
Chapter 6

Applications to Production
and Inventory

Applications of optimization methods to production and inventory prob-
lems date back at least to the classical EOQ (Economic Order Quantity)
model or the lot size formula of Harris (1913). The EOQ is essentially
a static model in the sense that the demand is constant and only a sta-
tionary solution is sought. A dynamic version of the lot size model was
analyzed by Wagner and Whitin (1958). The solution methodology used
there was dynamic programming.

An important dynamic production planning model was developed by
Holt et al. (1960). In their model, referred to as the HMMS model, they
considered both production costs and inventory holding costs over time.
They used calculus of variations techniques to solve the continuous-time
version of their model. In Sect. 6.1, a model of Thompson and Sethi
(1980), similar to the HMMS model, is formulated and completely solved
using optimal control theory. The turnpike solution is also obtained when
the horizon is infinite.

In Sect. 6.2, we introduce the wheat trading model of Ijiri and
Thompson (1970), in which a wheat speculator must buy and sell wheat
in an optimal way in order to take advantage of changes in the price of
wheat over time. In Sects. 6.2.1–6.2.3, we solve the model when the short-
selling of wheat is allowed. In Sect. 6.2.4, we follow Norström (1978) to
solve a simple example that disallows short-selling.
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192 6. Applications to Production and Inventory

In Sect. 6.3, we introduce a warehousing constraint, i.e., an upper
bound on the amount of wheat that can be stored, in the wheat trading
model. In addition to being realistic, the introduction of the warehousing
constraint helps us to illustrate the concepts of decision and forecast
horizons by means of examples. This section is expository in nature, but
theoretical developments of these ideas are available in the literature.

6.1 Production-Inventory Systems

Many manufacturing enterprises use a production-inventory system to
manage fluctuations in consumer demand for their products. Such a
system consists of a manufacturing plant and a finished goods ware-
house to store products which are manufactured but not immediately
sold. Once a product is made and put into inventory, it incurs inventory
holding costs of two kinds: (1) costs of physically storing the product,
insuring it, etc.; and (2) opportunity cost of having the firm’s money
invested or tied up in the unsold inventory. The advantages of having
products in inventory are: first, that they are immediately available to
meet demand; second, that excess production during low demand peri-
ods can be stored in the warehouse so it will be available for sale during
high demand periods. This usually permits the use of a smaller manu-
facturing plant than would otherwise be necessary, and also reduces the
difficulties of managing the system.

The optimization problem is to balance the benefits of production
smoothing versus the costs of holding inventory. Works that apply con-
trol theory to production and inventory problems have been reviewed in
Sethi (1978a, 1984).

6.1.1 The Production-Inventory Model

We consider a factory producing a single homogeneous good and having
a finished goods warehouse. To state the model we define the following
quantities:

I(t) = the inventory level at time t (state variable),

P (t) = the production rate at time t (control variable),

S(t) = the exogenously given sales rate at time t;

assumed to be bounded and differentiable for t ≥ 0,

T = the length of the planning period,

Î = the inventory goal level,
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I0 = the initial inventory level,

P̂ = the production goal level,

h = the inventory holding cost coefficient; h > 0,

c = the production cost coefficient; c ≥ 0,

ρ = the constant nonnegative discount rate; ρ ≥ 0.

The interpretation of the inventory goal level Î is that it is a safety
stock that the company wants to keep on hand. For example, Î could be
2 months of average sales or Î could be 100 units of the finished goods.
Similarly, the production goal level P̂ can be interpreted as the most
efficient level at which it is desired to run the factory.

With this notation, the state equation is given by the stock-flow
differential equation

İ(t) = P (t)− S(t), I(0) = I0, (6.1)

which says that the inventory at time t is increased by the production
rate and decreased by the sales rate. The objective function of the model
is:

min

{
J =

∫ T

0
e−ρt[

h

2
(I − Î)2 +

c

2
(P − P̂ )2]dt

}
. (6.2)

The interpretation of the objective function is that we want to keep the
inventory as close as possible to its goal level Î , and also to keep the
production rate P as close as possible to its goal level P̂ . The quadratic
terms (h/2)(I − Î)2 and (c/2)(P − P̂ )2 impose “penalties” for having
either I or P not being close to its corresponding goal level.

Next we apply the maximum principle to solve the optimal control
problem specified by (6.1) and (6.2). A stochastic extension of this prob-
lem will be carried out in Sect. 12.2.

6.1.2 Solution by the Maximum Principle

We now associate an adjoint function λ with Eq. (6.1) and can write the
current-value Hamiltonian function as

H = λ(P − S)− h

2
(I − Î)2 − c

2
(P − P̂ )2. (6.3)

In (6.3), we have used the negative of the (undiscounted) integrand in
(6.2), since the minimization of J in (6.2) is equivalent to the maximiza-
tion of −J.

To apply the Pontryagin maximum principle, we differentiate (6.3)
and set the resulting expression equal to 0, which gives
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∂H

∂P
= λ− c(P − P̂ ) = 0. (6.4)

From this we obtain the optimal production rate

P ∗(t) = P̂ + λ(t)/c. (6.5)

We should mention that in writing (6.5), we are allowing negative pro-
duction (or disposal). Of course, the situation of a disposal will not arise
if we assume a sufficiently large P̂ and a sufficiently small I0.

Remark 6.1 If P is constrained to be nonnegative, then the form of
the optimal control will be

P ∗(t) = max{P̂ + λ(t)/c, 0}. (6.6)

This case will be treated in Sect. 6.1.6.

By substituting (6.5) into (6.1), we obtain

İ = P̂ + λ/c− S, I(0) = I0. (6.7)

The equation for the adjoint variable is easily found to be

λ̇ = ρλ− ∂H

∂I
= ρλ+ h(I − Î), λ(T ) = 0. (6.8)

We see that (6.7) has the initial boundary specified and (6.8) has the ter-
minal boundary specified, so together these give a two-point boundary
value problem. We will employ a method to solve these two equations
simultaneously, which works only in some special cases including the
present case. The method is the well-known trick used to solve simulta-
neous differential equations by differentiation and substitution until one
of the variables is eliminated. Specifically, we differentiate (6.7) with
respect to t, which creates an equation with λ̇ in it. We then use (6.8)
to eliminate λ̇ and (6.7) to eliminate λ from the resulting equation as
follows:

Ï = λ̇/c− Ṡ = ρ(λ/c) + (h/c)(I − Î)− Ṡ

= ρ(İ − P̂ + S) + (h/c)(I − Î)− Ṡ.

