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Preface to Third Edition

The third edition of this book will not see my co-author Gerald L.
Thompson, who very sadly passed away on November 9, 2009. Gerry
and I wrote the first edition of the 1981 book sitting practically side by
side, and I learned a great deal about book writing in the process. He
was also my PhD supervisor and mentor and he is greatly missed.

After having used the second edition of the book in the classroom
for many years, the third edition arrives with new material and many
improvements. Examples and exercises related to the interpretation of
the adjoint variables and Lagrange multipliers are inserted in Chaps. 2—
4. Direct maximum principle is now discussed in detail in Chap. 4 along
with the existing indirect maximum principle from the second edition.
Chattering or relaxed controls leading to pulsing advertising policies are
introduced in Chap.7. An application to information systems involving
chattering controls is added as an exercise.

The objective function in Sect. 11.1.3 is changed to the more popular
objective of maximizing the total discounted society’s utility of consump-
tion. Further discussion leading to obtaining a saddle-point path on the
phase diagram leading to the long-run stationary equilibrium is provided
in Sect.11.2. For this purpose, a global saddle-point theorem is stated
in Appendix D.7. Also inserted in Appendix D.8 is a discussion of the
Sethi-Skiba points which lead to nonunique stable equilibria. Finally,
a new Sect. 11.4 contains an adverse selection model with continuum of
the agent types in a principal-agent framework, which requires an appli-
cation of the maximum principle.

Chapter 12 of the second edition is removed except for the material
on differential games and the distributed parameter maximum principle.
The differential game material joins new topics of stochastic Nash differ-
ential games and Stackelberg differential games via their applications to
marketing to form a new Chap. 13 titled Differential Games. As a result,
Chap. 13 of the second edition becomes Chap.12. The material on the
distributed parameter maximum principle is now Appendix D.9.

The exposition is revised in some places for better reading. New
exercises are added and the list of references is updated. Needless to say,
the errors in the second edition are corrected, and the notation is made
consistent.
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viii Preface to Third Edition

Thanks are due to Huseyin Cavusoglu, Andrei Dmitruk, Gustav Fe-
ichtinger, Richard Hartl, Yonghua Ji, Subodha Kumar, Sirong Lao, Hel-
mut Maurer, Ernst Presman, Anyan Qi, Andrea Seidl, Atle Seierstad,
Xi Shan, Lingling Shi, Xiahong Yue, and the students in my Optimal
Control Theory and Applications course over the years for their sug-
gestions for improvement. Special thanks go to Qi (Annabelle) Feng
for her dedication in updating and correcting the forthcoming solution
manual that went with the first edition. I cannot thank Barbara Gordon
and Lindsay Wilson enough for their assistance in the preparation of
the text, solution manual, and presentation materials. In addition, the
meticulous copy editing of the entire book by Lindsay Wilson is much
appreciated. Anshuman Chutani, Pooja Kamble, and Shivani Thakkar
are also thanked for their assistance in drawing some of the figures in
the book.

Richardson, TX, USA Suresh P. Sethi
June 2018



Preface to Second Edition

The first edition of this book, which provided an introduction to op-
timal control theory and its applications to management science to many
students in management, industrial engineering, operations research and
economics, went out of print a number of years ago. Over the years we
have received feedback concerning its contents from a number of instruc-
tors who taught it, and students who studied from it. We have also kept
up with new results in the area as they were published in the literature.
For this reason we felt that now was a good time to come out with a
new edition. While some of the basic material remains, we have made
several big changes and many small changes which we feel will make the
use of the book easier.

The most visible change is that the book is written in Latex and the
figures are drawn in CorelDRAW, in contrast to the typewritten text
and hand-drawn figures of the first edition. We have also included some
problems along with their numerical solutions obtained using Excel.

The most important change is the division of the material in the
old Chap. 3, into Chaps.3 and 4 in the new edition. Chapter 3 now
contains models having mixed (control and state) constraints, current
value formulations, terminal conditions and model types, while Chap. 4
covers the more difficult topic of pure state constraints, together with
mixed constraints. Each of these chapters contain new results that were
not available when the first edition was published.

The second most important change is the expansion of the material in
the old Sect. 12.4 on stochastic optimal control theory and its becoming
the new Chap.13. The new Chap.12 now contains the following ad-
vanced topics on optimal control theory: differential games, distributed
parameter systems, and impulse control. The new Chap. 13 provides a
brief introduction to stochastic optimal control problems. It contains
formulations of simple stochastic models in production, marketing and
finance, and their solutions. We deleted the old Chap.11 of the first
edition on computational methods, since there are a number of excellent
references now available on this topic. Some of these references are listed
in Sect. 4.2 of Chap.4 and Sect. 8.3 of Chap. 8.
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b'e Preface to Second Edition

The emphasis of this book is not on mathematical rigor, but rather
on developing models of realistic situations faced in business and man-
agement. For that reason we have given, in Chaps. 2 and 8, proofs of the
continuous and discrete maximum principles by using dynamic program-
ming and Kuhn-Tucker theory, respectively. More general maximum
principles are stated without proofs in Chaps. 3, 4 and 12.

One of the fascinating features of optimal control theory is its ex-
traordinarily wide range of possible applications. We have covered some
of these as follows: Chap.5 covers finance; Chap. 6 considers production
and inventory problems; Chap.7 covers marketing problems; Chap.9
treats machine maintenance and replacement; Chap. 10 deals with prob-
lems of optimal consumption of natural resources (renewable or ex-
haustible); and Chap. 11 discusses a number of applications of control
theory to economics. The contents of Chaps.12 and 13 have been de-
scribed earlier.

Finally, four appendices cover either elementary material, such as
the theory of differential equations, or very advanced material, whose
inclusion in the main text would interrupt its continuity. At the end
of the book is an extensive but not exhaustive bibliography of relevant
material on optimal control theory including surveys of material devoted
to specific applications.

We are deeply indebted to many people for their part in making this
edition possible. Onur Arugaslan, Gustav Feichtinger, Neil Geismar,
Richard Hartl, Steffen Jgrgensen, Subodha Kumar, Helmut Maurer, Ger-
hard Sorger, and Denny Yeh made helpful comments and suggestions
about the first edition or preliminary chapters of this revision. Many
students who used the first edition, or preliminary chapters of this revi-
sion, also made suggestions for improvements. We would like to express
our gratitude to all of them for their help. In addition we express our
appreciation to Eleanor Balocik, Frank (Youhua) Chen, Feng Cheng,
Howard Chow, Barbara Gordon, Jiong Jiang, Kuntal Kotecha, Ming
Tam, and Srinivasa Yarrakonda for their typing of the various drafts of
the manuscript. They were advised by Dirk Beyer, Feng Cheng, Sub-
odha Kumar, Young Ryu, Chelliah Sriskandarajah, Wulin Suo, Houmin
Yan, Hanqgin Zhang, and Qing Zhang on the technical problems of using
LATEX.

We also thank our wives and children—Andrea, Chantal, Anjuli,
Dorothea, Allison, Emily, and Abigail—for their encouragement and un-
derstanding during the time-consuming task of preparing this revision.



Preface to Second Edition xi

Finally, while we regret that lack of time and pressure of other du-
ties prevented us from bringing out a second edition soon after the first
edition went out of print, we sincerely hope that the wait has been worth-
while. In spite of the numerous applications of optimal control theory
which already have been made to areas of management science and eco-
nomics, we continue to believe there is much more that remains to be
done. We hope the present revision will rekindle interest in furthering
such applications, and will enhance the continued development in the

field.

Richardson, TX, USA Suresh P. Sethi
Pittsburgh, PA, USA Gerald L. Thompson
January 2000



Preface to First Edition

The purpose of this book is to exposit, as simply as possible, some
recent results obtained by a number of researchers in the application of
optimal control theory to management science. We believe that these re-
sults are very important and deserve to be widely known by management
scientists, mathematicians, engineers, economists, and others. Because
the mathematical background required to use this book is two or three
semesters of calculus plus some differential equations and linear algebra,
the book can easily be used to teach a course in the junior or senior
undergraduate years or in the early years of graduate work. For this
purpose, we have included numerous worked-out examples in the text,
as well as a fairly large number of exercises at the end of each chapter.
Answers to selected exercises are included in the back of the book. A
solutions manual containing completely worked-out solutions to all of
the 205 exercises is also available to instructors.

The emphasis of the book is not on mathematical rigor, but on mod-
eling realistic situations faced in business and management. For that
reason, we have given in Chaps. 2 and 7 only heuristic proofs of the con-
tinuous and discrete maximum principles, respectively. In Chap.3 we
have summarized, as succinctly as we can, the most important model
types and terminal conditions that have been used to model manage-
ment problems. We found it convenient to put a summary of almost all
the important management science models on two pages: see Tables 3.1
and 3.3.

One of the fascinating features of optimal control theory is the ex-
traordinarily wide range of its possible applications. We have tried to
cover a wide variety of applications as follows: Chap.4 covers finance;
Chap. 5 considers production and inventory; Chap.6 covers marketing;
Chap. 8 treats machine maintenance and replacement; Chap. 9 deals with
problems of optimal consumption of natural resources (renewable or ex-
haustible); and Chap. 10 discusses several economic applications.

In Chap. 11 we treat some computational algorithms for solving op-
timal control problems. This is a very large and important area that
needs more development.

xiii



xiv Preface to First Edition

Chapter 12 treats several more advanced topics of optimal con-
trol: differential games, distributed parameter systems, optimal filtering,
stochastic optimal control, and impulsive control. We believe that some
of these models are capable of wider applications and further theoretical
development.

Finally, four appendixes cover either elementary material, such as
differential equations, or advanced material, whose inclusion in the main
text would spoil its continuity. Also at the end of the book is a bibliogra-
phy of works actually cited in the text. While it is extensive, it is by no
means an exhaustive bibliography of management science applications
of optimal control theory. Several surveys of such applications, which
contain many other important references, are cited.

We have benefited greatly during the writing of this book by hav-
ing discussions with and obtaining suggestions from various colleagues
and students. Our special thanks go to Gustav Feichtinger for his care-
ful reading and suggestions for improvement of the entire book. Carl
Norstrom contributed two examples to Chaps. 4 and 5 and made many
suggestions for improvement. Jim Bookbinder used the manuscript for
a course at the University of Toronto, and Tom Morton suggested some
improvements for Chap. 5. The book has also benefited greatly from var-
ious coauthors with whom we have done research over the years. Both of
us also have received numerous suggestions for improvements from the
students in our applied control theory courses taught during the past
several years. We would like to express our gratitude to all these people
for their help.

The book has gone through several drafts, and we are greatly in-
debted to Eleanor Balocik and Rosilita Jones for their patience and
careful typing.

Although the applications of optimal control theory to management
science are recent and many fascinating applications have already been
made, we believe that much remains to be done. We hope that this book
will contribute to the popularity of the area and will enhance future
developments.

Toronto, ON, Canada Suresh P. Sethi
Pittsburgh, PA, USA Gerald L. Thompson
August 1981
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Chapter 1

What Is Optimal Control
Theory?

Many management science applications involve the control of dynamic
systems, i.e., systems that evolve over time. They are called continuous-
time systems or discrete-time systems depending on whether time varies
continuously or discretely. We will deal with both kinds of systems in this
book, although the main emphasis will be on continuous-time systems.

Optimal control theory is a branch of mathematics developed to find
optimal ways to control a dynamic system. The purpose of this book is
to give an elementary introduction to the mathematical theory, and then
apply it to a wide variety of different situations arising in management
science. We have deliberately kept the level of mathematics as simple as
possible in order to make the book accessible to a large audience. The
only mathematical requirements for this book are elementary calculus,
including partial differentiation, some knowledge of vectors and matri-
ces, and elementary ordinary and partial differential equations. The last
topic is briefly covered in Appendix A. Chapter 12 on stochastic opti-
mal control also requires some concepts in stochastic calculus, which are
introduced at the beginning of that chapter.

The principle management science applications discussed in this book
come from the following areas: finance, economics, production and in-
ventory, marketing, maintenance and replacement, and the consumption
of natural resources. In each major area we have formulated one or more
simple models followed by a more complicated model. The reader may
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wish at first to cover only the simpler models in each area to get an idea
of what could be accomplished with optimal control theory. Later, the
reader may wish to go into more depth in one or more of the applied
areas.

Examples are worked out in most of the chapters to facilitate the
exposition. At the end of each chapter, we have listed exercises that the
reader should solve for deeper understanding of the material presented
in the chapter. Hints are supplied with some of the exercises. Answers
to selected exercises are given in Appendix E.

1.1 Basic Concepts and Definitions

We will use the word system as a primitive term in this book. The only
property that we require of a system is that it is capable of existing in
various states. Let the (real) variable z(t) be the state variable of the
system at time ¢t € [0,7], where T" > 0 is a specified time horizon for
the system under consideration. For example, x(¢) could measure the
inventory level at time ¢, the amount of advertising goodwill at time ¢,
or the amount of unconsumed wealth or natural resources at time t.

We assume that there is a way of controlling the state of the system.
Let the (real) variable u(t) be the control variable of the system at time ¢.
For example, u(t) could be the production rate at time ¢, the advertising
rate at time ¢, etc.

Given the values of the state variable z(¢) and the control variable
u(t) at time ¢, the state equation, a differential equation,

i(t) = f(a(t),u(t),t),  2(0) = o, (L1)

specifies the instantaneous rate of change in the state variable, where
#(t) is a commonly used notation for dz(t)/dt, f is a given function of
z, u, and t, and xzg is the initial value of the state variable. If we know
the initial value xy and the control trajectory, i.e., the values of u(t) over
the whole time interval 0 < ¢ < T, then we can integrate (1.1) to get
the state trajectory, i.e., the values of x(t) over the same time interval.
We want to choose the control trajectory so that the state and control
trajectories maximize the objective functional, or simply the objective
function,

T
J :/ F((t), u(t), t)dt + S[a(T), T). (1.2)
0



1.1. Basic Concepts and Definitions 3

In (1.2), F is a given function of x, u, and ¢, which could measure
the benefit minus the cost of advertising, the utility of consumption, the
negative of the cost of inventory and production, etc. Also in (1.2), the
function S gives the salvage value of the ending state z(T") at time 7.
The salvage value is needed so that the solution will make “good sense”
at the end of the horizon.

Usually the control variable u(t) will be constrained. We indicate
this as

u(t) € Qt), telo,T), (1.3)

where €(t) is the set of feasible values for the control variable at time t.

Optimal control problems involving (1.1), (1.2), and (1.3) will be
treated in Chap. 2.

In Chap. 3, we will replace (1.3) by inequality constraints involving
control variables. In addition, we will allow these constraints to depend
on state variables. These are called mixed inequality constraints and
written as

g(z(t),u(t),t) >0, tel0,T], (1.4)

where ¢ is a given function of u, ¢, and possibly z.
In addition, there may be constraints involving only state variables,
but not control variables. These are written as

h(z(t),t) >0, telo,T], (1.5)

where h is a given function of x and ¢. Such constraints are the most
difficult to deal with, and are known as pure state inequality constraints.
Problems involving (1.1), (1.2), (1.4), and (1.5) will be treated in Chap. 4.

Finally, we note that all of the imposed constraints limit the values
that the terminal state z(7') may take. We denote this by saying

z(T) € X, (1.6)

where X is called the reachable set of the state variable at time T'. Note
that X depends on the initial value xg. Here X is the set of possible
terminal values that can be reached when z(¢) and u(t) obey imposed
constraints.

Although the above description of the control problem may seem ab-
stract, you will find that in each specific application, the variables and
parameters will have specific meanings that make them easy to under-
stand and remember. The examples that follow will illustrate this point.
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1.2 Formulation of Simple Control Models

We now formulate three simple models chosen from the areas of produc-
tion, advertising, and economics. Our only objective here is to identify
and interpret in these models each of the variables and functions de-
scribed in the previous section. The solutions for each of these models
will be given in detail in later chapters.

Example 1.1 A Production-Inventory Model. The various quantities
that define this model are summarized in Table 1.1 for easy comparison
with the other models that follow.

Table 1.1: The production-inventory model of Example 1.1

State variable I(t) = Inventory level
Control variable P(t) = Production rate
State equation I(t) = P(t) — S(t), I(0) = Iy

Objective function Maximize {J = /UT —[h(I(t)) + c(P(t))]dt}
State constraint I(t) >0

Control constraints | 0 < Pyin < P(t) < Puax

Terminal condition I(T) > Lin

Exogenous functions | S(t) = Demand rate

h(I) = Inventory holding cost

¢(P) = Production cost

Parameters T = Terminal time

Inin = Minimum ending inventory

Pin = Minimum possible production rate
Prax = Maximum possible production rate

Iy = Initial inventory level
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We consider the production and inventory storage of a given good,
such as steel, in order to meet an exogenous demand. The state variable
I(t) measures the number of tons of steel that we have on hand at time
t € [0,T]. There is an exogenous demand rate S(¢) tons of steel per day
at time ¢ € [0,7], and we must choose the production rate P(t) tons of
steel per day at time ¢ € [0,T]. Given the initial inventory of Iy tons of
steel on hand at ¢ = 0, the state equation

I(t) = P(t) — S(t)

describes how the steel inventory changes over time. Since h(I) is the
cost of holding inventory I in dollars per day, and c(P) is the cost of
producing steel at rate P, also in dollars per day, the objective function
is to maximize the negative of the sum of the total holding and produc-
tion costs over the period of T" days. Of course, maximizing the negative
sum is the same as minimizing the sum of holding and production costs.
The state variable constraint, I(¢) > 0, is imposed so that the demand
is satisfied for all ¢. In other words, backlogging of demand is not per-
mitted. (An alternative formulation is to make h(I) become very large
when I becomes negative, i.e., to impose a stockout penalty cost.) The
control constraints keep the production rate P(t) between a specified
lower bound P, and a specified upper bound Pp,,x. Finally, the termi-
nal constraint I(7T") > I, is imposed so that the terminal inventory is
at least Iin.

The statement of the problem is lengthy because of the number of
variables, functions, and parameters which are involved. However, with
the production and inventory interpretations as given, it is not difficult
to see the reasons for each condition. In Chap. 6, various versions of this
model will be solved in detail. In Sect. 12.2, we will deal with a stochastic
version of this model.

Example 1.2 An Advertising Model. The various quantities that define
this model are summarized in Table 1.2.

We consider a special case of the Nerlove-Arrow advertising model
which will be discussed in detail in Chap. 7. The problem is to determine
the rate at which to advertise a product at each time ¢. Here the state
variable is advertising goodwill, G(t), which measures how well the prod-
uct is known at time ¢t. We assume that there is a forgetting coefficient §,
which measures the rate at which customers tend to forget the product.
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To counteract forgetting, advertising is carried out at a rate measured
by the control variable u(t). Hence, the state equation is

G(t) = u(t) — 6G(t),

with G(0) = Gy > 0 specifying the initial goodwill for the product.

Table 1.2: The advertising model of Example 1.2

State variable G(t) = Advertising goodwill
Control variable u(t) = Advertising rate
State equation G(t) = u(t) — 6G(t), Go

oo

Objective function | Maximize {J =

G(0) =
[T(G(t)) — u(t)}eptdt}
0

State constraint
Control constraints | 0 < u(t) < Q
Terminal condition
Exogenous function | 7(G) = Gross profit rate
Parameters 0 = Goodwill decay constant
p = Discount rate

) = Upper bound on advertising rate

Gy = Initial goodwill level

The objective function J requires special discussion. Note that the
integral defining J is from time t = 0 to time ¢ = oo; we will later
call a problem having an upper time limit of oo, an infinite horizon
problem. Because of this upper limit, the integrand of the objective
function includes the discount factor e #t, where p > 0 is the (constant)
discount rate. Without this discount factor, the integral would (in most
cases) diverge to infinity. Hence, we will see that such a discount factor
is an essential part of infinite horizon models. The rest of the integrand
in the objective function consists of the gross profit rate 7(G(t)), which



1.2. Formulation of Simple Control Models 7

results from the goodwill level G(t) at time ¢ less the cost of advertising
assumed to be proportional to u(t) (proportionality factor = 1); thus
7(G(t)) —u(t) is the net profit rate at time ¢. Also [r1(G(t)) —u(t)]e " is
the net profit rate at time ¢ discounted to time 0, i.e., the present value
of the time ¢ profit rate. Hence, J can be interpreted as the total value of
discounted future profits, and is the quantity we are trying to maximize.

There are control constraints 0 < u(t) < @, where @ is the upper
bound on the advertising rate. However, there is no state constraint. It
can be seen from the state equation and the control constraints that the
goodwill G(t) in fact never becomes negative.

You will find it instructive to compare this model with the previous
one and note the similarities and differences between the two.

Example 1.3 A Consumption Model. Rich Rentier plans to retire at
age 65 with a lump sum pension of Wy dollars. Rich estimates his re-
maining life span to be T years. He wants to consume his wealth during
these T retirement years, beginning at the age of 65, and leave a bequest
to his heirs in a way that will maximize his total utility of consumption
and bequest.

Since he does not want to take investment risks, Rich plans to put
his money into a savings account that pays interest at a continuously
compounded rate of . In order to formulate Rich’s optimization problem,
let t = 0 denote the time when he turns 65 so that his retirement period
can be denoted by the interval [0,T]. If we let the state variable W(t)
denote Rich’s wealth and the control variable C'(¢) > 0 denote his rate of
consumption at time ¢t € [0, 7T, it is easy to see that the state equation is

W(t) =rW(t) — C(t),

with the initial condition W (0) = Wy > 0. It is reasonable to require that
W(t) >0and C(t) >0, te|0,T]. Letting U(C') be the utility function
of consumption C' and B(W) be the bequest function of leaving a bequest
of amount W at time T, we see that the problem can be stated as an
optimal control problem with the variables, equations, and constraints
shown in Table 1.3.

Note that the objective function has two parts: first the integral of
the discounted utility of consumption from time 0 to time 7" with p as
the discount rate; and second the bequest function e=?T B(W), which
measures Rich’s discounted utility of leaving an estate W to his heirs
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at time 7. If he has no heirs and does not care about charity, then
B(W) = 0. However, if he has heirs or a favorite charity to whom he
wishes to leave money, then B(WW) measures the strength of his desire
to leave an estate of amount W. The nonnegativity constraints on state
and control variables are obviously natural requirements that must be
imposed.

You will be asked to solve this problem in Exercise 2.1 after you
have learned the maximum principle in the next chapter. Moreover, a
stochastic extension of the consumption problem, known as a consump-
tion/investment problem, will be discussed in Sect. 12.4.

Table 1.3: The consumption model of Example 1.3

State variable W (t) = Wealth
Control variable C(t) = Consumption rate
State equation W(t) = rW(t) — C(t), W(0) = W,

T
Objective function | Max {J = / U(C(t))e Pdt + B(W(T))e_pT}
0
State constraint W(t) >0
Control constraint | C'(t) >0

Terminal condition

Exogenous U(C) = Utility of consumption
Functions B(W) = Bequest function
Parameters T = Terminal time

Wy = Initial wealth

p = Discount rate

r = Interest rate
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1.3 History of Optimal Control Theory

Optimal control theory is an extension of the calculus of variations (see
Appendix B), so we discuss the history of the latter first.

The creation of the calculus of variations occurred almost immedi-
ately after the formalization of calculus by Newton and Leibniz in the
seventeenth century. An important problem in calculus is to find an
argument of a function at which the function takes on its maximum or
minimum. The extension of this problem posed in the calculus of vari-
ations is to find a function which maximizes or minimizes the value of
an integral or functional of that function. As might be expected, the
extremum problem in the calculus of variations is much harder than the
extremum problem in differential calculus. Euler and Lagrange are gen-
erally considered to be the founders of the calculus of variations. Newton,
Legendre, and the Bernoulli brothers also contributed much to the early
development of the field.

A

Figure 1.1: The Brachistochrone problem

A celebrated problem first solved using the calculus of variations was
the path of least time or the Brachistochrone problem. The problem is
illustrated in Fig.1.1. It involves finding the shape of a curve I' con-
necting the two points A and B in the vertical plane with the property
that a bead sliding along the curve under the influence of gravity will
move from A to B in the shortest possible time. The problem was posed
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by Johann Bernoulli in 1696, and it played an important part in the
development of calculus of variations. It was solved by Johann Bernoulli,
Jakob Bernoulli, Newton, Leibnitz, and L’Hopital. In Sect. B.4, we pro-
vide a solution to the Brachistochrone problem by using what is known
as the Fuler-Lagrange equation, stated in Sect. B.2, and show that the
shape of the solution curve is represented by a cycloid.

In the nineteenth and early twentieth centuries, many mathemati-
cians contributed to the calculus of variations; these include Hamilton,
Jacobi, Bolza, Weierstrass, Carathéodory, and Bliss.

Converting calculus of variations problems into control theory prob-
lems requires one more conceptual step—the addition of control variables
to the state equations. Isaacs (1965) made such an extension in two-
person pursuit-evasion games in the period 1948-1955. Bellman (1957)
made a similar extension with the idea of dynamic programming.

Modern control theory began with the publication (in Russian in
1961 and English in 1962) of the book, The Mathematical Theory of
Optimal Processes, by Pontryagin et al. (1962). Well-known American
mathematicians associated with the maximum principle include Valen-
tine, McShane, Hestenes, Berkovitz, and Neustadt. The importance of
the book by Pontryagin et al. lies not only in a rigorous formulation of
a calculus of variations problem with constrained control variables, but
also in the proof of the maximum principle for optimal control problems.
See Pesch and Bulirsch (1994) and Pesch and Plail (2009) for historical
perspectives on the topics of the calculus of variations, dynamic pro-
gramming, and optimal control.

The maximum principle permits the decoupling of the dynamic prob-
lem over time, using what are known as adjoint variables or shadow
prices, into a series of problems, each of which holds at a single instant
of time. The optimal solution of the instantaneous problems can be
shown to give the optimal solution to the overall problem.

In this book we will be concerned principally with the application of
the maximum principle in its various forms to find the solutions of a wide
variety of applied problems in management science and economics. It is
hoped that the reader, after reading some of these problems and their
solutions, will appreciate, as we do, the importance of the maximum
principle.

Some important books and surveys of the applications of the
maximum principle to management science and economics are Con-
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nors and Teichroew (1967), Arrow and Kurz (1970), Hadley and
Kemp (1971), Bensoussan et al. (1974), Stoppler (1975), Clark (1976),
Sethi (1977a, 1978a), Tapiero (1977, 1988), Wickwire (1977), Book-
binder and Sethi (1980), Lesourne and Leban (1982), Tu (1984), Fe-
ichtinger and Hartl (1986), Carlson and Haurie (1987b), Seierstad
and Sydseeter (1987), Erickson (2003), Léonard and Long (1992),
Kamien and Schwartz (1992), Van Hilten et al. (1993), Feichtinger
et al. (1994a), Maimon et al. (1998), Dockner et al. (2000), Ca-
puto (2005), Grass et al. (2008), and Bensoussan (2011). Nev-
ertheless, we have included in our bibliography many works of
interest.

1.4 Notation and Concepts Used

In order to make the book readable, we will adopt the following notation
which will hold throughout the book. In addition, we will define some
important concepts that are required, including those of concave, convex
and affine functions, and saddle points.

We use the symbol “=" to mean “is equal to” or “is defined to be
equal to” or “is identically equal to” depending on the context. The
symbol “:=" means “is defined to be equal to,” the symbol “=” means

“is identically equal to,” and the symbol “~” means “is approximately
equal to.” The double arrow “=" means “implies,” “V” means “for all,”
and “€” means “is a member of.” The symbol O indicates the end of a
proof.

Let y be an n-component column vector and z be an m-component
row vector, i.e.,

Y1

Y2
y = :(yl,...,yn)Tandz:(zl,...,zm),

Yn

where the superscript 7 on a vector (or, a matrix) denotes the transpose
of the vector (or, the matrix). At times, when convenient and not con-
fusing, we will use the superscript ’ for the transpose operation. If y and
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z are functions of time ¢, a scalar, then the time derivatives ¢ := dy/dt
and 2 := dz/dt are defined as

. dy . )
v=—= U1 Un

_ )T dz
dt

and 2 = — = (21,...,2

dt ( 1, ) m)a
where 7; and Z; denote the time derivatives dy;/dt and dz;/dt, respec-
tively.

When n = m, we can define the inner product

2y = X1 2iYi. (1.7)
More generally, if
aip a2 - alg
a1 Qe G2k
A ={ay} =
aAml am2 - Amk

is an m x k matrix and B = {b;;} is a k x n matrix, we define the matrix
product C = {¢;;} = AB, which is an m X n matrix with components

Cij = Z,’leairb,«j. (1.8)

Let E* denote the k-dimensional Euclidean space. Its elements are
k-component vectors, which may be either row or column vectors, de-
pending on the context. Thus in (1.7), y € E™ is a column vector and
z € E™ is a row vector.

Next, in Sects. 1.4.1-1.4.4, we provide the notation for multivariate
differentiation. Needless to say, the functions introduced are assumed to
be appropriately differentiable for their derivatives being defined.

1.4.1 Differentiating Vectors and Matrices with Respect
To Scalars

Let f: E' — E* be a k-dimensional function of a scalar variable t. If f
is a row vector, then we define

a _

dt - ft = (f1t7f2ta' T 7fkt)7 a row vector.
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We will also use the notation f = (fi, fé, e ,f,;) and f'(t) in place of f;.
If f is a column vector, then

fit

d fot

di; =f;= = (fit, fat, - » frr) T, & column vector.
it

Once again, f(t) may also be written as f or f (¢).
A similar rule applies if a matrix function is differentiated with re-
spect to a scalar.

2 2t+3
Example 1.4 Let f(t) = . Find f;.
et 1/t
2t 2
Solution f; =
3edt —1/t2

1.4.2 Differentiating Scalars with Respect to Vectors

If F(y, z) is a scalar function defined on E™ x E™ with y an n-dimensional
column vector and z an m-dimensional row vector, then the gradients
F, and F., are defined, respectively, as

Fy = (Fy, -+ ,F,,), arow vector, (1.9)

and
F,=(F,, - ,F,,), arow vector, (1.10)

where Fy, and F., denote the partial derivatives with respect to the
subscripted variables.

Thus, we always define the gradient with respect to a row or column
vector as a row vector. Alternatively, Fy, and F, are also denoted as V F’
and V_F, respectively. In this notation, if F' is a function of y only or
z only, then the subscript can be dropped and the gradient of F' can be
written simply as VF.
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Example 1.5 Let F(y,2) = yi1%y3z2 + 3y2lnzy + y1y2, where y =
(y1,92,93)" and z = (21, 22). Obtain F, and F.

Solution F, = (F,,, Fy,, Fy;) = (2y1y322 + y2,3In21 + y1,91%22) and
F, = (FZ17F2’2) = (3y2/21,y12y3).

1.4.3 Differentiating Vectors with Respect to Vectors

If f: E™ x E™ — E* is a k-dimensional vector function, f either row or
column, i.e.,

f:(fla”' 7fk) Orf:(fla"' 7fk)T7

where each component f; = f;(y, z) depends on the column vector y € E™
and the row vector z € E™, then f, will denote the k x m matrix

8f1/621, afl/é?zg, cee Bfl/azm
0f2/0z1, Ofa/0z9, --- 0Of2/0zm

f. = fz/_ - fZ/' . fQ/‘Z —{0f,)02),  (L11)
| 0fi/0m, Ofi)Om, - OfifOzn

and f, will denote the £ x n matrix

Of1/0y1 Of1/0y2 -+ Of1/Oyn
0fa/0 0fa/0 -+ O0f9/0yn,
fy = fz{ " fz( ” f:'{ " = qogsoy) (12)
I Ofk/0y1 Ofi/Oy2 -+ Ofr/Oyn ]

Matrices f, and f, are known as Jacobian matrices. It should be
emphasized that the rule of defining a Jacobian does not depend on the
row or column nature of the function or its arguments. Thus,

fz = (fT)Z = sz = (fT)zT‘

Example 1.6 Let f : E3 x E?> — E3 be defined by f(y, 2) = (y1%y322 +
3yzIn 21, 2120%y3, 2191 + 2292)7 with y = (y1,y2,93)" and z = (21, 22).
Obtain f, and f,.



1.4. Notation and Concepts Used

Solution.

e

fy:

3y2/21
222y3

Y1

0

21

y12y3

22’1 2213 )

Y2

219322 3lnzy Y12z

0 21292

Z9 0

15

Applying the rule (1.11) to Fy, in (1.9), we obtain Fy, = (F}). to be

the n X m matrix

F

Y121

FyQZl

Fyn Z1

Fy1z2

FyQZQ

Fyn z2

By

FyQ Zm

Fynzm

12Zm

|

O*F

537 (1.13)

b

Applying the rule (1.12) to F; in (1.10), we obtain F;, = (F%), to be

the m x n matrix

leyl

Fz2y1
F,,=

Fzmyl

F21y2

F22y2

FZm'!JQ

FZm Yn

leyn

F22yn

|

O*F
82’@‘8%‘

(1.14)

b

Note that if F'(y, ) is twice continuously differentiable, then we also have

.y = (Fy.)T.

Example 1.7 Obtain F,. and F, for F(y, z) specified in Example 1.5.
Since the given F(y, z) is twice continuously differentiable, check also

that F,, = (F,.)T.
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Solution. Applying rule (1.11) to F} obtained in Example 1.5 and rule
(1.12) to F, obtained in Example 1.5, we have, respectively,

0 2y1ys3
0 3/z O
Fy.=1 3/~ 0 and I}, =

2y1ys 0 12

0 Y12

Also, it is easily seen from these matrices that Fy, = (F,.)7.

1.4.4 Product Rule for Differentiation

Let g be an n-component row vector function and f be an n-component
column vector function of an n-component vector x. Then in Exercise 1.9,
you are asked to show that

(9 =9fo+ 90 =0gfc+ T (9" )a (1.15)

In Exercise 1.10, you are asked to show further that with g = F., where
x € E™ and the function F : E™ — E! is twice continuously differentiable
so that Fy, = (F;)T, called the Hessian, then

(9)e=Fof)e=Fofo+ [T Fox = Fofo + (Fauf)" (1.16)

The latter result will be used in Chap. 2 for the derivation of (2.25).

Many mathematical expressions in this book will be vector equations
or inequalities involving vectors and vector functions. Since scalars are
a special case of vectors, these expressions hold just as well for scalar
equations or inequalities involving scalars and scalar functions. In fact,
it may be a good idea to read them as scalar expressions on the first
reading. Then in the second and further readings, the extension to vector
form will be easier.

1.4.5 Miscellany
The norm of an m-component row or column vector z is defined to be

| 2 |= /28 + -+ 2. (1.17)

The norm of a vector is commonly used to define a neighborhood N, of
a point, e.g.,
Nz =A{z2]l 2—20[<e}, (1.18)

where £ > 0 is a small positive real number.
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We will occasionally make use of the so-called “little-0” notation o(z).
A function F(z) : E™ — E' is said to be of the order o(z), if
F(z)

m ——7 =
Izl—o0 || 2 ||

The most common use of this notation will be to collect higher order
terms in a series expansion.

In the continuous-time models discussed in this book, we generally
will use x(t) to denote the state (column) vector, u(t) to denote the
control (column) vector, and A(t) to denote the adjoint (row) vector.
Whenever there is no possibility of confusion, we will suppress the time
indicator (¢) from these vectors and write them as z,u, and A, respec-
tively. When talking about optimal state and control vectors, we put an
asterisk “*” as a superscript, i.e., as z* and u*, respectively, whereas u
will refer to an admissible control with x as the corresponding state. No
asterisk, however, needs to be put on the adjoint vector A as it is only
defined along an optimal path.

Thus, the values of the control, state and adjoint variables at time ¢
along an optimal path will be written as w*(t), *(t), and A(¢). When the
control is expressed in terms of the state, it is called a feedback control.
With an abuse of notation, we will express it as u(z), or u(z,t) if an
explicit time dependence is required. Likewise, the optimal feedback
control will be denoted as u*(z) or u*(x,t).

We also use the simplified notation z/(¢) to mean (z(t))’, the trans-
pose of z(t). Likewise, for a matrix A(t), we use A’(t) to mean (A(t))’
or the transpose of A(t), and A~1(¢) to mean (A(t))~! or the inverse of
A(t), when the inverse exists.

The norm of an m-dimensional row or column vector function z(t),
t € [0,T7, is defined to be

|2 = [ m /OTZJ?(T)dTr. (1.19)

In Chap. 4 and some other chapters, we will encounter functions of
time with jumps. For such functions, it is useful to have the concepts of
left and right limits. With € > 0, these are defined, respectively, for a
function z(t) as

— e o . _ J’_ — . — .
z(T™) = 1_1% x(T) = ;1_13(1) z(T —¢) and z(T™) lTlg x(T) il_r)r(l) z(T + ¢).
(1.20)
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These limits are illustrated for a function z(t) graphed in Fig. 1.2. Here,

\4
~

Figure 1.2: Illustration of left and right limits

In the discrete-time models introduced in Chap.8 and applied in
Chap. 9, we use z¥,u*, and \* to denote state, control, and adjoint
vectors, respectively, at time k, k = 0,1,2,...,7. We also denote the

difference operator by

Ak = gFtl gk,

As in the continuous-time case, the optimal values of the state variable
zF and the control variable u* will have an asterisk as a superscript;
thus, ¥ and u** denote the corresponding quantities along an optimal
path. Once again, the adjoint variable \¥ along an optimal path will not
have an asterisk.
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In order to specify the optimal control for linear control problems,
we will introduce a special notation, called the bang function, as

b1 it W<o,
bang[by, bo; W] = arbitrary if W =0, (1.21)

ba it W >0.

In order to specify the optimal control for linear-quadratic problems,
we define another special function, called the sat function, as

Y1 if W <y,
sat[yr,yo; W] =4 W if y < W <o, (1.22)

Y2 if W > yo.

The word “sat” is short for the word “saturation.” The latter name
comes from an electrical engineering application to saturated amplifiers.

In several applications to be discussed, we will need the concept of
impulse control, which is sometimes needed in cases when an unbounded
control can be applied for a very short time. An example is the adver-
tising model in Table 1.2 when Q) = co. We apply unbounded control for
a short time in order to cause a jump discontinuity in the state variable.
For the example in Table 1.2, this might mean an intense advertising
campaign (a media blitz) in order to increase advertising goodwill by a
finite amount in a very short time. The impulse function defined be-
low is required to evaluate the integral in the objective function, which
measures the cost of the intense advertising campaign.

Suppose we want to apply an impulse control at time ¢ to change the
state variable from x(t) = 1 to the value x2 “immediately” after ¢, i.e.,
x(tT) = x9. To compute its contribution to the objective function (1.2),
we use the following procedure: given € > 0 and a constant control u(¢),
integrate (1.1) from ¢ to t + e with z(t) = x1 and choose u(e) so that
x(t 4+ €) = x2; this gives the trajectory z(7;¢e,u(e)) for 7 € [t,t +€]. We
can now compute

imp(x1,x2;t) = lim F(z,u,T)drT. (1.23)
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If the impulse is applied only at time ¢, then we can calculate (1.2) as

t T
J :/ F(z,u,7)dT + imp(z1, x2;t) +/ F(z,u,7)dr + S[z(T), T].
0 t
(1.24)

If there are several instants at which impulses are applied, then this
procedure is easily extended. Examples of the use of (1.24) occur in
Chaps. 5 and 6. We frequently omit ¢ in (1.23) when the impulse function
is independent of ¢.

1.4.6 Convex Set and Convex Hull

A set D C E" is a convex set if for each pair of points y,z € D, the
entire line segment joining these two points is also in D, i.e.,

py+ (1 —p)z € D, for each p € [0, 1].

Given 2 € E™i = 1,2,...,1, we define y € E™ to be a convex
combination of x* € E™, if there exists p; > 0 such that

l l
Zpi =1land y= Zplzvz
i=1 =1

The convex hull of a set D C E" is
coD := {Zpixl Y pi=1,p>0,2" €D, i= 1,2,...,1}.
i=1 i=1

In other words, coD is the set of all convex combinations of points in D.

1.4.7 Concave and Convex Functions

A real-valued function ¢ defined on a convex set D C E™, i.e., ¢ : D —
E1, is concave, if for each pair of points y, 2 € D and for all p € [0, 1],

Y(py + (1 = p)z) > p(y) + (1 = p)Y(2).
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If the inequalities in the above definition are strict for all y,z € D
with ¥y # 2z, and 0 < p < 1, then o is called a strictly concave
function.

In the single dimensional case of n = 1, there is an enlightening
geometrical interpretation. Namely, ©(x) defined on an interval D =
[a, b] is concave if, for each pair of points on the graph of ¢(z), the line
segment joining these two points lies entirely below or on the graph of
¥(x); see Fig. 1.3.

Reverting back to the m-dimensional case, if ¢ is a differentiable
function on a convex set D C E™, then it is concave, if for each pair of
points y,z € D,

Y(z) < P(y) + ¥, (y)(z —v),

where we understand y and z to be column vectors. Furthermore, if the
function 1 is twice differentiable, then it is concave, if at each point in
D, the n x n symmetric matrix 1, is negative semidefinite, i.e., all of
its eigenvalues are non-positive.

Finally, if ¢ is a concave function, then the negative of the function
Y, ie., = : D — E' is a convex function.

T

i .
A Line segment |
: joining A and B |
it i >
aTy z b .
< D >

Figure 1.3: A concave function
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1.4.8 Affine Function and Homogeneous Function of

Degree k
A function ¢ : E™ — E! is said to be affine, if the function 1 (z)—1(0) is
linear. Thus, ¢ can be represented as ¥(z1, 2, ..., Tn) = > oy a;z; + b,
where a;, © = 1,2,...,n, and b are scalar constants.

A function ¢ : E" — E' is said to be homogeneous of degree k, if
Y(bx) = bFa(x), where b > 0 is a scalar constant.

In economics, we often assume that a firm’s production function is ho-
mogeneous of degree 1, i.e., if all inputs are multiplied by b, then output is
multiplied by b. Such a production function is said to exhibit the property
of constant return to scale. A linear function ¢(z) = ax =Y ;" | a;x; is a
simple example of a homogeneous function of degree 1. Other examples
are ¢(r) = min{z;, i = 1,2,...,n} and ¢(x) = a(IIP_ a;%)Y Ziz o
with ¢ > 0 and o; > 0, ¢ = 1,2,...,n. An important special case of
the last example, known as the Cobb-Douglas production function, is
Y(K,L) = aK*“'L*? with oy + g = 1, where K and L are factors of
production called capital and labor, respectively, and a denotes the total
factor productivity.

