
Chapter 4

The Maximum Principle:
Pure State and Mixed
Inequality Constraints

In Chap. 2 we addressed optimal control problems having constraints
only on control variables. We extended the discussion in Chap. 3 to
treat mixed constraints that may involve state variables in addition to
control variables.

Often in management science and economics problems there are non-
negativity constraints on state variables, such as inventory levels or
wealth. These constraints do not include control variables. Also, there
may be more general inequality constraints only on state variables, which
include constraints that require certain state variables to remain non-
negative. Such constraints are known as pure state variable inequality
constraints or, simply, pure state constraints.

Pure state constraints are more difficult to deal with than mixed
constraints. We can intuitively appreciate this fact by keeping in mind
that only control variables are under the direct influence of the decision
maker. This enables the decision maker, when a mixed constraint be-
comes tight, to choose from the controls that would keep it tight for as
long as required for optimality. Whereas with pure state constraints, the
situation is different and more complicated. That is, when a constraint
becomes tight, it does not provide any direct information to the decision
maker on how to choose values for the control variables so as not to
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126 4. The Maximum Principle: Pure State and Mixed Constraints

violate the constraint. Hence, considerable changes in the controls may
be required to keep the constraint tight if needed for optimality.

This chapter considers pure state constraints together with mixed
constraints. In the literature there are two ways of handling pure state
constraints: direct and indirect. The direct method associates a multi-
plier with each constraint for appending it to the Hamiltonian to form
the Lagrangian, and then proceeds in much the same way as in Chap. 3
dealing with mixed constraints. In the indirect method, the choice of
controls, when a pure constraint is active, must be further limited by
constraining approximately the value of the derivative of the active state
constraint with respect to time. This derivative will involve time deriva-
tives of the state variables, which can be written in terms of the con-
trol and state variables through the use of the state equations. Thus,
the restrictions on the time derivatives of the pure state constraints are
transformed in the form of mixed constraints, and these will be appended
instead to the Hamiltonian to form the Lagrangian. Because the pure
state constraints are adjoined in this indirect fashion, the corresponding
Lagrange multipliers must satisfy some complementary slackness condi-
tions in addition to those mentioned in Chap. 3.

With the formulation of the Lagrangian in each approach, we will
write the respective maximum principle, where the choice of control will
come from maximizing the Hamiltonian subject to both pure state con-
straints and mixed constraints. We will find, however, in contrast to
Chap. 3, that in both approaches, the adjoint functions may be required
to have jumps at those times where the pure state constraints become
tight.

We begin with a simple example in Sect. 4.1 to motivate the neces-
sity of possible jumps in the adjoint functions. Section 4.2 formulates the
problem with pure state constraints along with the required assumptions.
In Sect. 4.3, we use the direct method for stating the maximum principle
necessary conditions for solving such problems. Sufficiency conditions
are stated in Sect. 4.4. Section 4.5 is devoted to developing the maxi-
mum principle for the indirect method, which involves adjoining the first
derivative of the pure state constraints to form the Lagrangian function
and imposing some additional constraints on the Lagrange multipliers of
the resulting formulation. Also, the adjoint variables and the Lagrange
multipliers arising in this method will be related to those arising in the
direct method. Finally, the current-value form of the maximum principle
for the indirect method is described in Sect. 4.6.
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4.1 Jumps in Marginal Valuations

In this section, we formulate an optimal control problem with a pure
constraint, which can be solved merely by inspection and which exhibits a
discontinuous marginal valuation of the state variable. Since the adjoint
variables in Chaps. 2 and 3 provide these marginal valuations and since
we would like this feature to continue, we must allow the adjoint variables
to have jumps if the marginal valuations can be discontinuous. This will
enable us to formulate a maximum principle in the next section, which
is similar to (3.10) with the exception that the adjoint variables, and
therefore also the Hamiltonian, may have possible jumps satisfying some
jump conditions.

Example 4.1 Consider the problem with a pure state constraint:

max

{
J =

∫ 3

0
−udt

}
(4.1)

subject to
ẋ = u, x(0) = 0, (4.2)

0 ≤ u ≤ 3, (4.3)

x− 1 + (t− 2)2 ≥ 0. (4.4)

Solution From the objective function (4.1), one can see that it is good
to have low values of u. If we use u = 0 to begin with, we see that
x(t) = 0 as long as u(t) = 0. At t = 1, x(1) = 0 and the constraint (4.4)
is satisfied with an equality. But continuing with u(t) = 0 beyond t = 1
is not feasible since x(t) = 0 would not satisfy the constraint (4.4) just
after t = 1.

In Fig. 4.1, we see that the lowest possible feasible state trajectory
from t = 1 to t = 2 satisfies the state constraint (4.4) with an equality.
In order not to violate the constraint (4.4), its first time derivative u(t)+
2(t − 2) must be nonnegative. This gives us u(t) = 2(2 − t) to be the
lowest feasible value for the control. This value will make the state x(t)
ride along the constraint boundary until t = 2, at which point u(2) = 0;
see Fig. 4.1. Continuing with u(t) = 2(2− t) beyond t = 2 will make u(t)
negative, and violate the lower bound in (4.3). It is easy to see, however,
that u(t) = 0, t ≥ 2, is the lowest feasible value, which can be followed
all the way to the terminal time t = 3.
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Figure 4.1: Feasible state space and optimal state trajectory
for Examples 4.1 and 4.4

It can be seen from Fig. 4.1 that the bold trajectory is the lowest pos-
sible feasible state trajectory on the entire time interval [0,3]. Moreover,
it is obvious that the lowest possible feasible control is used at any given
t ∈ [0, 3], and therefore, the solution we have found is optimal. We can
now restate the values of the state and control variables that we have
obtained:

x∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t ∈ [0, 1),

1− (t− 2)2, t ∈ [1, 2],

1, t ∈ (2, 3],

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t ∈ [0, 1),

2(2− t), t ∈ [1, 2],

0, t ∈ (2, 3].

(4.5)
Next we find the value function V (x, t) for this problem. It is obvious

that the feedback control u∗(x, t) = 0 is optimal at any point (x, t) when
x ≥ 1 or when (x, t) is on the right-hand side of the parabola in Fig. 4.1.
Thus, V (x, t) = 0 on such points.

On the other hand, when x ∈ [0, 1] and it is on the left-hand side
of the parabola, the optimal trajectory is very similar to the one shown
in Fig. 4.1. Specifically, the control is zero until it hits the trajectory at
time τ = 2−√

1− x. Then, the control switches to 2(2−s) for s ∈ (τ , 2)
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to climb along the left-hand side of the parabola to reach its peak, and
then switches back to zero on the time interval [2,3]. Thus, in this case,

V (x, t) = −
∫ τ

t
0ds−

∫ 2

τ
2(2− s)ds−

∫ 3

2
0ds

= s2 − 4s
]2
2−√

1−x
= (x− 1).

Thus, we have the value function

V (x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ≥ 1, t ∈ [0, 3],

x− 1, x ≥ 1− (t− 2)2, t ∈ [0, 2),

0, 1− (t− 2)2 ≤ x ≤ 1, t ∈ [2, 3].

This gives us the marginal valuation along the optimal path x∗(t)
given in (4.5) as

Vx(x
∗(t), t) =

⎧⎪⎨
⎪⎩

1, t ∈ [0, 2),

0, t ∈ [2, 3].

