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Abstract Loads are expected to help the power grid of the future in balancing the
highs and lows caused by intermittent renewables such as solar and wind. With appro-
priate intelligence, loads will be able manipulate demand around a nominal baseline
so that the increase and decrease of demand appears like charging and discharging
of a battery, thereby creating a virtual energy storage (VES) device. An important
question for the control systems community is: how to control these flexible loads
so that the apparently conflicting goal of maintaining consumers’ quality of service
(QoS) and providing reliable grid support are achieved? We advocate a frequency
domain thinking of handling both of these issues, along the lines of a recent paper.
In this article, we discuss some of the challenges and opportunities in designing
appropriate control algorithms and coordination architectures in obtaining reliable
VES from flexible loads.

1 Introduction

A future power grid is likely to experience significant intermittency in generation
from renewable sources such as solar and wind. This intermittency is illustrated in
Fig. 1; the data comes from BPA (http://www.bpa.org), a balancing authority (BA) in
the Pacific Northwest. The net demand, which is the difference between demand for
power and renewable power generated, must be supplied by controllable generation
resources. The sharp ramps and fast variations in the net demand are a cause of
concern for conventional generators. They are not designed to track such a fast
varying signal. Inability to track the net demand can seriously degrade reliability of
the power grid: if demand—supply imbalance becomes too large, the grid frequency
deviates far from the nominal value of 60 Hz, and cascading blackouts can occur.
Additional resources are needed to mitigate the volatility created by solar and
wind. One possibility is to employ sufficient standby generation that can ramp up
and down quickly, such as hydro and gas. Hydro is limited by geography, while the
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Fig.1 (Top) Total demand and renewable generation, and (bottom) net demand in BPA (Bonneville
Power Administration: http://www.bpa.gov), April 19-22, 2016

use of additional fossil plants as backup will negate the environmental benefits of
renewables, apart from increasing the overall cost of energy. The business case for
the power plant owners is also questionable since the plants would not sell much
energy, which is already causing a few power plants to close [1]. Another possibility
is to employ sufficient energy storage resources such as batteries, flywheels, pumped
hydro, and compressed air systems. At present, this is a prohibitively expensive
option. We discuss the cost of batteries in Sect.4. The third possibility is to equip
loads with intelligence so that their demand can be varied in such a way that mismatch
between demand and generation is reduced. In fact, with the help of appropriate
control algorithms, loads that have some flexibility in their power demand can be
made to provide the same service as that of a battery. We call this virtual energy
storage (VES) from flexible loads; see Fig. 2 for a schematic. This is to be contrasted
with real energy storage (RES), which include batteries, pumped hydro, flywheels,
compressed air, etc.

This paper describes some of the technological challenges and opportunities in
obtaining VES from flexible loads. Any technological solution to obtaining grid
support from loads must consider its effect on consumers. After all, all loads are
used by consumers to provide a certain function, and they have certain expectation
of the quality of service (QoS) from those loads.

There is a fast-growing literature on the control of flexible loads to provide grid
support services. A dominant paradigm in this literature is control and coordination
of loads through real-time prices of electricity, or some other market-based mecha-
nism; see [2, 3] and references therein. These viewpoints have several weaknesses.
One, real-time prices subject consumers to high levels of risk. Real- time prices of
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Fig. 2 Virtual energy
storage (VES) from flexible
loads: demand is varied
around a baseline with the
help of a control algorithm
so that the demand deviation
from the baseline is akin to
the charging and discharging
of a battery
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electricity are volatile even without high penetration of intermittent renewables; see
[4] for examples from around the world. In fact, [4] shows that these volatilities
persist even in an idealized market with participants having no market power (“price
takers”), but occur purely as a result of uncertainty and ramp rate constraints. Two,
they require consumers to assign a dollar value to a change in consumption with an
uncertain QoS loss, e.g., “how much payment is adequate to compensate for a 1 kW
decrease in power consumption?”, such as in [3]. However, the answer to this ques-
tion is likely to change frequently for the same consumer, depending on the context
(during a party, after a workout session), and also depending on how long the loss of
QoS will have to be endured. More recent work on market-based “demand response”
has sought to address some of these issues by moving away from real-time prices;
but using price as a coordination signal meant to help reach an equilibrium; such as
[5]. However, these works also require complex information, such as specification of
utility functions (utility of consumers as a function of consumption). If deployed at
scale, market-based mechanisms may not lead to a reliable service that grid operators
can rely on.