1.4.9 Saddle Point

An important concept in two-person zero-sum games is that of a saddle
point. Let ¢(z,y), a real-valued function defined on the space E" x E™,
ie., v : E" x E™ — El be the payoff of player 1 and —(z,y) be the
payoff of player 2, when they make decisions x and y, respectively, in a
zero-sum game. A point (Z,9) € E™ x E™ is called a saddle point of
Y(x,y) or of the game, if

(&, y) > Y(&,9) > Y(z,y) for all z € E™ and y € E™.

Note that a saddle point may not exist, and even if it exists, it may not
be unique. Note also that

U(#,9) = maxié(z, §) = min (@, y).
Intuitively, this could produce a picture like a horse saddle as shown

in Fig.1.4, hence the name saddle point for a point like (&,7). This
concept will be used in Sect. 13.1.
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(£.5)

Figure 1.4: An illustration of a saddle point

1.4.10 Linear Independence and Rank of a Matrix

A set of vectors aq,a9,...,a,, in E", m < n, is said to be linearly de-
pendent if there exist scalars p; not all zero such that

> pia; = 0. (1.25)
=1

If (1.25) holds only when p; = py = - -+ = p,, = 0, then the vectors are
said to be linearly independent. In particular, if one of the vectors in the
set {a1,a2,...,an} is a null vector, then the set is linearly dependent.

The rank of an m x n matrix A, written rank(A), is the maximum
number of linearly independent rows or, equivalently, the maximum num-
ber of linearly independent columns of A. An m X n matrix is of full
rank if

rank(A) = min{m,n}.

1.5 Plan of the Book

The book has thirteen chapters and five appendices: A, B, C, D, and E,
covering a variety of topics which are listed in the table of contents and
explained in the prefaces.

In any given chapter, say Chap.7, sections are numbered consec-
utively as 7.1, 7.2, 7.3, etc. Subsections are numbered consecutively
within each section, i.e., 7.2.1, 7.2.2, 7.2.3, etc. Mathematical expres-
sions are numbered consecutively by chapter as (7.1), (7.2), (7.3), etc.
Theorems are also numbered consecutively by chapter as Theorem 7.1,
Theorem 7.2, Theorem 7.3, etc. Similarly, definitions, examples, exer-
cises, figures, propositions, remarks, and tables are numbered consec-
utively by chapter. These elements will be referenced throughout the
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book by use of their designated numbers. The same scheme is used in
the appendices, thus, sections in Appendix B, for example, are numbered
as B.1, B.2, B.3, etc.

Exercises for Chapter 1

E 1.1 In Example 1.1, let the functions and parameters of the
production- inventory model be given by:

h(I) = 101, ¢(P) = 20P, T = 10, Iy = 1,000
Prain = 600, Poay = 1200, I = 800, S(£) = 900 + 10¢.

(a) Set P(t) = 1000 for 0 < t < 10. Determine whether this control
is feasible; if it is feasible, compute the value J of the objective
function.

(b) If P(t) = 800, show that the terminal constraint is violated and
hence the control is infeasible.

(c¢) If P(t) = Ppin for 0 < ¢t < 6 and P(t) = Ppax for 6 < t < 10,
show that the control is infeasible because the state constraint is
violated.

E 1.2 In Example 1.1, suppose there is a cost associated with changing
the rate of production. One way to formulate this problem is to let
the control variable u(t) denote the rate of change of the production
rate P(t), having a cost cu? associated with such changes, where ¢ > 0.
Formulate the new problem.

Hint: Let P(t) be an additional state variable.

E 1.3 For the advertising model in Example 1.2, let 7(G) = 2V/G, § =
0.05, p = 0.2, Q@ = 2, and Gy = 16. Set u(t) = 0.8 for ¢ > 0, and show
that G(t) is constant for all t. Compute the value J of the objective
function.

E 1.4 In Example 1.2, suppose G measures the number of people who
know about the product. Hence, if A is the total population, then A—G
is the number of people who do not know about the product. If w(t)
measures the advertising rate at time ¢, assume that u(A — G) is the
corresponding rate of increase of G due to this advertising. Formulate
the new model.
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E 1.5 Rich Rentier in Example 1.3 has initial wealth Wy = $1, 000, 000.
Assume B = 0,p = 0.1, = 0.15, and assume that Rich expects to live
for exactly 20 years.

(a) What is the maximum constant consumption level that Rich can
afford during his remaining life?

(b) If Rich’s utility function is U(C) = In C, what is the present value
of the total utility in part (a)?

(c) Suppose Rich sets aside $100,000 to start the Rentier Foundation.
What is the maximum constant grant level that the foundation can
support if it is to last forever?

E 1.6 Suppose Rich in Exercise 1.5 takes on a part-time job, which
yields an income of y(t) at time ¢. Assume y(t) = 10,000e %% and that
he has a bequest function B(W) = 0.5In W.

(a) Reformulate this new optimal control problem.

(b) If Rich (no longer a rentier) consumes at the constant rate found in
Exercise 1.5(a), find his terminal wealth and his new total utility.

E 1.7 Consider the following educational policy question. Let S(t) de-
note the total number of scientists at time ¢, and let § be the retirement
rate of scientists. Let E(¢) be the number of teaching scientists and R(t)
be the number of research scientists, so that S(t) = E(t) + R(t). Assume
~vE(t) is the number of newly graduated scientists at time ¢, of which
the policy allocates uyE(t) to the pool of teachers, where 0 < u < 1.
The remaining graduates are added to the pool of researchers. The gov-
ernment has a target of maximizing the function aF(T') + SR(T) at a
given future time 7', where a and (3 are positive constants. Formulate
the optimal control problem for the government.

E 1.8 For F(z,y) defined in Example 1.5, obtain the matrices Fy, and
Ey,.

E 1.9 Let z € E™, g be an n-component row vector function of z, and
f be an m-component column vector function of z. Use the ordinary
product rule of calculus for functions of scalars to derive the formula

(gf)x =gfe+ fT(gT)oc =9gfc+ ngoc-
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E 1.10 Let F be a scalar function of x € E™ and f as defined in
Exercise 1.9. Assume F' to be twice continuously differentiable. Show
that

(Fzz:f)x:Fxfx + fTFa:x - Fxfz + fT(ch)T - Fxfx + (F:c:r:f)T

Hint: Set the gradient F, = ¢, a row vector, and then use FExer-
cise 1.9 to derive the first equality. Note in connection with the second
equality that the function F being twice continuously differentiable
implies that Fy, = (Fye)?.

E 1.11 For F, obtained in Example 1.5 and f defined in Example 1.6,
obtain (F, f), and verify the relation shown in Exercise 1.10.

E 1.12 Use the bang function defined in (1.21) to sketch the optimal
control
u*(t) = bang[—1,1; W(t)] for 0 <t <5,

when
(a) W(t) =t—2
(b) W(t) =t> — 4t +3
(c) W(t) = sinnt.

E 1.13 Use the sat function defined in (1.22) to sketch the optimal con-
trol
u*(t) = sat[2,3; W(t)] for 0 <t <5,

when
(a) W(t) =4—t
(b) W(t) =2+t
(c) W(t) =4 —det.

E 1.14 Evaluate the function imp(Gy, Ga;t) for the advertising model
of Table 1.2 when G2 > Gi, Q = oo, and 7(G) = pG, where p is a
constant.
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Chapter 2

The Maximum Principle:
Continuous Time

The main purpose of this chapter is to introduce the maximum principle
as a necessary condition that must be satisfied by any optimal control
for the basic problem specified in Sect.2.1. Although vector notation is
used, the reader can consider the problem as one with only a single state
variable and a single control variable on the first reading. In Sect. 2.2,
the method of dynamic programming is used to derive the maximum
principle. We use this method because of the simplicity and familiarity
of the dynamic programming concept. The derivation also yields signifi-
cant economic interpretations. In Appendix C, the maximum principle is
also derived by using a more general method similar to that of Pontrya-
gin et al. (1962), but with certain simplifications. In Sect. 2.3, we apply
the maximum principle to solve a number of simple, but illustrative, ex-
amples. In Sect. 2.4, the maximum principle is shown to be sufficient for
optimal control under an appropriate concavity condition, which holds in
many management science applications. Finally, Sect. 2.5 illustrates the
use of Excel spreadsheet software to solve an optimal control problem.

2.1 Statement of the Problem

Optimal control theory deals with the problem of optimizing dynamic
systems. The problem must be well posed before any solution can be
attempted. This requires a clear mathematical description of the system

(© Springer Nature Switzerland AG 2019 27
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to be optimized, the constraints imposed on the system, and the objective
function to be maximized (or minimized).

2.1.1 The Mathematical Model

An important part of any control problem is the process of modeling
the dynamic system under consideration, be it physical, business, or
otherwise. The aim is to arrive at a mathematical description which is
simple enough to deal with, and realistic enough to be able to predict
the response of the system to any given input. Our model is restricted
to systems that can be characterized by a set of ordinary differential
equations (or, ordinary difference equations in the discrete-time case
treated in Chap.8). Thus, given the initial state z¢ of the system and
control history u(t), t € [0, T], of the process, the evolution of the system
may be described by the first-order differential equation, known also as
the state equation,

&(t) = fz(t), u(t),t), x(0) = zo, (2.1)

where the vector of state variables, xz(t) € E™, the vector of control vari-
ables, u(t) € E™, and f : E™ x E™ x E' — E™. Furthermore, the
function f is assumed to be continuously differentiable. Here we assume
x to be a column vector and f to be a column vector of functions. The
path z(t), t € [0,7T], is called a state trajectory and wu(t), t € [0,T], is
called a control trajectory or simply, a control. The terms vector of state
variables, state vector, and state will be used interchangeably; similarly
for the terms wector of control variables, control vector, and control. As
mentioned earlier, when no confusion arises, we will usually suppress the
time notation (t); thus, e.g., x(t) will be written simply as z. Further-
more, it should be inferred from the context whether x denotes the state
at time t or the entire state trajectory. A similar statement holds for u.

2.1.2 Constraints

In this chapter, we are concerned with problems of types (1.4) and (1.5)
that do not have state constraints. Such constraints are considered in
Chaps. 3 and 4, as indicated in Sect.1.1. We do impose constraints of
type (1.3) on the control variables. We define an admissible control to
be a control trajectory u(t), t € [0, 7], which is piecewise continuous and
satisfies, in addition,

u(t) € Q(t) Cc E™, tel0,T). (2.2)
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Usually the set () is determined by physical or economic constraints
on the values of the control variables at time ¢.

2.1.3 The Objective Function

An objective function is a quantitative measure of the performance of
the system over time. An optimal control is defined to be an admissible
control which maximizes the objective function. In business or economic
problems, a typical objective function gives some appropriate measure
of quantities such as profit or sales. If the aim is to minimize cost,
then the objective function to be maximized is the negative of cost.
Mathematically, we let

T
J= / F(a(t), ult), t)dt + S((T), T) (2.3)
0

denote the objective function, where the functions F : E™ x E™ x E' —
E'and S : E™ x E' — E' are assumed for our purposes to be contin-
uously differentiable. In a typical business application, F'(x,u,t) could
be the instantaneous profit rate and S(x,T) could be the salvage value
of having x as the system state at the terminal time T.

2.1.4 The Optimal Control Problem

Given the preceding definitions we can state the optimal control problem,
which we will be concerned with in this chapter. The problem is to find
an admissible control u*, which maximizes the objective function (2.3)
subject to the state equation (2.1) and the control constraints (2.2). We
now restate the optimal control problem as:
T
mex {J — / F(z,u, t)dt + S(x(T), T)}
u(t)€Q(t) 0

subject to (2.4)

T = f(:r,u,t), .’L'(O) = Zo-

The control uv* is called an optimal control and z*, determined by means
of the state equation with u = u*, is called the optimal trajectory or an
optimal path. The optimal value J(u*) of the objective function will be
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denoted as J*, and occasionally as J(*IO) when we need to emphasize its
dependence on the initial state x.

The optimal control problem (2.4) is said to be in Bolza form because
of the form of the objective function in (2.3). It is said to be in Lagrange
form when S = 0. We say the problem is in Mayer form when F = 0.
Furthermore, it is in linear Mayer form when F = 0 and S is linear, i.e.,

max {J =cz(T)}

u(t)eQ(t)
subject to (2.5)
T = f(:E?uat)v 1’(0) = 20,

where ¢ = (c1,¢2, -+ ,¢,) is an n-dimensional row vector of given con-

stants. In the next paragraph and in Exercise 2.5, it will be demonstrated
that all of these forms can be converted into the linear Mayer form.
To show that the Bolza form can be reduced to the linear Mayer

form, we define a new state vector y = (y1,¥2,...,Yn+1), having n + 1
components defined as follows: y; = x; for ¢ = 1,...,n and y,1 defined
by the solution of the equation

) 0S5 (x,t 0S5 (x,t

s = Flaut) + 220Dy D g

with y,+1(0) = S(x0,0). By writing f(z,u,t) as f(y,u,t), with a slight
abuse of notation, and by denoting the right-hand side of (2.6) as
frnt1(y,u,t), we can write the new state equation in the vector form
as

[ f ) 7t
i<l o= T o= ] e
yn+1 fnJrl(yauvt) S(anO)

We also put ¢ = (0,---,0,1), where ¢ has n + 1 components with the
first n terms all 0. If we integrate (2.6) from 0 to 7', we see that

T
Yn+1(T) — Yn+1(0) = /0 F(z,u,t)dt + S(x(T),T) — S(x0,0).

In view of setting the initial condition as y,+1(0) = S(zo,0), the
problem in (2.4) can be expressed as that of maximizing

T
J= /0 Fla,u,0)dt + S@(T),T) = yuss (T) = ey(T)  (2.8)
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over u(t) € §(t), subject to (2.7). Of course, the price paid for going
from Bolza to linear Mayer form is an additional state variable and its
associated differential equation (2.6). Also, for the function f,4+1 to be
continuously differentiable, in keeping with the assumptions made in
Sect.2.1.1, we need to assume that the salvage value function S(z,t) is
twice continuously differentiable.

Exercise 2.5 presents the task of showing in a similar way that the
Lagrange and Mayer forms can also be reduced to the linear Mayer
form.

Example 2.1 Convert the following single-state problem in Bolza form
to its linear Mayer form:

maX{J - /OT (x - “22) dt + % [m(T>]2}

T =u, x(0)=xo.

subject to

Solution. We use (2.6) to introduce the additional state variable ya as

follows:
2
. U 1 1
Yo =T — ? + 5xu7 yg(O) = ZI%

Then,

T U2 1
v (T) = o 0)—|—/ :E——l—mu)dt
0

8 8
[ |

8
[

I
S— S>— S—
| N N
/&\/\/‘\/‘\
|

I
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Thus, the linear Mayer form version with the two-dimensional state y =
(z,y2) can be stated as

max {.J = y»(T)}

subject to
z = wu, x(0)=m,
2
. U 1 1,
Yy = T— ? + §$U7 yg(O) = Zl‘o.

In Sect. 2.2, we derive necessary conditions for optimal control in the
form of the maximum principle, and in Sect. 2.4 we derive sufficient con-
ditions. In these derivations, we shall assume the existence of an optimal
control, while providing references where needed, as the topic of existence
is beyond the scope of this book. In any particular application, however,
the existence of a solution will be demonstrated by actually finding a
solution that satisfies both the necessary and the sufficient conditions
for optimality. We thus avoid the necessity of having to prove general
existence theorems, which require advanced and difficult mathematics.
Nevertheless, interested readers can consult Hartl et al. (1995) and Seier-
stad and Sydsaeter (1987) for brief discussions of existence results and
references therein including Cesari (1983).

2.2 Dynamic Programming and the Maximum
Principle

We will now derive the maximum principle by using a dynamic pro-
gramming approach. The proof is intuitive in nature and is not intended
to be mathematically rigorous. For more rigorous derivations, we refer
the reader to Appendix C, Berkovitz (1961), Pontryagin et al. (1962),
Halkin (1967), Boltyanskii (1971), Hartberger (1973), Bryant and Mayne
(1974), Leitmann (1981), and Seierstad and Sydseeter (1987). Additional
references can be found in the survey by Hartl et al. (1995). For discus-
sions of maximum principles for more general optimal control problems,
including those with nondifferentiable functions, see Clarke (1983, 1989).

2.2.1 The Hamilton-Jacobi-Bellman Equation

Suppose V(z,t) : E™ x E' — E' is a function whose value is the maxi-
mum value of the objective function of the control problem for the sys-
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tem, given that we start at time ¢ in state x. That is,

T

V(z,t) = max [/ F(xz(s),u(s),s)ds+ S(xz(T),T)|, (2.9)
u(s)eQU(s) /¢

where for s > t,

dx(s)
ds

= f(z(s),u(s),s), z(t) = x.

We initially assume that the value function V(x,t) exists for all x and ¢
in the relevant ranges. Later we will make additional assumptions about
the function V(x,t).

Bellman (1957) in his book on dynamic programming states the prin-
ciple of optimality as follows:

An optimal policy has the property that, whatever the
initial state and initial decision are, the remaining decision
must constitute an optimal policy with regard to the outcome
resulting from the initial decision.

Intuitively this principle is obvious, for if we were to start in state x
at time ¢ and did not follow an optimal path from then on, there would
then exist (by assumption) a better path from ¢t to 7', hence, we could
improve the proposed solution by following this better path. We will
use the principle of optimality to derive conditions on the value function
V(z,t).

Figure 2.1 is a schematic picture of the optimal path z*(¢) in the
state-time space, and two nearby points (z,t) and (x + dx, t + dt), where
dt is a small increment of time and x + 0z = x(t+ dt). The value function
changes from V'(z,t) to V(x + dx,t + 0t) between these two points. By
the principle of optimality, the change in the objective function is made
up of two parts: first, the incremental change in J from ¢ to ¢+ &t, which
is given by the integral of F'(z,u,t) from ¢ to ¢t + 0t; second, the value
function V' (z + dz, t + 6t) at time ¢ + 6t. The control actions u(7) should
be chosen to lie in (7), 7 € [¢,t+ Jt], and to maximize the sum of these
two terms. In equation form this is

t+6t
Vi) = max { [ Flolr).utr),rlar + Viete+ o), ¢+ a1}
reftirst]

(2.10)
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Optimal
Path x(7)

Vix+ 6x, t+ 1)
X+ 0x

V(x,t)

0 t t+ 6t

Figure 2.1: An optimal path in the state-time space

where 0t represents a small increment in t. It is instructive to compare
this equation to definition (2.9).

Since F' is a continuous function, the integral in (2.10) is approxi-
mately F'(x,u,t)dt so we can rewrite (2.10) as

Viw,t) = max {F(e,u 00+ Va(t+80),+ 80} +0(3),  (211)

where 0(dt) denotes a collection of higher-order terms in §¢. (By definition

given in Sect. 1.4.4, o(dt) is a function such that lims;_o O((;it) =0.)

We now make an assumption that we will return to again later. We
assume that the value function V' is a continuously differentiable function
of its arguments. This allows us to use the Taylor series expansion of V'

with respect to §t and obtain

Viz(t +6t),t + 6t] = V(z,t) + [Va(z, t)E + Vi(x, t)]6t + o(6t), (2.12)

where V,, and V; are partial derivatives of V' (z,t) with respect to x and
t, respectively.
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Substituting for & from (2.1) in the above equation and then using it
n (2.11), we obtain

V(z,t) = uréléu% {F(x,u,t)0t + V(x,t) + Vy(x,t) f(z,u, t)ot
+ Vi(z, )6t} + o(dt). (2.13)

Canceling V' (z,t) on both sides and then dividing by 0t we get

0= urélgx {F(x,u,t) + Vyp(z,t) f(x,u,t) + Vi(z,t)} + OE;S:). (2.14)
Now we let Jt — 0 and obtain the following equation
O_UI&?()% {F(x,u,t) + Vy(x,t) f(z,u, t) + Vi(x,t)}, (2.15)
for which the boundary condition is
V(z,T)=S(z,T). (2.16)

This boundary condition follows from the fact that the value function at
t = T is simply the salvage value function.

The components of the vector V,(z,t) can be interpreted as the
marginal contributions of the state variables z to the value function
or the maximized objective function (2.9). We denote the marginal re-
turn vector (along the optimal path z*(t)) by the adjoint (row) vector
A(t) € E™, ie.,

A(t) = Vx(x*(t),t) = Vz(.%,t) ’CEZI*(t) . (217)

From the preceding remark, we can interpret A(¢) as the per unit change
in the objective function value for a small change in z*(¢) at time ¢. In
other words, A(t) is the highest hypothetical unit price which a rational
decision maker would be willing to pay for an infinitesimal addition to
x*(t). See Sect. 2.2.4 for further discussion.

Next we introduce a function H : E™ x E™ x E" x E' — E' called
the Hamiltonian

H(z,u,\t) = F(z,u,t) + A\f(x,u,t). (2.18)
We can then rewrite Eq. (2.15) as the equation

max [H(z,u, Vy,t)+ V4] =0, (2.19)
ueN(t)
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called the Hamilton-Jacobi-Bellman equation or, simply, the HIB equa-
tion to be satisfied along an optimal path. Note that it is possible
to take V; out of the maximizing operation since it does not depend
on u.

The Hamiltonian maximizing condition of the maximum principle
can be obtained from (2.19) and (2.17) by observing that, if x*(¢) and
u*(t) are optimal values of the state and control variables and A(t) is the
corresponding value of the adjoint variable at time ¢, then the optimal
control w*(t) must satisfy (2.19), i.e., for all u € Q(t),

Hz*(t),u (), \(t),t] + Vi(z™(t),t) > Hx"(t),u, A(t),1]
+V,(z* (), 1). (2.20)

Canceling the term V; on both sides, we obtain the Hamiltonian maxi-
mizing condition

Hiz* (£), u* (£), A1), 8] > H[z*(t), u, A(¢), 1] (2.21)

for all u € Q).
In order to complete the statement of the maximum principle, we
must still obtain the adjoint equation.

Remark 2.1 We use u* and z* for optimal control and state to distin-
guish them from an admissible control u and the corresponding state =,
respectively. However, since the adjoint variable A is defined only along
the optimal path, there is no need for such a distinction, and therefore
we do not use the superscript * on .

2.2.2 Derivation of the Adjoint Equation

The derivation of the adjoint equation proceeds from the HJB equation
(2.19), and is similar to those in Fel’dbaum (1965) and Kirk (1970). Note
that, given the optimal path z*, the optimal control u* maximizes the
left-hand side of (2.19), and its maximum value is zero. We now consider
small perturbations of the values of the state variables in a neighborhood
of the optimal path x*. Thus, let

x(t) = z*(t) + dz(t), (2.22)

where || dz(t) ||< € for a small positive e.
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We now consider a ‘fixed’ time instant ¢. We can then write (2.19) as

0 = Ha"(t),u*(t), Vala*(t),1),] + Vi(z*(t), 1)
> Hla(t),u" (1), Va(z(t), 1), 1] + Vi(2(t),1). (2.23)

To explain, we note from (2.19) that the left-hand side of > in (2.23)
equals zero. The right-hand side can attain the value zero only if u*(t)
is also an optimal control for x(t). In general, for z(t) # x*(t), this will
not be so. From this observation, it follows that the expression on the
right-hand side of (2.23) attains its maximum (of zero) at z(t) = x*(¢t).
Furthermore, z(t) is not explicitly constrained. In other words, x*(t) is
an unconstrained local maximum of the right-hand side of (2.23), so that
the derivative of this expression with respect to x must vanish at z*(¢),
ie.,

HL [ (8), u(8), Va2 (8), ), 1] + Vi (0 (1), 5) =0, (2.24)
provided the derivative exists, and for which, we must further assume

that V is a twice continuously differentiable function of its arguments.
With H = F 4+ V, f from (2.17) and (2.18), we obtain

Hx:F:(:+V:(:fx+fTVxx:FxJFfoxﬁL(V;mf)T

by using g = V,, in the identity (1.15). Substituting this in (2.24) and
recognizing the fact that V., = (Vu)?, we obtain

Fo+Vifot fTVig +Vie = Fo + Vi fo + (Vae /)T + Vie =0, (2.25)

where the superscript 7 denotes the transpose operation. See (1.16) or
Exercise 1.10 for further explanation.

The derivation of the necessary condition (2.25) is the crux of the
reasoning in the derivation of the adjoint equation. It is easy to obtain
the so-called adjoint equation from it. We begin by taking the time
derivative of V(z,t). Thus,

Ve  (dVe dVi, dVy,
. \ dt > dt 7 dt

- (Vazlmx + Vaqta ngazw + Vx2t7 oy Vaznmx + ant)
= (Z?:l lewiféiv Z?:l Vrﬂz'l;% T Z?:l V;Enwzxz) + (Vm)t

(2.26)
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Note in the above that

V:pi:p = (Vxlxl ’ Va:ixw Ty Vxlxn)

and
Vzlml V$1:E2 e Vrlxn fbl
Vg | (e Ve o Ve ol (2.27)
anzl Va:n:vg e Vxnxn xn

Since the terms on the right-hand side of (2.26) are the same as the
last two terms in (2.25), we see that (2.26) becomes

dVy
dt

= —F, — Vo fa (2.28)

Because \ was defined in (2.17) to be V, we can rewrite (2.28) as

A=—F, — \fs.

To see that the right-hand side of this equation can be written simply as
—H,, we need to go back to the definition of H in (2.18) and recognize
that when taking the partial derivative of H with respect to x, the adjoint
variables A\ are considered to be independent of . We note further that
along the optimal path, A is a function of ¢ only. Thus,

\=—H,. (2.29)

Also, from the definition of A in (2.17) and the boundary condition
(2.16), we have the terminal boundary condition, which is also called
the transversality condition:

_ 0S(x,T)

AT) o

The adjoint equation (2.29) together with its boundary condition (2.30)
determine the adjoint variables.

This completes our derivation of the maximum principle using dy-
namic programming. We can now summarize the main results in the
following section.
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2.2.3 The Maximum Principle

The necessary conditions for u*(t), ¢ € [0,T], to be an optimal control
are:

#* = f(a*,u*t),2*(0) = xp,

A= —H,[z*,u*, \t], NT)=S,(z*(T),T), (2.31)
Hlz* u*, \ t] > H|[x*, u, \, t],YVu € Q(t),t € [0,T].

It should be emphasized that the state and the adjoint arguments
of the Hamiltonian are z*(¢) and A(¢) on both sides of the Hamiltonian
maximizing condition in (2.31), respectively. Furthermore, u*(¢) must
provide a global maximum of the Hamiltonian H[x*(t),u, \(t),t] over
u € §(t). For this reason the necessary conditions in (2.31) are called
the mazimum principle.

Note that in order to apply the maximum principle, we must simulta-
neously solve two sets of differential equations with u* obtained from the
Hamiltonian maximizing condition in (2.31). With the control variable
u* so obtained, the state equation for x* is given with the initial value
xg, and the adjoint equation for A is specified with a condition on the
terminal value A\(T"). Such a system of equations, where initial values of
some variables and final values of other variables are specified, is called
a two-point boundary value problem (TPBVP). The general solution of
such problems can be very difficult; see Bryson and Ho (1975), Roberts
and Shipman (1972), and Feichtinger and Hartl (1986). However, there
are certain special cases which are easy. One such is the case in which the
adjoint equation is independent of the state and the control variables;
here we can solve the adjoint equation first, then get the optimal control
u*, and then solve for z*.

Note also that if we can solve the Hamiltonian maximizing condition
for an optimal control function in closed form u*(z, A, ) so that

u*(t) = u*a”(t), A(t), 1],

then we can substitute this into the state and adjoint equations to get
the TPBVP just in terms of a set of differential equations, i.e.,

¥ = f(x*,u*(z*, A\ t),t), x*(0) =z,

A= —H,(z* u*(x*, A\ t), A\, t), ANT)=S,(z*(T),T).
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We should note that we are making a slight abuse of notation here by
using u*(z, A, t) to denote the optimal control function and u*(t) as the
optimal control at time t. Thus, depending on the context, when we
use v* without any argument, it may mean the optimal control function
u*(z, A, t), or the optimal control at time ¢, or the entire optimal control
trajectory {u*(t), t € [0,T]}.

In Sect. 2.5, we derive the TPBVP for a specific example, and solve
its discrete version by using Excel. In subsequent chapters we will solve
many TPBVPs of varying degrees of difficulty.

One final remark should be made. Because an integral is unaffected
by values of the integrand at a finite set of points, some of the arguments
made in this chapter may not hold at a finite set of points. This does
not affect the validity of the results.

In the next section, we give economic interpretations of the maximum
principle, and in Sect. 2.3, we solve five simple examples by using the
maximum principle.

2.2.4 Economic Interpretations of the Maximum
Principle

Recall from Sect. 2.1.3 that the objective function (2.3) is

J= /T F(x,u, t)dt + S(z(T), T),
0

where F' is considered to be the instantaneous profit rate measured in
dollars per unit of time, and S(z, T') is the salvage value, in dollars, of the
system at time 7" when the terminal state is x. For purposes of discussion
it will be convenient to consider the system as a firm and the state x(t)
as the stock of capital at time t.

In (2.17), we interpreted A(t) to be the per unit change in the value
function V' (x,t) for small changes in capital stock . In other words, A(t)
is the marginal value per unit of capital at time ¢, and it is also referred
to as the price or shadow price of a unit of capital at time ¢. In particular,
the value of \(0) is the marginal rate of change of the maximum value
of J (the objective function) with respect to the change in the initial
capital stock, xg.

Remark 2.2 As mentioned in Appendix C, where we prove a maximum
principle without any smoothness assumption on the value function,
there arise cases in which the value function may not be differentiable
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with respect to the state variables. In such cases, when V;(z*(t),t) does
not exist, then (2.17) has no meaning. See Bettiol and Vinter (2010),
Yong and Zhou (1999), and Cernea and Frankowska (2005) for interpre-
tations of the adjoint variables or extensions of (2.17) in such cases.

Next we interpret the Hamiltonian function in (2.18). Multiplying
(2.18) formally by dt and using the state equation (2.1) gives

Hdt = Fdt + M\fdt = Fdt + \xdt = Fdt + \dx.

The first term F'(z,u,t)dt represents the direct contribution to J in dol-
lars from time t to ¢ + dt, if the firm is in state z (i.e., it has a capital
stock of z), and we apply control u in the interval [t, ¢ + dt]. The differ-
ential dx = f(x,u, t)dt represents the change in capital stock from time ¢
to t 4+ dt, when the firm is in state x and control u is applied. Therefore,
the second term Adx represents the value in dollars of the incremental
capital stock dx, and hence can be considered as the indirect contribution
to J in dollars. Thus, Hdt can be interpreted as the total contribution
to J from time ¢ to ¢t + dt when x(t) = z and u(t) = u in the interval
[t,t + dt].

With this interpretation, it is easy to see why the Hamiltonian must
be maximized at each instant of time ¢. If we were just to maximize
I at each instant ¢, we would not be maximizing J, because we would
ignore the effect of the control in changing the capital stock, which gives
rise to indirect contributions to J. The maximum principle derives the
adjoint variable A(t), the price of capital at time ¢, in such a way that
A(t)dz is the correct valuation of the indirect contribution to J from
time ¢ to t +dt. As a consequence, the Hamiltonian maximizing problem
can be treated as a static problem at each instant t. In other words, the
maximum principle decouples the dynamic maximization problem (2.4)
in the interval [0, T'] into a set of static maximization problems associated
with instants ¢ in [0,T]. Thus, the Hamiltonian can be interpreted as a
surrogate profit rate to be maximized at each instant of time t.

The value of A to be used in the maximum principle is given by (2.29)
and (2.30), i.e.,

Rewriting the first equation as

—d\ = Hydt = F,dt + \fudt,
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we can observe that along the optimal path, —dA, the negative of the
increase or, in other words, the decrease in the price of capital from ¢
to t + dt, which can be considered as the marginal cost of holding that
capital, equals the marginal revenue H,dt of investing the capital. In turn
the marginal revenue H,dt consists of the sum of the direct marginal
contribution F,dt and the indirect marginal contribution Af,dt. Thus,
the adjoint equation becomes the equilibrium relation—marginal cost
equals marginal revenue, which is a familiar concept in the economics
literature; see, e.g., Cohen and Cyert (1965, p. 189) or Takayama (1974,
p. 712).

Further insight can be obtained by integrating the above adjoint
equation from ¢ to 1" as follows:

At) = MNT) + [, Ho(x(), u(r), \(7), 7)dr

= S, (x(T),T) + [, Hydr.

Note that the price A(T') of a unit of capital at time 7T is its marginal
salvage value S,(z(T'),T). In the special case when S = 0, we have
A(T) = 0, as clearly no value can be derived or lost from an infinitesimal
increase in #(7"). The price A(t) of a unit of capital at time ¢ is the sum of
its terminal price A(T') plus the integral of the marginal surrogate profit
rate H, from ¢ to 7.

The above interpretations show that the adjoint variables behave
in much the same way as the dual variables in linear (and nonlinear)
programming, with the differences being that here the adjoint variables
are time dependent and satisfy derived differential equations. These
connections will become clearer in Chap. 8, which addresses the discrete
maximum principle.

2.3 Simple Examples

In order to absorb the maximum principle, the reader should study very
carefully the examples in this section, all of which are problems having
only one state and one control variable. Some or all of the exercises at
the end of the chapter should also be worked.

In the following examples and others in this book, we will at times
omit the superscript * on the optimal values of the state variables as
long as no confusion arises from doing so.
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Example 2.2 Consider the problem:

max {J = /01 xdt} (2.33)

subject to the state equation

& =u, z(0)=1 (2.34)
and the control constraint

ueQ=[-1,1]. (2.35)

Note that T'=1, F = —z,5 =0, and f = u. Because F' = —z, we can
interpret the problem as one of minimizing the (signed) area under the
curve z(t) for 0 <t¢ < 1.

Solution First, we form the Hamiltonian
H=—-z+M\u (2.36)

and note that, because the Hamiltonian is linear in u, the form of the
optimal control, i.e., the one that would maximize the Hamiltonian, is

1 it A(t) >0,
u*(t) = arbitrary if A(t) =0, (2.37)

-1 if A(t) <0,

or referring to the notation in Sect. 1.4,
u*(t) = bang[—1, 1; \(¢)]. (2.38)
To find A, we write the adjoint equation

AN=—H, =1, \(1) = Sp(z(T),T) = 0. (2.39)
Because this equation does not involve x and u, we can easily solve it as
At)=t—1. (2.40)

It follows that A(t) =t—1 < 0fort € [0,1) and so u*(1) = —1, t € [0, 1).
Since A(1) = 0, for simplicity we can also set u*(1) = —1 at the single
point ¢ = 1. We can then specify the optimal control to be

u*(t) = —1 for all ¢t € [0,1].
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Substituting this into the state equation (2.34) we have
i=-1, 2(0) = 1, (2.41)

whose solution is
z*(t) =1—tfor t € [0, 1]. (2.42)

The graphs of the optimal state and adjoint trajectories appear in
Fig.2.2. Note that the optimal value of the objective function is
J*=—1/2.

Aty=1—1

Figure 2.2: Optimal state and adjoint trajectories for Example 2.2

In Sect.2.2.4, we stated that the adjoint variable A(t) gives the
marginal value per unit increment in the state variable x(¢) at time ¢.
Let us illustrate this claim at time ¢ = 0 with the help of Example 2.2.
Note from (2.40) that A(0) = —1. Thus, if we increase the initial value
x(0) from 1, by a small amount ¢, to a new value 1+ ¢, where £ may be
positive or negative, then we expect the optimal value of the objective
function to change from J* = —1/2 to

4y = —1/2+ A0)e + o(e) = —1/2 — e + o(e),
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where we use the subscript (1 + ¢) to distinguish the new value from
J* as well as to emphasize its dependence on the new initial condition
x(0) = 1 + &. To verify this, we first observe that u*(t) = —1, t € [0, 1],
remains optimal in this example for the new initial condition. Then from
(2.41) with 2(0) = 1+4¢, we can obtain the new optimal state trajectory,
shown by the dotted line in Fig. 2.2 as

x?l-}—a)@) =1 +€_t? te [07 1]7

where the notation a:’(ky) (t) indicates the dependence of the optimal tra-
jectory on the initial value z(0) = y. Substituting this for z in (2.33)
and integrating, we get the new objective function value to be —1/2 —e.
Since 0 is of the order o(g), our claim has been illustrated.

We should note that in general it may be necessary to perform sep-
arate calculations for positive and negative €. It is easy to see, however,
that this is not the case in this example.

Example 2.3 Let us solve the same problem as in Example 2.2 over the
interval [0, 2] so that the objective is:

wax {7 = [ 2 st} (2.43)

The dynamics and constraints are (2.34) and (2.35), respectively, as be-
fore. Here we want to minimize the signed area between the horizontal
axis and the trajectory of x(t) for 0 < ¢ < 2.

Solution As before, the Hamiltonian is defined by (2.36) and the optimal
control is as in (2.38). The adjoint equation

A=1, A2) =0 (2.44)

is the same as (2.39) except that now T = 2 instead of 7' = 1. The
solution of (2.44) is easily found to be

At =t—2, tel0,2]. (2.45)

The graph of A(t) is shown in Fig.2.3.

With A(¢) as in (2.45), we can determine u*(f) = —1 throughout.
Thus, the state equation is the same as (2.41). Its solution is given by
(2.42) for t € [0, 2]. The optimal value of the objective function is J* = 0.
The graph of x*(t) is also sketched in Fig. 2.3.



46 2. The Maximum Principle: Continuous Time
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Figure 2.3: Optimal state and adjoint trajectories for Example 2.3

Example 2.4 The next example is:

1
maX{J:/ —1a:2dt} (2.46)
0o 2

subject to the same constraints as in Example 2.2, namely,
t=u, z(0)=1, ueQ=[-1,1]. (2.47)

Here F = —(1/2)z? so that the interpretation of the objective function
(2.46) is that we are trying to find the trajectory z(¢) in order that the
area under the curve (1/2)z? is minimized.

Solution The Hamiltonian is

1
H = —§x2 + M. (2.48)
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The control function u*(x,\) that maximizes the Hamiltonian in this
case depends only on A, and it has the form

u*(x,\) = bang[—1, 1; A]. (2.49)

Then, the optimal control at time ¢ can be expressed as u*(t) =
bang[—1, 1, A(¢)].
The adjoint equation is

A=—H, =z, \(1)=0. (2.50)

Here the adjoint equation involves x, so we cannot solve it directly. Be-
cause the state equation (2.47) involves u, which depends on A, we also
cannot integrate it independently without knowing A.

A way out of this dilemma is to use some intuition. Since we want to
minimize the area under (1/2)z? and since x(0) = 1, it is clear that we
want x to decrease as quickly as possible. Let us therefore temporarily
assume that A is nonpositive in the interval [0, 1] so that from (2.49) we
have u = —1 throughout the interval. (In Exercise 2.8, you will be asked
to show that this assumption is correct.) With this assumption, we can
solve (2.47) as

a(t)=1—t. (2.51)
Substituting this into (2.50) gives

A=1-t.

Integrating both sides of this equation from ¢ to 1 gives

/t1 ANr)dr = [(1 — 7)dr,

1
MO =M1 = (7= 37 I}
which, using A(1) = 0, yields

or

1 1

The reader may now verify that A(t) is nonpositive in the interval [0, 1],
verifying our original assumption. Hence, (2.51) and (2.52) satisfy the
necessary conditions. In Exercise 2.26, you will be asked to show that
they satisfy sufficient conditions derived in Sect. 2.4 as well, so that they
are indeed optimal. Thus, 2*(¢t) = 1 — ¢, and using this in (2.46), we can
get J* = —1/6. Figure 2.4 shows the graphs of the optimal state and
adjoint trajectories.
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XH=1-1t
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~

4 A= —2R+t—12

Figure 2.4: Optimal trajectories for Examples 2.4 and 2.5

Example 2.5 Let us rework Example 2.4 with T = 2, i.e., with the

objective function:
21
maX{J:/ —a;?dt} (2.53)
0 2

subject to the constraints (2.47).

Solution The Hamiltonian is still as in (2.48) and the form of the optimal
policy remains as in (2.49). The adjoint equation is

A=z, \2) =0,
which is the same as (2.50) except T' = 2 instead of T' = 1. Let us try to
extend the solution of the previous example from T =1 to T = 2. Thus,
we keep A(f) as in (2.52) for ¢ € [0,1] with A(1) = 0. If we recall from
the definition of the bang function that bang [—1,1;0] is not defined, it
allows us to choose w in (2.49) arbitrarily when A = 0. This is an instance
of singular control, so let us see if we can maintain the singular control
by choosing w appropriately. To do this we choose u = 0 when A = 0.
Since A\(1) = 0 we set u(1) = 0 so that from (2.47), we have #(1) = 0.
Now note that if we set u(t) = 0 for ¢ > 1, then by integrating equations
(2.47) and (2.50) forward from ¢t = 1 to t = 2, we see that z(t) = 0
and A(t) = 0 for 1 < ¢t < 2; in other words, u(t) = 0 maintains singular
control in the interval. Intuitively, this is the correct answer since once
we get x = 0, we should keep it at 0 in order to maximize the objective
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function J in (2.53). We will later give further discussion of singular
control and state an additional necessary condition in Sect. D.6 for such
cases; see also Bell and Jacobson (1975). In Fig.2.4, we can get the
singular solution by extending the graphs shown to the right (as shown
by thick dotted line), making z*(t) = 0, A(¢{) = 0, and w*(t) = 0 for
1 <t<2

With the trajectory z*(¢), 0 < ¢ < 2, thus obtained, we can use
(2.53) to compute the optimal value of the objective function as

J* :/0 —(1/2)(1 — 1) dt+/1 —(1/2)(0)dt = —1/6.

Now suppose that the initial x(0) is perturbed by a small amount
e to (0) = 1 + ¢, where € may be positive or negative. According to
the marginal value interpretation of A(0), whose value is —1/2 in this
example, we can estimate the change in the objective function to be
A0)e +o(e) = —€/2 + o(e).

Next we calculate directly the impact of the perturbation in the initial
value. For this we must obtain new control and state trajectories. These
are clearly

. -1, tel0,1+¢],
u(l—i—s)(t) =
0, te(l+e2],
and
§ l+e—t, te[0,1+¢],
x(1+5)<t) =

0, te(l+4e,2],

where we have used the subscript (1 + ¢) to distinguish these from the
original trajectories as well as to indicate their dependence on the initial
value £(0) = 1+ . We can then obtain the corresponding optimal value
of the objective function as

1+e
Tiire) :/0 —(1/2) (14 —t)%dt = —1/6 — /2 — 22 — /6
= —1/6+ A(0)z + o(c),

where o(g) = —¢2/2 — €3 /6.
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In this example and Example 2.2, we have, by direct calculation,
demonstrated the significance of A\(0) as the marginal value of the change
in the initial state. This could have also been accomplished by obtaining
the value function V(z,t) for z(t) = x, t € [0,2], and then showing that
A(0) = V;(1,0). This, of course, is the relationship (2.17) at z(0) =z =1
and t = 0.