(4.6)

We can now see that this marginal valuation is discontinuous at t = 2,
and it has a downward jump of size 1 at that time.

The maximum principle that we will state in Sect. 4.3 will have cer-
tain jump conditions in order to accommodate problems like Exam-
ple 4.1. Indeed in Example 4.2, we will apply the maximum principle of
Sect. 4.3 to the problem in Example 4.1, and see that the adjoint variable
that represents the marginal valuation along the optimal path will have
a jump consistent with (4.6).

In the next section, we state the general optimal control problem that
is the subject of this chapter.

4.2 The Optimal Control Problem with Pure
and Mixed Constraints

We will append to the problem (3.7) considered in Chap. 3, the pure
state variable inequality constraint of type

h(x, t) ≥ 0, (4.7)
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where we assume function h : En × E1 → Ep to be continuously dif-
ferentiable in all its arguments. By the definition of function h, (4.7)
represents a set of p constraints hi(x, t) ≥ 0, i = 1, 2, . . . , p. It is noted
that the constraint hi ≥ 0 is called a constraint of rth order if the rth
time derivative of hi is the first time a term in control u appears in
the expression by putting f(x, u, t) for ẋ after each differentiation. It
is through this expression that the control acts to satisfy the constraint
hi ≥ 0. The value of r is referred to as the order of the constraint. Of
course, if the constraint hi is of order r, then we would require hi to be
r times continuously differentiable.

Except for Exercise 4.12, in this book we will consider only first-order
constraints, i.e., r = 1. For such constraints, the first-time derivative of
h has terms in u. Thus, we can define h1(x, u, t) as follows:

h1 =
dh

dt
=

∂h

∂x
f +

∂h

∂t
. (4.8)

In the important special case of the nonnegativity constraint

x(t) ≥ 0, t ∈ [0, T ], (4.9)

(4.8) is simply h1 = f. For an upper bound constant x(t) ≤ M, written
as

M − x(t) ≥ 0, t ∈ [0, T ], (4.10)

(4.8) gives h1 = −f. These will be of order one because the function
f(x, u, t) usually contains terms in u.

As in Chap. 3, the constraints (4.7) need also to satisfy a full-rank
type constraint qualification before a maximum principle can be derived.
With respect to the ith constraint hi(x, t) ≥ 0, an interval (θ1, θ2) ⊂
[0, T ] with θ1 < θ2 is called an interior interval if hi(x(t), t) > 0 for all
t ∈ (θ1, θ2). If the optimal trajectory “hits the boundary,” i.e., satisfies
hi(x(t), t) = 0 for τ1 ≤ t ≤ τ2 for some i, then [τ1, τ2] is called a
boundary interval. An instant τ1 is called an entry time if there is an
interior interval ending at t = τ1 and a boundary interval starting at
τ1. Correspondingly, τ2 is called an exit time if a boundary interval ends
and an interior interval starts at τ2. If the trajectory just touches the
boundary at time τ , i.e., h(x(τ), τ) = 0 and if the trajectory is in the
interior just before and just after τ , then τ is called a contact time. Taken
together, entry, exit, and contact times are called junction times.

In this book we shall not consider problems that require optimal state
trajectories to have countably many junction times. In other words, we
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shall state the maximum principle necessary optimality conditions for
state trajectories having only finitely many junction times. Also, all of
the applications studied in this book exhibit optimal state trajectories
containing finitely many junction times or no junction times.

Throughout the book, we will assume that the constraint qualifica-
tion introduced in Sect. 3.1 as well as the following full-rank condition
on any boundary interval [τ1, τ2] hold:

rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h11/∂u

∂h12/∂u

...

∂h1p̂/∂u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= p̂,

where for t ∈ [τ1, τ2],

hi(x
∗(t), t) = 0, i = 1, 2, . . . , p̂ ≤ p

and
hi(x

∗(t), t) > 0, i = p̂+ 1, . . . , p.

Note that this full-rank condition on the constraints (4.7) is written
when the order of each of the constraints in (4.7) is one. For the general
case of higher-order constraints, see Hartl et al. (1995).

Let us recapitulate the optimal control problem for which we will
state a direct maximum principle in the next section. The problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J =

∫ T

0
F (x, u, t)dt+ S[x(T ), T ]

}
,

subject to

ẋ = f(x, u, t), x(0) = x0,

g(x, u, t) ≥ 0,

h(x, t) ≥ 0,

a(x(T ), T ) ≥ 0,

b(x(T ), T ) = 0.

(4.11)



132 4. The Maximum Principle: Pure State and Mixed Constraints

Important special cases of the mixed constraint g(x, u, t) ≥ 0 are
ui ∈ [0,M ] for M > 0 and ui(t) ∈ [0, xi(t)], and those of the terminal
constraints a(x(T ), T ) ≥ 0 and a(x(T ), T ) = 0 are xi(T ) ≥ k and xi(T ) =
k, respectively, where k is a constant. Likewise, the special cases of the
pure constraints h(x, t) ≥ 0 are xi ≥ 0 and xi ≤ M, for which hxi = +1
and hxi = −1, respectively, and ht = 0.

4.3 The Maximum Principle: Direct Method

For the problem (4.11), we will now state the direct maximum principle
which includes the discussion above and the required jump conditions.
For details, see Dubovitskii and Milyutin (1965), Feichtinger and Hartl
(1986), Hartl et al. (1995), Boccia et al. (2016), and references therein.
We will use superscript d on various multipliers that arise in the direct
method, to distinguish them from the corresponding multipliers (which
are not superscripted) that arise in the indirect method, to be discussed
in Sect. 4.5. Naturally, it will not be necessary to superscript the multi-
pliers that are known to remain the same in both methods.

To formulate the maximum principle for the problem (4.11), we define
the Hamiltonian function Hd : En × Em × E1 → E1 as

Hd = F (x, u, t) + λdf(x, u, t)

and the Lagrangian function Ld : En ×Em ×En ×Eq ×Ep ×E1 → E1

as

Ld(x, u, λd, μ, ηd, t) = Hd(x, u, λd, t) + μg(x, u, t) + ηdh(x, t). (4.12)

The maximum principle states the necessary conditions for u∗ (with
the corresponding state trajectory x∗) to be optimal. The conditions
are that there exist an adjoint function λd, which may be discontinuous
at a time in a boundary interval or a contact time, multiplier functions
μ, α, β, γd, ηd, and a jump parameter ζd(τ), at each time τ , where λd is
discontinuous, such that the following (4.13) holds:
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ẋ∗ = f(x∗, u∗, t), x∗(0) = x0, satisfying constraints

g(x∗, u∗, t) ≥ 0, h(x∗, t) ≥ 0, and the terminal constraints

a(x∗(T ), T ) ≥ 0 and b(x∗(T ), T ) = 0;

λ̇
d
= −Lx[x

∗, u∗, λd, μ, ηd, t]

with the transversality conditions

λd(T−) = Sx(x
∗(T ), T ) + αax(x

∗(T ), T ) + βbx(x
∗(T ), T )

