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Performance Assessment

Timothy M. Kowalewski and Thomas S. Lendvay

�Introduction

Traditional surgical education has suffered from some long-
standing challenges. These include a lack of objectivity or 
quantitative rigor in performance evaluation and a growing 
training gap due to tightening resource constraints and con-
comitant increase in number and diversity of skills requiring 
mastery. These are compounded by the constant influx of 
new technologies in the operating room [1], which further 
challenge the historically arduous, prolonged learning 
curves associated with surgical skill acquisition (5–7 years) 
[2]. In the past two decades, technology has augmented sur-
gical education with a variety of simulators and robotic plat-
forms. While these bring new training and learning 
challenges, they also promise a heightened level of scientific 
rigor for performance evaluation [3]. This offers further 
promise of semiautomated mentoring in skills training 
which can decrease the time, risk, and resource cost of train-
ing for students and faculty alike. The need for objective 
metrics remains pressing, and quantitative rigor is becoming 
increasingly available [4–6].

�Need for Objective Measurements of Skill

Shifting healthcare reimbursement to performance-based 
compensation, increasing public awareness of variable 
healthcare quality, rapid adoption of new technologies, and a 
general trend toward continuous process improvement are all 
drivers of the need for increasing objectivity in surgical per-
formance assessment.

�The Training Need
Among novice surgeons in training, the ACGME and RRCs 
provide the direction for tracking individual’s performance 
and maintaining standards for advancement. Despite stan-
dard core competencies against which all trainees in residen-
cies are compared, a major challenge in this system has been 
that advancement – hinged to these core competencies – is 
still dictated by individual faculty within the program of the 
trainees [7]. This leads to variability of feedback to the train-
ees and to subjective biases based on personalities and leaves 
room for graduates not actually having all the necessary pro-
ficiencies to practice safe and effective healthcare.

In the most recent publication distributed by the ACGME 
regarding the core competency progression of residents from 
1 year to the next, the trends were to be expected – residents 
achieved “graduation” benchmarks across the board for all 
milestones [8] (Fig. 1).

Using such grading systems alone can make it difficult to 
hold a trainee back from advancement as most faculty pro-
vide higher-“level” scores as the trainees ascend by the pro-
gram year. In general, faculties are not experts on deciding 
whether a trainee is a 3 or a 4 out of 5 for interpersonal com-
munication skills. This allows for a high degree of variable 
feedback scores and the benchmarks against which faculty 
grade the trainees are ill defined and left up to the Residency 
Program Directors of the residencies to instruct the faculty 
how to ideally score. This process is quite different than say 
a management consulting firm that applies psychological 
testing and customer feedback as metrics of success and 
advancement.

Whereas a trainee’s advancement relies on faculty-only 
feedback, once a clinician is in practice, the primary feed-
back to the practicing clinician comes from self-selected 
peers usually within the practicing clinician’s hospital net-
work or community. Credentialing organizations around the 
country are struggling to standardize privileging and creden-
tialing guidelines [9]. To date, there is no national standard. 
The concern is that with a growing number of high profile 
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and extremely costly malpractice suits [10] as well as the 
changing process by which payers reimburse hospitals are 
taking notice that these practice-granting processes need an 
infusion of objective methods. Furthermore, physician 
reimbursement is now being tied to patient satisfaction 
scores [11]. In order to ensure optimization of physician-
patient communication, it will be imperative to utilize non-
technical skills or communication skills assessment methods 
so that administrators overseeing the satisfaction scores can 
hone in on deficits and provide targeted remediation to these 
clinicians.

�Need for Periodic Recertification of Existing 
Skills: Skill Decay and Use
Another growing concern among healthcare leaders and pro-
viders is the MOC process. Each surgical Board decides how 
to recertify their members and has a duty to the public to 
ensure safe and effective providers. In the beginning years of 
the American Board of Surgery (ABS), if a surgeon wanted 
to receive board certification, the Board would send a dele-
gate to that surgeon’s parent hospital and watch the clinician 
practice their craft in the operating room and on the wards 
[12]. After 2 years, this practice was abandoned. It was uns-
calable and unsustainable, yet the ABS knew that the prac-
tice of the clinician was a critical piece to ensuring the quality 
of the surgeon. The result was what most Boards do today 
which is administer 5- or 10-year written recertification 
exams as a means of quality control. These exams are based 
solely on cognitive skills and not on any technical skills 
appraisal. The only surrogate for technical skills is through 
case log submissions and complication reports which are put 
together by the clinicians themselves and not extracted from 
an independent data registry. The recertifying surgeon also 
needs to demonstrate that s/he is acquiring CME credit 
through regional and national conferences or hands-on 
course participation. These are passive learning processes 
and are not held to rigorous standards. Thus, the quality of 
the clinician recertifying can only be objectively ascertained 
through a single cognitive test – a sliding scale score based 
on clinical knowledge of the specialty.

This lack of technical skills appraisal provides evidence 
of the lag Boards demonstrate in their tracking methods 
behind the current reimbursement and regulatory environ-
ment that the parent hospitals are experiencing. In addition, 
there is significant variation in practices such that surgeons 
may have been granted certification or privileging at the 
beginning of their practices when fresh out of training, but as 
their practices change, the same recertification processes that 
were used upon initial certification remain identical. This has 
impacts on surgeons who sub-specialize, on surgeons who 
leave practice for a period of time (military deployment, 
leave of absence for personal reasons, infirmities, increasing 
administrative or teaching roles), and on the aging surgeon. 
The one size fits all recertification processes cannot objec-

tively appraise the resultant variability from the above 
matters.

Technical skills decay as surgeons age [13] and as sur-
geons redistribute their clinical practices among other com-
peting endeavors [14]. Evidence-based research provides 
insight into the skills decay phenomenon. No different than a 
professional athlete or a theatrical arts professional needs to 
warm up before performances or demonstrates a diminution 
of skill after long periods of rest, surgeons, too, experience 
such decays [15, 16]. Despite evidence supporting this real-
ity, because we do not have systems in place to objectively 
quantify skills in practice, we cannot identify clinicians who 
may be experiencing skills degradation. And surgical Boards 
do not have the means to identify surgeons in need. It remains 
up to the surgeon himself/herself to recognize a skill deficit 
and either cease practicing that skill or seek remediation 
avenues.

�Definition and Decomposition  
of Surgical Skills

In order to establish objective assessment of clinicians, a 
common language must be agreed upon for metrics. This 
section addresses how surgical skills are decomposed into 
constituent parts. Researchers have stratified surgical skills 
with varying degrees of resolution, incorporating insights 
form a variety of fields spanning education to aircraft pilot 
training. This has resulted in a nomenclature that can some-
times overlap but nonetheless help clarify the type and role 
of various skill components in surgery. This vocabulary can 
also help provide structured guidance to curriculum develop-
ers, hospital administrators, trainees, or researchers to focus 
resources where they may be most impactful.

