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Abstract State estimation is a critical application that provides situational aware-
ness and permits efficient operation of the smart grid. The secure, accurate, and
fast computation of the state estimates is crucial to execute the complex decisions
and diverse control actions needed in real time to provide reliable, economic, and
safe power systems that integrate distributed and intermittent renewable generation.
This chapter discusses research directions to evaluate the cyber security and develop
novel algorithms for securing today and tomorrow’s power state estimation and grid
operation.

1 Introduction

Power systems are essential in the functioning and development of our modern
society. Unfortunately, the modern power systems are vulnerable to cyber attacks
that could degrade their performance and cause blackouts [1, 2]. Indeed, the power
grid is becoming increasingly complex and the need for implementing sophisticated
cyber systems for its automatic operation raises serious concerns regarding its safety.
Recently, the US administration warned power companies against cyber attacks such
as the ones that targeted Ukraine’s power grid in December 2015 [3].

The power systems are evolving toward the so-called smart grid, which enables
increased integration of intermittent generation from renewable energy sources such
as solar and wind with classical sources such as coal, nuclear, natural gas, and
hydroelectric [2]. For example, renewable generation is forecasted to englobe more
than two-thirds of all installed generation capacity between now and 2030 [4].

Y. Chakhchoukh
Department of Electrical and Computer Engineering, University of Idaho,
875 Perimeter Drive, MS 1023, Moscow, ID 83844-1023, USA
e-mail: yacinec@uidaho.edu

H. Ishii (B)
Department of Computer Science, Tokyo Institute of Technology,
4259-J2-54, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
e-mail: ishii@c.titech.ac.jp

© Springer Nature Switzerland AG 2019
J. Stoustrup et al. (eds.), Smart Grid Control, Power Electronics
and Power Systems, https://doi.org/10.1007/978-3-319-98310-3_15

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98310-3_15&domain=pdf


242 Y. Chakhchoukh and H. Ishii

The rapid development of energy storage, sensing, communication, computing tech-
nologies, and distributed automatic control will aid this transition. The resulting
power grid can be viewed as a large interconnected cyber-physical system [2]. The
cyber part will contain all the communication, data analysis, computation, and con-
trol needed by the power systems. Developing the cyber part and its applications
helps improve the operation of the future power systems but increases vulnerabilities
to cyber attacks introduced by malicious agents and hackers. Cyber attackers can be
individuals, groups, organizations, or even nations and could be motivated by induc-
ing financial gains or creating nuisance by targeting the power grid. Such attacks can
be possible due to the development of complex communication networks, the Inter-
net, and different viruses and malwares. Modern power system control networks are
interconnected at certain points with traditional Information Technology (IT) enter-
prise networks and the Internet. Intruders will have the possibility to access the power
systems and modify the normal operation of the system. Actually, manipulations or
attacks committed by malicious intruders can result in tremendous adverse effects
in both the cyber and the physical worlds.

The vulnerabilities of the smart grid toward cyber attacks are not fully understood
and cyber attack impacts could range from amodified electricitymarket and degraded
operation to a threatened integrity of the grid causing material loss and destruction,
and even cascading blackouts. The power grid is considered to be an important
critical infrastructure and today’s economyand society dependson its stable, efficient,
and secure operation [5]. The amount of cyber security threats and the success rate
of cyber attacks on current Information Technology and Operational Technology
systems pose a currently immeasurable amount of risk to this critical infrastructure
on which our society and economy depend. Since the reliability and costs can be
affected by attacks, it is vital to insure the security and safety of the cyber system
against malicious intruders [6, 7]. Research and development of techniques and
algorithms for securing critical control systems in the power grid is imperative.