+γdhx(x
∗(T ), T ), and

α ≥ 0, αa(x∗(T ), T ) = 0, γd ≥ 0, γdh(x∗(T ), T ) = 0;

the Hamiltonian maximizing condition

Hd[x∗(t), u∗(t), λd(t), t] ≥ Hd[x∗(t), u, λd(t), t]

at each t ∈ [0, T ] for all u satisfying

g[x∗(t), u, t] ≥ 0;

the jump conditions at any time τ ,

where λd is discontinuous, are

λd(τ−) = λd(τ+) + ζd(τ)hx(x
∗(τ), τ) and

Hd[x∗(τ), u∗(τ−), λd(τ−), τ ] = Hd[x∗(τ), u∗(τ+), λd(τ+), τ ]

−ζd(τ)ht(x
∗(τ), τ);

the Lagrange multipliers μ(t) are such that

∂Ld/∂u|u=u∗(t) = 0, dHd/dt = dLd/dt = ∂Ld/∂t,

and the complementary slackness conditions

μ(t) ≥ 0, μ(t)g(x∗, u∗, t) = 0,

η(t) ≥ 0, ηd(t)h(x∗(t), t) = 0, and

ζd(τ) ≥ 0, ζd(τ)h(x∗(τ), τ) = 0 hold.

(4.13)
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As in the previous chapters, λd(t) has the marginal value interpreta-
tion. Therefore, while it is not needed for the application of the maxi-
mum principle (4.13), we can trivially set

λd(T ) = Sx(x
∗(T ), T ). (4.14)

If T is also a decision variable constrained to lie in the interval
[T1, T2], 0 ≤ T1 < T2 < ∞, then in addition to (4.13), if T ∗ is the
optimal terminal time, it must satisfy a condition similar to (3.15) and
(3.81), i.e.,

Hd[x∗(T ∗), u∗(T ∗−), λd(T ∗−), T ∗] + ST [x
∗(T ∗), T ∗] + αaT [x

∗(T ∗), T ∗]

+βbT [x
∗(T ∗), T ∗] + γdhT [x

∗(T ∗), T ∗]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤ 0 if T ∗ = T1,

= 0 if T ∗ ∈ (T1, T2),

≥ 0 if T ∗ = T2.

(4.15)

Remark 4.1 In most practical examples, λd and Hd will only jump at
junction times. However, in some cases a discontinuity may occur at a
time in the interior of a boundary interval, e.g., when a mixed constraint
becomes active at that time.

Remark 4.2 It is known that the adjoint function λd is continuous at
a junction time τ , i.e., ζd(τ) = 0, if (i) the entry or exit at time τ is
non-tangential, i.e., if h1(x∗(τ), u∗(τ), τ) 	= 0, or (ii) if the control u∗ is
continuous at τ and the

rank

⎡
⎢⎣ ∂g/∂u diag(g) 0

∂h1/∂u 0 diag(h)

⎤
⎥⎦ = m+ p,

when evaluated at x∗(τ) and u∗(τ).

We will see that the jump conditions on the adjoint variables in
(4.13) will give us precisely the jump in Example 4.2, where we will
apply the direct maximum principle to the problem in Example 4.1. The
jump condition on Hd in (4.13) requires that the Hamiltonian should be
continuous at τ if ht(x

∗(τ), τ) = 0. The continuity of the Hamiltonian
(in case ht = 0) makes intuitive sense when considered in the light of its
interpretation given in Sect. 2.2.4.
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This brief discussion of the jump conditions, limited here only to
first-order pure state constraints, is far from complete, and a detailed
discussion is beyond the scope of this book. An interested reader should
consult the comprehensive survey by Hartl et al. (1995). For an example
with a second-order state constraint, see Maurer (1977).

Needless to say, computational methods are required to solve prob-
lems with general inequality constraints in all but the simplest of the
cases. The reader should consult the excellent book by Teo et al. (1991)
and references therein for computational procedures and software; see
also Polak et al. (1993), Bulirsch and Kraft (1994), Bryson (1998), and
Pytlak and Vinter (1993, 1999). A MATLAB based software, used
for solving finite and infinite horizon optimal control problems with
pure state and mixed inequality constraints, is available at http://orcos.
tuwien.ac.at/research/ocmat software/.

Example 4.2 Apply the direct maximum principle (4.13) to solve the
problem in Example 4.1.

Solution Since we already have optimal u∗ and x∗ as obtained in (4.5),
we can use these in (4.13) to obtain λd, μ1, μ2, γ

d, ηd, and ζd. Thus,

Hd = −u+ λdu, (4.16)

Ld = Hd + μ1u+ μ2(3− u) + ηd[x− 1 + (t− 2)2], (4.17)

Ld
u = −1 + λd + μ1 − μ2 = 0, (4.18)

λ̇
d
= −Ld

x = −ηd, λd(3−) = γd, (4.19)

γd[x∗(3)− 1 + (3− 2)2] = 0, (4.20)

μ1 ≥ 0, μ1u
∗ = 0, μ2 ≥ 0, μ2(3− u∗) = 0, (4.21)

ηd ≥ 0, ηd[x∗(t)− 1 + (t− 2)2] = 0, (4.22)

and if λd is discontinuous for some τ ∈ [1, 2], the boundary interval as
seen from Fig. 4.1, then

λd(τ−) = λd(τ+) + ζd(τ), ζd(τ) ≥ 0, (4.23)

− u∗(τ−) + λd(τ−)u∗(τ−) = −u∗(τ+) + λd(τ+)u∗(τ+)− ζd(τ)2(τ − 2).
(4.24)

http://orcos.tuwien.ac.at/research/ocmat_software/
http://orcos.tuwien.ac.at/research/ocmat_software/
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Since γd = 0 from (4.20), we have λd(3−) = 0 from (4.19). Also, we
set λd(3) = 0 according to (4.14).

Interval (2,3]: We have ηd = 0 from (4.22), and thus λ̇
d
= 0 from

(4.19), giving λd = 0. From (4.18) and (4.21), we have μ1 = 1 > 0 and
μ2 = 0.

Interval [1,2]: We get μ1 = μ2 = 0 from 0 < u∗ < 3 and (4.21).

Thus, (4.18) implies λd = 1 and (4.19) gives ηd = −λ̇
d
= 0. Thus λd is

discontinuous at the exit time τ = 2, and we use (4.23) to see that the
jump parameter ζd(2) = λd(2−)−λd(2+) = 1. Furthermore, it is easy to
check that (4.24) also holds at τ = 2.

Interval [0,1): Clearly μ2 = 0 from (4.21). Also u∗ = 0 would still be
optimal if there were no lower bound constraint on u in this interval. This
means that the constraint u ≥ 0 is not binding, giving us μ1 = 0. Then

from (4.18), we have λd = 1. Finally, from (4.19), we have ηd = −λ̇
d
= 0.

We can now see that the adjoint variable

λd(t) =

⎧⎪⎨
⎪⎩

1, t ∈ [0, 2),

0, t ∈ [2, 3],

(4.25)

is precisely the same as the marginal valuation Vx(x
∗(t), t) obtained in

(4.6). We also see that λd is continuous at time t = 1 where the entry
to the constraint is non-tangential as stated in Remark 4.2.

4.4 Sufficiency Conditions: Direct Method

When first-order pure state constraints are present, sufficiency results
are usually stated in terms of the maximum principle using the direct
method described in Hartl et al. (1995).

