
Chapter 3

The Maximum Principle:
Mixed Inequality
Constraints

The problems to which the maximum principle derived in the previous
chapter was applicable had constraints involving only the control vari-
ables. We will see that in many applied models it is necessary to impose
constraints involving both control and state variables. Inequality con-
straints involving control and possibly state variables are called mixed
inequality constraints.

In the solution spaces of problems with mixed constraints, there may
be regions in which one or more of the constraints is tight. When this
happens, the system must be controlled in such a way that the tight
constraints are not violated. As a result, the maximum principle of
Chap. 2 must be revised so that the Hamiltonian is maximized subject
to the constraints. This is done by appending the Hamiltonian with
the mixed constraints and the associated Lagrange multipliers to form a
Lagrangian, and then setting the derivatives of the resulting Lagrangian
with respect to the control variables to zero.
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In Sect. 3.1, a Lagrangian form of the maximum principle is discussed
for models in which there are some constraints that involve only control
variables, and others that involve both state and control variables simul-
taneously. Problems having pure state variable inequality constraints,
i.e., those involving state variables but no control variables, are more
difficult and will be dealt with in Chap. 4.

In Sect. 3.2, we state conditions under which the Lagrangian maxi-
mum principle is also sufficient for optimality.

Economists frequently analyze optimal control problems involving a
discount rate. By combining the discount factor with the adjoint vari-
ables and the Lagrange multipliers and making suitable changes in the
definitions of the Hamiltonian and Lagrangian functions, it is possible
to derive the current-value formulation of the maximum principle as de-
scribed in Sect. 3.3.

It is often the case in finite horizon problems that some restrictions
are imposed on the state variables at the end of the horizon. In Sect. 3.4,
we discuss the transversality conditions to be satisfied by the adjoint
variable in special cases of interest. Section 3.5 is devoted to the study
of free terminal time problems where the terminal time itself is a deci-
sion variable to be determined. Models with infinite horizons and their
stationary equilibrium solutions are covered in Sect. 3.6.

Section 3.7 presents a classification of a number of the most important
and commonly used kinds of optimal control models, together with a brief
description of the forms of their optimal solutions. The reader may wish
to refer to this section from time to time while working through later
chapters in the book.

3.1 A Maximum Principle for Problems with
Mixed Inequality Constraints

We will state the maximum principle for optimal control problems with
mixed inequality constraints without proof. For further details see Pon-
tryagin et al. (1962), Hestenes (1966), Arrow and Kurz (1970), Hadley
and Kemp (1971), Bensoussan et al. (1974), Feichtinger and Hartl (1986),
Seierstad and Sydsæter (1987), and Grass et al. (2008).

Let the system under consideration be described by the following
vector differential equation

ẋ = f(x, u, t), x(0) = x0 (3.1)
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given the initial conditions x0 and a control trajectory u(t), t ∈
[0, T ], T > 0, where T can be the terminal time to be optimally deter-
mined or given as a fixed positive number. Note that in the above equa-
tion, x(t) ∈ En and u(t) ∈ Em, and the function f : En×Em×E1 → En

is assumed to be continuously differentiable.
Let us consider the following objective:

max

{
J =

∫ T

0
F (x, u, t)dt+ S[x(T ), T ]

}
, (3.2)

where F : En ×Em ×E1 → E1 and S : En ×E1 → E1 are continuously
differentiable functions and where T denotes the terminal time. Depend-
ing on the situation being modeled, the terminal time T may be given or
to be determined. In the case when T is given, the function S(x(T ), T )
should be viewed as merely a function of the terminal state, and can be
revised as S(x(T )).

Next we impose constraints on state and control variables. Specifi-
cally, for each t ∈ [0, T ], x(t) and u(t) must satisfy

g(x, u, t) ≥ 0, t ∈ [0, T ], (3.3)

where g: En × Em × E1 → Eq is continuously differentiable in all its
arguments andmust contain terms in u. An important special case is that
of controls having an upper bound that depends on the current state,
i.e., u(t) ≤ M(x(t)), t ∈ [0, T ], which can be written as M(x) − u ≥ 0.
Inequality constraints without terms in u will be introduced later in
Chap. 4.

It is important to note that the mixed constraints (3.3) allow for
inequality constraints of the type g(u, t) ≥ 0 as special cases. Thus, the
control constraints of the form u(t) ∈ Ω(t) treated in Chap. 2 can be
subsumed in (3.3), provided that they can be expressed in terms of a
finite number of inequality constraints of the form g(u, t) ≥ 0. In most
problems that are of interest to us, this will indeed be the case. Thus,
from here on, we will formulate control constraints either directly as
inequality constraints and include them as parts of (3.3), or as u(t) ∈
Ω(t), which can be easily converted into a set of inequality constraints
to be included as parts of (3.3).



72 3. The Maximum Principle: Mixed Inequality Constraints

Finally, the terminal state is constrained by the following inequality
and equality constraints:

a(x(T ), T ) ≥ 0, (3.4)

b(x(T ), T ) = 0, (3.5)

where a : En × E1 → Ela and b : En × E1 → Elb are continuously
differentiable in all their arguments. Clearly, a and b are not functions
of T, if T is a given fixed number. In the specific cases when T is
given, the terminal state constraints will be written as a(x(T )) ≥ 0 and
b(x(T )) = 0. Important special cases of (3.4) are x(T ) ≥ k.

We can now define a control u(t), t ∈ [0, T ], or simple u, to be admis-
sible if it is piecewise continuous and if, together with its corresponding
state trajectory x(t), t ∈ [0, T ], it satisfies the constraints (3.3), (3.4),
and (3.5).

At times we may find terminal inequality constraints given as

x(T ) ∈ Y (T ) ⊂ X(T ), (3.6)

where Y (T ) is a convex set and X(T ) is the set of all feasible terminal
states, also called the reachable set from the initial state x0, i.e.,

X(T ) = {x(T ) | x(T ) obtained by an admissible control u and (3.1)}.

Remark 3.1 The feasible set defined by (3.4) and (3.5) need not be
convex. Thus, if the convex set Y (T ) can be expressed by a finite number
of inequalities a(x(T ), T ) ≥ 0 and equalities b(x(T ), T ) = 0, then (3.6)
becomes a special case of (3.4) and (3.5). In general, (3.6) is not a special
case of (3.4) and (3.5), since it may not be possible to define a given Y (T )
by a finite number of inequalities and equalities.

In this book, we will only deal with problems in which the following
full-rank conditions hold. That is,

rank[∂g/∂u, diag(g)] = q

holds for all arguments x(t), u(t), t, that could arise along an optimal
solution, and

rank

⎡
⎢⎣ ∂a/∂x diag(a)

∂b/∂x 0

⎤
⎥⎦ = la + lb
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hold for all possible values of x(T ) and T. The first of these condi-
tions means that the gradients with respect to u of all active constraints
in (3.3) must be linearly independent. Similarly, the second condition
means that the gradients with respect to x of the equality constraints
(3.5) and of the active inequality constraints in (3.4) must be linearly
independent. These conditions are also referred to as the constraint qual-
ifications. In cases when these do not hold, see Seierstad and Sydsæter
(1987) for details on weaker constraint qualifications.

Before proceeding further, let us recapitulate the optimal control
problem under consideration in this chapter:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J =

∫ T

0
F (x, u, t)dt+ S[x(T ), T ]

}
,

subject to

ẋ = f(x, u, t), x(0) = x0,

g(x, u, t) ≥ 0,

a(x(T ), T ) ≥ 0,

b(x(T ), T ) = 0.

(3.7)

To state the maximum principle we define the Hamiltonian function
H : En × Em × En × E1 → E1 as

H(x, u, λ, t) := F (x, u, t) + λf(x, u, t), (3.8)

where λ ∈ En (a row vector). We also define the Lagrangian function
L : En × Em × En × Eq × E1 → E1 as

L(x, u, λ, μ, t) := H(x, u, λ, t) + μg(x, u, t), (3.9)

where μ ∈ Eq is a row vector, whose components are called Lagrange
multipliers. These Lagrange multipliers satisfy the complementary slack-
ness conditions

μ ≥ 0, μg(x, u, t) = 0,

which, in view of (3.3), can be expressed equivalently as

μi ≥ 0, μigi(x, u, t) = 0, i = 1, 2, . . . , q.

The adjoint vector satisfies the differential equation

λ̇ = −Lx(x, u, λ, μ, t) (3.10)
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with the terminal condition
⎧⎪⎨
⎪⎩

la(T ) = Sx(x(T ), T ) + αax(x(T ), T ) + βbx(x(T ), T ),

α ≥ 0, αa(x(T ), T ) = 0,

(3.11)

where α ∈ Ela and β ∈ Elb are constant vectors.
The maximum principle states that the necessary conditions for u∗,

with the corresponding state trajectory x∗, to be an optimal control are
that there should exist continuous and piecewise continuously differen-
tiable functions λ, piecewise continuous functions μ, and constants α and
β such that (3.12) holds, i.e.,

ẋ∗ = f(x∗, u∗, t), x∗(0) = x0,

satisfying the terminal constraints

a(x∗(T ), T ) ≥ 0 and b(x∗(T ), T ) = 0,

λ̇ = −Lx(x
∗, u∗, λ, μ, t)

with the terminal conditions

λ(T ) = Sx(x
∗(T ), T ) + αax(x

∗(T ), T ) + βbx(x
∗(T ), T ),

α ≥ 0, αa(x∗(T ), T ) = 0,

the Hamiltonian maximizing condition

H[x∗(t), u∗(t), λ(t), t] ≥ H[x∗(t), u, λ(t), t]

at each t ∈ [0, T ] for all u satisfying

g[x∗(t), u, t] ≥ 0,

and the Lagrange multipliers μ(t) are such that

∂L

∂u
|u=u∗(t) =

(
∂H

∂u
+ μ

∂g

∂u

)
|u=u∗(t) = 0

and the complementary slackness conditions

μ(t) ≥ 0, μ(t)g(x∗, u∗, t) = 0 hold.

(3.12)
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In the case of the terminal constraint (3.6), note that the terminal
conditions on the state and the adjoint variables in (3.12) will be re-
placed, respectively, by

x∗(T ) ∈ Y (T ) ⊂ X(T ) (3.13)

and

[λ(T )− Sx(x
∗(T ), T )][y − x∗(T )] ≥ 0, ∀y ∈ Y (T ). (3.14)

In Exercise 3.5, you are asked to derive (3.14) from (3.12) in the one
dimensional case when Y (T ) = Y = [x, x̄] for each T > 0, where x and
x̄ are two constants such that x̄ > x.

In the case when the terminal time T ≥ 0 in the problem (3.10) is
also a decision variable, there is an additional necessary transversality
condition for T ∗ to be optimal, namely,

H[x∗(T ∗), u∗(T ∗), λ(T ∗), T ∗] + ST [x
∗(T ∗), T ∗]

+αaT [x
∗(T ∗), T ∗] + βT [x

∗(T ∗), T ∗] = 0, (3.15)

provided T ∗ is an interior solution, i.e., T ∗ ∈ (0,∞). In other words,
optimal T ∗ and x∗(t), u∗(t), t ∈ [0, T ∗], must satisfy (3.12) with T
replaced by T ∗ and (3.15). This condition will be further discussed and
illustrated with examples in Sect. 3.5. The discussion will also include
the case when T is restricted to lie in the interval [T1, T2], T2 > T1 ≥ 0.

We will now illustrate the use of the maximum principle (3.12) by
solving a simple example.

Example 3.1 Consider the problem:

max

{
J =

∫ 1

0
udt

}

subject to

ẋ = u, x(0) = 1, (3.16)

u ≥ 0, x− u ≥ 0. (3.17)

Note that constraints (3.17) are of the mixed type (3.3). They can also
be rewritten as 0 ≤ u ≤ x.



76 3. The Maximum Principle: Mixed Inequality Constraints

Solution The Hamiltonian is

H = u+ λu = (1 + λ)u,

so that the optimal control has the form

u∗(x, λ) = bang[0, x; 1 + λ]. (3.18)

To get the adjoint equation and the multipliers associated with con-
straints (3.17), we form the Lagrangian:

L = H + μ1u+ μ2(x− u) = μ2x+ (1 + λ+ μ1 − μ2)u.

From this we get the adjoint equation

λ̇ = −∂L

∂x
= −μ2, λ(1) = 0. (3.19)

Also note that the optimal control must satisfy

∂L

∂u
= 1 + λ+ μ1 − μ2 = 0, (3.20)

and μ1 and μ2 must satisfy the complementary slackness conditions

μ1 ≥ 0, μ1u = 0, (3.21)

μ2 ≥ 0, μ2(x− u) = 0. (3.22)

It is reasonable in this simple problem to guess that u∗(t) = x(t) is an
optimal control for all t ∈ [0, 1]. We now show that this control satisfies
all the conditions of the Lagrangian form of the maximum principle.