Keep in mind, however, that deriving V' (z,t) is more than just find-
ing the solution of the problem, which we have already found by using
the maximum principle. V(z,t) also yields additional insights into the
problem. In order to completely specify V(z,t) for all z € E' and all
t € [0,2], we need to deal with a number of cases. Here, we will carry
out the details only in the case of any ¢ € [0,2] and 0 < = < 2 — ¢,
and leave the listing of the other cases and the required calculations as
Exercise 2.13.

We know from (2.9) that we need to solve the optimal control problem
for any given ¢t € [0,2] with 0 < x < 2 — t. However, from our earlier
analysis of this example, it is clear that the optimal control

—1, seltt+a],

0, se((t+x,2],

x—(s—1t), seltt+x]
0, s€ (t+mz72],

where we use the subscript to show the dependence of the control and
state trajectories of a problem beginning at time ¢ with the state z(t) =
z. Thus,

t+x 1 1 t+x
Vi, t) :/ L ()2ds = —/ (2 — 5+ )2ds.
t 2 ’ 2 /i

While this expression can be easily integrated to obtain an explicit so-
lution for V(x,t), we do not need to do this for our immediate purpose
at hand, which is to obtain V(z,t). Differentiating the right-hand side
with respect to x, we obtain

1 T+t
Va(z,t) = _2/t 2(x — s+ t)ds.



2.3. Simple Examples o1

Furthermore, since

we obtain

0, te(1,2],

which equals A\(¢) obtained as the adjoint variable in Example 2.5. Note
that for ¢ € [0, 1], A(¢) in Example 2.5 is the same as that in Example 2.4
obtained in (2.52).

Example 2.6 This example is slightly more complicated and the opti-
mal control is not bang-bang. The problem is:

max {J = /02(295 —3u — u2)dt} (2.54)

subject to
t=x4u, z(0) =5 (2.55)

and the control constraint
u e Q=10,2]. (2.56)

Solution Here T =2, F = 22 —3u—u?, S =0, and f = 2 + u. The
Hamiltonian is

H = (20 —3u—u®) + Xz +u)
(2 + Nz — (u? + 3u — \u). (2.57)

Let us find the optimal control policy by differentiating (2.57) with re-

spect to u. Thus,

a—H:—2u—3+A:0,
ou
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so that the form of the optimal control is

A(#) — 3

w(t) = 22",

(2.58)
provided this expression stays within the interval Q = [0,2]. Note that
the second derivative of H with respect to u is 9?H/0u? = —2 < 0, so
that (2.58) satisfies the second-order condition for the maximum of a
function.

We next derive the adjoint equation as

OH

A= =20 A@2) =0, (2.59)

Referring to Appendix A.1, we can use the integrating factor e’ to obtain
et (d\ + Mdt) = d(e'\) = —2¢!dt.

We then integrate it on both sides from ¢ to 2 and use the terminal
condition A(2) = 0 to obtain the solution of the adjoint equation (2.59)

" At) =2(e*7t —1).

If we substitute this into (2.58) and impose the control constraint
(2.56), we see that the optimal control is

2 if €2t —25>2,
U - et — 2. 1 <e t'—-25< .
*(t) 2=t _ 925 if 0<e2t—25<2, (2.60)
0 if €27t —-25<0,

or referring to the notation defined in (1.22),

u*(t) = sat]0,2; €27t — 2.5].

2—t1 _

The graph of u*(t) appears in Fig. 2.5. In the figure, ¢, satisfies e
2.5 =2, ie, t; =2 —1n4.5 ~ 0.496, while ¢, satisfies e>~%2 — 2.5 = 0,
which gives to =2 — In2.5 = 1.08.

In Exercise 2.2 you will be asked to compute the optimal state tra-
jectory x*(t) corresponding to u*(t) shown in Fig. 2.5 by piecing together
the solutions of three separate differential equations obtained from (2.55)
and (2.60).
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e’ =25

u*(t)

0 4=~0.5 L=~11 2

Figure 2.5: Optimal control for Example 2.6

2.4 Sufficiency Conditions

So far, we have shown the necessity of the maximum principle condi-
tions for optimality. Next we prove a theorem that gives qualifications
under which the maximum principle conditions are also sufficient for op-
timality. This theorem is important from our point of view since the
models derived from many management science applications will satisfy
conditions required for the sufficiency result. As remarked earlier, our
technique for proving existence will be to display for any given model, a
solution that satisfies both necessary and sufficient conditions. A good
reference for sufficiency conditions is Seierstad and Sydseeter (1987).

We first define a function HY : E" x E™ x E' — E! called the derived
Hamiltonian as follows:

H(x, M\ t) = max H(z,u,\,t). (2.61)
ue(t)
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We assume that by this equation a function u*(z, A, t) is implicitly and
uniquely defined. Given these assumptions we have by definition,

HO(z, M\ t) = H(z,u*, )\ t). (2.62)

For our proof of the sufficiency of the maximum principle, we also need
the derivative H?(x, \,t), which by use of the Envelope Theorem can be
given as

HY(z,\t) = Hy(z,u*, \t) == Hy(2,u, \, )|y (2.63)

To see this in the case when u*(z, A, t) is differentiable in z, let us
differentiate (2.62) with respect to x:
ou
oz’
To obtain (2.63) from (2.64), we need to show that the second term on
the right-hand side of (2.64) vanishes, i.e.,

HO(z, M\ t) = Hy(z,u*, A\ t) + Hy(z,u*, \, 1) (2.64)

¥

Hy,(z,u", )\,t)aa% =0 (2.65)
for each x. There are two cases to consider. If u* is in the interior of
Q(t), then it satisfies the first-order condition H,(z, u*, A, t) = 0, thereby
implying (2.65). Otherwise, u* is on the boundary of Q(t). Then, for each
i,7, either H,, = 0 or du}/0x; = 0 or both. Once again, (2.65) holds.
Exercise 2.25 gives a specific instance of this case.

Remark 2.3 We have shown the result in (2.63) in cases when u* is
a differentiable function of x. The result holds more generally, provided
that Q(t) is appropriately qualified; see Derzko et al. (1984). Such results
are known as Envelope Theorems, and are used often in economics.

Theorem 2.1 (Sufficiency Conditions). Let u*(t), and the corre-
sponding x*(t) and A(t) satisfy the maximum principle necessary con-
dition (2.31) for all t € [0,T). Then, u* is an optimal control if
HO(z, \(t),t) is concave in = for each t and S(x,T) is concave in x.

Proof. The proof is a minor extension of the arguments in Arrow and
Kurz (1970). By definition

Hiz(), u(t), \(t), 1] < HOl(£), A(t), 1]. (2.66)
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Since H? is differentiable and concave, we can use the applicable defini-
tion of concavity given in Sect. 1.4 to obtain

HO[x(t), A1), 8] < H[" (1), A(8), 1] + HRla" (1), A(#), t][x(t) — 2*(¢)].

(2.67)
Using (2.66), (2.62), and (2.63) in (2.67), we obtain
Hlz(t), u(®), A(t), 1] < Hz"(t), u™(t), A(t),]
+H[27(t), u™(t), Mt), t][x(t) — 2" (1)]. (2.68)
By definition of H in (2.18) and the adjoint equation of (2.31)
Flz ( ) u(t), t] + A(t) f2(t), u(t), t] < Flz*(t),u"(t), 1]
M) fla* (8), ™ (1), 8] = A() [ (t) — 2" (D)]. (2.69)
Using the state equation in (2.31), transposing, and regrouping,
Fla*(),u"(8),8] — Fla(t),u(t),t] > AO)[z(t) - 2*(t)]
+A()[E(t) — 2" (¢)]. (2.70)

Furthermore, since S(z,T) is a differential and concave function in its
first argument, we have

S(x(T),T) <S(x*(T),T) + Sy(z*(T), T)[x(T) — z*(T)] (2.71)
S(@*(T),T) - S(2(T),T) > S, («"(T), T)[e(T) — 2*(T)].  (2.72)

Integrating both sides of (2.70) from 0 to T" and adding (2.72), we have

[/ Pla Bt + S(x ()T)}

[/ F(a t)dt + S(a(T )T)}
= Sa(@™(T), T)][x(T) — «*(T)] = A(0)[=(0) — z7(0)]
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J(u*) — J(u) (2.73)
> A(T) = So(2™(T), T)][z(T) — z™(T)] — A(0)[z(0) — z*(0)],

where J(u) is the value of the objective function associated with a control

u. Since 2*(0) = z(0) = =zo, the initial condition, and since A\(T') =
Sy (x*(T),T) from the terminal adjoint condition in (2.31), we have
J(u*) > J(u). (2.74)

Thus, u* is an optimal control. This completes the proof. O

Because \(t) is not known a priori, it is usual to test H for a stronger
assumption, i.e., to check for the concavity of the function H%(z, \, ) in x
for any A and ¢t. Sometimes the stronger condition given in Exercise 2.27
can be used.

Mangasarian (1966) gives a sufficient condition in which the concav-
ity of HY(x, A(t),t) in Theorem 2.1 is replaced by a stronger condition
requiring the Hamiltonian H (z,wu, A(t),t) to be jointly concave in (z,u).

Example 2.7 Let us show that the problems in Examples 2.2 and 2.3
satisfy the sufficient conditions. We have from (2.36) and (2.61),

H® = —x + \u*,

where u* is given by (2.37). Since u* is a function of A only, H%(z, A, t) is
certainly concave in x for any ¢ and A (and in particular for A(¢) supplied
by the maximum principle). Since S(z,T) = 0, the sufficient conditions
hold.

Finally, it is important to mention that thus far in this chapter, we
have considered problems in which the terminal values of the state vari-
ables are not constrained. Such problems are called free-end-point prob-
lems. The problems at the other extreme, where the terminal values of
the state variables are completely specified, are termed fixed-end-point
problems. 'Then, there are problems in between these two extremes.
While a detailed discussion of terminal conditions on state variables ap-
pears in Sect. 3.4 of the next chapter, it is instructive here to briefly
indicate how the maximum principle needs to be modified in the case
of fixed-end-point problems. Suppose z(7T) is completely specified, i.e.,
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z(T) = k € E™, where k is a vector of constants. Observe then that
the first term on the right-hand side of inequality (2.73) vanishes regard-
less of the value of \(T'), since z(T") — 2*(T) = k — k = 0 in this case.
This means that the sufficiency result would go through for any value of
A(T). Not surprisingly, therefore, the transversality condition (2.30) in
the fixed-end-point case changes to

AT) = 8, (2.75)

where § € E™ is a vector of constants to be determined.

Indeed, one can show that (2.75) is also the necessary transversality
condition for fixed point problems. With this observation, the maximum
principle for fixed-end-point problems can be obtained by modifying
(2.31) as follows: adding z(7T") = k and removing A(T') = S, (z*(T"),T).
Likewise, the resulting TPBVP (2.32) can be modified correspondingly;
it will have initial and final values on the state variables, whereas both
initial and terminal values for the adjoint variables are unspecified, i.e.,
A(0) and \(T') are constants to be determined.

In Exercises 2.28 and 2.19, you are asked to solve the fixed-end-point
problems given there.

2.5 Solving a TPBVP by Using Excel

A number of examples and exercises found throughout this book involve
finding a numerical solution to a two-point boundary value problem (TP-
BVP). In this section we will show how the GOAL SEEK function in
Excel can be used for this purpose. We will solve the following example.

Example 2.8 Consider the problem:

1
max{J:/ —1(x2+u2)dt}
0o 2

&= —2® +u, x(0) = 5. (2.76)

subject to

Solution We form the Hamiltonian

1
H= —5(932 +u?) + M(—2® + u),
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where the adjoint variable \ satisfies the equation
A=z + 322\, A(1) =0. (2.77)

Since u is unconstrained, we set H, = 0 to obtain u* = A. With this, the
state equation (2.76) becomes

i=—2>4+ )\ z(0) =5. (2.78)

Thus, the TPBVP is given by the system of equations (2.77) and (2.78).
A simple method to solve the TPBVP uses what is known as the
shooting method, explained in the flowchart in Fig. 2.6.

Guess
A0)

Solve the system Yes
—» (2.78), (2.79) STOP
forward in time

No

Figure 2.6: The flowchart for Example 2.8

We will use Excel functions to implement the shooting method. For
this we discretize (2.77) and (2.78) by replacing dz/dt and d\/dt by

Dr _alt+ M) =) DA A+ A - AW
At At M T At ’

respectively. Substitution of Az /At for & in (2.78) and AX/At for X in
(2.77) gives the discrete version of the TPBVP:

z(t + At) = x(t) + [—2(t)® + AX#)] At, z(0) =5, (2.79)

Mt 4 At) = Mt) + [z(t) + 3z(t)2A(#)] At, A1) = 0. (2.80)
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In order to solve these equations, open an empty spreadsheet, choose
the unit of time to be At = 0.01, make a guess for the initial value \(0)
to be, say —0.2, and make the entries in the cells of the spreadsheet as
specified below:

Enter -0.2 in cell Al.

Enter 5 in cell B1.

Enter = A1 + (B1 + 3 * (B172)% Al)* 0.01 in cell A2.
Enter = B1 + (-B1” 3 + A1) % 0.01 in cell B2.

Here we have entered the right-hand side of the difference equation (2.80)
for t = 0 in cell A2 and the right-hand side of the difference equation
(2.79) for t = 0 in cell B2. Note that A(0) = —0.2 shown as the entry
—0.2 in cell Al is merely a guess. The correct value will be determined
by the use of the GOAL SEEK function.

Next highlight cells A2 and B2 and drag the combination down to
row 101 of the spreadsheet. Using EDIT in the menu bar, select FILL
DOWN. Thus, Excel will solve Egs. (2.80) and (2.79) fromt =0tot =1
in steps of At = 0.01, and that solution will appear as entries in columns
A and B of the spreadsheet, respectively. In other words, the guessed
solution for A\(¢) will appear in cells Al to A101 and the corresponding
solution for z(t) will appear in cells B1 to B101. To find the correct value
for A(0), use the GOAL SEEK function under TOOLS in the menu bar
and make the following entries:

Set cell: A101.
To value: 0.
By changing cell: Al.

It finds the correct initial value for the adjoint variable as A(0) =
—0.10437, which should appear in cell A1, and the correct ending value
of the state variable as (1) = 0.62395, which should appear in cell B101.
You will notice that the entry in cell A101 may not be exactly zero as
instructed, although it will be very close to it. In our example, it is
—0.0007. By using the CHART function, the graphs of x*(¢) and A(t)
can be printed out by Excel as shown in Fig.2.7.
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x‘and A

1 \

9.0
0.2
04 |
0.6
0.8
1.0

Time
Figure 2.7: Solution of TPBVP by excel

As we discuss more complex problems involving control and state
inequality constraints in Chaps. 3 and 4, we will realize that the shooting
method is no longer adequate to solve such problems. However, there is a
large amount of literature devoted to computational methods for solving
optimal control problems. While a detailed treatment of this topic is
beyond the scope of this book, we suggest some references as well as a
software in Chap. 4, Sect. 4.3.

Exercises for Chapter 2

E 2.1 Perform the following;:

(a) In Example 2.2, show J* = —1/2.
(b) In Example 2.3, show J* = 0.

(¢) In Example 2.4, show J* = —1/6.

(d) In Example 2.5, show J* = —1/6.

E 2.2 Complete Example 2.6 by writing the optimal z*(¢) in the form

of integrals over the three intervals (0,¢1), (t1,t2), and (¢2,2) shown in
Fig. 2.5.
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Hint: It is not necessary to actually carry out the numerical evaluation
of these integrals unless you are ambitious.

E 2.3 Find the optimal solution for Example 2.1 with xg = 0and 7" = 1.
E 2.4 Rework Example 2.6 with F' = 2z — 3u.

E 2.5 Show that both the Lagrange and Mayer forms of the optimal
control problem can be reduced to the linear Mayer form (2.5).

E 2.6 Show that the optimal control obtained from the application of
the maximum principle satisfies the principle of optimality: if v*(¢) is an
optimal control and z*(t) is the corresponding optimal path for 0 < ¢ < T
with 2(0) = xg, then verify the above proposition by showing that u*(t)
for 7 <t < T satisfies the maximum principle for the problem beginning
at time 7 with the initial condition x(7) = z*(7).

E 2.7 Provide an alternative derivation of the adjoint equation in
Sect. 2.2.2 by starting with a restatement of the Eq. (2.19) as —V; = H°
and differentiating it with respect to «.

E 2.8 In Example 2.4, show that in view of (2.47) any A(¢),t € [0,1],
that satisfies (2.50) must be nonnegative.

E 2.9 The system defined in (2.4) is termed autonomous if F, f, S and
Q) are not explicit functions of time ¢. In this case, show that the Hamil-
tonian is constant along the optimal path, i.e., show that dH/dt = 0.
Furthermore, verify this result in Example 2.4 by a direct substitution
for  and A from (2.51) and (2.52), respectively, into H given in (2.48).

E 2.10 In Example 2.4, verify by direct calculation that with a new
initial value z(0) = 14¢ with & small, the new optimal objective function
value will be

Jiye = —1/6+ M0)e + o(e) = —1/6 — /2 — £2/2.

E 2.11 In Example 2.6, verify by direct calculation that with a new ini-
tial 2(0) = 5+¢ with e small, the objective function value will change by

AM0)e + o(e) = 2(e? — 1)e + o(e).
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E 2.12 Obtain the value function V(z,t) explicitly in Example 2.4 and
verify the relation V(z*(t),t) = A(t) for the example by showing that
Ve(l —t,t) = —(1/2)t2 +t —1/2.

E 2.13 Obtain the value function V' (z,t) explicitly in Example 2.5 for
every x € El and t € [0, 2].

Hint: You need to deal with the following cases for ¢ € [0, 2]:
)
(ii) =z >2—t,
)
)
E 2.14 Obtain V(x,t) in Example 2.6 for small positive and negative =

for t € [t2,2]. Then, show that V,(z,t) = 2(e>~t — 1), t € [t2,2], is the
same as A(t), t € [t2,2] obtained in Example 2.6.

E 2.15 Solve the problem:
T 2
maX{J :/ (x — u)dt}
0 2

& =u, x(0) = o,

subject to

u € [0,1],

for optimal control and optimal state trajectory. Verify that your solu-
tion is optimal by using the maximum principle sufficiency condition.

E 2.16 Solve completely the problem:

max {/Ol(x + u)dt}

i=1-u? z(0)=1;

that is, find x*(¢),u*(¢) and A\(¢),0 <t < 1.
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E 2.17 Use the maximum principle to solve the following problem given
in the Mayer form:
max|(8x1(18) + 4x2(18)]

subject to
T =x1 + T2 + u, wl(O) = 15,

3.5'2 = 2351 —u, 332(0) == 20,

and the control constraint
0<u<l.

Hint: Use the method in Appendix A to solve the simultaneous differ-
ential equations.

E 2.18 In Fig. 2.8, a water reservoir being used for the purpose of fire-
fighting is leaking, and its water height z(t) is governed by

& = —0.1x + u, z(0) = 10,

where u(t) denotes the net inflow at time ¢ and 0 < u < 3.

Note that z(¢) also represents the water pressure in appropriate units.
Since high water pressure is useful for fire-fighting, the objective function
in (a) below involves keeping the average pressure high, while that in (b)
involves building up a high pressure at 7' = 100. Furthermore, we do not
need to impose the state constraints 0 < x(t) < 50, as these will always
be satisfied for every feasible control u(t), 0 <t < 100.

50

Figure 2.8: Water reservoir of Exercise 2.18

(a) Find the optimal control which maximizes

100
J = / xdt.
0

Find the maximum level reached.
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(b) Replace the objective function in (a) by
J = 5x(100),
and re-solve the problem.

(¢) Redo the problem with J = floo

o (z—>bu)dt.

E 2.19 Consider the following fixed-end-point problem:

max {J =— /OT(g(a:) + ch)dt}

u

subject to
&= f(x) + b(z)u, (0) = zo, z(T) =0,

where functions g > 0, f, and b are assumed to be continuously differen-
tiable. Derive the two-point boundary value problem (TPBVP) satisfied
by the optimal state and control trajectories.

E 2.20 A Machine Maintenance Problem. Consider the machine state
dynamics
&= —0x + u, x(0) =z >0,

where 6 > 0 is the rate of deterioration of the machine state and u is the
rate of machine maintenance. Find the optimal maintenance rate:

T w2
max {J = / e " (ma — ?)dt + e_”TS:U(T)} )
0

where m > 0 with 7wz representing the profit rate when the machine state
is z, u?/2 is the cost of maintaining the machine at rate u, p > 0 is the
discount rate, T" is the time horizon, and S > 0 is the salvage value of
the machine for each unit of the machine state at time 7'. Furthermore,
show that the optimal maintenance rate decreases, increases, or remains
constant over time depending on whether the difference S —7/(p +9) is
negative, positive, or zero, respectively.

E 2.21 Transform the machine maintenance problem of Exercise 2.20
into Mayer Form. Then solve it to obtain the optimal maintenance rate.

E 2.22 Regional Allocation of Investment. Let K;, i = 1,2, denote the
capital stock in Region . Let b; be the productivity of capital and s; be
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the marginal propensity to save in Region ¢. Since the investment funds
for the two regions come from the savings in the whole economy, we have

Ky + Ky = by1s51 K| 4 bysa Ko = g1 K1 + g2 Ko,

where g; = b;s;. Let u denote the control variable representing the frac-
tion of investment allocated to Region 1 with the remainder going to
Region 2. Clearly,

0<u<l, (2.81)

and
Kl = u(glKl + QQKQ),Kl(O) =a; >0, (2.82)
Ky = (1—u)(q1K1 + g2K2), K2(0) = ag > 0. (2.83)

The optimal control problem is to maximize the productivity of the whole
economy at time 7. Thus, the objective is:

maX{J = blKl(T) + bQKQ(T)}
subject to (2.81), (2.82), and (2.83).

(a) Use the maximum principle to derive the form of the optimal policy.

(b) Assume by > b;. Show that w*(t) = 0 for t € [t,T], where { is a
switching point and 0 <t < T.

(c) If you are ambitious, find the # of part (b).

E 2.23 Investment Allocation. Let K denote the capital stock and AK
its output rate with A > 0. For simplicity in notation, we set the pro-
ductivity factor A = 1. Let u denote the invested fraction of the output.
Then, uK is the investment rate and (1 — u)K is the consumption rate.
Let us assume an exponential utility 1 — e~¢ of consumption C. Solve
the resulting optimal control problem:

T
max {J = / 1- e(lu(t))K(t)}dt}
0

K(t) = u(t)K(t), K(0) = Ko, K(T) free, 0 <u(t) <1, 0<t <T.

subject to

Assume T > 1 and 0 < Ky < 1 —e!'~7". Obtain explicitly the optimal in-
vestment allocation u*(t), optimal capital K*(t), and the adjoint variable
At), 0<t<T.
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E 2.24 The rate at which a new product can be sold at any time ¢
is f(p(t))g(Q(t)) where p is the price and @ is cumulative sales. We
assume f’(p) < 0; sales vary inversely with price. Also ¢'(Q) = 0 for
Q S Qq, respectively, where @)1 > 0 is a constant known as the saturation
level. For a given price, current sales grow with past sales in the early
stages as people learn about the good from past purchasers. But as
cumulative sales increase, there is a decline in the number of people who
have not yet purchased the good. Eventually the sales rate for any given
price falls, as the market becomes saturated. The unit production cost ¢
may be constant or may decline with cumulative sales if the firm learns
how to produce less expensively with experience: ¢ = ¢(Q), ¢(Q) < 0.
Formulate and solve the optimal control problem in order to characterize
the price policy p(t), 0 < t < T, that maximizes profits from this new
“fad” over a fixed horizon T Specifically, show that in marketing a new
product, its optimal price rises while the market expands to its saturation
level and falls as the market matures beyond the saturation level.

E 2.25 Suppose H(z,u, A\, t) = Auz — %uz and Q(t) = [0, 1] for all ¢.

(a) Show that the form of the optimal control is given by the function

Ar if 0< A x <1,

u*(x, \) = sat]0, 1; \x] = 1 if dz>1,

0 if Xx<O.

(b) Verify that (2.63) holds for all values of x and A.

E 2.26 Show that the derived Hamiltonians H° found in Examples 2.4
and 2.6 satisfy the concavity condition required for the sufficiency result
in Sect. 2.4.

E 2.27 If F and f are concave in x and u and if A(¢) > 0, then show
that the derived Hamiltonian HY is concave in . Note that the concavity
of F and f are easier to check than the concavity of H? as required in
Theorem 2.1 on sufficiency conditions.

E 2.28 A simple controlled dynamical system is modeled by the scalar
equation
T=x+u.
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The fixed-end-point optimal control problem consists in steering x(t)
from an initial state x(0) = o to the target x(1) = 0, such that

is minimized. Use the maximum principle to show that the optimal
control is given by

_ dag

5 (6_4/3 - 1)_16_t/3.

u*(t)
E 2.29 Perform the following:

(a) Solve the optimal consumption problem of Example 1.3 with
U(C)=InC and B =0.

Hint: Since C(t) > 0, we can replace the state constraint W (t) >0, t €
[0,T7], by the terminal condition W(T') = 0, and then use the transver-
sality condition given in (2.75).

(b) Find the rate of change of optimal consumption over time and
conclude that consumption remains constant when r = p, increases
when r > p, and decreases when r < p.

E 2.30 Perform the following:

(a) Formulate the TPBVP (2.32) and its discrete version for the prob-
lem in Example 2.8, but with a new initial condition x(0) = 1.

(b) Solve the discrete version of the TPBVP by using Excel.

E 2.31 Solve explicitly

max {J _ /02 x(t)dt}

&(t) = u(t), z(0) =1, z(2) = 0,
—a < u(t) <b,a>1/2, b>0.

subject to

Obtain optimal x*(t), u*(t), and all required multipliers.
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Chapter 3

The Maximum Principle:
Mixed Inequality
Constraints

The problems to which the maximum principle derived in the previous
chapter was applicable had constraints involving only the control vari-
ables. We will see that in many applied models it is necessary to impose
constraints involving both control and state variables. Inequality con-
straints involving control and possibly state variables are called mized
inequality constraints.

In the solution spaces of problems with mixed constraints, there may
be regions in which one or more of the constraints is tight. When this
happens, the system must be controlled in such a way that the tight
constraints are not violated. As a result, the maximum principle of
Chap. 2 must be revised so that the Hamiltonian is maximized subject
to the constraints. This is done by appending the Hamiltonian with
the mixed constraints and the associated Lagrange multipliers to form a
Lagrangian, and then setting the derivatives of the resulting Lagrangian
with respect to the control variables to zero.

(© Springer Nature Switzerland AG 2019 69
S. P. Sethi, Optimal Control Theory,
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In Sect. 3.1, a Lagrangian form of the maximum principle is discussed
for models in which there are some constraints that involve only control
variables, and others that involve both state and control variables simul-
taneously. Problems having pure state variable inequality constraints,
i.e., those involving state variables but no control variables, are more
difficult and will be dealt with in Chap. 4.

In Sect. 3.2, we state conditions under which the Lagrangian maxi-
mum principle is also sufficient for optimality.

Economists frequently analyze optimal control problems involving a
discount rate. By combining the discount factor with the adjoint vari-
ables and the Lagrange multipliers and making suitable changes in the
definitions of the Hamiltonian and Lagrangian functions, it is possible
to derive the current-value formulation of the maximum principle as de-
scribed in Sect. 3.3.

It is often the case in finite horizon problems that some restrictions
are imposed on the state variables at the end of the horizon. In Sect. 3.4,
we discuss the transversality conditions to be satisfied by the adjoint
variable in special cases of interest. Section 3.5 is devoted to the study
of free terminal time problems where the terminal time itself is a deci-
sion variable to be determined. Models with infinite horizons and their
stationary equilibrium solutions are covered in Sect. 3.6.

Section 3.7 presents a classification of a number of the most important
and commonly used kinds of optimal control models, together with a brief
description of the forms of their optimal solutions. The reader may wish
to refer to this section from time to time while working through later
chapters in the book.

3.1 A Maximum Principle for Problems with
Mixed Inequality Constraints

We will state the maximum principle for optimal control problems with
mixed inequality constraints without proof. For further details see Pon-
tryagin et al. (1962), Hestenes (1966), Arrow and Kurz (1970), Hadley
and Kemp (1971), Bensoussan et al. (1974), Feichtinger and Hartl (1986),
Seierstad and Sydseeter (1987), and Grass et al. (2008).

Let the system under consideration be described by the following
vector differential equation

= f(z,u,t), x(0) =g (3.1)
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given the initial conditions xp and a control trajectory wu(t), t €
[0,T], T > 0, where T can be the terminal time to be optimally deter-
mined or given as a fixed positive number. Note that in the above equa-
tion, 2(t) € E™ and u(t) € E™, and the function f : E" x E™ x E* — E"
is assumed to be continuously differentiable.

Let us consider the following objective:

max {J _ /OT Fla,u, t)dt + S[z(T), T]} , (3.2)

where F : E" x E™ x E' = E' and S : E" x E' — E! are continuously
differentiable functions and where T denotes the terminal time. Depend-
ing on the situation being modeled, the terminal time 7" may be given or
to be determined. In the case when T is given, the function S(z(T"),T)
should be viewed as merely a function of the terminal state, and can be
revised as S(z(T)).

Next we impose constraints on state and control variables. Specifi-
cally, for each ¢t € [0,T], z(t) and wu(t) must satisfy

g(x,u,t) >0, t €[0,7], (3.3)

where g: E™ x E™ x E' — E1 is continuously differentiable in all its
arguments and must contain terms in u. An important special case is that
of controls having an upper bound that depends on the current state,
ie., u(t) < M(x(t)), t € [0,7], which can be written as M(x) —u > 0.
Inequality constraints without terms in u will be introduced later in
Chap. 4.

It is important to note that the mixed constraints (3.3) allow for
inequality constraints of the type g(u,t) > 0 as special cases. Thus, the
control constraints of the form u(t) € Q(t¢) treated in Chap.2 can be
subsumed in (3.3), provided that they can be expressed in terms of a
finite number of inequality constraints of the form g(u,t) > 0. In most
problems that are of interest to us, this will indeed be the case. Thus,
from here on, we will formulate control constraints either directly as
inequality constraints and include them as parts of (3.3), or as u(t) €
Q(t), which can be easily converted into a set of inequality constraints
to be included as parts of (3.3).
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Finally, the terminal state is constrained by the following inequality
and equality constraints:

a(z(T),T) > 0, (3.4)

b(x(T),T) =0, (3.5)

where @ : E™ x E' — Ela and b : E™ x E' — E% are continuously
differentiable in all their arguments. Clearly, a and b are not functions
of T, if T is a given fixed number. In the specific cases when T is
given, the terminal state constraints will be written as a(z(7")) > 0 and
b(z(T)) = 0. Important special cases of (3.4) are x(T') > k.

We can now define a control u(t), t € [0, 7], or simple u, to be admis-
sible if it is piecewise continuous and if, together with its corresponding
state trajectory x(t), t € [0,T], it satisfies the constraints (3.3), (3.4),
and (3.5).

At times we may find terminal inequality constraints given as

2(T) € Y(T) € X(T), (3.6)

where Y (T') is a convex set and X (T") is the set of all feasible terminal
states, also called the reachable set from the initial state zg, i.e.,

X(T) ={z(T) | z(T) obtained by an admissible control v and (3.1)}.

Remark 3.1 The feasible set defined by (3.4) and (3.5) need not be
convex. Thus, if the convex set Y (T') can be expressed by a finite number
of inequalities a(z(7"),T") > 0 and equalities b(z(7),T) = 0, then (3.6)
becomes a special case of (3.4) and (3.5). In general, (3.6) is not a special
case of (3.4) and (3.5), since it may not be possible to define a given Y (T")
by a finite number of inequalities and equalities.

In this book, we will only deal with problems in which the following
full-rank conditions hold. That is,

rank[0g/0u, diag(g)] = ¢

holds for all arguments z(t), u(t), t, that could arise along an optimal
solution, and

Oa/0x diag(a
rank / (a) =lg+1

0b/0x 0
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hold for all possible values of z(T) and T. The first of these condi-
tions means that the gradients with respect to u of all active constraints
in (3.3) must be linearly independent. Similarly, the second condition
means that the gradients with respect to = of the equality constraints
(3.5) and of the active inequality constraints in (3.4) must be linearly
independent. These conditions are also referred to as the constraint qual-
ifications. In cases when these do not hold, see Seierstad and Sydssaeter
(1987) for details on weaker constraint qualifications.

Before proceeding further, let us recapitulate the optimal control
problem under consideration in this chapter:

T
max {J = / F(z,u,t)dt + S[z(T), T}} )
0
subject to
T = f(:v,u,t), .’L'(O) = Zo, (37)
g(z,u,t) >0,

a(x(T),T) = 0,

b(z(T),T) = 0.

\
To state the maximum principle we define the Hamiltonian function
H: E"Xx E™ x E" x E!' - E' as
H(z,u,\t):= F(x,u,t) + \f(z,u,t), (3.8)
where A € E™ (a row vector). We also define the Lagrangian function
L: E"XxE™x E"x E1x E' - E! as
L(z,u, A\, p,t) == H(x,u, A\, t) + pg(x,u,t), (3.9)

where p € F9 is a row vector, whose components are called Lagrange
multipliers. These Lagrange multipliers satisfy the complementary slack-
ness conditions

p >0, pg(x,u,t) =0,

which, in view of (3.3), can be expressed equivalently as
:U’zZO) Mzgl(xau)t)zou 221727)(1
The adjoint vector satisfies the differential equation

A= —L,(z,u,\ p,t) (3.10)



74 3. The Maximum Principle: Mixed Inequality Constraints

with the terminal condition

a>0, aa(z(T),T) =0,

where o € E'» and 8 € E% are constant vectors.

The maximum principle states that the necessary conditions for u*,
with the corresponding state trajectory x*, to be an optimal control are
that there should exist continuous and piecewise continuously differen-
tiable functions A, piecewise continuous functions u, and constants o and
B such that (3.12) holds, i.e.,

#* = f(z*,u*,t), 2%(0) = xo,

satisfying the terminal constraints

a(z*(T),T) > 0 and b(z*(T),T) =0,

A= —L,(z*,u*, \, i, t)

with the terminal conditions

AT) = Se(@*(T),T) + aag(2*(T), T) + Bba(«*(T), T),
a >0, aa(z*(T),T) =0,

the Hamiltonian maximizing condition (3.12)
Hz*(t),u*(t),\(t),t] > H[zx*(t),u, \(t), 1]
at each t € [0,T] for all u satisfying
glx*(t),u,t] >0,

and the Lagrange multipliers p(t) are such that

oL OH dg
%‘u:u*(t) - % + :U’% ‘u:u*(t) =0

and the complementary slackness conditions

p(t) >0, p(t)g(x*, u*,t) =0 hold.
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In the case of the terminal constraint (3.6), note that the terminal
conditions on the state and the adjoint variables in (3.12) will be re-
placed, respectively, by

2 (T) e Y(T) c X(T) (3.13)
and
MT) = Sa(a™(T), ][y —2"(1)] 2 0,  Vy e Y(T). (3.14)

In Exercise 3.5, you are asked to derive (3.14) from (3.12) in the one
dimensional case when Y (7') =Y = [z, z] for each T' > 0, where z and
T are two constants such that z > x.

In the case when the terminal time 7" > 0 in the problem (3.10) is
also a decision variable, there is an additional necessary transversality
condition for 7™ to be optimal, namely,

Hz*(T*),u*(T*), \(T*), T*] + Sp[z*(T*), T%]
+aar[x*(T*), T*| + Bplz*(T*), T*] = 0, (3.15)

provided T* is an interior solution, i.e., 7% € (0,00). In other words,
optimal 7™ and z*(t), w*(t), t € [0,77], must satisfy (3.12) with T
replaced by T* and (3.15). This condition will be further discussed and
illustrated with examples in Sect.3.5. The discussion will also include
the case when T is restricted to lie in the interval [T, T3], 7> > T1 > 0.

We will now illustrate the use of the maximum principle (3.12) by
solving a simple example.

Example 3.1 Consider the problem:

1
max{J:/ udt}
0

= u, z(0) =1, (3.16)
> 0, z—u>0. (3.17)

subject to

Note that constraints (3.17) are of the mixed type (3.3). They can also
be rewritten as 0 < u < z.
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Solution The Hamiltonian is
H=u+ M= (1+\u,
so that the optimal control has the form
u*(x,\) = bang[0,z; 1 + A]. (3.18)

To get the adjoint equation and the multipliers associated with con-
straints (3.17), we form the Lagrangian:

L=H+pu+ py(x —u) = poz + (1 + A+ py — po)u.

From this we get the adjoint equation

: oL
A== =g A1) =0 (3.19)

Also note that the optimal control must satisfy

oL
%214‘)\4‘#1—#2:07 (3.20)

and p; and py, must satisfy the complementary slackness conditions

=0, (3.21)
o(x —u) =0. (3.22)

H1

0,
Mo 0, p

AV

It is reasonable in this simple problem to guess that u*(t) = x(t) is an
optimal control for all ¢ € [0, 1]. We now show that this control satisfies
all the conditions of the Lagrangian form of the maximum principle.

Since z(0) = 1, the control u* = z gives x = €' as the solution of
(3.16). Because z = ¢! > 0, it follows that u* = x > 0. Thus, yu; = 0
from (3.21).

From (3.20) we then have

po =1+
Substituting this into (3.19) and solving gives
1+ At) =€t (3.23)

Since the right-hand side of (3.23) is always positive, u* = z satisfies
(3.18). Notice that s = e!~* > 0 and  — u* = 0, so (3.22) holds.
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Using u* = z in (3.16), we can obtain the optimal state trajectory
x*(t) = e'. Thus, the optimal value of the objective function is

1
J* :/ eldt = (e — 1).
0

Let us now examine the consequence of changing the constraint xz —
u > 0 on control v to x —u > —e&, which gives u < xz + ¢ for a small €. In
this case, it is clear that the optimal control u* = z + ¢, which we can
use in (3.16) to obtain z*(t) = e!(1 + &) — . The optimal value of the
objective function changes to

1 1
/u(t)dt:/ ¢+ &)t = (e — 1)(1 4 2).
0 0

This means that J* increases by (e — 1)e, which in this case equals
€ fol po(t)dt = e fol el~tdt, as stipulated in Remark 3.8.

We conclude Sect. 3.1 with the following remarks.

Remark 3.2 Strictly speaking, we should have H = A\gF + Af in (3.8)
with (Ao, A(t)) # (0,0) for all ¢t € [0,7]. However, when Ay = 0, the
conditions in the maximum principle do not change if we replace F' by any
other function. Therefore, the problems where the maximum principle
holds only with A\g = 0 are termed abnormal. Such problems may arise
when there are terminal state constraints such as (3.4) and (3.5) or pure
state constraints treated in Chap.4. In this book, as is standard in
the economics literature dealing with optimal control theory, we will set
Ao = 1. This is because the problems that are of interest to us will be
normal. For examples of abnormal problems and further discussion on
this issue, see Seierstad and Sydsaeter (1987).

Remark 3.3 The function defined in (3.9) is not a Lagrangian function
in the sense of the continuous-time counterpart of the Lagrangian func-
tion defined in (8.45) in Chap.8. However, it can be viewed, roughly
speaking, as a Lagrangian function associated with the problem of max-
imizing the Hamiltonian (3.8) subject to the constraints (3.3) along the
optimal path. As in this book, some people refer to (3.9) as a Lagrangian
function, while others call it an extended Pontryagin function.

Remark 3.4 It should be pointed out that if the set Y in (3.6) consists
of a single point Y = {k}, making the problem a fixed-end-point prob-
lem, then the transversality condition reduces to simply A\(T") to equal
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a constant to be determined, since x*(T') = k. In this case the salvage
function S becomes a constant, and can therefore be disregarded. When
Y = X, the terminal condition in (3.12) reduces to (2.30). Further dis-
cussion of the terminal conditions can be found in Sect. 3.4 along with a
summary in Table 3.1.

Remark 3.5 As in Chap. 2, it can be shown that \;(¢), i = 1,2,...,n,
is interpreted as the marginal value of an increment in the state variable
x; at time t. Specifically, the relation (2.17) holds so long as the value
function V' (z,t), defined in (2.10), is continuously differentiable in x;;
see Seierstad and Sydsaeter (1987).

Remark 3.6 The Lagrange multiplier oy, ¢ = 1,2, ..., n represents the
shadow price associated with the terminal state constraint a;(z(T"),T) >
0. Thus, if we change this constraint to a;(z(7T),T') > ¢ for a small €, then
the change in the objective function will be —ea; +o(g). A similar inter-
pretation holds for the multiplier 5; see Sect. 3.4 for further discussion.
This will be illustrated in Example 3.4 and Exercise 3.17.

Remark 3.7 In the case when the terminal constraint (3.4) or (3.5) is
binding, the transversality condition A(7") in (3.12) should be viewed as
the left-hand limit, limyq A(¢), sometimes written as A(77), and then
we would express A\(T') = S, («*(T), T). However, the standard practice
for problems treated in Chaps.2 and 3 is to use the notation that we
have used. Nevertheless, care should be exercised in distinguishing the
marginal value of the state at time 7' given by S;(«*(T"),T) and the
shadow prices for the terminal constraints (3.4) and (3.5) given by o and
B, respectively. See Sect. 3.4 and Example 3.4 for further elaboration.

Remark 3.8 It is also possible to provide marginal value interpretations
to Lagrange multipliers u;, ¢ = 1,2,...,m. If we change the constraint
gi(z,u,t) > 0 to g;(x,u,t) > e for a small e, then we expect the change
in the optimal value of the objective function to be —e fOT w; (t)dt + o(e);
see Peterson (1973, 1974) or Malanowski (1984). If ¢ < 0, then the
constraint is being relaxed, and fOT w;(t)dt > 0 provides the marginal
value of relaxing the constraint. We will illustrate this concept with the
help of Example 3.1.