The focus of this chapter is on the cyber security issues that arise in the context
of state estimation (SE) in power systems. Real-time operation of the power systems
uses the SE results, which consists of the evaluation of voltage magnitudes and phase
angles at chosen buses or substations [8, 9]. Several grid operation tools and power
market tasks such as contingency analysis, unit commitment, economic dispatch,
and locational marginal prices (LMPs) computation rely on an available and accurate
state estimation. The SE is also needed by the operator in order to picture the power
system condition clearly, which permits situational awareness in order to take the
optimal corrective control actions. The results from SE are useful to run a Security
Analysis (SA), or the so-called Operational Reliability Analysis (ORA). In the ORA,
a contingency analysis is executed to check if the system is (N-1) secure. The term
(N-1) secure means that the power system is still stable and in an acceptable state
region after any single major contingency. A contingency could be, for example, a
loss of a major generator, a transmission line or a large load change. The results from
the contingency analysis will determine the need of the operator to intervene in the
operation. If the system is safe, then the optimized electricity markets will determine
the grid operation and the different power flows in the grid. Otherwise, the operator
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will take the appropriate actions such as generation rescheduling to insure the safety
of the system which is fundamental.

In order to implement the future smart grid technology, it is necessary to identify
the cyber-threats and the cyber-vulnerabilities of the real-time operation of realistic
power systems and propose novel theoretical and practical solutions. This is a mul-
tidisciplinary area which requires complementary research expertise from systems
control, signal processing, and power systems. The process is in general composed
of three stages: (1) To assess the cyber-vulnerabilities and their consequences on the
power grid. The emphasis here consists in providing a study of attacks targeting the
power state and topology of the grid and their impacts on the real-time operation,
control and power markets. (2) To propose novel procedures to detect and isolate
cyber attacks. The techniques studied consist of adapting new robust signal process-
ing methods for the linear and nonlinear regression and time series contexts, filtering
and forecasting in the presence of cyber attacks and non-stationarity. (3) To counter
or mitigate the impact resulting from cyber attacks and take the convenient correcting
operation actions to ensure a resilient, reliable, efficient, and economical operation
of the whole power system.

The organization of this chapter is as follows: In Sect. 2, we first provide an
overview of the static state estimation problem and the bad data detection schemes.
In Sect. 3, we discuss cyber attack models, configuration, and consequences on the
power systems. Section4 provides interesting and necessary future research direc-
tions. Finally, Sect. 5 concludes the chapter.

2 Static Power State Estimation

The static state estimation is run after collecting measurements from the supervisory
control and data acquisition units (SCADAs) at remote terminal units (RTUs), and the
results are communicated to the control center every 2–5 s.One important objective of
the state estimation is to detect accidental bad data, i.e., bad measurements, topology
errors, and line parameter inaccuracies and to correct this erroneous sensed data using
the power model and available redundant measurements. To fulfill this objective, SE
modules from different energy management systems (EMS) vendors are equipped
with bad data detectors (BDD).

The objective consists in estimating the vector x ∈ R
n obeying a linear regression

(DC) or nonlinear regressionmodel (AC). The vector z ∈ R
m contains communicated

readings from SCADAs. The number n of states is estimated from a larger number
of measurements m. The AC model considers reactive power measurements and
permits to estimate voltage magnitudes as well as phase angles at different buses or
substations. The DC model assumes the voltages to be equal to 1 per unit (p.u.) at
all buses and estimates only the phase angles. Obtaining the phase angles gives a
clear picture about the power flow paths in the grid. The obtained models are linear
regression for DC and nonlinear regression for AC.
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In the AC formulation, the state x follows the equation:

z = h(x) + e. (1)

The vector x provides the power states, i.e., voltage magnitudes and phase angles
at the buses of interest. The error vector e is random and assumed Gaussian with
zero mean and covariance matrix R. The nonlinear vector function h(·) is known
as the measurement function and reflects the grid topology and transmission line
parameters. The grid topology is estimated in the topology processor module and is
updated continuously by collecting readings of the circuit breakers’ binary states (i.e.,
0 or 1 that can be obtained from node breaker models). The binary states provide the
information about whether the different transmission lines are open or closed [8]. The
different line parameters are available in the operators’ database and are exploited
to reconstruct the nonlinear function h(·). The line parameters are also estimated or
updated when needed [8, 9].

