
Chapter 1

What Is Optimal Control
Theory?

Many management science applications involve the control of dynamic
systems, i.e., systems that evolve over time. They are called continuous-
time systems or discrete-time systems depending on whether time varies
continuously or discretely. We will deal with both kinds of systems in this
book, although the main emphasis will be on continuous-time systems.

Optimal control theory is a branch of mathematics developed to find
optimal ways to control a dynamic system. The purpose of this book is
to give an elementary introduction to the mathematical theory, and then
apply it to a wide variety of different situations arising in management
science. We have deliberately kept the level of mathematics as simple as
possible in order to make the book accessible to a large audience. The
only mathematical requirements for this book are elementary calculus,
including partial differentiation, some knowledge of vectors and matri-
ces, and elementary ordinary and partial differential equations. The last
topic is briefly covered in Appendix A. Chapter 12 on stochastic opti-
mal control also requires some concepts in stochastic calculus, which are
introduced at the beginning of that chapter.

The principle management science applications discussed in this book
come from the following areas: finance, economics, production and in-
ventory, marketing, maintenance and replacement, and the consumption
of natural resources. In each major area we have formulated one or more
simple models followed by a more complicated model. The reader may

© Springer Nature Switzerland AG 2019
S. P. Sethi, Optimal Control Theory,
https://doi.org/10.1007/978-3-319-98237-3 1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98237-3_1&domain=pdf
https://doi.org/10.1007/978-3-319-98237-3_1


2 1. What Is Optimal Control Theory?

wish at first to cover only the simpler models in each area to get an idea
of what could be accomplished with optimal control theory. Later, the
reader may wish to go into more depth in one or more of the applied
areas.

Examples are worked out in most of the chapters to facilitate the
exposition. At the end of each chapter, we have listed exercises that the
reader should solve for deeper understanding of the material presented
in the chapter. Hints are supplied with some of the exercises. Answers
to selected exercises are given in Appendix E.

1.1 Basic Concepts and Definitions

We will use the word system as a primitive term in this book. The only
property that we require of a system is that it is capable of existing in
various states. Let the (real) variable x(t) be the state variable of the
system at time t ∈ [0, T ], where T > 0 is a specified time horizon for
the system under consideration. For example, x(t) could measure the
inventory level at time t, the amount of advertising goodwill at time t,
or the amount of unconsumed wealth or natural resources at time t.

We assume that there is a way of controlling the state of the system.
Let the (real) variable u(t) be the control variable of the system at time t.
For example, u(t) could be the production rate at time t, the advertising
rate at time t, etc.

Given the values of the state variable x(t) and the control variable
u(t) at time t, the state equation, a differential equation,

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (1.1)

specifies the instantaneous rate of change in the state variable, where
ẋ(t) is a commonly used notation for dx(t)/dt, f is a given function of
x, u, and t, and x0 is the initial value of the state variable. If we know
the initial value x0 and the control trajectory, i.e., the values of u(t) over
the whole time interval 0 ≤ t ≤ T, then we can integrate (1.1) to get
the state trajectory, i.e., the values of x(t) over the same time interval.
We want to choose the control trajectory so that the state and control
trajectories maximize the objective functional, or simply the objective
function,

J =

∫ T

0
F (x(t), u(t), t)dt+ S[x(T ), T ]. (1.2)
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In (1.2), F is a given function of x, u, and t, which could measure
the benefit minus the cost of advertising, the utility of consumption, the
negative of the cost of inventory and production, etc. Also in (1.2), the
function S gives the salvage value of the ending state x(T ) at time T.
The salvage value is needed so that the solution will make “good sense”
at the end of the horizon.

Usually the control variable u(t) will be constrained. We indicate
this as

u(t) ∈ Ω(t), t ∈ [0, T ], (1.3)

where Ω(t) is the set of feasible values for the control variable at time t.
Optimal control problems involving (1.1), (1.2), and (1.3) will be

treated in Chap. 2.
In Chap. 3, we will replace (1.3) by inequality constraints involving

control variables. In addition, we will allow these constraints to depend
on state variables. These are called mixed inequality constraints and
written as

g(x(t), u(t), t) ≥ 0, t ∈ [0, T ] , (1.4)

where g is a given function of u, t, and possibly x.
In addition, there may be constraints involving only state variables,

but not control variables. These are written as

h(x(t), t) ≥ 0, t ∈ [0, T ], (1.5)

where h is a given function of x and t. Such constraints are the most
difficult to deal with, and are known as pure state inequality constraints.
Problems involving (1.1), (1.2), (1.4), and (1.5) will be treated in Chap. 4.

Finally, we note that all of the imposed constraints limit the values
that the terminal state x(T ) may take. We denote this by saying

x(T ) ∈ X, (1.6)

where X is called the reachable set of the state variable at time T. Note
that X depends on the initial value x0. Here X is the set of possible
terminal values that can be reached when x(t) and u(t) obey imposed
constraints.

Although the above description of the control problem may seem ab-
stract, you will find that in each specific application, the variables and
parameters will have specific meanings that make them easy to under-
stand and remember. The examples that follow will illustrate this point.
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1.2 Formulation of Simple Control Models

We now formulate three simple models chosen from the areas of produc-
tion, advertising, and economics. Our only objective here is to identify
and interpret in these models each of the variables and functions de-
scribed in the previous section. The solutions for each of these models
will be given in detail in later chapters.