Evidence from existing demand response programs indicate that long- term con-
tracts reduce the risk to consumers while providing a more reliable service to the
balancing authorities. Florida Power & Light has 760,000 residential consumers
enrolled in their On Call demand response program [6]. In return for a monthly
rebate, these consumers allow FP&L to turn off their pool pumps and air condition-
ers a few times in a year. This program has been in place for more than a decade, and
has been effective since consumers are getting a reliable return for a known loss of
QoS. We, therefore, argue that a control architecture based on long-term contracts
between consumers and BAs, with negotiated QoS bounds, offer a reliable consumer
engagement. The control system must ensure that QoS never deviates outside of the
pre-negotiated bounds. Although the rest of the paper is not dependent on long-term
contracts being the only form of payment, we use that assumption to remove market
considerations.

It was argued in [7] that Fourier decomposition provides a convenient framework
to assign grid’s needs to all supply side resources, including traditional generators,
loads providing VES service, and batteries providing RES services. In this paper,
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we further explore the frequency domain thinking. We emphasize that current grid
operation and planning already is based on a similar framework, by breaking down
the requirements by timescale. Base-load power generation is scheduled based on
predictions of the net demand at the slowest timescale (lowest frequency), load fol-
lowing and frequency regulation at intermediate and fast time scales is performed
by automatic generation control that adjusts generation set points [8]. However, cur-
rent taxonomy of generation-side services, such as “frequency regulation” and “load
following” are inadequate in a renewable-rich power grid. In the future, “renewable
following” may be as important a service as load following. Therefore, we avoid
using that taxonomy in the paper.

The rest of the paper is structured as follows. Section2 describes the VES idea in
detail, and summarizes the main challenges in developing local control algorithms
for a load to deliver VES to the grid with guaranteed bounds on its QoS. Section 3
discusses the challenges in developing architectures for distributed coordination of
millions of loads to meet the VES service needed by the grid. Section4 discusses
cost of battery-alone storage and what it means for cost targets of VES technology.

2 Virtual Energy Storage from Flexible Loads

A load’s power consumption can be varied around a baseline to provide a battery-like
service. Let p;(¢) be the baseline power demand of a load (or a collection of loads).
Suppose its (their) demand is varied through the use of appropriate control software
to be p(¢) so that the demand deviation from the baseline:

pves(t) = P(f)—Pb(f) (D

is zero mean: limy_, % fOT Dves(t)dt = 0; cf. Fig.2. We can then say that the load is
providing VES, or, that it is acting like a virtual battery. The demand deviation pys ()
is the charging power consumption of the virtual battery. Positive p.e(#) means the
load is drawing more power from the grid than what it would have under baseline
conditions; so the virtual battery is charging. Conversely, negative pyes(¢) means it
is discharging. The zero-mean nature of the demand deviation means the net energy
consumption/generation of the virtual battery is 0, just like a real battery.
Two questions arise:

e For a specific load and a bound on change of its QoS, what kind of demand
deviation (“virtual charge/discharge signal”) pyes(?) is allowable that ensures the
QoS bound is satisfied? And, how does this vary from load to load?

e How is the net demand signal to be apportioned among the loads so that together
they can supply it, while each load maintains its QoS bound?
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2.1 Constraining Loss of QoS via Constraining Bandwidth