We will now state the sufficiency result for the problem specified in
(4.11). For this purpose, let us define the maximized Hamiltonian

H0d(x, λd(t), t) = max
{u|g(x,u,t)≥0}

Hd(x, u, λd, t). (4.26)

See Feichtinger and Hartl (1986) and Seierstad and Sydsæter (1987) for
details.

Theorem 4.1 Let (x∗, u∗, λd, μ, α, β, γd, ηd) and the jump parameters
ζd(τ) at each τ , where λd is discontinuous, satisfy the necessary condi-
tions in (4.13). If H0d(x, λd(t), t) is concave in x at each t ∈ [0, T ], S
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in (3.2) is concave in x, g in (3.3) is quasiconcave in (x, u), h in (4.7)
and a in (3.4) are quasiconcave in x, and b in (3.5) is linear in x, then
(x∗, u∗) is optimal.

We will illustrate an application of this theorem in Example 4.4,
which shows that the solution obtained in Example 4.3 is optimal.

Theorem 4.1 is written for finite horizon problems. For infinite hori-
zon problems, this theorem remains valid if the transversality condition
on the adjoint variable in (4.29) is modified along the lines discussed in
Sect. 3.6.

In concluding this section, we should note that the sufficiency condi-
tions stated in Theorem 4.1 rely on the presence of appropriate concav-
ity conditions. Sufficiency conditions can also be obtained without these
concavity assumptions. These are called second-order conditions for a lo-
cal maximum, which require the second variation on the linearized state
equation to be negative definite. For further details on second-order suf-
ficiency conditions, the reader is referred to Maurer (1981), Malanowski
(1997), and references in Hartl et al. (1995).

4.5 The Maximum Principle: Indirect Method

The main idea underlying the indirect method is that when the pure
state constraint (4.7), assumed to be of order one, becomes active, we
must require its first derivative h1(x, u, t) in (4.8) to be nonnegative, i.e.,

h1(x, u, t) ≥ 0, whenever h(x, t) = 0. (4.27)

While this is a mixed constraint, it is different from those treated in
Chap. 3 in the sense that it is imposed only when the constraint (4.8) is
tight.

Since (4.27) is a mixed constraint, it is tempting to use the maximum
principle (3.12) developed in Chap. 3. This can be done provided that
we can find a way to impose (4.27) only when h(x, t) = 0. One way to
accomplish this is to append (4.27) to the Hamiltonian when forming the
Lagrangian, by using a multiplier η ≥ 0, i.e., append ηh1, and require
that ηh = 0, which is equivalent to imposing ηihi = 0, i = 1, 2, . . . , p.
This means that when hi > 0 for some i, we have ηi = 0 and it is then
not a part of the Lagrangian.

Note that when we require ηh = 0, we do not need to impose ηh1 = 0
as required for mixed constraints. This is because when hi > 0 on an
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interval, then ηi = 0 and so ηih
1
i = 0 on that interval. On the other

hand, when hi = 0 on an interval, then it is because h1i = 0, and thus,
ηih

1
i = 0 on that interval. In either case, ηih

1
i = 0.

With these observations, we are ready to formulate the indirect max-
imum principle for the problem (4.11).

We form the Lagrangian as

L(x, u, λ, μ, η, t) = H(x, u, λ, t) + μg(x, u, t) + ηh1(x, u, t), (4.28)

where the Hamiltonian H = F (x, u, t) + λf(x, u, t) as defined in (3.8).
We will now state the maximum principle which includes the discussion
above and the required jump conditions.

The maximum principle states the necessary conditions for u∗ (with
the state trajectory x∗) to be optimal. These conditions are that there
exist an adjoint function λ, which may be discontinuous at each entry or
contact time, multiplier functions μ, α, β, γ, η, and a jump parameter ζ(τ)
at each τ , where λd is discontinuous, such that (4.29) on the following
page holds.

Once again, as before, we can set λ(T ) = Sx(x
∗(T ), T ). If T ∈ [T1, T2]

is a decision variable, then (4.15) with λd and γd replaced by λ and γ,
respectively, must also hold.

In (4.29), we see that there are jump conditions on the adjoint vari-
ables and also the Hamiltonian in the indirect maximum principle. The
remarks on the jump condition made in connection with the direct max-
imum principle (4.13) apply also to the jump conditions in (4.29). In
(4.29), we also see a condition η̇ ≤ 0, in addition to the complimentary
conditions on η. The presence of this term will become clear after we
relate this multiplier to those in the direct maximum principle, which we
discuss next.

In various applications that are discussed in subsequent chapters of
this book, we use the indirect maximum principle. Nevertheless, it is
worthwhile to provide relationships between the multipliers of the two
approaches, as these will be useful when checking for the sufficiency
conditions of Theorem 4.1, developed in Sect. 4.4.
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ẋ∗ = f(x∗, u∗, t), x∗(0) = x0, satisfying constraints

g(x∗, u∗, t) ≥ 0, h(x∗, t) ≥ 0, and the terminal constraints

a(x∗(T ), T ) ≥ 0 and b(x∗(T ), T ) = 0;

λ̇ = −Lx[x
∗, u∗, λ, μ, η, t] with the transversality conditions

λ(T−) = Sx(x
∗(T ), T ) + αax(x

∗(T ), T ) + βbx(x
∗(T ), T )

+γhx(x
∗(T ), T ), and

α ≥ 0, αa(x∗(T ), T ) = 0, γ ≥ 0, γh(x∗(T ), T ) = 0;

the Hamiltonian maximizing condition

H[x∗(t), u∗(t), λ(t), t] ≥ H[x∗(t), u, λ(t), t]

at each t ∈ [0, T ] for all u satisfying

g[x∗(t), u, t] ≥ 0, and

h1i (x
∗(t), u, t) ≥ 0 whenever hi(x

∗(t), t) = 0, i = 1, 2, · · · , p;

the jump conditions at any entry/contact time τ ,

where λ is discontinuous, are

λ(τ−) = λ(τ+) + ζ(τ)hx(x
∗(τ), τ) and

H[x∗(τ), u∗(τ−), λ(τ−), τ ] = H[x∗(τ), u∗(τ+), λ(τ+), τ ]

−ζ(τ)ht(x
∗(τ), τ);

the Lagrange multipliers μ(t) are such that

∂L/∂u|u=u∗(t) = 0, dH/dt = dL/dt = ∂L/∂t,

and the complementary slackness conditions

μ(t) ≥ 0, μ(t)g(x∗, u∗, t) = 0,

η(t) ≥ 0, η(t)h(x∗(t), t) = 0, and

ζ(τ) ≥ 0, ζ(τ)h(x∗(τ), τ) = 0 hold.