�Outcomes Versus Skills

We define surgical skill as the ability of a surgeon to consis-
tently bring about a desired surgical outcome for a patient 
independent of patient-specific aspects. The importance of 
skills to surgery is irrefutable. But patient outcomes are the 
primary criterion for evaluating surgical success. Measures 
of skill  – even a subset of overall skill like technical skill 
demonstrated in a single procedure as an indicator of overall 
practice  – have shown to correlate directly to patient out-
comes [17]. But “correlate” does not mean “equate.” Skill is 
necessary but not sufficient for positive patient outcomes. 
There is more to surgery than surgical skill alone. Even a 
surgical master can make mistakes, and even procedures that 
are completed without error have unavoidable risks or com-
plications. Having excellent surgical skills will thus maxi-
mize but not guarantee successful outcomes. With this in 
mind, the ultimate importance of different skills or their 
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constituent parts is determined by the degree to which they 
positively impact patient outcomes.

�Cognitive Versus Psychomotor, Technical, 
and Nontechnical

Perhaps the most fundamental decomposition of surgical 
skill is into cognitive and psychomotor skills. Miller’s pyra-
mid reproduced in Fig. 2 spans this distinction and stratifies 
skill from the perspective of an instructor or evaluator [18].

Miller’s four-layer pyramid implies that certain skills are 
foundational; they must be developed before others can be 
addressed. Typically, a finer degree of granularity is used in 
the surgical literature in reference to skill acquisition, par-
ticularly in simulation. The literature often distinguishes 
between cognitive and technical skills [19]. According to 
Miller’s pyramid, this would place cognitive skills at the bot-
tom two levels: “knows” and “knows how.” Technical skills 
would belong to the top two layers, “shows how” and “does,” 
with simulation typically falling into the “shows how” layer.

Many of these finer distinctions of technical skill arise 
due to a change in focus. Whereas Miller’s pyramid was con-
structed primarily from the point of view of the evaluating 
clinician, the simulation literature moved toward stratifying 
skills from the perspective of the trainee and his perception. 
Technical skills are often further stratified into visuospatial 

and psychomotor skills [20, 21]. Visuospatial skills consist 
of being able to accurately reconstruct and navigate a 3D 
environment based on one’s depth perception of 2D video 
that is typically displayed along a different axis than that of 
the tool interaction. In his comprehensive decomposition of 
skill categories, Satava further distinguishes psychomotor, 
visuospatial, perception, and haptic skills [3]. Haptics refers 
to a subject’s ability to perceive haptic (tactile sensory) cues 
such that resolution of more subtle haptic cues implies stron-
ger haptic abilities.

Gallagher et  al. proposed a hypothetical map of atten-
tional resources across different training levels, reproduced 
in Fig. 3 [22]. In this map, Gallagher et al. suggest that an 
individual surgeon has a fixed attentional capacity threshold. 
A novice surgeon must consciously attend to at least five 
items: psychomotor performance, depth and spatial judg-
ments, operative judgment and decision-making, compre-
hending instruction, and gaining additional knowledge. For a 
typical novice surgeon, the simultaneous combination of 
these demands is beyond their attentional capacity. As a 
result, their ability to learn in at least some of these catego-
ries is significantly diluted. Gallagher et  al. suggest that 
simulation-based pre-training of novice surgeons can refine 
technical skills like psychomotor performance and depth and 
spatial judgments such that most or all of the categories 
receive sufficient attention. This reasonably supposes that 
once trained, technical aspects will demand less attention, 
thus freeing attentional resources for the acquisition of other 
important skills or knowledge.

Gallagher et al. did not rigorously analyze the process of 
and neurophysiological elements involved in the relation-
ships between attention, skill categories, and skill acquisi-
tion. But the hypothetical attentional resource map finds both 
conceptual and empirical support in the motor learning lit-
erature (“motor” in this field is synonymous with “muscle”). 
For example, the single channel theory of attention and its 
supporting evidence reveal that attention demand is usually 
estimated indirectly by the extent to which the tasks interfere 
with each other. Processing sensory stimuli (or performing 
other processes early in the sequence) can apparently be 
done in parallel, with little interference from other tasks. But 
processes associated with response selection or with response 
programming and initiation interfere greatly with other 
activities [23, p., 121].

Since early stages of surgical training deal heavily with 
response selection and programming, this supports 
Gallagher’s notion of attentional resource strain. Moreover, 
“some evidence suggests that directing one’s attention to 
movement or environmental cues may differ according to 
one’s skill level” [23, p., 121]. Also of interest is that “other 
evidence, based on secondary task techniques, suggests that 
attention demands are highest at both the initiation and ter-
mination stages of movement” [23, p., 121]. Such 
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Fig. 2  Miller’s pyramid: a “framework for clinical assessment” [18]
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observations suggest strategies for developing relevant 
dynamic metrics. However, Schmidt and Lee conclude that 
“even though attention has had a long history of thinking in 
psychology, we are still unclear about its nature and the prin-
ciples of its operation—indeed, even its definition.” The 
motor learning literature recognizes that “learners appear to 
pass through various stages phases when acquiring skill:

	1.	 The cognitive phase, in which emphasis is on discovering 
what to do, e.g., observing the target motor skill. Trainees 
are most responsive to verbal instruction or feedback in 
this stage.

	2.	 The associative phase, in which the concern is with per-
fecting the movement patterns.

	3.	 The autonomous phase, in which attentional require-
ments of the movement appear to be reduced or even 
eliminated [23, p., 429].”

Human physiology employs numerous senses. Of 
these, however, the surgeon is essentially limited to three: 
sight, touch, and somesthesis (i.e., bodily perception). 
While balance, hearing, and possibly other senses are 
employed in surgery, the essential three senses identified 
in Table 1 – sight-related skills like visuospatial localiza-
tion and depth perception – have often been the object of 
study in the surgical literature. However, no work exists 
investigating the role of proprioception in surgical skill 
acquisition and surgical performance. Yet their impor-
tance to technical skill can be elucidated.

Proprioception is crucial to the practice and acquisition of 
manual motor skills. This is vividly illustrated by the well-
documented cases of Ms. G. L. and Mr. Ian Waterman (sum-
marized in [24], original sources [25–28]). These individuals 
suffered from complete, permanent loss of somesthesis. 
They could not use proprioceptive senses to localize their 

body or limbs, only vision could provide this information. 
However, their efferent neural pathways – those sending con-
trol signals to muscles – were unaffected. Thus they could 
exert voluntary muscle control. The following symptoms and 
phenomena ensued in sequential order:

•	 Could not walk or stand upright.
•	 Could move limbs, but could not control them in a precise 

way.
•	 When not looking at limbs, did not know their location or 

if they were moving. Arms (particularly fingers) moved 
uncontrollably. Sometimes arms would unwittingly hit 
own self.