We rewrite this as

Ï − ρİ − α2I = −α2Î − Ṡ − ρ(P̂ − S), (6.9)
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where the constant α is given by

α =
√

h/c. (6.10)

We can now solve (6.9) by using the standard method described in
Appendix A. The auxiliary equation for (6.9) is

m2 − ρm− α2 = 0,

which has the two real roots

m1 = (ρ−
√
ρ2 + 4α2)/2, m2 = (ρ+

√
ρ2 + 4α2)/2; (6.11)

note thatm1 < 0 andm2 > 0.We can therefore write the general solution
to (6.9) as

I(t) = a1e
m1t + a2e

m2t +Q(t), I(0) = I0, (6.12)

where Q(t) is a particular integral of (6.9).
We will say that Q(t) is a special particular integral of (6.9) if it has

no additive terms involving em1t and em2t. From now on we will always
assume that Q(t) is a special particular integral.

Although (6.12) has two arbitrary constants a1 and a2, it has only
one boundary condition. To get the other boundary condition we dif-
ferentiate (6.12), substitute the result into (6.7), and solve for λ. We
obtain

λ(t) = c(m1a1e
m1t +m2a2e

m2t + Q̇+ S − P̂ ), λ(T ) = 0. (6.13)

Note that we have imposed the boundary condition on λ so that we can
determine the constants a1 and a2.

For ease of expressing a1 and a2, let us define two constants

b1 = I0 −Q(0), (6.14)

b2 = P̂ − Q̇(T )− S(T ). (6.15)

We now impose the boundary conditions in (6.12) and (6.13) and solve
for a1 and a2 as follows:

a1 =
b2e

m1T −m2b1e
(m1+m2)T

m1e2m1T −m2e(m1+m2)T
, (6.16)

a2 =
b1m1e

2m1T − b2e
m1T

m1e2m1T −m2e(m1+m2)T
. (6.17)
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If we recall that m1 is negative and m2 is positive, then when T is
sufficiently large so that em1T and e2m1T are negligible, we can write

a1 ≈ b1, (6.18)

a2 ≈ b2
m2

e−m2T . (6.19)

Note that for a large T, e−m2T is close to zero and, therefore, a2 is close
to zero. However, the reason for retaining the exponential term in (6.19)
is that a2 is multiplied by em2t in (6.13), which, while small when t is
small, becomes large and important when t is close to T.

With these values of a1 and a2 and with (6.5), (6.12), and (6.13),
we now write the expressions for I∗, P ∗, and λ. We will break each
expression into three parts: the first part labeled Starting Correction
is important only when t is small; the second part labeled Turnpike
Expression is significant for all values of t; and the third part labeled
Ending Correction is important only when t is close to T.

Starting Correction Turnpike Expression Ending Correction

I∗ = (b1e
m1t)+ (Q)+

(
b2
m2

em2(t−T )

)
(6.20)

P ∗ = (m1b1e
m1t)+ (Q̇+ S)+

(
b2e

m2(t−T )
)

(6.21)

λ = c(m1b1e
m1t)+ c

(
Q̇+ S − P̂

)
+ c

(
b2e

m2(t−T )
)

(6.22)

Note that if b1 = 0, which by (6.14) means I0 = Q(0), then there is no
starting correction. In other words, I0 = Q(0) is a starting inventory
that causes the solution to be on the turnpike initially. In the same way,
if b2 = 0, then the ending correction vanishes in each of these formulas,
and the solution stays on the turnpike until the end.

Expressions (6.20) and (6.21) represent approximate closed-form so-
lutions for the optimal inventory and production functions I∗ and P ∗

as long as S is such that the special particular integral Q can be found
explicitly. For such examples of S; see Sect. 6.1.4.

6.1.3 The Infinite Horizon Solution

It is important to show that this solution also makes sense when T → ∞.
In this case it is usual to assume that the discount rate ρ > 0 and the
sales rate S does not grow too fast so that the objective function (6.2)
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remains finite. One can then show that the limit of the finite horizon
solution as T → ∞ also solves the infinite horizon problem. Note that as
T → ∞, the ending correction terms in (6.20)–(6.22) disappear because
e−m2T goes to 0. We now have

λ(t) = c[m1b1e
m1t + Q̇+ S − P̂ ]. (6.23)

Since we would like
lim
t→∞ e−ρtλ(t) = 0, (6.24)

we would require that S + Q̇ grows slower asymptotically than the dis-
count rate ρ. One can easily verify that this condition holds for the
demand terms discussed in Sect. 6.1.4 that follows. Moreover, the con-
dition is easy to check for any given specific demand S(t) for which the
particular integral Q(t) is known.

By the sufficiency of the maximum principle conditions (Sect. 2.4), it
can be verified that the limiting solution

I∗(t) = b1e
m1t +Q, P ∗(t) = m1b1e

m1t + Q̇+ S (6.25)

is optimal. If I(0) = Q(0), the solution is always on the turnpike. Note
that the triple {Ī , P̄ , λ̄} = {Q, Q̇ + S, c(Q̇ + S − P̂ )} represents a non-
stationary turnpike. If I(0) �= Q(0), then b1 �= 0 and the expressions
(6.25) imply that the paths of inventory and production only approach
the turnpike but never attain it.

6.1.4 Special Cases of Time Varying Demands

In this section, we provide some important cases of time varying demands
including seasonal demands. These involve polynomial or sinusoidal de-
mand functions. We then solve some numerical examples of the model
described in Sect. 6.1.1 for ρ = 0 and T < ∞.

For the first example, we assume that S(t) is a polynomial of degree
2p or 2p−1 so that S(2p+1) = 0, where S(k) denotes the kth time derivative
of S with respect to t. In other words,

S(t) = C0t
2p + C1t

2p−1 + . . .+ C2p, (6.26)

where at least one of C0 and C1 is not zero. Then, from Zwillinger
(2003), a particular integral of (6.9) is

Q(t) = Î +
1

α2
S(1) +

1

α4
S(3) + · · ·+ 1

α2p
S(2p−1). (6.27)
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In Exercise 6.2 the reader is asked to verify this by direct substitution.
For the second example, we assume that S(t) is a sinusoidal demand

function of form
S(t) = A sin(πBt+ C) +D, (6.28)

where A,B,C, and D are constants. In Exercise 6.3 you are asked to
verify that a particular integral of (6.9) for S in (6.28) is

Q(t) = Î +
πAB

α2 + π2B2
cos(πBt+ C). (6.29)

It is well known in the theory of differential equations that demands
that are sums of functions of the form (6.26) and/or (6.28) give rise to
solutions that are sums of functions of form (6.27) and/or (6.29).

