluation
	4 Conclusions
	References

	Portfolio-Based Algorithm Selection for Circuit QBFs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Circuit QBF Solvers
	3.2 AutoFolio

	4 QCIR Instance Features
	5 Per-instance Algorithm Selection for QCIR
	6 Which Features Matter?
	7 Conclusions and Future Work
	References

	Making Compact-Table Compact
	1 Introduction
	2 Compact-Table
	3 Sharing Tables
	4 Dynamically Compact Sparse Bit-Sets
	5 Evaluation
	6 Conclusions and Future Work
	References

	Approximation Strategies for Incomplete MaxSAT
	1 Introduction
	2 Preliminaries
	3 Approximation Strategies
	4 Related Work
	5 Experimental Results
	6 Conclusion and Future Work
	References

	A Novel Graph-Based Heuristic Approach for Solving Sport Scheduling Problem
	1 Introduction
	2 Problem Definition
	3 Related Works
	4 Contributions
	4.1 Step1. Generation of All the Possible Rounds
	4.2 Step2. Enumeration of All the 2(n-1)-cliques of the Graph of the Rounds
	4.3 Step3. Creation of DRRT Schedules

	5 Experiments
	5.1 The Numerical Results

	6 Conclusion
	References

	Augmenting Stream Constraint Programming with Eventuality Conditions
	1 Introduction
	2 Background
	3 The ``Until'' Constraint
	3.1 Normalising ``Until'' Constraints
	3.2 Search Algorithm and Dominance Detection
	3.3 Automaton Pruning

	4 The @ Operator
	4.1 Modified Constraint Normalisation
	4.2 Changes to Dominance Detection

	5 Experimental Results
	5.1 Missionaries and Cannibals
	5.2 Path Planning in Grid World

	6 Concluding Remarks
	References

	A Complete Tolerant Algebraic Side-Channel Attack for AES with CP
	1 Introduction
	2 AES Overview
	3 TASCA over Restricted AES
	4 TASCA over Full AES
	5 Approaches
	5.1 Preliminaries
	5.2 A Staged Approach
	5.3 Integrated Approach

	6 Experimental Setup
	6.1 IP Approach
	6.2 Integrated
	6.3 Staged
	6.4 Solution Pool

	7 Conclusion
	References

	Evaluating QBF Solvers: Quantifier Alternations Matter
	1 Introduction
	2 Preliminaries
	3 Experimental Setup
	4 Experimental Results
	4.1 Solved Instances: Overall Rankings
	4.2 Solved Instances: Class-Based Analysis
	4.3 Virtual Best Solver Analysis
	4.4 Discussion

	5 Conclusion
	References

	Quantified Valued Constraint Satisfaction Problem
	1 Introduction
	2 Preliminaries
	3 Definition and Examples of QVCSP
	4 Some Tractable Languages
	4.1 Essentially Crisp Languages
	4.2 Permutations and Unary

	5 Collapsibility in the Valued Settings
	6 Proof of Theorem4
	7 Conclusion
	References

	MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules
	1 Introduction
	2 Preliminaries
	3 MLIC: MaxSAT-Based Learning of Interpretable Classifiers
	3.1 Balancing Accuracy and Intrepretability
	3.2 Discretization of Features
	3.3 Transformation to Max-SAT Query
	3.4 Illustrate Example
	3.5 Beyond CNF Rules
	3.6 Complex Objective Functions

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Illustrative Example
	4.3 Results

	5 Related Work
	6 Extensions
	7 Conclusion
	References

	Objective as a Feature for Robust Search Strategies
	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problem (CSP)
	2.2 Search Strategies

	3 Objective Function and Search Strategy
	3.1 Objective Modifications as a Feature
	3.2 Objective-Based Selector (OBS)
	3.3 Hybridization of Search Strategies

	4 Experiments
	4.1 The Experimental Setting
	4.2 OBS Evaluation
	4.3 Evaluation of Hybrid Strategies
	4.4 Overall Evaluation

