
Chapter 12

Stochastic Optimal Control

In previous chapters we assumed that the state variables of the system
are known with certainty. When the variables are outcomes of a random
phenomenon, the state of the system is modeled as a stochastic process.
Specifically, we now face a stochastic optimal control problem where the
state of the system is represented by a controlled stochastic process. We
shall only consider the case when the state equation is perturbed by
a Wiener process, which gives rise to the state as a Markov diffusion
process. In Appendix D.2 we have defined the Wiener process, also
known as Brownian motion. In Sect. 12.1, we will formulate a stochastic
optimal control problem governed by stochastic differential equations
involving a Wiener process, known as Itô equations. Our goal will be to
synthesize optimal feedback controls for systems subject to Itô equations
in a way that maximizes the expected value of a given objective function.

In this chapter, we also assume that the state is (fully) observed.
On the other hand, when the system is subject to noisy measurements,
we face partially observed optimal control problems. In some important
special cases, it is possible to separate the problem into two problems:
optimal estimation and optimal control. We discuss one such case in
Appendix D.4.1. In general, these problems are very difficult and are
beyond the scope of this book. Interested readers can consult some
references listed in Sect. 12.5.

In Sect. 12.2, we will extend the production planning model of Chap. 6
to allow for some uncertain disturbances. We will obtain an optimal
production policy for the stochastic production planning problem thus
formulated. In Sect. 12.3, we will solve an optimal stochastic advertising
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problem explicitly. The problem is a modification as well as a stochastic
extension of the optimal control problem of the Vidale-Wolfe advertising
model treated in Sect. 7.2.4. In Sect. 12.4, we will introduce investment
decisions in the consumption model of Example 1.3. We will consider
both risk-free and risky investments. Our goal will be to find optimal
consumption and investment policies in order to maximize the discounted
value of the utility of consumption over time.

In Sect. 12.5, we will conclude the chapter by mentioning other types
of stochastic optimal control problems that arise in practice.

12.1 Stochastic Optimal Control

In Appendix D.1 on the Kalman filter, we obtain the optimal state
estimation for linear systems with noise and noisy measurements. In
Sect. D.4.1, we see that for stochastic linear-quadratic optimal control
problems, the separation principle allows us to solve the problem in two
steps: to obtain the optimal estimate of the state and to use it in the
optimal feedback control formula for deterministic linear-quadratic prob-
lems.

In this section we will introduce the possibility of controlling a sys-
tem governed by Itô stochastic differential equations. In other words,
we will introduce control variables into Eq. (D.20). This produces the
formulation of a stochastic optimal control problem.

It should be noted that for such problems, the separation principle
does not hold in general. Therefore, to simplify the treatment, it is often
assumed that the state variables are observable, in the sense that they
can be directly measured. Furthermore, most of the literature on these
problems uses dynamic programming or the Hamilton-Jacobi-Bellman
framework rather than a stochastic maximum principle. In what fol-
lows, therefore, we will formulate the stochastic optimal control problem
under consideration, and provide a brief, informal development of the
Hamilton-Jacobi-Bellman equation for the problem. A detailed analysis
of the problem is available in Fleming and Rishel (1975). For problems
involving jump disturbances, see Davis (1993) for the methodology of op-
timal control of piecewise deterministic processes. For stochastic optimal
control in discrete time, see Bertsekas and Shreve (1996).

Let us consider the problem of maximizing

E

[∫ T

0
F (Xt, Ut, t)dt+ S(XT , T )

]
, (12.1)
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whereXt is the state at time t and Ut is the control at time t, and together
they are required to satisfy the Itô stochastic differential equation

dXt = f(Xt, Ut, t)dt+G(Xt, Ut, t)dZt, X0 = x0, (12.2)

where Zt, t ∈ [0, T ] is a standard Wiener process.
For convenience in exposition we assume the drift coefficient function

F : E1 × E1 × E1 → E1, S : E1 × E1 → E1, f : E1 × E1 × E1 → E1

and the diffusion coefficient function G : E1 × E1 × E1 → E1, so that
(12.2) is a scalar equation. We also assume that the functions F and S are
continuous in their arguments and the functions f andG are continuously
differentiable in their arguments. For multidimensional extensions of this
problem, see Fleming and Rishel (1975).

Since (12.2) is a scalar equation, the subscript t here represents only
time t. Thus, writing Xt, Ut, and Zt in place of writing X(t), U(t), and
Z(t), respectively, will not cause any confusion and, at the same time,
will eliminate the need for writing many parentheses.