Example 6.1 Assume P̂ = 30, Î = 15, T = 8, ρ = 0, and h = c = 1
so that α = 1, m1 = −1, and m2 = 1. Assume

S(t) = t(t− 4)(t− 8) + 30 = t3 − 12t2 + 32t+ 30.

Solution It is then easy to show from (6.27) that

Q(t) = 3t2 − 24t+ 53 and Q̇(t) = 6t− 24.

Also from (6.14), (6.15), and (6.16), we have a1 ≈ b1 = I0 − 53 and
b2 = −24. Then, from (6.20) and (6.21),

I∗(t) = (I0 − 53)e−t +Q(t)− 24et−8,

P ∗(t) = −(I0 − 53)e−t + Q̇(t) + S(t)− 24et−8.

In Fig. 6.1 the graphs of sales, production, and inventory are drawn
with I0 = 10 (a small starting inventory), which makes b1 = −43. In
Fig. 6.2 the same graphs are drawn with I0 = 50 (a large starting inven-
tory), which makes b1 = −3. In Fig. 6.3 the same graphs are drawn with
I0 = 30, which makes b1 = −23. Note that initially during the time from
0 to 4, the three cases are quite different, but during the time from 4 to
8, they are nearly identical. The ending inventory ends up being 29 in
all three cases.

Example 6.2 Assume that

S(t) = A+Bt+
K∑
k=1

Ck sin(πDkt+ Ek), (6.30)

where the constants A,B,Ck, Dk, and Ek are estimated from future de-
mand data by means of one of the standard forecasting techniques such
as those in Brown (1959, 1963).
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Figure 6.1: Solution of Example 6.1 with I0 = 10
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Figure 6.2: Solution of Example 6.1 with I0 = 50
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Figure 6.3: Solution of Example 6.1 with I0 = 30

Solution By using formulas (6.27) and (6.29), we obtain the particular
integral

Q(t) = Î +
1

α2
B +

K∑
k=1

πCkDk

α2 + (πDk)2
cos(πDkt+ Ek). (6.31)

6.1.5 Optimality of a Linear Decision Rule

In Sect. 6.1.2, our emphasis was to explore the turnpike nature of
the solution of the inventory model of Sect. 6.1.1. For this purpose,
we made some asymptotic approximations when solving the state and
adjoint differential equations under the assumption that the horizon
is long. Here our focus is to solve the undiscounted version (i.e.,
ρ = 0) of the model exactly to find its optimal feedback solution, and
show that it is a linear decision rule as reported in the classical work
of Holt et al. (1960).
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Since the two-point boundary value problem given by (6.7) and (6.8)
is a linear system of differential equations, it is known via its fundamental
solution matrix that λ can be expressed in terms of I in a linear way as
follows:

λ(t) = ψ(t)− s(t)I(t), (6.32)

where ψ(t) and s(t) are continuously differentiable in t. Differentiating
(6.32) with respect to t and substituting for İ and λ̇ from (6.7) and (6.8)
with ρ = 0, respectively, we obtain

I(h− s2/c+ ṡ) + (P̂ + ψ/c− S)s− hÎ − ψ̇ = 0.

Since the above relation must hold for any value of the initial inventory
I0, we must have

ṡ = s2/c− h and ψ̇ = (P̂ + ψ/c− S)s− hÎ. (6.33)

Also from λ(T ) = 0 in (6.8) and (6.32), we have 0 = ψ(T ) − s(T )I(T ),
a relation that must hold regardless of the value of I(T ). Thus, we can
conclude that

s(T ) = 0 and ψ(T ) = 0. (6.34)

Clearly, the solution of the differential equation given by (6.33) and
(6.34) will give us the optimal control (6.5) in terms of S(t) and ψ(t). In
particular, the differential equation

ṡ = s2/c− h, s(T ) = 0 (6.35)

is known as the Riccati equation, whose solution is given by

s(t) =
√
hc tanh(

√
h

c
(T − t)). (6.36)

Using (6.32) and (6.36) in (6.5), the optimal production rate P ∗(t) is

P ∗(t) = P̂ −
√

h

c
tanh

(√
h

c
(T − t)

)
I∗(t) +

ψ(t)

c
. (6.37)

This says that the optimal production rate equals the production goal
level P̂ plus two adjustment terms. The first term implies ceteris paribus
that the higher the current inventory level, the lower the production rate
is. Furthermore, this dependence is linear with the linear effect decreas-
ing as t increases, reaching zero at t = T. The second term depends on
all the model parameters including the demand rate from time t to T.



202 6. Applications to Production and Inventory

Because of the linear dependence of the optimal production rate on
the inventory level in (6.37), this rule is known as a linear decision rule as
reported by Holt et al. (1960). More generally, this rule can be extended
to linear quadratic problems as listed in Table 3.3(c). In Appendix D.4,
we derive this rule for the problems given in Table 3.3(c), but with-
out the forcing function d. Furthermore, the rule can be extended to a
class of stochastic linear-quadratic problems that include the stochastic
production planning problem treated in Sect. 12.2.

6.1.6 Analysis with a Nonnegative Production Constraint

Thus far in this chapter, we have ignored the production constraint P ≥ 0
and used (6.5) and (6.37) as the optimal decision rules. Here we will solve
the production-inventory problem subject to P ≥ 0, and use (6.6) as the
optimal production rule. For simplicity of analysis and exposition, we
will assume also that S is a positive constant, T = ∞, and ρ > 0. These
specifications make Ṡ = 0, making the right hand side −αÎ − ρ(P̂ − S)
a constant, a1 = b1 in (6.16), and a2 = 0 in (6.17).

In view of its constant right-hand side, we can use Row (3) of Ta-
ble A.2 to obtain its particular integral as

Q =
ρ

α2
(P̂ − S) + Î , (6.38)

which is a constant and thus Q̇ = 0. From (6.14) and (6.15), we now
have

b1 = I0 −Q = I0 − Î − (ρ/α2)(P̂ − S) and b2 = P̂ − S.