Example 1.1 A Production-Inventory Model. The various quantities
that define this model are summarized in Table 1.1 for easy comparison
with the other models that follow.

Table 1.1: The production-inventory model of Example 1.1

State variable I(t) = Inventory level

Control variable P (t) = Production rate

State equation İ(t) = P (t)− S(t), I(0) = I0

Objective function Maximize

{
J =

∫ T

0
−[h(I(t)) + c(P (t))]dt

}

State constraint I(t) ≥ 0

Control constraints 0 ≤ Pmin ≤ P (t) ≤ Pmax

Terminal condition I(T ) ≥ Imin

Exogenous functions S(t) = Demand rate

h(I) = Inventory holding cost

c(P ) = Production cost

Parameters T = Terminal time

Imin = Minimum ending inventory

Pmin = Minimum possible production rate

Pmax = Maximum possible production rate

I0 = Initial inventory level
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We consider the production and inventory storage of a given good,
such as steel, in order to meet an exogenous demand. The state variable
I(t) measures the number of tons of steel that we have on hand at time
t ∈ [0, T ]. There is an exogenous demand rate S(t) tons of steel per day
at time t ∈ [0, T ], and we must choose the production rate P (t) tons of
steel per day at time t ∈ [0, T ]. Given the initial inventory of I0 tons of
steel on hand at t = 0, the state equation

İ(t) = P (t)− S(t)

describes how the steel inventory changes over time. Since h(I) is the
cost of holding inventory I in dollars per day, and c(P ) is the cost of
producing steel at rate P, also in dollars per day, the objective function
is to maximize the negative of the sum of the total holding and produc-
tion costs over the period of T days. Of course, maximizing the negative
sum is the same as minimizing the sum of holding and production costs.
The state variable constraint, I(t) ≥ 0, is imposed so that the demand
is satisfied for all t. In other words, backlogging of demand is not per-
mitted. (An alternative formulation is to make h(I) become very large
when I becomes negative, i.e., to impose a stockout penalty cost.) The
control constraints keep the production rate P (t) between a specified
lower bound Pmin and a specified upper bound Pmax. Finally, the termi-
nal constraint I(T ) ≥ Imin is imposed so that the terminal inventory is
at least Imin.

The statement of the problem is lengthy because of the number of
variables, functions, and parameters which are involved. However, with
the production and inventory interpretations as given, it is not difficult
to see the reasons for each condition. In Chap. 6, various versions of this
model will be solved in detail. In Sect. 12.2, we will deal with a stochastic
version of this model.

Example 1.2 An Advertising Model. The various quantities that define
this model are summarized in Table 1.2.

We consider a special case of the Nerlove-Arrow advertising model
which will be discussed in detail in Chap. 7. The problem is to determine
the rate at which to advertise a product at each time t. Here the state
variable is advertising goodwill, G(t), which measures how well the prod-
uct is known at time t. We assume that there is a forgetting coefficient δ,
which measures the rate at which customers tend to forget the product.
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To counteract forgetting, advertising is carried out at a rate measured
by the control variable u(t). Hence, the state equation is

Ġ(t) = u(t)− δG(t),

with G(0) = G0 > 0 specifying the initial goodwill for the product.

Table 1.2: The advertising model of Example 1.2

State variable G(t) = Advertising goodwill

Control variable u(t) = Advertising rate

State equation Ġ(t) = u(t)− δG(t), G(0) = G0

Objective function Maximize

{
J =

∫ ∞

0
[π(G(t))− u(t)]e−ρtdt

}

State constraint · · ·

Control constraints 0 ≤ u(t) ≤ Q

Terminal condition · · ·

Exogenous function π(G) = Gross profit rate

Parameters δ = Goodwill decay constant

ρ = Discount rate

Q = Upper bound on advertising rate

G0 = Initial goodwill level

The objective function J requires special discussion. Note that the
integral defining J is from time t = 0 to time t = ∞; we will later
call a problem having an upper time limit of ∞, an infinite horizon
problem. Because of this upper limit, the integrand of the objective
function includes the discount factor e−ρt, where ρ > 0 is the (constant)
discount rate. Without this discount factor, the integral would (in most
cases) diverge to infinity. Hence, we will see that such a discount factor
is an essential part of infinite horizon models. The rest of the integrand
in the objective function consists of the gross profit rate π(G(t)), which
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results from the goodwill level G(t) at time t less the cost of advertising
assumed to be proportional to u(t) (proportionality factor = 1); thus
π(G(t))−u(t) is the net profit rate at time t. Also [π(G(t))−u(t)]e−ρt is
the net profit rate at time t discounted to time 0, i.e., the present value
of the time t profit rate. Hence, J can be interpreted as the total value of
discounted future profits, and is the quantity we are trying to maximize.

There are control constraints 0 ≤ u(t) ≤ Q, where Q is the upper
bound on the advertising rate. However, there is no state constraint. It
can be seen from the state equation and the control constraints that the
goodwill G(t) in fact never becomes negative.

You will find it instructive to compare this model with the previous
one and note the similarities and differences between the two.

Example 1.3 A Consumption Model. Rich Rentier plans to retire at
age 65 with a lump sum pension of W0 dollars. Rich estimates his re-
maining life span to be T years. He wants to consume his wealth during
these T retirement years, beginning at the age of 65, and leave a bequest
to his heirs in a way that will maximize his total utility of consumption
and bequest.