	5 Related Work
	6 Conclusion
	References

	PW-AC: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints
	1 Introduction
	2 Background
	3 Related Work
	4 Improving PWC Algorithms
	4.1 Piecewise Functionality
	4.2 Pairwise Vs Subscope Reasoning
	4.3 Minimal Dual Graph
	4.4 Determining When GAC Is Enough to Enforce PWC

	5 PW-CT
	5.1 Data Structures
	5.2 Enforcing PW-CT

	6 Experiments
	7 Conclusion
	References

	Automatic Generation and Selection of Streamlined Constraint Models via Monte Carlo Search on a Model Lattice
	1 Introduction and Background
	2 Essence Specifications and Streamliner Generators
	3 Monte Carlo Search for Streamliner Combinations
	3.1 Algorithm Outline
	3.2 Back Propagation
	3.3 Simulation Reward
	3.4 Expansion Heuristic
	3.5 Pruning the Streamliner Lattice

	4 Empirical Evaluation
	5 Conclusion
	References

	Efficient Methods for Constraint Acquisition
	1 Introduction
	2 Background
	3 Algorithms for Constraint Acquisition
	4 Efficient Constraint Acquisition
	4.1 Multi-QuAcq
	4.2 FindScope-2
	4.3 Exploiting Partial Queries

	5 Experimental Evaluation
	5.1 Results

	6 Conclusion
	References

	A Circuit Constraint for Multiple Tours Problems
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The WeightedSubCircuits Constraint
	4.1 Definition
	4.2 Decomposition

	5 Propagation
	5.1 NoSubTours
	5.2 WeightedSubCircuits

	6 Experimental Results
	7 Conclusion
	References

	Towards Semi-Automatic Learning-Based Model Transformation
	1 Introduction
	2 Background
	3 Towards Automation: The freepizza case
	3.1 Renaming Literals
	3.2 Simplifying Literals and Clauses
	3.3 Connecting Clauses to the Constraints in the Model
	3.4 Finding Patterns Among Clauses
	3.5 Inferring Facts for Clause Patterns
	3.6 Finding Patterns Across Searches and Across Instances

	4 Preliminary Case Studies
	4.1 Case Study 1: Redundant Constraints
	4.2 Case Study 2: Strengthening Model Constraints

	5 Status and Limitations
	6 Conclusions
	References

	Finding Solutions by Finding Inconsistencies
	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Consistency
	2.3 Solving Method

	3 Elimination
	3.1 Elimination for One Constraint
	3.2 Difference Operator
	3.3 New Solving Step

	4 Experiments
	4.1 Protocol
	4.2 Description
	4.3 Analysis

	5 Conclusion
	References

	The Effect of Structural Measurespg and Merges on SAT Solver Performance
	1 Introduction
	1.1 Contributions

	2 Background
	3 Related Work
	4 Relating SAT Measures to CDCL Performance
	4.1 Relating Measures to Performance by Sub-category

	5 Generating Mergeable Formulas
	5.1 Properties of the Generator
	5.2 Mergeability of Random-kSat Instances

	6 The Effect of Merges on CDCL Performance
	6.1 Experiment

	7 Future Work and Conclusions
	References

	Learning-Sensitive Backdoorspg with Restarts
	1 Introduction
	2 Related Work
	3 Background
	3.1 Backdoors
	3.2 Two Formula Families

	4 Extending Learning-Sensitive Backdoors
	4.1 Separating LS and LSR Backdoors
	4.2 The Effect of Clause-Learning Schemes
	4.3 Properties of LS and LSR Backdoors

	5 Relating LSR Backdoors to CDCL Proofs
	5.1 Computing LSR Backdoors Using the LaSeR Tool
	5.2 Empirical Results

	6 Conclusions and Future Work
	References

	Applications Track
	Process Plant Layout Optimization: Equipment Allocation
	1 Introduction
	2 Literature Review
	3 Full System and Key Role of Constraint Programming
	4 An Optimization Model for Equipment Allocation
	4.1 Input and Derived Data
	4.2 Decision Variables
	4.3 Functions
	4.4 Constraints and Objective Function

	5 Overall Approach and Implementation
	6 Evaluation
	7 Conclusions
	References

	A Constraint Programming Approach for Solving Patient Transportation Problems
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Modeling
	5 Extensions of the Model
	6 Experimental Results
	7 Conclusion and Perspective
	References