QoS measures vary depending on load type. There are a large variety of flexible
loads, such as refrigeration systems, electric vehicles, pool pumps, water heaters,
data centers, municipal pumping systems, HVAC systems, etc. Each has their own
QoS metrics, and a distinct degree of flexibility. For HVAC, measures of QoS include
indoor temperature and ventilation rate (as a surrogate for indoor air quality). Hot
water heaters—and pool pumps in some areas—are also large sources of demand. A
QoS measure for a pool pump is the average number of hours the pump is on (as a
surrogate for water cleanliness) [9, 10]. For hot water heaters, it is the availability of
hot water that is critical. For an aluminum plant, a measure of QoS is the temperature
of the smelter [11]. For all loads, whether commercial, residential or industrial, QoS
metrics include the cost of energy used' and equipment lifetime.

The diversity of QoS metrics among distinct load types is a challenge in devel-
oping control algorithms to exploit their demand flexibility. We argue that, in fact, a
unifying framework can be developed based on the spectral content of the demand
variation, a viewpoint first expounded in [7]. For every load type, maintaining a spe-
cific bound on the QoS can be translated to maintaining a bound on the bandwidth of
its demand deviation. For instance, a small and fast variation of power consumption of
a commercial HVAC system can be obtained by a small and fast variation of airflow.
The resulting temperature deviations will be small since the large thermal inertia of
the building will act like a low-pass filter to such airflow variations. However, even a
small amplitude airflow variation can lead to large deviation in indoor temperature if
the variation persists for a long time, i.e., the frequency is small enough. For a given
amplitude, the higher the frequency of airflow variation, the smaller the effect on
QoS metrics of indoor temperature and average ventilation rate. However, above a
certain frequency, QoS will reduce since equipment life will degrade. Figure 3 illus-
trates this idea. For loads that can only be turned on or off, such as hot water heaters,
again limiting the frequency of turning on and off is needed to reduce short-cycling
and ensure delivery of hot water.

In essence, the VES capacity of a load can be characterized in terms of the power
spectral density (PSD) P, (w) of the demand variation, pyes(¢). The PSD mustliein a
specific region to meet a given QoS constraint, which can be parameterized by, say, a
scalar g. For every value of g, there is a curve ¢, (w) so that that QoS will be respected
only if the PSD of py lies under the curve ¢, (w). The curve corresponding to the
minimum acceptable QoS q* determines the load’s VES capacity. We call ¢« (w) the
load’s capacity curve.

An illustration of the curve ¢, (w), for some g, is shown in Fig. 3. For a specific
load, or load class, determination of the curve ¢, (w) can be determined either through
modeling or experimental evaluation [12].

Challenges and opportunities A weakness of the frequency domain characterization
of VES capacity is that variations over time, especially due to exogenous factors such

1For some large consumers, “utility bill” is a better measure since their peak demand charges may
constitute a large part of the bill.
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Fig.3 Constraint on QoS is a constraint on bandwidth of demand variation. The x-axis is frequency
and the y-axis is the PSD of demand variation. The PSD must lie in the region under the curve ¢, (@)
to meet the QoS measure g. For a different value of ¢, this curve would change. The low and high
limits of the frequency in which this particular load class can provide VES service are denoted as
wy, and wy, respectively. The three signals shown in A, B, and C, have PSDs that have the same
total power (i.e., the integral of their PSDs are the same), but distinct bandwidths. The signals A
and C violate the QoS metric ¢, because their bandwidths are too low and too high, respectively.
The signal B satisfies the bandwidth requirement

as weather are not conveniently captured. For instance, during afternoon hours of
very hot days, an HVAC system may have to run at peak power, and in that case a zero-
mean deviation from the baseline is not possible. An alternate way of quantifying
capacity that has been explored is a time-varying range (upper and lower bound)
of total power consumption so that as long as power consumption stays within that
bound, QoS metrics will be satisfied [13, 14]. These approaches necessarily lead
to conservative estimates since a constant power deviation from a baseline that still
maintains QoS constraints must be allowed in this framework. A general framework
that combines the advantage of frequency-based characterization, but is capable of
modeling the effect of exogenous factors on VES capacity is still lacking.