•	 Using constant visual tracking, could eventually learn 
some control over muscles, but learning was very slow, 
difficult, and demanded inordinate attention.

•	 Relearning to sit up took 2 months.
•	 Relearning to stand took 1.5 years longer.

Attentional capacity threshold

Attentional
resources

Gaining additional
knowledge

Comprehending
instruction

Operative judgement
and decision making

Depth and
spatial judgements

Psychomotor
performance

Novice surgeon Master surgeonPre-trained
novice surgeon

Fig. 3  Gallagher’s 
hypothetical attention 
resource map indicates the 
benefits of simulation 
training. (Reproduced with 
permission [22])

Table 1  Human senses and the subset of senses available to surgeons

Sense categories Human senses
Senses used in 
surgery

Exteroceptive 
senses

Sight Sight
Taste
Smell
Touch (tactile, heat, forces) Touch
Hearing a

Balance (vestibular sense) a

Interoceptive 
senses

Pain
Movement of organs

Proprioception Somesthesis (body/limb 
localization)

Somesthesis

aWhile balance is critical for standing or sitting during surgery and pro-
viding orientation, beyond this, it does not contribute to dynamic surgi-
cal activity. Hearing is of utility in surgery, but not crucial to its 
performance
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•	 Relearning to walk took several additional months. 
However, he could only walk with slow, somewhat awk-
ward steps and only while looking at his feet.

•	 When visual information was suddenly removed, imme-
diately fell to the floor (e.g., lights unexpectedly switched 
off).

•	 Decades later, still relies exclusively on vision for control. 
Controlled limb motions are still slow and ponderous, and 
hands are primarily restricted to only three fingers.

•	 Typically uses excessive force when holding objects, 
especially if not looking at them.

•	 Eventually learned to avoid falling to the floor due to sud-
den removal of visual information by exerting incredible, 
conscious effort to tense many muscles. Attempting this 
for a few minutes resulted in complete mental and physi-
cal exhaustion, requiring several days of rest and 
recovery.

•	 Tasks involving simultaneous cognitive load and fine 
motor control nearly exceeded the limits of his attentional 
capacity (e.g., could not write during dictation, had to 
constantly switch between listening and attempting to 
write).

The ramifications of these phenomena for surgical skill 
are profound. Clearly, proprioception is essential to surgical 
skill proficiency. This alone implies proprioception in sur-
gery should be actively studied. The inordinate attention 
required in the above cases is empirical evidence that strongly 
corroborates Gallagher’s hypothetical attentional resource 
hypothesis. Also, it is evident that somatosensory activity is 
a key component to surgical skill learning and performance. 
This strongly suggests that proprioception may yield a uni-
versal (cross-procedure, cross-modality) dynamic metric for 
surgical skill. Thus, proprioception should be better 
understood.

Proprioceptive somesthesis consists of several sensor 
groups and multiple neurological centers to which they relay 
data ([23], Chap. 5). These sensors include:

•	 Vestibular system: senses internal acceleration or rotation 
of the head (this sense infers the exteroceptive direction 
of gravity since gravity registers as an acceleration).

•	 Muscle receptors: muscle spindles innervate the fleshy 
part of the muscle and sense stretching position and veloc-
ity; Golgi tendon organs innervate the tendons, sense con-
traction, and have been shown to respond to forces less 
than 0.1 g.

•	 Joint receptors: are suspected to sense specific joint posi-
tions, joint extremes, continuous joint position, and/or 
joint velocity. However, there is much uncertainty about 
whether or how this comes to pass.

•	 Cutaneous receptors: sense deep or superficial pressure in 
the skin which often correlates to muscle or limb informa-

tion as well as touch. Additionally, this group includes 
temperature, pain, and chemical stimuli. However, it has 
been shown that primary somesthesis in not affected by 
these later pathways.

The neurological centers where the sensors send their 
information to and along what pathway include (listed reac-
tion times are round trip):

•	 Spinal cord (via spindles): myotatic reflexes, effect indi-
vidual muscles (30–50 ms)

•	 Cerebellum and cortex (via spindles): long loop reflexes, 
effect individual muscles (50–80 ms)

•	 Higher centers (via receptors): triggered reactions, effect 
associated musculature (80–120 ms); reaction time, effect 
any musculature (120–180 ms)

Vision, on the other hand, is a much slower process. 
Motor control pathways that include vision feedback have 
reaction times ranging from 200 ms to 3 s, depending on the 
type of visual stimulus and type of motion involved. These 
data apply to natural vision tasks. However, vision in MIS is 
significantly limited since it comes from a 2D image, typi-
cally viewed well off-axis from the original 3D task space. 
Of the typical visual cues for depth perception, only parallax, 
depth from motion, perspective, relative size, occlusion, tex-
ture gradient, and lighting/shading are available to the sur-
geon. Cues like familiar size, accommodation, foveal 
distortion, and inferred overhead lighting are not available. 
This, compounded with the typically imperfect lighting and 
picture quality in MIS video, implies that the data available 
to visual sense and perception is atypically limited and that 
visuospatial localization from depth perception requires 
more time, attention, and learning, especially for MIS train-
ees. This suggests that in MIS the minimum reaction time for 
the visual feedback loop is in fact longer than 200  ms. 
Moreover, in the case of novice surgeons, visual feedback 
loop times would be significantly longer, and the information 
may not be completely reliable as evidenced by common 
depth perception errors in early training.

MIS tools and the related fulcrum effect effectively alter 
the kinematic chain of the human limb and end effector. For 
a first time user, the immediate result is that proprioceptive 
perception and control must adapt to the novel kinematics. If 
a novice would not have somesthetic perception and somato-
motor control well refined, he would depend exclusively on 
vision to track both tool and target – as was born out in the 
study. This would fall into the classic closed-loop motor 
learning theory reviewed in the motor learning literature, 
characterized by its precision and slow speeds. As the pro-
prioception and related control adapt to the new kinematics 
and somesthetic tracking becomes more reliable, the subject 
needs to confirm tool tracking via vision less and less. At the 
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expert level, target gaze is dominant, and proprioception 
allows both faster overall tracking and faster, more accurate 
motor control. However, it is very unlikely this process 
would continue until a schema or open-loop control strategy 
is acquired. Unlike fast, precise schemas that have taken 
years to develop for virtuoso piano playing or high-speed 
professional sports activity – both are cases where high pre-
cision and high-speed performance are only possible via 
schemas  – surgery requires a higher level of precision in 
more degrees of freedom, moves at a slower pace, and exhib-
its much greater variability. This essentially precludes the 
notion of surgical schemas.