In practice, the SE is solved by running an iterative algorithm based on the
weighted least squares (WLS) [8], i.e., at the k + 1 iteration, the state estimate x̂k+1

is related to the gain matrix G(x̂ k) = (
H (k)(x̂ k)

)T
R−1H (k)(x̂ k) as

x̂ k+1 = x̂ k + Δxk, (2)

G
(
x̂ k

)
Δxk = (

H (k)
)T (

x̂ k
)
R−1

(
z − h

(
x̂ k

))
. (3)

The matrix H (k) is the Jacobian of h(·) with respect to x at step k. The gain matrix
G(x̂ k) is factorized following the LQ decomposition. The inverse matrix of G

(
x̂ k

)

can also be computed to evaluate Δxk .
After the convergence of the algorithm [9], the obtained residuals, i.e., r = z −

h(x̂ k) are analyzed in BDDmodules to flag possible outliers or bad data. The bad data
could be due to natural failures such as sensor, communication channels misbehavior
or intrusions and cyber attacks. The most practical outlier detection rules are known
as the chi-square (χ2) test and the “3σ” rejection rule [9]. In the power systems
literature, the largest normalized residual rejection (LNR) has been proposed as
well. Basically, the largest normalized residual or element in r is rejected if it does
not obey the Gaussian assumption (i.e., measurement is rejected if its normalized
residual absolute value is larger than 3). The estimation is rerun after removing the
detected measurement until no residual is flagged as outlying [9].

3 Cyber Attack Models in the State Estimation
and Their Consequences

In this section, we introduce several classes of cyber attack models in the static
SE problem. We provide an overview of the current state of research and discuss
important future directions to enhance the security for the SE and critical systems
affected by inaccuracies in SE.
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In general, the security of SCADA systems is a real widespread practical concern
since their use is pervasive [5]. In fact, SCADA systems require adapted security
studies and newly developed tools that go beyond solutions available in Information
Technology (IT). For example, SCADA systems installed in power systems are gen-
erally inexpensive, vulnerable, and have long life cycles. The life cycles of SCADA
sensors are of a few decades, which means that their defense should be adaptable
with possible continuous updates.

The existing bad data detectors implemented at control centers are useful for acci-
dental or random sensor and communication channel errors, but are not adapted to
counter sophisticated cyber attacks [10–14]. Cyber attacks targeting SE can be clas-
sified into different types such as denial-of-service (DoS) where data is not available
or missingwhich can result in certain states to be unobservable; eavesdroppers which
analyze the communication traffic to gain private information [7, 15] and raise pri-
vacy concerns; and integrity attacks where the data communicated is modified by a
“man-in-the-middle” access where attackers are intermediate nodes in the commu-
nication. This latter type of attacks is also known as false data injection (FDI) cyber
attacks. They can result in intentionally modified measurements communicated to
the control center that could change the state in a stealthy fashion where the attacks
could, under certain conditions, escape bad data detectors (BDDs) integrated into
existing SE modules at energy management systems (EMS). FDI attacks are invisi-
ble and hence raise a lot of concern about the operation of the power grid. We will
concentrate on this last type of attacks in the following sections.

3.1 False Data Injection Attacks on Measurements

Analyzing (2), we notice that at each step, a linear regression problem is solvedwhere
the state increment Δxk is evaluated from the residual r = z − h(xk) regressed on
H (k). This means that the estimation is run iteratively after linearizing the regression
in each step. With slight abuse of notation, the problem can be reformulated as

z = Hx + e. (4)

The above linear equation or regression represents also the DC formulation problem
where theWLS solution is given by x̂ = (HT H)−1HT z. The covariance of the error
vector e is assumed to be equal to the identity matrix for simplicity. Notice that
the WLS algorithm corresponds to the maximum likelihood estimator under the
assumption that the errors are Gaussian [16].

In this context and as proposed in [10, 11], a man-in-the-middle attack could be
generated, for example, in the communication between RTUs and the control center.
This attack could create a contamination in the measurements by adding the vector
equal to a as za = z + a. In particular, if the attacker has knowledge of the system
topology (i.e., the Jacobian matrix), he can generate an attack with a = Hc [11], that
is,
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za = z + a = z + Hc. (5)