Another challenge in this approach is its dependence on baseline for its definition.
The baseline is not possible to measure if a load is providing VES services, only
the total power is, leading to the issues of estimating the baseline and associated
estimation errors [14, 15].

2.2 Matching VES Resources to Grid’s Needs

The grid needs controllable resources to meet the net demand. The net demand?
pa(t) at time ¢ is defined as

pa(t) == pp(t) — &:(1) @)

2Usually called net-load, but we avoid that term since “load” in this paper refers to physical entities
that consume power.
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Fig.4 A potential control architecture for the smart grid with VES based on spectral decomposition.
The “Grid” block represents everything other than controllable generation and storage resources,
such as loads (baseline), transmission and distribution networks, etc.

where p,(t) is the baseline power demand (in MW) in the grid and g, (¢) is the
uncontrollable renewable generation (in MW). The word baseline refers to the nom-
inal demand from all loads, when loads are operated without employing any of the
algorithms designed to extract flexibility. The net demand is the signal the grid’s
remaining resources will have to provide, which include traditional generators, flex-
ible loads providing VES, and other energy storage (ES) devices such as pumped
hydro, flywheels, and batteries.

How to ensure that available resources together supply the total needs of the
grid, i.e., how do they together track the net demand? Our approach is based on a
spectral decomposition of the net demand into distinct frequency bands, by passing
it through a number of bandpass filters, as shown in Fig.4. The “C” block at the
BA computes/predicts the net demand p,, which serves as a reference command to
the aggregate controllable resources in the grid. Its low-pass component, p%” (1),
is obtained by passing p, through a low-pass filter (“LP” in Fig.4). As long as the
low-pass filter LP is designed by keeping the ramping abilities of the controllable
generators in mind, the bandwidth of the signal p5¥(r) will be low enough that
controllable generators will be able to track it. The remaining high-pass component
of the net demand is pX* (1) := p,(t) — p5¥(¢), which is zero mean. Because of
the zero-mean property, pX* (1) can be tracked by controllable storage resources
(whether real or virtual), by charging when p¥ (1) is positive and discharging when

5’ P(t) is negative. The bandpass filters (BPs in Fig.4) can be located either in a
centralized manner at the BA, or in a distributed manner at the resources, or in some
combination thereof, depending on the control architecture chosen.

To match to resources of appropriate ability, the zero-mean component of the net
demand is passed through a number of bandpass filters to create reference signals for
various energy storage resources: the “BP”’s in Fig.4. Each of the reference signals
is band-limited to a particular frequency band that is suitable for a distinct class of
resource. For instance, the highest frequency component of the net demand can be
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Fig. 5 Frequency decomposition of the net demand of Fig. 1: each bandpass- filtered component

is a reference for a distinct class of resource that is appropriate for that frequency band

the reference signal for batteries, while the one with a slightly lower frequency can
be the reference for HVAC loads providing VES. The sum of all these reference
signals is the net demand. Thus, the needs of the grid are met, and yet no resource
(including a conventional generator and a battery) is asked to provide a service that
is not appropriate for it. Figure 5 shows an example of the frequency decomposition

of the net demand based on data from BPA.

Challenges and opportunities

e VES capacity characterization: Based on experiments in a commercial building
in the University of Florida reported in [12], we know that variable speed fans
in HVAC systems can provide VES service in the frequency range of [1/(10 min)
1/(1 min)] and up to 30% of their average power without any perceptible change
in indoor climate. Simulations with calibrated models show that with both chillers
and fans engaged, HVAC systems can provide VES service in a slower frequency
range of [1/(1 hr)]; [1/(10min)] and up to 50% of its rated power, with an indoor
temperature deviation of 2 °C [15]. Collection of pool pumps can provide VES
in lower frequencies of hours [10], and so can residential air conditioners and
heat pumps [16]. Industrial loads may be able to provide much lower frequency
VES—than, say, HVAC—by deferring production in a timescale of days or weeks.
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An important open question is to provide a complete characterization of the VES
capacity of various classes of loads—especially industrial and residential loads—
as a function of QoS within the frequency domain framework introduced here.
Even for HVAC, which has been more thoroughly examined, VES capacity is
likely to vary depending on the thermal load it experiences. A purely frequency
domain framework may not be suited to characterize these variations [14].
Information on VES capacity as a function of QoS constraints is essential for loads
to enter into contractual agreements with BAs. The appropriate payment structure
is not clear yet, but at the simplest form it can be a fixed monthly payment depend-
ing on the load’s QoS bound ¢g. For more sophisticated loads such as industrial
loads or large commercial HVAC, the payment can also consist of a “milage”
payment depending on the actual VES service the load provided [17].