The result of the above discussion implies a hierarchical 
control structure is chiefly active in surgical training, espe-
cially in MIS. The neurophysiological analysis and relevant 
evidence reviewed above allows us to construct a relatively 
accurate system diagram. The multiple feedback blocks and 
their respective reaction times suggest a major loop/minor 
loop control strategy exists [29]. This method is a classic, 
well-documented way of effectively combining dynamic 
systems of disparate reaction times. The inner, minor loop 
traditionally operates at much faster dynamics than the outer, 
major one (e.g., the stabilizers on supersonic jets require 
very fast dynamics to suppress vibration and turbulent dis-
turbances, while the pilot’s commands have a much smaller 
bandwidth). The inner one is tuned in such a way that the 
outer loop’s optimal tuning is easy to realize. This can be 
implemented recursively, as illustrated in the system block 
diagram below (Fig.  4). Note the feedback loop response 
times are indicated.

Thus learning a surgical task first relies on vision-based 
feedback control. Progress involves learning to make sense 
of proprioceptive information and training somatomotor 
centers to use this information during motion. Eventually, 
dependency on visual tracking is reduced, as evidenced in 
the eye-tracking study. This enables target gaze, where eyes 
fix strictly on a target, while proprioceptive feedback motor 
control drives a tool to target. This affords at least two ben-
efits. First, the eyes do not need to switch back and forth 
between target and tool to realize tracking. Since visual feed-
back takes (at least) twice as long to incorporate than somes-
thesis, this would seriously compound the delay time 

involved in task tracking. Second, the proprioceptive feed-
back can directly drive somatomotor control centers. Because 
this loop is 2–10 times as fast as the visual feedback loop, 
psychomotor performance can be significantly faster. Thus, 
proprioception is critical in surgical performance and skill 
acquisition. In fact, the degree to which a surgeon exploits 
internalized proprioception in favor of visual processing 
alone is a measure of psychomotor skill.

�Typical Use Cases of Skill Metrics: Ideal 
Requirements

�New Technology Certification

Since the introduction of laparoscopy in the mid-1980s, sur-
gery has seen a rapid rate of new surgical technologies being 
employed, sometimes outpacing adequate training. In 1999, 
the FDA approved the use of the da Vinci surgical robot that 
has since transformed whole areas of surgical disciplines. 
Laparoscopy and robotic surgery never passed through a rig-
orous training and efficacy testing process. Surgeons who 
were early adopters decided to do their next cases using these 
technologies after fairly minimal training or proctoring. 
Despite high-profile malpractice cases and surgical compli-
cations related to the inadequate training of surgeons using 
these technologies and approaches, there are no standard 
pathways in place for surgeons to adopt new technologies. 
Each hospital decides which surgical approaches and tech-
nologies warrant special credentialing processes, and each 
hospital is different. Furthermore, the processes in place for 
new technology credentialing typically involves sign-off 
from peers in the institution with whom the surgeon is 
befriended, thus eliminating objectivity in the process of 
proficiency assessment.

Objective skills appraisal provides a common ground 
against which all surgeons adopting new technologies in the 
operating room can be compared. In an ideal professional 
situation, surgeons would need to show competency and pro-
ficiency in the use of a new technology before using it in a 
human patient. The reality is that access to physician exper-
tise, available time and resources for the training, and the 
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surgeon’s overestimation of their own capabilities lead to 
new technology utilization before adequate skill is achieved. 
This may place patients at risk of harm. The FDA is working 
to establish guidelines for medical device companies to dem-
onstrate that their new technology is not only safe and effec-
tive but also that it is usable by the surgeons. The FDA is 
calling out to professional leaders and key opinion leaders to 
encourage their hospitals to embrace [30].

�Identifying Best Targets for Effective 
Remediation

The best targets for remediation are those skills that are uni-
versally required for competent performance and can be 
objectively assessed with validated tools and where clear 
feedback can yield change. The most basic and fundamental 
metric is task time. Although extremely easy to track and 
undisputable across any skill, speed of practice does not 
always confer safe surgery. Furthermore, giving feedback to 
a trainee that they are too slow may incentivize poor tech-
nique in exchange for improved task time. Other metrics 
such as bimanual dexterity represent a hard skill that can be 
objectively measured; directly influences task time, effi-
ciency, and safety; and can be improved with training [3]. 
When watching a performance, it is immediately evident 
whether both hands are being used to complete a task. Also, 
poor bimanual dexterity has been validated a metric that can 
confer expertise – the higher the degree of bimanual dexter-
ity, the higher the expertise. Bimanual dexterity can also be 
assessed in an automated way through tool motion or hand 
motion tracking; thus immediate feedback can be given to 
the learner about their performance in this skills domain. 
When deficits are observed, there are multiple low and high 
fidelity drills that exercise bimanual dexterity for minimally 
invasive and open approaches. Other areas of skill that meet 
the criteria of best targets for effective remediation include:

•	 Depth perception
•	 Control of instrumentation (laparoscopic, robotic, open)
•	 Force sensitivity or tissue handling (although this one 

requires human observation)

�Summative Versus Formative Feedback

Assuming that the various components of skill can be mea-
sured accurately and readily, how will such information be 
presented to trainees, established surgeons, or risk assess-
ment department to best improve patient outcomes? The 
amount of time elapsed from the completion of a procedure 
can govern this. Gallagher’s hypothetical map (see Fig. 3) 
[22] was suggested primarily as a means to motivate pre-
training of surgical trainees via simulation, that is, to hone 

their technical skills like tool handling and cognition of the 
procedural flow before joining their attending surgeon in 
the operating room. But this implies that implementing 
validated, objective metrics for technical skills can be used 
to evaluate whether surgeon trainees are ready for higher-
level instruction or learning based on their available atten-
tional resources. This would suggest proving skill 
evaluation information preemptively, before an operation 
ever takes place.

Another approach is to maintain records or data logs of 
surgical procedures (e.g., recorded videos, compiled ratings, 
simulator databases) and periodically process this data to 
provide a summative feedback to a trainee, practicing sur-
geon, or risk assessment department. This has the potential 
to link performance to outcomes but only retrospectively. 
This may occur with varying levels of delay: annually, 
monthly, or even shortly after the end of a procedure. 
Conversely, formative feedback would provide meaningful 
input on skill or performance more proximally  – perhaps 
immediately upon the completion of a procedure or, even 
better, during a given procedure. This would have the benefit 
of making the skill evaluation data most relevant and action-
able to a consumer. Individuals could learn more immedi-
ately from their mistakes or successes or even while they are 
occurring.