(4.29)
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We now obtain the multipliers of the direct maximum principle from
those in the indirect maximum principle. Since the multipliers coincide
in the interior, we let [τ1, τ2] denote a boundary interval and τ a contact
time. It is shown in Hartl et al. (1995) that

ηd(t) = −η̇(t), t ∈ (τ1, τ2), (4.30)

λd(t) = λ(t) + η(t)hx(x
∗(t), t), t ∈ (τ1, τ2), (4.31)

Note that ηd(t) ≥ 0 in (4.13). Thus, we have η̇ ≤ 0, which we have
already included in (4.29). The jump parameter at an entry time τ1, an
exit time τ2, or a contact time τ , respectively, satisfies

ζd(τ1) = ζ(τ1)− η(τ+1 ), ζ
d(τ2) = η(τ−2 ), ζ

d(τ) = ζ(τ). (4.32)

By comparing λd(T−) in (4.13) and λ(T−) in (4.29) and using (4.31), we
have

γd = γ + η(T−). (4.33)

Going the other way, we have

η(t) =

∫ τ2

t
ηd(s)ds+ ζd(τ2), t ∈ (τ1, τ2),

λ(t) = λd(t)− η(t)h(x∗(t), t), t ∈ (τ1, τ2),

ζ(τ1) = ζd(τ1) + η(τ+1 ), ζ(τ2) = 0, ζ(τ) = ζd(τ),

γ = γd − η(T−).

Finally, as we had mentioned earlier, the multipliers μ, α, and β are
the same in both methods.

Remark 4.3 From (4.30), (4.32), and ηd(t) ≥ 0 and ζd(τ1) ≥ 0 in
(4.13), we can obtain the conditions

η̇(t) ≤ 0 (4.34)

and

ζ(τ1) ≥ η(τ+1 ) at each entry time τ1, (4.35)

which are useful to know about. Hartl et al. (1995) and Feichtinger and
Hartl (1986) also add these conditions to the indirect maximum principle
necessary conditions (4.29).
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Remark 4.4 In Exercise 4.12, we discuss the indirect method for
higher-order constraints. For further details, see Pontryagin et al. (1962),
Bryson and Ho (1975) and Hartl et al. (1995).

Example 4.3 Consider the problem:

max

{
J =

∫ 2

0
−xdt

}

subject to
ẋ = u, x(0) = 1, (4.36)

u+ 1 ≥ 0, 1− u ≥ 0, (4.37)

x ≥ 0. (4.38)

Note that this problem is the same as Example 2.3, except for the
nonnegativity constraint (4.38).

Solution The Hamiltonian is

H = −x+ λu,

which implies the optimal control to have the form

u∗(x, λ) = bang[−1, 1;λ], whenever x > 0. (4.39)

When x = 0, we impose ẋ = u ≥ 0 in order to insure that (4.38) holds.
Therefore, the optimal control on the state constraint boundary is

u∗(x, λ) = bang[0, 1;λ], whenever x = 0. (4.40)

Now we form the Lagrangian

L = H + μ1(u+ 1) + μ2(1− u) + ηu,

where μ1, μ2, and η satisfy the complementary slackness conditions

μ1 ≥ 0, μ1(u+ 1) = 0, (4.41)

μ2 ≥ 0, μ2(1− u) = 0, (4.42)

η ≥ 0, ηx = 0. (4.43)

Furthermore, the optimal trajectory must satisfy

∂L

∂u
= λ+ μ1 − μ2 + η = 0. (4.44)



142 4. The Maximum Principle: Pure State and Mixed Constraints

From the Lagrangian we also get

λ̇ = −∂L

∂x
= 1, λ(2−) = γ ≥ 0, γx(2) = λ(2−)x(2) = 0. (4.45)

It is reasonable to guess that the optimal control u∗ will be the one
that keeps x∗ as small as possible, subject to the state constraint (4.38).
Thus,

u∗(t) =

⎧⎪⎨
⎪⎩

−1, t ∈ [0, 1),

0, t ∈ [1, 2].

(4.46)

This gives

x∗(t) =

⎧⎪⎨
⎪⎩

1− t, t ∈ [0, 1),

0, t ∈ [1, 2].

To obtain λ(t), let us first try λ(2−) = γ = 0. Then, since x∗(t) enters
the boundary zero at t = 1, there are no jumps in the interval (1, 2], and
the solution for λ(t) is

λ(t) = t− 2, t ∈ (1, 2). (4.47)

Since λ(t) ≤ 0 and x∗(t) = 0 on (1, 2], we have u∗(t) = 0 by (4.40),
as stipulated. Now let us see what must happen at t = 1. We know
from (4.47) that λ(1+) = −1. To obtain λ(1−), we see that H(1+) =
−x∗(1+) + λ(1+)u∗(1+) = 0 and H(1−) = −x∗(1−) + λ(1−)u∗(1−) =
−λ(1−). By equating H(1−) to H(1+) as required in (4.29), we obtain
λ(1−) = 0. Using now the jump condition on λ(t) in (4.29), we get the
value of the jump ζ(1) = λ(1−)− λ(1+) = 1 ≥ 0.

With λ(1−) = 0, we can solve (4.45) to obtain

λ(t) = t− 1, t ∈ [0, 1].

Since λ(t) ≤ 0 and x∗(t) = 1−t > 0 is positive on [0,1), we can use (4.39)
to obtain u∗(t) = −1 for 0 ≤ t < 1, which is as stipulated in (4.46). In
the time interval [0,1) by (4.42), μ2 = 0 since u∗ < 1, and by (4.43),
η = 0 because x > 0. Therefore, μ1(t) = −λ(t) = 1− t > 0 for 0 ≤ t < 1,
and this with u∗ = −1 satisfies (4.41).

To complete the solution, we calculate the Lagrange multipliers in the
interval [1,2]. Since u∗(t) = 0 on t ∈ [1, 2], we have μ1(t) = μ2(t) = 0.
Then, from (4.44) we obtain η(t) = −λ(t) = 2 − t ≥ 0 which, with
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x∗(t) = 0 satisfies (4.43). Thus, our guess γ = 0 is correct, and we do
not need to examine the possibility of γ > 0. The graphs of x∗(t) and λ(t)
are shown in Fig. 4.2. In Exercise 4.1, you are asked to redo Example 4.3
by guessing that γ > 0 and see that it leads to a contradiction with a
condition of the maximum principle.

( ) 1

0

0

( )

( )

0

2 0

( )

Figure 4.2: State and adjoint trajectories in Example 4.3

It should be obvious that if the terminal time were T = 1.5, the
optimal control would be u∗(t) = −1, t ∈ [0, 1) and u∗(t) = 0, t ∈
[1, 1.5]. You are asked in Exercise 4.10 to redo the above calculations in
this case and show that one now needs to have γ = 1/2. In Exercise 4.3,
you are asked to solve a similar problem with F = −u.

Remark 4.5 Example 4.3 is a problem instance in which the state con-
straint is active at the terminal time. In instances where the initial state
or the final state or both are on the constraint boundary, the maximum
principle may degenerate in the sense that there is no nontrivial solution
of the necessary conditions, i.e., λ(t) ≡ 0, t ∈ [0, T ], where T is the termi-
nal time. See Arutyunov and Aseev (1997) or Ferreira and Vinter (1994)
for conditions that guarantee a nontrivial solution for the multipliers.



144 4. The Maximum Principle: Pure State and Mixed Constraints

Remark 4.6 It can easily be seen that Example 4.3 is a problem in-
stance in which multipliers λ and μ1 would not be unique if the jump
condition on the Hamiltonian in (4.29) was not imposed. For references
dealing with the issue of non-uniqueness of the multipliers and conditions
under which the multipliers are unique, see Kurcyusz and Zowe (1979),
Maurer (1977, 1979), Maurer and Wiegand (1992), and Shapiro (1997).