Since x(0) = 1, the control u∗ = x gives x = et as the solution of
(3.16). Because x = et > 0, it follows that u∗ = x > 0. Thus, μ1 = 0
from (3.21).

From (3.20) we then have

μ2 = 1 + λ.

Substituting this into (3.19) and solving gives

1 + λ(t) = e1−t. (3.23)

Since the right-hand side of (3.23) is always positive, u∗ = x satisfies
(3.18). Notice that μ2 = e1−t ≥ 0 and x− u∗ = 0, so (3.22) holds.
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Using u∗ = x in (3.16), we can obtain the optimal state trajectory
x∗(t) = et. Thus, the optimal value of the objective function is

J∗ =
∫ 1

0
etdt = (e− 1).

Let us now examine the consequence of changing the constraint x−
u ≥ 0 on control u to x−u ≥ −ε, which gives u ≤ x+ ε for a small ε. In
this case, it is clear that the optimal control u∗ = x + ε, which we can
use in (3.16) to obtain x∗(t) = et(1 + ε) − ε. The optimal value of the
objective function changes to

∫ 1

0
u(t)dt =

∫ 1

0
et(1 + ε)dt = (e− 1)(1 + ε).

This means that J∗ increases by (e − 1)ε, which in this case equals
ε
∫ 1
0 μ2(t)dt = ε

∫ 1
0 e1−tdt, as stipulated in Remark 3.8.

We conclude Sect. 3.1 with the following remarks.

Remark 3.2 Strictly speaking, we should have H = λ0F + λf in (3.8)
with (λ0, λ(t)) 	= (0, 0) for all t ∈ [0, T ]. However, when λ0 = 0, the
conditions in the maximum principle do not change if we replace F by any
other function. Therefore, the problems where the maximum principle
holds only with λ0 = 0 are termed abnormal. Such problems may arise
when there are terminal state constraints such as (3.4) and (3.5) or pure
state constraints treated in Chap. 4. In this book, as is standard in
the economics literature dealing with optimal control theory, we will set
λ0 = 1. This is because the problems that are of interest to us will be
normal. For examples of abnormal problems and further discussion on
this issue, see Seierstad and Sydsæter (1987).

Remark 3.3 The function defined in (3.9) is not a Lagrangian function
in the sense of the continuous-time counterpart of the Lagrangian func-
tion defined in (8.45) in Chap. 8. However, it can be viewed, roughly
speaking, as a Lagrangian function associated with the problem of max-
imizing the Hamiltonian (3.8) subject to the constraints (3.3) along the
optimal path. As in this book, some people refer to (3.9) as a Lagrangian
function, while others call it an extended Pontryagin function.

Remark 3.4 It should be pointed out that if the set Y in (3.6) consists
of a single point Y = {k}, making the problem a fixed-end-point prob-
lem, then the transversality condition reduces to simply λ(T ) to equal
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a constant to be determined, since x∗(T ) = k. In this case the salvage
function S becomes a constant, and can therefore be disregarded. When
Y = X, the terminal condition in (3.12) reduces to (2.30). Further dis-
cussion of the terminal conditions can be found in Sect. 3.4 along with a
summary in Table 3.1.

Remark 3.5 As in Chap. 2, it can be shown that λi(t), i = 1, 2, ..., n,
is interpreted as the marginal value of an increment in the state variable
xi at time t. Specifically, the relation (2.17) holds so long as the value
function V (x, t), defined in (2.10), is continuously differentiable in xi;
see Seierstad and Sydsæter (1987).

Remark 3.6 The Lagrange multiplier αi, i = 1, 2, . . . , n represents the
shadow price associated with the terminal state constraint ai(x(T ), T ) ≥
0. Thus, if we change this constraint to ai(x(T ), T ) ≥ ε for a small ε, then
the change in the objective function will be −εαi+ o(ε). A similar inter-
pretation holds for the multiplier β; see Sect. 3.4 for further discussion.
This will be illustrated in Example 3.4 and Exercise 3.17.

Remark 3.7 In the case when the terminal constraint (3.4) or (3.5) is
binding, the transversality condition λ(T ) in (3.12) should be viewed as
the left-hand limit, limt↑T λ(t), sometimes written as λ(T−), and then
we would express λ(T ) = Sx(x

∗(T ), T ). However, the standard practice
for problems treated in Chaps. 2 and 3 is to use the notation that we
have used. Nevertheless, care should be exercised in distinguishing the
marginal value of the state at time T given by Sx(x

∗(T ), T ) and the
shadow prices for the terminal constraints (3.4) and (3.5) given by α and
β, respectively. See Sect. 3.4 and Example 3.4 for further elaboration.

Remark 3.8 It is also possible to provide marginal value interpretations
to Lagrange multipliers μi, i = 1, 2, . . . ,m. If we change the constraint
gi(x, u, t) ≥ 0 to gi(x, u, t) ≥ ε for a small ε, then we expect the change

in the optimal value of the objective function to be −ε
∫ T
0 μi(t)dt+ o(ε);

see Peterson (1973, 1974) or Malanowski (1984). If ε < 0, then the

constraint is being relaxed, and
∫ T
0 μi(t)dt ≥ 0 provides the marginal

value of relaxing the constraint. We will illustrate this concept with the
help of Example 3.1.

Remark 3.9 In the case when the problem (3.7) is changed by inter-
changing x(T ) and x(0) so that the initial condition x(0) = x0 is re-
placed by x(T ) = xT , and S(x(T ), T ), a(x(T ), T ) and b(x(T ), T ) are
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replaced by S(x(0)), a(x(0)) and b(x(0)), respectively, then in the maxi-
mum principle (3.12), we need to replace initial condition x∗(0) = x0 by
x∗(T ) = xT and the terminal condition on the adjoint variable λ by the
initial condition λ(0) = Sx(x

∗(0)) + αax(x
∗(0)) + βbx(x

∗(0)) with α ≥ 0
and αa(x∗(0)) = 0.

3.2 Sufficiency Conditions

In this section we will state, without proof, a number of sufficiency re-
sults. These results require the concepts of concave and quasiconcave
functions.

Recall from Sect. 1.4 that with D ⊂ En, a convex set, a function
ψ : D → E1 is concave, if for all y, z ∈ D and for all p ∈ [0, 1],

ψ(py + (1− p)z) ≥ pψ(y) + (1− p)ψ(z). (3.24)

The function ψ is quasiconcave if (3.24) is relaxed to

ψ(py + (1− p)z) ≥ min{ψ(y), ψ(z)}, (3.25)

and ψ is strictly concave if y 	= z and p ∈ (0, 1) and (3.24) holds with
a strict inequality. Furthermore, ψ is convex, quasiconvex, or strictly
convex if −ψ is concave, quasiconcave, or strictly concave, respectively.
Note that linearity implies both concavity and convexity, and concavity
implies quasiconcavity. For further details on the properties of such
functions, see Mangasarian (1969).

We can now state a sufficiency result concerning the problem with
mixed constraints stated in (3.7). For this purpose, let us define the
maximized Hamiltonian

H0(x, λ, t) = max
{u|g(x,u,t)≥0}

H(x, u, λ, t). (3.26)

Theorem 3.1 Let (x∗, u∗, λ, μ, α, β) satisfy the necessary conditions in
(3.12). If H0(x, λ(t), t) is concave in x at each t ∈ [0, T ], S in (3.2) is
concave in x, g in (3.3) is quasiconcave in (x, u), a in (3.4) is quasicon-
cave in x, and b in (3.5) is linear in x, then (x∗, u∗) is optimal.

The result is a straightforward extension of Theorem 2.1. See, e.g.,
Seierstad and Sydsæter (1977, 1987) and Feichtinger and Hartl (1986).

In Exercise 3.7 you are asked to check these sufficiency conditions for
Example 3.1.
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3.3 Current-Value Formulation

In most management science and economics problems, the objective func-
tion is usually formulated in terms of money or utility. These quantities
have time value, and therefore the future streams of money or utility are
discounted. The discounted objective function can be written as a spe-
cial case of (3.2) by assuming that the time dependence of the relevant
functions comes only through the discount factor. Thus,

F (x, u, t) = φ(x, u)e−ρt and S(x, T ) = ψ(x)e−ρT , (3.27)

where we assume the discount rate ρ > 0. We should also mention that
if F (x, u, t) = φ(x, u, t)e−ρt and S(x, T ) = ψ(x, T )e−ρT , then there is no
advantage of developing a current-value version of the maximum princi-
ple, and it is recommended that the present-value formulation be used
in this case.

Now, the objective in problem (3.7) can be written as:

max

{
J =

∫ T

0
φ(x, u)e−ρtdt+ ψ[x(T )]e−ρT

}
. (3.28)

For this problem, the Hamiltonian, which we shall now refer to as
the present-value Hamiltonian, Hpv, is

Hpv := e−ρtφ(x, u) + λpvf(x, u, t) (3.29)

and the present-value Lagrangian is

Lpv := Hpv + μpvg(x, u, t) (3.30)

with the present-value adjoint variables λpv and present-value multipliers
αpv and βpv satisfying

λ̇
pv

= −Lpv
x , (3.31)

λpv(T ) = Sx[x(T ), T ] + αpvax(x(T ), T ) + βpvbx(x(T ), T )

= e−ρTψx[x(T )] + αpvax(x(T ), T ) + βpvbx(x(T ), T ), (3.32)

αpv ≥ 0, αpva(x(T ), T ) = 0, (3.33)

and μpv satisfying
μpv ≥ 0, μpvg = 0. (3.34)

We use superscript pv in this section to distinguish these from the
current-value functions defined as follows. Elsewhere, we do not need to



3.3. Current-Value Formulation 81

make the distinction explicitly since we will either be using the present-
value definitions or the current-value definitions of these functions. The
reader will always be able to tell what is meant from the context.

We now define the current-value Hamiltonian

H[x, u, λ, t] := φ(x, u) + λf(x, u, t) (3.35)

and the current-value Lagrangian

L[x, u, λ, μ, t] := H + μg(x, u, t). (3.36)

To see why we can do this, we note that if we define

λ := eρtλpv and μ := eρtμpv, (3.37)

we can rewrite (3.29) and (3.30) as

H = eρtHpv and L = eρtLpv. (3.38)

Since eρt > 0, maximizing Hpv with respect to u at time t is equivalent to
maximizing the current-value Hamiltonian H with respect to u at time
t. Furthermore, from (3.37),

λ̇ = ρeρtλpv + eρtλ̇
pv
. (3.39)

The first term on the right-hand side of (3.39) is simply ρλ using the
definition in (3.37). To simplify the second term we use the differential
equation (3.31) for λpv and the fact that Lx = eρtLpv

x from (3.38). Thus,

λ̇ = ρλ− Lx,

λ(T ) = ψx[x(T )] + αax(x(T ), T ) + βbx(x(T ), T ), (3.40)

where the terminal condition for λ(T ) follows immediately from the ter-
minal condition for λpv(T ) in (3.32), the definition (3.38),

α = eρtαpv and β = eρtβpv. (3.41)

The complementary slackness conditions satisfied by the current-
value Lagrange multipliers μ and α are

μ ≥ 0, μg = 0, α ≥ 0, and αa = 0

on account of (3.33), (3.34), (3.37), and (3.41).
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We will now state the maximum principle in terms of the current-
value functions. It states that the necessary conditions for u∗, with the
corresponding state trajectory x∗, to be an optimal control are that there
exist λ and μ such that the conditions (3.42) hold, i.e.,

ẋ∗ = f(x∗, u∗, t),

a(x∗(T ), T ) ≥ 0, b(x∗(T ), T ) = 0,

λ̇ = ρλ− Lx[x
∗, u∗, λ, μ, t], with the terminal conditions

λ(T ) = ψx(x
∗(T )) + αax(x

∗(T ), T ) + βbx(x
∗(T ), T ),

α ≥ 0, αa(x∗(T ), T ) = 0,

and the Hamiltonian maximizing condition

H[x∗(t), u∗(t), λ(t), t] ≥ H[x∗(t), u, λ(t), t]

at each t ∈ [0, T ] for all u satisfying

g[x∗(t), u, t] ≥ 0,

and the Lagrange multipliers μ(t) are such that

∂L
∂u |u=u∗(t) = 0, and the complementary slackness

conditions μ(t) ≥ 0 and μ(t)g(x∗, u∗, t) = 0 hold.