Since he does not want to take investment risks, Rich plans to put
his money into a savings account that pays interest at a continuously
compounded rate of r. In order to formulate Rich’s optimization problem,
let t = 0 denote the time when he turns 65 so that his retirement period
can be denoted by the interval [0, T ]. If we let the state variable W (t)
denote Rich’s wealth and the control variable C(t) ≥ 0 denote his rate of
consumption at time t ∈ [0, T ], it is easy to see that the state equation is

Ẇ (t) = rW (t)− C(t),

with the initial condition W (0) = W0 > 0. It is reasonable to require that
W (t) ≥ 0 and C(t) ≥ 0, t ∈ [0, T ]. Letting U(C) be the utility function
of consumption C and B(W ) be the bequest function of leaving a bequest
of amount W at time T, we see that the problem can be stated as an
optimal control problem with the variables, equations, and constraints
shown in Table 1.3.

Note that the objective function has two parts: first the integral of
the discounted utility of consumption from time 0 to time T with ρ as
the discount rate; and second the bequest function e−ρTB(W ), which
measures Rich’s discounted utility of leaving an estate W to his heirs



8 1. What Is Optimal Control Theory?

at time T. If he has no heirs and does not care about charity, then
B(W ) = 0. However, if he has heirs or a favorite charity to whom he
wishes to leave money, then B(W ) measures the strength of his desire
to leave an estate of amount W. The nonnegativity constraints on state
and control variables are obviously natural requirements that must be
imposed.

You will be asked to solve this problem in Exercise 2.1 after you
have learned the maximum principle in the next chapter. Moreover, a
stochastic extension of the consumption problem, known as a consump-
tion/investment problem, will be discussed in Sect. 12.4.

Table 1.3: The consumption model of Example 1.3

State variable W (t) = Wealth

Control variable C(t) = Consumption rate

State equation Ẇ (t) = rW (t)− C(t), W (0) = W0

Objective function Max

{
J =

∫ T

0
U(C(t))e−ρtdt+B(W (T ))e−ρT

}

State constraint W (t) ≥ 0

Control constraint C(t) ≥ 0

Terminal condition · · ·

Exogenous U(C) = Utility of consumption

Functions B(W ) = Bequest function

Parameters T = Terminal time

W0 = Initial wealth

ρ = Discount rate

r = Interest rate
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1.3 History of Optimal Control Theory

Optimal control theory is an extension of the calculus of variations (see
Appendix B), so we discuss the history of the latter first.

The creation of the calculus of variations occurred almost immedi-
ately after the formalization of calculus by Newton and Leibniz in the
seventeenth century. An important problem in calculus is to find an
argument of a function at which the function takes on its maximum or
minimum. The extension of this problem posed in the calculus of vari-
ations is to find a function which maximizes or minimizes the value of
an integral or functional of that function. As might be expected, the
extremum problem in the calculus of variations is much harder than the
extremum problem in differential calculus. Euler and Lagrange are gen-
erally considered to be the founders of the calculus of variations. Newton,
Legendre, and the Bernoulli brothers also contributed much to the early
development of the field.

Figure 1.1: The Brachistochrone problem

A celebrated problem first solved using the calculus of variations was
the path of least time or the Brachistochrone problem. The problem is
illustrated in Fig. 1.1. It involves finding the shape of a curve Γ con-
necting the two points A and B in the vertical plane with the property
that a bead sliding along the curve under the influence of gravity will
move from A to B in the shortest possible time. The problem was posed
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by Johann Bernoulli in 1696, and it played an important part in the
development of calculus of variations. It was solved by Johann Bernoulli,
Jakob Bernoulli, Newton, Leibnitz, and L’Hôpital. In Sect. B.4, we pro-
vide a solution to the Brachistochrone problem by using what is known
as the Euler-Lagrange equation, stated in Sect. B.2, and show that the
shape of the solution curve is represented by a cycloid.

In the nineteenth and early twentieth centuries, many mathemati-
cians contributed to the calculus of variations; these include Hamilton,
Jacobi, Bolza, Weierstrass, Carathéodory, and Bliss.

Converting calculus of variations problems into control theory prob-
lems requires one more conceptual step—the addition of control variables
to the state equations. Isaacs (1965) made such an extension in two-
person pursuit-evasion games in the period 1948–1955. Bellman (1957)
made a similar extension with the idea of dynamic programming.

Modern control theory began with the publication (in Russian in
1961 and English in 1962) of the book, The Mathematical Theory of
Optimal Processes, by Pontryagin et al. (1962). Well-known American
mathematicians associated with the maximum principle include Valen-
tine, McShane, Hestenes, Berkovitz, and Neustadt. The importance of
the book by Pontryagin et al. lies not only in a rigorous formulation of
a calculus of variations problem with constrained control variables, but
also in the proof of the maximum principle for optimal control problems.
See Pesch and Bulirsch (1994) and Pesch and Plail (2009) for historical
perspectives on the topics of the calculus of variations, dynamic pro-
gramming, and optimal control.

The maximum principle permits the decoupling of the dynamic prob-
lem over time, using what are known as adjoint variables or shadow
prices, into a series of problems, each of which holds at a single instant
of time. The optimal solution of the instantaneous problems can be
shown to give the optimal solution to the overall problem.