To solve the problem defined by (12.1) and (12.2), let V (x, t), known
as the value function, be the expected value of the objective function
(12.1) from t to T, when an optimal policy is followed from t to T, given
Xt = x. Then, by the principle of optimality,

V (x, t) = max
U

E[F (x, U, t)dt+ V (x+ dXt, t+ dt)]. (12.3)

By Taylor’s expansion, we have

V (x+ dXt, t+ dt) = V (x, t) +Vtdt+ VxdXt +
1
2Vxx(dXt)

2

+1
2Vtt(dt)

2 + 1
2VxtdXtdt

+higher-order terms.

(12.4)

From (12.2), we can formally write

(dXt)
2 = f2(dt)2 +G2(dZt)

2 + 2fGdZtdt, (12.5)

dXtdt = f(dt)2 +GdZtdt. (12.6)

The exact meaning of these expressions comes from the theory of
stochastic calculus; see Arnold (1974, Chapter 5), Durrett (1996) or
Karatzas and Shreve (1997). For our purposes, it is sufficient to know
the multiplication rules of stochastic calculus:

(dZt)
2 = dt, dZtdt = 0, dt2 = 0. (12.7)
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Substitute (12.4) into (12.3) and use (12.5), (12.6), (12.7), and the prop-
erty that E[dZt] = 0 to obtain

V = max
U

[
Fdt+ V + Vtdt+ Vxfdt+

1

2
VxxG

2dt+ o(dt)

]
. (12.8)

Note that we have suppressed the arguments of the functions involved
in (12.8).

Canceling the term V on both sides of (12.8), dividing the remainder
by dt, and letting dt → 0, we obtain the Hamilton-Jacobi-Bellman (HJB)
equation

0 = max
U

[F + Vt + Vxf +
1

2
VxxG

2] (12.9)

for the value function V (t, x) with the boundary condition

V (x, T ) = S(x, T ). (12.10)

Just as we had introduced a current-value formulation of the max-
imum principle in Sect. 3.3, let us derive a current-value version of the
HJB equation here. For this, in a way similar to (3.29), we write the
objective function to be maximized as

E

∫ T

0
[φ(Xt, Ut)e

−ρt + ψ(XT )e
−ρT ]. (12.11)

We can relate this to (12.1) by setting

F (Xt, Ut, t) = φ(Xt, Ut)e
−ρt and S(XT , T ) = ψ(XT )e

−ρT . (12.12)

It is important to mention that the explicit dependence on time t in
(12.11) is only via the discounting term. If it were not the case, there
would be no advantage in formulating the current-value version of the
HJB equation.

Rather than develop the current-value HJB equation in a manner of
developing (12.9), we will derive it from (12.9) itself. For this we define
the current-valued value function

Ṽ (x, t) = V (x, t)eρt. (12.13)

Then we have

Vt = Ṽte
−ρt − ρṼ e−ρt, Vx = Ṽxe

−ρt and Vxx = Ṽxxe
−ρt. (12.14)
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By using these and (12.12) in (12.9), we obtain

0 = max
U

[φe−ρt + Ṽ e−ρt − ρṼ e−ρt + Vxfe
−ρt +

1

2
VxxG

2e−ρt].

Multiplying by eρt and rearranging terms, we get

ρṼ = max
U

[φ+ Ṽt + Ṽxf +
1

2
ṼxxG

2]. (12.15)

Moreover, from (12.12), (12.13), and (12.10), we can get the boundary
condition

Ṽ (x, T ) = ψ(x). (12.16)

Thus, we have obtained (12.15) and (12.16) as the current-value HJB
equation.

To obtain its infinite-horizon version, it is generally the case that
we remove the explicit dependence on t from the function f and G in
(12.2), and also assume that ψ ≡ 0. With that, the dynamics (12.2) and
the objective function (12.11) change, respectively, to

dXt = f(Xt, Ut)dt+G(Xt, Ut)dZt, X0 = x0, (12.17)

E

∫ ∞

0
φ(Xt, Ut)e

−ρtdt. (12.18)

It should then be obvious that Ṽt = 0, and we can obtain the infinite-
horizon version of (12.15) as

ρṼ = max
U

[φ+ Ṽxf +
1

2
ṼxxG

2]. (12.19)

As for its boundary condition, (12.16) is replaced by a growth condition
that is the same, in general, as the growth of the function φ(x, U) in
x. For example, if φ(x, U) is quadratic in x, we would look for a value
function Ṽ (x) to be of quadratic growth. See Beyer et al. (2010), Chapter
3, for a related discussion of a polynomial growth case in the discrete
time setting.