e Ensuring resource adequacy: The combined capacity of various resources (genera-
tion, VES, and RES resources) must be larger than the net demand. The grid’s needs
can again be quantified by the PSD of the net demand. Figure 6 illustrates a hypo-
thetical scenario in which resources are adequate: the capacity curves of each cat-
egory of resources—Ilimited to various frequency bands due to QoS constraints—
including conventional generators, VES resources, and RES resources, together
cover the PSD at all frequencies. In this case, we can say that adequate resources
exist.

e Optimal allocation of VES and battery storage: The cost of various types of VES
resources are likely to be distinct. How much of each kind should a BA recruit
to meet its requirements with sufficient margin at the minimum cost? Methodolo-
gies for answering such questions are essential to the BAs for planning purposes.
Currently, a bottleneck in answering this question is the lack of estimates of VES
cost. Section4 discusses cost of battery storage that provides an upper bound for
allowable cost of VES before VES becomes noncompetitive with battery-based
energy storage.
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3 Coordination of Loads to Obtain Required VES

To obtain VES service without violating QoS constraints, a two-tier strategy is
required: local control and coordinated control. The local controller ensures that
the load’s QoS constraints are respected. Each load can provide only a small amount
of VES, so a large number of loads need to act together to provide the desired VES
service, which is ensured by the coordination algorithm.

In this paper, we consider loads with continuously variable demand (LCVD) such
as commercial HVAC systems with variable speed drives. The demand of such a load
can be varied to be any number within a range. In contrast, many residential loads
can only be turned on or off; their demand cannot be continuously varied. However,
if a load aggregator is used, the aggregator becomes a LCVD from the BA’s point of
view even if the all loads managed by the aggregator are on/off type [16].?

3.1 Local Intelligence

Here, the task is for the power demand deviation (from the baseline) ps(#) of a load
to track an external reference. The external reference must satisfy the bandwidth
constraint described in Sect.2 to maintain QoS, which can be ensured by locally
bandpass filtering a grid-level reference.

Challenges and opportunities

e Baseline uncertainty: The challenges in designing the local intelligence to ensure

tracking is measuring the output, the power deviation from the baseline, since the
baseline, by definition, cannot be measured. In [12], this challenge was addressed
by exploiting timescale separation between the VES reference to be tracked and the
baseline. Since the baseline power consumption is dictated by the normal climate
control system, it is of lower frequency than the high-frequency VES reference
the system was designed to track. As a result, the baseline can be recovered by
low-pass filtering the power consumption measurement.
When the VES reference signal is of the same timescale as the baseline, the problem
of separating the baseline becomes quite challenging. In our prior work [15] as well
as in [13, 14], the baseline was prespecified by solving an optimization problem
that ensured QoS (indoor climate) constraints were satisfied. The local controller
was then tasked with tracking the total power: baseline plus VES reference.

e Continuously variable demand from on/off actuators: Chillers in commercial
buildings are a much bigger load than fans, but they are predominantly on/off
actuators, since their motors do not have variable speed drives. It is still possible
to vary their power demand continuously in a range by indirect means, such as

3The problem of controlling an aggregate of on/offloads so that the power consumption of the
collective tracks a smooth signal while respecting every load’s QoS constraints has a different set
of challenges that we do not go into in this paper; see [10].