Example 4.4 The purpose here is to show that the solution obtained
in Example 4.3 satisfies the sufficiency conditions of Theorem 4.1. For
this we first obtain the direct adjoint variable

λd(t) = λ(t) + η(t)hx(x
∗(t), t) =

⎧⎪⎨
⎪⎩

t− 1, t ∈ [0, 1),

0, t ∈ [1, 2).

It is easy to see that

H(x, u, λd(t), t) =

⎧⎪⎨
⎪⎩

−x+ (t− 1)u, t ∈ [0, 1),

−x, t ∈ [1, 2],

is linear and hence concave in (x, u) at each t ∈ [0, 2]. Functions

g(x, u, t) =

⎛
⎜⎝ u+ 1

1− u

⎞
⎟⎠

and
h(x) = x

are linear and hence quasiconcave in (x, u) and x, respectively. Functions
S ≡ 0, a ≡ 0 and b ≡ 0 satisfy the conditions of Theorem 4.1 trivially.
Thus, the solution obtained for Example 4.3 satisfies all conditions of
Theorem 4.1, and is therefore optimal.

In Exercise 4.14, you are asked to use Theorem 4.1 to verify that the
given solution there is optimal.

Example 4.5 Consider Example 4.3 with T = 3 and the terminal state
constraint

x(3) = 1.
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Solution Clearly, the optimal control u∗ will be the one that keeps x as
small as possible, subject to the state constraint (4.38) and the boundary
condition x(0) = x(3) = 1. Thus,

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1, t ∈ [0, 1),

0, t ∈ [1, 2],

1, t ∈ (2, 3],

x∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− t, t ∈ [0, 1),

0, t ∈ [1, 2],

t− 2, t ∈ (2, 3].

For brevity, we will not provide the same level of detailed explanation as
we did in Example 4.3. Rather, we will only compute the adjoint function
and the multipliers that satisfy the optimality conditions. These are

λ(t) =

⎧⎪⎨
⎪⎩

t− 1, t ∈ [0, 1],

t− 2, t ∈ (1, 3),

(4.48)

μ1(t) = μ2(t) = 0, η(t) = −λ(t), t ∈ [1, 2], (4.49)

γ = 0, β = λ(2−) = 1, (4.50)

and the jump ζ(1) = 1 ≥ 0 so that

λ(1−) = λ(1+) + ζ(1) and H(1−) = H(1+). (4.51)

Example 4.6 Introduce a discount rate ρ > 0 in Example 4.1 so that
the objective function becomes

max

{
J =

∫ 3

0
−e−ρtudt

}
(4.52)

and re-solve using the indirect maximum principle (4.29).

Solution It is obvious that the optimal solution will remain the same as
(4.5), shown also in Fig. 4.1.

With u∗ and x∗ as in (4.5), we must obtain λ, μ1, μ2, η, γ, and ζ so
that the necessary optimality conditions (4.29) hold, i.e.,

H = −e−ρtu+ λu, (4.53)

L = H + μ1u+ μ2(3− u) + η[u+ 2(t− 2)], (4.54)
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Lu = −e−ρt + λ+ μ1 − μ2 + η = 0, (4.55)

λ̇ = −Lx = 0, λ(3−) = 0, (4.56)

γ[x∗(3)− 1 + (1− 2)2] = 0, (4.57)

μ1 ≥ 0, μ1u = 0, μ2 ≥ 0, μ2(3− u) = 0, (4.58)

η ≥ 0, η[x∗(t)− 1 + (t− 2)2] = 0, (4.59)

and if λ is discontinuous at the entry time τ = 1, then

λ(1−) = λ(1+) + ζ(1), ζ(1) ≥ 0, (4.60)

− e−ρu∗(1−) + λ(1−)u∗(1−) = −e−ρu∗(1+) + λ(1+)− ζ(1)(−2). (4.61)

From (4.60), we obtain λ(1−) = e−ρ. This with (4.56) gives

λ(t) =

⎧⎪⎨
⎪⎩

e−ρ, 0 ≤ t < 1,

0, 1 ≤ t ≤ 3,

as shown in Fig. 4.3,

μ1(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−ρt − e−ρ, 0 ≤ t < 1,

0, 1 ≤ t ≤ 2,

e−ρt, 2 < t ≤ 3,

μ2(t) = 0, 0 ≤ t ≤ 3,

and

η(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 1,

e−ρt, 1 ≤ t ≤ 2,

0, 2 < t ≤ 3,

which, along with u∗ and x∗, satisfy (4.29).
Note, furthermore, that λ is continuous at the exit time t = 2. At the

entry time τ1 = 1, ζ(1) = e−ρ ≥ η(1+) = e−ρ, so that (4.35) also holds.
Finally, γ = η(3−) = 0.
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Figure 4.3: Adjoint trajectory for Example 4.4

4.6 Current-Value Maximum Principle:
Indirect Method

Just as the necessary condition (3.42) represents the current-value for-
mulation corresponding to (3.12), we can, when first-order pure state
constraints are present, also state the current-value formulation of the
necessary conditions (4.29). As in Sect. 3.3, with F (x, u, t) = φ(x, u)e−ρt,
S(x, T ) = ψ(x)e−ρT , and ρ > 0, the objective function in the problem
(4.11) is replaced by

max

{
J =

∫ T

0
φ(x, u)e−ρtdt+ ψ[x(T )]e−ρT

}
.

With the Hamiltonian H as defined in (3.35), we can write the La-
grangian as

L[x, u, λ, μ, η] := H + μg + ηh1 = φ+ λf + μg + ηh1.

We can now state the current-value form of the maximum principle,
giving the necessary conditions for u∗ (with the state trajectory x∗) to
be optimal. These conditions are that there exist an adjoint function
λ, which may be discontinuous at each entry or contact time, multiplier
functions μ, α, β, γ, η, and a jump parameter ζ(τ) at each τ where λd is
discontinuous, such that the following (4.62) holds:
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ẋ∗ = f(x∗, u∗, t), x∗(0) = x0, satisfying constraints

g(x∗, u∗, t) ≥ 0, h(x∗(t), t) ≥ 0,and the terminal constraints

a(x∗(T ), T ) ≥ 0 and b(x∗(T ), T ) = 0;

λ̇ = ρλ− Lx[x
∗, u∗, λ, μ, η, t]

with the transversality conditions

λ(T−) = ψx(x
∗(T ), T ) + αax(x

∗(T ), T ) + βbx(x
∗(T ), T )

+γhx(x
∗(T ), T ), and

α ≥ 0, αa(x∗(T ), T ) = 0, γ ≥ 0, γh(x∗(T ), T ) = 0;

the Hamiltonian maximizing condition

H[x∗(t), u∗(t), λ(t), t] ≥ H[x∗(t), u, λ(t), t]

at each t ∈ [0, T ] for all u satisfying

g[x∗(t), u, t] ≥ 0, and

h1
i (x

∗(t), u, t) ≥ 0 whenever hi(x
∗(t), t) = 0, i = 1, 2, · · · , p;

the jump conditions at any entry/contact time τ ,

where λ is discontinuous, are

λ(τ−) = λ(τ+) + ζ(τ)hx(x
∗(τ), τ) and

H[x∗(τ), u∗(τ−), λ(τ−), τ ] = H[x∗(τ), u∗(τ+), λ(τ+), τ ]

−ζ(τ)ht(x
∗(τ), τ);

the Lagrange multipliers μ(t) are such that

∂L/∂u|u=u∗(t) = 0, dH/dt = dL/dt = ∂L/∂t+ ρλf,

and the complementary slackness conditions

μ(t) ≥ 0, μ(t)g(x∗, u∗, t) = 0,

η(t) ≥ 0, η(t)h(x∗(t), t) = 0, and

ζ(τ) ≥ 0, ζ(τ)h(x∗(τ), τ) = 0 hold.