This leads to the ideal case for formative feedback of zero 
time delay, that is, virtually real-time measurement and 
structured feedback on skill, that is, “what is the skill rating 
at any moment within a surgical task?” and “what can one 
change in this instant and context to improve?” and not just 
summary (more summative) information such as total time 
upon completion of a task or procedure. This could ulti-
mately accelerate or mitigate the prolonged, arduous learn-
ing curves associated with surgical skill acquisition.

�Aggregation Versus Individuation of Skill 
and Context and Skill Decay

The impact of surgical skills to patient outcomes is a func-
tion of both context and time. For example, technical mas-
tery of suturing can be targeted as a particularly critical skill. 
The manual dexterity required to master suturing in manual 
laparoscopy can ensure some dexterity in simpler technical 
tasks: if one masters suturing, he or she must implicitly be at 
least passable in other aspects like basic tissue manipulation. 
But while the success of some procedures hinges on suturing 
mastery, others may be able to completely avoid it or com-
plete such procedures with comparable outcomes using tools 
like the AutosutureTM (Covidian Corp. Dublin, Ireland) that 
obviate the need for traditional suturing. The resulting impact 
that mastery of suturing has on ultimate patient outcomes is 
thereby also function of the specific procedure in question. 
While this relative importance of a specific skill like suturing 
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mastery to the patient outcome depends on the wider proce-
dural context, the understanding of the skill in and of itself is 
also context dependent. For example, skill changes with 
time: a trainee’s mastery of suturing increases with practice, 
but a master surgeon’s level of technical proficiency can also 
decay with lack of use.

The level of granularity between aggregation and indi-
viduation can apply to an individual surgeon (e.g., their 
entire practice), a specific class of procedures (e.g., all of the 
appendectomies they have ever performed), a specific proce-
dure on a particular date, specific steps or minutes within that 
procedure, and across the various components of skill (e.g., 
cognitive vs. psychomotor vs. visuospatial). In practice, 
aggregation (combining of performance evaluations from 
multiple dates or for a given performance from multiple rat-
ers using a method like averaging or median) provides more 
reliable, statistically stable results as it avoids the prevalence 
of outliers since spurious events like occasionally erroneous 
ratings or unusually extreme performances can cancel out. 
However, this introduces a necessary drawback: the more 
aggregation occurs over time intervals, the less formative 
(immediate) the feedback can be, somewhat hampering its 
possible utility. This delay can also overlook issues like iden-
tifying decayed skills that need a quick warm up. Feedback 
averaged over an entire practice may not provide the most 
up-to-date assessment of a surgeon’s skill. Conversely, the 
evaluation of a single segment from a single procedure may 
not accurately reflect that surgeon’s entire practice or apti-
tude in other procedural contexts. Independent of the level of 
aggregation, the principle of extremes can still apply. For 
example, a risk assessment department can look at a histo-
gram of all surgical technical skills evaluated for a given pro-
cedure and identify the extremes: e.g., the top and bottom 
quartiles. This can identify individuals most and least deserv-
ing of additional resources for training and improvement. 
Then for a particular individual, a more individuated assess-
ment, say, for the riskiest steps of a given procedure, can 
assess which of their component skills are weakest, e.g., 
“respect for tissue,” and target very specific resources to 
improve them.

�Methods of Surgical Skill Measurement

Determining methods to reliably, objectively, and quantita-
tively measure surgical skill remains an active area of 
research. While numerous approaches have been proposed 
over more than two decades, few have yet established wide-
spread use. This is particularly true for more technology-
dependent computational approaches that promise most 
quantitative rigor. However, with the increasing popularity of 
robotics and continual incursion of advanced technologies 
into the operating room, it is reasonable to expect that such 
methods will penetrate into practice.

�Subjective Versus Objective Metrics

Barring technology and automation, earlier methods such as 
the objective structured assessment of technical skill (OSATS) 
employed manual, subjective evaluation of performance via 
expert review of video-recorded procedures [31, 32]. 
Objectivity was argued based on a consistent checklist and 
preset Likert scale evaluations with categories such as 
“respect for tissue,” “time and motion,” “instrument han-
dling,” “respect of instruments,” etc. Such methods are 
equally applicable in both simulation and real surgical envi-
ronments and scale well across the different tasks or modali-
ties (e.g., robotics, laparoscopy, endoscopy, open surgery, 
etc.). However, they require a human proctor to manually 
evaluate each individual’s tasks which is expensive and does 
not scale well to large numbers or concurrent trials. Multiple 
variants of OSATS have become practical de facto standards 
for skill assessment; the core concept of anonymized video 
review with structured survey instruments employing Likert 
scales remains the same, but some Likert domains may be 
slightly altered for specific surgical procedures or specialties. 
Examples include the global operative assessment of laparo-
scopic skills (GOALS) instrument for laparoscopy [33] and 
the global evaluative assessment of robotic surgery for robotic 
surgery [34]. Such approaches also invariably suffer from the 
subjectivity of the evaluator’s judgment and imperfect inter- 
and intra-rater agreements. On the other hand, they are more 
objective than traditional in person “over the shoulder” sub-
jective evaluations. This is due to blinding raters to the iden-
tity of surgeons whose performances they evaluate through 
videos, the aggregation of multiple ratings, and consistent 
textual descriptors used to anchor provided ratings. However, 
such tools are not as objective as rigorous quantitative algo-
rithms. For example, the same panel of OSATS raters may 
provide slightly different scores to the same video at different 
times, whereas a quantitative method would provide the same 
deterministic score for each performance.

Methods to overcome barriers of scale for objective 
assessment of large groups of surgeons have been developed 
employing crowdsourcing to assess surgeon skill. Chen et al. 
first described posting a single robotic suturing video to a 
large group of distributed, independent, anonymous crowd-
workers to rate the performance using a validated robotic 
skills assessment tool. When compared to a panel of expert 
robotic surgeons reviewing the same video, the crowd of pre-
sumably nonmedically trained crowdworkers agreed with 
the expert ratings. Furthermore, instead of the 3  weeks it 
took the experts to do the survey, it took the crowd of almost 
500 people less than 24 h to complete the survey [35]. This 
methodology for objective skills assessment has since been 
validated for open, laparoscopic, and robotic animate, 
human, and dry lab surgery skills [36–44]. The enabling 
capability of crowdsourcing is evidenced by the consistently 
inexpensive and rapid results that mirror expert reviews.
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�Proficiency Benchmarks