Virtual Energy Storage from Flexible Loads: Distributed Control with QoS Constraints 109

airflow rate, due to the inlet guide vane controls. However, models of appropri-
ate complexity that can be used to design and study local controllers for such
equipment are lacking. Existing dynamic models of chillers are too complex for
control design; e.g., [18]. A similar issue exists for packaged air conditioning
units used in small commercial buildings, which may have variable speed fans but
constant speed compressor motors. For chillers, especially larger ones, avoiding
short-cycling is a key QoS requirement.

e Round trip efficiency: For thermal loads such as air conditioners, it is not clear
if there is a loss of efficiency in varying their demand over a baseline instead of
running them at their baseline. In other words, what is the “round trip efficiency”
of the virtual battery? Work in this direction is preliminary [19].

3.2 Coordination

How does one break up the grid-level reference signal among many LCVD, each
with its own QoS constraints? For the purpose of exposition, let us limit our attention
to one particular frequency band, say, the component—pVAC in Fig. 4—that will
be supplied by commercial HVAC systems.

One possibility is for the grid to broadcast p1¥ A€ and each load locally bandpass
filters it to compute its own VES reference signal. This architecture is shown in
Fig.7: the goal is to ensure y(t) = r(¢), where r(¢) is the grid-supplied reference
signal for demand deviation. The bandpass filter F;(s) at load i has to be designed so
that load i’s QoS is satisfied and the grid-level tracking goal, y = r, is also satisfied.
Load i’s QoS will be satisfied if the PSD of its local reference signal lies within its
capacity curve c; (w). Recall that capacity curve was defined in Sect.2.1. Note that
if PHVAC () is the PSD of the grid-level reference signal pZVAC(¢), then the PSD

ves

of the i-th load’s local reference is |F;(jw)|*> PHYA¢ (w). The CL; block in Fig.7

ves

represents the closed-loop system consisting of a load and its local intelligence that

r
r
i F cL, |[Y2 y
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Fig. 7 Part of an open-loop coordination architecture for an aggregate of LCVDs to track a grid-
level VES reference. Only the forward path between the BA and the loads are shown; the outer loop
feedback between the “Grid” block of Fig.4 and the BA is omitted
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can track a reference signal for its demand deviation. The load belonging to the
LCVD class is crucial; only such a load can track a reference other than a square-
wave. Assuming the local intelligence at each load i is such that it tracks the local
reference signal r; (1) perfectly, i.e., y; (1) = r;(¢), the equation ), r; (t) = r(¢) must
be satisfied for the grid-level tracking goal to be satisfied. That is, if there are N loads
supplying VES in the “high pass” category, then the following must hold to ensure
that the loads together track the grid-level reference:

N
Y F(jo) =1, welo” of" 3)

When the grid operator enters into an agreement with a load to obtain VES resource,
it obtains the load’s VES capacity curve c; (w), either through modeling or through
a system identification test. The local bandpass filter F; is mutually agreed upon at
that time. The grid operator must engage enough loads to ensure that (3) holds.

Even though this architecture satisfies the needs of both the grid and the loads, it
lacks robustness to uncertainty due to its open-loop nature. There are many sources
of uncertainty: the number of loads providing service at any given time, the capacity
of some of the loads, etc., are all likely to vary over time in less-than predictable
manner.

An alternate, more robust, architecture using feedback is proposed in [20], in
which load coordinate their actions by using a global feedback signal that can be
measured locally. Figure 8 shows this architecture. In particular, each load mea-
sures the grid frequency, which can be locally measured at loads [21, 22]. Since
the deviation of the grid frequency from its nominal value (60Hz) is a measure
of demand-supply mismatch, it can estimate the demand—supply mismatch from
this measurement. Since total supply is conventional plus renewable generation, the
demand-supply mismatch—total demand minus total supply—is precisely the net
demand minus conventional generation, so it is the zero-mean component of the net
demand after the low-pass component is removed. The load computes the appropriate
VES reference for itself by passing the estimated demand—supply imbalance with its
local bandpass filter.