The turnpike is defined by the triple {Ī , P̄ , λ̄} = {(ρ/α2)(P̂ − S) +
Î , S, c(S − P̂ )} formed from the turnpike expressions in (6.20), (6.21),
and (6.22), respectively. Note that we could have obtained the turnpike
levels directly by applying the conditions (3.108), which in this case are

˙̄I = 0, ˙̄λ = 0, and P̄ = P̂ + λ̄/c = S. (6.39)

If I0 = Q, then the optimal solution stays on the turnpike. If I0 �= Q,
we must obtain the transient solution. It should be clear that the control
in (6.25) may become negative, especially when the initial inventory is
high. Let us complete the solution of the problem by considering three
cases: I0 ≤ Q, Q < I0 ≤ Q− S/m1, and I0 > Q− S/m1.
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If I0 ≤ Q, then the control in (6.25) with b1 = I0 − Q0 is clearly
positive. Thus, the optimal production rate is given by

P ∗(t) = m1b1e
m1t + S = m1(I0 −Q)em1t + S ≥ 0. (6.40)

Moreover, from the state in (6.25), we can obtain the corresponding I∗(t)
as

I∗(t) = (I0 −Q)em1t +Q. (6.41)

It is easy to see that I∗(t) increases monotonically to Q as t → ∞, as
shown in Fig. 6.4.

If Q < I0 ≤ Q−S/m1, we can easily see from (6.40) that P ∗(0) ≥ 0.
Furthermore, Ṗ ∗(t) ≥ 0, and therefore the optimal production rate is
once again given by (6.40). We also have I∗(t) as in (6.41) and conclude
that I∗(t) → Q monotonically as t → ∞, as shown in Fig. 6.4.

Finally, if I0 > Q−S/m1, (6.40) would have a negative value for the
initial production which is infeasible. By (6.6), P ∗(0) = 0. We can now
depict this situation in Fig. 6.4. The time t̂ shown in the figure is the
time at which P ∗(t̂) = P̂ +λ(t̂)/c = 0. We already know from (6.40) that
in the case when I0 = Q− S/m1, P

∗(0) = 0. This suggests that

I∗(t̂) = Q− S

m1
. (6.42)

For t ≤ t̂, we have P ∗(t) = 0 so that İ∗ = −S, which gives

I∗(t) = I0 − St, t ≤ t̂. (6.43)

As for the adjoint equation (6.7), we now need the boundary condition
at t̂. For this, we can use (6.4) to obtain λ(t̂) = −cP̂ . Thus, the adjoint
equation in the interval [0, t̂ ] is

λ̇ = ρλ+ h(I − Î), λ(t̂) = −cP̂ . (6.44)

We can substitute I0 − St for I in Eq. (6.44) and solve for λ. Note that
we can easily obtain t̂ as

I0 − St̂ = Q− S

m1
⇒ t̂ =

I0 −Q

S
+

1

m1
. (6.45)

We can now specify the complete solution in the case when I0 >
Q− S/m1. With t̂ specified in (6.45), the solution is as follows.
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For 0 ≤ t ≤ t̂ : P ∗(t) = 0, I∗(t) = I0 − St, and λ(t) is the solution of

λ̇ = ρλ+ h(I0 − St− Î), λ(t̂) = −cP̂ .

For t > t̂ : we replace I0 by Q − S/m1 and t by t − t̂ on the right hand

side of (6.40) to obtain P ∗(t) = −Sem1(t−t̂). The same replacements in
(6.41) gives us the corresponding I∗(t) = −(S/m1)e

m1t. Finally, λ(t) can
be obtained by solving

λ̇ = ρλ− h

(
S

m1
em1t + Î

)
, λ(t̂) = −cP̂ .

We have thus solved the problem in every case of the initial condition
I0. These solutions are sketched in Fig. 6.4 for Î = 8, P̂ = 5, S = 6, h =
1, c = 4, and ρ = 0.1, for three different values of I0, namely, 25, 15, and
1. In Exercise 6.7, you are asked to solve the problem for these values
and obtain Fig. 6.4.

Figure 6.4: Optimal production rate and inventory level with different
initial inventories

6.2 The Wheat Trading Model

Consider a firm that buys and sells wheat. The firm’s only assets are
cash and wheat, and the price of wheat over time is known with certainty.
The objective of this firm is to buy and sell wheat in order to maximize
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the total value of its assets at the horizon time T. The problem here is
similar to the simple cash balance model of Sect. 5.1 except that there
are nonlinear holding costs associated with storing wheat. An extension
of this model to one having two control variables appears in Ijiri and
Thompson (1972).

6.2.1 The Model

We introduce the following notation:

T = the horizon time,

x(t) = the cash balance in dollars at time t,

y(t) = the wheat balance in bushels at time t,

v(t) = the rate of purchase of wheat in bushels per unit time;
a negative purchase means a sale,

p(t) = the price of wheat in dollars per bushel at time t,

r = the constant positive interest rate earned on the cash
balance,

h(y) = the cost of holding y bushels per unit time.

In this section we permit x and y to go negative, meaning that bor-
rowing money and short-selling wheat are both allowed. In the next
section we disallow the short-selling of wheat.

The state equations are:

ẋ = rx− h(y)− pv, x(0) = x0, (6.46)

ẏ = v, y(0) = y0, (6.47)

and the control constraints are

− V2 ≤ v(t) ≤ V1, (6.48)

where V1 and V2 are nonnegative constants. The objective function is:

max{J = x(T ) + p(T )y(T )} (6.49)

subject to (6.46)–(6.48). Note that the problem is in the linear Mayer
form.
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6.2.2 Solution by the Maximum Principle

Introduce the adjoint variables λ1 and λ2 and define the Hamiltonian
function

H = λ1[rx− h(y)− pv] + λ2v. (6.50)

The adjoint equations are:

λ̇1 = −λ1r, λ1(T ) = 1, (6.51)

λ̇2 = h′(y)λ1, λ2(T ) = p(T ). (6.52)

It is easy to solve (6.51) as

λ1(t) = er(T−t) (6.53)

and (6.52) as

λ2(t) = p(T )−
∫ T

t
h′(y(τ))er(T−τ)dτ. (6.54)

The interpretation of λ1(t) is that it is the future value (at time T )
of one dollar held as cash from t to T. The interpretation of λ2(t) is the
price at time T of a bushel of wheat less the total future value (at time
T ) of the stream of storage costs incurred to store that bushel of wheat
from t to T.

From (6.50) the optimal control is

v∗(t) = bang[−V2, V1;λ2(t)− λ1(t)p(t)]. (6.55)

In Exercise 6.8 you are asked to provide the interpretation of this optimal
policy.

Equations (6.46), (6.47), (6.54), and (6.55) determine the two-point
boundary value problem which usually requires a numerical solution pro-
cedure. In the next section we assume a special form for the storage
function h(y) to be able to obtain a closed-form solution.

6.2.3 Solution of a Special Case

For this special case we assume h(y) = 1
2 |y|, r = 0, x(0) = 10, y(0) = 0,

V1 = V2 = 1, T = 6, and

p(t) =

⎧⎪⎨
⎪⎩

3 for 0 ≤ t ≤ 3,

4 for 3 < t ≤ 6.