	Unifying Reserve Design Strategies with Graph Theory and Constraint Programming
	1 Introduction
	2 Description of the Problem
	2.1 Characteristics of the Problem – Input Data
	2.2 The Reserve System – Solution of the Problem
	2.3 Required Criteria for a Reserve System

	3 The Graph-Based Models
	3.1 The Resource Allocation Graph
	3.2 The Spatial Graph

	4 The CP Model
	5 Use Case: Rainforest Fragmentation in New Caledonia
	5.1 Input Data, Constraints and Parameters
	5.2 Questioning and Results

	6 Conclusion and Challenges
	References

	Self-configuring Cost-Sensitive Hierarchical Clustering with Recourse
	1 Introduction
	2 Related Work on Algorithm Selection
	3 Cost-Sensitive Hierarchical Clustering
	4 Classification Confidence and Recourse
	4.1 Confidence Assessment
	4.2 Recourse Actions

	5 Configuring the Algorithm Selector
	5.1 Importance of Calibration
	5.2 Gender-Based Genetic Algorithm Configuration
	5.3 Parameters of CSHC-Recourse

	6 Experimental Analysis
	7 Conclusion
	References

	CP and Data Science Track
	User's Constraints in Itemset Mining
	1 Introduction
	2 Background
	2.1 Itemset Mining
	2.2 Constraint Programming (CP)
	2.3 CP Models for Itemset Mining

	3 User's Constraints Taxonomy
	3.1 User's Constraints on Itemsets
	3.2 User's Constraints on Items
	3.3 User's Constraints on Transactions
	3.4 User's Constraints on Items and Transactions
	3.5 A Simple Illustration: Where Ferrari Cars Are Frequently Bought?

	4 A General CP Model for Itemset Mining
	4.1 Variables
	4.2 Constraints

	5 ItemSet Model: Cases Studies
	6 Experimental Evaluation
	6.1 Benchmark Datasets
	6.2 Experimental Protocol
	6.3 Query Q1
	6.4 Query Q2
	6.5 Query Q3
	6.6 Query Q4

	7 Related Work
	8 Conclusion
	References

	On Maximal Frequent Itemsets Mining with Constraints
	1 Introduction
	2 Related Works
	3 Technical Background
	3.1 Propositional Satisfiability (SAT)
	3.2 Frequent Itemset Mining
	3.3 SAT-Based Itemset Mining

	4 SAT-Based Approach for Efficient MFI Mining
	5 Experimental Validation
	6 Conclusion
	References

	A Parallel SAT-Based Framework for Closed Frequent Itemsets Mining
	1 Introduction
	2 Technical Background and Preliminary Definitions
	2.1 Propositional Logic and SAT Problem
	2.2 Parallel SAT Solving
	2.3 Itemset Mining Problem Based on Boolean Satisfiability

	3 Partition-Based Parallel SAT Approach for CFIM
	4 Experimental Results
	4.1 Sequential Evaluation
	4.2 Parallel Evaluation
	4.3 Load Balancing

	5 Conclusion
	References

	Towards Effective Deep Learning for Constraint Satisfaction Problems
	1 Introduction
	2 Enabling Deep Learning for CSPs
	2.1 Efficient Massive Training Data Generation
	2.2 Training and Prediction on General CSP Datasets

	3 Experimental Evaluation
	4 Conclusions and Future Work
	References

	CP and Music Track
	Extending the Capacity of 1/f Noise Generation
	1 Introduction
	2 Preliminaries
	3 Shifted Dice
	4 Probabilistic Dice
	5 Sequence Generation
	6 Conclusion
	References

	CP and Operations Research Track
	Securely and Automatically Deploying Micro-services in an Hybrid Cloud Infrastructure
	1 Introduction
	2 Related Work
	3 Model
	3.1 Problem Definition
	3.2 Variables
	3.3 Constraints

	4 Search Strategy
	4.1 MIP
	4.2 CP with LNS
	4.3 Hybrid

	5 Results
	6 Conclusion
	References

	Improving Energetic Propagations for Cumulative Scheduling
	1 Introduction
	1.1 Previous Work
	1.2 Results