(3.42)

As in Sect. 3.1, when the terminal constraint is given by (3.6) instead
of (3.4) and (3.5), we need to replace the terminal condition on the state
and the adjoint variables, respectively, by (3.13) and

[λ(T )− ψx(x
∗(T ))][y − x∗(T )] ≥ 0, ∀y ∈ Y (T ). (3.43)

See also Remark 3.4, which applies here as well.
If T ≥ 0 is also a decision variable and if T ∗ is the optimal terminal

time, then the optimal solution x∗, u∗, and T ∗ must satisfy (3.42) with
T replaced by T ∗ along with

H[x∗(T ∗), u∗(T ∗), λ(T ∗), T ∗]− ρψ[x∗(T ∗)]
+αaT [x

∗(T ∗), T ∗] + βT [x
∗(T ∗), T ∗] = 0. (3.44)
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You are asked in Exercise 3.8 to show that (3.44) is the current-value
version of (3.15) under the relation (3.27). Furthermore, show how (3.44)
should be modified if S(x, T ) = ψ(x, T )e−ρT in (3.27).

As for the sufficiency conditions for the current-value formulation,
one can simply use Theorem 3.1 as if it were stated for the current-value
formulation.

Example 3.2 We illustrate an application of the current-value maxi-
mum principle by solving the consumption problem of Example 1.3 with
U(C) = lnC and W (T ) = 0. Thus, we solve

max
C(t)≥0

{
J =

∫ T

0
e−ρt lnC(t)dt+B(0)e−ρT

}

subject to the wealth dynamics

Ẇ = rW − C, W (0) = W0, W (T ) = 0,

where W0 > 0. As hinted in Exercise 2.29(a), we do not need to impose
the pure state constraint W (t) ≥ 0, t ∈ [0, T ], in view of C(t) ≥ 0, t ∈
[0, T ], and W (T ) = 0. Also, the salvage function reduces to B(0), which
is a constant; see Remark 3.4.

Solution In Exercise 2.29(a) we used the standard Hamiltonian for-
mulation to solve the problem. We now demonstrate the use of the
current-value Hamiltonian formulation:

H = lnC + λ(rW − C), (3.45)

with the adjoint equation

λ̇ = ρλ− ∂H

∂W
= (ρ− r)λ, λ(T ) = β, (3.46)

where β is some constant to be determined. The solution of (3.46) is

λ(t) = βe(ρ−r)(t−T ). (3.47)

To find the optimal control, we maximize H by differentiating (3.45)
with respect to C and setting the result to zero:

∂H

∂C
=

1

C
− λ = 0,
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which implies

C∗(t) =
1

λ(t)
=

1

β
e(ρ−r)(T−t). (3.48)

Using this consumption level in the wealth dynamics gives

Ẇ (t) = rW (t)− 1

β
e(ρ−r)(T−t), W (0) = W0,

which can be solved as

W ∗(t) = ert

[
W0 − e(ρ−r)T (1− e−ρt)

ρβ

]
. (3.49)

Setting W ∗(T ) = 0 gives β = e(ρ−r)T (1 − e−ρT )/ρW0. Therefore, the
optimal consumption rate and wealth at time t are

C∗(t) =
ρW0e

(r−ρ)t

1− e−ρT
, W ∗(t) = ertW0

[
e−ρt − e−ρT

1− e−ρT

]
. (3.50)

The optimal value of the objective function is

J∗ =
1− e−ρT

ρ

[
ln

ρW0

1− e−ρT

]
+

r − ρ

ρ

[
1

ρ
− e−ρT

(
T +

1

ρ

)]
+B(0)e−ρT .

(3.51)
The interpretation of the current-value functions are that these func-

tions reflect the values at time t in terms of the current (or, time-t)
dollars. The standard functions, on the other hand, reflect the values at
time t in terms of time-zero dollars. For example, the standard adjoint
variable λpv(t) can be interpreted as the marginal value per unit increase
in the state at time t, in the same units as that of the objective function
(3.28), i.e., in terms of time-zero dollars; see Sect. 2.2.4. On the other
hand, λ(t) = eρtλpv(t) is obviously the same value expressed in terms of
current (or, time-t) dollars.

For the consumption problem of Example 3.2, note that the current-
value adjoint function

λ(t) = e(ρ−r)t(1− e−ρT )/ρW0. (3.52)

This gives the marginal value per unit increase in wealth at time t in
time-t dollars. In Exercise 2.29(a), the standard adjoint variable was
λpv(t) = e−rt(1− e−ρT )/ρW0, which can be written as λpv(t) = e−ρtλ(t).
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Thus, it is clear that λpv(t) expresses the same marginal value in time-
zero dollars. In particular,

dJ∗/dW0 = (1− e−ρT )/ρW0 = λ(0) = λpv(0)

gives the marginal value per unit increase in the initial wealth W0.
In Exercise 3.11, you are asked to formulate and solve a consumption

problem of an economy. The problem is a linear version of the famous
Ramsey model; see Ramsey (1928) and Feichtinger and Hartl (1986, p.
201).

Before concluding this section on the current-value formulation, let
us also provide the current-value version of the HJB equation (2.15)
or (2.19) along with the terminal condition (2.16). As in (2.9), we now
define the value function for the problem (3.7), with its objective function
replaced by (3.28), as follows:

V (x, t) = max
{u|g(x,u,t)≥0}

[∫ T

t
φ(x(s), u(s))ds+ e−ρ(T−t)ψ(x(T ))

]

if x(T ) satisfies a(x(T ), T ) ≥ 0 and b(x(T ), T ) = 0,

and V (x, t) = −∞, otherwise.

(3.53)
Then proceeding as in Sect. 2.1.1, we have

V (x, t)= max
{u(τ)|g(x(τ),u(τ),τ)≥0}

τ∈[t, t+δt]

{
φ[x(τ), u(τ)]dτ + e−ρδdtV [x(t+ δt), t+ δt]

}
.

(3.54)
Noting that e−ρδt = 1−ρδt+0(δt) and continuing on as in Sect. 2.1.1,

we can obtain the current-value version of (2.15) and (2.19) as

ρV (x, t) = max
{u|g(x,u,t)≥0}

{φ(x, u, t) + Vx(x, t)f(x, u, t) + Vt(x, t)}

= max
{u|g(x,u,t)≥0}

{H(x, u, Vx, t) + Vt} = 0,

(3.55)
where H is defined as in (3.35).

Finally, we can write the terminal condition as

V (x, T ) =

⎧⎪⎨
⎪⎩

ψ(x), if a(x, T ) ≥ 0 and b(x, T ) = 0,

−∞, otherwise.

(3.56)
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3.4 Transversality Conditions: Special Cases

Terminal conditions on the adjoint variables, also known as transversality
conditions, are extremely important in optimal control theory. Because
the salvage value function ψ(x) is known, we know the marginal value
per unit change in the state at terminal time T. Since λ(T ) must be equal
to this marginal value, it provides us with the boundary conditions for
the differential equations for the adjoint variables. We will now derive
the terminal or transversality conditions for the current-value adjoint
variables for some important special cases of the general problem treated
in Sect. 3.3. We also summarize these conditions in Table 3.1.

Case 1: Free-end point. In this case, we do not put any constraints on
the terminal state x(T ). Thus,

x(T ) ∈ X(T ).

From the terminal conditions in (3.42), it is obvious that for the
free-end-point problem, i.e., when Y (T ) = X(T ),

λ(T ) = ψx[x
∗(T )]. (3.57)

This includes the condition λ(T ) = 0 in the special case of ψ(x) ≡ 0;
see Example 3.1, specifically (3.19). These conditions are repeated in
Table 3.1, Row 1.

The economic interpretation of λ(T ) is that it equals the marginal
value of a unit increment in the terminal state evaluated at its optimal
value x∗(T ).

Case 2: Fixed-end point. In this case, which is the other extreme from
the free-end-point case, the terminal constraint is

b(x(T ), T ) = x(T )− k = 0,

and the terminal conditions in (3.42) do not provide any information for
λ(T ). However, as mentioned in Remark 3.4 and recalled subsequently
in connection with (3.42), λ(T ) will be some constant β, which will be
determined by solving the boundary value problem, where the system
of differential equations consists of the state equations with both initial
and terminal conditions and the adjoint equations with no boundary
conditions. This condition is repeated in Table 3.1, Row 2. Example 3.2
solved in the previous section illustrates this case.
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The economic interpretation of λ(T ) = β is as follows. The constant
β times ε, i.e., βε, provides the value that could be lost if the fixed-end
point were specified to be k + ε instead of k; see Exercise 3.12.

Case 3: Lower bound. Here we restrict the ending value of the state
variable to be bounded from below, namely,

a(x(T ), T ) = x(T )− k ≥ 0,

where k ∈ X. In this case, the terminal conditions in (3.42) reduce to

λ(T ) ≥ ψx[x
∗(T )] (3.58)

and
{λ(T )− ψx[x

∗(T )]}{x∗(T )− k} = 0, (3.59)

with the recognition that the shadow price of the inequality constraint
(3.4) is

α = λ(T )− ψx[x
∗(T )] ≥ 0. (3.60)

For ψ(x) ≡ 0, these terminal conditions can be written as

λ(T ) ≥ 0 and λ(T )[x∗(T )− k] = 0. (3.61)

These conditions are repeated in Table 3.1, Row 3.

Case 4: Upper bound. Similarly, when the ending value of the state
variable is bounded from above, i.e., when the terminal constraint is

k − x(T ) ≥ 0,

the conditions for this opposite case are

λ(T ) ≤ ψx[x
∗(T )] (3.62)

and (3.59). These are repeated in Table 3.1, Row 4. Furthermore, (3.62)
can be related to the condition on λ(T ) in (3.42) by setting

α = ψx[x
∗(T )]− λ(T ) ≥ 0. (3.63)

Case 5: A general case. A general ending condition is

x(T ) ∈ Y (T ) ⊂ X(T ),
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which is already stated in (3.6). The transversality conditions are spec-
ified in (3.43) and repeated in Table 3.1, Row 5.

An important situation which gives rise to a one-sided constraint
occurs when there is an isoperimetric or budget constraint of the form∫ T

0
l(x, u, t)dt ≤ K, (3.64)

where l : En × Em × E1 → E1 is assumed to be nonnegative, bounded,
and continuously differentiable, andK is a positive constant representing
the amount of a budgeted resource. To see how this constraint can be
converted into a lower bound constraint, we define an additional state
variable xn+1 by the state equation

ẋn+1 = −l(x, u, t), xn+1(0) = K, xn+1(T ) ≥ 0. (3.65)

We employ the index n+1 simply because we already have n state vari-
ables x = (x1, x2, . . . , xn). Also Eq. (3.65) becomes an additional equa-
tion which is added to the original system.

In Exercise 3.13 you will be asked to rework the leaky reservoir prob-
lem of Exercise 2.18 with an additional isoperimetric constraint on the
total amount of water available. Later in Chap. 7, you’ll be asked to
solve Exercises 7.10–7.12 involving budgets for advertising expenditures.

In Table 3.1, we have summarized all the terminal or transversality
conditions discussed previously. In Sect. 3.7 we discuss model types.
We will see that, given the initial state x0, we can completely specify a
control model by selecting a model type and a transversality condition.
In what follows, we solve two examples with lower bounds on the terminal
state illustrating the use of transversality conditions (3.61), also stated in
Table 3.1, Row 3. Example 3.3 is a variation of the consumption problem
in Example 3.2. It illustrates the use of the transversality conditions
(3.61).