(6.56)
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We will apply the maximum principle (2.31) developed in Chap. 2
to this problem even though h(y) is not differentiable at y = 0. The
answer can be obtained rigorously by using the maximum principle for
models involving nondifferentiable functions discussed, e.g., in Clarke
(1989, Chapter 4) and Feichtinger and Hartl (1985b).

For this case with r = 0, we have λ1(t) = 1 for all t from (6.53) so
that the TPBVP is

ẋ = −1

2
|y| − pv, x(0) = 10, (6.57)

ẏ = v, y(0) = 0, (6.58)

λ̇2(t) =
1

2
sgn(y), λ2(6) = 4. (6.59)

For this simple problem it is easy to guess a solution. From the fact that
λ1 = 1, the optimal policy (6.55) reduces to

v∗(t) = bang[−1, 1;λ2(t)− p(t)]. (6.60)

Figure 6.5: The price trajectory (6.56)

The graph of the price function is shown in Fig. 6.5. Since p(t) is
increasing, short-selling is never optimal. Since the storage cost is 1/2
per unit per unit time and the wheat price jumps by 1 unit at t = 3, it
never pays to store wheat for more than 2 time units. Because y(0) = 0,
we have v∗(t) = 0 for 0 ≤ t ≤ 1. This obviously must be a singular
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control. Suppose we start buying wheat at t∗ > 1. From (6.60) the rate
of buying is 1; clearly buying will continue at this rate until t = 3, and
not longer. In order to not lose money on the storage of wheat, it must be
sold within 2 time units of its purchase. Clearly we should start selling
at t = 3+ at the maximum rate of 1, and continue until a last sale time
t∗∗. In order to sell exactly all of the wheat purchased, we must have

3− t∗ = t∗∗ − 3. (6.61)

Thus, v∗(t) = 0 in the interval [t∗∗, 6], which is also a singular control.
With this policy, y(t) > 0 for all t ∈ (t∗, t∗∗). From (6.59), λ̇2 = 1/2 in
the interval (t∗, t∗∗). In order to have a singular control in the interval
[t∗∗, 6], we must have λ2(t) = 4 in that interval. Also, in order to have a
singular control in [0, t∗], we must have λ2(t) = 3 in that interval. Thus,
λ2(t

∗∗)− λ2(t
∗) = 1, which with λ̇2 = 1/2 allows us to conclude that

t∗∗ − t∗ = 2, (6.62)

and therefore t∗ = 2 and t∗∗ = 4. Thus from (6.59) and (6.60),

λ2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3, 0 ≤ t ≤ 2,

2 + t/2, 2 ≤ t ≤ 4,

4, 4 ≤ t ≤ 6.

(6.63)

We can now sketch graphs for λ2(t), v∗(t), and y∗(t) as shown in
Fig. 6.6. In Exercise 6.13 you are asked to show that these trajectories are
optimal by verifying that the maximum principle necessary conditions
hold and that they are also sufficient.

6.2.4 The Wheat Trading Model with No Short-Selling

We next consider the wheat trading problem in the case when short-
selling is not permitted, i.e., we impose the state constraint y ≥ 0. More-
over, for simplicity in exposition we consider the following special case of
Norström (1978). Specifically, we assume h(y) = y/2, r = 0, x(0) = 10,
y(0) = 1, V1 = V2 = 1, T = 3, and

p(t) =

⎧⎪⎨
⎪⎩

−2t+ 7 for 0 ≤ t < 2,

t+ 1 for 2 ≤ t ≤ 3.

(6.64)
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The statement of the problem is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {J = x(3) + p(3)y(3) = x(3) + 4y(3)}

subject to

ẋ = −1
2y − pv, x(0) = 10,

ẏ = v, y(0) = 1,

v + 1 ≥ 0, 1− v ≥ 0, y ≥ 0.

(6.65)

Buy

Sell

Figure 6.6: Adjoint variable, optimal policy and inventory in the wheat
trading model
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To solve this problem, we use the Lagrangian form of the indirect
maximum principle given in (4.29). The Hamiltonian is

H = λ1(−y/2− pv) + λ2v. (6.66)

The optimal control is

v∗(t) = bang[−1, 1;λ2(t)− λ1(t)p(t)] when y > 0. (6.67)

Whenever y = 0 we must impose ẏ = v ≥ 0 in order to insure that no
short-selling occurs. Therefore,

v∗(t) = bang[0, 1;λ2(t)− λ1(t)p(t)] when y = 0. (6.68)

Next we form the Lagrangian

L = H + μ1(v + 1) + μ2(1− v) + ηv, (6.69)

where μ1, μ2, and η satisfy the complementary slackness conditions:

μ1 ≥ 0, μ1(v + 1) = 0, (6.70)

μ2 ≥ 0, μ2(1− v) = 0, (6.71)

η ≥ 0, ηy = 0. (6.72)

Furthermore, the optimal trajectory must satisfy

∂L

∂v
= λ2 − pλ1 + μ1 − μ2 + η = 0. (6.73)

With r = 0, we get λ1 = 1 as before, and

λ̇2 = −∂L

∂y
= 1/2, λ2(3

−) = 4 + γ, (6.74)

with
γ ≥ 0, γy(3) = 0. (6.75)

Let us first try γ = 0. Then λ2(3
−) = 4, and if we let t̂ denote the time

of the last jump before the terminal time, then there is no jump in the
interval (t̂, 3). Then, from (6.74) we have

λ2(t) = t/2 + 5/2 for t̂ ≤ t < 3, (6.76)

and the optimal control from (6.67) or (6.68) is v∗ = 1, i.e., buy wheat
at the maximum rate of 1, so long as λ2(t) > p(t). Also, this will give
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y(3) > 0, so that (6.75) holds. Let us next find the time t̂ of the last
jump before the terminal time. Clearly, this value will not be larger than
the time at which λ2(t) = p(t). Thus,

t̂ ≤ {t|t/2 + 5/2 = −2t+ 7} = 1.8. (6.77)

Since p(t) is decreasing at the start of the problem, it appears that
selling at the maximum rate of 1, i.e., v∗ = −1, should be optimal at
the start. Since the beginning inventory is y(0) = 1, selling at the rate
of 1 can continue only until t = 1, at which time the inventory y(1)
becomes 0. Suppose that we do nothing, i.e., v∗(t) = 0 in the interval
(1, 1.8]. Then, t = 1 is an entry time (see Sect. 4.2) and t = 1.8 is not
an entry time, and t̂ = 1. Hence, according to the maximum principle
(4.29), λ2(t) is continuous at t = 1.8, and therefore λ2(t) is given by
(6.76) in the interval [1, 3), i.e.,

λ2(t) = t/2 + 5/2 for 1 ≤ t < 3. (6.78)

Using (6.73) with λ1 = 1 in the interval (1, 1.8] and v∗ = 0 so that
μ1 = μ2 = 0, we have

λ2 − p+ μ1 − μ2 + η = λ2 − p+ η = 0,

and consequently

η(t) = p(t)− λ2(t) = −5t/2 + 9/2, t ∈ (1, 1.8]. (6.79)

Since ht = 0, the jump condition in (4.29) for the Hamiltonian at
τ = 1 reduces to

H[x∗(1), u∗(1−), λ(1−), 1] = H[x∗(1), u∗(1+), λ(1+), 1].