Remark 3.9 In the case when the problem (3.7) is changed by inter-
changing z(7T") and z(0) so that the initial condition z(0) = xq is re-
placed by z(T) = zr, and S(z(T),T), a(x(T),T) and b(z(T),T) are
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replaced by S(x(0)), a(z(0)) and b(x(0)), respectively, then in the maxi-
mum principle (3.12), we need to replace initial condition x*(0) = xg by
x*(T) = xp and the terminal condition on the adjoint variable A by the
initial condition A\(0) = S;(2*(0)) + aa(x*(0)) 4+ Bbx(z*(0)) with a > 0
and aa(z*(0)) = 0.

3.2 Sufficiency Conditions

In this section we will state, without proof, a number of sufficiency re-
sults. These results require the concepts of concave and quasiconcave
functions.

Recall from Sect.1.4 that with D C E™, a convex set, a function
¥ : D — E'is concave, if for all y, 2 € D and for all p € [0, 1],

Ypy + (1 =p)z) = pib(y) + (1 = p)ib(2). (3.24)
The function 1 is quasiconcave if (3.24) is relaxed to
Y(py + (1= p)z) = min{¢(y), ¥(2)}, (3.25)

and v is strictly concave if y # z and p € (0,1) and (3.24) holds with
a strict inequality. Furthermore, 1 is convez, quasiconvex, or strictly
convex if —1p is concave, quasiconcave, or strictly concave, respectively.
Note that linearity implies both concavity and convexity, and concavity
implies quasiconcavity. For further details on the properties of such
functions, see Mangasarian (1969).

We can now state a sufficiency result concerning the problem with
mixed constraints stated in (3.7). For this purpose, let us define the
maximized Hamiltonian

HO®z, M\ t)=  max  H(z,u,\1t). (3.26)
{ulg(w,u,t)>0}
Theorem 3.1 Let (z*,u*, \, u, o, B) satisfy the necessary conditions in
(3.12). If HO(x,A(t),t) is concave in x at each t € [0,T], S in (3.2) is
concave in x, g in (3.3) is quasiconcave in (x,u), a in (3.4) is quasicon-
cave in z, and b in (3.5) is linear in x, then (z*,u*) is optimal.

The result is a straightforward extension of Theorem 2.1. See, e.g.,
Seierstad and Sydsaeter (1977, 1987) and Feichtinger and Hartl (1986).

In Exercise 3.7 you are asked to check these sufficiency conditions for
Example 3.1.
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3.3 Current-Value Formulation

In most management science and economics problems, the objective func-
tion is usually formulated in terms of money or utility. These quantities
have time value, and therefore the future streams of money or utility are
discounted. The discounted objective function can be written as a spe-
cial case of (3.2) by assuming that the time dependence of the relevant
functions comes only through the discount factor. Thus,

F(z,u,t) = ¢(x,u)e " and S(z,T) = ¢ (x)e T, (3.27)

where we assume the discount rate p > 0. We should also mention that
if F(x,u,t) = ¢(z,u,t)e " and S(x,T) = 1(z,T)e ?T, then there is no
advantage of developing a current-value version of the maximum princi-
ple, and it is recommended that the present-value formulation be used
in this case.

Now, the objective in problem (3.7) can be written as:

max {J = /OT o(x,u)e Ptdt + w[x(T)]epT} . (3.28)

For this problem, the Hamiltonian, which we shall now refer to as
the present-value Hamiltonian, HPY, is

HPY := e P'p(z,u) + NPV f(2,u,t) (3.29)
and the present-value Lagrangian is
LPY .= HPY 4+ ;iPYg(x, u,t) (3.30)

with the present-value adjoint variables A?Y and present-value multipliers
aP’ and (PY satisfying _
N = (3.31)

NUT) = Sylx(T), T+ o’ar(x(T),T) + by (x(T),T)
e PTop [2(T)] + aP’ay(x(T), T) + BP b (x(T), T), (3.32)
aP? >0, oa(x(T),T) =0, (3.33)

and pPv satisfying
wP’ >0, pP’qg=0. (3.34)

We use superscript PV in this section to distinguish these from the
current-value functions defined as follows. Elsewhere, we do not need to
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make the distinction explicitly since we will either be using the present-
value definitions or the current-value definitions of these functions. The
reader will always be able to tell what is meant from the context.

We now define the current-value Hamiltonian

Hiz,u,\ t] := ¢(x,u) + Af(x,u,t) (3.35)
and the current-value Lagrangian
Liz,u, \, i, t] := H + pg(z, u,t). (3.36)
To see why we can do this, we note that if we define
A= eP NP and pu = e v, (3.37)
we can rewrite (3.29) and (3.30) as
H = e’ HP" and L = e’ LP". (3.38)

Since e”! > 0, maximizing HPY with respect to u at time ¢ is equivalent to
maximizing the current-value Hamiltonian H with respect to u at time
t. Furthermore, from (3.37),

A = pePt AP 4 Pt N (3.39)

The first term on the right-hand side of (3.39) is simply pA using the
definition in (3.37). To simplify the second term we use the differential
equation (3.31) for A?" and the fact that L, = e”*LL" from (3.38). Thus,

A= pA— Ly,

AT) = b, [x(T)] + cag(x(T), T) + Bba (x(T), T), (3.40)

where the terminal condition for A(T") follows immediately from the ter-
minal condition for AP*(T") in (3.32), the definition (3.38),

a=e’a and [ =B (3.41)

The complementary slackness conditions satisfied by the current-
value Lagrange multipliers p and « are

w>0, ug=0, >0, and aa =0

on account of (3.33), (3.34), (3.37), and (3.41).
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We will now state the maximum principle in terms of the current-
value functions. It states that the necessary conditions for u*, with the
corresponding state trajectory z*, to be an optimal control are that there
exist A and p such that the conditions (3.42) hold, i.e.,

* = f(z*,u*t),

a(z*(T),T) >0, b(z*(T),T) =0,

A=p\—L, [x*, u*, A\, p, t], with the terminal conditions
MT) =, (2*(T)) + aay(x*(T), T) + by (x*(T), T),
a>0, aa(z*(T),T) =0,

and the Hamiltonian maximizing condition

(3.42)
Hz*(t),u*(t), A(t),t] > H[z*(t), u, \(t),1]

at each t € [0,T] for all u satisfying
glx*(t),u,t] >0,

and the Lagrange multipliers p(t) are such that

%|u:u*(t) = 0, and the complementary slackness

conditions u(t) > 0 and pu(t)g(z*,u*,t) = 0 hold.

As in Sect. 3.1, when the terminal constraint is given by (3.6) instead
of (3.4) and (3.5), we need to replace the terminal condition on the state
and the adjoint variables, respectively, by (3.13) and

AT) = ¢, (" (T)]ly — 2*(T)] =2 0, vy € Y(T). (3.43)

See also Remark 3.4, which applies here as well.

If T > 0 is also a decision variable and if T™ is the optimal terminal
time, then the optimal solution z*,u*, and 7™ must satisfy (3.42) with
T replaced by T* along with

Hlz*(T%),u* (T*), N(T7), T*] = py[a™ (T")]
+aar[z*(T%), T*] + Bp[z*(T*),T*] = 0. (3.44)
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You are asked in Exercise 3.8 to show that (3.44) is the current-value
version of (3.15) under the relation (3.27). Furthermore, show how (3.44)
should be modified if S(z,T) = v (z, T)e "1 in (3.27).

As for the sufficiency conditions for the current-value formulation,
one can simply use Theorem 3.1 as if it were stated for the current-value
formulation.

Example 3.2 We illustrate an application of the current-value maxi-
mum principle by solving the consumption problem of Example 1.3 with
U(C)=1InC and W(T) = 0. Thus, we solve

T
max {J:/ e_ptlnc(t)dt+B(0)e_pT}
C(t)>0 0

subject to the wealth dynamics

W =rW—C, W) =W, W(T)=0,

where Wy > 0. As hinted in Exercise 2.29(a), we do not need to impose
the pure state constraint W (t) > 0, t € [0,7], in view of C(¢t) > 0, t €
[0,T], and W(T') = 0. Also, the salvage function reduces to B(0), which
is a constant; see Remark 3.4.

Solution In Exercise 2.29(a) we used the standard Hamiltonian for-
mulation to solve the problem. We now demonstrate the use of the
current-value Hamiltonian formulation:

H=InC+\rW -0), (3.45)

with the adjoint equation

A= p\— gvfé =(p—1)\ \NT) = 5, (3.46)

where (3 is some constant to be determined. The solution of (3.46) is

A(t) = Belp—mE=T), (3.47)

To find the optimal control, we maximize H by differentiating (3.45)
with respect to C' and setting the result to zero:

H 1
O _1 -y,
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which implies
* 1 1 - —

Using this consumption level in the wealth dynamics gives

W(t) = 1V (t) = e~ T0, W(0) = Wo,

which can be solved as

(3.49)

W () = [Wo B elp=)T(1 — ept)] |

pB

Setting W*(T') = 0 gives § = el?=7T(1 — e=*T)/pWy. Therefore, the
optimal consumption rate and wealth at time ¢ are

pWOe(Tfp)t

C*(t) T

(3.50)

—pt _ —pT
W*(t) = "W [e ¢ ]

1—e T

The optimal value of the objective function is

1—e T pWo r—p|l 1
J* = 1 ——e T+ = B(0)e T,
p [nl_EPT}Jr o 15 e +p + B(0)e
(3.51)

The interpretation of the current-value functions are that these func-
tions reflect the values at time ¢ in terms of the current (or, time-t)
dollars. The standard functions, on the other hand, reflect the values at
time ¢ in terms of time-zero dollars. For example, the standard adjoint
variable AP (t) can be interpreted as the marginal value per unit increase
in the state at time ¢, in the same units as that of the objective function
(3.28), i.e., in terms of time-zero dollars; see Sect.2.2.4. On the other
hand, A\(t) = e”*APY(t) is obviously the same value expressed in terms of
current (or, time-t) dollars.

For the consumption problem of Example 3.2, note that the current-
value adjoint function

A(t) = P (1 — e T/ pW. (3.52)

This gives the marginal value per unit increase in wealth at time ¢ in
time-t dollars. In Exercise 2.29(a), the standard adjoint variable was
NPU(t) = e (1 —ePT) /pWy, which can be written as APU(t) = e~ PEA(t).



3.3. Current-Value Formulation 85

Thus, it is clear that AP(t) expresses the same marginal value in time-
zero dollars. In particular,

dJ* JdWy = (1 — e PT) /pWo = A(0) = APY(0)

gives the marginal value per unit increase in the initial wealth Wj.

In Exercise 3.11, you are asked to formulate and solve a consumption
problem of an economy. The problem is a linear version of the famous
Ramsey model; see Ramsey (1928) and Feichtinger and Hartl (1986, p.
201).

Before concluding this section on the current-value formulation, let
us also provide the current-value version of the HJB equation (2.15)
or (2.19) along with the terminal condition (2.16). As in (2.9), we now
define the value function for the problem (3.7), with its objective function
replaced by (3.28), as follows:

— (T-t)
Vix max o(x(s),u(s ds+e”? “Dap(x(1

if x(T) satisfies a(xz(T),T) > 0 and b(x(T"),T) =0,

and V(z,t) = —oo, otherwise.

(3.53)
Then proceeding as in Sect.2.1.1, we have

V(z,t)= max {gb[x(T), w(T))dr + e PPV [2(t + 6t), t + 5t]} .
{u(7)|;1_(g[(t7)£1_t~_(gz]ﬁ)20}

(3.54)
Noting that e ™% = 1 — pdt+0(5t) and continuing on as in Sect. 2.1.1,
we can obtain the current-value version of (2.15) and (2.19) as

pV(z,t) = max {¢(z,u,t)+ Vo(z,t)f(z,u,t) + Vi(z,1)}
{ulg(z,u,t) >0}

= (ol ey VO Ve )+ Wi} =0,
(3.55)
where H is defined as in (3.35).
Finally, we can write the terminal condition as

V(e T) = Y(x), if a(x,T) > 0 and b(z,T) = 0, (3.56)

—00, otherwise.



86 3. The Maximum Principle: Mixed Inequality Constraints

3.4 Transversality Conditions: Special Cases

Terminal conditions on the adjoint variables, also known as transversality
conditions, are extremely important in optimal control theory. Because
the salvage value function ¢ (z) is known, we know the marginal value
per unit change in the state at terminal time 7". Since A(7") must be equal
to this marginal value, it provides us with the boundary conditions for
the differential equations for the adjoint variables. We will now derive
the terminal or transversality conditions for the current-value adjoint
variables for some important special cases of the general problem treated
in Sect. 3.3. We also summarize these conditions in Table 3.1.

Case 1: Free-end point. In this case, we do not put any constraints on
the terminal state x(T"). Thus,

=(T) € X(T).

From the terminal conditions in (3.42), it is obvious that for the
free-end-point problem, i.e., when Y (T') = X (T),

AMT) = i, [2(T)]. (3.57)

This includes the condition A(T") = 0 in the special case of ¥ (z) = 0;
see Example 3.1, specifically (3.19). These conditions are repeated in
Table 3.1, Row 1.

The economic interpretation of A(T") is that it equals the marginal
value of a unit increment in the terminal state evaluated at its optimal
value z*(T).

Case 2: Fized-end point. In this case, which is the other extreme from
the free-end-point case, the terminal constraint is

b(z(T),T)=x(T) — k=0,

and the terminal conditions in (3.42) do not provide any information for
A(T). However, as mentioned in Remark 3.4 and recalled subsequently
in connection with (3.42), A(T") will be some constant /3, which will be
determined by solving the boundary value problem, where the system
of differential equations consists of the state equations with both initial
and terminal conditions and the adjoint equations with no boundary
conditions. This condition is repeated in Table 3.1, Row 2. Example 3.2
solved in the previous section illustrates this case.
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The economic interpretation of A(T') = 3 is as follows. The constant
B times ¢, i.e., Be, provides the value that could be lost if the fixed-end
point were specified to be k + ¢ instead of k; see Exercise 3.12.

Case 3: Lower bound. Here we restrict the ending value of the state
variable to be bounded from below, namely,

a(z(T), T)=2(T) — k >0,
where k € X. In this case, the terminal conditions in (3.42) reduce to
A(T) 2 9, [27(T)] (3.58)

and
{MT) = Y [a(T)]JH{2"(T) — k} =0, (3.59)

with the recognition that the shadow price of the inequality constraint
(3.4) is
o = A(T) -, [¢*(T)] > 0. (3.60)

For ¢(x) = 0, these terminal conditions can be written as
MT) >0 and \(T)[z*(T) — k] = 0. (3.61)
These conditions are repeated in Table 3.1, Row 3.

Case 4: Upper bound. Similarly, when the ending value of the state
variable is bounded from above, i.e., when the terminal constraint is

k—x(T) >0,
the conditions for this opposite case are
NT) < ¢, [2"(T))] (3.62)

and (3.59). These are repeated in Table 3.1, Row 4. Furthermore, (3.62)
can be related to the condition on A(T) in (3.42) by setting

a =, [z*(T)] — MNT) > 0. (3.63)

Case 5: A general case. A general ending condition is

z(T)eY(T)c X(T),
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which is already stated in (3.6). The transversality conditions are spec-
ified in (3.43) and repeated in Table 3.1, Row 5.

An important situation which gives rise to a one-sided constraint
occurs when there is an isoperimetric or budget constraint of the form

T
/ l(z,u,t)dt < K, (3.64)
0

where [ : E" x E™ x E! — E' is assumed to be nonnegative, bounded,
and continuously differentiable, and K is a positive constant representing
the amount of a budgeted resource. To see how this constraint can be
converted into a lower bound constraint, we define an additional state
variable x,1 by the state equation

ETny1 = —l(z,u,t), vp41(0) = K, x11(T) > 0. (3.65)
We employ the index n + 1 simply because we already have n state vari-
ables © = (z1,%2,...,2y). Also Eq. (3.65) becomes an additional equa-

tion which is added to the original system.

In Exercise 3.13 you will be asked to rework the leaky reservoir prob-
lem of Exercise 2.18 with an additional isoperimetric constraint on the
total amount of water available. Later in Chap.7, you’ll be asked to
solve Exercises 7.10-7.12 involving budgets for advertising expenditures.

In Table 3.1, we have summarized all the terminal or transversality
conditions discussed previously. In Sect.3.7 we discuss model types.
We will see that, given the initial state xg, we can completely specify a
control model by selecting a model type and a transversality condition.
In what follows, we solve two examples with lower bounds on the terminal
state illustrating the use of transversality conditions (3.61), also stated in
Table 3.1, Row 3. Example 3.3 is a variation of the consumption problem
in Example 3.2. It illustrates the use of the transversality conditions
(3.61).

Example 3.3 Let us modify the objective function of the consumption
problem (Example 3.2) to take into account the salvage (bequest) value of
terminal wealth. This is the utility to the individual of leaving an estate
to his heirs upon death. Let us now assume that 7" denotes the time
of the individual’s death and BW(T'), where B is a positive constant,
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denotes his utility of leaving wealth W (T') to his heirs upon death. Then,
the problem is:

T
max {J :/ e Pt lnC(t)dt+e_pTBW(T)} (3.66)
C)=0 0

Table 3.1: Summary of the transversality conditions

Constraint Description A(T) A(T)
on z(T) when ¢ =0
1 z(T) € Y(T) = X(T) Free-end MNT) = ¢ [x™(T)] AXT)=0
point
2 z(T) =k € X(T), Fixed-end A(T) = B, a constant A(T) = B, a constant
ie., Y(T) = {k} point to be determined to be determined
3| z(T) € X(T)N [k, c0), lower MNT) > Y, [z*(T)) AXT) >0
ie.,, Y(T) = {z|xz > k} bound and and

z(T) 2k | {MT) = ¢ [=" (D)) H="(T) — k} = 0 | M(T)[="(T) — k] =0

IS

#(T) € X(T) N (—oo, k], | upper AT) < vy [ (T)] A(T) <0
ie., Y(T) = {z|z < k} bound and and

z(T) <k | {MT) — ¢ [a™ (DHk — 2" (T)} =0 | X(T)[k — 2" (T)] =0

w

#(T) € Y(T) C X(T) | General | {A(T) =, le*(T)}{y — 2" (T)} > 0| A(D)y — «™(T)] = 0

constraints Yy € Y(T) Vy € Y(T)

Note 1. In Table 3.1, 2(T") denotes the (column) vector of n state variables and A(T")
denotes the (row) vector of n adjoint variables at the terminal time T'; X (T') C E"
denotes the reachable set of terminal states obtained by using all possible admissible
controls; and ¢ : E™ — E! denotes the salvage value function

Note 2. Table 3.1 will provide transversality conditions for the standard Hamiltonian
formulation if we replace v with S, and reinterpret A as being the standard adjoint
variable everywhere in the table. Also (3.15) is the standard form of (3.44)

subject to the wealth equation

W =rW —C, W(0) =Wy, W(T) > 0. (3.67)
Solution The Hamiltonian for the problem is given in (3.45), and the ad-
joint equation is given in (3.46) except that the transversality conditions
are from Table 3.1, Row 3:

A(T) > B, [\NT) — B]W*(T) = 0. (3.68)

In Example 3.2, the value of 3, the terminal value of the adjoint variable,

was
1— e—'rT

U=

We now have two cases: (i) > B and (ii) § < B.
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In case (i), the solution of the problem is the same as that of Exam-
ple 3.2, because by setting A(T') = /5 and recalling that W*(T) = 0 in
that example, it follows that (3.68) holds.

In case (ii), we set A(T)) = B. Then, by using B in place of § in
(3.47)-(3.49), we get A(t) = Belr=(=T) C*(t) = (1/B)elr=")(T=8 and

e(P—T‘)T(l —e )
pB

W*(t) = €™ | Wy — (3.69)

Since § < B, we can see from (3.49) and (3.69) that the wealth level
in case (ii) is larger than that in case (i) at ¢ € (0,7]. Furthermore, the
amount of bequest is

ePT — 1

0.
pB ~

W*(T) = Woe'™ —

Note that (3.68) holds for case (ii). Also, if we had used (3.42) instead
of Table 3.1, Row 3, we would have \(T') = B+ «a, a >0, aW*(T) =0,
equivalently, in place of (3.68). It is easy to see that « = § — B in case
(i) and o = 0 in case (ii).

Example 3.4 Consider the problem:

subject to

—-1<u<l. (3.71)
Solution The Hamiltonian is
H=—z+ \u.

Here, we do not need to introduce the Lagrange multipliers for the con-
trol constraints (3.71), since we can easily deduce that the Hamiltonian
maximizing control has the form

u* = bang[—1, 1; A]. (3.72)

The adjoint equation is .
A=1 (3.73)
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with the transversality conditions
A(2) > 0 and A(2)z(2) =0, (3.74)

obtained from (3.61) or from Table 3.1, Row 3. Since A(t) is monotoni-
cally increasing, the control (3.72) can switch at most once, and it can
only switch from u* = —1 to u* = 1. Let the switching time be t* < 2.
Then the optimal control is

—1 for 0 <t < t*,
u*(t) = (3.75)
+1 fort* <t <2.

Since the control switches at t*, A(t*) must be 0. Solving (3.73) gives
At) =t —t".

There are two cases: (i) t* < 2 and (ii) t* = 2. We analyze case (i) first.
Here A(2) = 2 — t* > 0; therefore from (3.74), z(2) = 0. Solving for x(t)
with u*(¢) given in (3.75), we obtain

1—¢ for 0 <t < t*,
z(t) =

(t—t)+z{t*)=t+1—2t" fort* <t<2.
Therefore, setting 2(2) = 0 gives
2(2) =3 —2t* =0,

which makes t* = 3/2. Since this satisfies t* < 2, we do not have to deal
with case (ii), and we have

1—t for0<t<3/2, 3
2*(t) = and A(t) :t—§
t—2 for3/2<t<2

Figure 3.1 shows the optimal state and adjoint trajectories. Using the
optimal state trajectory in the objective function, we can obtain its op-
timal value J* = —1/4.

In Exercise 3.15, you are asked to consider case (ii) by setting t* = 2,
and show that the maximum principle will not be satisfied in this case.
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Finally, we can verify the marginal value interpretation of the adjoint
variable as indicated in Remark 3.5. For this, we first note that the
feasible region for the problem is given by x >t —2, ¢ € [0, 2]. To obtain
the value function V(x,t), we can easily obtain the optimal solution in
the interval [t,2] for the problem beginning with z(¢) = z. We use the
notation introduced in Example 2.5 to specify the optimal solution as

« _17 s € [tv %(I‘—}—t) + 1)a
u(z,t)(s) =
1, se€[zlz+t)+1,2],
and
r4+t—s, seft, (x+t)+1),
x?x,t)(s) =
s—2,  s€[s(x+t)+1,2]

Then for x >t — 2,

V(x,t) = ftz—wz‘x,t)(s)ds

1/2)(z+t)+1 2
= _ft( /D (e+t) (x—l—t—s)ds—f(1/2)(x+t)+1(5—2)d5

= (1/9)* — (1/4)2* + (1/2)t(x — 2) — (x — 1).
(3.76
For < t—2, there is no feasible solution, and we therefore set V (x,t) =
—00.
We can now verify that for 0 <t < 3/2, the value function V (x,t) is
continuously differentiable at x = z*(¢) = 1 — ¢, and

Vo(a*(t),t) = —(1/2)z*(t) + (1/2)t — 1
= —(1/2)1-t)+(1/2)t—-1
= t-3/2
= A1)

What happens when ¢ € (3/2,2]? Clearly, for x > x*(t) =t — 2, we
may still use (3.76) to obtain the right-hand derivative V' (z*(t),t) =
—(1/2)x*(t) + (1/2)t — 1 = —(1/2)(t — 2) + (1/2)t — 1 = 0. However,
for x < x*(t), we have < t — 2 for which there is no feasible solution,
and we set the left-hand derivative V (z*(t),t) = —oo. Thus, the value
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function V' (z,t) is not differentiable at z*(¢), and since V(x*(¢),t) does
not exist for t € (3/2,2], (2.17) has no meaning; see Remark 2.2.

It is possible, however, to provide an economic meaning for A(2). In
Exercise 3.17, you are asked to rework Example 3.4 with the terminal
condition x(2) > 0 replaced by z(2) > ¢, where ¢ is small. Furthermore,

XA
A
1
1y A(2) =2
()
0 h =15 /!
14
A
3/2

Figure 3.1: State and adjoint trajectories in Example 3.4

the solution will illustrate that o = A(2) — 0 = 1/2, obtained by us-
ing (3.60), represents the shadow price of the constraint as indicated in
Remark 3.7.

3.5 Free Terminal Time Problems

In some cases, the terminal time is not given but needs to be determined
as an additional decision. Here, a necessary condition for a terminal
time to be optimal in the present-value and current-value formulations
are given in (3.15) and (3.44), respectively. In this section, we elabo-
rate further on these conditions as well as solve two free terminal time
examples: Examples 3.5 and 3.6.
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Let us begin with a special case of the condition (3.15) for the simple
problem (2.4) when T > 0 is a decision variable. When compared with
the problem (3.7), the simple problem is without the mixed constraints
and constraints at the terminal time 7". Thus the transversality condition
(3.15) reduces to

HIz* ("), w* (T*), N(T*), T*] + Sz[z*(T*),T*] = 0. (3.77)

This condition along with the Maximum Principle (2.31) with 7" replaced
by T* give us the necessary conditions for the optimality of 7™ and
u*(t), t € [0,7%] for the simple problem (2.4) when 7" > 0 is also a
decision variable.

An intuitively appealing way to check if the optimal T* € (0, 00)
must satisfy (3.77) is to solve the problem (2.4) with the terminal time
T* with u*(t),t € [0, 7*] as the optimal control trajectory, and then show
that the first-order condition for 7™ to maximize the objective function
in a neighborhood (T — 6,7* 4 0) of T with § > 0 leads to (3.77).
For this, let us set u*(t) = u*(T™), t € [T*,T* + 0), so that we have a
control u*(t) that is feasible for (2.4) for any 7" € (T* — §,T* + §), as
well as continuous at T*. Let x*(t), ¢t € [0,T* + 0] be the corresponding
state trajectory. With these we can obtain the corresponding objective
function value

J(T) = /OT F(z*(t),u*(t), t)dt + S(z*(T),T), T € (T* —6,T* + ),

(3.78)
which, in particular, represents the optimal value of the objective func-
tion for the problem (2.4) when 7' = T*. Furthermore, since u*(t) is
continuous at T*, z*(¢) is continuously differentiable there, and so is
J(T). In this case, since T™* is optimal, it must satisfy

~dJ(T)

J(T°) = =5 g = 0. (3.79)

Otherwise, we would have either J'(T*) > 0 or J'(T*) < 0. The former
situation would allow us to find a T' € (T*,T* + ¢) for which J(T) >
J(T%), and T™ could not be optimal since the choice of an optimal control
for (2.4) defined on the interval [0, 7] would only improve the value of
the objective function. Likewise, the later situation would allow us to
findaT € (T*—0,T*) for which J(T') > J(T™). By taking the derivative
of (3.78), we can write (3.79) as

F(2*(T*), u*(T*), T*) + Sp[a*(T*), T*|2*(T*) + Sr[z*(T*), T*] = 0.
(3.80)
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Furthermore, using the definition of the Hamiltonian in (2.18) and the
state equation and the transversality condition in (2.31), we can easily
see that (3.80) can be written as (3.77).

Remark 3.10 An intuitive way to obtain optimal 7™ is to first solve
the problem (2.4) with a given terminal time 7" and obtain the optimal
value of the objective function J*(T"), and then maximize J*(T') over
T. Hartl and Sethi (1983) show that the first-order condition for max-
imizing J*(T'), namely, dJ*(T")/dT = 0 can also be used to derive the
transversality condition (3.77).

If T is restricted to lie in the interval [T, T3], where Ty > T} > 0, then
(3.77) is still valid provided T* € (T1,T»). As is standard, if 7% = T,
then the = sign in (3.77) is replaced by <, and if T* = T3, then the = sign
in (3.77) is replaced by > . In other words, if we must have T* € [T7, Ty],
then we can replace (3.77) by

<0 ifTF=T,

Hz*(T*),u™(T*),MT™),T"] + Sr[z*(T7), T7] § =0 if T* € (T}, T»),
>0 if T =To.

(3.81)

Similarly, we can also obtain the corresponding versions of (3.15) and
(3.44) for the problem (3.7) and its current value version (specified in
Sect. 3.3), respectively.

We shall now illustrate (3.77) and (3.81) by solving Examples 3.5
and 3.6. To illustrate the idea in Remark 3.10, you are asked in Ex-
ercise 3.6 to solve Example 3.5 by using dJ*(7T")/dt = 0 to obtain the
optimal T*.

Example 3.5 Consider the problem:

max {J - /0 e~ wydt + :U(T)} (3.82)

u, T

subject to
&= -2+ 0.5u, x(0) = 17.5, (3.83)

wel0,1], T >0.
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Solution The Hamiltonian is
H=x—u+X-2+0.5u),
where A = —1, \(T) = 1, which gives
At) =14+ (T —1t).
Then, the optimal control is given by
u*(t) = bang|0,1;0.5(T — 1 — t)]. (3.84)

In other words, u*(t) =1 for 0 <t <T —1and u*(t) =0for T —1 <
t<T.

Since we must also determine the optimal terminal time 7™, it must
satisfy (3.77), which, in view of the fact that «*(7%) = 0 from (3.84),
reduces to

2 (T*) — 2 =0. (3.85)

By substituting v*(¢) in (3.83) and integrating, we obtain

17.5 — 1.5¢, 0<t<T-—1,
2 (1) = (3.86)
174057 —2t, T—1<t<T.

We can now apply (3.85) to obtain
2 (T*) —2=17— 1.5T* —2 =0,

which gives T™* = 10. Thus, the optimal solution of the problem is given
by T* = 10 and
u*(t) = bang]0, 1;0.5(9 — t)].

Note that if we had restricted T to be in the interval [T1,T5] = [2, 8],
we would have T* = 8, u*(t) = bang0,1;0.5(7 — t)], and z*(8) — 2 =
5 —2 =3 > 0, which would satisfy (3.81) at T* = T = 8. On the other
hand, if T were restricted in the interval [T1,75] = [11,15], then 7™ =
11, uw*(t) = bang[0,1;0.5(10 — ¢)], and z*(11) =2 =05-2=—-1.5<0
would satisfy (3.81) at T =Ty = 11.

Next, we will apply the maximum principle to solve a well known
time-optimal control problem. It is one of the problems used by Pontrya-
gin et al. (1962) to illustrate the applications of the maximum principle.
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The problem also elucidates a specific instance of the synthesis of optimal
controls.

By the synthesis of optimal controls, we mean the procedure of
“patching” together various forms of the optimal controls obtained from
the Hamiltonian maximizing condition. A simple example of the syn-
thesis occurs in Example 2.5, where ©* = 1 when A > 0, u* = —1 when
A < 0, and the control is singular when A = 0. An optimal trajectory
starting at the given initial state variables is synthesized from these. In
Example 2.5, this synthesized solution is v* = —1 for 0 < t < 1 and
u* = 0 for 1 < ¢ < 2. Our next example requires a synthesis proce-
dure which is more complex. In Chap. 5, both the cash management and
equity financing models require such synthesis procedures.

Example 3.6 A Time-Optimal Control Problem. Consider a subway
train of mass m moving horizontally along a smooth linear track with
negligible friction. Let x(¢) denote the position of the train, measured in
miles from the origin called the main station, along the track at time ¢,
measured in minutes. Then the equation of the train’s motion is governed
by Newton’s Second Law of Motion, which states that force equals mass
times acceleration. In mathematical terms, the equation of the motion
is the second-order differential equation

d*x(t)

T mi(t) = u(t),

m
where u(t) denotes the external force applied to the train at time ¢
and Z(t) represents the acceleration in miles per minute per minute,
or miles/minute?. This equation, along with

x(0) = zp and £(0) = yo,

respectively, as the initial position of the train and its initial velocity in
miles per minute, characterizes its motion completely.

For convenience in further exposition, we may assume m = 1 so that
the equation of motion can be written as

i=u. (3.87)

Then, the force u can be expressed simply as acceleration or decelera-
tion (i.e., negative acceleration) depending on whether u is positive or
negative, respectively.
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In order to develop the time-optimal control problem under consid-
eration, we transform (3.87) into a system of two first-order differential
equations (see Appendix A)

w00 = (3.88)

y =u, y(O) = Yo,
where y(t) denotes the velocity of the train in miles/minute at time ¢.
Assume further that, for the comfort of the passengers, the maximum

acceleration and deceleration are required to be at most 1 mile/minute?.
Thus, the control variable constraint is

weQ=[-1,1]. (3.89)

The problem is to find a control satisfying (3.89) such that the train
stops at the main station located at x = 0 in a minimum possible time
T. Of course, for the train to come to rest at * = 0 at time T, we
must have x(7") = 0 and y(7") = 0. We have thus defined the following
fixed-end-point optimal control problem:

T
maX{J:/ —1dt}
0

subject to

i =y, 2(0) = mo, z(T) =0, (3.90)

y =u, y(0) =yo, y(T) =0,

and the control constraint

uwe=[-1,1].

\

Note that (3.90) is a fixed-end-point problem with unspecified ter-

minal time. For this problem to be nontrivial, we must not have

xo = yo = 0, i.e., we must have either zy # 0 or yg # 0 or both are
nonzero.

Solution Here we have only control constraints of the type treated in
Chap. 2, and so we can use the maximum principle (2.31). The standard
Hamiltonian function is

H=—-14 My + \u,
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where the adjoint variables A1 and Ao satisfy
Xl = 0, )\1(T) = ﬁl and Xz = —>\1, )\Q(T) = 52,

and 3, and (3, are constants to be determined in the case of a fixed-end-
point problem; see Table 3.1, Row 2. We can integrate these equations
and write the solution in the form

AL = 51 and \g = /62 +51(T_t)7

where 3, and (3, are constants to be determined from the maximum
principle (2.31), condition (3.15), and the specified initial and terminal
values of the state variables. The Hamiltonian maximizing condition
yields the form of the optimal control to be

u*(t) = bang{—1,1; By + B,(T —t)}. (3.91)

As for the minimum time T, it is clearly zero if the train is initially
at rest at the main station, i.e., (xg,y9) = 0. In this case, the problem
is trivial, «*(0) = 0, and there is nothing further to solve. Otherwise,
at least one of xg or yp is not zero, in which case the minimum time
T* > 0 and the transversality condition (3.15) applies. Since y(7') = 0
and S = 0, we have

H + Splr—p+ = M (Tu*(T*) — 1 = Bou™(T*) — 1 =0,
which together with the bang-bang control policy (3.91) implies either
Xo(T*) = By = —1 and u*(T") = —1,

or
Xo(T*) = By = +1 and v (T™) = +1.

Since the switching function Sy + 5,(T* — ¢) is a linear function of
the time remaining, it can change sign at most once. Therefore, we have
two cases: (i) u*(7) = —1 in the interval ¢ < 7 < T™ for some t > 0; (ii)
u*(7) = +1 in the interval ¢ < 7 < T* for some ¢t > 0. We can integrate
(3.88) in each of these cases as shown in Table 3.2. Also in the table we
have the curves I'" and I'*', which are obtained by eliminating ¢ from
the expressions for x and y in each case. The parabolic curves I'” and
't are called switching curves and are shown in Fig. 3.2.

It should be noted parenthetically that Fig. 3.2 is different from the
figures we have seen thus far, where the abscissa represented the time
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Table 3.2: State trajectories and switching curves

(i) w*(r)=—-1for (t <7 <T*)

(ii) w*(t)=+1for (t <7 <T%)

yt) =17t
x(t) = —(T* —t)?/2

I'~:z=—-y?/2fory >0

yt) =t 17
() = (t=T7)*/2

' :x=y%/2fory<0

dimension. In Fig. 3.2, the abscissa represents the train’s location and
the ordinate represents the train’s velocity. Thus, the point (xg,yo)
represents the vector of the train’s initial position and initial velocity.
A trajectory of the train over time can be represented by a curve in
this figure. For example, the bold-faced trajectory beginning at (¢, yo)
represents a train that is moving in the positive direction and it is slowing
down. It passes through the main station located at the origin and comes
to a momentary rest at the point that is \/yg + 2z miles to the right
of the main station. At this location, the train reverses its direction and
speeds up to reach the location x, and attain the velocity of y.. At this
point, it slows down gradually until it comes to rest at the main station.
In the ensuing discussion we will show that this trajectory is in fact
the minimal time trajectory beginning at the location zy at a velocity
of yp. We will furthermore obtain the control representing the optimal
acceleration and deceleration along the way. Finally, we will obtain the
various instants of interest, which are implicit in the depiction of the
trajectory in Fig. 3.2.
We can put I'* and I'™ into a single switching curve I' as

I () = -2z,
I'(z) =4+v—2z, z<0.

x>0,

y=I(z) = (3.92)

If the initial state (xg,yo) # 0, lies on the switching curve, then we have
u* = +1 (resp., u* = —1) if zg > 0 (resp., 9 < 0); i.e., if (zg,yo) lies on
'™ (resp., I'7). In the common parlance, this means that we apply the
brakes to bring the train to a full stop at the main station. If the initial
state (zo,0) is not on the switching curve, then we choose, between
u* =1 and u* = —1, that which moves the system toward the switching
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Figure 3.2: Minimum time optimal response for Example 3.6

curve. By inspection, it is obvious that above the switching curve we
must choose ©u* = —1 and below we must choose u* = +1.

The other curves in Fig. 3.2 are solutions of the differential equations
starting from initial points (zo,yo). If (x0,y0) lies above the switching
curve I' as shown in Fig. 3.2, we use u* = —1 to compute the curve as
follows:

T = Y, x(O) = X0,

y=—1, y(0) = yo.

Integrating these equations gives

y = —t+yo,
t2
x:—5+y0t+x0.

Elimination of ¢ between these two gives

2 .2
mzyo Yy

2
This is the equation of the parabola in Fig.3.2 through (xg,yo). The
point of intersection of the curve (3.93) with the switching curve I'" is
obtained by solving (3.93) and the equation for I'", namely 2z = 32,
simultaneously, which gives

2
+ 22
Ty = %%7 ye = —/ (Y3 + 220) /2, (3.94)

+ To. (3.93)
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where the minus sign in the expression for y, in (3.94) was chosen since
the intersection occurs when y, is negative. The time ¢, that it takes to
reach the switching curve, called the switching time, given that we start
above it, is

te = Yo — Y« = Yo + 1/ (V3 + 220)/2. (3.95)

To find the minimum total time to go from the starting point (xo, yo)
to the origin (0,0), we substitute ¢, into the equation for I't in Column
(ii) of Table 3.2; this gives

T* =t — ye = yo + 1/ 2(¥3 + 220). (3.96)

Here t, is the time to get to the switching curve and —y, is the time
spent along the switching curve.

Note that the parabola (3.93) intersects the y-axis at the point
(0, ++/2x0 + y3) and the z-axis at the point (z¢ + y3/2,0). This means
that for the initial position (xg,yo) depicted in Fig.3.2, the train first
passes the main station at the velocity of ++/2xg + yg and comes to a
momentary stop at the distance of (zg + yg /2) to the right of the main
station. There it reverses its direction, comes to within the distance of
T4 from the main station, switches then to u* = +1, which slows it to a
complete stop at the main station at time 7™ given by (3.96).

As a numerical example, start at the point (zg,y9) =(1,1). Then, the
equation of the parabola (3.93) is

2w =3 — 1.

The switching point given by (3.94) is (3/4, —/3/2). Finally from (3.95),
the switching time is t, = 1+ /3/2min. Substituting into (3.96), we
find the minimum time to stop is 7% = 1 + /6 min.

To complete the solution of this example let us evaluate 5, and S,
which are needed to obtain A; and Ay. Since (1,1) is above the switching
curve, the approach to the main station is on the curve I'", and therefore
u*(T*) = 1 and By = 1. To compute (;, we observe that A\a(t.) =
By +B1(T* —t.) = 0so that B = —B5/(T* —t.) = —1//3/2 = — \/7
Finally, we obtain xz, = 3/4 and y, = \/7 from (3.94).

Let us now describe the optimal solution from (17 1) in the common
parlance. The position (1,1) means the train is 1 mile to the right of the
main station, moving away from it at the speed of 1 mile per minute.
The control u* = —1 means that the brakes are applied to slow the train
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down. This action brings the train to a momentary stop at a distance
of v/3 miles to the right of the main station. Moreover, the continuation
of control u* = —1 means the train reverses its direction at that point
and starts speeding toward the station. When it comes to within 3/4
miles to the right of the main station at time ¢, = 1+ m, its velocity
of —/3/2 or the speed of 1/3/2 miles per minute toward the station is
too fast to come to a rest at the main station without application of the
brakes. So the control is switched to u* = +1 at time t,, which means
the brakes are applied at that time. This action brings the train to a
complete stop at the main station at the time of 7% = 1 4+ /6 min after
the train left its initial position (1,1).

In Exercises 3.19-3.22, you are asked to work other examples with
different starting points above, below, and on the switching curve. Note
that t, = 0 by definition, if the starting point is on the switching
curve.

3.6 Infinite Horizon and Stationarity

Thus far, we have studied problems whose horizon is finite or whose
horizon length is a decision variable to be determined. In this section,
we briefly discuss the case of T' = oo in the problem (3.7), called the in-
finite horizon case. This case is especially important in many economics
and management science problems. Our treatment of this case is largely
heuristic, since a general theory of the necessary optimality conditions
is not available. Nevertheless, we can rely upon an infinite-horizon ex-
tension of the sufficiency optimality conditions stated in Theorem 3.1.
When we put 7' = oo in (3.7) along with p > 0, we will generally
get a nonstationary infinite horizon problem in the sense that the var-
ious functions involved depend explicitly on the time variable ¢. Such
problems are extremely hard to solve. So, in this section we will devote
our attention to only stationary infinite horizon problems, which do not
depend explicitly on time t. Furthermore, it is reasonable in most cases
to assume o(z) = 0 in infinite horizon problems. Moreover, in most eco-
nomics and management science problems, the terminal constraints, if
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any, require the state variables to be nonnegative. Thus, to begin with,
we consider the problem:

( o0
J = , _ptdt} ,
max{ /0 o(z,u)e

subject to
(3.97)

&= f(z,u), z(0) = xo,

g(x,u) > 0.

This stationarity assumption means that the state equations, the
current-value adjoint equations, and the current-value Hamiltonian in
(3.35) are all explicitly independent of time t.

Remark 3.11 The concept of stationarity introduced here is different
from the concept of autonomous systems introduced in Exercise 2.9. This
is because, in the presence of discounting in (3.28), the stationarity as-
sumption (3.97) does not give us an autonomous system as defined there.
See Exercise 3.42 for further comparison between the two concepts.