In this case, the attacker is able to change the state estimate to x̂a = x̂ + c where
he controls the state vector bias c ∈ R

n . The residuals are unchanged, i.e., ra =
za − Hx̂a = z − Hx̂ = r , which means that the attack is stealthy to the classical
bad data detectors (BDD) based on analyzing the residuals. In other words, a bad
data detector that analyzes the vector ra will not detect any change due to the stealthy
attack. Stealthy attacks could be generated on both the DC and AC formulations of
state estimation as shown in [11, 13]. Due to the sparsity of the power systems and the
matrix H , the attacker does not need to target all sensors or have a global knowledge
of the topology when targeting a few buses by a stealthy attack. The intrusion would
mislead the operator at the control center because he obtains a modified result that
does not reflect the actual state of the grid. All consequent actions at the EMS are
contaminated by false data injection (FDI) cyber attacks. The impact of bad data and
attacks on SE impacting power markets is discussed in [14, 17].

3.2 FDI Attacks Targetting the Topology of the Grid

False data injection (FDI) type attacks could also target the topology of the grid [18–
20]. The topology represents the connectivity of the power system and is updated
constantly over time in the topology processor. The binary readings from the circuit
breakers representing the transmission line states (i.e., open or closed) are commu-
nicated to the control center. An intruder can modify these readings as well as the
SCADA analog measurements reflecting, for example, power flows on neighboring
lines in a coordinated fashion confirming the false state of the line. Such an attack
allows a malicious update of the topology undetected by BDD. This type of FDI
attacks clearly requires more knowledge and skills of the system by the intruder. The
attacker needs the knowledge of the topology and the measurements or the actual
grid state. He needs access to the circuit breaker states and the SCADA analog mea-
surements communicated to the control center [18]. The consequences can be more
dangerous and complex for the operation than those caused by attacks only on the
measurements as considered in the previous subsection. In [18, 20], stealthy cyber
attack strategies on both the power state and the topology of the grid are discussed.

Figure1 illustrates the 14 bus system where bus 5 is targeted by a cyber attack.
The system could be decomposed in subsystems as proposed in [22]. For example,
subsystem 1 includes buses 1, 2, and 5 and their connecting lines. The other sub-
systems are cyclic {2, 4, 5}, {2, 3, 4}, {4, 7, 9}, {6, 9, 10, 11, 13, 14}, {6, 12, 13},
{4, 5, 6, 9, 10, 11}, and radial {7, 8} [20, 22]. The decomposition maximizes the
number of bad measurements detected while insuring the observability of the whole
system [23].

Figure2a, b illustrate the vulnerability of several estimators [21, 24] toward
stealthy attacks targeting the topology and the state through simulations for the IEEE
30 bus system. In both figures, the final state errors and estimate x̂ are shown after
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Fig. 1 IEEE 14 bus system ( c© 2016 IEEE. Reprinted with permission from [39])

cyber-intrusions escaped detection. In this simulation, the true state is obtained from
solving a power flow. In practice, the real state is not known by the operator. The
figures illustrate the errors in the absence (clean) and presence of stealthy attacks
(RA and LTS) assuming the ideal case where the true state is known. In Fig. 2a, the
phase angle of a single state at one bus in the system is targeted with a large error (i.e.,
phase angle at bus 5). In Fig. 2b, the attacker manages to manipulate the value of the
final estimated phase at bus 6 because he has enough access to the grid information.
If the attacker can target a large number of sensors, then all estimators illustrated
in the figure will become vulnerable. In Fig. 2a, RA represents the popular “3σ”
rejection rule applied to normalized WLS residuals. The curve labeled “clean” gives
the estimation errors in the absence of cyber attacks. In Fig. 2b, WLSc denotes the
WLS applied to the clean non-attacked topology and the curve labeled “true” gives
the value obtained with the power flow solution, which represents the real state.
LNR denotes the popular largest normalized residual rejection [8]. LTS represents
the diagnostic of the measurements using the least trimmed squares estimator (LTS).
The LTS is a robust estimator that is adapted to handle false data in the topology
[8, 16, 23, 25, 26]. It was shown in [20, 22, 23] that the classical commercial BDD
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(a) Monte Carlo average absolute error of the SE estimate in
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Fig. 2 Errors of AC power phase angle estimation caused by stealthy cyber attacks targeting the
topology ( c©2015 IEEE. Reprinted with permission from [20, 21])
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based on analyzing the residual of theWLS is not effective against random errors and
attacks on the topology. Application of robust estimation techniques needs further
verification.

