
Chapter 2

The Maximum Principle:
Continuous Time

The main purpose of this chapter is to introduce the maximum principle
as a necessary condition that must be satisfied by any optimal control
for the basic problem specified in Sect. 2.1. Although vector notation is
used, the reader can consider the problem as one with only a single state
variable and a single control variable on the first reading. In Sect. 2.2,
the method of dynamic programming is used to derive the maximum
principle. We use this method because of the simplicity and familiarity
of the dynamic programming concept. The derivation also yields signifi-
cant economic interpretations. In Appendix C, the maximum principle is
also derived by using a more general method similar to that of Pontrya-
gin et al. (1962), but with certain simplifications. In Sect. 2.3, we apply
the maximum principle to solve a number of simple, but illustrative, ex-
amples. In Sect. 2.4, the maximum principle is shown to be sufficient for
optimal control under an appropriate concavity condition, which holds in
many management science applications. Finally, Sect. 2.5 illustrates the
use of Excel spreadsheet software to solve an optimal control problem.

2.1 Statement of the Problem

Optimal control theory deals with the problem of optimizing dynamic
systems. The problem must be well posed before any solution can be
attempted. This requires a clear mathematical description of the system
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28 2. The Maximum Principle: Continuous Time

to be optimized, the constraints imposed on the system, and the objective
function to be maximized (or minimized).

2.1.1 The Mathematical Model

An important part of any control problem is the process of modeling
the dynamic system under consideration, be it physical, business, or
otherwise. The aim is to arrive at a mathematical description which is
simple enough to deal with, and realistic enough to be able to predict
the response of the system to any given input. Our model is restricted
to systems that can be characterized by a set of ordinary differential
equations (or, ordinary difference equations in the discrete-time case
treated in Chap. 8). Thus, given the initial state x0 of the system and
control history u(t), t ∈ [0, T ], of the process, the evolution of the system
may be described by the first-order differential equation, known also as
the state equation,

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (2.1)

where the vector of state variables, x(t) ∈ En, the vector of control vari-
ables, u(t) ∈ Em, and f : En × Em × E1 → En. Furthermore, the
function f is assumed to be continuously differentiable. Here we assume
x to be a column vector and f to be a column vector of functions. The
path x(t), t ∈ [0, T ], is called a state trajectory and u(t), t ∈ [0, T ], is
called a control trajectory or simply, a control. The terms vector of state
variables, state vector, and state will be used interchangeably; similarly
for the terms vector of control variables, control vector, and control. As
mentioned earlier, when no confusion arises, we will usually suppress the
time notation (t); thus, e.g., x(t) will be written simply as x. Further-
more, it should be inferred from the context whether x denotes the state
at time t or the entire state trajectory. A similar statement holds for u.

2.1.2 Constraints

In this chapter, we are concerned with problems of types (1.4) and (1.5)
that do not have state constraints. Such constraints are considered in
Chaps. 3 and 4, as indicated in Sect. 1.1. We do impose constraints of
type (1.3) on the control variables. We define an admissible control to
be a control trajectory u(t), t ∈ [0, T ], which is piecewise continuous and
satisfies, in addition,

u(t) ∈ Ω(t) ⊂ Em, t ∈ [0, T ]. (2.2)
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Usually the set Ω(t) is determined by physical or economic constraints
on the values of the control variables at time t.

2.1.3 The Objective Function

An objective function is a quantitative measure of the performance of
the system over time. An optimal control is defined to be an admissible
control which maximizes the objective function. In business or economic
problems, a typical objective function gives some appropriate measure
of quantities such as profit or sales. If the aim is to minimize cost,
then the objective function to be maximized is the negative of cost.
Mathematically, we let

J =

∫ T

0
F (x(t), u(t), t)dt+ S(x(T ), T ) (2.3)

denote the objective function, where the functions F : En ×Em ×E1 →
E1 and S : En × E1 → E1 are assumed for our purposes to be contin-
uously differentiable. In a typical business application, F (x, u, t) could
be the instantaneous profit rate and S(x, T ) could be the salvage value
of having x as the system state at the terminal time T.

2.1.4 The Optimal Control Problem

Given the preceding definitions we can state the optimal control problem,
which we will be concerned with in this chapter. The problem is to find
an admissible control u∗, which maximizes the objective function (2.3)
subject to the state equation (2.1) and the control constraints (2.2). We
now restate the optimal control problem as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
u(t)∈Ω(t)

{
J =

∫ T

0
F (x, u, t)dt+ S(x(T ), T )

}

subject to

ẋ = f(x, u, t), x(0) = x0.

(2.4)

The control u∗ is called an optimal control and x∗, determined by means
of the state equation with u = u∗, is called the optimal trajectory or an
optimal path. The optimal value J(u∗) of the objective function will be
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denoted as J∗, and occasionally as J∗
(x0)

when we need to emphasize its
dependence on the initial state x0.

The optimal control problem (2.4) is said to be in Bolza form because
of the form of the objective function in (2.3). It is said to be in Lagrange
form when S ≡ 0. We say the problem is in Mayer form when F ≡ 0.
Furthermore, it is in linear Mayer form when F ≡ 0 and S is linear, i.e.,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
u(t)∈Ω(t)

{J = cx(T )}

subject to

ẋ = f(x, u, t), x(0) = x0,

(2.5)

where c = (c1, c2, · · · , cn) is an n-dimensional row vector of given con-
stants. In the next paragraph and in Exercise 2.5, it will be demonstrated
that all of these forms can be converted into the linear Mayer form.

To show that the Bolza form can be reduced to the linear Mayer
form, we define a new state vector y = (y1, y2, . . . , yn+1), having n + 1
components defined as follows: yi = xi for i = 1, . . . , n and yn+1 defined
by the solution of the equation

ẏn+1 = F (x, u, t) +
∂S(x, t)

∂x
f(x, u, t) +

∂S(x, t)

∂t
, (2.6)

with yn+1(0) = S(x0, 0). By writing f(x, u, t) as f(y, u, t), with a slight
abuse of notation, and by denoting the right-hand side of (2.6) as
fn+1(y, u, t), we can write the new state equation in the vector form
as

ẏ =

⎛
⎜⎝ ẋ

ẏn+1

⎞
⎟⎠ =

⎛
⎜⎝ f(y, u, t)

fn+1(y, u, t)

⎞
⎟⎠ , y(0) =

⎛
⎜⎝ x0

S(x0, 0)

⎞
⎟⎠ . (2.7)

We also put c = (0, · · · , 0, 1), where c has n + 1 components with the
first n terms all 0. If we integrate (2.6) from 0 to T, we see that

yn+1(T )− yn+1(0) =

∫ T

0
F (x, u, t)dt+ S(x(T ), T )− S(x0, 0).

In view of setting the initial condition as yn+1(0) = S(x0, 0), the
problem in (2.4) can be expressed as that of maximizing

J =

∫ T

0
F (x, u, t)dt+ S(x(T ), T ) = yn+1(T ) = cy(T ) (2.8)
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over u(t) ∈ Ω(t), subject to (2.7). Of course, the price paid for going
from Bolza to linear Mayer form is an additional state variable and its
associated differential equation (2.6). Also, for the function fn+1 to be
continuously differentiable, in keeping with the assumptions made in
Sect. 2.1.1, we need to assume that the salvage value function S(x, t) is
twice continuously differentiable.

Exercise 2.5 presents the task of showing in a similar way that the
Lagrange and Mayer forms can also be reduced to the linear Mayer
form.

Example 2.1 Convert the following single-state problem in Bolza form
to its linear Mayer form:

max

{
J =

∫ T

0

(
x− u2

2

)
dt+

1

4
[x(T )]2

}

subject to

ẋ = u, x(0) = x0.

Solution. We use (2.6) to introduce the additional state variable y2 as
follows:

ẏ2 = x− u2

2
+

1

2
xu, y2(0) =

1

4
x20.

Then,

y2(T ) = y2(0) +

∫ T

0

(
x− u2

2
+

1

2
xu

)
dt

=

∫ T

0

(
x− u2

2

)
dt+

∫ T

0

(
1

2
xẋ

)
dt+ y2(0)

=

∫ T

0

(
x− u2

2

)
dt+

∫ T

0
d

(
1

4
x2

)

=

∫ T

0

(
x− u2

2

)
dt+

1

4
[x(T )]2 − 1

4
x20 + y2(0)

=

∫ T

0

(
x− u2

2

)
dt+

1

4
x(T )2

= J.
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Thus, the linear Mayer form version with the two-dimensional state y =
(x, y2) can be stated as

max {J = y2(T )}
subject to

ẋ = u, x(0) = x0,

ẏ2 = x− u2

2
+

1

2
xu, y2(0) =

1

4
x20.