From the definition of the Hamiltonian H in (6.66), we can rewrite the
condition as

λ1(1
−)[−y(1)/2− p(1−)v∗(1−)] + λ2(1

−)v∗(1−) =

λ1(1
+)[−y(1)/2− p(1+)v∗(1+)] + λ2(1

+)v∗(1+).

Since λ1(t) = 1 for all t, the above condition reduces to

−p(1−)v∗(1−) + λ2(1
−)v∗(1−) = −p(1+)v∗(1+) + λ2(1

+)v∗(1+).
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Substituting the values of p(1−) = p(1+) = 5 from (6.64), λ2(1
+) = 3

from (6.78), and v∗(1+) = 0 and v∗(1−) = −1 from the above discussion,
we obtain

− 5(−1) + λ2(1
−)(−1) = −5(0) + 3(0) = 0 ⇒ λ2(1

−) = 5. (6.80)

We can now use the jump condition in (4.29) on the adjoint variables
to obtain

λ2(1
−) = λ2(1

+) + ζ(1) ⇒ ζ(1) = λ2(1
−)− λ2(1

+) = 5− 3 = 2 ≥ 0.

It is important to note that in the interval [1, 1.8], the optimal control
condition (6.68) holds, justifying our supposition that v∗ = 0 in this
interval. Furthermore, using (6.80) and (6.74),

λ2(t) = t/2 + 9/2 for t ∈ [0, 1), (6.81)

and the optimal control condition (6.67) holds, justifying our supposition
that v∗ = −1 in this interval. Also, we can conclude that our guess γ = 0

Sell Buy

Figure 6.7: Adjoint trajectory and optimal policy for the wheat trading
model
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is correct. The graphs of λ2(t), p(t), and v∗(t) are displayed in Fig. 6.7.
To complete the solution of the problem, you are asked to determine the
values of μ1, μ2, and η in these various intervals.

6.3 Decision Horizons and Forecast Horizons

In some dynamic problems it is possible to show that the optimal deci-
sions during an initial positive time interval are either partially or wholly
independent of the data from some future time onwards. In such cases,
a forecast of the future data needs to be made only as far as that time
to make optimal decisions in the initial time interval. The initial time
interval is called the decision horizon and the time up to which data is
required to make the optimal decisions during the decision horizon is
called the forecast horizon; see Bes and Sethi (1988), Bensoussan et al.
(1983), and Haurie and Sethi (1984) for details on these concepts. When-
ever they exist, these horizons naturally decompose the problem into a
series of smaller problems.

If the optimal decisions during the decision horizon are completely
independent of the data beyond the forecast horizon, then the latter
is called a strong forecast horizon. If, on the other hand, some mild
restrictions on the data after the forecast horizon are required in order
to keep the optimal decisions during the decision horizon unaffected,
then it is called a weak forecast horizon.

In this section we demonstrate these concepts in the context of the
wheat trading model of the previous section. In Sect. 6.3.1 we obtain a
decision horizon for the model of Sect. 6.2.4 which is also a weak forecast
horizon. In Sect. 6.3.2 we modify the wheat trading model by adding
a warehousing constraint. For the new problem we obtain a decision
horizon and a strong forecast horizon. See also Sethi and Thompson
(1982), Rempala (1986) and Hartl (1986a, 1988a) for further research in
the context of the wheat trading model.

In what follows we obtain these horizons and verify them for some
examples with different forecast data. For more details and proofs in
other situations including more general ones, see Modigliani and Hohn
(1955), Lieber (1973), Pekelman (1974, 1975, 1979), Kleindorfer and
Lieber (1979), Vanthienen (1975), Morton (1978), Lundin and Morton
(1975), Rempala and Sethi (1988, 1992), Hartl (1989a), and Sethi (1990).
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6.3.1 Horizons for the Wheat Trading Model with
No Short-Selling

For the model of Sect. 6.2.4, we will demonstrate that t = 1 is a decision
horizon as well as a weak forecast horizon. In Fig. 6.8 we have redrawn
Fig. 6.7 with a new price trajectory in the time interval [1, 3]. Also in the
figure, we have extended the initial λ2 trajectory and labeled it the price
shield. Its significance is that, as long as the new price trajectory in the
interval [1, 3] stays below the price shield, the optimal solution in the
interval [0, 1], which is the decision horizon, remains unchanged. That
is, it is optimal to sell throughout the interval. The restriction that p(t)
must stay below the price shield in [1, 3] is the reason that t = 1 is a
weak forecast horizon. The optimality of the control shown in Fig. 6.8
can be concluded by obtaining the adjoint trajectory in the interval [1, 3]
as a straight line with slope 1/2 and the terminal value λ2(3

−) = p(3).
This way of drawing the adjoint trajectory is correct as long as the
corresponding policy does not violate the inventory constraint y(t) ≥ 0
in the interval [1, 3]. For example, this will be the case if the buy interval
in Fig. 6.8 is shorter than the sell interval at the end. On the other hand,
if the inventory constraint is violated, then the λ2(t) trajectory may
jump in the interval [1, 3), and it will be more complicated to obtain it.
Nevertheless, the decision horizon and weak forecast horizon still occur
at t = 1. Moreover, if we let T > 1 be any finite horizon and assume that
p(t) in the interval [1, T ] is always below the price shield line of Fig. 6.8
extended to T, then the policy of selling at the maximum rate in the
interval [0, 1] remains optimal.

6.3.2 Horizons for the Wheat Trading Model with No
Short-Selling and a Warehousing Constraint

In order to give an example in which a strong forecast horizon occurs, we
modify the example of Sect. 6.2.4 by adding the warehousing constraint
y ≤ 1 or

1− y ≥ 0, (6.82)

changing the terminal time to T = 4, and defining the price trajectory
to be

p(t) =

⎧⎪⎨
⎪⎩

−2t+ 7 for t ∈ [0, 2),

t+ 1 for t ∈ [2, 4].