The control algorithm proposed in [20] goes one step further, and assumes that
the BA broadcasts a prediction (for the next hour) of the demand—supply imbalance.
The BA is in a unique position to predict this signal, since it has statistical models
to predict grid-level baseline demand d,(¢) and renewable generation g, (¢), and
it can predict the power generation by conventional generators g.(¢) based on the
contracts in place. The VES controller at each load uses an MPC scheme to compute
appropriate power deviation (VES reference) subject to a QoS constraint expressed
in terms of the Fourier transform of its local reference. High gain feedback due to
the actions of other loads is avoided by estimating the VES supplied by other loads
from the estimating the grid-level demand—supply imbalance and its own VES signal.
The grid-level demand—supply imbalance is estimated from locally measured grid
frequency.
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An extremely simplified schematic representation of this architecture, with N
loads Ly, L;, ..., Ly, is shown in Fig. 8. The goal is not for the aggregate response
y to track some BA-supplied reference. Rather, it is to determine y;’s so that the
aggregate response y minimizes demand-generation mismatch and each y; satisfies
the QoS constraint of load i.

The advantage of this architecture is that it is much more robust to uncertainty in
how many loads are providing VES service at a given time and what their capacities
are. In addition, distributed coordination among loads is achieved without any sort
of inter-load communication. Only one-way broadcast from the BA to the loads is
needed. Simulation studies reported in [20] shows the architecture is effective in
providing robust tracking in presence of uncertainty.

Resource adequacy can be ensured by the BA by signing enough contracts so that
the following holds:

N
1> o)l > 1, welof™ wy", 4)

where ¢; (w) is the capacity curve of the ith load. The subscript g* in ¢ 4+ (w), which
was used in defining the capacity curve in Sect. 2.1 is suppressed here to avoid clutter.
The advantage is that the inequality (4) is far easier to ensure than the equality (3),
especially when a large number of loads are involved.

Challenges and opportunities

e Communication architecture: A large body of literature exist on distributed control,
and the architectures discussed above are not the only possible ones. Most of the
distributed coordination architectures proposed in the literature rely on inter-agent
communication within a neighborhood for meeting network-wide goals. With the
recent push toward an Internet of Things (IoT) paradigm, it is likely that smart
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loads will be part of the IoT. In that case, it is not clear what an appropriate notion
of neighborhood is. All to all communication may be infeasible, but there is no
rationale for limiting to a geographically defined neighborhood. Communicating
with very far off (in a geographic sense) agents may be possible over the Internet.
That may help with certain performance metrics, but may introduce larger delays.
Determining these tradeoffs for distributed control in the age of IoT remains an
important open question, one that is particularly relevant to the smart grid.

e Contract/mechanism design: A load may not provide the maximum capacity that
was used at the time of signing contracts. That may not be malicious; if all of them
provide maximum capacity at all times that may, in fact, cause demand—supply
mismatch. If some loads bear a much larger share of the burden of required storage,
it is reasonable they should be incentivized more than others. It is not clear what
is an appropriate incentive to loads providing VES in such a scenario. Currently,
generators in many ISOs are paid based on a two-part scheme based on capacity
and mileage, but such a scheme may not be scalable to millions of loads.

e Characterizing loads on-line: The capacity of a load needs to be known to ensure
that the loads together have enough bandwidth to track the reference. This can be
done through a system identification experiment, as was done in [12] for the fan
motor of an HVAC system. However, such a method may not be scalable to a large
number of loads, and it may fail to identify slow variations in load’s VES capacity
over long time periods. Is it possible for the BA to be sure—without examining
every single load—that the loads together have enough capacity to meets its need?