When it comes to the transversality conditions in the infinite horizon
case, the situation is somewhat more complicated. Even the economic
argument for the finite horizon case fails to extend here because we do
not have a meaningful analogue of the salvage value function. Moreover,
in the free-end-point case with no salvage value, the standard maximum
principle (2.31) gives \Y(T") = 0, which can no longer be necessary in
general for T' = oo, as confirmed by a simple counter-example in Exer-
cise 3.37. As a matter of fact, we have no general results giving condi-
tions under which the limit of the finite horizon transversality conditions
are necessary. What is true is that the maximum principle (3.42) holds
except for the transversality condition on \(T).

When it comes to the sufficiency of the limiting transversality condi-
tions obtained by letting T — oo in Theorem 3.1, the situation is much
better. As a matter of fact, we can see from the inequality (2.73) with
S(z) = 0 that all we need is

lim NPY(T)[z(T) — 2*(T)] = lim e PTN(T)[z(T) — 2*(T)] > 0 (3.98)

T—o0 T—o0

for Theorem 2.1, and therefore Theorem 3.1, to hold. See Seierstad and
Sydseeter (1987) and Feichtinger and Hartl (1986) for further details.
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In the important free-end-point case (3.97), since z(7") is arbitrary,
(3.98) will imply

lim \P?(T) = lim e ?"A\(T) = 0. (3.99)
T—o00 T—o0
While not a necessary condition as indicated earlier, it is interesting to
note that (3.99) is the limiting version of the condition in Table 3.1,
Row 1.
Another important case is that of nonnegativity constraints

lim z(T) > 0. (3.100)

T—o00

Then, it is clear that the transversality conditions

lim e #"\(T) >0 and lim e #"\(T)z*(T) =0, (3.101)

T—o0 T—o0
imply (3.98). Note that these are also analogous to Table 3.1, Row 3.

We leave it as Exercise 3.38 for you to show that the limiting version

of the condition in the rightmost column of Rows 2, 3, and 4 in Table 3.1
imply (3.98). This would mean that Theorem 3.1 provides sufficient
optimality conditions for the problem (3.97), except in the free-end-point
case, i.e., when the terminal constraints a(z(7T")) > 0 and b(z(T)) = 0
are not present. Moreover, in the free-end-point case, we can use (3.98),
or even (3.99) with some qualifications, as discussed earlier.

Example 3.7 Let us return to Example 3.3 and now assume that we
have a perpetual charitable trust with initial fund Wy, which wants to
maximize its total discounted utility of charities C'(t) over time, subject
to the terminal condition

lim W(T) > 0. (3.102)

T—o0

For convenience we restate the problem:

max {J:/ e_”tlnC(t)dt}
C(t)=>0 0

subject to

W =rW —C, W(0) =Wy >0, (3.103)
and (3.102).
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Solution We already know from Example 3.3 with B = 0 that we are
in case (i), and the optimal solution is given by (3.50) in Example 3.2.
It seems reasonable to explore whether or not we can obtain an optimal
solution for our infinite horizon problem by letting 7' — oo in (3.50).
Furthermore, since the limiting version of the maximum principle (3.42)
is sufficient for optimality in this case, all we need to do is to check if
the limiting solution satisfies the condition

lim e ?PA\(T) >0 and lim e PP A(T)W*(T) = 0. (3.104)

T—o00 T—o00

With T'— oo in (3.50) and (3.52), we have

W*(t) = TPy, C*(t) = pW*(£), A(t) = 1/pW*(t).  (3.105)

Since A(t) > 0 and A(t)W*(t) = 1/p, it is clear that (3.104) holds. Thus,
(3.105) gives the optimal solution. Using this solution in the objective
function, we obtain

r—p
p?

1
J' = ;lano + (3.106)

which we can verify to be the same as (3.51) as T — oc.

It is interesting to observe from (3.105) that the optimal consumption
is increasing, constant, or decreasing if r is greater than, equal to, or less
than p, respectively. Moreover, if p = r, then W*(t) = Wy, C*(t) = rWy,
and A(t) = 1/rWp, which means that it is optimal to consume just the
interest earned on the invested wealth—mno more, no less—and, therefore,
none of the initial wealth is ever consumed!

In the case of stationary systems, considerable attention is focused on
equilibrium where all motion ceases, i.e., the values of z and X for which
& =0 and A = 0. The notion is that of optimal long-run stationary
equilibrium; see Arrow and Kurz (1970, Chapter 2) and Carlson and
Haurie (1987a, 1996). If an equilibrium exists, then it is defined by the
quadruple {Z, @, \, i} satisfying
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and (3.107)

Clearly, if the initial condition z¢p = Z, the optimal control is u*(t) = @
for all ¢t. If zy # Z, the optimal solution will have a transient phase.
Moreover, depending on the problem, the equilibrium may be attained
in a finite time or an approach to it may be asymptotic.

If the nonnegativity constraint (3.100) is added to problem (3.97),
then we may include the requirement A\ > 0 and AZ = 0 in (3.107).

If the constraint involving ¢ is not imposed in (3.97), & may be
dropped from the quadruple. In this case, the long-run stationary equi-
librium is defined by the triple {Z, @, A} satisfying

f(z, u) =0, pA = H,(Z, 4, \), and H,(Z, @, \) = 0. (3.108)

Also known in this case is that the optimal value of the objective function
can be expressed as
J* = H(xo,u*(0),0))/p. (3.109)
You are asked to prove this relation in Exercise 3.40. That it holds in
Example 3.7 is quite clear when we use (3.105) in (3.109) and see that
we get (3.106).
Also, we see from Example 3.7 that when we let ¢ — oo in (3.105),
we formally obtain

(0,0, 00) if p>nr,
(W,C0) = (W, pWo,1/pWo) if p=r, (3.110)

(00, 00,0) it p<or
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This is precisely the long-run stationary equilibrium that we will obtain
if we apply (3.108) along with A > 0 and AW = 0 directly to the optimal
control problem in Example 3.7. This verification is left as Exercise 3.41.

Example 3.8 For another application of (3.108), let us return to Ex-
ample 3.7 and now assume that the wealth W is invested in a productive
activity resulting in an output rate In W, and that the horizon T = co.
Since In W is only defined for W > 0, we do not need to impose the
terminal constraint (3.102) here.

Thus, the problem is

max {J:/ e_”tlnc(t)dt}
C(t)=0 0

W =W —C, W(0) =W, >0, (3.111)

subject to

and one task is to find the long-run stationary equilibrium for it. Note
that since the horizon is infinite, it is usual to assume no salvage value
and no terminal conditions on the state.

Solution By (3.108) we set
InW—-C=0,p=1/W, 1/C —-X=0,

which gives the equilibrium {W,C,A\} = {1/p,—Inp,—1/Inp}. Since,
0 < p < 1, we have C > 0, which satisfies the requirement that the
consumption be nonnegative. Also, the equilibrium wealth W > 0.

It is important to note that the optimal long-run stationary equilib-
rium (which is also called the turnpike) is not the same as the optimal
steady-state among the set of all possible steady-states. The latter con-
cept is termed the Golden Rule or Golden Path in economics, and a
procedure to obtain it is described below. However, the two concepts
are identical if the discount rate p = 0; see Exercise 3.43.

The Golden Path is obtained by setting & = f(z,u) = 0, which
provides the feedback control w(z) that would keep z(t) = x over
time. Then, substitute u(z) in the integrand ¢(z,u) of (3.28) to obtain
¢(z,u(x)). The value of = that maximizes ¢(z,u(zx)) yields the Golden
Path. Of course, all of the constraints imposed on the problem have to
be respected when obtaining the Golden Path.

In some cases, there may be more than one equilibria defined by
(3.107). If so, the equilibrium that is attained may depend on the initial
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starting point. Moreover, from some special starting points, the system
may have an option to go to two or more different equilibria. Such points
are called the Sethi-Skiba points; see Appendix D.8.

For multidimensional systems consisting of two or more states, op-
timal trajectories may exhibit more complex behaviors. Of particular
importance is the concept of limit cycles. If the optimal trajectory of
a dynamical system tends to spiral in toward a closed loop in the state
space, then that closed loop is called a limit cycle. For more on this
topic, refer to Vidyasagar (2002) and Grass et al. (2008).

3.7 Model Types

Optimal control theory has been used to solve problems occurring in en-
gineering, economics, management science, and other fields. In each field
of application, certain general kinds of models which we will call model
types are likely to occur, and each such model requires a specialized
form of the maximum principle. In Chap. 2 we derived, in considerable
detail, a simple form of the continuous-time maximum principle. How-
ever, to continue to provide such details for each different version of the
maximum principle needed in later chapters of this book would be both
repetitive and lengthy.

The purpose of this section is to avoid the latter by listing most
of the different management science model types that we will use in
later chapters. For each model type, we will give a brief description of
the corresponding objective function, state equations, control and state
inequality constraints, terminal conditions, adjoint equations, and the
form of the optimal control policy. We will also indicate where each of
these model types is applied in later chapters.

The reader may wish to skim this section on first reading to get an
idea of what it contains, work a few of the exercises, and go on to the
various functional areas discussed in later chapters. Then, when specific
model types are encountered, the reader may return to read the relevant
parts of this section in more detail.

We are now able to state the general forms of all the models (with one
or two exceptions) that we will use to analyze the applications discussed
in the rest of the book. Some other model types will be explained in
later chapters.

In Table 3.3 we have listed six different combinations of ¢ and f
functions. If we specify the initial value xg of the state variable x and
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the constraints on the control and state variables, we can get a completely
specified optimal control model by selecting one of the model types in
Table 3.3 together with one of the terminal conditions given in Table 3.1.

The reader will see numerous examples of the uses of Tables 3.1
and 3.3 when we construct optimal control models of various applied
situations in later chapters. To help in understanding these, we will give
a brief mathematical discussion of the six model types in Table 3.3, with
an indication of where each model type will be used later in the book.

In Model Type (a) of Table 3.3 we see that both ¢ and f are linear
functions of their arguments. Hence it is called the linear-linear case.
The Hamiltonian is

H = Cz+ Du+ ANAz+ Bu+d)
= Co+ Mz + M+ (D+ \B)u. (3.112)

From (3.112) it is obvious that the optimal policy is bang-bang with the
switching function (D + AB). Since the adjoint equation is independent
of both control and state variables, it can be solved completely without
resorting to two-point boundary value methods. Examples of (a) oc-
cur in the cash balance problem of Sect.5.1.1 and the maintenance and
replacement model of Sect.9.1.1.

Model Type (b) of Table 3.3 is the same as Model Type (a) except
that the function C(x) is nonlinear. Thus, the term C, appears in the
adjoint equation, and two-point boundary value methods are needed to
solve the problem. Here, there is a possibility of singular control, and a
specific example is the Nerlove-Arrow model in Sect. 7.1.1.

Model Type (c) of Table 3.3 has linear functions in the state equa-
tion and quadratic functions in the objective function. Therefore, it is
sometimes called the linear-quadratic case. In this case, the optimal
control can be expressed in a form in which the state variables enter
linearly. Such a form is known as the linear decision rule; see (D.36) in
Appendix D. A specific example of this case occurs in the production-
inventory example of Sect.6.1.1.

Model Type (d) is a more general version of Model Type (b) in which
the state equation is nonlinear in x. Here again, there is a possibility of
singular control. The wheat trading model of Sect. 6.2.1 illustrates this
model type. The solution of a special case of the model in Sect.6.2.3
exhibits the occurrence of a singular control.
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Table 3.3: Objective, state, and adjoint equations for various model
types

Objective State Current-value Form of optimal

function equation adjoint equation control policy

integrand

¢ = =f= A=

(a) Cz + Du Az + Bu+d Ap—A)—-C Bang-bang
(b) C(z) + Du Az + Bu+d Alp— A) — Cqg Bang-bang+Singular
(c) 2T Cx 4+ uT Du Az + Bu+d Ap—A)—2zTC Linear decision rule
(d) C(z) + Du A(z)+ Bu+d Ap— Az) — Cq Bang-bang+Singular
(e) c(z) + q(u) (ax + d)b(u) + e(x) Ap —ab(u) —eg) — cg Interior or boundary
(f) c(z)q(u) (az 4+ d)b(u) + e(x) A(p — ab(u) —egp) — caq(u) Interior or boundary

Note. The current-value Hamiltonian is often used when p > 0 is the discount rate;
the standard formulation is identical to the current-value formulation when p = 0. In
Table 3.3, capital letters indicate vector functions and small letters indicate scalar
functions or vectors. A function followed by an argument in parentheses indicates
a nonlinear function; when it is followed by an argument without parenthesis, it
indicates a linear function. Thus, A(z) and e(z) are nonlinear vector and scalar
functions, while Ax and ax are linear. The function d is always to be interpreted as
an exogenous function of time only

In Model Types (e) and (f), the functions are scalar functions, and
there is only one state equation, so A is also a scalar function. In these
cases, the Hamiltonian function is nonlinear in u. If it is concave in wu,
then the optimal control is usually obtained by setting H,, = 0. If it is
convex, then the optimal control is the same as in Model Type (b).

Several examples of Model Type (e) occur in this book: the opti-
mal financing model in Sect. 5.2.1, the Vidale-Wolfe advertising model in
Sect. 7.2.1, the nonlinear extension of the maintenance and replacement
model in Sect.9.1.4, the forestry model in Sect.10.2.1, the exhaustible
resource model in Sect. 10.3.1, and all of the models in Chap. 11. Model
Type (f) examples are: The Kamien-Schwartz model in Sect.9.2.1 and
the sole-owner fishery resource model in Sect. 10.1.

Although the general forms of the model are specified in Tables 3.1
and 3.3, there are a number of additional modeling tricks that are useful,
which will be employed later. We collect these as a series of remarks
below.

Remark 3.12 We sometimes need to use the absolute value function
|u| of a control variable u in forming the functions ¢ or f. For example,
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in the simple cash balance model of Sect.5.1, u < 0 represents buying
and u > 0 represents selling; in either case there is a transaction cost
which can be represented as c|u|. In order to handle this, we define new
control variables u; and ug satisfying the following relations:

wi=u; — ug, uy >0, up >0, (3.113)

UiuU2 = 0. (3.114)

Thus, we represent u as the difference of two nonnegative variables, u;

and ug, together with the quadratic constraint (3.114). We can then
write

lu| = uy + ug, (3.115)

which expresses the nonlinear function |u| as a linear function with the
constraint (3.114).

We now observe that we need not impose (3.114) explicitly, provided
there are costs associated with the controls u; and wus, since in the pres-
ence of these costs no optimal policy would ever choose to make both of
them simultaneously positive. This is indeed the case in the cash balance
problem of Sect. 5.1, where the associated transaction costs prevent us
from simultaneously buying and selling the same security.

Thus, by doubling the number of variables and adding inequality
constraints, we are able to represent |u| as a linear function in the model.

Remark 3.13 Tables 3.1 and 3.3 are constructed for continuous-time
models. Exactly the same kinds of models can be developed in the
discrete-time case; see Chap. 8.

Remark 3.14 Consider Model Types (a) and (b) when the control vari-
able constraints are defined by linear inequalities of the form

g(u,t) = g(t)u > 0. (3.116)
Then, the problem of maximizing the Hamiltonian function becomes:
max(D + AB)u
subject to (3.117)
g(t)u > 0.

This is clearly a linear programming problem for each given instant of
time ¢, since the Hamiltonian function is linear in u.
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Further in Model Type (a), the adjoint equation does not contain
terms in z and wu, so we can solve it for A(¢), and hence the objective
function of (3.117) varies parametrically with A(¢). In this case we can
use parametric linear programming techniques to solve the problem over
time. Since the optimal solution to the linear program always occurs at
an extreme point of the convex set defined by g(t)u > 0, it follows that
as A(t) changes, the optimal solution to (3.117) will “bang” from one
extreme point of the feasible set to another. This is called a generalized
bang-bang optimal policy. Such a policy occurs, e.g., in the optimal
financing model treated in Sect. 5.2; see Table 5.1, Row 5.

In Model Type (b), the adjoint equation contains terms in z, so we
cannot solve for the trajectory of A(¢) without knowing the trajectory
of x(t). It is still true that (3.117) is a linear program for any given ¢,
but the parametric linear programming techniques will not usually work.

Instead, some type of iterative procedure is needed in general; see Bryson
and Ho (1975).

Remark 3.15 The salvage value part S[x(T),T] of the objective func-
tion is relevant in the optimization context in the following two cases:

Case (i) T is free and part of the problem is to determine the optimal
terminal time; see, e.g., Sect.9.1.

Case (ii) T is fixed and the problem is that of maximizing the objec-
tive function involving the salvage value of the ending state z:(T"), which
in this case can be written simply as S[z(T)].

For the fixed-end-point problem and for the infinite horizon problem,
it does not usually make much sense to define a salvage value function.

Remark 3.16 One important model type that we did not include in
Table 3.3 is the impulse control model of Bensoussan and Lions (1975).
In this model, an infinite control is instantaneously exerted on a state
variable in order to cause a finite jump in its value. This model is
particularly appropriate for the instantaneous reordering of inventory
as required in lot-size models; see Bensoussan et al. (1974). Further
discussion of impulse control is given in Sect. D.9.

Exercises for Chapter 3
E 3.1 Consider the constraint set

Q= {(ur,u2)|0 <uy <z, -1 <wup <ui}.

Write these in the form shown in (3.3).
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E 3.2 Find the reachable set X, defined in Sect. 3.1, if x and u satisfy
t=u—1 20=5, -1 <u<l,
and T = 3.

E 3.3 Assume the constraint (3.3) to be of the form g(u,t) > 0, i.e.,
g does not contain z explicitly, and assume x(7T) is free. Apply the
Lagrangian form of the maximum principle and derive the Hamiltonian
form (2.31) with

Q(t) = {ulg(u, ) > 0}.

Assume g(u,t) to be of the form o < u < 3.

E 3.4 Use the Lagrangian form of the maximum principle to obtain the
optimal control for the following problem:

max{J = z1(2)}

subject to

:ﬁl(t) = Ul — ug, .%'1(0) = 2,

i‘Q(t) = Uy, 562(0) = 1,
and the constraints
ul(t) Z ’LLQ(t), 0 S ul(t) S 1'2(25), 0 § UQ(t) § 2, 0 § t § 2.

An interpretation of this problem is that x1(¢) is the stock of steel at time
t and xo(t) is the total capacity of the steel mill at time ¢. Production
of steel at rate uj, which is bounded by the current steel mill capacity,
can be split into uo and u; — ug, where us goes into increasing the steel
mill capacity and u; — us adds to the stock of steel. The objective is to
build as large a stockpile of steel as possible by time T' = 2. With this
interpretation, we clearly need to have z1(t) > 0 and x2(t) > 0. However,
it is easily seen that these constraints are automatically satisfied for every
feasible solution of the problem. You may find it interesting to show
why this is true. (It is possible to make the problem more interesting by
assuming an exogenous demand d for steel so that ©; = u; — ug — d.)

E 3.5 Specialize the terminal condition (3.13) in the one-dimensional
case (i.e., n =1) with Y(T') =Y = [z, z] for each T' > 0, where z and &
are two constants satisfying z > z. Use (3.12) to derive (3.14).
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E 3.6 Obtain the optimal value J*(T") of the objective function for Ex-
ample 3.5 for a given terminal time 7', and then maximize it with respect
to T by using the conditions d.J*(T")/dT" = 0. Show that you get the same
optimal T* as the one obtained for Example 3.5 by using (3.77).

E 3.7 Check that the solution of Example 3.1 satisfies the sufficiency
conditions in Theorem 3.1.

E 3.8 Starting from (3.15), obtain the current-value version (3.44) for
the problem defined by (3.27) and (3.28). Show further that if we
were to require the function v to also depend on T, ie. if S(z,T) =
Y(x, T)e T then the left-hand side of condition (3.44) would be modi-
fied to H[z*(T™),w* (1), \N(T™), T*| + Yp[a*(T*), T*] — p[a*(T), T"].

E 3.9 Develop the current-value formulation of Sect.3.3 for a time-
varying nonnegative discount rate p(t), by replacing the factors e™#* and
e~PT in (3.28), respectively, by

a(t) =e" Jo pls)ds and a(T) = e~ o p(s)ds
E 3.10 Begin with (3.54) and perform the steps leading to (3.55).

E 3.11 Optimal Consumption of An Initial Investment Over a Finite
Horizon. Begin with an initial investment of zy. Assets z(t) at time ¢
earn at the rate of r per dollar per unit time. A portion of the earnings
is consumed at a rate of ¢(t) per unit time at time ¢, while the remainder
is invested. Neither a negative consumption rate nor a consumption rate
exceeding the earnings is allowed. Assets depreciate at the constant rate
0. Assume r > d+p, where p is the discount rate applied on consumption.
Find the optimal consumption rate over a finite horizon 7' such that
the present value of the consumption stream over the finite horizon is
maximized. Assume that T is sufficiently large. Let us note that the
optimal capital accumulation model treated in Sect.11.1.1 represents a
generalization of this problem.

E 3.12 Show that if we require W(T) = ¢ > 0, ¢ small, instead of
W(T) = 0 in Example 3.2, then the optimal value of the objective func-
tion will decrease by an amount fe = e(1 — €™ /rWy + o(e).

E 3.13 Recall Exercise 2.18 of the leaky reservoir in Chap.2. In this
problem there was no explicit constraint on the total amount of water
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available. Suppose we impose the following isoperimetric constraint on

that problem:
100
/ udt = K,
0

where K > 0 is the total amount of water which must be used. Assume
also that the reservoir has infinite capacity. Re-solve this problem for
various values of K and the objective functions in parts (a) and (b) of
Exercise 2.18.

E 3.14 From the transversality conditions for the general terminal con-
straints in Row 5 of Table 3.1, derive the transversality conditions in Row
1 for the free-end-point case, in Row 2 for the fixed-end-point case, and
in Rows 3 and 4 for the one-sided constraint cases. Assume 9 (x) = 0,
i.e., there is no salvage value and X = E! for simplicity.

E 3.15 For solving Example 3.3, consider case (ii) by starting with t* =
2, and show that the maximum principle will not be satisfied in this case.

E 3.16 Rework Example 3.4 with T' = 4 and the following different
terminal conditions:

(a) x(4) unconstrained,

(b) z(4) =1
(c) z(4) <1,
(d) z(4) =1

E 3.17 Rework Example 3.4 with the terminal condition (3.70) replaced
by z(2) > e, where ¢ is small. Verify that the change in the optimal
value of the objective function is —¢/2 ~ —ae + o(e), as stipulated in
Remark 3.6.

E 3.18 Introduce a terminal value in Example 3.4 as follows:

max {J _ /02(—:c)dt + B:v(2)}

subject to
T =u, x(0) =1,
x(2) >0, i.e., Y =[0,00) in Table 3.1, Row 3,
-1 <u<l.

Note that for B = 0, the problem is the same as Example 3.4. Solve this
problem for B =1/2, 1, 3/2, 2, 3. Conclude that for B > 2, the solution
for the state variable does not change.
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E 3.19 In Example 3.6, determine the optimal control and the corre-
sponding state trajectory starting at the point (-4,6), which lies above
the switching curve.

E 3.20 Carry out the synthesis of the optimal control for Example 3.6
when the starting point (xg,yo) lies below the switching curve.

E 3.21 Use the results of Exercise 3.20 to find the optimal control and
the corresponding trajectory starting at the point (—1, —1).

E 3.22 Find the optimal control, the minimum time, and the corre-
sponding trajectory for Example 3.6 starting at the point (—2,2), which
lies on the switching curve.

E 3.23 What is the shortest time in which a passenger can be trans-
ported in a ballistic missile from Los Angeles to New York? Assume that
a missile with the ultimate mechanical and thermodynamical properties
is available, but that the passenger imposes the restraint that the max-
imum acceleration or deceleration is 100 ft/s?. The missile starts from
rest in Los Angeles and stops in New York. Assume that the path is a
straight line of length 2400 miles and ignore the rotation and curvature
of the earth.

E 3.24 In the time-optimal control problem (3.90), replace the state
equations by

& =ay, ©(0) =x0 >0, z(T) =z > xo,

y=u, y(0)=yo >0, y(T) =0,

and the control constraint by
ue = [Umina Umax]-

Assume a > 0 and Upax > 0 > Upin. Observe here that z(t) could be
interpreted as the cumulative value of gold mined by a gold-producing
country and y(t) could be interpreted as the total value of gold-mining
machinery employed by the country at time ¢ > 0. The required ma-
chinery is to be imported. Because of some inertia in the world market
for the machinery, the country cannot control y(¢) directly, but is able
to control its rate of change y(¢). Thus u(t) represents at time ¢, the
import rate of the machinery when positive and the export rate when
negative. The terminal value  represents the required amount of gold to
be produced in a minimum possible time. Obtain the optimal solution.
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E 3.25 Solve the following minimum weighted energy and time problem:

IE%X{J = /OT —(%)(uQ + 1)dt}

subject to

and the control constraint
lu| < 2.

Hint. Use (3.77) to determine T™*, the optimal value of T.

E 3.26 Rework Exercise 3.25 with the new integrand F =
—(1/2)(u® + 16) in the objective function.

Hint: Note that use of (3.77) gives an infeasible u. This means
that we should look for a boundary solution for uw. To obtain this,
calculate J*(T') as defined in Exercise 3.6, and then choose T' to
maximize it. In doing so, take care to see that (71") = 0, and the control
constraint is satisfied.

E 3.27 Exercise 3.26 becomes a minimum energy problem if we set
F = —u?/2. Show that the Hamiltonian maximizing condition of the
maximum principle implies v* = k, where k is a constant. Note that
the application of (3.77) implies that k& = 0, which gives x(¢) = 5 for all
t > 0 so that the terminal condition x(7") = 0 cannot be satisfied.

To see that there exists no optimal control in this situation, let k < 0
and compute J*. It is now possible to see that limg .o J* = 0. This
means that we can make the objective function value as close to zero
as we wish, but not equal to zero. Note that in this case there are no
feasible solutions satisfying the necessary conditions so we cannot check
the sufficiency conditions; see the last paragraph of Sect.2.1.4.

E 3.28 Show that every feasible control of the problem
T
max{J —/ —udt}
T,’U, 0

& =u, z(0) = zo, x(T) =0,

subject to

|u| < g, where ¢ >0,

is an optimal control.
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E 3.29 Let x¢p > 0 be the initial velocity of a rocket. Let u be the
amount of acceleration (or deceleration) caused by applying a force which
consumes fuel at the rate |u|. We want to bring the rocket to rest using
minimum total amount of fuel. Hence, we have the following optimal

control problem:
T
max {J = / —\u!dt}
Tu 0

& =u, z(0) = zo, x(T) =0,

subject to

—1 <u < +1.

Hint: Use (3.113)—(3.115) to deal with |u|. Show that for xy > 0, say
xg = 5, every feasible control is optimal.

E 3.30 Analyze Exercise 3.29 with the state equation
T = —ar + u,
where a > 0. Show that no optimal control exists for the problem.

E 3.31 By using the maximum principle, show that the problem

1
max / xdt
0

subject to

t=x+u, £(0) =0,

l1—-u>0,14u>0,2—2z—u>0,
has the optimal control

1, t € [0,1n 2],
1+2In2-2t, te (In2,1].

Also, provide the values of the state variable, the adjoint variable, and
the Lagrange multipliers along the optimal path.
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E 3.32 If, in Exercise 3.31, we perturb the constraint 2 — x —u > 0 by
2 —x —u > g, where ¢ is small, then show that the change in value of
the objective function equals

1
5/ psdt 4 o(e),
0

where p15 is the Lagrange multiplier associated with the constraint 2—z—
u > 0 in Exercise 3.31. Moreover, if ¢ < 0, implying that we are relaxing
the constraint, then verify that the change in the objective function is
positive.

E 3.33 Obtain the value function V(z,t) explicitly in Exercise 3.31
for every x € E! and t € [0,1]. Furthermore, verify that A(t) =
Vao(z*(t),t), t € [0,1], where A(¢) is the adjoint variable obtained in
the solution of Exercise 3.31.

E 3.34 Solve the problem:

u, T

T
max {J _ /D 24 (1— u(t))x(t)]dt}
subject to
t=wu, z(0)=0, z(T) > 1,
u € [0,1],
T € [1,8].

Hint: First, show that u* = bang|0, 1; A — 2] and that control can switch
at most once from 1 to 0. Then, let t*(7T") denote that switching time, if
any, for a given T' € [1, 8]. Consider three cases: (i) T =1, (ii)) 1 < T < 8,
and (iii) 7' = 8. Note that A(t*(T")) — z(t*(T")) = 0. Use (3.15) in case
(ii). Find the optimal solution in each of the three cases. The best of
these solutions will be the solution of the problem.

E 3.35 Consider the problem:

max {J _ /OT[—?) _ult)+ x(t)]dt}

subject to
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u € [0, 1],
T e [1,4+2V72).

The problem has two different optimal solutions with different values for
optimal T*. Find both of these solutions.

E 3.36 Perform the following:

(a) Find the optimal consumption rate C*(t), t € [0,T], in the prob-
lem:
T
maX{J :/ e Pt lnC'(t)dt}
0

W (t) = ~C(t), W(0) = Wo,

subject to

where 7" is given and p > 0.

(b) Assume that T is not given in (a), and is to be chosen optimally.
Show for this free terminal time version that the optimal T*
decreases as the discount rate p increases.

Hint: It is possible to obtain d7™/dp by implicit differentia-
tion.

E 3.37 An example, which illustrates that

lim A(t) =0

t—00

is not a necessary transversality condition in general, is:

max {7 = [0 oy}

= (1—2x)u, z(0) =0,

such that

0<u<l.

Show this by finding an optimal control.

E 3.38 Show that the limiting conditions in the rightmost column of
Rows 2, 3, and 4 in Table 3.1 imply (3.98) when T" — oc.
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E 3.39 Consider the regulator problem defined by the scalar equation
& =u, x(0) = x,
with the objective function
00 .T4 u?
J=- — 4+ — | dt.
(%)

(a) Show that the long-term stationary equilibrium (z,u, ) = (0,0, 0)
and conclude that in feedback form u*(z) = 4 = 0 when x =z = 0.
du (:p

)

(b) By using the maximum principle and the relation @* = )i z,
derive a differential equation for the optimal feedback control u ( )
and solve it with the boundary condition «*(0) = 0 to obtain

—$2/\/§7
u*(z) = 0, z =0,

+22/v/2,

(c) Solve for z*(t) and A(t) and show that lim; . 2*(t) = 0 and that
the limiting condition (3.99), i.e., lim;—o A(t) = 0, holds for this
problem.

E 3.40 Show that for the problem (3.97) without the constraint
g(z,u) > 0, the optimal value of the objective function

J* = H(xo,u*(0), A(0)) /.
See Grass et al. (2008).

E 3.41 Apply (3.108), along with the requirement A > 0 and AW = 0 in
view of the constraint (3.102), to Example 3.7 to verify that the long-run
stationary equilibrium is as shown in (3.110).

E 3.42 For a stationary system as defined in Sect. 3.6, show that

U = A (0,0 (1)
and JHP
= pe o (1), (1)

along the optimal path. Also, contrast these results with that of Exer-
cise 2.9.
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E 3.43 Consider the inventory problem:

max {J = /Doo —e "I —NL)?+ (P — Pl)g]dt}

subject to .
I=P-S, I1(0) = I,

where I denotes inventory level, P denotes production rate, and S de-
notes a given constant demand rate.

(a) Find the optimal long-run stationary equilibrium, i.e., the turnpike
defined in (3.107).

(b) Find the Golden Rule by setting I = 0 in the state equation, solve
for P, and substitute it into the integrand of the objective function.
Then, maximize the integrand with respect to I.

(c) Verify that the Golden Rule inventory level obtained in (b) is the
same as the turnpike inventory level found in (a) when p = 0.
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Chapter 4

The Maximum Principle:
Pure State and Mixed
Inequality Constraints

In Chap.2 we addressed optimal control problems having constraints
only on control variables. We extended the discussion in Chap.3 to
treat mixed constraints that may involve state variables in addition to
control variables.

Often in management science and economics problems there are non-
negativity constraints on state variables, such as inventory levels or
wealth. These constraints do not include control variables. Also, there
may be more general inequality constraints only on state variables, which
include constraints that require certain state variables to remain non-
negative. Such constraints are known as pure state variable inequality
constraints or, simply, pure state constraints.

Pure state constraints are more difficult to deal with than mixed
constraints. We can intuitively appreciate this fact by keeping in mind
that only control variables are under the direct influence of the decision
maker. This enables the decision maker, when a mixed constraint be-
comes tight, to choose from the controls that would keep it tight for as
long as required for optimality. Whereas with pure state constraints, the
situation is different and more complicated. That is, when a constraint
becomes tight, it does not provide any direct information to the decision
maker on how to choose values for the control variables so as not to

(© Springer Nature Switzerland AG 2019 125
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violate the constraint. Hence, considerable changes in the controls may
be required to keep the constraint tight if needed for optimality.

This chapter considers pure state constraints together with mixed
constraints. In the literature there are two ways of handling pure state
constraints: direct and indirect. The direct method associates a multi-
plier with each constraint for appending it to the Hamiltonian to form
the Lagrangian, and then proceeds in much the same way as in Chap. 3
dealing with mixed constraints. In the indirect method, the choice of
controls, when a pure constraint is active, must be further limited by
constraining approximately the value of the derivative of the active state
constraint with respect to time. This derivative will involve time deriva-
tives of the state variables, which can be written in terms of the con-
trol and state variables through the use of the state equations. Thus,
the restrictions on the time derivatives of the pure state constraints are
transformed in the form of mixed constraints, and these will be appended
instead to the Hamiltonian to form the Lagrangian. Because the pure
state constraints are adjoined in this indirect fashion, the corresponding
Lagrange multipliers must satisfy some complementary slackness condi-
tions in addition to those mentioned in Chap. 3.

With the formulation of the Lagrangian in each approach, we will
write the respective maximum principle, where the choice of control will
come from maximizing the Hamiltonian subject to both pure state con-
straints and mixed constraints. We will find, however, in contrast to
Chap. 3, that in both approaches, the adjoint functions may be required
to have jumps at those times where the pure state constraints become
tight.

We begin with a simple example in Sect. 4.1 to motivate the neces-
sity of possible jumps in the adjoint functions. Section 4.2 formulates the
problem with pure state constraints along with the required assumptions.
In Sect. 4.3, we use the direct method for stating the maximum principle
necessary conditions for solving such problems. Sufficiency conditions
are stated in Sect.4.4. Section 4.5 is devoted to developing the maxi-
mum principle for the indirect method, which involves adjoining the first
derivative of the pure state constraints to form the Lagrangian function
and imposing some additional constraints on the Lagrange multipliers of
the resulting formulation. Also, the adjoint variables and the Lagrange
multipliers arising in this method will be related to those arising in the
direct method. Finally, the current-value form of the maximum principle
for the indirect method is described in Sect. 4.6.
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4.1 Jumps in Marginal Valuations

In this section, we formulate an optimal control problem with a pure
constraint, which can be solved merely by inspection and which exhibits a
discontinuous marginal valuation of the state variable. Since the adjoint
variables in Chaps. 2 and 3 provide these marginal valuations and since
we would like this feature to continue, we must allow the adjoint variables
to have jumps if the marginal valuations can be discontinuous. This will
enable us to formulate a maximum principle in the next section, which
is similar to (3.10) with the exception that the adjoint variables, and
therefore also the Hamiltonian, may have possible jumps satisfying some
jump conditions.

Example 4.1 Consider the problem with a pure state constraint:

wx{ = [ 3 udt (41)

subject to
& =u, x(0)=0, 4.2
0<u<3, 4.3
-1+ (t—-22%2>0 (4.4)

Solution From the objective function (4.1), one can see that it is good
to have low values of u. If we use u = 0 to begin with, we see that
x(t) =0 as long as u(t) = 0. At t = 1, (1) = 0 and the constraint (4.4)
is satisfied with an equality. But continuing with u(¢) = 0 beyond ¢ = 1
is not feasible since z(t) = 0 would not satisfy the constraint (4.4) just
after t = 1.

In Fig.4.1, we see that the lowest possible feasible state trajectory
from t = 1 to t = 2 satisfies the state constraint (4.4) with an equality.
In order not to violate the constraint (4.4), its first time derivative u(t)+
2(t — 2) must be nonnegative. This gives us u(t) = 2(2 — t) to be the
lowest feasible value for the control. This value will make the state x(t)
ride along the constraint boundary until ¢ = 2, at which point u(2) = 0;
see Fig.4.1. Continuing with u(t) = 2(2—t) beyond t = 2 will make u(t)
negative, and violate the lower bound in (4.3). It is easy to see, however,
that u(t) = 0, t > 2, is the lowest feasible value, which can be followed
all the way to the terminal time ¢ = 3.



128 4. The Maximum Principle: Pure State and Mixed Constraints

X
A
1 ¢ s *
0 4 s "% . > ¢
/1 2 3 4

_31" [ ]

Figure 4.1: Feasible state space and optimal state trajectory
for Examples 4.1 and 4.4

It can be seen from Fig. 4.1 that the bold trajectory is the lowest pos-
sible feasible state trajectory on the entire time interval [0,3]. Moreover,
it is obvious that the lowest possible feasible control is used at any given
t € [0, 3], and therefore, the solution we have found is optimal. We can
now restate the values of the state and control variables that we have
obtained:

0, telo,1), 0, telo,1),
) =9 1-(t—22% te[,2], w®)=4 202-1), te[l,2],
1, te (2,3, 0, te(2,3].

(4.5)

Next we find the value function V' (z,t) for this problem. It is obvious
that the feedback control u*(z,t) = 0 is optimal at any point (x,¢) when
x > 1 or when (z,t) is on the right-hand side of the parabola in Fig. 4.1.
Thus, V(z,t) = 0 on such points.

On the other hand, when x € [0,1] and it is on the left-hand side
of the parabola, the optimal trajectory is very similar to the one shown
in Fig.4.1. Specifically, the control is zero until it hits the trajectory at
time 7 = 2 —+/1 — x. Then, the control switches to 2(2 —s) for s € (7,2)
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to climb along the left-hand side of the parabola to reach its peak, and
then switches back to zero on the time interval [2,3]. Thus, in this case,

T 2 3
V(z,t) = —/ Ods—/ 2(2—5)d8—/ 0ds
t T 2
2

= 52—43]27\/@:@—1).

Thus, we have the value function

0, z>1,tel0,3],
Vg, t)=9Q z2—-1, >1-(t—2)% t€]0,2),
0, 1-(t—-22%<x<1,te]23].

This gives us the marginal valuation along the optimal path z*(t)
given in (4.5) as

1, te [0,2),
Vx(x*(t)7t) = (46)

0, te23.

We can now see that this marginal valuation is discontinuous at ¢ = 2,
and it has a downward jump of size 1 at that time.

The maximum principle that we will state in Sect. 4.3 will have cer-
tain jump conditions in order to accommodate problems like Exam-
ple 4.1. Indeed in Example 4.2, we will apply the maximum principle of
Sect. 4.3 to the problem in Example 4.1, and see that the adjoint variable
that represents the marginal valuation along the optimal path will have
a jump consistent with (4.6).

In the next section, we state the general optimal control problem that
is the subject of this chapter.

4.2 The Optimal Control Problem with Pure
and Mixed Constraints

We will append to the problem (3.7) considered in Chap. 3, the pure
state variable inequality constraint of type

h(z,t) > 0, (4.7)
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where we assume function h : E" x E! — EP to be continuously dif-
ferentiable in all its arguments. By the definition of function h, (4.7)
represents a set of p constraints h;(z,t) > 0,7 = 1,2,...,p. It is noted
that the constraint h; > 0 is called a constraint of rth order if the rth
time derivative of h; is the first time a term in control u appears in
the expression by putting f(z,u,t) for & after each differentiation. It
is through this expression that the control acts to satisfy the constraint
h; > 0. The value of r is referred to as the order of the constraint. Of
course, if the constraint h; is of order r, then we would require h; to be
r times continuously differentiable.

Except for Exercise 4.12, in this book we will consider only first-order
constraints, i.e., r = 1. For such constraints, the first-time derivative of
h has terms in u. Thus, we can define h!(z,u,t) as follows:

dh  Oh oh
hl=— =" —. 4.
it " ox! T o (4.8)
In the important special case of the nonnegativity constraint
z(t) >0, tel0,T], (4.9)

(4.8) is simply h' = f. For an upper bound constant z(t) < M, written
as
M —z(t) >0, te]l0,T], (4.10)

(4.8) gives h! = —f. These will be of order one because the function
f(z,u,t) usually contains terms in w.

As in Chap. 3, the constraints (4.7) need also to satisfy a full-rank
type constraint qualification before a maximum principle can be derived.
With respect to the ith constraint h;(z,t) > 0, an interval (61,62) C
[0,T] with ) < 62 is called an interior interval if h;(z(t),t) > 0 for all
t € (01,62). If the optimal trajectory “hits the boundary,” i.e., satisfies
hi(xz(t),t) = 0 for 79 < t < 79 for some i, then [r1,72] is called a
boundary interval. An instant 71 is called an entry time if there is an
interior interval ending at ¢ = 71 and a boundary interval starting at
71. Correspondingly, 75 is called an exit time if a boundary interval ends
and an interior interval starts at 79. If the trajectory just touches the
boundary at time 7, i.e., h(z(7),7) = 0 and if the trajectory is in the
interior just before and just after 7, then 7 is called a contact time. Taken
together, entry, exit, and contact times are called junction times.

In this book we shall not consider problems that require optimal state
trajectories to have countably many junction times. In other words, we
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shall state the maximum principle necessary optimality conditions for
state trajectories having only finitely many junction times. Also, all of
the applications studied in this book exhibit optimal state trajectories
containing finitely many junction times or no junction times.

Throughout the book, we will assume that the constraint qualifica-
tion introduced in Sect.3.1 as well as the following full-rank condition
on any boundary interval |71, 79| hold:

Ohi /ou

Ohd Jou

I
=

rank

I (9h113/8u

where for ¢ € [r1,T9],
Bl (), =0, i = 1,2,..., p < p

and
hi(z*(t),t) >0, i=p+1,..., p.

Note that this full-rank condition on the constraints (4.7) is written
when the order of each of the constraints in (4.7) is one. For the general
case of higher-order constraints, see Hartl et al. (1995).