In this book we will be concerned principally with the application of
the maximum principle in its various forms to find the solutions of a wide
variety of applied problems in management science and economics. It is
hoped that the reader, after reading some of these problems and their
solutions, will appreciate, as we do, the importance of the maximum
principle.

Some important books and surveys of the applications of the
maximum principle to management science and economics are Con-
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nors and Teichroew (1967), Arrow and Kurz (1970), Hadley and
Kemp (1971), Bensoussan et al. (1974), Stöppler (1975), Clark (1976),
Sethi (1977a, 1978a), Tapiero (1977, 1988), Wickwire (1977), Book-
binder and Sethi (1980), Lesourne and Leban (1982), Tu (1984), Fe-
ichtinger and Hartl (1986), Carlson and Haurie (1987b), Seierstad
and Sydsæter (1987), Erickson (2003), Léonard and Long (1992),
Kamien and Schwartz (1992), Van Hilten et al. (1993), Feichtinger
et al. (1994a), Maimon et al. (1998), Dockner et al. (2000), Ca-
puto (2005), Grass et al. (2008), and Bensoussan (2011). Nev-
ertheless, we have included in our bibliography many works of
interest.

1.4 Notation and Concepts Used

In order to make the book readable, we will adopt the following notation
which will hold throughout the book. In addition, we will define some
important concepts that are required, including those of concave, convex
and affine functions, and saddle points.

We use the symbol “=” to mean “is equal to” or “is defined to be
equal to” or “is identically equal to” depending on the context. The
symbol “:=” means “is defined to be equal to,” the symbol “≡” means
“is identically equal to,” and the symbol “≈” means “is approximately
equal to.” The double arrow “⇒” means “implies,” “∀” means “for all,”
and “∈” means “is a member of.” The symbol � indicates the end of a
proof.

Let y be an n-component column vector and z be an m-component
row vector, i.e.,

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (y1, . . . , yn)
T and z = (z1, . . . , zm),

where the superscript T on a vector (or, a matrix) denotes the transpose
of the vector (or, the matrix). At times, when convenient and not con-
fusing, we will use the superscript ′ for the transpose operation. If y and



12 1. What Is Optimal Control Theory?

z are functions of time t, a scalar, then the time derivatives ẏ := dy/dt
and ż := dz/dt are defined as

ẏ =
dy

dt
= (ẏ1, · · · , ẏn)T and ż =

dz

dt
= (ż1, . . . , żm),

where ẏi and żj denote the time derivatives dyi/dt and dzj/dt, respec-
tively.

When n = m, we can define the inner product

zy = Σn
i=1ziyi. (1.7)

More generally, if

A = {aij} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1k

a21 a22 · · · a2k

...
... · · · ...

am1 am2 · · · amk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an m×k matrix and B = {bij} is a k×n matrix, we define the matrix
product C = {cij} = AB, which is an m× n matrix with components

cij = Σk
r=1airbrj . (1.8)

Let Ek denote the k-dimensional Euclidean space. Its elements are
k-component vectors, which may be either row or column vectors, de-
pending on the context. Thus in (1.7), y ∈ En is a column vector and
z ∈ Em is a row vector.

Next, in Sects. 1.4.1–1.4.4, we provide the notation for multivariate
differentiation. Needless to say, the functions introduced are assumed to
be appropriately differentiable for their derivatives being defined.

1.4.1 Differentiating Vectors and Matrices with Respect
To Scalars

Let f : E1 → Ek be a k-dimensional function of a scalar variable t. If f
is a row vector, then we define

df

dt
= ft = (f1t, f2t, · · · , fkt), a row vector.
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We will also use the notation f
′
= (f

′
1, f

′
2, · · · , f

′
k) and f

′
(t) in place of ft.

If f is a column vector, then

df

dt
= ft =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1t

f2t

...

fkt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (f1t, f2t, · · · , fkt)T , a column vector.

Once again, f(t) may also be written as f
′
or f

′
(t).

A similar rule applies if a matrix function is differentiated with re-
spect to a scalar.

Example 1.4 Let f(t) =

⎡
⎢⎣ t2 2t+ 3

e3t 1/t

⎤
⎥⎦ . Find ft.

Solution ft =

⎡
⎢⎣ 2t 2

3e3t −1/t2

⎤
⎥⎦ .

1.4.2 Differentiating Scalars with Respect to Vectors

If F (y, z) is a scalar function defined on En×Em with y an n-dimensional
column vector and z an m-dimensional row vector, then the gradients
Fy and Fz are defined, respectively, as

Fy = (Fy1 , · · · , Fyn), a row vector, (1.9)

and
Fz = (Fz1 , · · · , Fzm), a row vector, (1.10)

where Fyi and Fzj denote the partial derivatives with respect to the
subscripted variables.

Thus, we always define the gradient with respect to a row or column
vector as a row vector. Alternatively, Fy and Fz are also denoted as ∇yF
and ∇zF, respectively. In this notation, if F is a function of y only or
z only, then the subscript can be dropped and the gradient of F can be
written simply as ∇F.
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Example 1.5 Let F (y, z) = y1
2y3z2 + 3y2 ln z1 + y1y2, where y =

(y1, y2, y3)
T and z = (z1, z2). Obtain Fy and Fz.

Solution Fy = (Fy1 , Fy2 , Fy3) = (2y1y3z2 + y2, 3 ln z1 + y1, y1
2z2) and

Fz = (Fz1 , Fz2) = (3y2/z1, y1
2y3).