If we can find a solution of the HJB equation with the given bound-
ary condition (or an appropriate growth condition in the infinite horizon
case), then a result called a verification theorem suggests that we can
construct an optimal feedback control U∗(x, t) (or U∗(x) in the infinite
horizon case) by maximizing the right-hand side of the HJB equation
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with respect U. For further details and extension when the value func-
tion is not smooth enough and thus not a classical solution of the HJB
equation, see Fleming and Rishel (1975), Yong and Zhou (1999), and
Fleming and Soner (1992).

In the next three sections, we will apply this procedure to solve prob-
lems in production, marketing and finance.

12.2 A Stochastic Production Inventory Model

In Sect. 6.1.1, we formulated a deterministic production-inventory model.
In this section, we extend a simplified version of that model by including
a random process. Let us define the following quantities:

It = the inventory level at time t (state variable),

Pt = the production rate at time t (control variable),

S = the constant demand rate at time t; S > 0,

T = the length of planning period,

I0 = the initial inventory level,

B = the salvage value per unit of inventory at time T,

Zt = the standard Wiener process,

σ = the constant diffusion coefficient.

The inventory process evolves according to the stock-flow equation
stated as the Itô stochastic differential equation

dIt = (Pt − S)dt+ σdZt, I0 given, (12.20)

where I0 denotes the initial inventory level. As mentioned in Appendix
Sect. D.2, the process dZt can be formally expressed as w(t)dt, where
w(t) is considered to be a white noise process; see Arnold (1974). It can
be interpreted as “sales returns,” “inventory spoilage,” etc., which are
random in nature.

The objective function is:

maxE

{
BIT −

∫ T

0
(P 2

t + I2t )dt

}
. (12.21)

It can be interpreted as maximization of the terminal salvage value less
the cost of production and inventory assumed to be quadratic. In Ex-
ercise 12.1, you will be asked to solve the problem with the objective
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function given by the expected value of the undiscounted version of the
integral in (6.2).

As in Sect. 6.1.1 we do not restrict the production rate to be nonneg-
ative. In other words, we permit disposal (i.e., Pt < 0). While this is
done for mathematical expedience, we will state conditions under which
a disposal is not required. Note further that the inventory level is allowed
to be negative, i.e., we permit backlogging of demand.

The solution of the above model due to Sethi and Thompson (1981a)
will be carried out via the previous development of the HJB equation
satisfied by a certain value function.

Let V (x, t) denote the expected value of the objective function from
time t to the horizon T with It = x and using the optimal policy from
t to T. The function V (x, t) is referred to as the value function, and it
satisfies the HJB equation

0 = max
P

[−(P 2 + x2) + Vt + Vx(P − S) +
1

2
σ2Vxx] (12.22)

with the boundary condition

V (x, T ) = Bx. (12.23)

Note that these are applications of (12.9) and (12.10) to the production
planning problem.

It is now possible to maximize the expression inside the bracket of
(12.22) with respect to P by taking its derivative with respect to P and
setting it to zero. This procedure yields

P ∗(x, t) =
Vx(x, t)

2
. (12.24)

Substituting (12.24) into (12.22) yields the equation

0 =
V 2
x

4
− x2 + Vt − SVx +

1

2
σ2Vxx, (12.25)

which, after the max operation has been performed, is known as the
Hamilton-Jacobi equation. This is a partial differential equation which
must be satisfied by the value function V (x, t) with the boundary con-
dition (12.23). The solution of (12.25) is considered in the next section.

Remark 12.1 It is important to remark that if the production rate were
restricted to be nonnegative, then, as in Remark 6.1, (12.24) would be
changed to

P ∗(x, t) = max

[
0,

Vx(x, t)

2

]
. (12.26)
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Substituting (12.26) into (12.23) would give us a partial differential equa-
tion which must be solved numerically. We will not consider (12.26)
further in this chapter.

12.2.1 Solution for the Production Planning Problem

To solve Eq. (12.25) with the boundary condition (12.23) we let

V (x, t) = Q(t)x2 +R(t)x+M(t). (12.27)

Then,

Vt = Q̇x2 + Ṙx+ Ṁ, (12.28)

Vx = 2Qx+R, (12.29)

Vxx = 2Q, (12.30)

where Ẏ denotes dY/dt. Substituting (12.28)–(12.30) in (12.25) and col-
lecting terms gives

x2[Q̇+Q2−1]+x[Ṙ+RQ−2SQ]+Ṁ +
R2

2
−RS+σ2Q = 0. (12.31)

Since (12.31) must hold for any value of x, we must have

Q̇ = 1−Q2, Q(T ) = 0, (12.32)

Ṙ = 2SQ−RQ, R(T ) = B, (12.33)

Ṁ = RS − R2

4
− σ2Q, M(T ) = 0, (12.34)

where the boundary conditions for the system of simultaneous differential
equations (12.32), (12.33), and (12.34) are obtained by comparing (12.27)
with the boundary condition V (x, T ) = Bx of (12.23).