Example 3.3 Let us modify the objective function of the consumption
problem (Example 3.2) to take into account the salvage (bequest) value of
terminal wealth. This is the utility to the individual of leaving an estate
to his heirs upon death. Let us now assume that T denotes the time
of the individual’s death and BW (T ), where B is a positive constant,
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denotes his utility of leaving wealth W (T ) to his heirs upon death. Then,
the problem is:

max
C(t)≥0

{
J =

∫ T

0
e−ρt lnC(t)dt+ e−ρTBW (T )

}
(3.66)

Table 3.1: Summary of the transversality conditions

Constraint Description λ(T ) λ(T )

on x(T ) when ψ ≡ 0

1 x(T ) ∈ Y (T ) = X(T ) Free-end λ(T ) = ψx[x∗(T )] λ(T ) = 0

point

2 x(T ) = k ∈ X(T ), Fixed-end λ(T ) = β, a constant λ(T ) = β, a constant

i.e., Y (T ) = {k} point to be determined to be determined

3 x(T ) ∈ X(T ) ∩ [k,∞), lower λ(T ) ≥ ψx[x∗(T )] λ(T ) ≥ 0

i.e., Y (T ) = {x|x ≥ k} bound and and

x(T ) ≥ k {λ(T ) − ψx[x∗(T )]}{x∗(T ) − k} = 0 λ(T )[x∗(T ) − k] = 0

4 x(T ) ∈ X(T ) ∩ (−∞, k], upper λ(T ) ≤ ψx[x∗(T )] λ(T ) ≤ 0

i.e., Y (T ) = {x|x ≤ k} bound and and

x(T ) ≤ k {λ(T ) − ψx[x∗(T )]}{k − x∗(T )} = 0 λ(T )[k − x∗(T )] = 0

5 x(T ) ∈ Y (T ) ⊂ X(T ) General {λ(T ) − ψx[x∗(T )]}{y − x∗(T )} ≥ 0 λ(T )[y − x∗(T )] ≥ 0

constraints ∀y ∈ Y (T ) ∀y ∈ Y (T )

Note 1. In Table 3.1, x(T ) denotes the (column) vector of n state variables and λ(T )
denotes the (row) vector of n adjoint variables at the terminal time T ; X(T ) ⊂ En

denotes the reachable set of terminal states obtained by using all possible admissible
controls; and ψ : En → E1 denotes the salvage value function

Note 2. Table 3.1 will provide transversality conditions for the standard Hamiltonian
formulation if we replace ψ with S, and reinterpret λ as being the standard adjoint
variable everywhere in the table. Also (3.15) is the standard form of (3.44)

subject to the wealth equation

Ẇ = rW − C, W (0) = W0, W (T ) ≥ 0. (3.67)

Solution The Hamiltonian for the problem is given in (3.45), and the ad-
joint equation is given in (3.46) except that the transversality conditions
are from Table 3.1, Row 3:

λ(T ) ≥ B, [λ(T )−B]W ∗(T ) = 0. (3.68)

In Example 3.2, the value of β, the terminal value of the adjoint variable,
was

β =
1− e−rT

rW0
.

We now have two cases: (i) β ≥ B and (ii) β < B.
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In case (i), the solution of the problem is the same as that of Exam-
ple 3.2, because by setting λ(T ) = β and recalling that W ∗(T ) = 0 in
that example, it follows that (3.68) holds.

In case (ii), we set λ(T ) = B. Then, by using B in place of β in
(3.47)–(3.49), we get λ(t) = Be(ρ−r)(t−T ), C∗(t) = (1/B)e(ρ−r)(T−t), and

W ∗(t) = ert

[
W0 − e(ρ−r)T (1− e−ρt)

ρB

]
. (3.69)

Since β < B, we can see from (3.49) and (3.69) that the wealth level
in case (ii) is larger than that in case (i) at t ∈ (0, T ]. Furthermore, the
amount of bequest is

W ∗(T ) = W0e
rT − eρT − 1

ρB
> 0.

Note that (3.68) holds for case (ii). Also, if we had used (3.42) instead
of Table 3.1, Row 3, we would have λ(T ) = B+α, α ≥ 0, αW ∗(T ) = 0,
equivalently, in place of (3.68). It is easy to see that α = β − B in case
(i) and α = 0 in case (ii).

Example 3.4 Consider the problem:

max

{
J =

∫ 2

0
−xdt

}

subject to
ẋ = u, x(0) = 1, x(2) ≥ 0, (3.70)

− 1 ≤ u ≤ 1. (3.71)

Solution The Hamiltonian is

H = −x+ λu.

Here, we do not need to introduce the Lagrange multipliers for the con-
trol constraints (3.71), since we can easily deduce that the Hamiltonian
maximizing control has the form

u∗ = bang[−1, 1;λ]. (3.72)

The adjoint equation is
λ̇ = 1 (3.73)
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with the transversality conditions

λ(2) ≥ 0 and λ(2)x(2) = 0, (3.74)

obtained from (3.61) or from Table 3.1, Row 3. Since λ(t) is monotoni-
cally increasing, the control (3.72) can switch at most once, and it can
only switch from u∗ = −1 to u∗ = 1. Let the switching time be t∗ ≤ 2.
Then the optimal control is

u∗(t) =

⎧⎪⎨
⎪⎩

−1 for 0 ≤ t ≤ t∗,

+1 for t∗ < t ≤ 2.

(3.75)

Since the control switches at t∗, λ(t∗) must be 0. Solving (3.73) gives

λ(t) = t− t∗.

There are two cases: (i) t∗ < 2 and (ii) t∗ = 2. We analyze case (i) first.
Here λ(2) = 2− t∗ > 0; therefore from (3.74), x(2) = 0. Solving for x(t)
with u∗(t) given in (3.75), we obtain

x(t) =

⎧⎪⎨
⎪⎩

1− t for 0 ≤ t ≤ t∗,

(t− t∗) + x(t∗) = t+ 1− 2t∗ for t∗ < t ≤ 2.

Therefore, setting x(2) = 0 gives

x(2) = 3− 2t∗ = 0,

which makes t∗ = 3/2. Since this satisfies t∗ < 2, we do not have to deal
with case (ii), and we have

x∗(t) =

⎧⎪⎨
⎪⎩

1− t for 0 ≤ t ≤ 3/2,

t− 2 for 3/2 < t ≤ 2

and λ(t) = t− 3

2
.

Figure 3.1 shows the optimal state and adjoint trajectories. Using the
optimal state trajectory in the objective function, we can obtain its op-
timal value J∗ = −1/4.

In Exercise 3.15, you are asked to consider case (ii) by setting t∗ = 2,
and show that the maximum principle will not be satisfied in this case.
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Finally, we can verify the marginal value interpretation of the adjoint
variable as indicated in Remark 3.5. For this, we first note that the
feasible region for the problem is given by x ≥ t− 2, t ∈ [0, 2]. To obtain
the value function V (x, t), we can easily obtain the optimal solution in
the interval [t, 2] for the problem beginning with x(t) = x. We use the
notation introduced in Example 2.5 to specify the optimal solution as

u∗(x,t)(s) =

⎧⎪⎨
⎪⎩

−1, s ∈ [t, 1
2(x+ t) + 1),

1, s ∈ [12(x+ t) + 1, 2],

and

x∗(x,t)(s) =

⎧⎪⎨
⎪⎩

x+ t− s, s ∈ [t, 1
2(x+ t) + 1),

s− 2, s ∈ [12(x+ t) + 1, 2].

Then for x ≥ t− 2,

V (x, t) =
∫ 2
t −x∗(x,t)(s)ds

= − ∫ (1/2)(x+t)+1
t (x+ t− s)ds− ∫ 2

(1/2)(x+t)+1(s− 2)ds

= (1/4)t2 − (1/4)x2 + (1/2)t(x− 2)− (x− 1).

(3.76)
For x < t−2, there is no feasible solution, and we therefore set V (x, t) =
−∞.

We can now verify that for 0 ≤ t ≤ 3/2, the value function V (x, t) is
continuously differentiable at x = x∗(t) = 1− t, and

Vx(x
∗(t), t) = −(1/2)x∗(t) + (1/2)t− 1

= −(1/2)(1− t) + (1/2)t− 1

= t− 3/2

= λ(t).

What happens when t ∈ (3/2, 2]? Clearly, for x ≥ x∗(t) = t − 2, we
may still use (3.76) to obtain the right-hand derivative V +

x (x∗(t), t) =
−(1/2)x∗(t) + (1/2)t − 1 = −(1/2)(t − 2) + (1/2)t − 1 = 0. However,
for x < x∗(t), we have x < t − 2 for which there is no feasible solution,
and we set the left-hand derivative V −

x (x∗(t), t) = −∞. Thus, the value
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function V (x, t) is not differentiable at x∗(t), and since Vx(x
∗(t), t) does

not exist for t ∈ (3/2, 2], (2.17) has no meaning; see Remark 2.2.
It is possible, however, to provide an economic meaning for λ(2). In

Exercise 3.17, you are asked to rework Example 3.4 with the terminal
condition x(2) ≥ 0 replaced by x(2) ≥ ε, where ε is small. Furthermore,

( )

=

½½

-½

-3/2

Figure 3.1: State and adjoint trajectories in Example 3.4

the solution will illustrate that α = λ(2) − 0 = 1/2, obtained by us-
ing (3.60), represents the shadow price of the constraint as indicated in
Remark 3.7.

3.5 Free Terminal Time Problems

In some cases, the terminal time is not given but needs to be determined
as an additional decision. Here, a necessary condition for a terminal
time to be optimal in the present-value and current-value formulations
are given in (3.15) and (3.44), respectively. In this section, we elabo-
rate further on these conditions as well as solve two free terminal time
examples: Examples 3.5 and 3.6.
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Let us begin with a special case of the condition (3.15) for the simple
problem (2.4) when T ≥ 0 is a decision variable. When compared with
the problem (3.7), the simple problem is without the mixed constraints
and constraints at the terminal time T. Thus the transversality condition
(3.15) reduces to

H[x∗(T ∗), u∗(T ∗), λ(T ∗), T ∗] + ST [x
∗(T ∗), T ∗] = 0. (3.77)

This condition along with the Maximum Principle (2.31) with T replaced
by T ∗ give us the necessary conditions for the optimality of T ∗ and
u∗(t), t ∈ [0, T ∗] for the simple problem (2.4) when T ≥ 0 is also a
decision variable.

An intuitively appealing way to check if the optimal T ∗ ∈ (0,∞)
must satisfy (3.77) is to solve the problem (2.4) with the terminal time
T ∗ with u∗(t), t ∈ [0, T ∗] as the optimal control trajectory, and then show
that the first-order condition for T ∗ to maximize the objective function
in a neighborhood (T ∗ − δ, T ∗ + δ) of T ∗ with δ > 0 leads to (3.77).
For this, let us set u∗(t) = u∗(T ∗), t ∈ [T ∗, T ∗ + δ), so that we have a
control u∗(t) that is feasible for (2.4) for any T ∈ (T ∗ − δ, T ∗ + δ), as
well as continuous at T ∗. Let x∗(t), t ∈ [0, T ∗ + δ] be the corresponding
state trajectory. With these we can obtain the corresponding objective
function value

J(T ) =

∫ T

0
F (x∗(t), u∗(t), t)dt+ S(x∗(T ), T ), T ∈ (T ∗ − δ, T ∗ + δ),

(3.78)
which, in particular, represents the optimal value of the objective func-
tion for the problem (2.4) when T = T ∗. Furthermore, since u∗(t) is
continuous at T ∗, x∗(t) is continuously differentiable there, and so is
J(T ). In this case, since T ∗ is optimal, it must satisfy

J ′(T ∗) :=
dJ(T )

dT
|T=T ∗ = 0. (3.79)

Otherwise, we would have either J ′(T ∗) > 0 or J ′(T ∗) < 0. The former
situation would allow us to find a T ∈ (T ∗, T ∗ + δ) for which J(T ) >
J(T ∗), and T ∗ could not be optimal since the choice of an optimal control
for (2.4) defined on the interval [0, T ] would only improve the value of
the objective function. Likewise, the later situation would allow us to
find a T ∈ (T ∗−δ, T ∗) for which J(T ) > J(T ∗). By taking the derivative
of (3.78), we can write (3.79) as

F (x∗(T ∗), u∗(T ∗), T ∗) + Sx[x
∗(T ∗), T ∗]ẋ∗(T ∗) + ST [x

∗(T ∗), T ∗] = 0.
(3.80)
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Furthermore, using the definition of the Hamiltonian in (2.18) and the
state equation and the transversality condition in (2.31), we can easily
see that (3.80) can be written as (3.77).

Remark 3.10 An intuitive way to obtain optimal T ∗ is to first solve
the problem (2.4) with a given terminal time T and obtain the optimal
value of the objective function J∗(T ), and then maximize J∗(T ) over
T. Hartl and Sethi (1983) show that the first-order condition for max-
imizing J∗(T ), namely, dJ∗(T )/dT = 0 can also be used to derive the
transversality condition (3.77).

If T is restricted to lie in the interval [T1, T2], where T2 > T1 ≥ 0, then
(3.77) is still valid provided T ∗ ∈ (T1, T2). As is standard, if T ∗ = T1,
then the = sign in (3.77) is replaced by ≤, and if T ∗ = T2, then the = sign
in (3.77) is replaced by ≥ . In other words, if we must have T ∗ ∈ [T1, T2],
then we can replace (3.77) by

H[x∗(T ∗), u∗(T ∗), λ(T ∗), T ∗] + ST [x
∗(T ∗), T ∗]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤ 0 if T ∗ = T1,

= 0 if T ∗ ∈ (T1, T2),

≥ 0 if T ∗ = T2.

(3.81)
Similarly, we can also obtain the corresponding versions of (3.15) and

(3.44) for the problem (3.7) and its current value version (specified in
Sect. 3.3), respectively.

We shall now illustrate (3.77) and (3.81) by solving Examples 3.5
and 3.6. To illustrate the idea in Remark 3.10, you are asked in Ex-
ercise 3.6 to solve Example 3.5 by using dJ∗(T )/dt = 0 to obtain the
optimal T ∗.