Proficiency methods are based on the repetition of tasks or 
procedures until predetermined performance criteria have 
been met. To set the performance criteria on some criterion 
tasks like suturing, a pool of “expert surgeons” completes 
multiple repetitions, and their resulting scores are averaged. A 
trainee must score within 1 standard deviation of their aver-
age score at least two consecutive times to achieve profi-
ciency. This approach deals well with the large amount of 
variability inherent within and among subjects, and applica-
tions of proficiency-based methods have spread beyond VR 
since their introduction to surgery. It is from within the corpus 
of VR surgical simulation studies that proficiency-based eval-
uation and training arose [22]. However, this approach suffers 
from some problems as well. The proficiency benchmarks 
tend to be highly task specific: two different tasks intended to 
evaluate suturing skills (e.g., a virtual reality simulation and a 
reality-based Fundamentals of Laparoscopic Surgery (FLS) 
suturing task) will provide different “task-specific” scores. 
This means that proficiency criteria must be established for 
each task. Furthermore, the choice of the “expert subjects” 
and their resulting performance can vary significantly as no 
universal criteria are established or espoused in selecting 
them: two groups of experts from different geographic loca-
tions may yield different proficiency criteria perhaps because 
they teach different suturing techniques, e.g., how to tie knots 
or hold the suture and needle. Ideally, skill evaluation metrics 
would move beyond tallying task-specific events to seeing the 
“skill” exhibited in the task – something that structured sur-
vey tools like OSATS can better cope with.

�Technical Skills (Psychomotor, Visuospatial)

The act of surgery invokes numerous human physiological 
systems during its execution by a surgeon. Of those specifi-
cally identified in the surgical literature (e.g., Miller’s pyra-
mid, Gallagher’s attentional resource chart), technical skills 
are most easily amenable to traditional scientific measurement 
and observation. Cognitive skills can, for the most part, be 
directly assessed with traditional examinations. While cogni-
tive skills, knowledge, and sensory perception are important in 
surgery, their inaccessibility via direct observation precludes 
them from convenient scientific investigation. As a result, 
technical skills have received the most research effort to date.

�In Simulation

Virtual reality (VR) was introduced into surgical simulation 
in 1993 [45] and continues to be adopted, evaluated, and 
improved as a tool for training and measuring surgical skill 

with varying degrees of granularity from its outset [6, 46–
50]. In simulation, the benefits of VR include the ability to 
deploy the same environment between subjects and tasks and 
so offer a consistent training platform for trainees, low cost 
of long-term use, ease in data collection, and ease of tracking 
the virtual environment. Drawbacks include high initial cost, 
steep cost increases for better realism in visual representa-
tion, internal modeling or haptic rendering, and the inability 
to extract similar data from real cases. The bulk of the surgi-
cal literature in the VR simulation area has focused primarily 
on validation. That is, in establishing that skills acquired dur-
ing simulation trials ultimately transfer to operating room 
(OR) performance. These validation studies rely almost 
exclusively on summary metrics like task time, path length, 
and economy of motion (path length divided by task time or 
similar efficiency measure) and provide typically positive 
but sometimes mixed results about the validity of simulators 
to train OR-transferable surgical skills [51].

In terms of metrics, VR natively supports automation and 
objectivity in recording metrics, more so than in reality-based 
procedures or simulations. Time to task is automatically com-
puted along with more novel tool path metrics such as path 
length, economy of motion, smoothness, etc. Recording com-
plete tool trajectories is trivial. Such information can provide 
a rich source for dynamic analysis, though this source of data 
and its subsequent, potential dynamic analysis are basically 
ignored. Because VR systems synthesize their environments, 
tracking of virtual tissue and objects and how they are inter-
acted with is also trivial. Thus, once the expense of creating 
the environment is incurred, it is inexpensive to automate the 
accurate detection of both procedural and cognitive errors in 
VR. This is a major benefit of VR.

Reality-based (RB) simulators consist of physical objects 
that either mimic anatomy with varying degrees of realism or 
simply provide inexpensive, nonanatomical objects as a means 
for basic manipulation. These simulators employ real surgical 
tools used in the OR or slightly modified versions. Perhaps the 
most notable of these is the McGill Inanimate System for 
Training and Evaluation of Laparoscopic Skills (MISTELS). 
It originally consisted of seven laparoscopic tasks (peg trans-
fers, pattern cutting, clip and divide, endolooping, mesh place-
ment and fixation, suturing with intracorporeal or 
extracorporeal knots) executed on inexpensive materials like 
gauze, rubber grommets, latex gloves, tubing, and foam. The 
original purpose of MISTELS was to develop a series of struc-
tured tasks to objectively measure laparoscopic skills [20, 21]; 
these tasks were not necessarily developed to systematically 
accelerate or optimize the learning curves for skill acquisition. 
The chief metrics used in MISTELS are task time and an error 
penalty. These metrics are combined into a single score based 
on the following formula (Table 2):

	 Score preset constant completion time penalty= - - 	
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Both the preset constant (cutoff time) and penalty are 
unique to each of the seven tasks. MISTELS was success-
fully validated with varying degrees of granularity [54–
59]. Eventually, the Fundamentals of Laparoscopic Skills 
(FLS) committee, mandated in the late 1990s by the 
Society of American Gastrointestinal and Endoscopic 
Surgery (SAGES), adopted the MISTELS program with 
the exception of two tasks (clipping tubular structure and 
securing a mesh were found to lack utility) [19]. Since this 
adoption, a number of studies ensued to reinforce the vali-
dation of the MISTELS/FLS paradigm [52, 60–65]. Most 
notably, given proficiency-based training, translation of 
skills to the OR was established [66, 67] along with posi-
tive evidence for its utility in skill retention and mainte-
nance [53, 68].

FLS and similar RB simulators are less expensive than 
VR simulators because they require less technology and do 
not need to invest resources to accomplish realism in accu-
rate models or visual and haptic rendering. As such, valida-
tion only considers the metrics used for skill scoring and 
does not need to address the quality of realism in simula-
tion since the subject is already interacting with real-world 
objects. However, the acquisition of metrics typically 
requires manual oversight for timing and particularly with 
evaluating errors for task-specific penalty scores. FLS 
trainers, like most RB methods, do not utilize tool path 
analysis, neither for summary metrics like path length and 
economy of motion nor for dynamic metrics or force 
information.

Robotics provides a platform in which dry lab simula-
tions and OR procedures can both be logged in an identical 
manner and yield consistent, automatically generated met-
rics. This would be ideal for validation studies of dry lab or 
realistic VR training skills transferred to the operating the-
ater. However, Intuitive Surgical, Inc. (Sunnyvale, CA), the 
company that currently deploys the vast majority of surgi-
cal robotic platforms, does not have universal open access 
to the data streams internally collected during operation. 
Some work is underway for creating VR tasks intended to 
train or evaluate robotic skills which resemble FLS con-
structs, but these are not as developed or validated as the 
FLS program and remain an active area of research at this 
time [69–71]. If dynamic metrics are successfully created 
based on tool trajectories from VR or RB simulation, they 
would be naturally well-suited to extend into surgical 
robotics.