To solve (12.32), we expand Q̇/(1−Q2) by partial fractions to obtain

Q̇

2

[
1

1−Q
+

1

1 +Q

]
= 1,

which can be easily integrated. The answer is

Q =
y − 1

y + 1
, (12.35)

where
y = e2(t−T ). (12.36)
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Since S is assumed to be a constant, we can reduce (12.33) to

Ṙ0 +R0Q = 0, R0(T ) = B − 2S

by the change of variable defined by R0 = R − 2S. Clearly the solution
is given by

logR0(T )− logR0(t) = −
∫ T

t
Q(τ)dτ,

which can be simplified further to obtain

R = 2S +
2(B − 2S)

√
y

y + 1
. (12.37)

Having obtained solutions for R and Q, we can easily express (12.34) as

M(t) = −
∫ T

t
[R(τ)S − (R(τ))2/4− σ2Q(τ)]dτ . (12.38)

The optimal control is defined by (12.24), and the use of (12.35) and
(12.37) yields

P ∗(x, t) = Vx/2 = Qx+R/2 = S +
(y − 1)x+ (B − 2S)

√
y

y + 1
. (12.39)

This means that the optimal production rate for t ∈ [0, T ]

P ∗
t = P ∗(I∗t , t) = S +

(e2(t−T ) − 1)I∗t + (B − 2S)e(t−T )

e2(t−T ) + 1
, (12.40)

where I∗t , t ∈ [0, T ], is the inventory level observed at time t when using
the optimal production rate P ∗

t , t ∈ [0, T ], according to (12.40).

Remark 12.2 The optimal production rate in (12.39) equals the de-
mand rate plus a correction term which depends on the level of inven-
tory and the distance from the horizon time T. Since (y − 1) < 0 for
t < T, it is clear that for lower values of x, the optimal production rate
is likely to be positive. However, if x is very high, the correction term
will become smaller than −S, and the optimal control will be negative.
In other words, if inventory level is too high, the factory can save money
by disposing a part of the inventory resulting in lower holding costs.

Remark 12.3 If the demand rate S were time-dependent, it would have
changed the solution of (12.33). Having computed this new solution
in place of (12.37), we can once again obtain the optimal control as
P ∗(x, t) = Qx+R/2.
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Remark 12.4 Note that when T → ∞, we have y → 0 and

P ∗(x, t) → S − x, (12.41)

but the undiscounted objective function value (12.21) in this case be-
comes −∞. Clearly, any other policy will render the objective function
value to be −∞. In a sense, the optimal control problem becomes ill-
posed. One way to get out of this difficulty is to impose a nonzero
discount rate. You are asked to carry this out in Exercise 12.2.

Remark 12.5 It would help our intuition if we could draw a picture of
the path of the inventory level over time. Since the inventory level is
a stochastic process, we can only draw a typical sample path. Such a
sample path is shown in Fig. 12.1. If the horizon time T is long enough,
the optimal control will bring the inventory level to the goal level x̄ = 0.
It will then hover around this level until t is sufficiently close to the
horizon T. During the ending phase, the optimal control will try to build
up the inventory level in response to a positive valuation B for ending
inventory.

5

t

T

Xt

Figure drawn for:

x0 = 2, T = 12, B = 20
S = 5, s = 2

4

3

2

1

0

-1

-2

Figure 12.1: A sample path of optimal production rate I∗t with I0 =
x0 > 0 and B > 0
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12.3 The Sethi Advertising Model

In this section, we will discuss a stochastic advertising model due to
Sethi (1983b). The model is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E

[∫ ∞

0
e−ρt(πXt − U2

t )dt

]

subject to

dXt = (rUt

√
1−Xt − δXt)dt+ σ(Xt)dZt, X0 = x0,

Ut ≥ 0,

(12.42)

where Xt is the market share and Ut is the rate of advertising at time t,
and where, as specified in Sect. 7.2.1, ρ > 0 is the discount rate, π > 0
is the profit margin on sales, r > 0 is the advertising effectiveness pa-
rameter, and δ > 0 is the sales decay parameter. Furthermore, Zt is the
standard one-dimensional Wiener process and σ(x) is the diffusion coef-
ficient function having some properties to be specified shortly. The term
in the integrand represents the discounted profit rate at time t. Thus,
the integral represents the total value of the discounted profit stream on
a sample path. The objective in (12.42) is, therefore, to maximize the
expected value of the total discounted profit.