(4.62)
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If T ∈ [T1, T2], 0 ≤ T1 < T2 < ∞, is also a decision variable, then
if T ∗ is the optimal terminal time, then the optimal solution x∗, u∗, T ∗

must satisfy (4.62) with T replaced by T ∗ and the condition

H[x∗(T ∗), u∗(T ∗−), λd(T ∗−), T ∗]− ρψ[x∗(T ∗), T ∗] + αaT [x
∗(T ∗), T ∗]

+βbT [x
∗(T ∗), T ∗] + γdhT [x

∗(T ∗), T ∗]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤ 0 if T ∗ = T1,

= 0 if T ∗ ∈ (T1, T2),

≥ 0 if T ∗ = T2.

(4.63)

Derivation of (4.63) starting from (4.15) is similar to that of (3.44) from
(3.15).

Remark 4.7 The current-value version of (4.34) in Remark 4.3 is η̇(t) ≤
ρη(t) and (4.35).

The infinite horizon problem with pure and mixed constraints can be
stated as (3.97) with an additional constraint (4.7). As in Sect. 3.6, the
conditions in (4.62) except the transversality condition on the adjoint
variable are still necessary for optimality. As for the sufficiency condi-
tions, an analogue of Theorem 4.1 holds, subject to the discussion on
infinite horizon transversality conditions in Sect. 3.6.

We conclude this chapter with the following cautionary remark.

Remark 4.8 While various subsets of conditions specified in the max-
imum principles (4.13), (4.29), or (4.62) have been proved in the litera-
ture, proofs of the entire results are still not available. For this reason,
Hartl (1995) call (4.13), (4.29), or (4.62) as informal theorems. Seier-
stad and Sydsæter (1987) call them almost necessary conditions since,
very rarely, problems arise where the optimal solution requires more
complicated multipliers and adjoint variables than those specified in this
chapter.

Exercises for Chapter 4

E 4.1 Rework Example 4.3 by guessing that γ > 0, and show that it
leads to a contradiction with a condition of the maximum principle.

E 4.2 Rework Example 4.3 with terminal time T = 1/2.
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E 4.3 Change the objective function of Example 4.3 as follows:

max

{
J =

∫ 2

0
(−u)dt

}
.

Re-solve and show that the solution is not unique.

E 4.4 Specialize the maximum principle (4.29) for the nonnegativity
state constraint of the form

x(t) ≥ 0 for all t satisfying 0 ≤ t ≤ T,

in place of h(x, t) ≥ 0 in (4.7).

E 4.5 Consider the problem:

max

{
J =

∫ T

0
(−x)dt

}

subject to
ẋ = −u− 1, x(0) = 1,

x(t) ≥ 0, 0 ≤ u(t) ≤ 1.

Show that

(a) If T = 1, there is exactly one feasible and optimal solution.

(b) If T > 1, then there is no feasible solution.

(c) If 0 < T < 1, then there is a unique optimal solution.

(d) If the control constraint is 0 ≤ u(t) ≤ K, there is a unique optimal
solution for every K ≥ 1 and T = 1/2.

(e) The value of the objective in (d) increases as K increases.

(f) If the control constraint in (d) is u(t) ≥ 0, then the optimal control
is an impulse control defined by the limit of the solution in (e).

E 4.6 Impose the constraint x ≥ 0 on Exercise 3.16(b) to obtain the
problem:

max

{
J =

∫ 4

0
(−x)dt

}

subject to
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ẋ = u, x(0) = 1, x(4) = 1,

u+ 1 ≥ 0, 1− u ≥ 0,

x ≥ 0.

Find the optimal trajectories of the control variable, the state variable,
and other multipliers. Also, graph these trajectories.

E 4.7 Transform the problem (4.11) with the pure constraint of type
(4.7) to a problem with the nonnegativity constraint of type (4.9).

Hint: Define y = h(x, t) as an additional state variable. Recall
that we have assumed (4.7) to be a first-order constraint.

E 4.8 Consider a two-reservoir system such as that shown in Fig. 4.4,
where xi(t) is the volume of water in reservoir i and ui(t) is the rate of
discharge from reservoir i at time t. Thus,

ẋ1(t) = −u1(t), x1(0) = 4,

ẋ2(t) = u1(t)− u2(t), x2(0) = 4.

Figure 4.4: Two-reservoir system of Exercise 4.8

Solve the problem of maximizing

J =

∫ 10

0
[(10− t)u1(t) + tu2(t)]dt

subject to the above state equations and the constraints

0 ≤ ui(t) ≤ 1, xi(t) ≥ 0 for all t ∈ [0, 10].
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Also compute the optimal value of the objective function.

Hint: Guess the optimal solution and verify it by using the La-
grangian form of the maximum principle.

E 4.9 An Inventory Control Problem. Solve

max
P

∫ T

0
−
(
hI +

P 2

2

)
dt

subject to

İ = P − S, I(0) = I0 >
S2

2h
,

and the control and the pure state inequality constraints

P ≥ 0 and I ≥ 0,

respectively. Assume that S > 0 and h > 0 are constants and T
is sufficiently large. Note that I represents inventory, P represents
production rate, and S represents demand. The constraints on P and
I mean that production must be nonnegative and backlogs are not
allowed, respectively.

Hint: By T being sufficiently large, we mean T > I0/S + S/(2h).

E 4.10 Redo Example 4.3 with T = 1.5.

E 4.11 Redo Example 4.6 using the current-value maximum principle
(4.62) in Sect. 4.6.

E 4.12 For this exercise only, assume that h(x, t) ≥ 0 in (4.7) is a
second-order constraint, i.e., r = 2. Transform the problem to one with
nonnegativity constraints. Use the result in Exercise 4.4 to derive a
maximum principle for problems with second-order constraints.

Hint: As in Exercise 4.7, define y = h. In addition, define yet an-
other state variable z = ẏ = dh/dt. Note further that this procedure
can be generalized to handle problems with rth-order constraints for
any positive integer r.

E 4.13 Re-solve Example 4.6 when ρ < 0.
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E 4.14 Consider the following problem:

min

{
J =

∫ 5

0
udt

}

subject to the state equation

ẋ = u− x, x(0) = 1,

and the control and state constraints

0 ≤ u ≤ 1, x(t) ≥ 0.7− 0.2t.

Use the sufficiency conditions in Theorem 4.1 to verify that the optimal
control for the problem is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ θ,

0.5− 0.2t, θ < t ≤ 2.5,

0, 2.5 < t ≤ 5,

where θ ≈ 0.51626. Sketch the optimal state trajectory x∗(t) for the
problem.