Let us recapitulate the optimal control problem for which we will
state a direct maximum principle in the next section. The problem is

max {J = /OT F(x,u,t)dt + S[x(T), T}} )

subject to

&= fx,u,t), x(0) = zo,

(@, u,t) > 0, (4.11)

h(z,t) > 0,
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Important special cases of the mixed constraint g(x,u,t) > 0 are
u; € [0,M] for M > 0 and u;(t) € [0,2;(t)], and those of the terminal
constraints a(z(7"),T) > 0 and a(xz(T),T) = 0 are z;(T) > k and x;(T) =
k, respectively, where k is a constant. Likewise, the special cases of the
pure constraints h(z,t) > 0 are z; > 0 and z; < M, for which h,, = +1
and h,, = —1, respectively, and h; = 0.

4.3 The Maximum Principle: Direct Method

For the problem (4.11), we will now state the direct maximum principle
which includes the discussion above and the required jump conditions.
For details, see Dubovitskii and Milyutin (1965), Feichtinger and Hartl
(1986), Hartl et al. (1995), Boccia et al. (2016), and references therein.
We will use superscript d on various multipliers that arise in the direct
method, to distinguish them from the corresponding multipliers (which
are not superscripted) that arise in the indirect method, to be discussed
in Sect.4.5. Naturally, it will not be necessary to superscript the multi-
pliers that are known to remain the same in both methods.

To formulate the maximum principle for the problem (4.11), we define
the Hamiltonian function H? : E" x E™ x E! — E! as

HY = F(x,u,t) + \f(x,u,t)

and the Lagrangian function L? : E" x E™ x E" x E4 x EP x E' — E!
as

L, u, A, o, t) = H (w0, A1) + pg(a, u,t) +10h(e, 1), (4.12)

The maximum principle states the necessary conditions for u* (with
the corresponding state trajectory z*) to be optimal. The conditions
are that there exist an adjoint function A%, which may be discontinuous
at a time in a boundary interval or a contact time, multiplier functions
u,a, 3,7% n? and a jump parameter Cd(T), at each time 7, where \¢ is
discontinuous, such that the following (4.13) holds:
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¥ = f(x*,u*t), x*(0) = xp, satisfying constraints

g(x*,u* t) >0, h(z*,t) > 0, and the terminal constraints

a(z*(T),T) > 0 and b(z*(T),T) = 0;

A= — L[z, u*, N, e, t]

with the transversality conditions

A(T™) = Su(a*(T), T) + aay(a*(T),T) + by («*(T), T)
+7%hy (2*(T),T), and

a >0, aa(z*(T),T) =0, v¢ >0, vh(z*(T),T) = 0;

the Hamiltonian maximizing condition

HYa* (1), u*(t), \4(t), t] > HYz*(t), u, A\4(t), 1]

at each ¢t € [0,T] for all u satisfying

gla™(t),u, t] = 0; (4.13)

the jump conditions at any time 7,

where \? is discontinuous, are

(7)) = A7) + ¢ (7)he (2*(7), 7) and

H2* (1), u*(77), X (77), 7] = Hz*(1),u*(rF), \(r1), 7]

—(U T ha(a*(7), 7);

the Lagrange multipliers p(¢) are such that

OL*/Ouly—yr(ry = 0, dH®/dt = dL*/dt = OL? /o,

and the complementary slackness conditions

u(t) >0, p(t)g(z*,u*,t) =0,

n(t) >0, n(t)h(x*(t),t) = 0, and

¢A(r) >0, ¢Yr)h(z*(7),7) = 0 hold.
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As in the previous chapters, )\d(t) has the marginal value interpreta-
tion. Therefore, while it is not needed for the application of the maxi-
mum principle (4.13), we can trivially set

A(T) = S, (z*(T),T). (4.14)

If T is also a decision variable constrained to lie in the interval
[T1,T], 0 < T1 < Ty < oo, then in addition to (4.13), if T is the
optimal terminal time, it must satisfy a condition similar to (3.15) and
(3.81), i.e.,

HYz* (T%),w* (T ), \XY(T*7), T*] + Splz* (T*), T*] + aap[z*(T*), T*]
<0 ifT* =1,
+Bbr[* (T%), T + 7 hr[z*(T*), T1 =0 i T* e (T1,Tp),  (4.15)

>0 if T =Ty

Remark 4.1 In most practical examples, \Y and H? will only jump at
junction times. However, in some cases a discontinuity may occur at a
time in the interior of a boundary interval, e.g., when a mixed constraint
becomes active at that time.

Remark 4.2 Tt is known that the adjoint function A? is continuous at
a junction time 7, i.e., ¢4(7) = 0, if (i) the entry or exit at time 7 is
non-tangential, i.e., if h!(z*(7),u*(7),7) # 0, or (i) if the control u* is
continuous at 7 and the

dg/ou  diag(g) 0
rank =m + p,

Oht/Ou 0 diag(h)
when evaluated at z*(7) and w*(7).

We will see that the jump conditions on the adjoint variables in
(4.13) will give us precisely the jump in Example 4.2, where we will
apply the direct maximum principle to the problem in Example 4.1. The
jump condition on H? in (4.13) requires that the Hamiltonian should be
continuous at 7 if hy(z*(7),7) = 0. The continuity of the Hamiltonian
(in case hy = 0) makes intuitive sense when considered in the light of its
interpretation given in Sect. 2.2.4.
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This brief discussion of the jump conditions, limited here only to
first-order pure state constraints, is far from complete, and a detailed
discussion is beyond the scope of this book. An interested reader should
consult the comprehensive survey by Hartl et al. (1995). For an example
with a second-order state constraint, see Maurer (1977).

Needless to say, computational methods are required to solve prob-
lems with general inequality constraints in all but the simplest of the
cases. The reader should consult the excellent book by Teo et al. (1991)
and references therein for computational procedures and software; see
also Polak et al. (1993), Bulirsch and Kraft (1994), Bryson (1998), and
Pytlak and Vinter (1993, 1999). A MATLAB based software, used
for solving finite and infinite horizon optimal control problems with
pure state and mixed inequality constraints, is available at http://orcos.
tuwien.ac.at/research/ocmat _software/.

Example 4.2 Apply the direct maximum principle (4.13) to solve the
problem in Example 4.1.

Solution Since we already have optimal «* and x* as obtained in (4.5),
we can use these in (4.13) to obtain 2y, po, ¥4, n?, and ¢4, Thus,

H = —u + X, (4.16)
d _ g7d _ df. —9)2
L= H"+ pju+ py(3 —u) +n%x — 1+ (t —2)7, (4.17)
L= 14X 4y — g =0, (4.18)
A= oL = gt M(3T) =44, (4.19)
Fz*(3) =1+ (3—2)%] =0, (4.20)
pr =0, :U’1U* =0, pp 20, :u2(3 - U*) =0, (4'21)
n® >0, n’lz*(t) — 14 (t —2)*] =0, (4.22)

and if A\ is discontinuous for some 7 € [1,2], the boundary interval as
seen from Fig. 4.1, then

M () = M) + ¢4(r), ¢4(r) >0, (4.23)

— () + X ()t (r7) = —ut () + XA et (e ) = ¢ (r)2(r — 2).
(4.24)


http://orcos.tuwien.ac.at/research/ocmat_software/
http://orcos.tuwien.ac.at/research/ocmat_software/
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Since ¢ = 0 from (4.20), we have X\%(3—) = 0 from (4.19). Also, we
set A\%(3) = 0 according to (4.14).

Interval (2,3]: We have n? = 0 from (4.22), and thus A = 0 from
(4.19), giving A = 0. From (4.18) and (4.21), we have y; = 1 > 0 and
pg = 0.

Interval [1,2]: We get pu; = py = 0 from 0 < w* < 3 and (4.21).
Thus, (4.18) implies A = 1 and (4.19) gives n? = —A* = 0. Thus A% is
discontinuous at the exit time 7 = 2, and we use (4.23) to see that the
jump parameter ¢4(2) = A4(27) — A4(2+) = 1. Furthermore, it is easy to
check that (4.24) also holds at 7 = 2.

Interval [0,1): Clearly py = 0 from (4.21). Also u* = 0 would still be
optimal if there were no lower bound constraint on « in this interval. This
means that the constraint 4 > 0 is not binding, giving us ; = 0. Then

from (4.18), we have A% = 1. Finally, from (4.19), we have 5 = M=o
We can now see that the adjoint variable

A(t) = botel), (4.25)

0, te[2,3],

is precisely the same as the marginal valuation V;(z*(¢),t) obtained in
(4.6). We also sce that A\? is continuous at time ¢t = 1 where the entry
to the constraint is non-tangential as stated in Remark 4.2.

4.4 Sufficiency Conditions: Direct Method

When first-order pure state constraints are present, sufficiency results
are usually stated in terms of the maximum principle using the direct
method described in Hartl et al. (1995).
We will now state the sufficiency result for the problem specified in
(4.11). For this purpose, let us define the maximized Hamiltonian
H(z, \(t),t) = ax  H%x,u,\%,1). 4.26
@XO.)= max  H@udD. (120)
See Feichtinger and Hartl (1986) and Seierstad and Sydsaeter (1987) for
details.

Theorem 4.1 Let (z*,u*, \%, pu, v, 3,74, n%) and the jump parameters
Cd(T) at each T, where A% is discontinuous, satisfy the necessary condi-
tions in (4.13). If H (2, \%(t),t) is concave in x at each t € [0,T), S
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in (3.2) is concave in xz, g in (3.3) is quasiconcave in (z,u), h in (4.7)
and a in (3.4) are quasiconcave in x, and b in (3.5) is linear in x, then
(z*,u*) is optimal.

We will illustrate an application of this theorem in Example 4.4,
which shows that the solution obtained in Example 4.3 is optimal.

Theorem 4.1 is written for finite horizon problems. For infinite hori-
zon problems, this theorem remains valid if the transversality condition
on the adjoint variable in (4.29) is modified along the lines discussed in
Sect. 3.6.

In concluding this section, we should note that the sufficiency condi-
tions stated in Theorem 4.1 rely on the presence of appropriate concav-
ity conditions. Sufficiency conditions can also be obtained without these
concavity assumptions. These are called second-order conditions for a lo-
cal maximum, which require the second variation on the linearized state
equation to be negative definite. For further details on second-order suf-
ficiency conditions, the reader is referred to Maurer (1981), Malanowski
(1997), and references in Hartl et al. (1995).

4.5 The Maximum Principle: Indirect Method

The main idea underlying the indirect method is that when the pure
state constraint (4.7), assumed to be of order one, becomes active, we
must require its first derivative h!(z,u,t) in (4.8) to be nonnegative, i.e.,

h'(xz,u,t) > 0, whenever h(z,t) = 0. (4.27)

While this is a mixed constraint, it is different from those treated in
Chap. 3 in the sense that it is imposed only when the constraint (4.8) is
tight.

Since (4.27) is a mixed constraint, it is tempting to use the maximum
principle (3.12) developed in Chap.3. This can be done provided that
we can find a way to impose (4.27) only when h(z,t) = 0. One way to
accomplish this is to append (4.27) to the Hamiltonian when forming the
Lagrangian, by using a multiplier n > 0, i.e., append nh', and require
that nh = 0, which is equivalent to imposing n;h; =0, ¢ = 1,2,...,p.
This means that when h; > 0 for some ¢, we have 77; = 0 and it is then
not a part of the Lagrangian.

Note that when we require nh = 0, we do not need to impose nh! = 0
as required for mixed constraints. This is because when h; > 0 on an
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interval, then 7; = 0 and so 7;h} = 0 on that interval. On the other
hand, when h; = 0 on an interval, then it is because h} = 0, and thus,
n;h}t = 0 on that interval. In either case, n;h} = 0.

With these observations, we are ready to formulate the indirect max-
imum principle for the problem (4.11).

We form the Lagrangian as
L(w,u, A, pyn,t) = H(w,u, A t) + pg (@, u, t) +nht (z,u,t),  (4.28)

where the Hamiltonian H = F(x,u,t) + \f(x,u,t) as defined in (3.8).
We will now state the maximum principle which includes the discussion
above and the required jump conditions.

The maximum principle states the necessary conditions for v* (with
the state trajectory x*) to be optimal. These conditions are that there
exist an adjoint function A, which may be discontinuous at each entry or
contact time, multiplier functions p, a, 3,7, n, and a jump parameter ()
at each 7, where \? is discontinuous, such that (4.29) on the following
page holds.

Once again, as before, we can set A\(T') = Sy (z*(T),T). U T € [T1, T>]
is a decision variable, then (4.15) with A% and ~“ replaced by A and ~,
respectively, must also hold.

In (4.29), we see that there are jump conditions on the adjoint vari-
ables and also the Hamiltonian in the indirect maximum principle. The
remarks on the jump condition made in connection with the direct max-
imum principle (4.13) apply also to the jump conditions in (4.29). In
(4.29), we also see a condition 7 < 0, in addition to the complimentary
conditions on 7. The presence of this term will become clear after we
relate this multiplier to those in the direct maximum principle, which we
discuss next.

In various applications that are discussed in subsequent chapters of
this book, we use the indirect maximum principle. Nevertheless, it is
worthwhile to provide relationships between the multipliers of the two
approaches, as these will be useful when checking for the sufficiency
conditions of Theorem 4.1, developed in Sect. 4.4.
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¥ = f(x*,u*t), x*(0) = xy, satisfying constraints

g(x*,u* t) >0, h(z*,t) > 0, and the terminal constraints

a(z*(T),T) > 0 and b(z*(T),T) = 0;

AN=—L, [x*,u*, A, p,m, t] with the transversality conditions

ANT7) = 8e(2*(T), T) + aag(«*(T),T) + Bba(2*(T),T)
+7vhy(x*(T),T), and

a>0, aa(z*(T),T)=0,v >0, vyh(z*(T),T) = 0;

the Hamiltonian maximizing condition

Hx*(t),u*(t),\(t),t] > H[x*(t),u, \(t), ]

at each t € [0,T] for all u satisfying

glz*(t),u,t] > 0, and

hl(z*(t), u,t) > 0 whenever hi(z*(t),t) = 0,i=1,2,---,p; | (4.29)

the jump conditions at any entry/contact time 7,

where A is discontinuous, are

A7) = M11) + (1) hy(z*(7),7) and

Hlz*(7),u"(77), A(77), 7] = Hlz*(7),u*(77), A(T ), 7]

—C(M)he(a™(7),7);

the Lagrange multipliers p(t) are such that

OL/0u|y—y+4) = 0, dH /dt = dL/dt = OL/0t,

and the complementary slackness conditions

p(t) >0, p(t)g(z*,u*,t) =0,

n(t) >0, n(t)h(z*(t),t) =0, and

¢(t) >0, ¢(T)h(x*(T),7) = 0 hold.
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We now obtain the multipliers of the direct maximum principle from
those in the indirect maximum principle. Since the multipliers coincide
in the interior, we let [71, 72| denote a boundary interval and 7 a contact
time. It is shown in Hartl et al. (1995) that

nd(t) = —n(t), t € (11,72), (4.30)

AL = A(t) + n(O)ha (2" (), ), t € (11,72), (4.31)

Note that n?(t) > 0 in (4.13). Thus, we have 7 < 0, which we have
already included in (4.29). The jump parameter at an entry time 71, an
exit time 79, or a contact time 7, respectively, satisfies

¢U(r1) = (1) = (i), ¢Ur2) = n(r3). ¢U(r) = ¢(7). (4.32)

By comparing A(7~) in (4.13) and A\(T"~) in (4.29) and using (4.31), we
have
v =7 +n(T7). (4.33)

Going the other way, we have

00) = [ ne)ds ), e (i),

A(t) = X4(t) = n(t)h(z*(t),1), t € (11,72),
(1) = ) + (7)), ((m2) =0, ¢(7) = ¢(r),
y=~"—n(T").

Finally, as we had mentioned earlier, the multipliers u, o, and 5 are
the same in both methods.

Remark 4.3 From (4.30), (4.32), and n%(t) > 0 and ¢%(r;) > 0 in
(4.13), we can obtain the conditions

() <0 (4.34)
and
¢(t1) > n(r]) at each entry time 71, (4.35)

which are useful to know about. Hartl et al. (1995) and Feichtinger and
Hartl (1986) also add these conditions to the indirect maximum principle
necessary conditions (4.29).
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Remark 4.4 In Exercise 4.12, we discuss the indirect method for
higher-order constraints. For further details, see Pontryagin et al. (1962),
Bryson and Ho (1975) and Hartl et al. (1995).

Example 4.3 Consider the problem:

2
maX{J:/ —xdt}
0

subject to
t=u, z(0) =1, (4.36)
u+1>0,1—u>0, (4.37)
x > 0. (4.38)

Note that this problem is the same as Example 2.3, except for the
nonnegativity constraint (4.38).

Solution The Hamiltonian is
H=—x+ \u,
which implies the optimal control to have the form
u*(z, ) = bang[—1, 1; A], whenever z > 0. (4.39)

When = = 0, we impose & = uw > 0 in order to insure that (4.38) holds.
Therefore, the optimal control on the state constraint boundary is

u*(x, \) = bang[0, 1; A], whenever z = 0. (4.40)
Now we form the Lagrangian

where (i1, t, and 71 satisfy the complementary slackness conditions

py =0, py(u+1)=0, (4.41)
po =0, po(l—u)=0, (4.42)
n >0, nz = 0. (4.43)

Furthermore, the optimal trajectory must satisfy

oL
%:)\—Ful—uQ—i-n:O. (4.44)
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From the Lagrangian we also get

: oL
A= e L, A(27) =720, vz(2) = A(27)z(2) =0. (4.45)
x
It is reasonable to guess that the optimal control u* will be the one
that keeps z* as small as possible, subject to the state constraint (4.38).
Thus,

-1, te0,1),
u*(t) = (4.46)
0, tell,2].
This gives
1—t, telo,1),
a*(t) =
0, tell,?2].

To obtain A(t), let us first try A\(27) = v = 0. Then, since x*(t) enters
the boundary zero at t = 1, there are no jumps in the interval (1, 2], and
the solution for A(t) is

At)=t—2, te(l,2) (4.47)

Since A(t) < 0 and z*(¢) = 0 on (1,2], we have u*(t) = 0 by (4.40),
as stipulated. Now let us see what must happen at t = 1. We know
from (4.47) that A(17) = —1. To obtain A(17), we see that H(11) =
—z*(17) + A(1M)u*(1T) = 0 and H(17) = —2*(17) + AM17)u*(17)
—A(17). By equating H(17) to H(1") as required in (4.29), we obtain
A(17) = 0. Using now the jump condition on A(¢) in (4.29), we get the
value of the jump ((1) = A(17) = A(1T) =1>0.

With A(17) = 0, we can solve (4.45) to obtain

Mt)=t—1, te0,1].

Since A(t) < 0 and z*(t) = 1—t > 0 is positive on [0,1), we can use (4.39)
to obtain u*(t) = —1 for 0 < t < 1, which is as stipulated in (4.46). In
the time interval [0,1) by (4.42), puy = 0 since u* < 1, and by (4.43),
n = 0 because x > 0. Therefore, i, (t) = —A(t) =1—t>0for 0 <t < 1,
and this with u* = —1 satisfies (4.41).

To complete the solution, we calculate the Lagrange multipliers in the
interval [1,2]. Since u*(t) = 0 on t € [1,2], we have p;(t) = ps(t) = 0.
Then, from (4.44) we obtain n(t) = —A(t) = 2 —t > 0 which, with
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x*(t) = 0 satisfies (4.43). Thus, our guess v = 0 is correct, and we do
not need to examine the possibility of v > 0. The graphs of z*(¢) and A(t)
are shown in Fig. 4.2. In Exercise 4.1, you are asked to redo Example 4.3
by guessing that v > 0 and see that it leads to a contradiction with a
condition of the maximum principle.

x% A
A
1¢
x*(1)
x*(1)=0
u (= —1 (=0
0 u* (1) >
p=—r=1-1=04{m=mL=0 2
=0 n=—-A=2—-1t=0
2
n=0
A(D)
—1

Figure 4.2: State and adjoint trajectories in Example 4.3

It should be obvious that if the terminal time were T° = 1.5, the
optimal control would be u*(t) = —1, ¢t € [0,1) and u*(t) = 0, t €
[1,1.5]. You are asked in Exercise 4.10 to redo the above calculations in
this case and show that one now needs to have v = 1/2. In Exercise 4.3,
you are asked to solve a similar problem with F' = —u.

Remark 4.5 Example 4.3 is a problem instance in which the state con-
straint is active at the terminal time. In instances where the initial state
or the final state or both are on the constraint boundary, the maximum
principle may degenerate in the sense that there is no nontrivial solution
of the necessary conditions, i.e., \(¢) =0, t € [0, T|, where T is the termi-
nal time. See Arutyunov and Aseev (1997) or Ferreira and Vinter (1994)
for conditions that guarantee a nontrivial solution for the multipliers.
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Remark 4.6 It can easily be seen that Example 4.3 is a problem in-
stance in which multipliers A and p; would not be unique if the jump
condition on the Hamiltonian in (4.29) was not imposed. For references
dealing with the issue of non-uniqueness of the multipliers and conditions
under which the multipliers are unique, see Kurcyusz and Zowe (1979),
Maurer (1977, 1979), Maurer and Wiegand (1992), and Shapiro (1997).

Example 4.4 The purpose here is to show that the solution obtained
in Example 4.3 satisfies the sufficiency conditions of Theorem 4.1. For
this we first obtain the direct adjoint variable

p t—1, te]0,1),
A%(t) = A(t) +n(t)he (2" (1), 1) =
0, tel,2).

It is easy to see that

Hizu (.0 =4 (t—1u, tel0,1),

-, tel,2],

is linear and hence concave in (x,u) at each t € [0, 2]. Functions

u—+1
g(z,u,t) =
1—u
and
h(z)=x

are linear and hence quasiconcave in (z,u) and z, respectively. Functions
S =0,a =0 and b= 0 satisfy the conditions of Theorem 4.1 trivially.
Thus, the solution obtained for Example 4.3 satisfies all conditions of
Theorem 4.1, and is therefore optimal.

In Exercise 4.14, you are asked to use Theorem 4.1 to verify that the
given solution there is optimal.

Example 4.5 Consider Example 4.3 with T" = 3 and the terminal state
constraint

z(3) = 1.



4.5. The Maximum Principle: Indirect Method 145

Solution Clearly, the optimal control «* will be the one that keeps z as
small as possible, subject to the state constraint (4.38) and the boundary
condition z(0) = z(3) = 1. Thus,

-1, te€]0,1), 1—t, te€]|0,1),
ut)=19 0, tel,2, *@)=1 o0, tell,2),
1, te(2,3], t—2, te(2,3].

For brevity, we will not provide the same level of detailed explanation as
we did in Example 4.3. Rather, we will only compute the adjoint function
and the multipliers that satisfy the optimality conditions. These are

t—1, tel0,1],
A(t) = (4.48)

t—2, te(l,3),
pi(t) = pa(t) =0, n(t) = =A(t), t € [1,2], (4.49)
v=0, B=X2") =1, (4.50)

A17) = A1) +¢(1) and H(17) = H(1T). (4.51)

Example 4.6 Introduce a discount rate p > 0 in Example 4.1 so that
the objective function becomes

3
max{J:/ —eptudt} (4.52)
0

and re-solve using the indirect maximum principle (4.29).

Solution It is obvious that the optimal solution will remain the same as
(4.5), shown also in Fig.4.1.

With «* and z* as in (4.5), we must obtain A, p;, p9, 1,7, and ¢ so
that the necessary optimality conditions (4.29) hold, i.e.,

H = —e"u+ \u, (4.53)

L =H+ pju—+ po(3 —u) +nlu+2(t — 2)], (4.54)
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Ly=—€e P 4+ X4 py —py+1=0,
A=—L,=0, \(37) =0,
Ve (3) =1+ (1-2)* =0,
p1 20, pu=0, py 20, pa(3 —u) =0,
>0, la*(t) =1+ (t - 2)* =0,
and if A is discontinuous at the entry time 7 = 1, then

A(L7) = A(1T) +¢(1), ¢(1) >0,

—ePuF (1) + A1 )u*(17) = —e Pu*(1T) + A (17) — ¢(1)(-2).
From (4.60), we obtain A(17) = e~”. This with (4.56) gives

e P, 0<t<l,

At) =
0, 1<t<3,
as shown in Fig. 4.3,
ePt—e P 0<t<l,
pi(t) =19 o, 1<t<2, H(t)=0,0<t<3,
e, 2<t<3,
and
0, 0<t<1,
nt) =19 er, 1<t<2,

0, 2<t<3,

which, along with «* and z*, satisfy (4.29).

(4.60)

(4.61)

Note, furthermore, that A is continuous at the exit time ¢t = 2. At the
entry time 71 = 1, {(1) = e ” > n(17) = e, so that (4.35) also holds.

Finally, v =n(37) = 0.
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Figure 4.3: Adjoint trajectory for Example 4.4

4.6 Current-Value Maximum Principle:
Indirect Method

Just as the necessary condition (3.42) represents the current-value for-
mulation corresponding to (3.12), we can, when first-order pure state
constraints are present, also state the current-value formulation of the
necessary conditions (4.29). As in Sect. 3.3, with F\(z,u,t) = ¢(x,u)e ",
S(z,T) = (x)e T, and p > 0, the objective function in the problem
(4.11) is replaced by

max {J _ /0 " (e u)e Pt 1 w[x(T)}e_pT} |

With the Hamiltonian H as defined in (3.35), we can write the La-
grangian as

Llz,u, A\, p,n] = H + pg +nh* = ¢+ Af + pg +nh'.

We can now state the current-value form of the maximum principle,
giving the necessary conditions for u* (with the state trajectory z*) to
be optimal. These conditions are that there exist an adjoint function
A, which may be discontinuous at each entry or contact time, multiplier
functions p, «, 8,7, 7, and a jump parameter ((7) at each 7 where A is
discontinuous, such that the following (4.62) holds:
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z* = f(a*,u*t), *(0) = xy, satisfying constraints

g(x*,u*,t) >0, h(z*(t),t) > 0,and the terminal constraints

a(z*(T),T) > 0 and b(z*(T),T) = 0;

A= p\— L.[x*,u*, A\ p,m, ]

with the transversality conditions

NT7) =, (a*(T),T) + aay(2*(T), T') + Bb.(2*(T),T)
+vh,(2*(T),T), and

a>0, aa(z*(T),T) =0, v >0, vh(z*(T),T) = 0;

the Hamiltonian maximizing condition

Hx*(t),u*(t), A(t),t] > H[z*(t),u, A(t), ]

at each t € [0, 7] for all u satisfying

glz*(t),u,t] > 0, and (4.62)

hi(x*(t),u,t) > 0 whenever h;(z*(t),t) =0,i =1,2,--- ,p;

the jump conditions at any entry/contact time 7,

where A is discontinuous, are

AM77) = A7) + {(7)hy(z*(7), T) and

Hlz*(7),u"(77),A(77), 7] = H[z* (1), u"(77), A(77), 7]

—C(m)he(x7(7),7);

the Lagrange multipliers p(t) are such that

OL/0u|y=yry =0, dH/dt = dL/dt = OL/0t + pAf,

and the complementary slackness conditions

u(t) =0, p(t)g(z™, u”,t) =0,

n(t) >0, n(t)h(z*(t),t) =0, and

¢(1) >0, {(r)h(z*(7),7) = 0 hold.
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If Te [T, T3], 0 < Ty < Ty < o0, is also a decision variable, then
if T* is the optimal terminal time, then the optimal solution x*,u*, T™*
must satisfy (4.62) with 7" replaced by 7™ and the condition

H[z*(T*),u*(T*7), X{(T*7), T*] = py[a*(T*), T*] + aar[z*(T*), T"]

<0 ifT* =T,
+8br[x*(T*), T*) + 4 hy[a*(T*), T*] { =0 it T* € (Ty,Ty),(4.63)
>0 if T =To.

Derivation of (4.63) starting from (4.15) is similar to that of (3.44) from
(3.15).

Remark 4.7 The current-value version of (4.34) in Remark 4.3 is 7(t) <
pn(t) and (4.35).

The infinite horizon problem with pure and mixed constraints can be
stated as (3.97) with an additional constraint (4.7). As in Sect. 3.6, the
conditions in (4.62) except the transversality condition on the adjoint
variable are still necessary for optimality. As for the sufficiency condi-
tions, an analogue of Theorem 4.1 holds, subject to the discussion on
infinite horizon transversality conditions in Sect. 3.6.

We conclude this chapter with the following cautionary remark.

Remark 4.8 While various subsets of conditions specified in the max-
imum principles (4.13), (4.29), or (4.62) have been proved in the litera-
ture, proofs of the entire results are still not available. For this reason,
Hartl (1995) call (4.13), (4.29), or (4.62) as informal theorems. Seier-
stad and Sydsaeter (1987) call them almost necessary conditions since,
very rarely, problems arise where the optimal solution requires more
complicated multipliers and adjoint variables than those specified in this
chapter.

Exercises for Chapter 4

E 4.1 Rework Example 4.3 by guessing that v > 0, and show that it
leads to a contradiction with a condition of the maximum principle.

E 4.2 Rework Example 4.3 with terminal time 7' = 1/2.
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E 4.3 Change the objective function of Example 4.3 as follows:

max {J _ /02(—u)dt} .

Re-solve and show that the solution is not unique.

E 4.4 Specialize the maximum principle (4.29) for the nonnegativity
state constraint of the form

x(t) > 0 for all ¢ satisfying 0 <t < T,
in place of h(z,t) > 0 in (4.7).

E 4.5 Consider the problem:

wax{s = [ T(x)dt}

t=—-u—1, z(0) =1,

subject to

x(t) >0, 0 <u(t) <1.
Show that

If T =1, there is exactly one feasible and optimal solution.

—_ o~
&

If T > 1, then there is no feasible solution.

—
o

If 0 < T < 1, then there is a unique optimal solution.

o
NN N NG

=

If the control constraint is 0 < u(t) < K, there is a unique optimal
solution for every K > 1 and T' = 1/2.

The value of the objective in (d) increases as K increases.

(f) If the control constraint in (d) is u(t) > 0, then the optimal control
is an impulse control defined by the limit of the solution in (e).

—
@
~—

E 4.6 Impose the constraint z > 0 on Exercise 3.16(b) to obtain the

problem:
4
max{J:/ (—x)dt}
0

subject to
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t=u, z(0)=1, z(4) =1,
u+1>0, 1—u>0,
xz > 0.

Find the optimal trajectories of the control variable, the state variable,
and other multipliers. Also, graph these trajectories.

E 4.7 Transform the problem (4.11) with the pure constraint of type
(4.7) to a problem with the nonnegativity constraint of type (4.9).

Hint: Define y = h(x,t) as an additional state variable. Recall
that we have assumed (4.7) to be a first-order constraint.

E 4.8 Consider a two-reservoir system such as that shown in Fig. 4.4,
where x;(t) is the volume of water in reservoir ¢ and wu;(t) is the rate of
discharge from reservoir ¢ at time ¢. Thus,

.i'l(t) = —ul(t), $1(0) = 4,

da(t) = u1(t) — ua(t), w2(0) = 4.

x,(7)

=
=

A 4

X,(1)

}

Uy (1)

Figure 4.4: Two-reservoir system of Exercise 4.8

Solve the problem of maximizing

J = /010[(10 - t)ul(t) + tUQ(t)]dt

subject to the above state equations and the constraints

0 <w;(t) <1, x;(t) >0 for all ¢ € [0, 10].
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Also compute the optimal value of the objective function.

Hint: Guess the optimal solution and verify it by using the La-
grangian form of the maximum principle.

E 4.9 An Inventory Control Problem. Solve
T 2
P
max / — (h[—i— > dt
P Jo 2

. 52
I=P-— I1(0) =1 —
S, (0) 0> on’

and the control and the pure state inequality constraints

subject to

P>0and I >0,

respectively. Assume that S > 0 and h > 0 are constants and T
is sufficiently large. Note that I represents inventory, P represents
production rate, and S represents demand. The constraints on P and
I mean that production must be nonnegative and backlogs are not
allowed, respectively.

Hint: By T being sufficiently large, we mean T' > Iy/S + S/(2h).
E 4.10 Redo Example 4.3 with T'= 1.5.

E 4.11 Redo Example 4.6 using the current-value maximum principle
(4.62) in Sect. 4.6.

E 4.12 For this exercise only, assume that h(z,t) > 0 in (4.7) is a
second-order constraint, i.e., r = 2. Transform the problem to one with
nonnegativity constraints. Use the result in Exercise 4.4 to derive a
maximum principle for problems with second-order constraints.

Hint: As in Exercise 4.7, define y = h. In addition, define yet an-
other state variable z = y = dh/dt. Note further that this procedure
can be generalized to handle problems with rth-order constraints for
any positive integer r.

E 4.13 Re-solve Example 4.6 when p < 0.
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E 4.14 Consider the following problem:

5
min{J—/ udt}
0

subject to the state equation
t=u—z, z(0)=1,
and the control and state constraints
0<u<l, z(t) >0.7—0.2¢t.

Use the sufficiency conditions in Theorem 4.1 to verify that the optimal
control for the problem is

0, 0<t<0,
u'(t) =4 0.5—0.2t, 6<t<2.5,
0, 2.5 <t <5,

where 6 ~ 0.51626. Sketch the optimal state trajectory z*(t) for the
problem.

E 4.15 In Example 4.6, let t¥(z) = 2 4+ /1 — 2. Show that the value
function

2e2042(py/I—z—1)e P2~—V1-2)
- V)

V(x,t) = g
0, forz >1ortt(z) <t<3.

, forz<1,0<t <t (z),

Note that V (z,t) is not defined for x < 1, ¢t7(x) < t < 3. Show further-
more that for the given initial condition 2(0) = 0, the marginal valuation
is
e ?, fortel0,1),
Va(@*(t),0) = X(t) = AMt) +0(t) = § ert, for t € [1,2],
0, for t € (2,3].

In this case, it is interesting to note that the marginal valuation is dis-
continuous at the constraint exit time t = 2.
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E 4.16 Show in Example 4.3 that the value function

—x2/2, forx <2—t 0<t<2,
V(l‘,t):

—2r+2—-2t+at+1%/2, forx>2—t 0<t<2.

Then verify that for the given initial condition x(0) = 1,

t—1, forte|0,1),
Vo (2™ (),1) = A(t) = A(t) + n(t) =
0, for t € [1,2].

E 4.17 Rework Example 4.5 by using the direct maximum principle
(4.13).

E 4.18 Solve the linear inventory control problem of minimizing

L/TQJ%IU+—hI@»dt
0
subject to
I(ty=P@t) -5, I(0)=1,
P(t)>0and I(t) >0, tel0,T],

where P(t) denotes the production rate and I(t) is the inventory level at
time ¢ and where ¢, h and S are positive constants and the given terminal

time T > v/2S.

E 4.19 A machine with quality x(¢) > 0 produces goods with ax(t)
dollars per unit time at time ¢t. The quality deteriorates at the rate 9,
but the decay can be slowed by a preventive maintenance u(t) as follows:

& =u—dx, (0) =z9 > 0.

Obtain the optimal maintenance rate u(t), 0 < ¢ < T, so as to maximize

ATMx—uﬂt

subject to u € [0,u] and = < Z, where u > dz, a > 6, and T > x.

Hint: Solve first the problem without the state constraint < z. You will
need to treat two cases: 07 <Ilna—In(a —J) and 67 > Ina—In (a — 9).



Exercises for Chapter 4

E 4.20 Maximize

subject to

E 4.21 Maximize

subject to

E 4.22 Maximize

subject to

E 4.23 Maximize

subject to

J = /j(u—x)dt

t=1-u, z(0) =2,

0<u<3, z4+u<4, x>0.
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E 4.24 Solve the following problem:

max {J _ /02(2u _ w)dt}

t=—-u, z(0)=e,

—3<u<L3 z—u=>0, x>t

E 4.25 Solve the following problem:

E 4.26 Re-solve Example 4.6 with the control constraint (4.3) replaced
by 0 <u <1.

E 4.27 Solve explicitly the following problem:

max {J _ /02 x(t)dt}

&(t) = u(t), z(0) =1,
—a < u(t) <b,a>1/2, b>0,
z(t) > t—2.

subject to

Obtain x*(t), u*(t) and all the required multipliers.

E 4.28 Minimize

1
/ —(2? + Au?)dt
0 2

subject to
t=u, z(0)=x9>0, z(T)=0,

hl(x,t) =x—a+ bt >0,
hg(.%',t) = ag — bgt—l’ Z 0,

where a;,b; > 0,a2 > xy > a1, and az/bs > a1/by; see Fig.4.5. The
optional path must begin at xg on the z-axis, stay in the shaded area,
and end on the t-axis.
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x(f)

> ¢

0 a,/by a,/b,

Figure 4.5: Feasible space for Exercise 4.28

(a) First, assume that the problem parameters are such that the op-
timal solution z*(t) satisfies hy(z*(t),t) > 0 for ¢ € [0,T]. Show
that

x*(t) = kiet/c + er_t/C,

where ki and ko are the constants to be determined. Write down
the two conditions that would determine the constants. Also, il-
lustrate graphically the optimal state trajectory.

(b) How would your solution change if the problem parameters do not
satisfy the condition in (a)? Characterize and graphically illustrate
the optimal state trajectory.

E 4.29 With a >0, b > 0, and §(¢t)/v(t) = —p(t) <0,

Ta —bu(t)
HJ%X {J = /0 E(l —e )v(t)dt}

subject to

&= —u, x(0)=x9 > 0 given,

and the constraint
x(t) > 0.

Obtain the expressions satisfied by the optimal terminal time T, the
optimal control u*(t), 0 < t < T*, and the optimal state trajectory
x*(t), 0 < t < T*. Furthermore, obtain them explicitly in the special
case when p(t) = p > 0, a constant positive discount rate.
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E 4.30 Set p = 0 in the solution of Example 4.6 and obtain A, vy, n, (1)
for the undiscounted problem. Then use the transformation formulas
(4.30)-(4.33) on these and the fact that ¢(2) = 0 to obtain A4 4% n¢,
and ¢%(1) and ¢%(2), and show that they are the same as those obtained
in Example 4.2 along with ¢¢(1) = 0, which holds trivially.

E 4.31 Consider a finite-time economy in which production can be used
for consumption as well as investment, but production also pollutes. The
state equations for the capital stock K and stock of pollution W are

K = suK, K(0) = Ky,

W =uK — W, W(0) = Wy,
where a fraction s of the production output uk is invested, with u de-
noting the capacity utilization rate. The control constraints are
0<s<1,0<u<l,
and the state constraint
W <Ww

implies that the pollution stock cannot exceed the upper bound W.
The aim of the economy is to choose s and u so as to maximize the
consumption utility

/0 "0 sur,

Assume that Wy < W, T > 1 and Wy — Ky/6)e T + Ko /5 < W,_Which
means that even with s(t) = 0, the pollution stock never reaches W even
with u(t) = 1.
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Chapter 5

Applications to Finance

An important area of finance involves making decisions regarding
investment and dividend policies over time and ways to finance them.
Among the ways of financing such policies are: issuing equity, retaining
earnings, borrowing money, etc. It is possible to model such situations
as optimal control problems; see, for example, Davis and Elzinga (1971),
Elton and Gruber (1975), and Sethi (1978b). Some of these models are
simple to analyze and they yield useful insights.

In this chapter we deal with two different problems relating to a
firm. The cash balance problem, in its simplest form, is a problem
of controlling the level of a firm’s cash balances to meet its demand
for cash at minimum total cost. The problem of the optimal equity
financing of a corporate firm, a central problem in finance, is that of
determining the optimal dividend path along with new equity issued
over time in order to maximize the value of the firm. Although we
only deal with deterministic problems in this chapter, some of the
more important problems in finance involve uncertainty. Thus, their
optimization requires the use of stochastic optimal control theory or
stochastic programming. A brief introduction to stochastic optimal
control theory will be provided in Chap. 12, together with an application
to a stochastic consumption-investment problem and references.

In the next section, we introduce a simple cash balance problem as
a tutorial. This model is based on Sethi and Thompson (1970) and
Sethi (1973d, 1978c). We will be especially interested in the financial

(© Springer Nature Switzerland AG 2019 159
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interpretations for the various functions such as the Hamiltonian and
the adjoint functions that arise in the course of the analysis.

5.1 The Simple Cash Balance Problem

Consider a firm which has a known demand for cash over time. To satisfy
this cash demand, the firm must keep some cash on hand, assumed to be
held in a checking account at a bank. If the firm keeps too much cash,
it loses money in terms of opportunity cost, in that it can earn higher
returns by buying securities such as bonds. On the other hand, if the
cash balance is too small, the firm has to sell securities to meet the cash
demand and thus incur a broker’s commission. The problem then is to
find the tradeoff between the cash and security balances.

5.1.1 The Model

To formulate the optimal control problem we introduce the following
notation:

T = the time horizon,

the cash balance in dollars at time ¢,

8
~—~
.
SN—
I

y(t) = the security balance in dollars at time ¢,

d(t) = the instantaneous rate of demand for cash; d(t) can be
positive or negative,

u(t) = the rate of sale of securities in dollars; a negative sales
rate means a rate of purchase,

r1(t) = the interest rate earned on the cash balance,

ro(t) = the interest rate earned on the security balance,

= the broker’s commission in dollars per dollar’s worth

of securities bought or sold; 0 < a < 1.
The state equations are

t=mrz—d+u—alul, z(0)=uz, (5.1)
y=ray—u, y(0) = yo,

and the control constraints are

— Uz <u(t) < Uy, (5.3)
where Uy and Uy are nonnegative constants. The objective function is:
max{J = z(T) + y(T)} (5.4)

subject to (5.1)—(5.3). Note that the problem is in the linear Mayer form.
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5.1.2 Solution by the Maximum Principle

Introduce the adjoint variables A1 and Ao and define the Hamiltonian
function
H =\ (rz—d+u— alu]) + Xa(ray — u). (5.5)

The adjoint variables satisfy the differential equations

. oOH

)\1 = —% = —)\17“1, )\1(T) = 1, (5.6)
. OH

Ag=—— ==\ Ao (T) =1. 5.7
2 dy 272, 2( ) ( )

It is easy to solve these, respectively, as
ST ri(r)dr
M) =ele 1 (5.8)

and

Ao(t) = eli T2()dr (5.9)

The interpretations of these solutions are also clear. Namely, A1 (t) is
the future value (at time T') of one dollar held in the cash account from
time t to 1" and, likewise, A2(t) is the future value of one dollar invested
in securities from time ¢ to 7. Thus, the adjoint variables have natural
interpretations as the actuarial evaluations of competitive investments
at each point of time.