�Computational Metrics

Computational metrics obviate the need for human raters. 
They operate on quantitative data actively streaming or 
previously recorded from the operating room. This can 
include continuous video and a variety of tool tracking 
variables like tool tip and handle positions, orientations, 
and forces. Such data are generated either via customized 
sensors as in early work [72] but more commonly through 
existing computerized systems to which such data are 
already inherent; the increasingly ubiquitous da Vinci sur-
gical robot (Intuitive Surgical, Inc.) is an example. This 
area of research has been highly active and continues to 
make significant progress [73, 74].

The basic approach employs methods from machine 
learning. This includes constructing a sophisticated mathe-
matical model and “training” it with data captured from 
surgery that is labeled according to skill ranked level (e.g., 
novice, expert, intermediate). Then the ability of the model 
to quantify skill is evaluated by testing it with entries that 
were not part of the training set to emulate what a real-
world situation would be like: the model must analyze data 
it has never seen before. This process is called cross-valida-
tion. The resulting models are typically said to classify skill 
level when referring to discrete predetermined skill levels 
such as novice or expert. Alternatively, they are said to 
quantify or score skill level when they provide a score that 
can take on a continuum of values instead of discrete cate-
gories. In this literature, the word metric and measure take 
on very specific, narrow mathematical meanings that are 
not compatible with the wider sense of the words in the 
surgical literature. This area of research is primarily ham-
pered by a dearth of rich datasets that capture the massive 
variability of surgical practice, skills, and regionally vary-
ing techniques. To date, no computational methods have 
shown to predict patient outcomes. However, some tech-
niques have recently been applied that effectively automate 
OSATS  – a technique shown to correlate to patient out-
comes – directly on raw video (from dry lab procedures) 
with surprising accuracy [75].

Among the most mature accomplishments in this area to 
date is the study by Ahmidi and colleagues [76] which sum-
marizes the problems of automatically segmenting a surgical 
task into constituent sub-parts and atomic surgical gestures 
called “gestemes.” More importantly, it also establishes a 
formal standard for validating the success of computational 
metrics, leave-surgeon-out cross-validation (also called 
leave-one-user-out or LOUO), and provides an open dataset 
captured from the da Vinci robot. This is particularly impor-
tant given the scarcity of such data and the fact that surgeons 
vary so widely in their captured data.

Typical metrics such as procedural errors, task time, accu-
racy, blood loss, fluid use, etc. are specific not only to a par-

Table 2  Equations used to compute FLS scores per Task with t for task 
time and E for task-specific error counts; derived from [20, 52, 53]

FLS task FLS score
Peg transfer FLSPeg = (300 – t – 17Edr)/237
Cutting FLSCut = (300 – t – 2Ea)/280
Suturing FLSSut = (600 – t – Epd – Eg – Eq)/520
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ticular task or procedure (e.g., FLS peg transfer or cutting, 
etc.) but are also specifically fixed to a certain modality. For 
example, the amount of blood loss may be cheaply computed 
in VR but may be difficult or impossible within RB, robotics, 
or traditional manual MIS.

Since the 1970s, hidden Markov models (HMMs) have 
enjoyed considerable success in computer speech recognition 
and voice identification [77]. They also showed promising 
results when applied to robotics problems such as human task 
segmentation or task identification [78–82]. Hannaford and 
Rosen successfully applied Markov modeling techniques to 
surgical skill/performance evaluation [83–86] in part by 
developing the Blue-DRAGON [87–89] data capture device 
and a subsequent, smaller version known as the Red-
DRAGON [90] (see Fig. 5). The Blue-DRAGON employed a 
novel spherical mechanism and was used to record a large 
database of surgeon-tool interactions for common laparo-
scopic procedures executed in live porcine models. This 
exposed surgery to modern signal processing and led to vali-
dating the Markov modeling approach for surgical skill rec-
ognition [91]. Both the Red-DRAGON and the use of HMMs 
for surgical skill evaluation were eventually licensed and 
commercialized as the Electronic Data Generation for 
Evaluation (EDGE) machine by Simulab Corp (Seattle, WA).

The EDGE platform (Fig. 6) was used to collect data from 
hundreds of FLS task recordings across more than ten geo-
graphically diverse training hospitals in the United States. 
The motion data is ten-dimensional (tooltip position in x,y,z, 
tool rotation and grasp angle for both hands) and sampled at 
30 Hz. Tool path plots of a peg transfer task for disparate 
skill levels reveal characteristic distinctions in refined vs. 
crude motion (see Fig. 7). Similar interesting nuances can be 
seen in the grasping force plots (Fig. 8).

The use of HMMs for surgical performance measurement 
and processing has gained considerable momentum since its 
inception at the Biorobotics Lab. This was primarily at Johns 
Hopkins University [92–94], but development has spread 
internationally [95, 96]. The strong reception of surgical 

Markov modeling in academia has spurred research activity 
in this field. While this academic success lends credibility to 
this method, it also may introduce alternative models which 
could potentially outmode classical HMMs by offering bet-
ter performance in surgical applications [97].

Some earlier robotics studies from the University of 
Nebraska proposed some more intuitive metrics [98–100]. 

a bFig. 5  The Blue-DRAGON 
collecting data during surgical 
training in live pigs (a) and 
the subsequent, smaller 
Red-DRAGON [90] (b) in use 
on an artificial tissue model. 
(a) Used with permission of 
Jacob Rosen; (b) used with 
permission of Scott Gunther

6-Degree of Freedom
Sensor-Mounted

MIS Tools

Fig. 6  Simulab’s award-wining EDGE platform, a commercialized 
version of the Red-DRAGON. (Used with permission of Simulab 
Corporation)
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Movement time intervals (e.g., time spent reaching for an 
object, time spent holding, etc.) and the coefficient of their 
variation allowed for finer granularity in temporal analysis. 
Another metric is the radius of curvature of the trajectory com-
puted from the three-dimensional trajectory of a point and its 
time derivatives. Phase portraits of position vs. displacement 
were suggested for bimodal analysis. From the phase portrait, 
the suggested mean absolute relative phase (MARP) value, 
which measures the extent to which tools are out of phase 
(moving in opposite directions), was found to be significant 
(in phase registers with lower MARP, out of phase induces 
higher MARP). Moreover, electromyogram (EMG) signals 
were evaluated and also indicated a correlation to skill level. 
Historically, static metrics were predominant in the literature, 
with task time being the most prevalent. Any of the listed plat-
forms that compute economy of motion (EoM) and/or tool 
path implicitly acquire and potentially log time-dependent 
tool path data. However, such metrics were potentially found 
to have little or no value over task time [101].