1.4.3 Differentiating Vectors with Respect to Vectors

If f : En ×Em → Ek is a k-dimensional vector function, f either row or
column, i.e.,

f = (f1, · · · , fk) or f = (f1, · · · , fk)T ,
where each component fi = fi(y, z) depends on the column vector y ∈ En

and the row vector z ∈ Em, then fz will denote the k ×m matrix

fz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1/∂z1, ∂f1/∂z2, · · · ∂f1/∂zm

∂f2/∂z1, ∂f2/∂z2, · · · ∂f2/∂zm

...
... · · · ...

∂fk/∂z1, ∂fk/∂z2, · · · ∂fk/∂zm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= {∂fi/∂zj}, (1.11)

and fy will denote the k × n matrix

fy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1/∂y1 ∂f1/∂y2 · · · ∂f1/∂yn

∂f2/∂y1 ∂f2/∂y2 · · · ∂f2/∂yn

...
... · · · ...

∂fk/∂y1 ∂fk/∂y2 · · · ∂fk/∂yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= {∂fi/∂yj}. (1.12)

Matrices fz and fy are known as Jacobian matrices. It should be
emphasized that the rule of defining a Jacobian does not depend on the
row or column nature of the function or its arguments. Thus,

fz = (fT )z = fzT = (fT )zT .

Example 1.6 Let f : E3×E2 → E3 be defined by f(y, z) = (y1
2y3z2+

3y2 ln z1, z1z2
2y3, z1y1 + z2y2)

T with y = (y1, y2, y3)
T and z = (z1, z2).

Obtain fz and fy.
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Solution.

fz =

⎡
⎢⎢⎢⎢⎢⎣

3y2/z1 y1
2y3

z2
2y3 2z1z2y3

y1 y2

⎤
⎥⎥⎥⎥⎥⎦
,

fy =

⎡
⎢⎢⎢⎢⎢⎣

2y1y3z2 3 ln z1 y1
2z2

0 0 z1z2
2

z1 z2 0

⎤
⎥⎥⎥⎥⎥⎦
.

Applying the rule (1.11) to Fy in (1.9), we obtain Fyz = (Fy)z to be
the n×m matrix

Fyz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fy1z1 Fy1z2 · · · Fy1zm

Fy2z1 Fy2z2 · · · Fy2zm

...
... · · · ...

Fynz1 Fynz2 · · · Fynzm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

{
∂2F

∂yi∂zj

}
. (1.13)

Applying the rule (1.12) to Fz in (1.10), we obtain Fzy = (Fz)y to be
the m× n matrix

Fzy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fz1y1 Fz1y2 · · · Fz1yn

Fz2y1 Fz2y2 · · · Fz2yn

...
... · · · ...

Fzmy1 Fzmy2 · · · Fzmyn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

{
∂2F

∂zi∂yj

}
. (1.14)

Note that if F (y, z) is twice continuously differentiable, then we also have
Fzy = (Fyz)

T .

Example 1.7 Obtain Fyz and Fzy for F (y, z) specified in Example 1.5.
Since the given F (y, z) is twice continuously differentiable, check also
that Fzy = (Fyz)

T .
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Solution. Applying rule (1.11) to Fy obtained in Example 1.5 and rule
(1.12) to Fz obtained in Example 1.5, we have, respectively,

Fyz =

⎡
⎢⎢⎢⎢⎢⎣

0 2y1y3

3/z1 0

0 y1
2

⎤
⎥⎥⎥⎥⎥⎦
and Fzy =

⎡
⎢⎣ 0 3/z1 0

2y1y3 0 y1
2

⎤
⎥⎦ .

Also, it is easily seen from these matrices that Fzy = (Fyz)
T .

1.4.4 Product Rule for Differentiation

Let g be an n-component row vector function and f be an n-component
column vector function of an n-component vector x. Then in Exercise 1.9,
you are asked to show that

(gf)x = gfx + fT gx = gfx + fT (gT )x. (1.15)

In Exercise 1.10, you are asked to show further that with g = Fx, where
x ∈ En and the function F : En → E1 is twice continuously differentiable
so that Fxx = (Fxx)

T , called the Hessian, then

(gf)x=(Fxf)x=Fxfx + fTFxx = Fxfx + (Fxxf)
T . (1.16)

The latter result will be used in Chap. 2 for the derivation of (2.25).
Many mathematical expressions in this book will be vector equations

or inequalities involving vectors and vector functions. Since scalars are
a special case of vectors, these expressions hold just as well for scalar
equations or inequalities involving scalars and scalar functions. In fact,
it may be a good idea to read them as scalar expressions on the first
reading. Then in the second and further readings, the extension to vector
form will be easier.

1.4.5 Miscellany

The norm of an m-component row or column vector z is defined to be

‖ z ‖=
√
z21 + · · ·+ z2m. (1.17)

The norm of a vector is commonly used to define a neighborhood Nz0 of
a point, e.g.,

Nz0 = {z| ‖ z − z0 ‖< ε} , (1.18)

where ε > 0 is a small positive real number.
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We will occasionally make use of the so-called “little-o” notation o(z).
A function F (z) : Em → E1 is said to be of the order o(z), if

lim
‖z‖→0

F (z)

‖ z ‖ = 0.

The most common use of this notation will be to collect higher order
terms in a series expansion.