(6.83)
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Sell Do Nothing Buy

Decision
Horizon

Price Shield

Sell

Weak Forecast
Horizon

Figure 6.8: Decision horizon and optimal policy for the wheat trading
model

The Hamiltonian of the new problem is unchanged and is given in
(6.66). Furthermore, λ1 = 1. The optimal control is defined in three
parts as:

v∗(t) = bang[−1, 1;λ2(t)− p(t)] when 0 < y < 1, (6.84)

v∗(t) = bang [0, 1;λ2(t)− p(t)] when y = 0, (6.85)

v∗(t) = bang[−1, 0;λ2(t)− p(t)] when y = 1. (6.86)

Defining a Lagrange multiplier η1 for the derivative of (6.82), i.e., for
−ẏ = −v ≥ 0, we form the Lagrangian

L = H + μ1(v + 1) + μ2(1− v) + ηv + η1(−v), (6.87)

where μ1, μ2, and η satisfy (6.70)–(6.72) and η1 satisfies

η1 ≥ 0, η1(1− y) = 0, η̇1 ≤ 0. (6.88)

Furthermore, the optimal trajectory must satisfy

∂L

∂v
= λ2 − p+ μ1 − μ2 + η − η1 = 0. (6.89)
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As before, λ1 = 1 and λ2 satisfies

λ̇2 = 1/2, λ2(4
−) = p(4) + γ1 − γ2 = 5 + γ1 − γ2, (6.90)

where
γ1 ≥ 0, γ1y(4) = 0, γ2 ≥ 0, γ2(1− y(4)) = 0. (6.91)

Let us first try γ1 = γ2 = 0. Let t̂ be the time of the last jump of the
adjoint function λ2(t) before the terminal time T = 4. Then,

λ2(t) = t/2 + 3 for t̂ ≤ t < 4. (6.92)

The graph of (6.92) intersects the price trajectory at t = 8/5 as shown
in Fig. 6.9. It also stays above the price trajectory in the interval [8/5, 4]
so that, if there were no warehousing constraint (6.82), the optimal de-
cision in this interval would be to buy at the maximum rate. However,
with the constraint (6.82), this is not possible. Thus t̂ > 8/5, since λ2

will have a jump in the interval [8/5, 4].

Figure 6.9: Optimal policy and horizons for the wheat trading model
with no short-selling and a warehouse constraint
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To find the actual value of t̂ we must insert a line of slope 1/2 above
the minimum price at t = 2 in such a way that its two intersection points
with the price trajectory are exactly one time unit (the time required to
fill up the warehouse) apart. Thus using (6.83), t̂ must satisfy

−2(t̂− 1) + 7 + (1/2)(1) = t̂+ 1,

which yields t̂ = 17/6.
The rest of the analysis for determining λ2 including the jump con-

ditions is similar to that given in Sect. 6.2.4. Thus,

λ2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t/2 + 9/2 for t ∈ [0, 1),

t/2 + 29/12 for t ∈ [1, 17/6),

t/2 + 3 for t ∈ [17/6, 4].

(6.93)

This makes γ1 = γ2 = 0 the correct guess.
Given (6.93), the optimal policy is given by (6.84)–(6.86) and is

shown in Fig. 6.9. To complete the maximum principle we must derive
expressions for the Lagrange multipliers in the four intervals shown in
Fig. 6.9.

Interval [0, 1) : μ2 = η = η1 = 0, μ1 = p− λ2 > 0;

v∗ = −1, 0 < y∗ < 1.

Interval [1, 11/6) : μ1 = μ2 = η1 = 0, η = p− λ2 > 0, η̇ ≤ 0;

v∗ = 0, y∗ = 0.

Interval [11/16, 17/6) : μ1 = η = η1 = 0, μ2 = λ2 − p > 0;

v∗ = 1, 0 < y∗ < 1.

Interval [17/6, 4] : μ1 = μ2 = η = 0, η1 = λ2 − p > 0, η̇1 ≤ 0,
γ1 = γ2 = 0;

v∗ = 0, y∗ = 1.

In Exercise 6.17 you are asked to solve another variant of this problem.
For the example in Fig. 6.9 we have labeled t = 1 as a decision horizon

and t̂ = 17/6 as a strong forecast horizon. By this we mean that the
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optimal decision in [0, 1] continues to be to sell at the maximum rate
regardless of the price trajectory p(t) for t > 17/6. Because t̂ = 17/6 is
a strong forecast horizon, we can terminate the price shield at that time
as shown in the figure.

In order to illustrate the statements in the previous paragraph, we
consider two examples of price changes after t̂ = 17/6.

Example 6.3 Assume the price trajectory to be

p(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2t+ 7 for t ∈ [0, 2),

t+ 1 for t ∈ [2, 17/6),

25t/7− 44/7 for t ∈ [17/6, 4],

which is sketched in Fig. 6.10. Note that the price trajectory up to time
17/6 is the same as before, and the price after time 17/6 goes above the
extension of the price shield in Fig. 6.9.

Figure 6.10: Optimal policy and horizons for Example 6.3
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Solution The new λ2 trajectory is shown in Fig. 6.10, which is the same
as before for t < 17/6, and after that it is λ2(t) = t/2+6 for t ∈ [17/6, 4].
The optimal policy is as shown in Fig. 6.10, and as previously asserted,
the optimal policy in [0,1) remains unchanged. In Exercise 6.17 you are
asked to verify the maximum principle for the solution of Fig. 6.10.

Example 6.4 Assume the price trajectory to be

p(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2t+ 7 for t ∈ [0, 2),

t+ 1 for t ∈ [2, 17/6),

−t/2 + 21/4 for t ∈ [17/6, 4],

which is sketched in Fig. 6.11.

Figure 6.11: Optimal policy and horizons for Example 6.4

Solution Again the price trajectory is the same up to time 17/6, but
the price after time 17/6 is declining. This changes the optimal policy
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in the time interval [1, 17/6), but the optimal policy will still be to sell
in [0, 1).

As in the beginning of the section, we solve (6.90) to obtain λ2(t) =
t/2+5/4 for t̂1 ≤ t ≤ 4, where t̂1 ≥ 1 is the time of the last jump which is
to be determined. It is intuitively clear that some profit can be made by
buying and selling to take advantage of the price rise between t = 2 and
t = 17/6. For this, the λ2(t) trajectory must cross the price trajectory
between times 2 and 17/6 as shown in Fig. 6.11, and the inventory y
must go to 0 between times 17/6 and 4 so that λ2 can jump downward
to satisfy the ending condition λ2(4

−) = p(4) = 13/4. Since we must
buy and sell equal amounts, the point of intersection of the λ2 trajectory
with the rising price segment, i.e., t̂1 −α, must be exactly in the middle
of the two other intersection points, t̂1 and t̂1 − 2α, of λ2 with the two
declining price trajectories. Thus, t̂1 and α must satisfy:

−2(t̂1 − 2α) + 7 + α/2 = (t̂1 − α) + 1,

(t̂1 − α) + 1 + α/2 = −t̂1/2 + 21/4.