Let us now derive the optimal policy by choosing the control vari-
able u to maximize the Hamiltonian in (5.5). In order to deal with the
absolute value function we write the control variable u as the difference
of two nonnegative variables, i.e.,

u=uy —ug, up >0, ug > 0. (5.10)

Recall that this method was suggested in Remark 3.12 in Sect.3.7. In
order to make u = u; when w; is strictly positive, and u = —uy when us
is strictly positive, we also impose the quadratic constraint

uug =0, (5.11)

so that at most one of u; and us can be nonzero. However, the optimal
properties of the solution will automatically cause this constraint to be
satisfied. The reason is that the broker’s commission must be paid on
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every transaction, which makes it not optimal to simultaneously buy and
sell securities. Given (5.10) and (5.11) we can write

lu| = u1 + ua. (5.12)

Also, since u € [—-Uy, Us] from (5.3), we must have u; < U and ug < Us.
In view of (5.10), the control constraints on the variables u; and ug are

0 S Ul S Ul and 0 S ug S Ug. (513)

We can now substitute (5.10) and (5.12) into the Hamiltonian (5.5)
and reproduce the part that depends on control variables u; and us, and
denote it by W. Thus,

W = ul[(l — Oé))\l - )\2] — UQ[(l + Oé))\l — )\2] (514)

Maximizing the Hamiltonian (5.5) with respect to u € [-Uy, Us] is the
same as maximizing W with respect to u; € [0, U;] and ug € [0, Uz]. But
W is linear in u; and ug so that the optimal strategy is bang-bang and
is as follows:

u* = u] — uj, (5.15)

where
u] = bang[0, Uz; (1 — @)A1 — A2, (5.16)
us = bang[0, Us; —(1 + a) A1 + Ag]. (5.17)

Since uq(t) represents the rate of sale of securities, (5.16) says that the
optimal policy is: sell at the maximum allowable rate if the future value
of a dollar less the broker’s commission (i.e., the future value of (1 — «)
dollars) is greater than the future value of a dollar’s worth of securities;
and do not sell if these future values are in reverse order. In case the
future value of a dollar less the commission is exactly equal to the fu-
ture value of a dollar’s worth of securities, then the optimal policy is
undetermined. In fact, we are indifferent as to the action taken, and
this is called singular control. Similarly, ua(t) represents the purchase of
securities. Here we buy, do not buy, or are indifferent, if the future value
of a dollar plus the commission is less than, greater than, or equal to the
future value of a dollar’s worth of securities, respectively.
Note that if
(1= a)Ai(t) = Aat),

then
(1+a)Ai(t) > Aa(t),
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Figure 5.1: Optimal policy shown in (A1, A2) space

so that if uy(t) > 0, then wua(¢) = 0. Similarly, if
(1+a) () < Xa(t),

then
(1 —a)A1(t) < Aa(2),

so that if ug(t) > 0, then uy(¢) = 0. Hence, with the optimal policy, the
relation (5.11) is always satisfied.

Figure 5.1 illustrates the optimal policy at time ¢. The first quadrant
is divided into three areas which represent different actions (including
no action) to be taken. The dotted lines represent the singular control
manifolds. A possible path of the vector (A1(t),A2(t)) of the adjoint
variables is shown in Fig.5.1 also. Note that on this path, there is one
period of selling, two periods of buying, and three periods of inactivity.
Note also that the final point on the path is (1,1), since the terminal
values A\ (T) = X2(T) = 1, and therefore, the last interval is always
characterized by inactivity.

Another way to represent the optimal path is in the (¢, A2/\1) space.
The path of (Ai(t), A2(t)) shown in Fig.5.1 corresponds to the path of
A2(t)/A1(t) over time shown in Fig.5.2.
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Figure 5.2: Optimal policy shown in (¢, \2/A1) space

Perhaps a more realistic version of the cash balance problem is to
disallow overdraft on the bank account. This means imposing the pure
state constraint z(¢) > 0. In addition, if short selling of securities is not
permitted, then we must also have y(t) > 0. These extensions give rise to
pure state constraints treated in Chap.4. In Exercise 5.2 you are asked
to formulate such an extension and write the indirect maximum principle
(4.29) for it. Exercises 5.3 and 5.4 present instances where it is easy to
guess the optimal solutions. In Exercise 5.5, you are asked to show if the
guessed solution in Exercise 5.4 satisfies the maximum principle (4.29).
It is in Chap.6 that we discuss in detail an application of the indirect
maximum principle (4.29) for solving a problem called the wheat trading
model.

5.2 Optimal Financing Model

In the present section, we discuss a model of a corporate firm which must
finance its investments by an optimal combination of retained earnings
and external equity. The model to be discussed is due to Krouse and
Lee (1973), with corrections and extensions due to Sethi (1978b). The
problem of the optimal financing of the firm can be formulated as an op-
timal control problem. The formulations, such as those of Davis (1970),
Krouse (1972), and Krouse and Lee (1973), permit the firm to finance its
investments by retained earnings, debt, and/or external equity in various
proportions which may vary over time. Note that earnings not retained
are paid out as dividends to the firm’s stockholders.
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For reasons of simplicity and ease of its solution, the model analyzed
here does not permit debt as a source of financing, but does permit

retained earnings and external equity to be used in any proportions.

5.2.1 The Model

In order to formulate the model, we use the following notation:

y(t)

9

T

the value of the firm’s assets or invested capital at time
t,

the current earnings rate in dollars per unit time at
time t,

the external or new equity financing expressed as a
multiple of current earnings; u > 0,

the fraction of current earnings retained, i.e., 1 — v(t)
represents the rate of dividend payout; 0 < v(t) < 1,
the proportional floatation (i.e., transaction) cost for
external equity; ¢ a constant, 0 < c < 1,

the continuous discount rate (assumed constant);
known commonly as the stockholder’s required rate
of return, or the cost of capital,

the actual rate of return (assumed constant) on the
firm’s invested capital; r > p,

the upper bound on the growth rate of the firm’s as-
sets,

the planning horizon; 7' < oo (T' = oo in Sect. 5.2.4)

Given these definitions, the current earnings rate is x = ry. The rate
of change in the current earnings rate is given by

T =ry=r(cu+v)z, z(0)=xo. (5.

18)

Furthermore, the upper bound on the rate of growth of the assets implies
the following constraint on the control variables:

gy = (cu+v)e/(x/r) = rlcu+v) < g. (5.

19)

Finally, the objective of the firm is to maximize its value, which is
taken to be the present value of the future dividend stream accruing to
the shares outstanding at time zero. To derive this expression, note that

T
/ (1 —v)xze Ptdt
0
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represents the present value of total dividends issued by the firm. A
portion of these dividends go to the new equity, which under the as-
sumption of an efficient market will get a rate of return exactly equal to
the discount rate p. This should therefore be equal to the present value

T
/ uxe Ptdt
0

of the external equity raised over time.
Thus, the net present value of the total future dividends that accrue
to the initial shares is the difference of the previous two expressions, i.e.,

T
J = / e P (1 — v — u)xdt; (5.20)
0

see Miller and Modigliani (1961) and Sethi (1996) for further discus-
sion. Note that in the case of a finite horizon, a more realistic objective
function would include a salvage value or bequest term S[z(7")]. This is
not very difficult to incorporate. See Exercise 5.12 where the bequest
function is linear. We will also solve the infinite horizon problem (i.e.,
T = oo) after we have solved the finite horizon problem.

Remark 5.1 An intuitive interpretation of (5.20) is that the value J
of the firm is the present value of the cash flows (dividends) going out
from the firm to the society less the present value of the cash flows (new
equity) coming from the society into the firm.

The optimal control problem is to choose u and v over time so as to
maximize J in (5.20) subject to (5.18), the constraints (5.19), u > 0, and
0 <w < 1. For convenience, we restate this problem as

T
max {J = / e Pl —v— u)xdt}
u,v 0

subject to

& =r(cu+v)z, z(0)=x, (5.21)

and the control constraints

cu+v<g/r, u>0, 0<v<L1.



5.2. Optimal Financing Model 167

5.2.2 Application of the Maximum Principle

This is a bilinear problem with two control variables which is a special
case of Row (f) in Table 3.3. The current-value Hamiltonian is

H = (1-v—u)zx+ Mr(cu+v)z
= [(erA =Du+ (rA = v + 1]z, (5.22)

where the current-value adjoint variable )\ satisfies
A=pr—(1—v—u)—Mr(cu+0) (5.23)
with the transversality condition
ANT) =0. (5.24)

The first term in the Hamiltonian in (5.22) is the dividend payout
rate to stockholders of record at time t. According to Sect.2.2.1, A is the
marginal value (in time ¢ dollars) of a unit change in the earnings rate
at time ¢. Thus, A\r(cu + v)z is the value at time ¢ of the incremental
earnings rate due to the investment of retained earnings vx and the net
amount of external financing cuz. This explains why we should maximize
H with respect to u and v at each ¢. To interpret (5.23) as in Sect. 2.2.4,
consider an earnings rate of one dollar at time ¢. It is worth A, on which
the stockholders expect a return of pAdt at time dt. In equilibrium this
must be equal to the “capital gain” dA, plus the immediate dividend
(1 — v)dt less udt, the “claims” of the new stockholders, plus the value
Ar(cu 4 v)dt of the incremental earnings rate r(cu + v)dt at time t + dt.

To specify the form of optimal policy, we rewrite the Hamiltonian as

H = [Wiu+ Wav + 1]z, (5.25)

where
Wi=crA—1, (5.26)
Wo =1\ — L (5.27)

Note first that the state variable x factors out so that the optimal
controls are independent of the state variable. Second, since the Hamil-
tonian is linear in the two control variables, the optimal policy is a com-
bination of generalized bang-bang and singular controls. Of course, the
characterization of these optimal controls in terms of the adjoint variable
A will require solving a parametric linear programming problem at each
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Table 5.1: Characterization of optimal controls with ¢ < 1

Conditions on Case A: Case B: Optimal controls Characterization
Wy, Wo g<r g>r
Subcases Subcases
(1) Ws <0 Al B1 u* =0, v* =0 Generalized
bang-bang
() Wy =0 A2 B2 u* =0,
0 < v* < min[l,g/7] Singular
(3) W3 >0 A3 - u* =0, v =g/r Generalized
bang-bang
(4) Wy <0, Wa >0 - B3 uw* =0,v* =1 Generalized
bang-bang
(5) Wy =0 - B4 0<u* < (g—r)/re, Singular
v =1
(6) Wy >0 - B5 uw* = (g—r)/re,v* =1 Generalized
bang-bang

instant of time ¢. The Hamiltonian maximization problem can be stated
as follows:

max {Wiu + Wav}

u,v

subject to (5.28)
u>0, 0<v<1, cutv<g/r

Obviously, the constraint v < 1 becomes redundant if g/r < 1. Therefore,
we have two cases:

Case A: g <r and Case B: g > r,

under each of which, we can solve the linear programming problem (5.28)
graphically in a closed form. This is done in Figs.5.3 and 5.4.

There are seven subcases shown in Fig.5.3 and nine subcases on
Fig. 5.4, but some of these subcases cannot occur. To see this, we note
from our assumption ¢ < 1 that

Wi=crA—1<crA—c=cWs,

which also gives Wy > 0 if Wi = 0. Thus, subcases A4-A7 and B6-B9
are ruled out. The remaining Subcases A1-A3 and B1-B5 are shown
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adjacent to the darkened lines in Figs. 5.3 and 5.4, respectively. In ad-
dition to Wi < cWs and Wi = 0 implying Wa > 0, we see that Wy <0
implies W7 < 0. In view of these, we can simply characterize Subcases
Al and Bl by Ws < 0, A2 and B2 by Wy = 0, A3 by Wy > 0, B4 by
W1 = 0, and B5 by W; > 0, and use these simpler characterizations
in our subsequent discussion. Keep in mind that Subcase B3 remains
characterized as W7 < 0, W5 > 0.

In Table 5.1, we list the feasible cases, shown along the darkened
lines in Figs.5.3 and 5.4 and provide the form of the optimal control
in each of these cases. The catalog of possible optimal control regimes
shown in Table 5.1 gives the potential time-paths for the firm. What
must be done to obtain the optimal path (given an initial condition) is
to synthesize these subcases into an optimal sequence. This is carried
out in the following section.

A
‘ W, < cW,, W, >0

® —t

W, > cW,, W, >0
W, <0, W,=0

(0,0)

W, <0, W, <0 W,=0,W,<0

Figure 5.3: Case A: g <r
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W, <0,W,=0

v
<

W, <0,W,<0 W,=0,W,<0 W, > cW,, W, >0

Figure 5.4: Case B: g > r

5.2.3 Synthesis of Optimal Control Paths

To obtain an optimal path, we must synthesize an optimal sequence
of subcases. The usual procedure employed is that of the reverse-time
construction, first developed by Isaacs (1965). Reverse time can only be
defined for finite horizon problems. However, the infinite horizon solution
can usually be inferred from the finite horizon solution if sufficient care
is exercised. This will be done in Sect. 5.2.4.

Our analysis of the finite horizon problem (5.21) proceeds with the
assumption that the terminal time 7" is assumed to be sufficiently large.
We will make this assumption precise during our analysis. Moreover, we
will discuss the solution when 7' is not sufficiently large in Remarks 5.2
and 5.4.

Define the reverse-time variable 7 as

T=T—1t,
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so that
o dy dydt
Cdr dtdr
As a consequence, ?j: —y, and the reverse-time versions of the state

and adjoint equations (5.18) and (5.23), respectively, can be obtained by

simply replacing y by 5 and changing the signs of the right-hand sides.
The transversality condition on the adjoint variable

At =T)=Ar=0)=0 (5.29)

becomes the initial condition in the reverse-time sense. Furthermore, let
us parameterize the terminal state by assuming that

z(t=T)=z(r=0) = aa, (5.30)

where a4 is a parameter to be determined.
From now on in this section, everything is expressed in the reverse-

time sense unless otherwise specified. Using the definitions of z and A
and the conditions (5.30) and (5.29), we can write reverse-time versions
of (5.18) and (5.23) as follows:

I= —r(cu+v)z, z(0) = ag, (5.31)

A= (1—u—v)—=XMp—r(cu+v)}, A0)=0. (5.32)

This is the starting point for our switching point synthesis. First, we
consider Case A.

Case A: g <.

Note that the constraint v < 1 is superfluous in this case and the
only feasible subcases are Al, A2, and A3. Since A(0) = 0, we have
W1(0) = W5(0) = —1 and, therefore, Subcase Al.

Subcase Al: Wy =rA—1<0.

From Row (1) of Table 5.1, we have u* = v* = 0, which gives the
state equation (5.31) and the adjoint equation (5.32) as

z=0and A=1— p\. (5.33)
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With the initial conditions given in (5.29), the solutions for x and A are
(1) = aq and N(7) = (1/p)[L — e 7). (5.34)

It is easy to see that because of the assumption 0 < ¢ < 1, it follows that
if Wo =7rXA—1<0, then Wiy = crA — 1 < 0. Therefore, to remain in
this subcase as 7 increases, Wa(7) must remain negative for some time
as 7T increases. From (5.34), however, A(7) is increasing asymptotically
toward the value 1/p and therefore, Wa(7) is increasing asymptotically
toward the value r/p — 1. Since, we have assumed r > p, there exists a
71 such that Wa(71) = (1 —e ?")r/p—1=0. It is easy to compute

1= (1/p)In[r/(r = p)]. (5.35)

From this expression, it is clear that the firm leaves Subcase A1 provided
71 < T. Moreover, this observation also makes precise the notion of a
sufficiently large T in Case A by having T > 7.

Remark 5.2 When T is not sufficiently large, i.e., when T < 71 in
Case A, the firm stays in Subcase Al. The optimal solution in this case
is u* = 0 and v* = 0, i.e., a policy of no investment.

Remark 5.3 Note that if we had assumed r < p, the firm would never
have exited from Subcase A1l regardless of the value of T. Obviously,
there is no use investing if the rate of return is less than the discount
rate.

At reverse time 71, we have Wy = 0 and W7 < 0 and the firm,
therefore, is in Subcase A2. Also, A(71) = 1/r since Wa(11) = 0.

Subcase A2: Wy =r\—1=0.

In this subcase, the optimal controls
u'=0,0<0v" <g/r (5.36)

from Row (3) of Table 5.1 are singular with respect to v. This case is
termed singular because the Hamiltonian maximizing condition does not
yield a unique value for the control v. In such cases, the optimal controls
are obtained by conditions required to sustain Wo = 0 for a finite time

[e] o
interval. This means we must have W= 0, which in turn implies A= 0.

To compute A, we substitute (5.36) into (5.32) and obtain

A= (1= v*) = A[p — ro*]. (5.37)
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Substituting A = 1/r, its value at 71, in (5.37) and equating the right-
hand side to zero we obtain
r=p (5.38)

as a necessary condition required to maintain singularity over a finite
time interval following 7. Condition (5.38) is fortuitous and will not
generally hold. In fact we have assumed r > p. Thus, the firm will not
stay in Subcase A2 for a nonzero time interval. Furthermore, since r > p,

we have A (1) = (1 — p/r) > 0. Therefore, W5 is increasing from zero
and becomes positive after 1. Thus, at TT the firm switches to Subcase
A3.

Subcase A3: Wy =r\A—1> 0.

The optimal controls in this subcase from Row (2) of Table 5.1 are

u =0, v*=g/r (5.39)

The state and the adjoint equations are
T= —gz, x(T1) = g, (5.40)
A= (1 —g/r)=Xp—g), A1) =1/r, (5.41)

with values at 7 = 71 deduced from (5.34) and (5.35).

Since A (71) > 0, A is increasing at 71 from its value of 1/r. A further
examination of the behavior of A\(7) as 7 increases will be carried out
under two different possible conditions: (i) p > g and (ii) p < g.

(i) p > ¢: Under this condition, as A increases, A decreases and
becomes zero at a value obtained by equating the right-hand side of
(5.41) to zero, i.e., at
1—g/r
p—9g
This value X is, therefore, an asymptote to the solution of (5.41) starting
at A(71) = 1/r. Since r > p > ¢ in this case,

X:

(5.42)

_rll—g/r) _r=p
pP—g pP—g
which implies that the firm continues to stay in Subcase A3.

Wy=rA-1 > 0, (5.43)

o
(ii) p < g: Under this condition, as A(7) increases, A (7) increases.
So Wa(7) = rA(1) — 1 continues to be greater than zero and the firm
continues to remain in Subcase A3.
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Remark 5.4 With p < g, note that A(7) increases to infinity as 7 in-
creases to infinity. This has important implications later when we deal
with the solution of the infinite horizon problem.

Since the optimal decisions for 7 > 71 have been found to be inde-
pendent of a4 for T sufficiently large, we can sketch the solution for Case
A in Fig. 5.5 starting with xg. This also gives the value of

an = zoe? T = woed (1 — p/r)?/",

as shown in Fig. 5.5.

X
A I

@ g

v
-~

1 1
i4—— Retain Some Earnings —P¢— Retain No Earnings —»
1 : 1

¢——————————— No Equity Financing ————————»!
=0 t=T-1, t=T
=T ©=1,= (I/p)In[r/(r—p)] t=0

Figure 5.5: Optimal path for case A: g <r

Mathematically, we can now express the optimal controls and the
optimal state, now in forward time, as

u*(t) =0, v*(t) = g/r, 2*(t) = xpe?", t € [0,T — 1], (5.44)
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() =0, v*(t) =0, *(t) = 2o/ T t e (T —711,T],  (5.45)
As for A(t), from (5.34) we have

A(#) = ;[1 _ e T p e (T—71,T). (5.46)
For t € [0,T — 71], we have from (5.41),
At)=Xp—9) = (L—g/r), NT —71) =1/r. (5.47)

Following Sect. A.1, we can solve this equation as

At) = le—(p—g)(T—Tl—t) + 1—79/7”[1 — e PmT=)) e 0, T —74].
r pP—g
(5.48)
In this solution for Case A, there is only one switching point provided
that T is sufficiently large (i.e., T > 71 in this case). The switching time
t = T'—71 has an interesting economic interpretation. Namely, it requires
at least 71 units of time to retain a dollar of earnings to be worthwhile
for investment. That means, it pays to invest as much of the earnings
as feasible before T'— 71, and it does not pay to invest any earnings
after T'— 71. Thus, T' — 71 is the point of indifference between retaining
earnings or paying dividends out of earnings. To see this directly, let us
suppose the firm retains one dollar of earnings at 7" — 71. Since this is
the last time that any of the earnings invested will be worthwhile, it is
obvious (because all earnings are paid out) that the dollar just invested
at T'— 77 yields dividends at the rate r from 7" — 71 to T. The value of
this dividend stream in terms of (T — 71)-dollars is

T1
/ re Pds = f[1 —e P, (5.49)
0 P

which must be equated to one dollar to find the indifference point. Equat-
ing (5.49) to 1 yields precisely the value of 71 given in (5.35).

With this interpretation of 71, we conclude that enough earnings
must be retained so as to make the firm grow exponentially at the max-
imum rate of g until t = T — 71. After this time, all of the earnings are
paid out and the firm stops growing. Since g < r (assumed for Case A),
the growth in the first part of the solution can be financed entirely from
retained earnings. Thus, there is no need to resort to more expensive
external equity financing. The latter will not be true, however, in Case
B when g > r, which we now discuss.
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Case B: g > r.

Since g/r > 1, the constraint v < 1 in Case B is relevant. The feasible
subcases are B1, B2, B3, B4, and B5 shown adjacent to the darkened
lines in Fig.5.4. As in Case A, it is obvious that the firm starts (in
the reverse-time sense) in Subcase B1. Recall that T is assumed to be
sufficiently large here as well. This statement in Case B will be made
precise in the course of our analysis. Furthermore, the solution when T
is not sufficiently large in Case B will be discussed in Remark 5.4.

Subcase B1: Wy =7\ —1 < 0.

The analysis of this subcase is the same as Subcase Al. As in that
subcase, the firm switches out at time 7 = 71 to Subcase B2.

Subcase B2: Wy =rA—1=0.
In this subcase, the optimal controls
u'=0, 0<0v*<1 (5.50)

from Row (3) of Table 5.1 are singular with respect to v. As before
in Subcase A2, the singular case cannot be sustained for a finite time
because of our assumption r > p. As in Subcase A2, W5 is increasing at
71 from zero and becomes positive after 71. Thus, at 7'1’—, the firm finds
itself in Subcase B3.

Subcase B3: Wi =crA—1<0,Wo=rA—1>0.
The optimal controls in this subcase are
ut =0, v* =1, (5.51)

as shown in Row (5) of Table 5.1. The state and the adjoint equations
are
r=—rz, x(T1) =ap (5.52)

with ap, a parameter to be determined, and

o

A= Ar—p), A11)=1/r. (5.53)

Obviously, earnings are growing exponentially at rate » and A(7) is in-
creasing at rate (r — p) as 7 increases from 7;. Since A\(71) = 1/r,
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we have

A7) = (1/r)e =P for 7 > 7. (5.54)

As ) increases, W7 increases and becomes zero at a time 7o defined by
W1(7—2) = CT’)\(TQ) —1= ce(T—P)(T—Tl) —-1=0, (5'55>

which, in turn, gives

1 1
To=T1+ ln<>. (5.56)
r—p c

At 75, the firm switches to Subcase B4.

Before proceeding to Subcase B4, let us observe that in Case B, we
can now define T to be sufficiently large when T" > 79. See Remark 5.4
when T < 79.

Subcase B4: W; =crA—1=0.
In Subcase B4, the optimal controls are
0<u*<(9—r)/re, v* =1 (5.57)

From Row (6) in Table 5.1, these controls are singular with respect to
u. To maintain this singular control over a finite time period, we must

keep Wi = 0 in the interval. This means we must have Wi (72) = 0,

which, in turn, implies A (72) = 0. To compute A\, we substitute (5.57)
into (5.32) and obtain

A= —ut — Mp —r(cu” + 1)} (5.58)

At 79, Wi(72) = 0 gives A\(72) = 1/rc. With this in (5.58), its right-hand
side equals zero only when r = p. But we have assumed r > p throughout
Sect. 5.2, and therefore a singular path cannot be sustained for 79 > 0,
and the firm will not stay in Subcase B4 for a finite amount of time.
Furthermore, from (5.58), we have

A@g:r;p>a (5.59)

which implies that A is increasing and therefore, W is increasing. Thus
at 74, the firm switches to Subcase B5.
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Subcase B5: W; =crA—1> 0.

The optimal controls in this subcase from Row (4) of Table 5.1 are

= f =1 5.60
W= v (5.60)

Then from (5.31) and (5.32), the reverse-time state and the adjoint equa-

tions are
o

r= —gur, (5.61)

A= (=) 4 g - ). (5.62)

rc

Since A (72) > 0 from (5.59), A(7) is increasing at 7o from its value
A(T2) = 1/re > 0. Furthermore, we have g > r in Case B, which together
with r > p, assumed throughout Sect. 5.2, makes g > p. This implies that
the second term on the right-hand side of (5.62) is increasing. Moreover,
the second term dominates the first term for 7 > 79, since \(72) =
1/(re¢) > 0, and r > pand g > r imply g — p > g —r > 0. Thus,

A (1) > 0 for 7 > 79, and A(7) increases with 7. Therefore, the firm
continues to stay in Subcase B5.

Remark 5.5 Note that A(7) in Case B increases without bound as 7
becomes large. This will have important implications when dealing with
the infinite horizon problem in Sect. 5.2.4.

As in Case A, we can obtain this optimal solution explicitly in forward
time, and we ask you to do this in Exercise 5.9. We now can sketch
the complete solution for Case B in Fig.5.6. In this solution, there are
two switching points instead of just one as in Case A. The reason for two
switching points becomes quite clear when we interpret the significance of
71 and 72. It is obvious that 71 has the same meaning as before. Namely,
if 71 is the remaining time to the horizon, the firm is indifferent between
retaining a dollar of earnings or paying it out as dividends. Intuitively, it
seems that since external equity is more expensive than retained earnings
as a source of financing, investment financed by external equity requires
more time to be worthwhile. That is,

1 1
To —T1 = In <> >0 (563)

T—p c

as obtained in (5.56), should be the time required to compensate for the
floatation cost of external equity. Let us see why.
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1=0 t=T—1, t=T—1, (=T
=T T=17 T=1T =0

Figure 5.6: Optimal path for case B: g > r

When the firm issues a dollar’s worth of stock at time t = T — 79,
it incurs a future dividend obligation in the amount of one (7" — 72)-
dollar, even though the capital acquired is only ¢ dollars because of the
floatation cost (1 — ¢). Since we are attempting to find the breakeven
time for external equity, it is obvious that retaining all of the earnings
for investment is still profitable. Thus, there is no dividend from (7'—73)
to (T'—71), and the firm grows at the rate r. Therefore, this investment
of ¢ dollars at time (T —73) grows into ce”(™2=71) dollars at time (T —71).
From the point of view of a buyer of the stock at time (7' — 72), since no
dividend is paid until time (7' — 71) and since the stockholder’s required
rate of return is p, the firm’s future dividend obligation at time (7" — 71)
is eP(™2=71) in terms of (T — 71)-dollars. But then we must have

eP(T2=T1) = ger(T2—T1) (5.64)
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which can be rewritten precisely as (5.63). Moreover, the firm is
marginally indifferent between investing any costless retained earnings
at time (7' — 71) or paying it all out as dividends. This also means that
the firm will be indifferent between having the new available capital of
ce”(m2=71) dollars at time (T — 71) as a result of issuing a dollar’s worth
of stock at time (7" — 72), or not having it. Thus, we can conclude that
the firm is indifferent between issuing a dollar’s worth of stock at time
(T — 72) or not issuing it. This means that before time (T — 73), it pays
to issue stocks at as large a rate as feasible, and after time (7 — 72), it
does not pay to issue any external equity at all.

We have now provided an intuitive justification of (5.63) and con-
cluded that all earnings must be retained from time (7'—73) to (T'—71).
Because r > p, it follows that the excess return on the proceeds ¢ from
the new stock issue is ce” (72771 — ¢eP(72=71) at time (T — 71). When dis-
counted this amount back to time (7" — 73), we can use (5.63) or (5.64)
to see that

cer(T27T1) _ ce”(”_“)] e (12 — gelnl/e) _ =1 ¢,

Thus, the excess return from time (7' — 73) to (T'— 71) recovers precisely
the floatation cost.

Remark 5.6 When T is not sufficiently large, i.e., when T' < 74 in Case
B, the optimal solution is the same as in Remark 5.1 when T < 7q. If
71 < T < 79, then the optimal solution is 4* = 0 and v* = 1 until
t=T—741. For t > T — 71, the optimal solution is ©* = 0 and v* = 0.

Having completely solved the finite horizon case, we now turn to the
infinite horizon case.

5.2.4 Solution for the Infinite Horizon Problem

As indicated in Sect. 3.6 for the infinite horizon case, the transversality
condition must be changed to

lim e " \(t) = 0. :
Jim e (t)=0 (5.65)
Furthermore, this condition may no longer be a necessary condition; see
Sect. 3.6. It is a sufficient condition for optimality however, in conjunc-
tion with the other sufficiency conditions stated in Theorem 2.1.
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As demonstrated in Example 3.7, a common method of solving an
infinite horizon problem is to take the limit as T' — oo of the finite
horizon solution and then prove that the limiting solution obtained solves
the infinite horizon problem. The proof is important because the limit of
the solution may or may not solve the infinite horizon problem. The proof
is usually based on the sufficiency conditions of Theorem 2.1, modified
slightly as indicated above for the infinite horizon case.

We now analyze the infinite horizon case following the above proce-
dure. We start with Case A.

Case A: g <r.

Let us first consider the case p > g and examine the solution in
forward time obtained in (5.44)—(5.48) as T' goes to infinity. Clearly
(5.45) and (5.46) disappear, and (5.44) and (5.48) can be written as

u*(t) = 0, v*(t) = g/r, *(t) = zoe*,t > 0, (5.66)
l—g/r <

A(t) = —X >0 5.67

(t) - (5.67)

Clearly A(t) satisfies (5.65). Furthermore,

Wa(t) =rA—1="__F
pP—9g

>0,t>0,

which implies that the firm is in Subcase A3 for ¢ > 0. The maximum
principle holds, and (5.66) and (5.67) represent an optimal solution for
the infinite horizon problem. Note that the assumption p > g together
with our overall assumption that p < r gives g < r so that 1 —v* > 0,
which means a constant fraction of earnings is being paid as dividends.

Note that the value of the adjoint variable A in this case is a con-
stant and its form is reminiscent of Gordon’s classic formula; see Gordon
(1962). In the control theory framework, the value of A represents the
marginal worth per additional unit of earnings. Obviously, a unit in-
crease in earnings will mean an increase of 1 — v* or 1 — g/r units in
dividends. This, of course, should be capitalized at a rate equal to the
discount rate less the growth rate (i.e., p—g), which is precisely Gordon’s
formula.

For p < g, it is clear from (5.48) that A(¢) does not satisfy (5.65). A
moment’s reflection shows that for p < g, the objective function can be
made infinite. For example, any control policy with earnings growing at
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rate q, p < q < g, coupled with a partial dividend payout, i.e., a constant
v such that 0 < v < 1, gives an infinite value for the objective function.
That is, with u* = 0,v* = ¢/r < 1, we have

o o0
J = / e (1 —u* —v*)z*dt = / e (1 — q/r)zge? = .
0 0

Since there are many policies which give an infinite value to the
objective function, the choice among them may be decided on subjective
grounds. We will briefly discuss only the constant (over time) optimal
policies. If g < r, then the rate of growth ¢ may be chosen in the
closed interval [p,g]; if ¢ = r, then ¢ may be chosen in the half-open
interval [p,r). In either case, the choice of a low rate of growth (i.e., a
high proportional dividend payout) would mean a higher dividend rate
(in dollars per unit time) early in time, but a lower dividend rate later
in time because of the slower growth rate. Similarly the choice of high
growth rate means the opposite in terms of dividend payments in dollars
per unit time.

To conclude, we note that for p < g in Case A, the limiting solution
of the finite case is an optimal solution for the infinite horizon problem
in the sense that the objective function becomes infinite. However, this
will not be the situation in Case B; see also Remark 5.7.

Case B: g > r.

The limit of the finite horizon optimal solution is to grow at the
maximum allowable growth rate with

and v =1

u =
rc

all the way. Since 71 disappears in the limit, the stockholders will never
collect dividends. The firm has become an infinite sink for investment.
In fact, the limiting solution is a pessimal solution because the value
of the objective function associated with it is zero. From the point of
view of optimal control theory, this can be explained as before in Case
A when p < g. In Case B, we have g > r so that (since r > p throughout
the chapter) we have p < g¢. For this, as noted in Remark 5.5, ()
increases without bound as 7 increases and, therefore, (5.64) does not
have a solution.

As in Case A with p < g, any control policy with earnings growing
at rate g € [p,g] coupled with a constant v, 0 < v < 1, has an infinite
value for the objective function.
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In summary, we note that the only nondegenerate case in the infinite
horizon problem is when p > ¢. In this case, which occurs only in Case
A, the policy of maximum allowable growth is optimal. On the other
hand, when p < g, whether in Case A or B, the infinite horizon problem
has nonunique policies with infinite values for the objective function.

Before solving a numerical example, we will make an interesting re-
mark concerning Case B.

Remark 5.7 Let (u},v}) denote the optimal control for the finite
horizon problem in Case B. Let (uj,,v%) denote any optimal con-
trol for the infinite horizon problem in Case B. We already know that
J(ul,,vk,) = oo. Define an infinite horizon control (us,vs) by extend-

ing (uk,v3.) as follows:
(oo, Voo) = lim (up,vy).
T—o00
We now note that for our model in Case B, we have

lim J(up,vy) = oo and J( lim (up,v7)) = J(teo, Vo) = 0. (5.68)
T— 00 T—o0

Obviously (o, Veo) is mot an optimal control for the infinite horizon

problem. Since the two terms in (5.68) are not equal, we can say in tech-

nical terms that J(u,v), regarded as a mapping, is not a closed mapping.

However, if we introduce a salvage value Bxz(T), B > 0, for the finite

horizon problem, then the new objective function,

fOT e P (1 —u — v)zdt + Bx(T)e T, if T < o,

I3 e (1 —u —v)zdt + limy oo {Bx(T)e ?"}, if T = oo,

Je(u,v) =

is a closed mapping in the sense that

Tlim Jp(up,vyp) = oo and Jp( (up,v7)) = JB(Uoo, Vo) = 00
—00

lim
T—o00
for the modified model.

Example 5.1 We will now assign numbers to the various parameters in

the optimal financing problem in order to compute the optimal solution.
Let

xg = 1000/month, T" = 60 months,

r = 0.15, p = 0.10, g = 0.05, ¢ = 0.98.
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Solution Since g < r, the problem belongs to Case A. We compute
1
71 = —In[r/(r — p)] = 101In3 ~ 11 months.
p
The optimal controls for the problem are
u* =0, v =g/r=1/3, te€]0,49),
u* =0, v*=0, t € [49,60],

and the optimal state trajectory is

1000297t ¢t € [0,49),
x(t) =
1000e245, ¢ € 49, 60].

The value of the objective function is

49 60
J* = / e Ot (1 — 1/3)(1000)e*%tdt + / 1000e%4% . et qt
0 49
= 12,578.75.

Note that the infinite horizon problem is well defined in this case, since
g < p and g < r. The optimal controls are

u* =0,v"=g/r=1/3,
and

oo
1
J= / e 21(2/3)(1000)e% %t dt = 2000/0.15 = 13, 3333
0

In Exercise 5.14, you are asked to extend the optimal financing model
to allow for debt financing. Exercise 5.15 requires you to reformulate the
optimal financing model (5.21) with decisions expressed in dollars per
unit of time rather than in terms relative to x. Exercise 5.16 extends the
model to allow the rate of return on the assets to decrease as the assets
grow.
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Exercises for Chapter 5

E 5.1 Find the optimal policies for the simple cash balance model
(Sects.5.1.1 and 5.1.2) with g = 2, yo = 2, Uy = Uy =5, T = 1,
a = 0.01, and the following specifications for the interest rates:

(a) m(t) =1/2, ro(t) = 1/3.

(b) mi(t) =1t/2, ro(t) = 1/3.

(c) Sketch the optimal policy in (b) in the (¢, A2/A1) space, like in
Fig.5.2.

E 5.2 Formulate the extension of the model in Sect.5.1.1 when over-
draft and short selling are disallowed in the following two cases: (a)
a =0 and (b) o > 0. State the maximum principle (4.29) as it applies
to these cases.

Hint: Adjoin the control constraints to the Hamiltonian in form-
ing the Lagrangian. For (b), write v = u; — uz as in (5.10).

E 5.3 It is possible to guess the optimal solution for Exercise 5.2 when
a=0,T=10, zg =0, yo = 3,

0 for0<t<5,
ri(t) =
0.3 for 5 <t <10,
ro(t) =0.1 for 0 <t <10,

and Uy = Uz = oo (allowing for impulse controls). Show that the
optimum policy remains the same for each a € [0,1 — 1/e].

Hint: Use an elementary compound interest argument.

E 5.4 Do the following for Exercise 5.3 with Uy = Uy = 1, so that the
control constraints are —1 < u < 1.

(a) Give reasons why the solution shown in Fig. 5.7 is optimal.

(b) Compute f(t*) in terms of t*.

(¢) Compute J in terms of ¢*.

(d) Find ¢* that maximizes J by setting dJ/dt* = 0.
Hint: Because this is a long and tedious calculus problem, you may wish
to use Mathematica or MAPLE to solve this problem.
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Figure 5.7: Solution for Exercise 5.4

E 5.5 For the solution found in Exercise 5.4, show by using the maxi-
mum principle (4.29) that the adjoint trajectories are:

A1(0) = el 0<t<5,
Ai(t) =
Ay (5)e 03(75) = 3703 5 < ¢ < 10,

and

)\2(0)6_0'1t* — 61.5+0.1(t*—t)’ 0 S t S f(t*) ~ 6527
Na(t) =
oo, )<<,

where t* &~ 1.97. Sketches of these functions are shown in Fig. 5.8.

E 5.6 Argue that as the lower and upper bounds on u go to —oo and
+oo in Exercise 5.4, respectively, t* goes to 0 and f(t*) goes to 5. Show
that this solution is consistent with the guess in Exercise 5.3. Finally,
find the corresponding impulse solution and show that it satisfies the
maximum principle as applied in Exercise 5.2.

E 5.7 Discuss the optimal equity financing model of Sect.5.2.1 when
¢ = 1. Show that only one control variable is needed. Then solve the
problem.
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Figure 5.8: Adjoint trajectories for Exercise 5.5
E 5.8 What happens in the optimal equity financing model when r < p?
Guess the optimal solution (without actually solving it).

E 5.9 In Sect.5.2.3, we obtained the optimal solution in Case B. Express
the corresponding control, state, and adjoint trajectories in forward time.

E 5.10 Let g = 0.12 in Example 5.1. Re-solve the finite horizon problem
with this new value of g. Also, for the infinite horizon problem, state a
policy which yields an infinite value for the objective function.

E 5.11 Reformulate and solve the simple cash balance problem of
Sects. 5.1.1 and 5.1.2, if the earnings on bonds are paid in cash.

E 5.12 Add a salvage value function
e P Bx(T),

where B > 0, to the objective function in the problem (5.21) and ana-
lyze the modified problem due to Sethi (1978b). Show how the solution
changes as B varies from 0 to 1/rc.

E 5.13 Suppose we extend the model of Exercise 5.12 to include debt.
For this let z denote the total debt at time ¢ and w > 0 denote the
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amount of debt issued expressed as a proportion of current earnings.
Then the state equation for z is

z = wz, y(0) = yo.

How would you modify the objective function, the state equation for x,
and the growth constraint (5.19)7 Assume i to be the constant interest
rate on debt, and i < r.

E 5.14 Remove the assumption of an arbitrary upper bound g on the
growth rate in the financing model of Sect. 5.2.1 by introducing a convex
cost associated with the growth rate. With r re-interpreted now as the
gross rate of return, obtain the net increase in rate of earnings by the rate
of increase in gross earnings less the cost associated with the growth rate.
Also assume ¢ = 1 as in Exercise 5.7. Formulate the resulting model and
apply the maximum principle to find the form of the optimal policy. You
may assume the cost function to be quadratic in the growth rate to get
an explicit form for the solution.

E 5.15 Reformulate the optimal financing model (5.21) with y(t) as
the state variable, U(t) as the new equity financing rate in dollars per
unit of time, and V'(¢) as the retained earnings in dollars per unit of time.

Hint: This formulation has mixed constraints requiring the La-
grangian formulation of the maximum principle (3.42) introduced in
Chap. 3. Note further that it can be converted into the form (5.21) by
setting U = uz, V = vz, and = = ry.

E 5.16 In Exercise 5.15, we assume a constant rate of return r on the
assets so that the total earnings rate at time t is ry(t) dollars per unit of
time. Extend this formulation to allow for a decreasing marginal rate of
return as the assets grow. More specifically, replace ry by an increasing,
strictly concave function R(y) > 0 with R'(0) = r and R'(y) = p for some
Yy > yo > 0. Obtain the optimal solution in the case when r > g > p,
0 < ¢ < 1, T sufficiently large, and yg < y1 < ¥, where y; is defined by
the relation R(y1)/y1 = g. See Perrakis (1976).

E 5.17 Find the form of the optimal policy for the following model due
to Davis and Elzinga (1971):

T
maX{J:/ ept(l—v)Erdt—FP(T)e”T}
0

U,
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subject to

P=k[rE(1—v)—pP], P(0)= D,

E =rE[v+u(c— E/P)], E(0)= Ey,
and the control constraints
u>0,v>0, cu+v<g/r

Here P denotes the price of a stock, E denotes equity per stock and
k> 0 is a constant. Also, assume r > p > gand 1/c <r/p < 1/c+(ck+
1)g/(pck). This example requires the use of the generalized Legendre-
Clebsch condition (D.69) in Appendix D.8.
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Chapter 6

Applications to Production
and Inventory

Applications of optimization methods to production and inventory prob-
lems date back at least to the classical EOQ (Economic Order Quantity)
model or the lot size formula of Harris (1913). The EOQ is essentially
a static model in the sense that the demand is constant and only a sta-
tionary solution is sought. A dynamic version of the lot size model was
analyzed by Wagner and Whitin (1958). The solution methodology used
there was dynamic programming.

An important dynamic production planning model was developed by
Holt et al. (1960). In their model, referred to as the HMMS model, they
considered both production costs and inventory holding costs over time.
They used calculus of variations techniques to solve the continuous-time
version of their model. In Sect.6.1, a model of Thompson and Sethi
(1980), similar to the HMMS model, is formulated and completely solved
using optimal control theory. The turnpike solution is also obtained when
the horizon is infinite.