In the continuous-time models discussed in this book, we generally
will use x(t) to denote the state (column) vector, u(t) to denote the
control (column) vector, and λ(t) to denote the adjoint (row) vector.
Whenever there is no possibility of confusion, we will suppress the time
indicator (t) from these vectors and write them as x, u, and λ, respec-
tively. When talking about optimal state and control vectors, we put an
asterisk “∗” as a superscript, i.e., as x∗ and u∗, respectively, whereas u
will refer to an admissible control with x as the corresponding state. No
asterisk, however, needs to be put on the adjoint vector λ as it is only
defined along an optimal path.

Thus, the values of the control, state and adjoint variables at time t
along an optimal path will be written as u∗(t), x∗(t), and λ(t). When the
control is expressed in terms of the state, it is called a feedback control.
With an abuse of notation, we will express it as u(x), or u(x, t) if an
explicit time dependence is required. Likewise, the optimal feedback
control will be denoted as u∗(x) or u∗(x, t).

We also use the simplified notation x′(t) to mean (x(t))′, the trans-
pose of x(t). Likewise, for a matrix A(t), we use A′(t) to mean (A(t))′

or the transpose of A(t), and A−1(t) to mean (A(t))−1 or the inverse of
A(t), when the inverse exists.

The norm of an m-dimensional row or column vector function z(t),
t ∈ [0, T ], is defined to be

‖ z ‖=
[
Σm
j=1

∫ T

0
z2j (τ)dτ

] 1
2

. (1.19)

In Chap. 4 and some other chapters, we will encounter functions of
time with jumps. For such functions, it is useful to have the concepts of
left and right limits. With ε > 0, these are defined, respectively, for a
function x(t) as

x(T−) = lim
τ↑T

x(τ) = lim
ε→0

x(T − ε) and x(T+) = lim
τ↓T

x(τ) = lim
ε→0

x(T + ε).

(1.20)
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These limits are illustrated for a function x(t) graphed in Fig. 1.2. Here,

x(0) = 1, x(0+) = 2,

x(1−) = 3, x(1+) = x(1) = 4,

x(2−) = 3, x(2) = 2, x(2+) = 1,

x(3−) = 2, x(3) = 3.

2

( )x t

t
0

3

4

1

1 2 3

(

[

) )

)

(

Figure 1.2: Illustration of left and right limits

In the discrete-time models introduced in Chap. 8 and applied in
Chap. 9, we use xk, uk, and λk to denote state, control, and adjoint
vectors, respectively, at time k, k = 0, 1, 2, . . . , T. We also denote the
difference operator by

Δxk := xk+1 − xk.

As in the continuous-time case, the optimal values of the state variable
xk and the control variable uk will have an asterisk as a superscript;
thus, xk∗ and uk∗ denote the corresponding quantities along an optimal
path. Once again, the adjoint variable λk along an optimal path will not
have an asterisk.
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In order to specify the optimal control for linear control problems,
we will introduce a special notation, called the bang function, as

bang[b1, b2;W ] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1 if W < 0,

arbitrary if W = 0,

b2 if W > 0.

(1.21)

In order to specify the optimal control for linear-quadratic problems,
we define another special function, called the sat function, as

sat[y1, y2;W ] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1 if W < y1,

W if y1 ≤ W ≤ y2,

y2 if W > y2.

(1.22)

The word “sat” is short for the word “saturation.” The latter name
comes from an electrical engineering application to saturated amplifiers.

In several applications to be discussed, we will need the concept of
impulse control, which is sometimes needed in cases when an unbounded
control can be applied for a very short time. An example is the adver-
tising model in Table 1.2 when Q = ∞. We apply unbounded control for
a short time in order to cause a jump discontinuity in the state variable.
For the example in Table 1.2, this might mean an intense advertising
campaign (a media blitz) in order to increase advertising goodwill by a
finite amount in a very short time. The impulse function defined be-
low is required to evaluate the integral in the objective function, which
measures the cost of the intense advertising campaign.

Suppose we want to apply an impulse control at time t to change the
state variable from x(t) = x1 to the value x2 “immediately” after t, i.e.,
x(t+) = x2. To compute its contribution to the objective function (1.2),
we use the following procedure: given ε > 0 and a constant control u(ε),
integrate (1.1) from t to t + ε with x(t) = x1 and choose u(ε) so that
x(t+ ε) = x2; this gives the trajectory x(τ ; ε, u(ε)) for τ ∈ [t, t+ ε]. We
can now compute

imp(x1, x2; t) = lim
ε→0

∫ t+ε

t
F (x, u, τ)dτ. (1.23)
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If the impulse is applied only at time t, then we can calculate (1.2) as

J =

∫ t

0
F (x, u, τ)dτ + imp(x1, x2; t) +

∫ T

t
F (x, u, τ)dτ + S[x(T ), T ].

(1.24)

If there are several instants at which impulses are applied, then this
procedure is easily extended. Examples of the use of (1.24) occur in
Chaps. 5 and 6. We frequently omit t in (1.23) when the impulse function
is independent of t.

1.4.6 Convex Set and Convex Hull

A set D ⊂ En is a convex set if for each pair of points y, z ∈ D, the
entire line segment joining these two points is also in D, i.e.,

py + (1− p)z ∈ D, for each p ∈ [0, 1].

Given xi ∈ En, i = 1, 2, . . . , l, we define y ∈ En to be a convex
combination of xi ∈ En, if there exists pi ≥ 0 such that

l∑
i=1

pi = 1 and y =
l∑

i=1

pix
i.