3.3 Cyber Security of the PMU-Based State Estimation

Recently, phasormeasurement units (PMUs) are being deployed due to the incentives
provided by the USDepartment of Energy [27–29]. PMUs have higher reporting rate
(30–120measurements every second) and are better synchronized than SCADAs due
to their use of the Global Positioning System (GPS) clocks [29, 30]. According to
the North American SynchroPhasor Initiative (NASPI), around 1800 synchrophasor
units or PMUs were available across North America in 2015 [31].

PMUs measure directly the states, i.e., voltage magnitudes and phase angles. The
number of available PMUs is, however, still limited in practice because of their asso-
ciated high costs. Power companies are interested in combining both their existing
SCADAs and the newly installed PMUs in estimating the system state using the
so-called hybrid state estimator. The state of the grid is estimated at regular inter-
vals, i.e., every several seconds to a few minutes. Novel state estimation algorithms
exploiting PMUs are gaining a lot of interest in the recent literature [29, 32–35].
These PMU-based state estimators are important to control the grid using the wide
area measurement system (WAMS) technologies [27]. In [33], the authors proposed
to buffer the data from PMUs to resolve the disparity in the reporting frequency
between SCADAs (every few seconds) and PMUs (every 1/30 s). An optimal buffer
length could be derived to ensure a good trade-off between tracking the fast changes
in the grid states versus maximizing the time interval of the data exploited from
PMUs to increase the accuracy of the estimates [33, 36].

Monitoring the grid with PMUs that are capable of delivering large amounts of
real-time data creates cyber-vulnerabilities. Indeed, PMUs are vulnerable to both
random bad data and cyber attacks [27, 35, 37, 38]. For example, intruders could
create attacks by spoofing theGPSclocks ofPMUs.However, the delivereddata could
be exploited in a clever way to improve both the cyber security and the operation
of the grid. Practical and novel algorithms could be exploited to notify the operator
at the control center when abnormal measurements are detected [39]. Furthermore,
these techniques could correct the bad data introduced by cyber attacks automatically
and secure the control in the power grid. One important research direction consists
of proposing data-driven algorithms and power system model-based approaches that
improve the cyber security of the whole power system operation.

Modeling time and space dependencies in multiple PMUs and estimating the
existing correlation could be used in order to detect outliers or cyber attacks in
PMU signals [38, 40, 41]. This approach improves also the accuracy of the hybrid
state estimation. The technique proposed in [38] provides a sophisticated defense
mechanism against stealthy cyber attacks and was shown to make the task of cyber
attackers extremely complicated and tedious. The preliminary simulation results have
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considered an SE resolution of 2 s. This implies that every 2 s, a new estimate of
the grid state is obtained, which might be considered to be a low resolution in the
future power grid. Several authors have recently proposed to reconstruct the power
states from PMU measurements to increase the SE resolution in order to track the
rapid changes expected in the future smart grid [34, 42]. The SE will be refreshed
very frequently (i.e., every few fractions of a second), which will completely change
the real-time control of the power systems. This is an important emerging area for
future studies.

Furthermore, the dynamic state estimation, which has gained interest thanks to
the available PMU measurements, is executed in a nonlinear context using extended
Kalman filters (EKF) [43] or unscented Kalman filters (UKF) [44]. Using a dynamic
SE in the WAMS context enables the anticipation of power system dynamics and
necessary fast controls. To improve the practical implementation of the dynamic SE,
the authors in [45] proposed a decentralized algorithm that uses the UKF. Both the
EKF and the UKF are vulnerable to bad data [25, 46] and cyber attacks [47]. The ref-
erence [48] shows the possibility of generating stealthy attacks in the general case of
networked control systems obeying a dynamic linear state space representation. The
theoretical results could be adapted to the case of power state estimation problem.
Recently, some authors have implemented robust versions of both EKF and UKF
using robust methods such as the Generalized M-estimator [46] and the least abso-
lute value [35]. Offline PMU-based diagnostic techniques that improve the detection
of cyber attacks [49] and errors on the topology or parameters are also being devel-
oped [50]. These techniques consist generally in identifying vulnerable sensors to be
secured. Exploiting forecasts of PMUs and loads could improve the robustness and
cyber security of the SE as proposed recently in [51]. Effective cyber security solu-
tions considering realistic large power systems and hybrid state estimation for both
static and dynamic approaches that handle attacks on PMU signals remain necessary
for future grid operation security.