4 Cost

Without a cost advantage over real energy storage, virtual energy storage has little
justification. Cost of VES is hard to estimate. On one hand, VES involves a change
of software, with little change in hardware. Yet, the cost of large-scale deployment
of VES may vary a lot depending on the kind of communication infrastructure and
hardware retrofits needed. Cost of retrofitting existing consumer loads to make them
VES-friendly is likely to be prohibitive, but it is equally likely that the additional
cost of equipping loads with the required hardware and software at the factory will
be negligible. However, precise estimates are lacking at this point.

Although the cost of VES may be hard to estimate at this point, we can establish
an upper bound on the cost of VES beyond which VES loses its economic advantage.
This upper bound is the minimum cost of the main competitor of VES, that of battery
storage.

To estimate the cost of battery-based storage, we examine how the levelized cost
of electricity (LCOE) will change if a battery is used to store the average daily
generation of energy from an intermittent renewable source, say solar. The LCOE
is the total cost incurred in the lifetime of the generator, divided by the total energy
generated over the same period.
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Consider a renewable generator with peak generation capacity 1 kW. Suppose the
capacity factor of the generator is f, so that the average energy it produces in a day
is 24 f kWh. Let the lifespan of the generator be #;, years. The total energy generated
by the generator in its lifespan is 365,24 f kWh.

Suppose a battery is added to the generator so that it can store the average daily
energy produced. That is, the energy capacity of the battery is 24 f kWh. Let the
lifetime of the battery be #;, years, and its cost be ¢ $/kWh. Then, the cost of batteries
over the life of the renewable generator is 24 fct;, /1), $.

Since adding a battery does not change the energy generated, the additional LCOE
due to the battery is the total cost of battery over the lifetime of the generator divided
by the total energy generated during the same period:

24 foik ¢

iy

3651,24f 365,

ALCOEpyyery = ($/kWh) ®)

Among the myriad types of batteries, Sodium Sulfur (NaS) batteries have had a lead
in terms of grid storage, but the cost of Li-ion batteries—used in mobile phones
and electric cars—is decreasing the fastest: at an annual rate of approximately 14%
per year during 2009-2014 [23]. The cheapest Li-ion batteries in 2015 cost about
$300/kWh (batteries used in Tesla’s model S electric car [23]), and they have a
lifetime of approximately 5000 charge—discharge cycles [24]. If the battery undergoes
one charge—discharge cycle every day, its lifespan will be 5000/365 = 13.7 years.

Plugging ¢ = 300 and #;, = 13.7, we see that the additional LCOE due to batteries
is & 6 ¢/kWh. Since several important costs are ignored here, especially the cost of
balance of systems and the cost of capital, the true cost will be higher than this
estimate. A more thorough cost estimate can be performed using the methodology
in [24]. Even this low estimate of battery cost is quite high compared to the mean
retail electricity rate in the U.S., which in December 2016 was 12.2 ¢/kWh (from
https://www.eia.gov/electricity/). If we take the estimate, 6 ¢/kWh, as the true cost
of battery storage, the cost of VES must be less than 6 ¢/kWh for it be competitive
with battery-based energy storage.

In comparing batteries with VES, one should keep in mind that battery-based
energy storage is likely to be much more reliable than VES. Availability of VES may
depend on time of day, weather, etc., while batteries are a firm resource. Therefore,
an optimal solution will probably consist of expensive but highly reliable batteries
as well as inexpensive but less reliable VES.

S Summary

Loads can vary their power around a baseline in a zero-mean fashion to effectively
act like batteries, thereby providing virtual energy storage (VES) to help the grid.
A frequency domain framework for characterizing loads flexibility vis-a-vis con-
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sumer’s QoS is advocated, following [7]. The framework is powerful enough to
handle not just flexible loads but also conventional generators and batteries. How-
ever, it is highly simplified: issues of transmission constraints, distribution network
and voltage support, contingency reserves are not considered yet, which are worth-
while avenues for further refinement. Some results on local control and distributed
coordination of loads within this framework, are mentioned. Challenges and oppor-
tunities in extending this framework to design reliable VES services, including some
of the open problems, are summarized.
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