The convex hull of a set D ⊂ En is

coD :=

{
l∑

i=1

pix
i :

l∑
i=1

pi = 1, pi ≥ 0, xi ∈ D, i = 1, 2, . . . , l

}
.

In other words, coD is the set of all convex combinations of points in D.

1.4.7 Concave and Convex Functions

A real-valued function ψ defined on a convex set D ⊂ En, i.e., ψ : D →
E1, is concave, if for each pair of points y, z ∈ D and for all p ∈ [0, 1],

ψ(py + (1− p)z) ≥ pψ(y) + (1− p)ψ(z).
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If the inequalities in the above definition are strict for all y, z ∈ D
with y �= z, and 0 < p < 1, then ψ is called a strictly concave
function.

In the single dimensional case of n = 1, there is an enlightening
geometrical interpretation. Namely, ψ(x) defined on an interval D =
[a, b] is concave if, for each pair of points on the graph of ψ(x), the line
segment joining these two points lies entirely below or on the graph of
ψ(x); see Fig. 1.3.

Reverting back to the n-dimensional case, if ψ is a differentiable
function on a convex set D ⊂ En, then it is concave, if for each pair of
points y, z ∈ D,

ψ(z) ≤ ψ(y) + ψx(y)(z − y),

where we understand y and z to be column vectors. Furthermore, if the
function ψ is twice differentiable, then it is concave, if at each point in
D, the n × n symmetric matrix ψxx is negative semidefinite, i.e., all of
its eigenvalues are non-positive.

Finally, if ψ is a concave function, then the negative of the function
ψ, i.e., −ψ : D → E1, is a convex function.

Figure 1.3: A concave function
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1.4.8 Affine Function and Homogeneous Function of
Degree k

A function ψ : En → E1 is said to be affine, if the function ψ(x)−ψ(0) is
linear. Thus, ψ can be represented as ψ(x1, x2, . . . , xn) =

∑n
i=1 aixi + b,

where ai, i = 1, 2, . . . , n, and b are scalar constants.
A function ψ : En → E1 is said to be homogeneous of degree k, if

ψ(bx) = bkψ(x), where b > 0 is a scalar constant.
In economics, we often assume that a firm’s production function is ho-

mogeneous of degree 1, i.e., if all inputs are multiplied by b, then output is
multiplied by b. Such a production function is said to exhibit the property
of constant return to scale. A linear function ψ(x) = ax =

∑n
i=1 aixi is a

simple example of a homogeneous function of degree 1. Other examples
are ψ(x) = min{xi, i = 1, 2, . . . , n} and ψ(x) = a(Πn

i=1xi
αi)1/

∑n
i=1 αi

with a > 0 and αi > 0, i = 1, 2, . . . , n. An important special case of
the last example, known as the Cobb-Douglas production function, is
ψ(K,L) = aKα1Lα2 with α1 + α2 = 1, where K and L are factors of
production called capital and labor, respectively, and a denotes the total
factor productivity.

1.4.9 Saddle Point

An important concept in two-person zero-sum games is that of a saddle
point. Let ψ(x, y), a real-valued function defined on the space En × Em,
i.e., ψ : En × Em → E1, be the payoff of player 1 and −ψ(x, y) be the
payoff of player 2, when they make decisions x and y, respectively, in a
zero-sum game. A point (x̂, ŷ) ∈ En × Em is called a saddle point of
ψ(x, y) or of the game, if

ψ(x̂, y) ≥ ψ(x̂, ŷ) ≥ ψ(x, ŷ) for all x ∈ En and y ∈ Em.

Note that a saddle point may not exist, and even if it exists, it may not
be unique. Note also that

ψ(x̂, ŷ) = max
x

ψ(x, ŷ) = min
y

ψ(x̂, y).

Intuitively, this could produce a picture like a horse saddle as shown
in Fig. 1.4, hence the name saddle point for a point like (x̂, ŷ). This
concept will be used in Sect. 13.1.
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Figure 1.4: An illustration of a saddle point

1.4.10 Linear Independence and Rank of a Matrix

A set of vectors a1, a2, . . . , am in En, m ≤ n, is said to be linearly de-
pendent if there exist scalars pi not all zero such that

m∑
i=1

piai = 0. (1.25)

If (1.25) holds only when p1 = p2 = · · · = pm = 0, then the vectors are
said to be linearly independent. In particular, if one of the vectors in the
set {a1, a2, . . . , am} is a null vector, then the set is linearly dependent.

The rank of an m × n matrix A, written rank(A), is the maximum
number of linearly independent rows or, equivalently, the maximum num-
ber of linearly independent columns of A. An m × n matrix is of full
rank if

rank(A) = min{m,n}.

1.5 Plan of the Book

The book has thirteen chapters and five appendices: A, B, C, D, and E,
covering a variety of topics which are listed in the table of contents and
explained in the prefaces.

In any given chapter, say Chap. 7, sections are numbered consec-
utively as 7.1, 7.2, 7.3, etc. Subsections are numbered consecutively
within each section, i.e., 7.2.1, 7.2.2, 7.2.3, etc. Mathematical expres-
sions are numbered consecutively by chapter as (7.1), (7.2), (7.3), etc.
Theorems are also numbered consecutively by chapter as Theorem 7.1,
Theorem 7.2, Theorem 7.3, etc. Similarly, definitions, examples, exer-
cises, figures, propositions, remarks, and tables are numbered consec-
utively by chapter. These elements will be referenced throughout the
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book by use of their designated numbers. The same scheme is used in
the appendices, thus, sections in Appendix B, for example, are numbered
as B.1, B.2, B.3, etc.