Example 3.5 Consider the problem:

max
u,T

{
J =

∫ T

0
(x− u)dt+ x(T )

}
(3.82)

subject to
ẋ = −2 + 0.5u, x(0) = 17.5, (3.83)

u ∈ [0, 1], T ≥ 0.
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Solution The Hamiltonian is

H = x− u+ λ(−2 + 0.5u),

where λ̇ = −1, λ(T ) = 1, which gives

λ(t) = 1 + (T − t).

Then, the optimal control is given by

u∗(t) = bang[0, 1; 0.5(T − 1− t)]. (3.84)

In other words, u∗(t) = 1 for 0 ≤ t ≤ T − 1 and u∗(t) = 0 for T − 1 <
t ≤ T.

Since we must also determine the optimal terminal time T ∗, it must
satisfy (3.77), which, in view of the fact that u∗(T ∗) = 0 from (3.84),
reduces to

x∗(T ∗)− 2 = 0. (3.85)

By substituting u∗(t) in (3.83) and integrating, we obtain

x∗(t) =

⎧⎪⎨
⎪⎩

17.5− 1.5t, 0 ≤ t ≤ T − 1,

17 + 0.5T − 2t, T − 1 < t ≤ T.

(3.86)

We can now apply (3.85) to obtain

x∗(T ∗)− 2 = 17− 1.5T ∗ − 2 = 0,

which gives T ∗ = 10. Thus, the optimal solution of the problem is given
by T ∗ = 10 and

u∗(t) = bang[0, 1; 0.5(9− t)].

Note that if we had restricted T to be in the interval [T1, T2] = [2, 8],
we would have T ∗ = 8, u∗(t) = bang[0, 1; 0.5(7 − t)], and x∗(8) − 2 =
5− 2 = 3 ≥ 0, which would satisfy (3.81) at T ∗ = T2 = 8. On the other
hand, if T were restricted in the interval [T1, T2] = [11, 15], then T ∗ =
11, u∗(t) = bang[0, 1; 0.5(10− t)], and x∗(11) − 2 = 0.5− 2 = −1.5 ≤ 0
would satisfy (3.81) at T ∗ = T1 = 11.

Next, we will apply the maximum principle to solve a well known
time-optimal control problem. It is one of the problems used by Pontrya-
gin et al. (1962) to illustrate the applications of the maximum principle.
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The problem also elucidates a specific instance of the synthesis of optimal
controls.

By the synthesis of optimal controls, we mean the procedure of
“patching” together various forms of the optimal controls obtained from
the Hamiltonian maximizing condition. A simple example of the syn-
thesis occurs in Example 2.5, where u∗ = 1 when λ > 0, u∗ = −1 when
λ < 0, and the control is singular when λ = 0. An optimal trajectory
starting at the given initial state variables is synthesized from these. In
Example 2.5, this synthesized solution is u∗ = −1 for 0 ≤ t < 1 and
u∗ = 0 for 1 ≤ t ≤ 2. Our next example requires a synthesis proce-
dure which is more complex. In Chap. 5, both the cash management and
equity financing models require such synthesis procedures.

Example 3.6 A Time-Optimal Control Problem. Consider a subway
train of mass m moving horizontally along a smooth linear track with
negligible friction. Let x(t) denote the position of the train, measured in
miles from the origin called the main station, along the track at time t,
measured in minutes. Then the equation of the train’s motion is governed
by Newton’s Second Law of Motion, which states that force equals mass
times acceleration. In mathematical terms, the equation of the motion
is the second-order differential equation

m
d2x(t)

dt2
= mẍ(t) = u(t),

where u(t) denotes the external force applied to the train at time t
and ẍ(t) represents the acceleration in miles per minute per minute,
or miles/minute2. This equation, along with

x(0) = x0 and ẋ(0) = y0,

respectively, as the initial position of the train and its initial velocity in
miles per minute, characterizes its motion completely.

For convenience in further exposition, we may assume m = 1 so that
the equation of motion can be written as

ẍ = u. (3.87)

Then, the force u can be expressed simply as acceleration or decelera-
tion (i.e., negative acceleration) depending on whether u is positive or
negative, respectively.
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In order to develop the time-optimal control problem under consid-
eration, we transform (3.87) into a system of two first-order differential
equations (see Appendix A)⎧⎪⎨

⎪⎩
ẋ = y, x(0) = x0,

ẏ = u, y(0) = y0,

(3.88)

where y(t) denotes the velocity of the train in miles/minute at time t.
Assume further that, for the comfort of the passengers, the maximum

acceleration and deceleration are required to be at most 1 mile/minute2.
Thus, the control variable constraint is

u ∈ Ω = [−1, 1]. (3.89)

The problem is to find a control satisfying (3.89) such that the train
stops at the main station located at x = 0 in a minimum possible time
T. Of course, for the train to come to rest at x = 0 at time T, we
must have x(T ) = 0 and y(T ) = 0. We have thus defined the following
fixed-end-point optimal control problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J =

∫ T

0
−1dt

}

subject to

ẋ = y, x(0) = x0, x(T ) = 0,

ẏ = u, y(0) = y0, y(T ) = 0,

and the control constraint

u ∈ Ω = [−1, 1].

(3.90)

Note that (3.90) is a fixed-end-point problem with unspecified ter-
minal time. For this problem to be nontrivial, we must not have
x0 = y0 = 0, i.e., we must have either x0 	= 0 or y0 	= 0 or both are
nonzero.

Solution Here we have only control constraints of the type treated in
Chap. 2, and so we can use the maximum principle (2.31). The standard
Hamiltonian function is

H = −1 + λ1y + λ2u,
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where the adjoint variables λ1 and λ2 satisfy

λ̇1 = 0, λ1(T ) = β1 and λ̇2 = −λ1, λ2(T ) = β2,

and β1 and β2 are constants to be determined in the case of a fixed-end-
point problem; see Table 3.1, Row 2. We can integrate these equations
and write the solution in the form

λ1 = β1 and λ2 = β2 + β1(T − t),

where β1 and β2 are constants to be determined from the maximum
principle (2.31), condition (3.15), and the specified initial and terminal
values of the state variables. The Hamiltonian maximizing condition
yields the form of the optimal control to be

u∗(t) = bang{−1, 1; β2 + β1(T − t)}. (3.91)

As for the minimum time T ∗, it is clearly zero if the train is initially
at rest at the main station, i.e., (x0, y0) = 0. In this case, the problem
is trivial, u∗(0) = 0, and there is nothing further to solve. Otherwise,
at least one of x0 or y0 is not zero, in which case the minimum time
T ∗ > 0 and the transversality condition (3.15) applies. Since y(T ) = 0
and S ≡ 0, we have

H + ST |T=T ∗ = λ2(T
∗)u∗(T ∗)− 1 = β2u

∗(T ∗)− 1 = 0,

which together with the bang-bang control policy (3.91) implies either

λ2(T
∗) = β2 = −1 and u∗(T ∗) = −1,

or
λ2(T

∗) = β2 = +1 and u∗(T ∗) = +1.

Since the switching function β2 + β1(T
∗ − t) is a linear function of

the time remaining, it can change sign at most once. Therefore, we have
two cases: (i) u∗(τ) = −1 in the interval t ≤ τ ≤ T ∗ for some t ≥ 0; (ii)
u∗(τ) = +1 in the interval t ≤ τ ≤ T ∗ for some t ≥ 0. We can integrate
(3.88) in each of these cases as shown in Table 3.2. Also in the table we
have the curves Γ− and Γ+, which are obtained by eliminating t from
the expressions for x and y in each case. The parabolic curves Γ− and
Γ+ are called switching curves and are shown in Fig. 3.2.

It should be noted parenthetically that Fig. 3.2 is different from the
figures we have seen thus far, where the abscissa represented the time
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Table 3.2: State trajectories and switching curves

(i) u∗(τ) = −1 for (t ≤ τ ≤ T ∗) (ii) u∗(τ) = +1 for (t ≤ τ ≤ T ∗)

y(t) = T ∗ − t y(t) = t− T ∗

x(t) = −(T ∗ − t)2/2 x(t) = (t− T ∗)2/2

Γ− : x = −y2/2 for y ≥ 0 Γ+ : x = y2/2 for y ≤ 0

dimension. In Fig. 3.2, the abscissa represents the train’s location and
the ordinate represents the train’s velocity. Thus, the point (x0, y0)
represents the vector of the train’s initial position and initial velocity.
A trajectory of the train over time can be represented by a curve in
this figure. For example, the bold-faced trajectory beginning at (x0, y0)
represents a train that is moving in the positive direction and it is slowing
down. It passes through the main station located at the origin and comes
to a momentary rest at the point that is

√
y20 + 2x0 miles to the right

of the main station. At this location, the train reverses its direction and
speeds up to reach the location x∗ and attain the velocity of y∗. At this
point, it slows down gradually until it comes to rest at the main station.
In the ensuing discussion we will show that this trajectory is in fact
the minimal time trajectory beginning at the location x0 at a velocity
of y0. We will furthermore obtain the control representing the optimal
acceleration and deceleration along the way. Finally, we will obtain the
various instants of interest, which are implicit in the depiction of the
trajectory in Fig. 3.2.

We can put Γ+ and Γ− into a single switching curve Γ as

y = Γ(x) =

⎧⎪⎨
⎪⎩

Γ+(x) = −√
2x, x ≥ 0,

Γ−(x) = +
√−2x, x < 0.

(3.92)

If the initial state (x0, y0) 	= 0, lies on the switching curve, then we have
u∗ = +1 (resp., u∗ = −1) if x0 > 0 (resp., x0 < 0); i.e., if (x0, y0) lies on
Γ+ (resp., Γ−). In the common parlance, this means that we apply the
brakes to bring the train to a full stop at the main station. If the initial
state (x0, y0) is not on the switching curve, then we choose, between
u∗ = 1 and u∗ = −1, that which moves the system toward the switching
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Figure 3.2: Minimum time optimal response for Example 3.6

curve. By inspection, it is obvious that above the switching curve we
must choose u∗ = −1 and below we must choose u∗ = +1.

The other curves in Fig. 3.2 are solutions of the differential equations
starting from initial points (x0, y0). If (x0, y0) lies above the switching
curve Γ as shown in Fig. 3.2, we use u∗ = −1 to compute the curve as
follows:

ẋ = y, x(0) = x0,

ẏ = −1, y(0) = y0.

Integrating these equations gives

y = −t+ y0,

x = − t2

2
+ y0t+ x0.

Elimination of t between these two gives

x =
y20 − y2

2
+ x0. (3.93)

This is the equation of the parabola in Fig. 3.2 through (x0, y0). The
point of intersection of the curve (3.93) with the switching curve Γ+ is
obtained by solving (3.93) and the equation for Γ+, namely 2x = y2,
simultaneously, which gives

x∗ =
y20 + 2x0

4
, y∗ = −

√
(y20 + 2x0)/2, (3.94)
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where the minus sign in the expression for y∗ in (3.94) was chosen since
the intersection occurs when y∗ is negative. The time t∗ that it takes to
reach the switching curve, called the switching time, given that we start
above it, is

t∗ = y0 − y∗ = y0 +
√
(y20 + 2x0)/2. (3.95)

To find the minimum total time to go from the starting point (x0, y0)
to the origin (0,0), we substitute t∗ into the equation for Γ+ in Column
(ii) of Table 3.2; this gives

T ∗ = t∗ − y∗ = y0 +
√

2(y20 + 2x0). (3.96)

Here t∗ is the time to get to the switching curve and −y∗ is the time
spent along the switching curve.

Note that the parabola (3.93) intersects the y-axis at the point
(0,+

√
2x0 + y20) and the x-axis at the point (x0 + y20/2, 0). This means

that for the initial position (x0, y0) depicted in Fig. 3.2, the train first
passes the main station at the velocity of +

√
2x0 + y20 and comes to a

momentary stop at the distance of (x0 + y20/2) to the right of the main
station. There it reverses its direction, comes to within the distance of
x∗ from the main station, switches then to u∗ = +1, which slows it to a
complete stop at the main station at time T ∗ given by (3.96).

As a numerical example, start at the point (x0, y0) =(1,1). Then, the
equation of the parabola (3.93) is

2x = 3− y2.

The switching point given by (3.94) is (3/4,−√
3/2). Finally from (3.95),

the switching time is t∗ = 1 +
√
3/2min. Substituting into (3.96), we

find the minimum time to stop is T ∗ = 1 +
√
6min.