3.4 Assessing SE Cyber-Vulnerabilities and Their
Consequences on the Power Grid Operation

So far, our discussion on security has been limited to SE on its own. However,
assessing the impacts of cyber attacks targeting the power state estimation is very
important in order to evaluate the danger of the different cyber attack types and
configurations. That is, we must go beyond quantifying the power state modification
to analyze the real cascading consequences of cyber attacks on contingency analysis,
control actions, power markets, and power flows. While this issue is very vast and is
outside the scope of this chapter, wewould like tomention a few important directions
for future research.

Developing and implementing metrics to assess the cyber security of practical
power systems is necessary. Such metrics could be developed considering not only
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the impacts on the security of the operation but also the economic impacts on power
markets. Some authors are starting to study cyber attacks consequence on power
markets [14, 17], system operation [19] and tools to quantify cyber security [52].
Cyber attacks consequences will be quantified by static and dynamic studies on
realistic systems. To reach this goal several universities are developing cyber security
testbeds for the smart grid that emulate the real-time behavior of a large power
system [53–56]. Testbeds are necessary to research the cyber-vulnerabilities that
account for the complexity and the different interactions between the system part and
the cyber part of the smart grid in real-time conditions. Fluctuations in frequency
and power flows, oscillation modes, and voltage magnitudes will be considered in
deriving these metrics for cyber security quantification. This will allow to rank the
proposed cyber security methods and enable combining different solutions in an
optimal and cost-effective way in order to secure the grid operation.

4 Future Directions

Here, we outline several future research directions related to the SE problem from a
slightly broader perspective.

The cyber security solutions discussed so far can be classified into two main
categories, online and offline solutions [51]. The offline solutions are remedial actions
developed offline with no time constraints on the computation. An example of such
methods consists of finding the minimum number of sensors to be secured and their
positions in order to make a stealthy attack unfeasible [11, 17, 49]. On the other
hand, online solutions are techniques that update their capabilities and models in
real time using available sensed data. An example of the latter solutions consists of
implementing robust estimation tools that detect an attack by comparing themodified
measurement to a majority of clean data collected and analyzed in real time.

Sophisticated robust estimation tools have been developed recently in the signal
processing and statistics literature [16, 25]. These methods are becoming practical
thanks to the fast-evolving computation power. Novel techniques could be developed
or adapted from robust statistics and signal processing to improve the detection
of cyber attacks. This has the advantage of providing online adaptable methods
that could reduce investments in expensive secure sensors. Robust signal processing
methods and machine learning techniques exploit newly available data to update
their models and detection procedures [57, 58].

For example, to enhance the overall cyber security of the static AC SE, the work
in [39] introduces an approach that runs several robust least trimmed squares (LTS)
estimators with different breakdown points or rejection percentages in parallel to
improve the detection of cyber attacks targeting both the measurements and the
topology of the grid. This approach allows us to not only robustly estimate but also
accurately identify the presence of attacks. Also, as an alternative approach to detect
the presence of stealthy cyber attacks, machine learning techniques are exploited
in [57, 58]. The work in [59] introduces a statistical outlier detection approach
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using a recently proposed machine learning technique called density ratio estimation
(DRE) [60]. Combining such different techniques should be further investigated.

While the proposed methods in the literature are effective and promising on com-
puter simulated data and theoretically justified, their performance and implementa-
tion rely heavily on the power system complexity and collected data used during
the estimation or the learning process. The collected data should be as realistic as
possible to validate the effectiveness of the proposed methods in practical control
centers allowing their real implementation. Cyber security testbeds are necessary to
collect large amounts of data from SCADAs and PMUs to assess the performance
of the proposed methods in real-life conditions. Investigating the sensitivity of the
proposed machine learning methods, for example, when attacks are present in the
learning process is of great interest. Furthermore, decomposing the grid in several
subsystems (Fig. 1) and executing the proposed algorithms in a distributed fashion
to reduce the computational burden allows the implementation of the online defense.
Some authors proposed distributed state estimation methods [29, 61–63]. A trade-
off should be ensured between a decomposition that maximizes detection versus a
decomposition that reduces execution times. Finally, power systems are very sparse,
i.e., each bus is connected only to a limited number of buses. Sparsity should be
considered when adapting the robust techniques both to evaluate their robustness
characteristics [26] and their implementation algorithms.