Exercises for Chapter 1

E 1.1 In Example 1.1, let the functions and parameters of the
production- inventory model be given by:

h(I) = 10I, c(P ) = 20P, T = 10, I0 = 1, 000

Pmin = 600, Pmax = 1200, Imin = 800, S(t) = 900 + 10t.

(a) Set P (t) = 1000 for 0 ≤ t ≤ 10. Determine whether this control
is feasible; if it is feasible, compute the value J of the objective
function.

(b) If P (t) = 800, show that the terminal constraint is violated and
hence the control is infeasible.

(c) If P (t) = Pmin for 0 ≤ t ≤ 6 and P (t) = Pmax for 6 < t ≤ 10,
show that the control is infeasible because the state constraint is
violated.

E 1.2 In Example 1.1, suppose there is a cost associated with changing
the rate of production. One way to formulate this problem is to let
the control variable u(t) denote the rate of change of the production
rate P (t), having a cost cu2 associated with such changes, where c > 0.
Formulate the new problem.

Hint: Let P (t) be an additional state variable.

E 1.3 For the advertising model in Example 1.2, let π(G) = 2
√
G, δ =

0.05, ρ = 0.2, Q = 2, and G0 = 16. Set u(t) = 0.8 for t ≥ 0, and show
that G(t) is constant for all t. Compute the value J of the objective
function.

E 1.4 In Example 1.2, suppose G measures the number of people who
know about the product. Hence, if A is the total population, then A−G
is the number of people who do not know about the product. If u(t)
measures the advertising rate at time t, assume that u(A − G) is the
corresponding rate of increase of G due to this advertising. Formulate
the new model.
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E 1.5 Rich Rentier in Example 1.3 has initial wealth W0 = $1, 000, 000.
Assume B = 0, ρ = 0.1, r = 0.15, and assume that Rich expects to live
for exactly 20 years.

(a) What is the maximum constant consumption level that Rich can
afford during his remaining life?

(b) If Rich’s utility function is U(C) = lnC, what is the present value
of the total utility in part (a)?

(c) Suppose Rich sets aside $100,000 to start the Rentier Foundation.
What is the maximum constant grant level that the foundation can
support if it is to last forever?

E 1.6 Suppose Rich in Exercise 1.5 takes on a part-time job, which
yields an income of y(t) at time t. Assume y(t) = 10, 000e−0.05t and that
he has a bequest function B(W ) = 0.5 lnW.

(a) Reformulate this new optimal control problem.

(b) If Rich (no longer a rentier) consumes at the constant rate found in
Exercise 1.5(a), find his terminal wealth and his new total utility.

E 1.7 Consider the following educational policy question. Let S(t) de-
note the total number of scientists at time t, and let δ be the retirement
rate of scientists. Let E(t) be the number of teaching scientists and R(t)
be the number of research scientists, so that S(t) = E(t)+R(t). Assume
γE(t) is the number of newly graduated scientists at time t, of which
the policy allocates uγE(t) to the pool of teachers, where 0 ≤ u ≤ 1.
The remaining graduates are added to the pool of researchers. The gov-
ernment has a target of maximizing the function αE(T ) + βR(T ) at a
given future time T, where α and β are positive constants. Formulate
the optimal control problem for the government.

E 1.8 For F (x, y) defined in Example 1.5, obtain the matrices Fxx and
Fyy.

E 1.9 Let x ∈ Em, g be an n-component row vector function of x, and
f be an n-component column vector function of x. Use the ordinary
product rule of calculus for functions of scalars to derive the formula

(gf)x = gfx + fT (gT )x = gfx + fT gx.
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E 1.10 Let F be a scalar function of x ∈ En and f as defined in
Exercise 1.9. Assume F to be twice continuously differentiable. Show
that

(Fxf)x=Fxfx + fTFxx = Fxfx + fT (Fxx)
T = Fxfx + (Fxxf)

T .

Hint: Set the gradient Fx = g, a row vector, and then use Exer-
cise 1.9 to derive the first equality. Note in connection with the second
equality that the function F being twice continuously differentiable
implies that Fxx = (Fxx)

T .

E 1.11 For Fy obtained in Example 1.5 and f defined in Example 1.6,
obtain (Fyf)y and verify the relation shown in Exercise 1.10.

E 1.12 Use the bang function defined in (1.21) to sketch the optimal
control

u∗(t) = bang[−1, 1;W (t)] for 0 ≤ t ≤ 5,

when

(a) W (t) = t− 2

(b) W (t) = t2 − 4t+ 3

(c) W (t) = sinπt.

E 1.13 Use the sat function defined in (1.22) to sketch the optimal con-
trol

u∗(t) = sat[2, 3;W (t)] for 0 ≤ t ≤ 5,

when

(a) W (t) = 4− t

(b) W (t) = 2 + t2

(c) W (t) = 4− 4e−t.

E 1.14 Evaluate the function imp(G1, G2; t) for the advertising model
of Table 1.2 when G2 > G1, Q = ∞, and π(G) = pG, where p is a
constant.
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