The Sethi model is a modification as well as a stochastic extension
of the optimal control formulation of the Vidale-Wolfe advertising model
presented in (7.43). The Itô equation in (12.42) modifies the Vidale-
Wolfe dynamics (7.25) by replacing the term rU(1 − x) by rUt

√
1−Xt

and adding a diffusion term σ(Xt)dZt on the right-hand side. Further-
more, the linear cost of advertising U in (7.43) is replaced by a quadratic
cost of advertising U2

t in (12.42). The control constraint 0 ≤ U ≤ Q in
(7.43) is replaced by simply Ut ≥ 0. The addition of the diffusion term
yields a stochastic optimal control problem as expressed in (12.42).

An important consideration in choosing the function σ(x) should be
that the solution Xt to the Itô equation in (12.42) remains inside the
interval [0, 1]. Merely requiring that the initial condition x0 ∈ [0, 1], as in
Sect. 7.2.1, is no longer sufficient in the stochastic case. Additional con-
ditions need to be imposed. It is possible to specify these conditions by
using the theory presented by Gihman and Skorohod (1972) for stochas-
tic differential equations on a finite spatial interval. In our case, the
conditions boil down to the following, in addition to x0 ∈ (0, 1), which
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has been assumed already in (12.42):

σ(x) > 0, x ∈ (0, 1) and σ(0) = σ(1) = 0. (12.43)

It is possible to show that for any feedback control U(x) satisfying

U(x) ≥ 0, x ∈ (0, 1], and U(0) > 0, (12.44)

the Itô equation in (12.42) will have a solution Xt such that 0 < Xt < 1,
almost surely (i.e., with probability 1). Since our solution for the optimal
advertising U∗(x) would turn out to satisfy (12.44), we will have the
optimal market share X∗

t lie in the interval (0, 1).
Let V (x) denote the value function for the problem, i.e., V (x) is the

expected value of the discounted profits from time t to infinity, when
Xt = x and an optimal policy U∗

t is followed from time t onwards. Note
that since T = ∞, the future looks the same from any time t, and
therefore the value function does not depend on t. It is for this reason
that we have defined the value function as V (x), rather than V (x, t) as
in the previous section.

Using now the principle of optimality as in Sect. 12.1, we can write
the HJB equation as

ρV (x) = max
U

[
πx− U2 + Vx(rU

√
1− x− δx) + Vxx(σ(x))

2/2
]
.

(12.45)

Maximization of the RHS of (12.45) can be accomplished by taking its
derivative with respect to U and setting it to zero. This gives

U∗(x) =
rVx

√
1− x

2
. (12.46)

Substituting of (12.46) in (12.45) and simplifying the resulting expression
yields the HJB equation

ρV (x) = πx+
V 2
x r

2(1− x)

4
− Vxδx+

1

2
σ2(x)Vxx. (12.47)

As shown in Sethi (1983b), a solution of (12.47) is

V (x) = λ̄x+
λ̄
2
r2

4ρ
, (12.48)

where

λ̄ =

√
(ρ+ δ)2 + r2π − (ρ+ δ)

r2/2
, (12.49)
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as derived in Exercise 7.37. In Exercise 12.3, you are asked verify that
(12.48) and (12.49) solve the HJB equation (12.47).

We can now obtain the explicit formula for the optimal feedback
control as

U∗(x) =
rλ̄

√
1− x

2
. (12.50)

Note that U∗(x) satisfies the conditions in (12.44).
As in Exercise 7.37, it is easy to characterize (12.50) as

U∗
t = U∗(Xt) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> Ū if Xt < X̄,

= Ū if Xt = X̄,

< Ū if Xt > X̄,

(12.51)

where

X̄ =
r2λ̄/2

r2λ̄/2 + δ
(12.52)

and

Ū =
rλ̄

√
1− x̄

2
, (12.53)

as given in (7.51).
The market share trajectory for Xt is no longer monotone because

of the random variations caused by the diffusion term σ(Xt)dZt in the
Itô equation in (12.42). Eventually, however, the market share process
hovers around the equilibrium level x̄. It is, in this sense and as in the
previous section, also a turnpike result in a stochastic environment.

12.4 An Optimal Consumption-Investment
Problem

In Example 1.3 in Chap. 1, we had formulated a problem faced by Rich
Rentier who wants to consume his wealth in a way that will maximize his
total utility of consumption and bequest. In that example, Rich Rentier
kept his money in a savings plan earning interest at a fixed rate of r > 0.