In Sect. 2.2, we derive necessary conditions for optimal control in the
form of the maximum principle, and in Sect. 2.4 we derive sufficient con-
ditions. In these derivations, we shall assume the existence of an optimal
control, while providing references where needed, as the topic of existence
is beyond the scope of this book. In any particular application, however,
the existence of a solution will be demonstrated by actually finding a
solution that satisfies both the necessary and the sufficient conditions
for optimality. We thus avoid the necessity of having to prove general
existence theorems, which require advanced and difficult mathematics.
Nevertheless, interested readers can consult Hartl et al. (1995) and Seier-
stad and Sydsæter (1987) for brief discussions of existence results and
references therein including Cesari (1983).

2.2 Dynamic Programming and the Maximum
Principle

We will now derive the maximum principle by using a dynamic pro-
gramming approach. The proof is intuitive in nature and is not intended
to be mathematically rigorous. For more rigorous derivations, we refer
the reader to Appendix C, Berkovitz (1961), Pontryagin et al. (1962),
Halkin (1967), Boltyanskii (1971), Hartberger (1973), Bryant and Mayne
(1974), Leitmann (1981), and Seierstad and Sydsæter (1987). Additional
references can be found in the survey by Hartl et al. (1995). For discus-
sions of maximum principles for more general optimal control problems,
including those with nondifferentiable functions, see Clarke (1983, 1989).

2.2.1 The Hamilton-Jacobi-Bellman Equation

Suppose V (x, t) : En × E1 → E1 is a function whose value is the maxi-
mum value of the objective function of the control problem for the sys-
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tem, given that we start at time t in state x. That is,

V (x, t) = max
u(s)∈Ω(s)

[∫ T

t
F (x(s), u(s), s)ds+ S(x(T ), T )

]
, (2.9)

where for s ≥ t,

dx(s)

ds
= f(x(s), u(s), s), x(t) = x.

We initially assume that the value function V (x, t) exists for all x and t
in the relevant ranges. Later we will make additional assumptions about
the function V (x, t).

Bellman (1957) in his book on dynamic programming states the prin-
ciple of optimality as follows:

An optimal policy has the property that, whatever the
initial state and initial decision are, the remaining decision
must constitute an optimal policy with regard to the outcome
resulting from the initial decision.

Intuitively this principle is obvious, for if we were to start in state x
at time t and did not follow an optimal path from then on, there would
then exist (by assumption) a better path from t to T, hence, we could
improve the proposed solution by following this better path. We will
use the principle of optimality to derive conditions on the value function
V (x, t).

Figure 2.1 is a schematic picture of the optimal path x∗(t) in the
state-time space, and two nearby points (x, t) and (x+ δx, t+ δt), where
δt is a small increment of time and x+δx = x(t+δt). The value function
changes from V (x, t) to V (x+ δx, t+ δt) between these two points. By
the principle of optimality, the change in the objective function is made
up of two parts: first, the incremental change in J from t to t+δt, which
is given by the integral of F (x, u, t) from t to t + δt; second, the value
function V (x+ δx, t+ δt) at time t+ δt. The control actions u(τ) should
be chosen to lie in Ω(τ), τ ∈ [t, t+ δt], and to maximize the sum of these
two terms. In equation form this is

V (x, t) = max
u(τ)∈Ω(τ)

τ∈[t,t+δt]

{∫ t+δt

t
F [x(τ), u(τ), τ ]dτ + V [x(t+ δt), t+ δt]

}
,

(2.10)
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Figure 2.1: An optimal path in the state-time space

where δt represents a small increment in t. It is instructive to compare
this equation to definition (2.9).

Since F is a continuous function, the integral in (2.10) is approxi-
mately F (x, u, t)δt so we can rewrite (2.10) as

V (x, t) = max
u∈Ω(t)

{F (x, u, t)δt+ V [x(t+ δt), t+ δt]}+ o(δt), (2.11)

where o(δt) denotes a collection of higher-order terms in δt. (By definition

given in Sect. 1.4.4, o(δt) is a function such that limδt→0
o(δt)
δt = 0.)

We now make an assumption that we will return to again later. We
assume that the value function V is a continuously differentiable function
of its arguments. This allows us to use the Taylor series expansion of V
with respect to δt and obtain

V [x(t+ δt), t+ δt] = V (x, t) + [Vx(x, t)ẋ+ Vt(x, t)]δt+ o(δt), (2.12)

where Vx and Vt are partial derivatives of V (x, t) with respect to x and
t, respectively.
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Substituting for ẋ from (2.1) in the above equation and then using it
in (2.11), we obtain

V (x, t) = max
u∈Ω(t)

{F (x, u, t)δt+ V (x, t) + Vx(x, t)f(x, u, t)δt

+ Vt(x, t)δt}+ o(δt). (2.13)

Canceling V (x, t) on both sides and then dividing by δt we get

0 = max
u∈Ω(t)

{F (x, u, t) + Vx(x, t)f(x, u, t) + Vt(x, t)}+ o(δt)

δt
. (2.14)

Now we let δt → 0 and obtain the following equation

0 = max
u∈Ω(t)

{F (x, u, t) + Vx(x, t)f(x, u, t) + Vt(x, t)} , (2.15)

for which the boundary condition is

V (x, T ) = S(x, T ). (2.16)

This boundary condition follows from the fact that the value function at
t = T is simply the salvage value function.

The components of the vector Vx(x, t) can be interpreted as the
marginal contributions of the state variables x to the value function
or the maximized objective function (2.9). We denote the marginal re-
turn vector (along the optimal path x∗(t)) by the adjoint (row) vector
λ(t) ∈ En, i.e.,

λ(t) = Vx(x
∗(t), t) := Vx(x, t) |x=x∗(t) . (2.17)

From the preceding remark, we can interpret λ(t) as the per unit change
in the objective function value for a small change in x∗(t) at time t. In
other words, λ(t) is the highest hypothetical unit price which a rational
decision maker would be willing to pay for an infinitesimal addition to
x∗(t). See Sect. 2.2.4 for further discussion.

Next we introduce a function H : En × Em × En × E1 → E1 called
the Hamiltonian

H(x, u, λ, t) = F (x, u, t) + λf(x, u, t). (2.18)

We can then rewrite Eq. (2.15) as the equation

max
u∈Ω(t)

[H(x, u, Vx, t) + Vt] = 0, (2.19)
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called the Hamilton-Jacobi-Bellman equation or, simply, the HJB equa-
tion to be satisfied along an optimal path. Note that it is possible
to take Vt out of the maximizing operation since it does not depend
on u.

The Hamiltonian maximizing condition of the maximum principle
can be obtained from (2.19) and (2.17) by observing that, if x∗(t) and
u∗(t) are optimal values of the state and control variables and λ(t) is the
corresponding value of the adjoint variable at time t, then the optimal
control u∗(t) must satisfy (2.19), i.e., for all u ∈ Ω(t),

H[x∗(t), u∗(t), λ(t), t] + Vt(x
∗(t), t) ≥ H[x∗(t), u, λ(t), t]

+Vt(x
∗(t), t). (2.20)

Canceling the term Vt on both sides, we obtain the Hamiltonian maxi-
mizing condition

H[x∗(t), u∗(t), λ(t), t] ≥ H[x∗(t), u, λ(t), t] (2.21)

for all u ∈ Ω(t).
In order to complete the statement of the maximum principle, we

must still obtain the adjoint equation.

Remark 2.1 We use u∗ and x∗ for optimal control and state to distin-
guish them from an admissible control u and the corresponding state x,
respectively. However, since the adjoint variable λ is defined only along
the optimal path, there is no need for such a distinction, and therefore
we do not use the superscript ∗ on λ.