E 4.15 In Example 4.6, let t±(x) = 2 ± √
1− x. Show that the value

function

V (x, t) =

⎧⎪⎨
⎪⎩

−2e−2ρ+2(ρ
√
1−x−1)e−ρ(2−√

1−x)

ρ2
, for x < 1, 0 ≤ t ≤ t−(x),

0, for x ≥ 1 or t+(x) ≤ t ≤ 3.

Note that V (x, t) is not defined for x < 1, t−(x) < t ≤ 3. Show further-
more that for the given initial condition x(0) = 0, the marginal valuation
is

Vx(x
∗(t), t) = λd(t) = λ(t) + η(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−ρ, for t ∈ [0, 1),

e−ρt, for t ∈ [1, 2],

0, for t ∈ (2, 3].

In this case, it is interesting to note that the marginal valuation is dis-
continuous at the constraint exit time t = 2.
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E 4.16 Show in Example 4.3 that the value function

V (x, t) =

⎧⎪⎨
⎪⎩

−x2/2, for x ≤ 2− t, 0 ≤ t ≤ 2,

−2x+ 2− 2t+ xt+ t2/2, for x > 2− t, 0 ≤ t ≤ 2.

Then verify that for the given initial condition x(0) = 1,

Vx(x
∗(t), t) = λd(t) = λ(t) + η(t) =

⎧⎪⎨
⎪⎩

t− 1, for t ∈ [0, 1),

0, for t ∈ [1, 2].

E 4.17 Rework Example 4.5 by using the direct maximum principle
(4.13).

E 4.18 Solve the linear inventory control problem of minimizing

∫ T

0
(cP (T ) + hI(t))dt

subject to
İ(t) = P (t)− S, I(0) = 1,

P (t) ≥ 0 and I(t) ≥ 0, t ∈ [0, T ],

where P (t) denotes the production rate and I(t) is the inventory level at
time t and where c, h and S are positive constants and the given terminal
time T >

√
2S.

E 4.19 A machine with quality x(t) ≥ 0 produces goods with ax(t)
dollars per unit time at time t. The quality deteriorates at the rate δ,
but the decay can be slowed by a preventive maintenance u(t) as follows:

ẋ = u− δx, x(0) = x0 > 0.

Obtain the optimal maintenance rate u(t), 0 ≤ t ≤ T, so as to maximize

∫ T

0
(ax− u)dt

subject to u ∈ [0, ū] and x ≤ x̄, where ū > δx̄, a > δ, and x̄ > x0.

Hint: Solve first the problem without the state constraint x ≤ x̄. You will
need to treat two cases: δT ≤ ln a− ln (a− δ) and δT > ln a− ln (a− δ).
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E 4.20 Maximize

J =

∫ 3

0
(u− x)dt

subject to

ẋ = 1− u, x(0) = 2,

0 ≤ u ≤ 3, x+ u ≤ 4, x ≥ 0.

E 4.21 Maximize

J =

∫ 2

0
(1− x)dt

subject to

ẋ = u, x(0) = 1,

−1 ≤ u ≤ 1, x ≥ 0.

E 4.22 Maximize

J =

∫ 3

0
(4− t)udt

subject to

ẋ = u, x(0) = 0, x(3) = 3,

0 ≤ u ≤ 2, 1 + t− x ≥ 0.

E 4.23 Maximize

J = −
∫ 4

0
e−t(u− 1)2dt

subject to

ẋ = u, x(0) = 0,

x ≤ 2 + e−3.
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E 4.24 Solve the following problem:

max

{
J =

∫ 2

0
(2u− x)dt

}

ẋ = −u, x(0) = e,

−3 ≤ u ≤ 3, x− u ≥ 0, x ≥ t.

E 4.25 Solve the following problem:

max

{
J =

∫ 3

0
−2x1dt

}

ẋ1 = x2, x1(0) = 2,

ẋ2 = u, x2(0) = 0,

x1 ≥ 0.

E 4.26 Re-solve Example 4.6 with the control constraint (4.3) replaced
by 0 ≤ u ≤ 1.

E 4.27 Solve explicitly the following problem:

max

{
J = −

∫ 2

0
x(t)dt

}

subject to
ẋ(t) = u(t), x(0) = 1,

−a ≤ u(t) ≤ b, a > 1/2, b > 0,

x(t) ≥ t− 2.

Obtain x∗(t), u∗(t) and all the required multipliers.

E 4.28 Minimize ∫ T

0

1

2
(x2 + c2u2)dt

subject to
ẋ = u, x(0) = x0 > 0, x(T ) = 0,

h1(x, t) = x− a1 + b1t ≥ 0,

h2(x, t) = a2 − b2t− x ≥ 0,

where ai, bi > 0, a2 > x0 > a1, and a2/b2 > a1/b1; see Fig. 4.5. The
optional path must begin at x0 on the x-axis, stay in the shaded area,
and end on the t-axis.
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Figure 4.5: Feasible space for Exercise 4.28

(a) First, assume that the problem parameters are such that the op-
timal solution x∗(t) satisfies h1(x

∗(t), t) > 0 for t ∈ [0, T ]. Show
that

x∗(t) = k1e
t/c + k2e

−t/c,

where k1 and k2 are the constants to be determined. Write down
the two conditions that would determine the constants. Also, il-
lustrate graphically the optimal state trajectory.

(b) How would your solution change if the problem parameters do not
satisfy the condition in (a)? Characterize and graphically illustrate
the optimal state trajectory.

E 4.29 With a > 0, b > 0, and γ̇(t)/γ(t) = −ρ(t) < 0,

max
u,T

{
J =

∫ T

0

a

b
(1− e−bu(t))γ(t)dt

}

subject to

ẋ = −u, x(0) = x0 > 0 given,

and the constraint

x(t) ≥ 0.

Obtain the expressions satisfied by the optimal terminal time T ∗, the
optimal control u∗(t), 0 ≤ t ≤ T ∗, and the optimal state trajectory
x∗(t), 0 ≤ t ≤ T ∗. Furthermore, obtain them explicitly in the special
case when ρ(t) = ρ > 0, a constant positive discount rate.
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E 4.30 Set ρ = 0 in the solution of Example 4.6 and obtain λ, γ, η, ζ(1)
for the undiscounted problem. Then use the transformation formulas
(4.30)–(4.33) on these and the fact that ζ(2) = 0 to obtain λd, γd, ηd,
and ζd(1) and ζd(2), and show that they are the same as those obtained
in Example 4.2 along with ζd(1) = 0, which holds trivially.

E 4.31 Consider a finite-time economy in which production can be used
for consumption as well as investment, but production also pollutes. The
state equations for the capital stock K and stock of pollution W are

K̇ = suK, K(0) = K0,

Ẇ = uK − δW, W (0) = W0,

where a fraction s of the production output uK is invested, with u de-
noting the capacity utilization rate. The control constraints are

0 ≤ s ≤ 1, 0 ≤ u ≤ 1,

and the state constraint
W ≤ W̄

implies that the pollution stock cannot exceed the upper bound W̄ .
The aim of the economy is to choose s and u so as to maximize the

consumption utility ∫ T

0
(1− s)uKdt.

Assume that W0 < W̄ , T > 1 and W0 −K0/δ)e
−δT +K0/δ < W̄ , which

means that even with s(t) ≡ 0, the pollution stock never reaches W̄ even
with u(t) ≡ 1.
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