In this section, we will offer Rich the possibility of investing a part
of his wealth in a risky security or stock that earns an expected rate
of return that equals α > r. Rich, now known as Rich Investor, must
optimally allocate his wealth between the risk-free savings account and
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the risky stock over time and consume over time so as to maximize his
total utility of consumption. We will assume an infinite horizon problem
in lieu of the bequest, for convenience in exposition. One could, however,
argue that Rich’s bequest would be optimally invested and consumed by
his heir, who in turn would leave a bequest that would be optimally
invested and consumed by a succeeding heir and so on. Thus, if Rich
considers the utility accrued to all his heirs as his own, then he can justify
solving an infinite horizon problem without a bequest.

In order to formulate the stochastic optimal control problem of Rich
Investor, we must first model his investments. The savings account is
easy to model. If S0 is the initial deposit in the savings account earning
an interest at the rate r > 0, then we can write the accumulated amount
St at time t as

St = S0e
rt.

This can be expressed as a differential equation, dSt/dt = rSt, which we
will rewrite as

dSt = rStdt, S0 ≥ 0. (12.54)

Modeling the stock is much more complicated. Merton (1971) and
Black and Scholes (1973) have proposed that the stock price Pt can be
modeled by an Itô equation, namely,

dPt

Pt
= αdt+ σdZt, P0 > 0, (12.55)

or simply,
dPt = αPtdt+ σPtdZt, P0 > 0, (12.56)

where P0 > 0 is the given initial stock price, α is the average rate of
return on stock, σ is the standard deviation associated with the return,
and Zt is a standard Wiener process.

Remark 12.6 The LHS in (12.55) can be written also as dlnPt. Another
name for the process Zt is Brownian Motion. Because of these, the price
process Pt given by (12.55) is often referred to as a logarithmic Brownian
Motion. It is important to note from (12.56) that Pt remains nonnegative
at any t > 0 on account of the fact that the price process has almost
surely continuous sample paths (see Sect. D.2). This property nicely
captures the limited liability that is incurred in owning a share of stock.

In order to complete the formulation of Rich’s stochastic optimal
control problem, we need the following additional notation:

Wt = the wealth at time t,



12.4. An Optimal Consumption-Investment Problem 379

Ct = the consumption rate at time t,

Qt = the fraction of the wealth invested in stock at time t,

1−Qt = the fraction of the wealth kept in the savings account
at time t,

U(C) = the utility of consumption when consumption is at the
rate C; the function U(C) is assumed to be increasing
and concave,

ρ = the rate of discount applied to consumption utility,

B = the bankruptcy parameter, to be explained later.

Next we develop the dynamics of the wealth process. Since the in-
vestment decision Q is unconstrained, it means Rich is allowed to buy
stock as well as to sell it short. Moreover, Rich can deposit in, as well
as borrow money from, the savings account at the rate r.

While it is possible to rigorously obtain the equation for the wealth
process involving an intermediate variable, namely, the number Nt of
shares of stock owned at time t, we will not do so. Instead, we will write
the wealth equation informally as

dWt = QtWtαdt+QtWtσdZt + (1−Qt)Wtrdt− Ctdt

= (α− r)QtWtdt+ (rWt − Ct)dt+ σQtWtdZt, W0 given,

(12.57)

and provide an intuitive explanation for it. The termQtWtαdt represents
the expected return from the risky investment of QtWt dollars during the
period from t to t+dt. The term QtWtσdZt represents the risk involved in
investing QtWt dollars in stock. The term (1−Qt)Wtrdt is the amount
of interest earned on the balance of (1 − Qt)Wt dollars in the savings
account. Finally, Ctdt represents the amount of consumption during the
interval from t to t+ dt.

In deriving (12.57), we have assumed that Rich can trade contin-
uously in time without incurring any broker’s commission. Thus, the
change in wealth dWt from time t to time t+dt is due to consumption as
well as the change in share price. For a rigorous development of (12.57)
from (12.54) and (12.55), see Harrison and Pliska (1981).

Since Rich can borrow an unlimited amount and invest it in stock,
his wealth could fall to zero at some time T. We will say that Rich goes
bankrupt at time T, when his wealth falls zero at that time. It is clear
that T is a random variable defined as

T = inf{t ≥ 0|Wt = 0}. (12.58)
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This special type of random variable is called a stopping time, since it is
observed exactly at the instant of time when wealth falls to zero.