2.2.2 Derivation of the Adjoint Equation

The derivation of the adjoint equation proceeds from the HJB equation
(2.19), and is similar to those in Fel’dbaum (1965) and Kirk (1970). Note
that, given the optimal path x∗, the optimal control u∗ maximizes the
left-hand side of (2.19), and its maximum value is zero. We now consider
small perturbations of the values of the state variables in a neighborhood
of the optimal path x∗. Thus, let

x(t) = x∗(t) + δx(t), (2.22)

where ‖ δx(t) ‖< ε for a small positive ε.
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We now consider a ‘fixed’ time instant t. We can then write (2.19) as

0 = H[x∗(t), u∗(t), Vx(x
∗(t), t), t] + Vt(x

∗(t), t)
≥ H[x(t), u∗(t), Vx(x(t), t), t] + Vt(x(t), t). (2.23)

To explain, we note from (2.19) that the left-hand side of ≥ in (2.23)
equals zero. The right-hand side can attain the value zero only if u∗(t)
is also an optimal control for x(t). In general, for x(t) �= x∗(t), this will
not be so. From this observation, it follows that the expression on the
right-hand side of (2.23) attains its maximum (of zero) at x(t) = x∗(t).
Furthermore, x(t) is not explicitly constrained. In other words, x∗(t) is
an unconstrained local maximum of the right-hand side of (2.23), so that
the derivative of this expression with respect to x must vanish at x∗(t),
i.e.,

Hx[x
∗(t), u∗(t), Vx(x

∗(t), t), t] + Vtx(x
∗(t), t) = 0, (2.24)

provided the derivative exists, and for which, we must further assume
that V is a twice continuously differentiable function of its arguments.
With H = F + Vxf from (2.17) and (2.18), we obtain

Hx = Fx + Vxfx + fTVxx = Fx + Vxfx + (Vxxf)
T

by using g = Vx in the identity (1.15). Substituting this in (2.24) and
recognizing the fact that Vxx = (Vxx)

T , we obtain

Fx + Vxfx + fTVxx + Vtx = Fx + Vxfx + (Vxxf)
T + Vtx = 0, (2.25)

where the superscript T denotes the transpose operation. See (1.16) or
Exercise 1.10 for further explanation.

The derivation of the necessary condition (2.25) is the crux of the
reasoning in the derivation of the adjoint equation. It is easy to obtain
the so-called adjoint equation from it. We begin by taking the time
derivative of Vx(x, t). Thus,

dVx

dt
=

(
dVx1

dt
,
dVx2

dt
, · · · , dVxn

dt

)

= (Vx1xẋ+ Vx1t, Vx2xẋ+ Vx2t, · · · , Vxnxẋ+ Vxnt)

= (
∑n

i=1 Vx1xi ẋi,
∑n

i=1 Vx2xi ẋi, · · · ,
∑n

i=1 Vxnxi ẋi) + (Vx)t

= (Vxxẋ)
T + Vxt

= (Vxxf)
T + Vtx.

(2.26)
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Note in the above that

Vxix = (Vxix1 , Vxix2 , · · · , Vxixn)

and

Vxxẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vx1x1 Vx1x2 · · · Vx1xn

Vx2x1 Vx2x2 · · · Vx2xn

...
... · · · ...

Vxnx1 Vxnx2 · · · Vxnxn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

...

ẋn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.27)

Since the terms on the right-hand side of (2.26) are the same as the
last two terms in (2.25), we see that (2.26) becomes

dVx

dt
= −Fx − Vxfx. (2.28)

Because λ was defined in (2.17) to be Vx, we can rewrite (2.28) as

λ̇ = −Fx − λfx.

To see that the right-hand side of this equation can be written simply as
−Hx, we need to go back to the definition of H in (2.18) and recognize
that when taking the partial derivative ofH with respect to x, the adjoint
variables λ are considered to be independent of x. We note further that
along the optimal path, λ is a function of t only. Thus,

λ̇ = −Hx. (2.29)

Also, from the definition of λ in (2.17) and the boundary condition
(2.16), we have the terminal boundary condition, which is also called
the transversality condition:

λ(T ) =
∂S(x, T )

∂x
|x=x∗(T )= Sx(x

∗(T ), T ). (2.30)

The adjoint equation (2.29) together with its boundary condition (2.30)
determine the adjoint variables.

This completes our derivation of the maximum principle using dy-
namic programming. We can now summarize the main results in the
following section.
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2.2.3 The Maximum Principle

The necessary conditions for u∗(t), t ∈ [0, T ], to be an optimal control
are: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ∗ = f(x∗, u∗, t), x∗(0) = x0,

λ̇ = −Hx[x
∗, u∗, λ, t], λ(T ) = Sx(x

∗(T ), T ),

H[x∗, u∗, λ, t] ≥ H[x∗, u, λ, t], ∀u ∈ Ω(t), t ∈ [0, T ].

(2.31)

It should be emphasized that the state and the adjoint arguments
of the Hamiltonian are x∗(t) and λ(t) on both sides of the Hamiltonian
maximizing condition in (2.31), respectively. Furthermore, u∗(t) must
provide a global maximum of the Hamiltonian H[x∗(t), u, λ(t), t] over
u ∈ Ω(t). For this reason the necessary conditions in (2.31) are called
the maximum principle.

Note that in order to apply the maximum principle, we must simulta-
neously solve two sets of differential equations with u∗ obtained from the
Hamiltonian maximizing condition in (2.31). With the control variable
u∗ so obtained, the state equation for x∗ is given with the initial value
x0, and the adjoint equation for λ is specified with a condition on the
terminal value λ(T ). Such a system of equations, where initial values of
some variables and final values of other variables are specified, is called
a two-point boundary value problem (TPBVP). The general solution of
such problems can be very difficult; see Bryson and Ho (1975), Roberts
and Shipman (1972), and Feichtinger and Hartl (1986). However, there
are certain special cases which are easy. One such is the case in which the
adjoint equation is independent of the state and the control variables;
here we can solve the adjoint equation first, then get the optimal control
u∗, and then solve for x∗.

Note also that if we can solve the Hamiltonian maximizing condition
for an optimal control function in closed form u∗(x, λ, t) so that

u∗(t) = u∗[x∗(t), λ(t), t],

then we can substitute this into the state and adjoint equations to get
the TPBVP just in terms of a set of differential equations, i.e.,

⎧⎪⎨
⎪⎩

ẋ∗ = f(x∗, u∗(x∗, λ, t), t), x∗(0) = x0,

λ̇ = −Hx(x
∗, u∗(x∗, λ, t), λ, t), λ(T ) = Sx(x

∗(T ), T ).
(2.32)
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We should note that we are making a slight abuse of notation here by
using u∗(x, λ, t) to denote the optimal control function and u∗(t) as the
optimal control at time t. Thus, depending on the context, when we
use u∗ without any argument, it may mean the optimal control function
u∗(x, λ, t), or the optimal control at time t, or the entire optimal control
trajectory {u∗(t), t ∈ [0, T ]}.

In Sect. 2.5, we derive the TPBVP for a specific example, and solve
its discrete version by using Excel. In subsequent chapters we will solve
many TPBVPs of varying degrees of difficulty.

One final remark should be made. Because an integral is unaffected
by values of the integrand at a finite set of points, some of the arguments
made in this chapter may not hold at a finite set of points. This does
not affect the validity of the results.

In the next section, we give economic interpretations of the maximum
principle, and in Sect. 2.3, we solve five simple examples by using the
maximum principle.

2.2.4 Economic Interpretations of the Maximum
Principle

Recall from Sect. 2.1.3 that the objective function (2.3) is

J =

∫ T

0
F (x, u, t)dt+ S(x(T ), T ),

where F is considered to be the instantaneous profit rate measured in
dollars per unit of time, and S(x, T ) is the salvage value, in dollars, of the
system at time T when the terminal state is x. For purposes of discussion
it will be convenient to consider the system as a firm and the state x(t)
as the stock of capital at time t.

In (2.17), we interpreted λ(t) to be the per unit change in the value
function V (x, t) for small changes in capital stock x. In other words, λ(t)
is the marginal value per unit of capital at time t, and it is also referred
to as the price or shadow price of a unit of capital at time t. In particular,
the value of λ(0) is the marginal rate of change of the maximum value
of J (the objective function) with respect to the change in the initial
capital stock, x0.

Remark 2.2 As mentioned in Appendix C, where we prove a maximum
principle without any smoothness assumption on the value function,
there arise cases in which the value function may not be differentiable
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with respect to the state variables. In such cases, when Vx(x
∗(t), t) does

not exist, then (2.17) has no meaning. See Bettiol and Vinter (2010),
Yong and Zhou (1999), and Cernea and Frankowska (2005) for interpre-
tations of the adjoint variables or extensions of (2.17) in such cases.

Next we interpret the Hamiltonian function in (2.18). Multiplying
(2.18) formally by dt and using the state equation (2.1) gives

Hdt = Fdt+ λfdt = Fdt+ λẋdt = Fdt+ λdx.

The first term F (x, u, t)dt represents the direct contribution to J in dol-
lars from time t to t + dt, if the firm is in state x (i.e., it has a capital
stock of x), and we apply control u in the interval [t, t+ dt]. The differ-
ential dx = f(x, u, t)dt represents the change in capital stock from time t
to t+ dt, when the firm is in state x and control u is applied. Therefore,
the second term λdx represents the value in dollars of the incremental
capital stock dx, and hence can be considered as the indirect contribution
to J in dollars. Thus, Hdt can be interpreted as the total contribution
to J from time t to t + dt when x(t) = x and u(t) = u in the interval
[t, t+ dt].