To complete the solution of this example let us evaluate β1 and β2,
which are needed to obtain λ1 and λ2. Since (1,1) is above the switching
curve, the approach to the main station is on the curve Γ+, and therefore,
u∗(T ∗) = 1 and β2 = 1. To compute β1, we observe that λ2(t∗) =
β2+β1(T

∗− t∗) = 0 so that β1 = −β2/(T
∗− t∗) = −1/

√
3/2 = −√

2/3.
Finally, we obtain x∗ = 3/4 and y∗ = −√

3/2 from (3.94).
Let us now describe the optimal solution from (1, 1) in the common

parlance. The position (1, 1) means the train is 1 mile to the right of the
main station, moving away from it at the speed of 1 mile per minute.
The control u∗ = −1 means that the brakes are applied to slow the train
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down. This action brings the train to a momentary stop at a distance
of

√
3 miles to the right of the main station. Moreover, the continuation

of control u∗ = −1 means the train reverses its direction at that point
and starts speeding toward the station. When it comes to within 3/4
miles to the right of the main station at time t∗ = 1+

√
3/2, its velocity

of −√
3/2 or the speed of

√
3/2 miles per minute toward the station is

too fast to come to a rest at the main station without application of the
brakes. So the control is switched to u∗ = +1 at time t∗, which means
the brakes are applied at that time. This action brings the train to a
complete stop at the main station at the time of T ∗ = 1 +

√
6min after

the train left its initial position (1, 1).
In Exercises 3.19–3.22, you are asked to work other examples with

different starting points above, below, and on the switching curve. Note
that t∗ = 0 by definition, if the starting point is on the switching
curve.

3.6 Infinite Horizon and Stationarity

Thus far, we have studied problems whose horizon is finite or whose
horizon length is a decision variable to be determined. In this section,
we briefly discuss the case of T = ∞ in the problem (3.7), called the in-
finite horizon case. This case is especially important in many economics
and management science problems. Our treatment of this case is largely
heuristic, since a general theory of the necessary optimality conditions
is not available. Nevertheless, we can rely upon an infinite-horizon ex-
tension of the sufficiency optimality conditions stated in Theorem 3.1.

When we put T = ∞ in (3.7) along with ρ > 0, we will generally
get a nonstationary infinite horizon problem in the sense that the var-
ious functions involved depend explicitly on the time variable t. Such
problems are extremely hard to solve. So, in this section we will devote
our attention to only stationary infinite horizon problems, which do not
depend explicitly on time t. Furthermore, it is reasonable in most cases
to assume σ(x) ≡ 0 in infinite horizon problems. Moreover, in most eco-
nomics and management science problems, the terminal constraints, if
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any, require the state variables to be nonnegative. Thus, to begin with,
we consider the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J =

∫ ∞

0
φ(x, u)e−ρtdt

}
,

subject to

ẋ = f(x, u), x(0) = x0,

g(x, u) ≥ 0.

(3.97)

This stationarity assumption means that the state equations, the
current-value adjoint equations, and the current-value Hamiltonian in
(3.35) are all explicitly independent of time t.

Remark 3.11 The concept of stationarity introduced here is different
from the concept of autonomous systems introduced in Exercise 2.9. This
is because, in the presence of discounting in (3.28), the stationarity as-
sumption (3.97) does not give us an autonomous system as defined there.
See Exercise 3.42 for further comparison between the two concepts.

When it comes to the transversality conditions in the infinite horizon
case, the situation is somewhat more complicated. Even the economic
argument for the finite horizon case fails to extend here because we do
not have a meaningful analogue of the salvage value function. Moreover,
in the free-end-point case with no salvage value, the standard maximum
principle (2.31) gives λpv(T ) = 0, which can no longer be necessary in
general for T = ∞, as confirmed by a simple counter-example in Exer-
cise 3.37. As a matter of fact, we have no general results giving condi-
tions under which the limit of the finite horizon transversality conditions
are necessary. What is true is that the maximum principle (3.42) holds
except for the transversality condition on λ(T ).

When it comes to the sufficiency of the limiting transversality condi-
tions obtained by letting T → ∞ in Theorem 3.1, the situation is much
better. As a matter of fact, we can see from the inequality (2.73) with
S(x) ≡ 0 that all we need is

lim
T→∞

λpv(T )[x(T )− x∗(T )] = lim
T→∞

e−ρTλ(T )[x(T )− x∗(T )] ≥ 0 (3.98)

for Theorem 2.1, and therefore Theorem 3.1, to hold. See Seierstad and
Sydsæter (1987) and Feichtinger and Hartl (1986) for further details.
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In the important free-end-point case (3.97), since x(T ) is arbitrary,
(3.98) will imply

lim
T→∞

λpv(T ) = lim
T→∞

e−ρTλ(T ) = 0. (3.99)

While not a necessary condition as indicated earlier, it is interesting to
note that (3.99) is the limiting version of the condition in Table 3.1,
Row 1.

Another important case is that of nonnegativity constraints

lim
T→∞

x(T ) ≥ 0. (3.100)

Then, it is clear that the transversality conditions

lim
T→∞

e−ρTλ(T ) ≥ 0 and lim
T→∞

e−ρTλ(T )x∗(T ) = 0, (3.101)

imply (3.98). Note that these are also analogous to Table 3.1, Row 3.
We leave it as Exercise 3.38 for you to show that the limiting version

of the condition in the rightmost column of Rows 2, 3, and 4 in Table 3.1
imply (3.98). This would mean that Theorem 3.1 provides sufficient
optimality conditions for the problem (3.97), except in the free-end-point
case, i.e., when the terminal constraints a(x(T )) ≥ 0 and b(x(T )) = 0
are not present. Moreover, in the free-end-point case, we can use (3.98),
or even (3.99) with some qualifications, as discussed earlier.

Example 3.7 Let us return to Example 3.3 and now assume that we
have a perpetual charitable trust with initial fund W0, which wants to
maximize its total discounted utility of charities C(t) over time, subject
to the terminal condition

lim
T→∞

W (T ) ≥ 0. (3.102)

For convenience we restate the problem:

max
C(t)≥0

{
J =

∫ ∞

0
e−ρt lnC(t)dt

}

subject to

Ẇ = rW − C, W (0) = W0 > 0, (3.103)

and (3.102).
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Solution We already know from Example 3.3 with B = 0 that we are
in case (i), and the optimal solution is given by (3.50) in Example 3.2.
It seems reasonable to explore whether or not we can obtain an optimal
solution for our infinite horizon problem by letting T → ∞ in (3.50).
Furthermore, since the limiting version of the maximum principle (3.42)
is sufficient for optimality in this case, all we need to do is to check if
the limiting solution satisfies the condition

lim
T→∞

e−ρTλ(T ) ≥ 0 and lim
T→∞

e−ρTλ(T )W ∗(T ) = 0. (3.104)

With T → ∞ in (3.50) and (3.52), we have

W ∗(t) = e(r−ρ)tW0, C
∗(t) = ρW ∗(t), λ(t) = 1/ρW ∗(t). (3.105)

Since λ(t) ≥ 0 and λ(t)W ∗(t) = 1/ρ, it is clear that (3.104) holds. Thus,
(3.105) gives the optimal solution. Using this solution in the objective
function, we obtain

J∗ =
1

ρ
ln ρW0 +

r − ρ

ρ2
, (3.106)

which we can verify to be the same as (3.51) as T → ∞.
It is interesting to observe from (3.105) that the optimal consumption

is increasing, constant, or decreasing if r is greater than, equal to, or less
than ρ, respectively. Moreover, if ρ = r, then W ∗(t) = W0, C

∗(t) = rW0,
and λ(t) = 1/rW0, which means that it is optimal to consume just the
interest earned on the invested wealth—no more, no less—and, therefore,
none of the initial wealth is ever consumed!

In the case of stationary systems, considerable attention is focused on
equilibrium where all motion ceases, i.e., the values of x and λ for which
ẋ = 0 and λ̇ = 0. The notion is that of optimal long-run stationary
equilibrium; see Arrow and Kurz (1970, Chapter 2) and Carlson and
Haurie (1987a, 1996). If an equilibrium exists, then it is defined by the
quadruple {x̄, ū, λ̄, μ̄} satisfying
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f(x̄, ū) = 0,

ρλ̄ = Lx[x̄, ū, λ̄, μ̄],

μ̄ ≥ 0, μ̄g(x̄, ū) = 0,

and

H(x̄, ū, λ̄) ≥ H(x̄, u, λ̄)

for all u satisfying

g(x̄, u) ≥ 0.

(3.107)

Clearly, if the initial condition x0 = x̄, the optimal control is u∗(t) = ū
for all t. If x0 	= x̄, the optimal solution will have a transient phase.
Moreover, depending on the problem, the equilibrium may be attained
in a finite time or an approach to it may be asymptotic.

If the nonnegativity constraint (3.100) is added to problem (3.97),
then we may include the requirement λ̄ ≥ 0 and λ̄x̄ = 0 in (3.107).

If the constraint involving g is not imposed in (3.97), μ̄ may be
dropped from the quadruple. In this case, the long-run stationary equi-
librium is defined by the triple {x̄, ū, λ̄} satisfying

f(x̄, ū) = 0, ρλ̄ = Hx(x̄, ū, λ̄), and Hu(x̄, ū, λ̄) = 0. (3.108)

Also known in this case is that the optimal value of the objective function
can be expressed as

J∗ = H(x0, u
∗(0), λ(0))/ρ. (3.109)

You are asked to prove this relation in Exercise 3.40. That it holds in
Example 3.7 is quite clear when we use (3.105) in (3.109) and see that
we get (3.106).

Also, we see from Example 3.7 that when we let t → ∞ in (3.105),
we formally obtain

(W̄ , C̄, λ̄) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0,∞) if ρ > r,

(W0, ρW0, 1/ρW0) if ρ = r,

(∞,∞, 0) if ρ < r.

(3.110)
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This is precisely the long-run stationary equilibrium that we will obtain
if we apply (3.108) along with λ̄ ≥ 0 and λ̄W̄ = 0 directly to the optimal
control problem in Example 3.7. This verification is left as Exercise 3.41.

Example 3.8 For another application of (3.108), let us return to Ex-
ample 3.7 and now assume that the wealth W is invested in a productive
activity resulting in an output rate lnW, and that the horizon T = ∞.
Since lnW is only defined for W > 0, we do not need to impose the
terminal constraint (3.102) here.

Thus, the problem is

max
C(t)≥0

{
J =

∫ ∞

0
e−ρt lnC(t)dt

}

subject to
Ẇ = lnW − C, W (0) = W0 > 0, (3.111)

and one task is to find the long-run stationary equilibrium for it. Note
that since the horizon is infinite, it is usual to assume no salvage value
and no terminal conditions on the state.

Solution By (3.108) we set

ln W̄ − C̄ = 0, ρ = 1/W̄ , 1/C̄ − λ̄ = 0,

which gives the equilibrium {W̄ , C̄, λ̄} = {1/ρ,− ln ρ,−1/ ln ρ}. Since,
0 < ρ < 1, we have C̄ > 0, which satisfies the requirement that the
consumption be nonnegative. Also, the equilibrium wealth W̄ > 0.

It is important to note that the optimal long-run stationary equilib-
rium (which is also called the turnpike) is not the same as the optimal
steady-state among the set of all possible steady-states. The latter con-
cept is termed the Golden Rule or Golden Path in economics, and a
procedure to obtain it is described below. However, the two concepts
are identical if the discount rate ρ = 0; see Exercise 3.43.

The Golden Path is obtained by setting ẋ = f(x, u) = 0, which
provides the feedback control u(x) that would keep x(t) = x over
time. Then, substitute u(x) in the integrand φ(x, u) of (3.28) to obtain
φ(x, u(x)). The value of x that maximizes φ(x, u(x)) yields the Golden
Path. Of course, all of the constraints imposed on the problem have to
be respected when obtaining the Golden Path.

In some cases, there may be more than one equilibria defined by
(3.107). If so, the equilibrium that is attained may depend on the initial
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starting point. Moreover, from some special starting points, the system
may have an option to go to two or more different equilibria. Such points
are called the Sethi-Skiba points; see Appendix D.8.

For multidimensional systems consisting of two or more states, op-
timal trajectories may exhibit more complex behaviors. Of particular
importance is the concept of limit cycles. If the optimal trajectory of
a dynamical system tends to spiral in toward a closed loop in the state
space, then that closed loop is called a limit cycle. For more on this
topic, refer to Vidyasagar (2002) and Grass et al. (2008).

3.7 Model Types

Optimal control theory has been used to solve problems occurring in en-
gineering, economics, management science, and other fields. In each field
of application, certain general kinds of models which we will call model
types are likely to occur, and each such model requires a specialized
form of the maximum principle. In Chap. 2 we derived, in considerable
detail, a simple form of the continuous-time maximum principle. How-
ever, to continue to provide such details for each different version of the
maximum principle needed in later chapters of this book would be both
repetitive and lengthy.