We can now specify Rich’s objective function. It is:

max

{
J = E

[∫ T

0
e−ρtU(Ct)dt+ e−ρTB

]}
, (12.59)

where we have assumed that Rich experiences a payoff of B, in the units
of utility, at the time of bankruptcy. B can be positive if there is a
social welfare system in place, or B can be negative if there is remorse
associated with bankruptcy. See Sethi (1997a) for a detailed discussion
of the bankruptcy parameter B.

Let us recapitulate the optimal control problem of Rich Investor:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
J = E

[∫ T

0
e−ρtU(Ct)dt+ e−ρTB

]}

subject to

dWt = (α− r)QtWtdt+ (rWt − Ct)dt+ σQtWtdZt, W0 given,

Ct ≥ 0.

(12.60)
As in the infinite horizon problem of Sect. 12.2, here also the value

function is stationary with respect to time t. This is because T is a stop-
ping time of bankruptcy, and the future evolution of wealth, investment,
and consumption processes from any starting time t depends only on the
wealth at time t and not on time t itself. Therefore, let V (x) be the
value function associated with an optimal policy beginning with wealth
Wt = x at time t. Using the principle of optimality as in Sect. 12.1, the
HJB equation satisfied by the value function V (x) for problem (12.60)
can be written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρV (x) = max
C≥0,Q

[(α− r)QxVx + (rx− C)Vx

+(1/2)Q2σ2x2Vxx + U(C)],

V (0) = B.

(12.61)

This problem and a number of its generalizations are solved explicitly
in Sethi (1997a). Here we shall confine ourselves in solving a simpler
problem resulting from the following considerations.
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It is shown in Karatzas et al. (1986), reproduced as Chapter 2 in
Sethi (1997a), that when B ≤ U(0)/ρ, no bankruptcy will occur. This
should be intuitively obvious because if Rich goes bankrupt at any time
T > 0, he receives B at that time, whereas by not going bankrupt at
that time he reaps the utility of strictly more than U(0)/ρ on account
of consumption from time T onward. It is shown furthermore that if
U ′(0) = ∞, then the optimal consumption rate will be strictly positive.
This is because even an infinitesimally small positive consumption rate
results in a proportionally large amount of utility on account of the
infinite marginal utility at zero consumption level. A popular utility
function used in the literature is

U(C) = lnC, (12.62)

which was also used in Example 1.3. This function gives an infinite
marginal utility at zero consumption, i.e.,

U ′(0) = 1/C|C=0 = ∞. (12.63)

We also assume B = U(0)/ρ = −∞. These assumptions imply a strictly
positive consumption level at all times and no bankruptcy.

Since Q is already unconstrained, having no bankruptcy and only
positive (i.e., interior) consumption level allows us to obtain the form of
the optimal consumption and investment policy simply by differentiating
the RHS of (12.61) with respect to Q and C and equating the resulting
expressions to zero. Thus,

(α− r)xVx +Qσ2x2Vxx = 0,

i.e.,

Q∗(x) = −(α− r)Vx

xσ2Vxx
, (12.64)

and

C∗(x) =
1

Vx
. (12.65)

Substituting (12.64) and (12.65) in (12.61) allows us to remove the
max operator from (12.61), and provides us with the equation

ρV (x) = −γ(Vx)
2

Vxx
+

(
rx− 1

Vx

)
Vx − lnVx, (12.66)

where

γ =
(α− r)2

2σ2
. (12.67)
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This is a nonlinear ordinary differential equation that appears to be
quite difficult to solve. However, Karatzas et al. (1986) used a change
of variable that transforms (12.66) into a second-order, linear, ordinary
differential equation, which has a known solution. For our purposes, we
will simply guess that the value function is of the form

V (x) = A lnx+B, (12.68)

where A and B are constants, and obtain the values of A and B by
substitution in (12.66). Using (12.68) in (12.66), we see that

ρA lnx+ ρB = γA+
(
rx− x

A

) A

x
− ln

(
A

x

)

= γA+ rA− 1− lnA+ lnx.

By comparing the coefficients of lnx and the constants on both sides,
we get A = 1/ρ and B = (r − ρ+ γ)/ρ2 + ln ρ/ρ. By substituting these
values in (12.68), we obtain

V (x) =
1

ρ
ln(ρx) +

r − ρ+ γ

ρ2
, x ≥ 0. (12.69)

In Exercise 12.4, you are asked by a direct substitution in (12.66)
to verify that (12.69) is indeed a solution of (12.66). Moreover, V (x)
defined in (12.69) is strictly concave, so that our concavity assumption
made earlier is justified.