With this interpretation, it is easy to see why the Hamiltonian must
be maximized at each instant of time t. If we were just to maximize
F at each instant t, we would not be maximizing J, because we would
ignore the effect of the control in changing the capital stock, which gives
rise to indirect contributions to J. The maximum principle derives the
adjoint variable λ(t), the price of capital at time t, in such a way that
λ(t)dx is the correct valuation of the indirect contribution to J from
time t to t+dt. As a consequence, the Hamiltonian maximizing problem
can be treated as a static problem at each instant t. In other words, the
maximum principle decouples the dynamic maximization problem (2.4)
in the interval [0, T ] into a set of static maximization problems associated
with instants t in [0, T ]. Thus, the Hamiltonian can be interpreted as a
surrogate profit rate to be maximized at each instant of time t.

The value of λ to be used in the maximum principle is given by (2.29)
and (2.30), i.e.,

λ̇ = −∂H

∂x
= −∂F

∂x
− λ

∂f

∂x
, λ(T ) = Sx(x(T ), T ).

Rewriting the first equation as

−dλ = Hxdt = Fxdt+ λfxdt,
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we can observe that along the optimal path, −dλ, the negative of the
increase or, in other words, the decrease in the price of capital from t
to t + dt, which can be considered as the marginal cost of holding that
capital, equals themarginal revenueHxdt of investing the capital. In turn
the marginal revenue Hxdt consists of the sum of the direct marginal
contribution Fxdt and the indirect marginal contribution λfxdt. Thus,
the adjoint equation becomes the equilibrium relation—marginal cost
equals marginal revenue, which is a familiar concept in the economics
literature; see, e.g., Cohen and Cyert (1965, p. 189) or Takayama (1974,
p. 712).

Further insight can be obtained by integrating the above adjoint
equation from t to T as follows:

λ(t) = λ(T ) +
∫ T
t Hx(x(τ), u(τ), λ(τ), τ)dτ

= Sx(x(T ), T ) +
∫ T
t Hxdτ.

Note that the price λ(T ) of a unit of capital at time T is its marginal
salvage value Sx(x(T ), T ). In the special case when S ≡ 0, we have
λ(T ) = 0, as clearly no value can be derived or lost from an infinitesimal
increase in x(T ). The price λ(t) of a unit of capital at time t is the sum of
its terminal price λ(T ) plus the integral of the marginal surrogate profit
rate Hx from t to T.

The above interpretations show that the adjoint variables behave
in much the same way as the dual variables in linear (and nonlinear)
programming, with the differences being that here the adjoint variables
are time dependent and satisfy derived differential equations. These
connections will become clearer in Chap. 8, which addresses the discrete
maximum principle.

2.3 Simple Examples

In order to absorb the maximum principle, the reader should study very
carefully the examples in this section, all of which are problems having
only one state and one control variable. Some or all of the exercises at
the end of the chapter should also be worked.

In the following examples and others in this book, we will at times
omit the superscript ∗ on the optimal values of the state variables as
long as no confusion arises from doing so.
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Example 2.2 Consider the problem:

max

{
J =

∫ 1

0
−xdt

}
(2.33)

subject to the state equation

ẋ = u, x(0) = 1 (2.34)

and the control constraint

u ∈ Ω = [−1, 1]. (2.35)

Note that T = 1, F = −x, S = 0, and f = u. Because F = −x, we can
interpret the problem as one of minimizing the (signed) area under the
curve x(t) for 0 ≤ t ≤ 1.

Solution First, we form the Hamiltonian

H = −x+ λu (2.36)

and note that, because the Hamiltonian is linear in u, the form of the
optimal control, i.e., the one that would maximize the Hamiltonian, is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if λ(t) > 0,

arbitrary if λ(t) = 0,

−1 if λ(t) < 0,

(2.37)

or referring to the notation in Sect. 1.4,

u∗(t) = bang[−1, 1;λ(t)]. (2.38)

To find λ, we write the adjoint equation

λ̇ = −Hx = 1, λ(1) = Sx(x(T ), T ) = 0. (2.39)

Because this equation does not involve x and u, we can easily solve it as

λ(t) = t− 1. (2.40)

It follows that λ(t) = t−1 < 0 for t ∈ [0, 1) and so u∗(1) = −1, t ∈ [0, 1).
Since λ(1) = 0, for simplicity we can also set u∗(1) = −1 at the single
point t = 1. We can then specify the optimal control to be

u∗(t) = −1 for all t ∈ [0, 1].
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Substituting this into the state equation (2.34) we have

ẋ = −1, x(0) = 1, (2.41)

whose solution is
x∗(t) = 1− t for t ∈ [0, 1]. (2.42)

The graphs of the optimal state and adjoint trajectories appear in
Fig. 2.2. Note that the optimal value of the objective function is
J∗ = −1/2.

Figure 2.2: Optimal state and adjoint trajectories for Example 2.2

In Sect. 2.2.4, we stated that the adjoint variable λ(t) gives the
marginal value per unit increment in the state variable x(t) at time t.
Let us illustrate this claim at time t = 0 with the help of Example 2.2.
Note from (2.40) that λ(0) = −1. Thus, if we increase the initial value
x(0) from 1, by a small amount ε, to a new value 1 + ε, where ε may be
positive or negative, then we expect the optimal value of the objective
function to change from J∗ = −1/2 to

J∗
(1+ε) = −1/2 + λ(0)ε+ o(ε) = −1/2− ε+ o(ε),
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where we use the subscript (1 + ε) to distinguish the new value from
J∗ as well as to emphasize its dependence on the new initial condition
x(0) = 1 + ε. To verify this, we first observe that u∗(t) = −1, t ∈ [0, 1],
remains optimal in this example for the new initial condition. Then from
(2.41) with x(0) = 1+ε, we can obtain the new optimal state trajectory,
shown by the dotted line in Fig. 2.2 as

x∗(1+ε)(t) = 1 + ε− t, t ∈ [0, 1],

where the notation x∗(y)(t) indicates the dependence of the optimal tra-

jectory on the initial value x(0) = y. Substituting this for x in (2.33)
and integrating, we get the new objective function value to be −1/2− ε.
Since 0 is of the order o(ε), our claim has been illustrated.

We should note that in general it may be necessary to perform sep-
arate calculations for positive and negative ε. It is easy to see, however,
that this is not the case in this example.

Example 2.3 Let us solve the same problem as in Example 2.2 over the
interval [0, 2] so that the objective is:

max

{
J =

∫ 2

0
−xdt

}
. (2.43)

The dynamics and constraints are (2.34) and (2.35), respectively, as be-
fore. Here we want to minimize the signed area between the horizontal
axis and the trajectory of x(t) for 0 ≤ t ≤ 2.

Solution As before, the Hamiltonian is defined by (2.36) and the optimal
control is as in (2.38). The adjoint equation

λ̇ = 1, λ(2) = 0 (2.44)

is the same as (2.39) except that now T = 2 instead of T = 1. The
solution of (2.44) is easily found to be

λ(t) = t− 2, t ∈ [0, 2]. (2.45)

The graph of λ(t) is shown in Fig. 2.3.
With λ(t) as in (2.45), we can determine u∗(t) = −1 throughout.

Thus, the state equation is the same as (2.41). Its solution is given by
(2.42) for t ∈ [0, 2]. The optimal value of the objective function is J∗ = 0.
The graph of x∗(t) is also sketched in Fig. 2.3.
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Figure 2.3: Optimal state and adjoint trajectories for Example 2.3

Example 2.4 The next example is:

max

{
J =

∫ 1

0
−1

2
x2dt

}
(2.46)

subject to the same constraints as in Example 2.2, namely,

ẋ = u, x(0) = 1, u ∈ Ω = [−1, 1]. (2.47)

Here F = −(1/2)x2 so that the interpretation of the objective function
(2.46) is that we are trying to find the trajectory x(t) in order that the
area under the curve (1/2)x2 is minimized.

Solution The Hamiltonian is

H = −1

2
x2 + λu. (2.48)
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The control function u∗(x, λ) that maximizes the Hamiltonian in this
case depends only on λ, and it has the form

u∗(x, λ) = bang[−1, 1;λ]. (2.49)

Then, the optimal control at time t can be expressed as u∗(t) =
bang[−1, 1, λ(t)].