	2 Energetic Edge-Finding
	3 Algorithm
	3.1 Decomposition Phase
	3.2 Detection Phase
	3.3 Update Phase
	3.4 Integration of Symmetric Intervals

	4 Relation to Standard and Extended Edge-Finding
	5 Improving Propagations by Detectable Precedences
	6 Computational Results
	7 Conclusion
	References

	CP, Optimization, and Power System Management Track
	A Fast and Scalable Algorithm for Scheduling Large Numbers of Devices Under Real-Time Pricing
	1 Introduction
	2 Related Work
	3 Models
	4 Fast, Scalable, Distributed and Noncooperative Device Scheduling Method
	4.1 Iterative Communication Process and Frank-Wolfe
	4.2 Device Scheduling Problem for Households
	4.3 Pricing Problem
	4.4 Schedule Probability Distribution

	5 Experiments
	5.1 Results
	5.2 Analysis

	6 Conclusions
	References

	Multiagent and Parallel CP Track
	Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs
	1 Introduction
	2 Related Work
	3 Background
	3.1 Distributed Constraint Optimization
	3.2 The Max-Sum Algorithm

	4 Split Constraint Factor Graphs
	5 Splitting a Single Constraint
	6 Experimental Evaluation
	6.1 Runtime Overhead
	6.2 Discussion

	7 Conclusion
	References

	A Large Neighboring Search Schema for Multi-agent Optimization
	1 Introduction
	2 Background
	3 The DLNS Framework
	3.1 Destroy Phase
	3.2 Repair Phase
	3.3 Bounding Phase

	4 Tree-Based DLNS (T-DLNS)
	5 Theoretical Properties
	6 Related Work
	7 Experimental Results
	8 Conclusions
	References

	Distributed Constrained Search by Selfish Agents for Efficient Equilibria
	1 Introduction
	2 Preliminaries
	2.1 Multi-agents Games
	2.2 Transfer Functions and Side Payments

	3 Finding Efficient Equilibria
	3.1 The INEA Algorithm
	3.2 Correctness

	4 Experimental Evaluation
	4.1 Problem Generation
	4.2 Experimental Results

	5 Conclusions
	References

	Testing and Verification Track
	Metamorphic Testing of Constraint Solvers
	1 Introduction
	2 The Constraint Solver Minion
	3 Instance-Based Testing in Minion
	4 Metamorphic Testing in Minion
	5 Tree Comparison
	6 Practical Experience
	6.1 Mutation Testing
	6.2 Limitations of Metamorphic Testing
	6.3 Related Work

	7 Conclusions
	References

	Algebraic Fault Attack on SHA Hash Functions Using Programmatic SAT Solvers
	1 Introduction
	1.1 High-Level Overview of Our Method to Algebraic Fault Attack
	1.2 Contributions

	2 Background
	2.1 Arc Consistency and SAT
	2.2 Description of SHA-1
	2.3 Description of SHA-256

	3 Programmatic Interface in SAT Solvers
	3.1 Programmatic Conflict Analysis
	3.2 Programmatic Propagation

	4 Algebraic Fault Attack on SHA-1 and SHA-2
	4.1 Algebraic Fault Attack
	4.2 Attack Model
	4.3 Attack on SHA-1
	4.4 Attack on SHA-256

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Attack on SHA-1 and SHA-256
	5.3 Performance of the Solver
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Correction to: PW-CT: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints
	Correction to: Chapter “PW-AC: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints” in: J. Hooker (Ed.): Principles and Practice of Constraint Programming, LNCS 11008, https://doi.org/10.1007/978-3-319-98334-9_23

	Correction to: MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules
	Correction to: Chapter “MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules” in: J. Hooker (Ed.): Principles and Practice of Constraint Programming, LNCS 11008, https://doi.org/10.1007/978-3-319-98334-9_21

	Abstracts
	Encoding Cardinality Constraints UsingMultiway Merge Selection Networks
	Not All FPRASs Are Equal: DemystifyingFPRASs for DNF-Counting(Extended Abstract)
	Constraint Games for Stable and OptimalAllocation of Demands in SDN

	Author Index