Another interesting branch of inquiry comes from eye 
tracking [102]. For example, five novices and five experts 
were presented with a VR laparoscopic targeting task where 
a target appeared in a laparoscopic simulation and they were 
to touch the target in minimal time with a laparoscopic tool. 
To see if the performance differences between groups were 
accompanied with eye movement differences, researchers 
looked at the amount of eye gaze on the tool and then char-
acterized their eye behavior through eye and tool movement 
profiles. In terms of eye gaze behavior, novices tended to 
gaze at the tool longer than experts. Several eye gaze behav-
iors identified in this study, including target gaze, switching, 
and tool following, are similar to previous findings. The tar-
get gaze behavior was the preferred strategy for experts, and 
novices tended to follow the tool more frequently than 
experts [102]. Figure  9 and Table  3 demonstrate these 
phenomena.

There are several ramifications of this study in light of the 
surgical and motor learning literature reviewed above. First, 
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the differences in the movement profiles and their associated 
task times corroborate the notion of Gallagher’s attentional 
resources; the tool following profile of a novice indicates 
active attentional focus on the tool, while the target gaze of 
the expert suggests a level of autonomy in the manipulation 
task. Second, the difference in gaze and targeting patterns 
across skill levels, as suggested in the motor learning litera-
ture reviewed, is reproduced here in a VR laparoscopic set-
ting. And third, this presents strong evidence of open-loop 
control in the expert (and hence faster performance) vs. 
closed-loop control in the novices, at least in the sense of a 
visual feedback loop.

This same study also makes the following two important 
observations [102]:

•	 Laparoscopic tool movement is unlike direct hand 
movement because proprioceptive feedback from hand 
position does not map directly to the tool tips necessi-
tating additional visuomotor and spatial transforma-
tions [103].

•	 Tactile feedback from tool movement is minimal because 
of friction between the tool and the cannula (a tunnel-like 
structure surrounding the tool at the patient entry point), 
and thus, the surgeon has a greater reliance on the indirect 
visual information [104, 105].

Exploiting eye tracking in establishing metrics of surgical 
skill remains an active area of research and recently includes 
more rigorous methodologies for computational extraction 
[106].

�Nontechnical Skills (NOTSs)

We have focused on technical skills which represent skills 
centered on a surgeon’s kinematic signatures or hand/tool 
motions, yet surgical success also involves effective commu-
nication and human-human interaction – commonly referred 
to as nontechnical skills. Recent literature has started to 
address how to distinguish nontechnical surgical skills 
(NOTSs) such as effective communication, leadership, coop-
eration, read-backs, and team choreography [107]. These 
elements can be assessed through objective scoring tools 
validated in the literature. Clinical areas such as catastrophe 
or code environments, anesthesia team management, and 
urgent complex clinical care scenarios have been the initial 
benefactors of such assessment [108]. These types of sce-
narios tend to be practiced in simulation centers, yet some 
have advocated for in situ training scenarios so that any 
equipment or resource deficits existing on the wards/in the 
ORs can be unmasked during the simulated team training.

Operationalizing the assessment can be challenging, how-
ever, as video and audio from multiple vantage points may 
need to be obtained to capture the whole room, extensive time 
is required for coaches/instructors to debrief the teams, and the 
scenarios themselves can create quite stressful environments 
which subjects need to reconcile. In addition, in situ training 
involving patients introduces the concerns around maintaining 
patient privacy and HIPAA compliance. Thus most in situ sce-
narios still involve standardized patients or mannequins.

It is clear that effective communication leads to improved 
team dynamics. And the link to patient outcomes has been 
indirectly confirmed through malpractice evidence whereby 
a number of claims in surgery have been related to poor com-
munication; whether between clinician and patient or 
provider-provider [16]. Operative choreography will become 
a metric for entire teams [109]. Systems-based training will 
parallel military training experience that has benefited from 
decades of evidence to support its value.

Target gaze
D

is
ta

nc
e 

to
 ta

rg
et

[p
ix

el
s]

Elapsed time [s]

Switching gaze Tool following
800

400400

0
0 2 4 6 0 2 4 6 0 6 12 18 24 30

800 600

0

300

0

Eye
Tool

Eye
Tool

Eye
Tool

Fig. 9  Eye vs. tool movement profiles typifying different types of gaze patterns taken from [102]. (Reproduced with permission). Eyes gaze at (1) 
the target, left; (2) eyes switch between target and tool, center; and (3) eyes follow tool during motion, right

Table 3  Eye movement behavior distributions for expert and novices 
over all trials found in [102]

Group Target gaze Switching gaze Tool following Loss
Expert 73.3% 13.3% 8.9% 4.4%
Novice 53.3% 17.8% 26.7% 2.2%
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Currently there is a dearth of computational or quantita-
tive tools to automatically process NOTSs. While such “soft 
skills” were traditionally only perceptible or analyzable to 
humans, this is slowly changing. For example, automatic 
speech recognition was historically perceived in the same 
way. But it is now a mature field of research with increas-
ingly dependable algorithms that have become inexpensive 
and ubiquitous (e.g., Apple’s Siri voice assistant). Key 
aspects of NOTSs are not just what is being said but how it is 
being said. This includes not only the efficiency of commu-
nication or correctness of language but also tone or emo-
tional content – aspects that were historically incomputable. 
However, new branches of computer science and engineer-
ing are actively gaining momentum such as affective com-
puting that can computationally grapple with such aspects 
[110, 111]. In the interim, however, crowdsourcing methods 
which have already found considerable success in evaluating 
surgical technical skills are immediately suitable for provid-
ing such evaluations more automatically and objectively than 
expert human raters [112].

�Conclusions

The technology and knowledge exist to elevate the objectivity 
in a clinician’s skill, both technical and nontechnical. And we 
know that the skill of the surgeon influences patient outcomes. 
Yet, the utilization of objective performance assessment has 
lagged awareness. There are many barriers to standard assess-
ment including cost, time, and expertise. The onus is on thought 
leaders in the field of objective skills assessment to enlighten 
practicing surgeons and organizations tasked with establishing 
certification, credentialing, and privileging with a unified 
method for skills appraisal. Until there is agreement on cost-
effective, universally agreed upon standards to capture surgeon 
performances and provide objective, iterative feedback that 
helps surgeons improve their skills, resistance will exist. 
Furthermore, we as surgeons should proactively figure out 
standard feedback methods before regulatory bodies comprised 
of non-clinicians decide for us how we are to be assessed.
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