The adjoint equation is

λ̇ = −Hx = x, λ(1) = 0. (2.50)

Here the adjoint equation involves x, so we cannot solve it directly. Be-
cause the state equation (2.47) involves u, which depends on λ, we also
cannot integrate it independently without knowing λ.

A way out of this dilemma is to use some intuition. Since we want to
minimize the area under (1/2)x2 and since x(0) = 1, it is clear that we
want x to decrease as quickly as possible. Let us therefore temporarily
assume that λ is nonpositive in the interval [0, 1] so that from (2.49) we
have u = −1 throughout the interval. (In Exercise 2.8, you will be asked
to show that this assumption is correct.) With this assumption, we can
solve (2.47) as

x(t) = 1− t. (2.51)

Substituting this into (2.50) gives

λ̇ = 1− t.

Integrating both sides of this equation from t to 1 gives∫ 1

t
λ̇(τ)dτ =

∫ 1

t
(1− τ)dτ,

or

λ(1)− λ(t) = (τ − 1

2
τ2) |1t ,

which, using λ(1) = 0, yields

λ(t) = −1

2
t2 + t− 1

2
. (2.52)

The reader may now verify that λ(t) is nonpositive in the interval [0, 1],
verifying our original assumption. Hence, (2.51) and (2.52) satisfy the
necessary conditions. In Exercise 2.26, you will be asked to show that
they satisfy sufficient conditions derived in Sect. 2.4 as well, so that they
are indeed optimal. Thus, x∗(t) = 1− t, and using this in (2.46), we can
get J∗ = −1/6. Figure 2.4 shows the graphs of the optimal state and
adjoint trajectories.
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t

Figure 2.4: Optimal trajectories for Examples 2.4 and 2.5

Example 2.5 Let us rework Example 2.4 with T = 2, i.e., with the
objective function:

max

{
J =

∫ 2

0
−1

2
x2dt

}
(2.53)

subject to the constraints (2.47).

Solution The Hamiltonian is still as in (2.48) and the form of the optimal
policy remains as in (2.49). The adjoint equation is

λ̇ = x, λ(2) = 0,

which is the same as (2.50) except T = 2 instead of T = 1. Let us try to
extend the solution of the previous example from T = 1 to T = 2. Thus,
we keep λ(t) as in (2.52) for t ∈ [0, 1] with λ(1) = 0. If we recall from
the definition of the bang function that bang [−1, 1; 0] is not defined, it
allows us to choose u in (2.49) arbitrarily when λ = 0. This is an instance
of singular control, so let us see if we can maintain the singular control
by choosing u appropriately. To do this we choose u = 0 when λ = 0.
Since λ(1) = 0 we set u(1) = 0 so that from (2.47), we have ẋ(1) = 0.
Now note that if we set u(t) = 0 for t > 1, then by integrating equations
(2.47) and (2.50) forward from t = 1 to t = 2, we see that x(t) = 0
and λ(t) = 0 for 1 < t ≤ 2; in other words, u(t) = 0 maintains singular
control in the interval. Intuitively, this is the correct answer since once
we get x = 0, we should keep it at 0 in order to maximize the objective
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function J in (2.53). We will later give further discussion of singular
control and state an additional necessary condition in Sect. D.6 for such
cases; see also Bell and Jacobson (1975). In Fig. 2.4, we can get the
singular solution by extending the graphs shown to the right (as shown
by thick dotted line), making x∗(t) = 0, λ(t) = 0, and u∗(t) = 0 for
1 < t ≤ 2.

With the trajectory x∗(t), 0 ≤ t ≤ 2, thus obtained, we can use
(2.53) to compute the optimal value of the objective function as

J∗ =
∫ 1

0
−(1/2)(1− t)2dt+

∫ 2

1
−(1/2)(0)dt = −1/6.

Now suppose that the initial x(0) is perturbed by a small amount
ε to x(0) = 1 + ε, where ε may be positive or negative. According to
the marginal value interpretation of λ(0), whose value is −1/2 in this
example, we can estimate the change in the objective function to be
λ(0)ε+ o(ε) = −ε/2 + o(ε).

Next we calculate directly the impact of the perturbation in the initial
value. For this we must obtain new control and state trajectories. These
are clearly

u∗(1+ε)(t) =

⎧⎪⎨
⎪⎩

−1, t ∈ [0, 1 + ε],

0, t ∈ (1 + ε, 2],

and

x∗(1+ε)(t) =

⎧⎪⎨
⎪⎩

1 + ε− t, t ∈ [0, 1 + ε],

0, t ∈ (1 + ε, 2],

where we have used the subscript (1 + ε) to distinguish these from the
original trajectories as well as to indicate their dependence on the initial
value x(0) = 1+ ε. We can then obtain the corresponding optimal value
of the objective function as

J∗
(1+ε) =

∫ 1+ε

0
−(1/2)(1 + ε− t)2dt = −1/6− ε/2− ε2/2− ε3/6

= −1/6 + λ(0)ε+ o(ε),

where o(ε) = −ε2/2− ε3/6.
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In this example and Example 2.2, we have, by direct calculation,
demonstrated the significance of λ(0) as the marginal value of the change
in the initial state. This could have also been accomplished by obtaining
the value function V (x, t) for x(t) = x, t ∈ [0, 2], and then showing that
λ(0) = Vx(1, 0). This, of course, is the relationship (2.17) at x(0) = x = 1
and t = 0.

Keep in mind, however, that deriving V (x, t) is more than just find-
ing the solution of the problem, which we have already found by using
the maximum principle. V (x, t) also yields additional insights into the
problem. In order to completely specify V (x, t) for all x ∈ E1 and all
t ∈ [0, 2], we need to deal with a number of cases. Here, we will carry
out the details only in the case of any t ∈ [0, 2] and 0 ≤ x ≤ 2 − t,
and leave the listing of the other cases and the required calculations as
Exercise 2.13.

We know from (2.9) that we need to solve the optimal control problem
for any given t ∈ [0, 2] with 0 ≤ x ≤ 2 − t. However, from our earlier
analysis of this example, it is clear that the optimal control

u∗(x,t)(s) =

⎧⎪⎨
⎪⎩

−1, s ∈ [t, t+ x],

0, s ∈ (t+ x, 2],

and the corresponding

x∗(x,t)(s) =

⎧⎪⎨
⎪⎩

x− (s− t), s ∈ [t, t+ x],

0, s ∈ (t+ x, 2],

where we use the subscript to show the dependence of the control and
state trajectories of a problem beginning at time t with the state x(t) =
x. Thus,

V (x, t) =

∫ t+x

t
−1

2
[x∗(x,t)(s)]

2ds = −1

2

∫ t+x

t
(x− s+ t)2ds.

While this expression can be easily integrated to obtain an explicit so-
lution for V (x, t), we do not need to do this for our immediate purpose
at hand, which is to obtain Vx(x, t). Differentiating the right-hand side
with respect to x, we obtain

Vx(x, t) = −1

2

∫ x+t

t
2(x− s+ t)ds.
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Furthermore, since

x∗(t) =

⎧⎪⎨
⎪⎩

1− t, t ∈ [0, 1],

0, t ∈ (1, 2],

we obtain

Vx(x
∗(t), t) =

⎧⎪⎨
⎪⎩

−1
2

∫ 1
t 2(x− s+ t)ds = −1

2 t
2 + t− 1

2 , t ∈ [0, 1],

0, t ∈ (1, 2],

which equals λ(t) obtained as the adjoint variable in Example 2.5. Note
that for t ∈ [0, 1], λ(t) in Example 2.5 is the same as that in Example 2.4
obtained in (2.52).

Example 2.6 This example is slightly more complicated and the opti-
mal control is not bang-bang. The problem is:

max

{
J =

∫ 2

0
(2x− 3u− u2)dt

}
(2.54)

subject to

ẋ = x+ u, x(0) = 5 (2.55)

and the control constraint

u ∈ Ω = [0, 2]. (2.56)

Solution Here T = 2, F = 2x − 3u − u2, S = 0, and f = x + u. The
Hamiltonian is

H = (2x− 3u− u2) + λ(x+ u)

= (2 + λ)x− (u2 + 3u− λu). (2.57)

Let us find the optimal control policy by differentiating (2.57) with re-
spect to u. Thus,

∂H

∂u
= −2u− 3 + λ = 0,
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so that the form of the optimal control is

u∗(t) =
λ(t)− 3

2
, (2.58)

provided this expression stays within the interval Ω = [0, 2]. Note that
the second derivative of H with respect to u is ∂2H/∂u2 = −2 < 0, so
that (2.58) satisfies the second-order condition for the maximum of a
function.