These can be solved to yield t̂1 = 163/54 and α = 5/9. The times
t̂1, t̂1 − α, and t̂1 − 2α are shown in Fig. 6.11. The λ2 trajectory is given
by

λ2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t/2 + 9/2 for t ∈ [0, 1),

t/2 + 241/108 for t ∈ [1, 163/54),

t/2 + 5/4 for t ∈ [163/54, 4].

Evaluation of the Lagrange multipliers and verification of the maximum
principle is similar to that for the case in Fig. 6.9.

In Sect. 6.3 we have given several examples of decision horizons and
weak and strong forecast horizons. In Sect. 6.3.1 we found a decision
horizon which was also a weak forecast horizon, and it occurred exactly
when y(t) = 0. We also introduced the idea of a price shield in that
section. In Sect. 6.3.2 we imposed a warehousing constraint and obtained
the same decision horizon and a strong forecast horizon, which occurred
when y(t) = 1.

Note that if we had solved the problem with T = 1, then y∗(1) = 0;
and if we had solved the problem with T = 17/6, then y∗(1) = 0 and
y∗(17/6) = 1. The latter problem has the smallest T such that both
y∗ = 0 and y∗ = 1 occur for t > 0, given the price trajectory. This is
one of the ways that time t = 17/6 can be found to be a forecast horizon
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along with the decision horizon at time t = 1. There are other ways to
find strong forecast horizons. For a survey of the literature, see Chand
et al. (2002).

Exercises for Chapter 6

E 6.1 Verify the expressions for a1 and a2 given in (6.16) and (6.17).

E 6.2 Verify (6.27). Note that ρ = 0 is assumed in Sect. 6.1.4.

E 6.3 Verify (6.29). Again assume ρ = 0.

E 6.4 Given the demand function

S = t(t− 4)(t− 8)(t− 12)(t− 16) + 30,

ρ = 0, Î = 15, T = 16, and α = 1, obtain Q(t) from (6.27).

E 6.5 Complete the solution of Example 6.2 in Sect. 6.1.4.

E 6.6 For the model of Sect. 6.1.6, derive the turnpike triple by using
the conditions in (6.39).

E 6.7 Solve the production-inventory model of Sect. 6.1.6 for the pa-
rameter values listed on Fig. 6.4, and draw the figure using MATLAB or
another suitable software.

E 6.8 Give an intuitive interpretation of (6.55).

E 6.9 Assume that there is a transaction cost cv2 when v units of wheat
are bought or sold in the model of Sect. 6.2.1. Derive the form of the
optimal policy.

E 6.10 In Exercise 6.9, assume T = 10, x(0) = 10, y(0) = 0, c = 1/18,
h(y) = (1/2)y2, V1 = V2 = ∞, r = 0, and p(t) = 10 + t. Solve the
resulting TPBVP to obtain the optimal control in closed form.

E 6.11 Set up the two-point boundary value problem for Exercise 6.9
with c = 0.05, h(y) = (1/2)y2, and the remaining values of parameters
as in the model of Sect. 6.2.3.

E 6.12 Use Excel, as illustrated in Sect. 2.5, to solve the TPBVP of
Exercise 6.11.
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E 6.13 Show that the solution obtained for the problem in Sect. 6.2.3
satisfies the necessary conditions of the maximum principle. Conclude
the optimality of the solution by showing that the maximum principle
conditions are also sufficient.

E 6.14 Re-solve the problem of Sect. 6.2.3 with V1 = 2 and V2 = 1.

E 6.15 Compute the optimal trajectories for μ1, μ2, and η for the model
in Sect. 6.2.4.

E 6.16 Solve the model in Sect. 6.2.4 with each of the following condi-
tions:

(a) y(0) = 2.

(b) T = 10 and p(t) = 2t− 2 for 3 ≤ t ≤ 10.

E 6.17 Verify that the solutions shown in Figs. 6.10 and 6.11 satisfy the
maximum principle.

E 6.18 Re-solve the model of Sect. 6.3.2 with y(0) = 1/2 and with the
warehousing constraint y ≤ 1/2 in place of (6.82).

E 6.19 Solve and interpret the following production planning problem
with linear inventory holding costs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J =

∫ T

0
−[hI +

c

2
P 2]dt

}

subject to

İ = P, I(0) = 0, I(T ) = B; 0 < B < hT 2/2c,

P ≥ 0 and I ≥ 0.

(6.94)

E 6.20 Re-solve Exercise 6.19 with the state equation İ(t) = P (t)−S(t),
where I(0) = I0 ≥ 0 and I(T ) is not fixed. Assume the demand S(t) to
be continuous in t and non-negative. Keep the state constraint I ≥ 0, but
drop the production constraint P ≥ 0 for simplicity. For specificity, you
may assume S = − sinπt+C with the constant C ≥ 1 and T = 4. (Note
that negative production can and will occur when initial inventory I0 is
too large. Specifically, how large is too large depends on the parameters
of the problem.)
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E 6.21 Re-solve Exercise 6.19 with the state equation İ(t) = P (t)− S,
where S > 0 and h > 0 are constants, I(0) = I0 > cS2/2h, and I(T ) is
not fixed. Assume that T is sufficiently large. Also, graph the optimal
P ∗(t) and I∗(t), t ∈ [0, T ].


	6 Applications to Production and Inventory
	6.1 Production-Inventory Systems
	6.1.1 The Production-Inventory Model
	6.1.2 Solution by the Maximum Principle
	6.1.3 The Infinite Horizon Solution
	6.1.4 Special Cases of Time Varying Demands
	6.1.5 Optimality of a Linear Decision Rule
	6.1.6 Analysis with a Nonnegative Production Constraint

	6.2 The Wheat Trading Model
	6.2.1 The Model
	6.2.2 Solution by the Maximum Principle
	6.2.3 Solution of a Special Case
	6.2.4 The Wheat Trading Model with No Short-Selling

	6.3 Decision Horizons and Forecast Horizons
	6.3.1 Horizons for the Wheat Trading Model with No Short-Selling
	6.3.2 Horizons for the Wheat Trading Model with No Short-Selling and a Warehousing Constraint