The purpose of this section is to avoid the latter by listing most
of the different management science model types that we will use in
later chapters. For each model type, we will give a brief description of
the corresponding objective function, state equations, control and state
inequality constraints, terminal conditions, adjoint equations, and the
form of the optimal control policy. We will also indicate where each of
these model types is applied in later chapters.

The reader may wish to skim this section on first reading to get an
idea of what it contains, work a few of the exercises, and go on to the
various functional areas discussed in later chapters. Then, when specific
model types are encountered, the reader may return to read the relevant
parts of this section in more detail.

We are now able to state the general forms of all the models (with one
or two exceptions) that we will use to analyze the applications discussed
in the rest of the book. Some other model types will be explained in
later chapters.

In Table 3.3 we have listed six different combinations of φ and f
functions. If we specify the initial value x0 of the state variable x and
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the constraints on the control and state variables, we can get a completely
specified optimal control model by selecting one of the model types in
Table 3.3 together with one of the terminal conditions given in Table 3.1.

The reader will see numerous examples of the uses of Tables 3.1
and 3.3 when we construct optimal control models of various applied
situations in later chapters. To help in understanding these, we will give
a brief mathematical discussion of the six model types in Table 3.3, with
an indication of where each model type will be used later in the book.

In Model Type (a) of Table 3.3 we see that both φ and f are linear
functions of their arguments. Hence it is called the linear-linear case.
The Hamiltonian is

H = Cx+Du+ λ(Ax+Bu+ d)

= Cx+ λAx+ λd+ (D + λB)u. (3.112)

From (3.112) it is obvious that the optimal policy is bang-bang with the
switching function (D + λB). Since the adjoint equation is independent
of both control and state variables, it can be solved completely without
resorting to two-point boundary value methods. Examples of (a) oc-
cur in the cash balance problem of Sect. 5.1.1 and the maintenance and
replacement model of Sect. 9.1.1.

Model Type (b) of Table 3.3 is the same as Model Type (a) except
that the function C(x) is nonlinear. Thus, the term Cx appears in the
adjoint equation, and two-point boundary value methods are needed to
solve the problem. Here, there is a possibility of singular control, and a
specific example is the Nerlove-Arrow model in Sect. 7.1.1.

Model Type (c) of Table 3.3 has linear functions in the state equa-
tion and quadratic functions in the objective function. Therefore, it is
sometimes called the linear-quadratic case. In this case, the optimal
control can be expressed in a form in which the state variables enter
linearly. Such a form is known as the linear decision rule; see (D.36) in
Appendix D. A specific example of this case occurs in the production-
inventory example of Sect. 6.1.1.

Model Type (d) is a more general version of Model Type (b) in which
the state equation is nonlinear in x. Here again, there is a possibility of
singular control. The wheat trading model of Sect. 6.2.1 illustrates this
model type. The solution of a special case of the model in Sect. 6.2.3
exhibits the occurrence of a singular control.
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Table 3.3: Objective, state, and adjoint equations for various model
types

Objective State Current-value Form of optimal

function equation adjoint equation control policy

integrand

φ = ẋ = f = λ̇ =

(a) Cx + Du Ax + Bu + d λ(ρ − A) − C Bang-bang

(b) C(x) + Du Ax + Bu + d λ(ρ − A) − Cx Bang-bang+Singular

(c) xTCx + uTDu Ax + Bu + d λ(ρ − A) − 2xTC Linear decision rule

(d) C(x) + Du A(x) + Bu + d λ(ρ − Ax) − Cx Bang-bang+Singular

(e) c(x) + q(u) (ax + d)b(u) + e(x) λ(ρ − ab(u) − ex) − cx Interior or boundary

(f) c(x)q(u) (ax + d)b(u) + e(x) λ(ρ − ab(u) − ex) − cxq(u) Interior or boundary

Note. The current-value Hamiltonian is often used when ρ > 0 is the discount rate;
the standard formulation is identical to the current-value formulation when ρ = 0. In
Table 3.3, capital letters indicate vector functions and small letters indicate scalar
functions or vectors. A function followed by an argument in parentheses indicates
a nonlinear function; when it is followed by an argument without parenthesis, it
indicates a linear function. Thus, A(x) and e(x) are nonlinear vector and scalar
functions, while Ax and ax are linear. The function d is always to be interpreted as
an exogenous function of time only

In Model Types (e) and (f), the functions are scalar functions, and
there is only one state equation, so λ is also a scalar function. In these
cases, the Hamiltonian function is nonlinear in u. If it is concave in u,
then the optimal control is usually obtained by setting Hu = 0. If it is
convex, then the optimal control is the same as in Model Type (b).

Several examples of Model Type (e) occur in this book: the opti-
mal financing model in Sect. 5.2.1, the Vidale-Wolfe advertising model in
Sect. 7.2.1, the nonlinear extension of the maintenance and replacement
model in Sect. 9.1.4, the forestry model in Sect. 10.2.1, the exhaustible
resource model in Sect. 10.3.1, and all of the models in Chap. 11. Model
Type (f) examples are: The Kamien-Schwartz model in Sect. 9.2.1 and
the sole-owner fishery resource model in Sect. 10.1.

Although the general forms of the model are specified in Tables 3.1
and 3.3, there are a number of additional modeling tricks that are useful,
which will be employed later. We collect these as a series of remarks
below.

Remark 3.12 We sometimes need to use the absolute value function
|u| of a control variable u in forming the functions φ or f. For example,
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in the simple cash balance model of Sect. 5.1, u < 0 represents buying
and u > 0 represents selling; in either case there is a transaction cost
which can be represented as c|u|. In order to handle this, we define new
control variables u1 and u2 satisfying the following relations:

u := u1 − u2, u1 ≥ 0, u2 ≥ 0, (3.113)

u1u2 = 0. (3.114)

Thus, we represent u as the difference of two nonnegative variables, u1
and u2, together with the quadratic constraint (3.114). We can then
write

|u| = u1 + u2, (3.115)

which expresses the nonlinear function |u| as a linear function with the
constraint (3.114).

We now observe that we need not impose (3.114) explicitly, provided
there are costs associated with the controls u1 and u2, since in the pres-
ence of these costs no optimal policy would ever choose to make both of
them simultaneously positive. This is indeed the case in the cash balance
problem of Sect. 5.1, where the associated transaction costs prevent us
from simultaneously buying and selling the same security.

Thus, by doubling the number of variables and adding inequality
constraints, we are able to represent |u| as a linear function in the model.

Remark 3.13 Tables 3.1 and 3.3 are constructed for continuous-time
models. Exactly the same kinds of models can be developed in the
discrete-time case; see Chap. 8.

Remark 3.14 Consider Model Types (a) and (b) when the control vari-
able constraints are defined by linear inequalities of the form

g(u, t) = g(t)u ≥ 0. (3.116)

Then, the problem of maximizing the Hamiltonian function becomes:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(D + λB)u

subject to

g(t)u ≥ 0.

(3.117)

This is clearly a linear programming problem for each given instant of
time t, since the Hamiltonian function is linear in u.
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Further in Model Type (a), the adjoint equation does not contain
terms in x and u, so we can solve it for λ(t), and hence the objective
function of (3.117) varies parametrically with λ(t). In this case we can
use parametric linear programming techniques to solve the problem over
time. Since the optimal solution to the linear program always occurs at
an extreme point of the convex set defined by g(t)u ≥ 0, it follows that
as λ(t) changes, the optimal solution to (3.117) will “bang” from one
extreme point of the feasible set to another. This is called a generalized
bang-bang optimal policy. Such a policy occurs, e.g., in the optimal
financing model treated in Sect. 5.2; see Table 5.1, Row 5.

In Model Type (b), the adjoint equation contains terms in x, so we
cannot solve for the trajectory of λ(t) without knowing the trajectory
of x(t). It is still true that (3.117) is a linear program for any given t,
but the parametric linear programming techniques will not usually work.
Instead, some type of iterative procedure is needed in general; see Bryson
and Ho (1975).

Remark 3.15 The salvage value part S[x(T ), T ] of the objective func-
tion is relevant in the optimization context in the following two cases:

Case (i) T is free and part of the problem is to determine the optimal
terminal time; see, e.g., Sect. 9.1.

Case (ii) T is fixed and the problem is that of maximizing the objec-
tive function involving the salvage value of the ending state x(T ), which
in this case can be written simply as S[x(T )].

For the fixed-end-point problem and for the infinite horizon problem,
it does not usually make much sense to define a salvage value function.

Remark 3.16 One important model type that we did not include in
Table 3.3 is the impulse control model of Bensoussan and Lions (1975).
In this model, an infinite control is instantaneously exerted on a state
variable in order to cause a finite jump in its value. This model is
particularly appropriate for the instantaneous reordering of inventory
as required in lot-size models; see Bensoussan et al. (1974). Further
discussion of impulse control is given in Sect. D.9.

Exercises for Chapter 3

E 3.1 Consider the constraint set

Ω = {(u1, u2)|0 ≤ u1 ≤ x, −1 ≤ u2 ≤ u1}.
Write these in the form shown in (3.3).
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E 3.2 Find the reachable set X, defined in Sect. 3.1, if x and u satisfy

ẋ = u− 1, x0 = 5, −1 ≤ u ≤ 1,

and T = 3.

E 3.3 Assume the constraint (3.3) to be of the form g(u, t) ≥ 0, i.e.,
g does not contain x explicitly, and assume x(T ) is free. Apply the
Lagrangian form of the maximum principle and derive the Hamiltonian
form (2.31) with

Ω(t) = {u|g(u, t) ≥ 0}.
Assume g(u, t) to be of the form α ≤ u ≤ β.

E 3.4 Use the Lagrangian form of the maximum principle to obtain the
optimal control for the following problem:

max{J = x1(2)}
subject to

ẋ1(t) = u1 − u2, x1(0) = 2,

ẋ2(t) = u2, x2(0) = 1,

and the constraints

u1(t) ≥ u2(t), 0 ≤ u1(t) ≤ x2(t), 0 ≤ u2(t) ≤ 2, 0 ≤ t ≤ 2.

An interpretation of this problem is that x1(t) is the stock of steel at time
t and x2(t) is the total capacity of the steel mill at time t. Production
of steel at rate u1, which is bounded by the current steel mill capacity,
can be split into u2 and u1 − u2, where u2 goes into increasing the steel
mill capacity and u1 − u2 adds to the stock of steel. The objective is to
build as large a stockpile of steel as possible by time T = 2. With this
interpretation, we clearly need to have x1(t) ≥ 0 and x2(t) ≥ 0. However,
it is easily seen that these constraints are automatically satisfied for every
feasible solution of the problem. You may find it interesting to show
why this is true. (It is possible to make the problem more interesting by
assuming an exogenous demand d for steel so that ẋ1 = u1 − u2 − d.)

E 3.5 Specialize the terminal condition (3.13) in the one-dimensional
case (i.e., n = 1) with Y (T ) = Y = [x, x̄] for each T > 0, where x and x̄
are two constants satisfying x̄ > x. Use (3.12) to derive (3.14).
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E 3.6 Obtain the optimal value J∗(T ) of the objective function for Ex-
ample 3.5 for a given terminal time T, and then maximize it with respect
to T by using the conditions dJ∗(T )/dT = 0. Show that you get the same
optimal T ∗ as the one obtained for Example 3.5 by using (3.77).

E 3.7 Check that the solution of Example 3.1 satisfies the sufficiency
conditions in Theorem 3.1.

E 3.8 Starting from (3.15), obtain the current-value version (3.44) for
the problem defined by (3.27) and (3.28). Show further that if we
were to require the function ψ to also depend on T, i.e. if S(x, T ) =
ψ(x, T )e−ρT then the left-hand side of condition (3.44) would be modi-
fied to H[x∗(T ∗), u∗(T ∗), λ(T ∗), T ∗] + ψT [x

∗(T ∗), T ∗]− ρψ[x∗(T ∗), T ∗].

E 3.9 Develop the current-value formulation of Sect. 3.3 for a time-
varying nonnegative discount rate ρ(t), by replacing the factors e−ρt and
e−ρT in (3.28), respectively, by

α(t) = e−
∫ t
0 ρ(s)ds and α(T ) = e−

∫ T
0 ρ(s)ds.

E 3.10 Begin with (3.54) and perform the steps leading to (3.55).