We next derive the adjoint equation as

λ̇ = −∂H

∂x
= −2− λ, λ(2) = 0. (2.59)

Referring to Appendix A.1, we can use the integrating factor et to obtain

et(dλ+ λdt) = d(etλ) = −2etdt.

We then integrate it on both sides from t to 2 and use the terminal
condition λ(2) = 0 to obtain the solution of the adjoint equation (2.59)
as

λ(t) = 2(e2−t − 1).

If we substitute this into (2.58) and impose the control constraint
(2.56), we see that the optimal control is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if e2−t − 2.5 > 2,

e2−t − 2.5 if 0 ≤ e2−t − 2.5 ≤ 2,

0 if e2−t − 2.5 < 0,

(2.60)

or referring to the notation defined in (1.22),

u∗(t) = sat[0, 2; e2−t − 2.5].

The graph of u∗(t) appears in Fig. 2.5. In the figure, t1 satisfies e2−t1 −
2.5 = 2, i.e., t1 = 2 − ln 4.5 ≈ 0.496, while t2 satisfies e2−t2 − 2.5 = 0,
which gives t2 = 2− ln 2.5 ≈ 1.08.

In Exercise 2.2 you will be asked to compute the optimal state tra-
jectory x∗(t) corresponding to u∗(t) shown in Fig. 2.5 by piecing together
the solutions of three separate differential equations obtained from (2.55)
and (2.60).
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2.5
2 te

Figure 2.5: Optimal control for Example 2.6

2.4 Sufficiency Conditions

So far, we have shown the necessity of the maximum principle condi-
tions for optimality. Next we prove a theorem that gives qualifications
under which the maximum principle conditions are also sufficient for op-
timality. This theorem is important from our point of view since the
models derived from many management science applications will satisfy
conditions required for the sufficiency result. As remarked earlier, our
technique for proving existence will be to display for any given model, a
solution that satisfies both necessary and sufficient conditions. A good
reference for sufficiency conditions is Seierstad and Sydsæter (1987).

We first define a function H0 : En×Em×E1 → E1 called the derived
Hamiltonian as follows:

H0(x, λ, t) = max
u∈Ω(t)

H(x, u, λ, t). (2.61)
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We assume that by this equation a function u∗(x, λ, t) is implicitly and
uniquely defined. Given these assumptions we have by definition,

H0(x, λ, t) = H(x, u∗, λ, t). (2.62)

For our proof of the sufficiency of the maximum principle, we also need
the derivative H0

x(x, λ, t), which by use of the Envelope Theorem can be
given as

H0
x(x, λ, t) = Hx(x, u

∗, λ, t) := Hx(x, u, λ, t)|u=u∗ . (2.63)

To see this in the case when u∗(x, λ, t) is differentiable in x, let us
differentiate (2.62) with respect to x:

H0
x(x, λ, t) = Hx(x, u

∗, λ, t) +Hu(x, u
∗, λ, t)

∂u∗

∂x
. (2.64)

To obtain (2.63) from (2.64), we need to show that the second term on
the right-hand side of (2.64) vanishes, i.e.,

Hu(x, u
∗, λ, t)

∂u∗

∂x
= 0 (2.65)

for each x. There are two cases to consider. If u∗ is in the interior of
Ω(t), then it satisfies the first-order condition Hu(x, u

∗, λ, t) = 0, thereby
implying (2.65). Otherwise, u∗ is on the boundary of Ω(t). Then, for each
i, j, either Hui = 0 or ∂u∗i /∂xj = 0 or both. Once again, (2.65) holds.
Exercise 2.25 gives a specific instance of this case.

Remark 2.3 We have shown the result in (2.63) in cases when u∗ is
a differentiable function of x. The result holds more generally, provided
that Ω(t) is appropriately qualified; see Derzko et al. (1984). Such results
are known as Envelope Theorems, and are used often in economics.

Theorem 2.1 (Sufficiency Conditions). Let u∗(t), and the corre-
sponding x∗(t) and λ(t) satisfy the maximum principle necessary con-
dition (2.31) for all t ∈ [0, T ]. Then, u∗ is an optimal control if
H0(x, λ(t), t) is concave in x for each t and S(x, T ) is concave in x.

Proof. The proof is a minor extension of the arguments in Arrow and
Kurz (1970). By definition

H[x(t), u(t), λ(t), t] ≤ H0[x(t), λ(t), t]. (2.66)
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Since H0 is differentiable and concave, we can use the applicable defini-
tion of concavity given in Sect. 1.4 to obtain

H0[x(t), λ(t), t] ≤ H0[x∗(t), λ(t), t] +H0
x[x

∗(t), λ(t), t][x(t)− x∗(t)].
(2.67)

Using (2.66), (2.62), and (2.63) in (2.67), we obtain

H[x(t), u(t), λ(t), t] ≤ H[x∗(t), u∗(t), λ(t), t]
+Hx[x

∗(t), u∗(t), λ(t), t][x(t)− x∗(t)]. (2.68)

By definition of H in (2.18) and the adjoint equation of (2.31)

F [x(t), u(t), t] + λ(t)f [x(t), u(t), t] ≤ F [x∗(t), u∗(t), t]
+λ(t)f [x∗(t), u∗(t), t]− λ̇(t)[x(t)− x∗(t)]. (2.69)

Using the state equation in (2.31), transposing, and regrouping,

F [x∗(t), u∗(t), t]− F [x(t), u(t), t] ≥ λ̇(t)[x(t)− x∗(t)]
+λ(t)[ẋ(t)− ẋ∗(t)]. (2.70)

Furthermore, since S(x, T ) is a differential and concave function in its
first argument, we have

S(x(T ), T ) ≤ S(x∗(T ), T ) + Sx(x
∗(T ), T )[x(T )− x∗(T )] (2.71)

or,

S(x∗(T ), T )− S(x(T ), T ) ≥ Sx(x
∗(T ), T )[x(T )− x∗(T )]. (2.72)

Integrating both sides of (2.70) from 0 to T and adding (2.72), we have

[∫ T

0
F (x∗(t), u∗(t), t)dt+ S(x∗(T ), T )

]

−
[∫ T

0
F (x(t), u(t), t)dt+ S(x(T ), T )

]

≥ [λ(T )− Sx(x
∗(T ), T )][x(T )− x∗(T )]− λ(0)[x(0)− x∗(0)]
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or,

J(u∗)− J(u) (2.73)

≥ [λ(T )− Sx(x
∗(T ), T )][x(T )− x∗(T )]− λ(0)[x(0)− x∗(0)],

where J(u) is the value of the objective function associated with a control
u. Since x∗(0) = x(0) = x0, the initial condition, and since λ(T ) =
Sx(x

∗(T ), T ) from the terminal adjoint condition in (2.31), we have

J(u∗) ≥ J(u). (2.74)

Thus, u∗ is an optimal control. This completes the proof. �
Because λ(t) is not known a priori, it is usual to testH0 for a stronger

assumption, i.e., to check for the concavity of the functionH0(x, λ, t) in x
for any λ and t. Sometimes the stronger condition given in Exercise 2.27
can be used.

Mangasarian (1966) gives a sufficient condition in which the concav-
ity of H0(x, λ(t), t) in Theorem 2.1 is replaced by a stronger condition
requiring the Hamiltonian H(x, u, λ(t), t) to be jointly concave in (x, u).

Example 2.7 Let us show that the problems in Examples 2.2 and 2.3
satisfy the sufficient conditions. We have from (2.36) and (2.61),

H0 = −x+ λu∗,

where u∗ is given by (2.37). Since u∗ is a function of λ only, H0(x, λ, t) is
certainly concave in x for any t and λ (and in particular for λ(t) supplied
by the maximum principle). Since S(x, T ) = 0, the sufficient conditions
hold.

Finally, it is important to mention that thus far in this chapter, we
have considered problems in which the terminal values of the state vari-
ables are not constrained. Such problems are called free-end-point prob-
lems. The problems at the other extreme, where the terminal values of
the state variables are completely specified, are termed fixed-end-point
problems. Then, there are problems in between these two extremes.
While a detailed discussion of terminal conditions on state variables ap-
pears in Sect. 3.4 of the next chapter, it is instructive here to briefly
indicate how the maximum principle needs to be modified in the case
of fixed-end-point problems. Suppose x(T ) is completely specified, i.e.,
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x(T ) = k ∈ En, where k is a vector of constants. Observe then that
the first term on the right-hand side of inequality (2.73) vanishes regard-
less of the value of λ(T ), since x(T ) − x∗(T ) = k − k = 0 in this case.
This means that the sufficiency result would go through for any value of
λ(T ). Not surprisingly, therefore, the transversality condition (2.30) in
the fixed-end-point case changes to

λ(T ) = β, (2.75)

where β ∈ En is a vector of constants to be determined.
Indeed, one can show that (2.75) is also the necessary transversality

condition for fixed point problems. With this observation, the maximum
principle for fixed-end-point problems can be obtained by modifying
(2.31) as follows: adding x(T ) = k and removing λ(T ) = Sx(x

∗(T ), T ).
Likewise, the resulting TPBVP (2.32) can be modified correspondingly;
it will have initial and final values on the state variables, whereas both
initial and terminal values for the adjoint variables are unspecified, i.e.,
λ(0) and λ(T ) are constants to be determined.