Moving target defense (MTD) is useful to defend the SE against cyber attacks.
The objective of the MTD is to increase the complexity of the system so as to
increase the attack cost for the intruder by reducing his knowledge of the system.
This objective is achieved in [64] by randomizing the set of measurements and the
topology of the grid. The topology of the grid change is reflected by a few changing
line impedances thanks to distributed flexible AC transmission system (D-FACTs).
The work [65] proposed to randomize the set of measurements as well and obtained
an improved cyber security of the SE. This research direction could be explored
further by improving the randomization and integrating PMUs as well.

For the case of an increased SE resolution to track fast changes in the future
power systems, cyber security becomes even more challenging since the procedure
will be fully automatic and the algorithms implemented to secure the operation need
to converge very fast. Reference [34] proposed a method that provides robustness
against random errors occurring in PMU sensors but sophisticated cyber attacks were
not studied. Furthermore, the dynamic state estimation, which is also gaining interest
and is vulnerable to both bad data and cyber attacks [46, 47], will allow even the
anticipation of the control in the wide area measurement systems (WAMS).

The state estimation at distribution level is also a very interesting research topic
for future investigation [66]. It may improve the monitoring of distribution systems
especially with increased distributed generation and storage such as photovoltaic
panels (PVs) and electric vehicles. The SE at the distribution level has been con-
sidered as more challenging because of the limited measurements redundancy and



Cyber Security for Power System State Estimation 253

the imbalance at the distribution level requiring to consider the three phases sepa-
rately [66]. This research could also enhance the control of the distribution systems
which are vulnerable to cyber attacks [67, 68].

Finally, control is evolving with the development of wide area measurement sys-
tem (WAMS) technologies [27, 69]. The authors in [70] have shown the vulnerability
of the automatic generation control (AGC) module at the EMS toward cyber attacks.
The AGC provides automatic frequency regulation of the power system while insur-
ing that the scheduled power exchanges between adjacent power areas and utilities
are met. In [37], the authors studied the effect of cyber attacks spoofing the GPS
clocks of PMUs. They proposed algorithmic solutions to secure the damping of
inter-area oscillation modes in the WAMs that will be deployed to control the future
grid. The classical (N-1) secure operation of the grid criteria is not sufficient in the
context of cyber-intrusions. Since the consequences of cyber attacks are tremendous
on the grid, several layers of defense measures should provide resistance against the
effects of cyber attacks. If a cyber attack is missed by the sophisticated data-analytic
tools or a cyber attack is introduced directly in the control orders sent to controllers,
relays, tap changers or Industrial Control Systems (ICS) at Remote Terminal Units
(RTUs), the power system should be able to mitigate or limit the bad consequences
using resilient and robust control.

5 Conclusions

The state estimation problem has significantly raised the concerns in the last decade
about its vulnerability and security toward cyber attacks. The importance of state
estimation is significant in the operation of the smart grid where it can be exploited
not only in creating vulnerabilities and intrusions but also in implementing security
measures. In this chapter, the critical current and future research applied to improve
the state estimation safety against threats from the cyberspace has been discussed.
Improving the cyber security of the state estimation combines multilayer defense
systems. Novel robust signal processing and data-analytic methods could be very
effective especiallywith the presence of synchrophasormeasurements. Assessing the
cyber security of the grid by evaluating the impact of undetected attacks is crucial.
Proposing techniques for resilient control that limits and mitigates the impact of
undetected attacks would complement the detection of attacks to ensure a secure and
efficient operation of the grid. In general, the discussed research could be adapted to
many engineering fields where industrial control systems are implemented. Hence,
these directions should be explored further for the enhancement of the cyber security
for the safety and well-being of the society.
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