From (12.69), it is easy to show that (12.64) and (12.65) yield the
following feedback policies:

Q∗(x) =
α− r

σ2
, (12.70)

C∗(x) = ρx. (12.71)

The investment policy (12.70) says that the optimal fraction of the wealth
invested in the risky stock is (α− r)/σ2, i.e.,

Q∗
t = Q∗(Wt) =

α− r

σ2
, t ≥ 0, (12.72)

which is a constant over time. The optimal consumption policy is to
consume a constant fraction ρ of the current wealth, i.e.,

C∗
t = C∗(Wt) = ρWt, t ≥ 0. (12.73)

This problem and its many extensions have been studied in great
detail. See, e.g., Sethi (1997a).
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12.5 Concluding Remarks

In this chapter, we have considered stochastic optimal control problems
subject to Itô differential equations. For impulse stochastic control, see
Bensoussan and Lions (1984). For stochastic control problems with jump
Markov processes or, more generally, martingale problems, see Fleming
and Soner (1992), Davis (1993), and Karatzas and Shreve (1998). For
problems with incomplete information or partial observation, see Ben-
soussan (2004, 2018), Elliott et al. (1995), and Bensoussan et al. (2010).

For applications of stochastic optimal control to manufacturing prob-
lems, see Sethi and Zhang (1994a), Yin and Zhang (1997), Sethi et al.
(2005), Bensoussan (2011), and Bensoussan et al. (2007b,c,d, 2008a,b,
2009a,b,c). For applications to problems in finance, see Sethi (1997a),
Karatzas and Shreve (1998), and Bensoussan et al. (2009d). For ap-
plications in marketing, see Tapiero (1988), Raman (1990), and Sethi
and Zhang (1995b). For applications of stochastic optimal control to
economics including economics of natural resources, see, e.g., Pindyck
(1978a,b), Rausser and Hochman (1979), Arrow and Chang (1980),
Derzko and Sethi (1981a), Bensoussan and Lesourne (1980, 1981),
Malliaris and Brock (1982), and Brekke and Øksendal (1994).

Exercises for Chapter 12

E 12.1 Solve the production-inventory problem with the state equation
(12.20) and the objective function

min

{
J = E

∫ T

0
[
h

2
(I − Î)2 +

c

2
(P − P̂ )2]dt

}
,

where h > 0, c > 0, Î ≥ 0 and P̂ ≥ 0; see the objective function (6.2) for
the interpretation of these parameters.

E 12.2 Formulate and solve the discounted infinite-horizon version of
the stochastic production planning model of Sect. 12.2. Specifically, as-
sume B = 0 and replace the objective function in (12.21) by

maxE

{∫ ∞

0
−e−ρt(P 2

t + I2t )dt

}
.

E 12.3 Verify by direct substitution that the value function defined by
(12.48) and (12.49) solves the HJB equation (12.47).
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E 12.4 Verify by direct substitution that the value function in (12.69)
solves the HJB equation (12.66).

E 12.5 Solve the consumption-investment problem (12.60) with the util-
ity function U(C) = Cβ , 0 < β < 1, and B = 0.

E 12.6 Solve Exercise 12.5 when U(C) = −Cβ with β < 0 and B =
−∞.

E 12.7 Solve the optimal consumption-investment problem:

V (x) = max

{
J = E

[∫ ∞

0
e−ρt ln(Ct − s)dt

]}

subject to

dWt = (α− r)QtWtdt+ (rWt − Ct)dt+ σQtWtdZt, W0 = x,

Ct ≥ s.

Here s > 0 denotes a minimal subsistence consumption, and we assume
0 < ρ < 1. Note that the value function V (s/r) = −∞. Guess a solution
of the form

V (x) = A ln(x− s/r) +B.

Find the constants A, B, and the optimal feedback consumption and in-
vestment allocation policies C∗(x) and Q∗(x), respectively. Characterize
these policies in words.

E 12.8 Solve the consumption-investment problem:

V (x) = max

{
J = E

[∫ ∞

0
e−ρt(Ct − s)βdt

]}

subject to

dWt = (α− r)QtWtdt+ (rWt − Ct)dt+ σQtWtdZt, W0 = x,

Ct ≥ s.

Here s > 0 denotes a minimal subsistence consumption and we assume
0 < ρ < 1 and 0 < β < 1. Note that the value function V (s/r) = 0.
Therefore, guess a solution of the form

V (x) = A(x− s/r)β .

Find the constant A and the optimal feedback consumption and invest-
ment allocation policies C∗(x) and Q∗(x), respectively. Characterize
these policies in words.
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