In Exercises 2.28 and 2.19, you are asked to solve the fixed-end-point
problems given there.

2.5 Solving a TPBVP by Using Excel

A number of examples and exercises found throughout this book involve
finding a numerical solution to a two-point boundary value problem (TP-
BVP). In this section we will show how the GOAL SEEK function in
Excel can be used for this purpose. We will solve the following example.

Example 2.8 Consider the problem:

max

{
J =

∫ 1

0
−1

2
(x2 + u2)dt

}

subject to
ẋ = −x3 + u, x(0) = 5. (2.76)

Solution We form the Hamiltonian

H = −1

2
(x2 + u2) + λ(−x3 + u),
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where the adjoint variable λ satisfies the equation

λ̇ = x+ 3x2λ, λ(1) = 0. (2.77)

Since u is unconstrained, we set Hu = 0 to obtain u∗ = λ. With this, the
state equation (2.76) becomes

ẋ = −x3 + λ, x(0) = 5. (2.78)

Thus, the TPBVP is given by the system of equations (2.77) and (2.78).
A simple method to solve the TPBVP uses what is known as the

shooting method, explained in the flowchart in Fig. 2.6.

Guess
? STOP

No

Yes

Figure 2.6: The flowchart for Example 2.8

We will use Excel functions to implement the shooting method. For
this we discretize (2.77) and (2.78) by replacing dx/dt and dλ/dt by


x


t
=

x(t+
t)− x(t)


t
and


λ


t
=

λ(t+
t)− λ(t)


t
,

respectively. Substitution of 
x/
t for ẋ in (2.78) and 
λ/
t for λ̇ in
(2.77) gives the discrete version of the TPBVP:

x(t+
t) = x(t) + [−x(t)3 + λ(t)]
 t, x(0) = 5, (2.79)

λ(t+
t) = λ(t) + [x(t) + 3x(t)2λ(t)]
 t, λ(1) = 0. (2.80)



2.5. Solving a TPBVP by Using Excel 59

In order to solve these equations, open an empty spreadsheet, choose
the unit of time to be 
t = 0.01, make a guess for the initial value λ(0)
to be, say −0.2, and make the entries in the cells of the spreadsheet as
specified below:

Enter -0.2 in cell A1.
Enter 5 in cell B1.
Enter = A1 + (B1 + 3 ∗ (B1ˆ2)∗ A1)∗ 0.01 in cell A2.
Enter = B1 + (-B1ˆ 3 + A1) ∗ 0.01 in cell B2.

Here we have entered the right-hand side of the difference equation (2.80)
for t = 0 in cell A2 and the right-hand side of the difference equation
(2.79) for t = 0 in cell B2. Note that λ(0) = −0.2 shown as the entry
−0.2 in cell A1 is merely a guess. The correct value will be determined
by the use of the GOAL SEEK function.

Next highlight cells A2 and B2 and drag the combination down to
row 101 of the spreadsheet. Using EDIT in the menu bar, select FILL
DOWN. Thus, Excel will solve Eqs. (2.80) and (2.79) from t = 0 to t = 1
in steps of 
t = 0.01, and that solution will appear as entries in columns
A and B of the spreadsheet, respectively. In other words, the guessed
solution for λ(t) will appear in cells A1 to A101 and the corresponding
solution for x(t) will appear in cells B1 to B101. To find the correct value
for λ(0), use the GOAL SEEK function under TOOLS in the menu bar
and make the following entries:

Set cell: A101.
To value: 0.
By changing cell: A1.

It finds the correct initial value for the adjoint variable as λ(0) =
−0.10437, which should appear in cell A1, and the correct ending value
of the state variable as x(1) = 0.62395, which should appear in cell B101.
You will notice that the entry in cell A101 may not be exactly zero as
instructed, although it will be very close to it. In our example, it is
−0.0007. By using the CHART function, the graphs of x∗(t) and λ(t)
can be printed out by Excel as shown in Fig. 2.7.
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Figure 2.7: Solution of TPBVP by excel

As we discuss more complex problems involving control and state
inequality constraints in Chaps. 3 and 4, we will realize that the shooting
method is no longer adequate to solve such problems. However, there is a
large amount of literature devoted to computational methods for solving
optimal control problems. While a detailed treatment of this topic is
beyond the scope of this book, we suggest some references as well as a
software in Chap. 4, Sect. 4.3.

Exercises for Chapter 2

E 2.1 Perform the following:

(a) In Example 2.2, show J∗ = −1/2.

(b) In Example 2.3, show J∗ = 0.

(c) In Example 2.4, show J∗ = −1/6.

(d) In Example 2.5, show J∗ = −1/6.

E 2.2 Complete Example 2.6 by writing the optimal x∗(t) in the form
of integrals over the three intervals (0, t1), (t1, t2), and (t2, 2) shown in
Fig. 2.5.
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Hint: It is not necessary to actually carry out the numerical evaluation
of these integrals unless you are ambitious.

E 2.3 Find the optimal solution for Example 2.1 with x0 = 0 and T = 1.

E 2.4 Rework Example 2.6 with F = 2x− 3u.

E 2.5 Show that both the Lagrange and Mayer forms of the optimal
control problem can be reduced to the linear Mayer form (2.5).

E 2.6 Show that the optimal control obtained from the application of
the maximum principle satisfies the principle of optimality: if u∗(t) is an
optimal control and x∗(t) is the corresponding optimal path for 0 ≤ t ≤ T
with x(0) = x0, then verify the above proposition by showing that u∗(t)
for τ ≤ t ≤ T satisfies the maximum principle for the problem beginning
at time τ with the initial condition x(τ) = x∗(τ).

E 2.7 Provide an alternative derivation of the adjoint equation in
Sect. 2.2.2 by starting with a restatement of the Eq. (2.19) as −Vt = H0

and differentiating it with respect to x.

E 2.8 In Example 2.4, show that in view of (2.47) any λ(t), t ∈ [0, 1],
that satisfies (2.50) must be nonnegative.

E 2.9 The system defined in (2.4) is termed autonomous if F, f, S and
Ω are not explicit functions of time t. In this case, show that the Hamil-
tonian is constant along the optimal path, i.e., show that dH/dt = 0.
Furthermore, verify this result in Example 2.4 by a direct substitution
for x and λ from (2.51) and (2.52), respectively, into H given in (2.48).

E 2.10 In Example 2.4, verify by direct calculation that with a new
initial value x(0) = 1+ε with ε small, the new optimal objective function
value will be

J∗
(1+ε) = −1/6 + λ(0)ε+ o(ε) = −1/6− ε/2− ε2/2.

E 2.11 In Example 2.6, verify by direct calculation that with a new ini-
tial x(0) = 5+ε with ε small, the objective function value will change by

λ(0)ε+ o(ε) = 2(e2 − 1)ε+ o(ε).
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E 2.12 Obtain the value function V (x, t) explicitly in Example 2.4 and
verify the relation Vx(x

∗(t), t) = λ(t) for the example by showing that
Vx(1− t, t) = −(1/2)t2 + t− 1/2.

E 2.13 Obtain the value function V (x, t) explicitly in Example 2.5 for
every x ∈ E1 and t ∈ [0, 2].

Hint: You need to deal with the following cases for t ∈ [0, 2]:

(i) 0 ≤ x ≤ 2− t,

(ii) x > 2− t,

(iii) t− 2 ≤ x < 0, and

(iv) x < t− 2.

E 2.14 Obtain V (x, t) in Example 2.6 for small positive and negative x
for t ∈ [t2, 2]. Then, show that Vx(x, t) = 2(e2−t − 1), t ∈ [t2, 2], is the
same as λ(t), t ∈ [t2, 2] obtained in Example 2.6.

E 2.15 Solve the problem:

max

{
J =

∫ T

0
(x− u2

2
)dt

}

subject to

ẋ = u, x(0) = x0,

u ∈ [0, 1],

for optimal control and optimal state trajectory. Verify that your solu-
tion is optimal by using the maximum principle sufficiency condition.