E 3.11 Optimal Consumption of An Initial Investment Over a Finite
Horizon. Begin with an initial investment of x0. Assets x(t) at time t
earn at the rate of r per dollar per unit time. A portion of the earnings
is consumed at a rate of c(t) per unit time at time t, while the remainder
is invested. Neither a negative consumption rate nor a consumption rate
exceeding the earnings is allowed. Assets depreciate at the constant rate
δ. Assume r > δ+ρ, where ρ is the discount rate applied on consumption.
Find the optimal consumption rate over a finite horizon T such that
the present value of the consumption stream over the finite horizon is
maximized. Assume that T is sufficiently large. Let us note that the
optimal capital accumulation model treated in Sect. 11.1.1 represents a
generalization of this problem.

E 3.12 Show that if we require W (T ) = ε > 0, ε small, instead of
W (T ) = 0 in Example 3.2, then the optimal value of the objective func-
tion will decrease by an amount βε = ε(1− erT )/rW0 + o(ε).

E 3.13 Recall Exercise 2.18 of the leaky reservoir in Chap. 2. In this
problem there was no explicit constraint on the total amount of water
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available. Suppose we impose the following isoperimetric constraint on
that problem: ∫ 100

0
udt = K,

where K > 0 is the total amount of water which must be used. Assume
also that the reservoir has infinite capacity. Re-solve this problem for
various values of K and the objective functions in parts (a) and (b) of
Exercise 2.18.

E 3.14 From the transversality conditions for the general terminal con-
straints in Row 5 of Table 3.1, derive the transversality conditions in Row
1 for the free-end-point case, in Row 2 for the fixed-end-point case, and
in Rows 3 and 4 for the one-sided constraint cases. Assume ψ(x) = 0,
i.e., there is no salvage value and X = E1 for simplicity.

E 3.15 For solving Example 3.3, consider case (ii) by starting with t∗ =
2, and show that the maximum principle will not be satisfied in this case.

E 3.16 Rework Example 3.4 with T = 4 and the following different
terminal conditions:

(a) x(4) unconstrained,

(b) x(4) = 1,

(c) x(4) ≤ 1,

(d) x(4) ≥ 1.

E 3.17 Rework Example 3.4 with the terminal condition (3.70) replaced
by x(2) ≥ ε, where ε is small. Verify that the change in the optimal
value of the objective function is −ε/2 ≈ −αε + o(ε), as stipulated in
Remark 3.6.

E 3.18 Introduce a terminal value in Example 3.4 as follows:

max

{
J =

∫ 2

0
(−x)dt+Bx(2)

}

subject to
ẋ = u, x(0) = 1,

x(2) ≥ 0, i.e., Y = [0,∞) in Table 3.1, Row 3,

−1 ≤ u ≤ 1.

Note that for B = 0, the problem is the same as Example 3.4. Solve this
problem for B = 1/2, 1, 3/2, 2, 3. Conclude that for B ≥ 2, the solution
for the state variable does not change.
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E 3.19 In Example 3.6, determine the optimal control and the corre-
sponding state trajectory starting at the point (-4,6), which lies above
the switching curve.

E 3.20 Carry out the synthesis of the optimal control for Example 3.6
when the starting point (x0, y0) lies below the switching curve.

E 3.21 Use the results of Exercise 3.20 to find the optimal control and
the corresponding trajectory starting at the point (−1,−1).

E 3.22 Find the optimal control, the minimum time, and the corre-
sponding trajectory for Example 3.6 starting at the point (−2, 2), which
lies on the switching curve.

E 3.23 What is the shortest time in which a passenger can be trans-
ported in a ballistic missile from Los Angeles to New York? Assume that
a missile with the ultimate mechanical and thermodynamical properties
is available, but that the passenger imposes the restraint that the max-
imum acceleration or deceleration is 100 ft/s2. The missile starts from
rest in Los Angeles and stops in New York. Assume that the path is a
straight line of length 2400 miles and ignore the rotation and curvature
of the earth.

E 3.24 In the time-optimal control problem (3.90), replace the state
equations by

ẋ = ay, x(0) = x0 ≥ 0, x(T ) = x̄ > x0,

ẏ = u, y(0) = y0 ≥ 0, y(T ) = 0,

and the control constraint by

u ∈ Ω = [Umin, Umax].

Assume a > 0 and Umax > 0 > Umin. Observe here that x(t) could be
interpreted as the cumulative value of gold mined by a gold-producing
country and y(t) could be interpreted as the total value of gold-mining
machinery employed by the country at time t ≥ 0. The required ma-
chinery is to be imported. Because of some inertia in the world market
for the machinery, the country cannot control y(t) directly, but is able
to control its rate of change ẏ(t). Thus u(t) represents at time t, the
import rate of the machinery when positive and the export rate when
negative. The terminal value x̄ represents the required amount of gold to
be produced in a minimum possible time. Obtain the optimal solution.
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E 3.25 Solve the following minimum weighted energy and time problem:

max
u,T

{
J =

∫ T

0
−(

1

2
)(u2 + 1)dt

}

subject to
ẋ = u, x(0) = 5, x(T ) = 0,

and the control constraint
|u| ≤ 2.

Hint. Use (3.77) to determine T ∗, the optimal value of T.

E 3.26 Rework Exercise 3.25 with the new integrand F =
−(1/2)(u2 + 16) in the objective function.

Hint: Note that use of (3.77) gives an infeasible u. This means
that we should look for a boundary solution for u. To obtain this,
calculate J∗(T ) as defined in Exercise 3.6, and then choose T to
maximize it. In doing so, take care to see that x(T ) = 0, and the control
constraint is satisfied.

E 3.27 Exercise 3.26 becomes a minimum energy problem if we set
F = −u2/2. Show that the Hamiltonian maximizing condition of the
maximum principle implies u∗ = k, where k is a constant. Note that
the application of (3.77) implies that k = 0, which gives x(t) = 5 for all
t ≥ 0 so that the terminal condition x(T ) = 0 cannot be satisfied.

To see that there exists no optimal control in this situation, let k < 0
and compute J∗. It is now possible to see that limk→0 J

∗ = 0. This
means that we can make the objective function value as close to zero
as we wish, but not equal to zero. Note that in this case there are no
feasible solutions satisfying the necessary conditions so we cannot check
the sufficiency conditions; see the last paragraph of Sect. 2.1.4.

E 3.28 Show that every feasible control of the problem

max
T,u

{
J =

∫ T

0
−udt

}

subject to
ẋ = u, x(0) = x0, x(T ) = 0,

|u| ≤ q, where q > 0,

is an optimal control.
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E 3.29 Let x0 > 0 be the initial velocity of a rocket. Let u be the
amount of acceleration (or deceleration) caused by applying a force which
consumes fuel at the rate |u|. We want to bring the rocket to rest using
minimum total amount of fuel. Hence, we have the following optimal
control problem:

max
T,u

{
J =

∫ T

0
−|u|dt

}

subject to

ẋ = u, x(0) = x0, x(T ) = 0,

−1 ≤ u ≤ +1.

Hint: Use (3.113)–(3.115) to deal with |u|. Show that for x0 > 0, say
x0 = 5, every feasible control is optimal.

E 3.30 Analyze Exercise 3.29 with the state equation

ẋ = −ax+ u,

where a > 0. Show that no optimal control exists for the problem.

E 3.31 By using the maximum principle, show that the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

∫ 1

0
xdt

subject to

ẋ = x+ u, x(0) = 0,

1− u ≥ 0, 1 + u ≥ 0, 2− x− u ≥ 0,

has the optimal control

u∗(t) =

⎧⎪⎨
⎪⎩

1, t ∈ [0, ln 2],

1 + 2ln2− 2t, t ∈ (ln 2, 1].

Also, provide the values of the state variable, the adjoint variable, and
the Lagrange multipliers along the optimal path.
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E 3.32 If, in Exercise 3.31, we perturb the constraint 2− x− u ≥ 0 by
2 − x − u ≥ ε, where ε is small, then show that the change in value of
the objective function equals

ε

∫ 1

0
μ3dt+ o(ε),

where μ3 is the Lagrange multiplier associated with the constraint 2−x−
u ≥ 0 in Exercise 3.31. Moreover, if ε < 0, implying that we are relaxing
the constraint, then verify that the change in the objective function is
positive.

E 3.33 Obtain the value function V (x, t) explicitly in Exercise 3.31
for every x ∈ E1 and t ∈ [0, 1]. Furthermore, verify that λ(t) =
Vx(x

∗(t), t), t ∈ [0, 1], where λ(t) is the adjoint variable obtained in
the solution of Exercise 3.31.

E 3.34 Solve the problem:

max
u,T

{
J =

∫ T

0
[−2 + (1− u(t))x(t)]dt

}

subject to

ẋ = u, x(0) = 0, x(T ) ≥ 1,

u ∈ [0, 1],

T ∈ [1, 8].

Hint: First, show that u∗ = bang[0, 1;λ−x] and that control can switch
at most once from 1 to 0. Then, let t∗(T ) denote that switching time, if
any, for a given T ∈ [1, 8]. Consider three cases: (i) T = 1, (ii) 1 < T < 8,
and (iii) T = 8. Note that λ(t∗(T )) − x(t∗(T )) = 0. Use (3.15) in case
(ii). Find the optimal solution in each of the three cases. The best of
these solutions will be the solution of the problem.

E 3.35 Consider the problem:

max
u,T

{
J =

∫ T

0
[−3− u(t) + x(t)]dt

}

subject to

ẋ = u, x(0) = 0, x(T ) ≥ 1,
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u ∈ [0, 1],

T ∈ [1, 4 + 2
√
2].

The problem has two different optimal solutions with different values for
optimal T ∗. Find both of these solutions.

E 3.36 Perform the following:

(a) Find the optimal consumption rate C∗(t), t ∈ [0, T ], in the prob-
lem:

max

{
J =

∫ T

0
e−ρt lnC(t)dt

}

subject to

Ẇ (t) = −C(t),W (0) = W0,

where T is given and ρ > 0.

(b) Assume that T is not given in (a), and is to be chosen optimally.
Show for this free terminal time version that the optimal T ∗

decreases as the discount rate ρ increases.

Hint: It is possible to obtain dT ∗/dρ by implicit differentia-
tion.

E 3.37 An example, which illustrates that

lim
t→∞λ(t) = 0

is not a necessary transversality condition in general, is:

max

{
J =

∫ ∞

0
(1− x)udt

}

such that

ẋ = (1− x)u, x(0) = 0,

0 ≤ u ≤ 1.

Show this by finding an optimal control.

E 3.38 Show that the limiting conditions in the rightmost column of
Rows 2, 3, and 4 in Table 3.1 imply (3.98) when T → ∞.
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E 3.39 Consider the regulator problem defined by the scalar equation

ẋ = u, x(0) = x0,

with the objective function

J = −
∫ ∞

0

(
x4

4
+

u2

2

)
dt.

(a) Show that the long-term stationary equilibrium (x̄, ū, λ̄) = (0, 0, 0),
and conclude that in feedback form u∗(x) = ū = 0 when x = x̄ = 0.

(b) By using the maximum principle and the relation u̇∗ = du∗(x)
dx ẋ,

derive a differential equation for the optimal feedback control u∗(x)
and solve it with the boundary condition u∗(0) = 0 to obtain

u∗(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−x2/
√
2, x > 0,

0, x = 0,

+x2/
√
2, x < 0.

(c) Solve for x∗(t) and λ(t) and show that limt→∞ x∗(t) = 0 and that
the limiting condition (3.99), i.e., limt→∞ λ(t) = 0, holds for this
problem.

E 3.40 Show that for the problem (3.97) without the constraint
g(x, u) ≥ 0, the optimal value of the objective function

J∗ = H(x0, u
∗(0), λ(0))/ρ.

See Grass et al. (2008).

E 3.41 Apply (3.108), along with the requirement λ̄ ≥ 0 and λ̄W̄ = 0 in
view of the constraint (3.102), to Example 3.7 to verify that the long-run
stationary equilibrium is as shown in (3.110).

E 3.42 For a stationary system as defined in Sect. 3.6, show that

dH

dt
= ρλf(x∗(t), u∗(t))

and
dHpv

dt
= −ρe−ρtφ(x∗(t), u∗(t))

along the optimal path. Also, contrast these results with that of Exer-
cise 2.9.
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E 3.43 Consider the inventory problem:

max

{
J =

∫ ∞

0
−e−ρt[(I − I1)

2 + (P − P1)
2]dt

}

subject to
İ = P − S, I(0) = I0,

where I denotes inventory level, P denotes production rate, and S de-
notes a given constant demand rate.

(a) Find the optimal long-run stationary equilibrium, i.e., the turnpike
defined in (3.107).

(b) Find the Golden Rule by setting İ = 0 in the state equation, solve
for P, and substitute it into the integrand of the objective function.
Then, maximize the integrand with respect to I.

(c) Verify that the Golden Rule inventory level obtained in (b) is the
same as the turnpike inventory level found in (a) when ρ = 0.
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