E 2.16 Solve completely the problem:

max

{∫ 1

0
(x+ u)dt

}

ẋ = 1− u2, x(0) = 1;

that is, find x∗(t), u∗(t) and λ(t), 0 ≤ t ≤ 1.
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E 2.17 Use the maximum principle to solve the following problem given
in the Mayer form:

max[8x1(18) + 4x2(18)]

subject to
ẋ1 = x1 + x2 + u, x1(0) = 15,

ẋ2 = 2x1 − u, x2(0) = 20,

and the control constraint
0 ≤ u ≤ 1.

Hint: Use the method in Appendix A to solve the simultaneous differ-
ential equations.

E 2.18 In Fig. 2.8, a water reservoir being used for the purpose of fire-
fighting is leaking, and its water height x(t) is governed by

ẋ = −0.1x+ u, x(0) = 10,

where u(t) denotes the net inflow at time t and 0 ≤ u ≤ 3.
Note that x(t) also represents the water pressure in appropriate units.

Since high water pressure is useful for fire-fighting, the objective function
in (a) below involves keeping the average pressure high, while that in (b)
involves building up a high pressure at T = 100. Furthermore, we do not
need to impose the state constraints 0 ≤ x(t) ≤ 50, as these will always
be satisfied for every feasible control u(t), 0 ≤ t ≤ 100.

Figure 2.8: Water reservoir of Exercise 2.18

(a) Find the optimal control which maximizes

J =

∫ 100

0
xdt.

Find the maximum level reached.
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(b) Replace the objective function in (a) by

J = 5x(100),

and re-solve the problem.

(c) Redo the problem with J =
∫ 100
0 (x− 5u)dt.

E 2.19 Consider the following fixed-end-point problem:

max
u

{
J = −

∫ T

0
(g(x) + cu2)dt

}

subject to

ẋ = f(x) + b(x)u, x(0) = x0, x(T ) = 0,

where functions g ≥ 0, f, and b are assumed to be continuously differen-
tiable. Derive the two-point boundary value problem (TPBVP) satisfied
by the optimal state and control trajectories.

E 2.20 A Machine Maintenance Problem. Consider the machine state
dynamics

ẋ = −δx+ u, x(0) = x0 > 0,

where δ > 0 is the rate of deterioration of the machine state and u is the
rate of machine maintenance. Find the optimal maintenance rate:

max

{
J =

∫ T

0
e−ρt(πx− u2

2
)dt+ e−ρTSx(T )

}
,

where π > 0 with πx representing the profit rate when the machine state
is x, u2/2 is the cost of maintaining the machine at rate u, ρ > 0 is the
discount rate, T is the time horizon, and S > 0 is the salvage value of
the machine for each unit of the machine state at time T. Furthermore,
show that the optimal maintenance rate decreases, increases, or remains
constant over time depending on whether the difference S − π/(ρ+ δ) is
negative, positive, or zero, respectively.

E 2.21 Transform the machine maintenance problem of Exercise 2.20
into Mayer Form. Then solve it to obtain the optimal maintenance rate.

E 2.22 Regional Allocation of Investment. Let Ki, i = 1, 2, denote the
capital stock in Region i. Let bi be the productivity of capital and si be
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the marginal propensity to save in Region i. Since the investment funds
for the two regions come from the savings in the whole economy, we have

K̇1 + K̇2 = b1s1K1 + b2s2K2 = g1K1 + g2K2,

where gi = bisi. Let u denote the control variable representing the frac-
tion of investment allocated to Region 1 with the remainder going to
Region 2. Clearly,

0 ≤ u ≤ 1, (2.81)

and

K̇1 = u(g1K1 + g2K2),K1(0) = a1 > 0, (2.82)

K̇2 = (1− u)(g1K1 + g2K2),K2(0) = a2 > 0. (2.83)

The optimal control problem is to maximize the productivity of the whole
economy at time T. Thus, the objective is:

max{J = b1K1(T ) + b2K2(T )}
subject to (2.81), (2.82), and (2.83).

(a) Use the maximum principle to derive the form of the optimal policy.

(b) Assume b2 > b1. Show that u∗(t) = 0 for t ∈ [t̂, T ], where t̂ is a
switching point and 0 ≤ t̂ < T.

(c) If you are ambitious, find the t̂ of part (b).

E 2.23 Investment Allocation. Let K denote the capital stock and λK
its output rate with λ > 0. For simplicity in notation, we set the pro-
ductivity factor λ = 1. Let u denote the invested fraction of the output.
Then, uK is the investment rate and (1− u)K is the consumption rate.
Let us assume an exponential utility 1 − e−C of consumption C. Solve
the resulting optimal control problem:

max

{
J =

∫ T

0
[1− e−(1−u(t))K(t)]dt

}

subject to

K̇(t) = u(t)K(t), K(0) = K0, K(T ) free, 0 ≤ u(t) ≤ 1, 0 ≤ t ≤ T.

Assume T > 1 and 0 < K0 < 1− e1−T . Obtain explicitly the optimal in-
vestment allocation u∗(t), optimal capitalK∗(t), and the adjoint variable
λ(t), 0 ≤ t ≤ T.



66 2. The Maximum Principle: Continuous Time

E 2.24 The rate at which a new product can be sold at any time t
is f(p(t))g(Q(t)) where p is the price and Q is cumulative sales. We
assume f ′(p) < 0; sales vary inversely with price. Also g′(Q) ≷ 0 for
Q ≶ Q1, respectively, whereQ1 > 0 is a constant known as the saturation
level. For a given price, current sales grow with past sales in the early
stages as people learn about the good from past purchasers. But as
cumulative sales increase, there is a decline in the number of people who
have not yet purchased the good. Eventually the sales rate for any given
price falls, as the market becomes saturated. The unit production cost c
may be constant or may decline with cumulative sales if the firm learns
how to produce less expensively with experience: c = c(Q), c′(Q) ≤ 0.
Formulate and solve the optimal control problem in order to characterize
the price policy p(t), 0 ≤ t ≤ T, that maximizes profits from this new
“fad” over a fixed horizon T. Specifically, show that in marketing a new
product, its optimal price rises while the market expands to its saturation
level and falls as the market matures beyond the saturation level.

E 2.25 Suppose H(x, u, λ, t) = λux− 1
2u

2 and Ω(t) = [0, 1] for all t.

(a) Show that the form of the optimal control is given by the function

u∗(x, λ) = sat[0, 1;λx] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λx if 0 ≤ λx ≤ 1,

1 if λx > 1,

0 if λx < 0.

(b) Verify that (2.63) holds for all values of x and λ.

E 2.26 Show that the derived Hamiltonians H0 found in Examples 2.4
and 2.6 satisfy the concavity condition required for the sufficiency result
in Sect. 2.4.

E 2.27 If F and f are concave in x and u and if λ(t) ≥ 0, then show
that the derived Hamiltonian H0 is concave in x. Note that the concavity
of F and f are easier to check than the concavity of H0 as required in
Theorem 2.1 on sufficiency conditions.

E 2.28 A simple controlled dynamical system is modeled by the scalar
equation

ẋ = x+ u.
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The fixed-end-point optimal control problem consists in steering x(t)
from an initial state x(0) = x0 to the target x(1) = 0, such that

J(u) =
1

4

∫ 1

0
u4dt

is minimized. Use the maximum principle to show that the optimal
control is given by

u∗(t) =
4x0
3

(e−4/3 − 1)−1e−t/3.

E 2.29 Perform the following:

(a) Solve the optimal consumption problem of Example 1.3 with
U(C) = lnC and B = 0.

Hint: Since C(t) ≥ 0, we can replace the state constraint W (t) ≥ 0, t ∈
[0, T ], by the terminal condition W (T ) = 0, and then use the transver-
sality condition given in (2.75).

(b) Find the rate of change of optimal consumption over time and
conclude that consumption remains constant when r = ρ, increases
when r > ρ, and decreases when r < ρ.

E 2.30 Perform the following:

(a) Formulate the TPBVP (2.32) and its discrete version for the prob-
lem in Example 2.8, but with a new initial condition x(0) = 1.

(b) Solve the discrete version of the TPBVP by using Excel.

E 2.31 Solve explicitly

max

{
J = −

∫ 2

0
x(t)dt

}

subject to
ẋ(t) = u(t), x(0) = 1, x(2) = 0,

−a ≤ u(t) ≤ b, a > 1/2, b > 0.

Obtain optimal x∗(t), u∗(t), and all required multipliers.
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