In Sect.6.2, we introduce the wheat trading model of Ijiri and
Thompson (1970), in which a wheat speculator must buy and sell wheat
in an optimal way in order to take advantage of changes in the price of
wheat over time. In Sects. 6.2.1-6.2.3, we solve the model when the short-
selling of wheat is allowed. In Sect.6.2.4, we follow Norstrom (1978) to
solve a simple example that disallows short-selling.

(© Springer Nature Switzerland AG 2019 191
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In Sect. 6.3, we introduce a warehousing constraint, i.e., an upper
bound on the amount of wheat that can be stored, in the wheat trading
model. In addition to being realistic, the introduction of the warehousing
constraint helps us to illustrate the concepts of decision and forecast
horizons by means of examples. This section is expository in nature, but
theoretical developments of these ideas are available in the literature.

6.1 Production-Inventory Systems

Many manufacturing enterprises use a production-inventory system to
manage fluctuations in consumer demand for their products. Such a
system consists of a manufacturing plant and a finished goods ware-
house to store products which are manufactured but not immediately
sold. Once a product is made and put into inventory, it incurs inventory
holding costs of two kinds: (1) costs of physically storing the product,
insuring it, etc.; and (2) opportunity cost of having the firm’s money
invested or tied up in the unsold inventory. The advantages of having
products in inventory are: first, that they are immediately available to
meet demand; second, that excess production during low demand peri-
ods can be stored in the warehouse so it will be available for sale during
high demand periods. This usually permits the use of a smaller manu-
facturing plant than would otherwise be necessary, and also reduces the
difficulties of managing the system.

The optimization problem is to balance the benefits of production
smoothing versus the costs of holding inventory. Works that apply con-
trol theory to production and inventory problems have been reviewed in
Sethi (1978a, 1984).

6.1.1 The Production-Inventory Model

We consider a factory producing a single homogeneous good and having
a finished goods warehouse. To state the model we define the following
quantities:

I(t) = the inventory level at time ¢ (state variable),
P(t) = the production rate at time ¢ (control variable),
S(t) = the exogenously given sales rate at time t;
assumed to be bounded and differentiable for ¢ > 0,
T = the length of the planning period,

I = the inventory goal level,



6.1. Production-Inventory Systems 193

Iy = the initial inventory level,
P = the production goal level,
h = the inventory holding cost coefficient; h > 0,
¢ = the production cost coefficient; ¢ > 0,
p = the constant nonnegative discount rate; p > 0.

The interpretation of the inventory goal level I is that it is a safety
stock that the company wants to keep on hand. For example, I could be
2 months of average sales or I could be 100 units of the finished goods.
Similarly, the production goal level P can be interpreted as the most
efficient level at which it is desired to run the factory.

With this notation, the state equation is given by the stock-flow
differential equation

i(tt) = P(t) — 8(t), 1(0) = I, (6.1)

which says that the inventory at time ¢ is increased by the production
rate and decreased by the sales rate. The objective function of the model
is:

min{J: /OT e*Pt[g(I—f)M ;(P—P)2]dt}. (6.2)

The interpretation of the objective function is that we want to keep the
inventory as close as possible to its goal level I , and also to keep the
production rate P as close as possible to its goal level P. The quadratic
terms (h/2)(I — I)? and (¢/2)(P — P)? impose “penalties” for having
either I or P not being close to its corresponding goal level.

Next we apply the maximum principle to solve the optimal control
problem specified by (6.1) and (6.2). A stochastic extension of this prob-
lem will be carried out in Sect. 12.2.

6.1.2 Solution by the Maximum Principle

We now associate an adjoint function A with Eq. (6.1) and can write the
current-value Hamiltonian function as
h c
2 S 2
In (6.3), we have used the negative of the (undiscounted) integrand in
(6.2), since the minimization of J in (6.2) is equivalent to the maximiza-
tion of —J.

To apply the Pontryagin maximum principle, we differentiate (6.3)
and set the resulting expression equal to 0, which gives

H=XMP-S8)—-(I-1))-=(P-P)>2 (6.3)
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OH ;
8TD:A—C(P—P):O. (6.4)

From this we obtain the optimal production rate
P*(t) = P+ \(t)/c. (6.5)

We should mention that in writing (6.5), we are allowing negative pro-
duction (or disposal). Of course, the situation of a disposal will not arise
if we assume a sufficiently large P and a sufficiently small Ij.

Remark 6.1 If P is constrained to be nonnegative, then the form of
the optimal control will be

P*(t) = max{P + A(t)/c,0}. (6.6)
This case will be treated in Sect. 6.1.6.
By substituting (6.5) into (6.1), we obtain
I=P+)\c—S, 1(0) = I. (6.7)

The equation for the adjoint variable is easily found to be

A:pA—EZI:pA+h(I—f), MT) = 0. (6.8)
We see that (6.7) has the initial boundary specified and (6.8) has the ter-
minal boundary specified, so together these give a two-point boundary
value problem. We will employ a method to solve these two equations
simultaneously, which works only in some special cases including the
present case. The method is the well-known trick used to solve simulta-
neous differential equations by differentiation and substitution until one
of the variables is eliminated. Specifically, we differentiate (6.7) with
respect to ¢, which creates an equation with A in it. We then use (6.8)
to eliminate A and (6.7) to eliminate A from the resulting equation as
follows:

I=X\c—8=p\e)+ (hje)(I—-1)-S8

=p(I—=P+8)+ (h/e)(I—1)-8

We rewrite this as

I—pl —a*IT=—-a?’I -8 —p(P-25), (6.9)
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where the constant « is given by

a=+/h/c. (6.10)

We can now solve (6.9) by using the standard method described in
Appendix A. The auxiliary equation for (6.9) is

mz—pm—aQZO,

which has the two real roots

mi=(p— V2 +40D)/2, ma=(p+ /P + 4?2 (6.11)

note that m; < 0 and mo > 0. We can therefore write the general solution
to (6.9) as
I(t) = a1e™*' 4 age™ + Q(t), 1(0) = Io, (6.12)

where Q(t) is a particular integral of (6.9).

We will say that Q(t) is a special particular integral of (6.9) if it has
no additive terms involving e™* and e™2!. From now on we will always
assume that Q(¢) is a special particular integral.

Although (6.12) has two arbitrary constants a; and ag, it has only
one boundary condition. To get the other boundary condition we dif-
ferentiate (6.12), substitute the result into (6.7), and solve for A\. We
obtain

At) = e(miare™ + moage™ + Q4+ S — P), \(T)=0.  (6.13)

Note that we have imposed the boundary condition on A so that we can
determine the constants a; and as.
For ease of expressing a1 and as, let us define two constants

bi = Io—Q(0), (6.14)
by = P—Q(T)-S(T). (6.15)

We now impose the boundary conditions in (6.12) and (6.13) and solve
for a; and a9 as follows:

boe™ T — mgbyelmitm2)T
al = m162m1T _ er(ml"l'mZ)T’ (6.16)
b 2m T b miT
4y = —armie 2¢ (6.17)

m1€2m1T _ m2e(m1+m2)T :
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If we recall that m; is negative and mso is positive, then when T is

sufficiently large so that ¢™” and e?™7 are negligible, we can write
ar ~ by, (6.18)
b
ay ~ —2e T (6.19)
ma2

Note that for a large T, e=™2T is close to zero and, therefore, as is close
to zero. However, the reason for retaining the exponential term in (6.19)
is that as is multiplied by ™! in (6.13), which, while small when ¢ is
small, becomes large and important when ¢ is close to 7'

With these values of a; and as and with (6.5), (6.12), and (6.13),
we now write the expressions for I*, P*, and A. We will break each
expression into three parts: the first part labeled Starting Correction
is important only when ¢ is small; the second part labeled Turnpike
Ezpression is significant for all values of ¢; and the third part labeled
Ending Correction is important only when ¢ is close to T.

Starting Correction Turnpike Expression Ending Correction

I* = (bye™h)+ (Q)+ (:fem(t’”) (6.20)

2
P* = (mlblemlt)—i- (Q -+ S)+ <b2€m2(t7T)> (6.21)
A= c(mibie™H)+ ¢ (Q +5 - P) + ¢ (ermQ(t_T)> (6.22)

Note that if by = 0, which by (6.14) means Iy = Q(0), then there is no
starting correction. In other words, Iy = Q(0) is a starting inventory
that causes the solution to be on the turnpike initially. In the same way,
if bo = 0, then the ending correction vanishes in each of these formulas,
and the solution stays on the turnpike until the end.

Expressions (6.20) and (6.21) represent approximate closed-form so-
lutions for the optimal inventory and production functions I* and P*
as long as S is such that the special particular integral @) can be found
explicitly. For such examples of S; see Sect.6.1.4.

6.1.3 The Infinite Horizon Solution

It is important to show that this solution also makes sense when T' — oc.
In this case it is usual to assume that the discount rate p > 0 and the
sales rate S does not grow too fast so that the objective function (6.2)



6.1. Production-Inventory Systems 197

remains finite. One can then show that the limit of the finite horizon
solution as T" — oo also solves the infinite horizon problem. Note that as
T — oo, the ending correction terms in (6.20)—(6.22) disappear because

e~ goes to 0. We now have
A(t) = c[mibie™t +Q + S — P). (6.23)
Since we would like
tli}m e PIA(t) = 0, (6.24)

we would require that S + Q grows slower asymptotically than the dis-
count rate p. One can easily verify that this condition holds for the
demand terms discussed in Sect.6.1.4 that follows. Moreover, the con-
dition is easy to check for any given specific demand S(t) for which the
particular integral Q(t) is known.

By the sufficiency of the maximum principle conditions (Sect. 2.4), it
can be verified that the limiting solution

I(t) = bie™! + Q, P*(t) = mibie™ +Q+ S (6.25)

is optimal. If 1(0) = Q(0), the solution is always on the turnpike. Note
that the triple {I, P,\} = {Q,Q +5,¢(Q+S— ]5)} represents a non-
stationary turnpike. If 7(0) # Q(0), then b; # 0 and the expressions
(6.25) imply that the paths of inventory and production only approach
the turnpike but never attain it.

6.1.4 Special Cases of Time Varying Demands

In this section, we provide some important cases of time varying demands
including seasonal demands. These involve polynomial or sinusoidal de-
mand functions. We then solve some numerical examples of the model
described in Sect.6.1.1 for p = 0 and T" < oo.

For the first example, we assume that S(t) is a polynomial of degree
2p or 2p—1 so that SP+1) = 0, where S*) denotes the kth time derivative
of S with respect to t. In other words,

S(t) = Cot™ + Cit* ™" + ...+ Cy, (6.26)

where at least one of Cyp and Cj is not zero. Then, from Zwillinger
(2003), a particular integral of (6.9) is

L gr), (6.27)

T 1 1 1 3
Q) =1+ —5W 4+ =80 4+ g —
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In Exercise 6.2 the reader is asked to verify this by direct substitution.
For the second example, we assume that S(t) is a sinusoidal demand
function of form
S(t) = Asin(rBt + C) + D, (6.28)
where A, B,C, and D are constants. In Exercise 6.3 you are asked to
verify that a particular integral of (6.9) for S in (6.28) is
A TAB
QU =1+ G o
It is well known in the theory of differential equations that demands
that are sums of functions of the form (6.26) and/or (6.28) give rise to
solutions that are sums of functions of form (6.27) and/or (6.29).

Example 6.1 Assume P =30, [ =15, T =8, p=0, and h=c=1
so that « = 1, m1 = —1, and mo = 1. Assume

S(t) = t(t —4)(t — 8) + 30 = t* — 12¢% + 32t + 30.

cos(mBt + C). (6.29)

Solution It is then easy to show from (6.27) that
Q(t) = 3t% — 24t + 53 and Q(t) = 6t — 24.

Also from (6.14), (6.15), and (6.16), we have a; ~ by = Iy — 53 and
by = —24. Then, from (6.20) and (6.21),
I*(t) = (Ip — 53)e™" 4 Q(t) — 24¢'™8,
P*(t) = —(Inp — 53)e~ + Q(t) + S(t) — 24e' 8.

In Fig. 6.1 the graphs of sales, production, and inventory are drawn
with Iy = 10 (a small starting inventory), which makes b; = —43. In
Fig. 6.2 the same graphs are drawn with Iy = 50 (a large starting inven-
tory), which makes by = —3. In Fig. 6.3 the same graphs are drawn with
Iy = 30, which makes by = —23. Note that initially during the time from
0 to 4, the three cases are quite different, but during the time from 4 to

8, they are nearly identical. The ending inventory ends up being 29 in
all three cases.

Example 6.2 Assume that
K
S(t)= A+ Bt+ Y Cysin(rDyt + Ey), (6.30)
k=1
where the constants A, B, Cy, Dy, and E}, are estimated from future de-
mand data by means of one of the standard forecasting techniques such
as those in Brown (1959, 1963).
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Figure 6.1: Solution of Example 6.1 with Iy = 10
S, P*, I*
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Figure 6.2: Solution of Example 6.1 with Iy = 50
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S, P, I

60 [

Figure 6.3: Solution of Example 6.1 with Iy = 30

Solution By using formulas (6.27) and (6.29), we obtain the particular
integral

1 X xowD
QU)=T+ 5B+ 5  cos(nDt + Ey). (6.31)

6.1.5 Optimality of a Linear Decision Rule

In Sect.6.1.2, our emphasis was to explore the turnpike nature of
the solution of the inventory model of Sect.6.1.1. For this purpose,
we made some asymptotic approximations when solving the state and
adjoint differential equations under the assumption that the horizon
is long. Here our focus is to solve the undiscounted version (i.e.,
p = 0) of the model exactly to find its optimal feedback solution, and
show that it is a linear decision rule as reported in the classical work
of Holt et al. (1960).
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Since the two-point boundary value problem given by (6.7) and (6.8)
is a linear system of differential equations, it is known via its fundamental
solution matrix that A can be expressed in terms of [ in a linear way as
follows:

A(t) = () — s()I(0), (6.32)

where () and s(t) are continuously differentiable in ¢. Differentiating
(6.32) with respect to t and substituting for I and A from (6.7) and (6.8)
with p = 0, respectively, we obtain

I(h—s?/c+3)+ (P +)c—8)s —hl — 1 =0,

Since the above relation must hold for any value of the initial inventory
Iy, we must have

§=s?/c—hand = (P+/c—S)s— hl. (6.33)

Also from A\(T) = 0 in (6.8) and (6.32), we have 0 = ¢(T) — s(T)I(T),
a relation that must hold regardless of the value of I(T"). Thus, we can
conclude that

s(T') =0 and ¢(T") = 0. 6.34

~—

Clearly, the solution of the differential equation given by (6.33) and
(6.34) will give us the optimal control (6.5) in terms of S(t) and 1 (t). In
particular, the differential equation

§=5%/c—h, s(T)=0 (6.35)

is known as the Riccati equation, whose solution is given by

s(t) = \/%tanh(\/Z(T —1)). (6.36)

Using (6.32) and (6.36) in (6.5), the optimal production rate P*(t) is

P*(t) =P — \/ztanh <\/§(T - t)) I*(t) + wit). (6.37)

This says that the optimal production rate equals the production goal
level P plus two adjustment terms. The first term implies ceteris paribus
that the higher the current inventory level, the lower the production rate
is. Furthermore, this dependence is linear with the linear effect decreas-
ing as t increases, reaching zero at t = T. The second term depends on
all the model parameters including the demand rate from time ¢ to 7.
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Because of the linear dependence of the optimal production rate on
the inventory level in (6.37), this rule is known as a linear decision rule as
reported by Holt et al. (1960). More generally, this rule can be extended
to linear quadratic problems as listed in Table 3.3(c). In Appendix D.4,
we derive this rule for the problems given in Table 3.3(c), but with-
out the forcing function d. Furthermore, the rule can be extended to a
class of stochastic linear-quadratic problems that include the stochastic
production planning problem treated in Sect. 12.2.

6.1.6 Analysis with a Nonnegative Production Constraint

Thus far in this chapter, we have ignored the production constraint P > 0
and used (6.5) and (6.37) as the optimal decision rules. Here we will solve
the production-inventory problem subject to P > 0, and use (6.6) as the
optimal production rule. For simplicity of analysis and exposition, we
will assume also that S is a positive constant, T" = oo, and p > 0. These
specifications make S = 0, making the right hand side —aJ — p(]3 )
a constant, a; = by in (6.16), and ag = 0 in (6.17).

In view of its constant right-hand side, we can use Row (3) of Ta-
ble A.2 to obtain its particular integral as

p A A
= —(P— I .
Q=L@ -9)+1. (6:39)
which is a constant and thus @ = 0. From (6.14) and (6.15), we now
have

bh=I—Q=1Io—1—(p/a®)(P—S)and by = P —S.

The turnpike is defined by the triple {I, P, \} = {(p/a?)(P — S) +
I1,S,¢(S — P)} formed from the turnpike expressions in (6.20), (6.21),
and (6.22), respectively. Note that we could have obtained the turnpike
levels directly by applying the conditions (3.108), which in this case are

I=0,A=0,and P=P+\c=8S. (6.39)

If I = @, then the optimal solution stays on the turnpike. If Iy # Q,
we must obtain the transient solution. It should be clear that the control
in (6.25) may become negative, especially when the initial inventory is
high. Let us complete the solution of the problem by considering three
cases: In < Q,Q < Iy <Q—S/my,and Iy > Q — S/m;.
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If Iy < @, then the control in (6.25) with by = Iy — Qo is clearly
positive. Thus, the optimal production rate is given by

P*(t) = mlblemlt + S =m (IO — Q)emlt + S5 >0. (640)

Moreover, from the state in (6.25), we can obtain the corresponding I*(t)
as

() = (I - Q)™ + Q. (6.41)

It is easy to see that I*(t) increases monotonically to @ as t — oo, as
shown in Fig. 6.4.

If Q < Iy < Q— S/mq, we can easily see from (6.40) that P*(0) > 0.
Furthermore, P* (t) > 0, and therefore the optimal production rate is
once again given by (6.40). We also have I*(¢) as in (6.41) and conclude
that I*(t) — @ monotonically as t — oo, as shown in Fig. 6.4.

Finally, if Iy > Q —S/my, (6.40) would have a negative value for the
initial production which is infeasible. By (6.6), P*(0) = 0. We can now
depict this situation in Fig.6.4. The time £ shown in the figure is the
time at which P*(£) = P+ A(f)/c = 0. We already know from (6.40) that
in the case when Iy = @ — S/my, P*(0) = 0. This suggests that

S

I'(t)y=Q— —. 6.42
h=q-= (6.42

For t < t, we have P*(t) = 0 so that I* = —S, which gives
I*(t) = Iy — St, t < 1. (6.43)

As for the adjoint equation (6.7), we now need the boundary condition
at t. For this, we can use (6.4) to obtain A(f) = —cP. Thus, the adjoint
equation in the interval [0,7 ] is

A=pA+h(I—1), \({) = —cP. (6.44)

We can substitute Iy — St for I in Eq. (6.44) and solve for A. Note that
we can easily obtain £ as
- S - Iy — 1
L-Siecg-2 sjl=@ 1 (6.45)

mq S mq

We can now specify the complete solution in the case when Iy >
Q — S/m1. With  specified in (6.45), the solution is as follows.
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For 0 <t <t:P*(t)=0,I*(t) = Iy — St, and \(t) is the solution of
A= pA+h(lyp— St —I),\() = —cP.
For t > : we replace Iy by Q@ — S/m1 and t by t — t on the right hand
side of (6.40) to obtain P*(t) = —Se™ (=t The same replacements in
(6.41) gives us the corresponding I*(t) = —(S/m1)e™t. Finally, A(¢) can
be obtained by solving
. S o . A
A=p\—h <em1t + I> ,A(t) = —cP.
mi
We have thus solved the problem in every case of the initial condition
Iy. These solutions are sketched in Fig.6.4 for I =8, P =5,5=6,h =
1,¢ =4, and p = 0.1, for three different values of Iy, namely, 25, 15, and
1. In Exercise 6.7, you are asked to solve the problem for these values
and obtain Fig. 6.4.

I*(t)

Figure drawn for:
=8 F=5
§=6 p=01
R h=1c=4
) Ip=25,15,1
Q — (§/my)
‘ ____________________________________

Q= T7.60, Q —(S/my) = 2.085e+01
f = 6.900e-01

P*=P+Mc

~

Iy 4

Ih=Q ki

i
I
| T ———
I i —
L
. R ——
' =
1 /__,_f—ﬂ-”
:’/
'/ PP=5

1

Iy o 4

0 i1 2 3 4 5 6 7

\

Figure 6.4: Optimal production rate and inventory level with different
initial inventories

6.2 The Wheat Trading Model

Consider a firm that buys and sells wheat. The firm’s only assets are
cash and wheat, and the price of wheat over time is known with certainty.
The objective of this firm is to buy and sell wheat in order to maximize
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the total value of its assets at the horizon time 7. The problem here is
similar to the simple cash balance model of Sect. 5.1 except that there
are nonlinear holding costs associated with storing wheat. An extension
of this model to one having two control variables appears in Ijiri and
Thompson (1972).

6.2.1 The Model

We introduce the following notation:

T = the horizon time,
x(t) = the cash balance in dollars at time ¢,
y(t) = the wheat balance in bushels at time ¢,
v(t) = the rate of purchase of wheat in bushels per unit time;
a negative purchase means a sale,
p(t) = the price of wheat in dollars per bushel at time ¢,
r = the constant positive interest rate earned on the cash
balance,
h(y) = the cost of holding y bushels per unit time.

In this section we permit x and y to go negative, meaning that bor-
rowing money and short-selling wheat are both allowed. In the next
section we disallow the short-selling of wheat.

The state equations are:

&t = rx—h(y) —pv, z(0)=x, (6.46)
= v, y(O) = Yo, (647>

and the control constraints are
-V <wo(t) <V, (6.48)
where V] and Vs are nonnegative constants. The objective function is:
max{J = z(T) + p(T)y(T)} (6.49)

subject to (6.46)-(6.48). Note that the problem is in the linear Mayer
form.
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6.2.2 Solution by the Maximum Principle

Introduce the adjoint variables A\; and Ay and define the Hamiltonian
function

H = \[rz — h(y) — pv] + Aqv. (6.50)
The adjoint equations are:

Moo= = M(T) =1, (6.51)

de = KWy, X(T)=p(T). (6.52)

It is easy to solve (6.51) as
A (t) = et (6.53)

and (6.52) as

T
Xo(t) = p(T) — /t W (y(r))e" T dr. (6.54)

The interpretation of Aj(t) is that it is the future value (at time T')
of one dollar held as cash from ¢ to T. The interpretation of A2(t) is the
price at time T" of a bushel of wheat less the total future value (at time
T) of the stream of storage costs incurred to store that bushel of wheat
from ¢ to T

From (6.50) the optimal control is

v*(t) = bang[—Va, V1; A2 (t) — M (t)p(t)]. (6.55)

In Exercise 6.8 you are asked to provide the interpretation of this optimal
policy.

Equations (6.46), (6.47), (6.54), and (6.55) determine the two-point
boundary value problem which usually requires a numerical solution pro-
cedure. In the next section we assume a special form for the storage
function h(y) to be able to obtain a closed-form solution.

6.2.3 Solution of a Special Case
For this special case we assume h(y) = %|y|, 7 = 0, z(0) = 10, y(0) = 0,
Vi=Va=1, T =6, and

3 for0<t<3,
p(t) = (6.56)
4 for3<t<6.
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We will apply the maximum principle (2.31) developed in Chap. 2
to this problem even though h(y) is not differentiable at y = 0. The
answer can be obtained rigorously by using the maximum principle for
models involving nondifferentiable functions discussed, e.g., in Clarke
(1989, Chapter 4) and Feichtinger and Hartl (1985b).

For this case with » = 0, we have A\1(¢) = 1 for all ¢ from (6.53) so
that the TPBVP is

i = —%]y|—pv, 2(0) = 10, (6.57)
y = v, y(O)zO, (6.58)
oft) = 5 senly), Ma(6) =4, (6.59)

For this simple problem it is easy to guess a solution. From the fact that
A1 = 1, the optimal policy (6.55) reduces to

v (t) = bang[~1, 1; da(t) — p(t)) (6.60)
p
A
4 ¢
3
| : | I >
0 1 2 3 4 5 6

Figure 6.5: The price trajectory (6.56)

The graph of the price function is shown in Fig.6.5. Since p(t) is
increasing, short-selling is never optimal. Since the storage cost is 1/2
per unit per unit time and the wheat price jumps by 1 unit at ¢t = 3, it
never pays to store wheat for more than 2 time units. Because y(0) = 0,
we have v*(t) = 0 for 0 < ¢ < 1. This obviously must be a singular
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control. Suppose we start buying wheat at t* > 1. From (6.60) the rate
of buying is 1; clearly buying will continue at this rate until ¢ = 3, and
not longer. In order to not lose money on the storage of wheat, it must be
sold within 2 time units of its purchase. Clearly we should start selling
at t = 37 at the maximum rate of 1, and continue until a last sale time
t™*. In order to sell exactly all of the wheat purchased, we must have

3—tF =1t -3 (6.61)

Thus, v*(t) = 0 in the interval [t**, 6], which is also a singular control.
With this policy, y(t) > 0 for all ¢ € (t*,¢**). From (6.59), Ao = 1/2 in
the interval (¢*,¢**). In order to have a singular control in the interval
[t**, 6], we must have A\2(¢) = 4 in that interval. Also, in order to have a
singular control in [0, t*], we must have A2(t) = 3 in that interval. Thus,
Ao (%) — Ao(t*) = 1, which with Ay = 1/2 allows us to conclude that

£t =2, (6.62)

and therefore t* = 2 and t** = 4. Thus from (6.59) and (6.60),

3, 0<t<2,
Ao(t) =19 241t/2, 2<t<4, (6.63)
4 4<t<6.

)

We can now sketch graphs for Aa(t), v*(¢), and y*(¢) as shown in
Fig. 6.6. In Exercise 6.13 you are asked to show that these trajectories are
optimal by verifying that the maximum principle necessary conditions
hold and that they are also sufficient.

6.2.4 The Wheat Trading Model with No Short-Selling

We next consider the wheat trading problem in the case when short-
selling is not permitted, i.e., we impose the state constraint y > 0. More-
over, for simplicity in exposition we consider the following special case of
Norstrom (1978). Specifically, we assume h(y) = y/2, r =0, z(0) = 10,
y(0) =1,V =Vo=1,T =3, and

2+ 7 for0<t<?2,
p(t) = (6.64)
t+1 for2<t¢<3.
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The statement of the problem is:

max {.J = z(3) + p(3)y(3) = z(3) + 4y(3)}

subject to
&= —%y —pv, z(0) = 10, (6.65)
y=v, y(0) =1,

\ v+12>0,1—v>0, y>0.

Buy

Do Nothing Do Nothing

Sell

—1 t
0 2 3 4 6

Figure 6.6: Adjoint variable, optimal policy and inventory in the wheat
trading model
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To solve this problem, we use the Lagrangian form of the indirect
maximum principle given in (4.29). The Hamiltonian is

H = X\(—y/2—pv) + Aav. (6.66)
The optimal control is
v*(t) = bang[—1, 1; Aa(t) — A1(¢)p(t)] when y > 0. (6.67)

Whenever y = 0 we must impose y = v > 0 in order to insure that no
short-selling occurs. Therefore,

v*(t) = bang[0, 1; A2(t) — A\ (¢)p(t)] when y = 0. (6.68)
Next we form the Lagrangian
L=H+p(v+1)+ py(l —v)+no, (6.69)

where (11, o, and n satisfy the complementary slackness conditions:

py >0, py(v+1) =0, (6.70)
po =0, po(l—v) =0, (6.71)
n >0, ny = 0. (6.72)

Furthermore, the optimal trajectory must satisfy

oL
R R A R T R R (6.73)
With r = 0, we get Ay = 1 as before, and
. L
So=—2E 12, a3y =44, (6.74)
dy
with
7> 0,7y(3) = 0. (6.75)

Let us first try v = 0. Then A\2(37) = 4, and if we let ¢ denote the time
of the last jump before the terminal time, then there is no jump in the
interval (£,3). Then, from (6.74) we have

Ao(t) =t/2+5/2for t <t <3, (6.76)

and the optimal control from (6.67) or (6.68) is v* = 1, i.e., buy wheat
at the maximum rate of 1, so long as Ao(t) > p(t). Also, this will give
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y(3) > 0, so that (6.75) holds. Let us next find the time ¢ of the last
jump before the terminal time. Clearly, this value will not be larger than
the time at which A\y(t) = p(t). Thus,

t<{t|t/2+5/2=-2t+7}=18. (6.77)

Since p(t) is decreasing at the start of the problem, it appears that

selling at the maximum rate of 1, i.e., v* = —1, should be optimal at

the start. Since the beginning inventory is y(0) = 1, selling at the rate
of 1 can continue only until ¢ = 1, at which time the inventory y(1)
becomes 0. Suppose that we do nothing, i.e., v*(¢) = 0 in the interval
(1,1.8]. Then, t = 1 is an entry time (see Sect.4.2) and ¢t = 1.8 is not
an entry time, and £ = 1. Hence, according to the maximum principle
(4.29), A2(t) is continuous at ¢t = 1.8, and therefore \a(t) is given by
(6.76) in the interval [1, 3), i.e.,

Ao(t) = /2 4+ 5/2 for 1 < t < 3. (6.78)

Using (6.73) with A; = 1 in the interval (1,1.8] and v* = 0 so that
1 = e = 0, we have

Ay =Pt —pig+n=A—p+tn=0,
and consequently
n(t) = p(t) — Aa(t) = =5t/24+9/2, t € (1,1.8]. (6.79)

Since hy = 0, the jump condition in (4.29) for the Hamiltonian at
7 = 1 reduces to

Hz*(1), v*(17), M(17), 1] = H[z*(1), v*(17), A(17), 1].

From the definition of the Hamiltonian H in (6.66), we can rewrite the
condition as

A (1) [=y(1)/2 = p(17)e*(17)] + Ao (7)o" (17) =
A (1) [=y(1)/2 = p(17)o* (17)] + Ao (1 7)o" (17).
Since A1(t) = 1 for all ¢, the above condition reduces to

—p(17)v"(17) + A2(17)o"(17) = —p(17)w"(1F) + Ao (1F)v"(17).
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Substituting the values of p(17) = p(17) = 5 from (6.64), A2(17) = 3
from (6.78), and v*(17) = 0 and v*(17) = —1 from the above discussion,
we obtain

—5(=1) + A (17)(=1) = =5(0) + 3(0) = 0 = Ap(17) = 5.  (6.80)

We can now use the jump condition in (4.29) on the adjoint variables
to obtain

A(17) = X(1T) +¢(1) = ¢(1) = X2(17) = A2(17) =5-3=2>0.

It is important to note that in the interval [1, 1.8], the optimal control
condition (6.68) holds, justifying our supposition that v* = 0 in this
interval. Furthermore, using (6.80) and (6.74),

Xo(t) =1t/2+9/2 for t € [0,1), (6.81)
and the optimal control condition (6.67) holds, justifying our supposition
that v* = —1 in this interval. Also, we can conclude that our guess v = 0

p$ )‘2
A
b Pl
6__
A1)
5
4.5
4
3.4 l
3
2 —_
l__
> ¢
0 1 1.8 2 3
4—— Sell—»«-Do Nothing—x¢———— Buy ———»/|
vi= —1 v*¥=0 vi=
y=0

Figure 6.7: Adjoint trajectory and optimal policy for the wheat trading
model
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is correct. The graphs of A\a(t), p(t), and v*(¢) are displayed in Fig.6.7.
To complete the solution of the problem, you are asked to determine the
values of 1, 9, and n in these various intervals.

6.3 Decision Horizons and Forecast Horizons

In some dynamic problems it is possible to show that the optimal deci-
sions during an initial positive time interval are either partially or wholly
independent of the data from some future time onwards. In such cases,
a forecast of the future data needs to be made only as far as that time
to make optimal decisions in the initial time interval. The initial time
interval is called the decision horizon and the time up to which data is
required to make the optimal decisions during the decision horizon is
called the forecast horizon; see Bes and Sethi (1988), Bensoussan et al.
(1983), and Haurie and Sethi (1984) for details on these concepts. When-
ever they exist, these horizons naturally decompose the problem into a
series of smaller problems.

If the optimal decisions during the decision horizon are completely
independent of the data beyond the forecast horizon, then the latter
is called a strong forecast horizon. If, on the other hand, some mild
restrictions on the data after the forecast horizon are required in order
to keep the optimal decisions during the decision horizon unaffected,
then it is called a weak forecast horizon.

In this section we demonstrate these concepts in the context of the
wheat trading model of the previous section. In Sect.6.3.1 we obtain a
decision horizon for the model of Sect. 6.2.4 which is also a weak forecast
horizon. In Sect.6.3.2 we modify the wheat trading model by adding
a warehousing constraint. For the new problem we obtain a decision
horizon and a strong forecast horizon. See also Sethi and Thompson
(1982), Rempala (1986) and Hartl (1986a, 1988a) for further research in
the context of the wheat trading model.

In what follows we obtain these horizons and verify them for some
examples with different forecast data. For more details and proofs in
other situations including more general ones, see Modigliani and Hohn
(1955), Lieber (1973), Pekelman (1974, 1975, 1979), Kleindorfer and
Lieber (1979), Vanthienen (1975), Morton (1978), Lundin and Morton
(1975), Rempala and Sethi (1988, 1992), Hartl (1989a), and Sethi (1990).



214 6. Applications to Production and Inventory

6.3.1 Horizons for the Wheat Trading Model with
No Short-Selling

For the model of Sect.6.2.4, we will demonstrate that ¢ = 1 is a decision
horizon as well as a weak forecast horizon. In Fig.6.8 we have redrawn
Fig. 6.7 with a new price trajectory in the time interval [1, 3]. Also in the
figure, we have extended the initial A5 trajectory and labeled it the price
shield. Its significance is that, as long as the new price trajectory in the
interval [1,3] stays below the price shield, the optimal solution in the
interval [0, 1], which is the decision horizon, remains unchanged. That
is, it is optimal to sell throughout the interval. The restriction that p(t)
must stay below the price shield in [1, 3] is the reason that ¢ = 1 is a
weak forecast horizon. The optimality of the control shown in Fig. 6.8
can be concluded by obtaining the adjoint trajectory in the interval [1, 3]
as a straight line with slope 1/2 and the terminal value \2(37) = p(3).
This way of drawing the adjoint trajectory is correct as long as the
corresponding policy does not violate the inventory constraint y(t) > 0
in the interval [1, 3]. For example, this will be the case if the buy interval
in Fig. 6.8 is shorter than the sell interval at the end. On the other hand,
if the inventory constraint is violated, then the Ao(t) trajectory may
jump in the interval [1,3), and it will be more complicated to obtain it.
Nevertheless, the decision horizon and weak forecast horizon still occur
at t = 1. Moreover, if we let T' > 1 be any finite horizon and assume that
p(t) in the interval [1,7T] is always below the price shield line of Fig. 6.8
extended to T, then the policy of selling at the maximum rate in the
interval [0, 1] remains optimal.

6.3.2 Horizons for the Wheat Trading Model with No
Short-Selling and a Warehousing Constraint

In order to give an example in which a strong forecast horizon occurs, we
modify the example of Sect.6.2.4 by adding the warehousing constraint
y<1lor

1—y>0, (6.82)

changing the terminal time to T' = 4, and defining the price trajectory
to be

—2t+7 fortel0,2),
p(t) = (6.83)

t+1 fortel24].
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Figure 6.8: Decision horizon and optimal policy for the wheat trading
model

The Hamiltonian of the new problem is unchanged and is given in
(6.66). Furthermore, Ay = 1. The optimal control is defined in three
parts as:

v*(t) = bang[—1,1; Xo(t) — p(t)] when 0 < y < 1, (6.84)
*(t) = bang [0,1; X2(t) — p(t)] when y =0, (6.85)
*(t) = bang[—1,0;\a(t) — p(t)] when y = 1. (6.86)

<

<

Defining a Lagrange multiplier n; for the derivative of (6.82), i.e., for
—y = —v > 0, we form the Lagrangian

L=H+p(v+1)+ pe(l —v) +nv+n(-v), (6.87)
where p1, 115, and 7 satisfy (6.70)—(6.72) and 7, satisfies
n =0, 771(1 - y) =0, 7, <0. (688)

Furthermore, the optimal trajectory must satisfy

OL
%=>\2—p+u1—u2+77—m=0- (6.89)
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As before, A\ = 1 and Ay satisfies
X2 =1/2, Ao(47) =p(4) + 71 — 72 =5 +71 — 72, (6.90)

where
Y1 >0, v19(4) =0, 75 >0, vo(1 —y(4)) =0. (6.91)

Let us first try 7, = 75 = 0. Let  be the time of the last jump of the
adjoint function Ay(t) before the terminal time 7' = 4. Then,

Ao(t) =t/2+ 3 fort <t < 4. (6.92)

The graph of (6.92) intersects the price trajectory at ¢t = 8/5 as shown
in Fig.6.9. It also stays above the price trajectory in the interval [8/5, 4]
so that, if there were no warehousing constraint (6.82), the optimal de-
cision in this interval would be to buy at the maximum rate. However,
with the constraint (6.82), this is not possible. Thus # > 8/5, since A
will have a jump in the interval [8/5,4].

P Ay
A
: ) 6.5
/ d R |
i . "y prce S —
5 _ )r
[ \
N -
New-———""""
3 )>1
3512
7L
| o I%Itro'ng Forecast
Horizon -
\ I |
0 1 8 11| 2 — 1 :
Do 56 - . i
0
D Nothing™ ™ Buyy ———»le—— Nothing —>

Figure 6.9: Optimal policy and horizons for the wheat trading model
with no short-selling and a warehouse constraint
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To find the actual value of £ we must insert a line of slope 1/2 above
the minimum price at ¢t = 2 in such a way that its two intersection points
with the price trajectory are exactly one time unit (the time required to
fill up the warehouse) apart. Thus using (6.83), ¢ must satisfy

“2(f— 1)+ T+ (1/2)(1) =i+ 1,

which yields ¢ = 17/6.
The rest of the analysis for determining Ao including the jump con-
ditions is similar to that given in Sect.6.2.4. Thus,

t/2+9/2  forte|0,1),
Ao(t) =< t/2+429/12 for t € [1,17/6), (6.93)
t/2+3 for ¢ € [17/6,4].

This makes y; = 75 = 0 the correct guess.

Given (6.93), the optimal policy is given by (6.84)-(6.86) and is
shown in Fig.6.9. To complete the maximum principle we must derive
expressions for the Lagrange multipliers in the four intervals shown in
Fig.6.9.

Interval [0,1): po=n=n,=0, u; =p— A2 > 0;
vi=—-1,0<y" <1

Interval [1,11/6) : iy =pg =1 =0, n=p— A2 >0,  <0;

Interval [11/16,17/6): puy=n=mn; =0, g = A2 —p > 0;
v =1 0<y" <l

Interval [17/6,4]: py =po=n=0,n, =X —p>0, 7 <0,
71="72=0;

In Exercise 6.17 you are asked to solve another variant of this problem.
For the example in Fig. 6.9 we have labeled t = 1 as a decision horizon
and £ = 17/6 as a strong forecast horizon. By this we mean that the
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optimal decision in [0,1] continues to be to sell at the maximum rate
regardless of the price trajectory p(t) for t > 17/6. Because ¢ = 17/6 is
a strong forecast horizon, we can terminate the price shield at that time
as shown in the figure.

In order to illustrate the statements in the previous paragraph, we
consider two examples of price changes after £ = 17/6.

Example 6.3 Assume the price trajectory to be

—2t+7 for t € [0,2),
pt) =9 t+1 for t € [2,17/6),
25t/7 —44/7  for t € [17/6,4],

which is sketched in Fig.6.10. Note that the price trajectory up to time
17/6 is the same as before, and the price after time 17/6 goes above the
extension of the price shield in Fig.6.9.

)z AZ
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89/12
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1+ Decision Horizon
Horizon
\ | t
0 1 1 2 =713 4
6 6
Do Do
4_ Sell—’ﬁNOthing_’<— Buy —— Nothing

Figure 6.10: Optimal policy and horizons for Example 6.3
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Solution The new Ao trajectory is shown in Fig. 6.10, which is the same
as before for t < 17/6, and after that it is Ao(¢) = ¢/2+6 for ¢t € [17/6, 4].
The optimal policy is as shown in Fig.6.10, and as previously asserted,
the optimal policy in [0,1) remains unchanged. In Exercise 6.17 you are
asked to verify the maximum principle for the solution of Fig. 6.10.

Example 6.4 Assume the price trajectory to be
—2t+7 for t €10,2),
p(t) =4 t+1 for t € [2,17/6),
—t/2+21/4 fort e [17/6,4],

which is sketched in Fig.6.11.
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Figure 6.11: Optimal policy and horizons for Example 6.4

Solution Again the price trajectory is the same up to time 17/6, but
the price after time 17/6 is declining. This changes the optimal policy
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in the time interval [1,17/6), but the optimal policy will still be to sell
in [0,1).

As in the beginning of the section, we solve (6.90) to obtain A\a(t) =
t/24-5/4 for t; <t < 4, where f; > 1 is the time of the last jump which is
to be determined. It is intuitively clear that some profit can be made by
buying and selling to take advantage of the price rise between ¢t = 2 and
t = 17/6. For this, the \y(¢) trajectory must cross the price trajectory
between times 2 and 17/6 as shown in Fig.6.11, and the inventory y
must go to 0 between times 17/6 and 4 so that Ay can jump downward
to satisfy the ending condition A2(47) = p(4) = 13/4. Since we must
buy and sell equal amounts, the point of intersection of the Ay trajectory
with the rising price segment, i.e., £; — o, must be exactly in the middle
of the two other intersection points, ¢; and ¢; — 2«, of \g with the two
declining price trajectories. Thus, ¢; and o must satisfy:

—2(t; —20) + T+ /2 = (t —a)+1,
(ti—a)+1+a/2 = —t/2+21/4.
These can be solved to yield #; = 163/54 and o = 5/9. The times

t1,t1 — a, and £; — 2a are shown in Fig. 6.11. The Ay trajectory is given
by

t/2+9/2 for ¢ € [0, 1),
Ao(t) =14 t/24241/108 for t € [1,163/54),
t/2+5/4 for ¢ € [163/54, 4].

Evaluation of the Lagrange multipliers and verification of the maximum
principle is similar to that for the case in Fig.6.9.

In Sect. 6.3 we have given several examples of decision horizons and
weak and strong forecast horizons. In Sect.6.3.1 we found a decision
horizon which was also a weak forecast horizon, and it occurred exactly
when y(t) = 0. We also introduced the idea of a price shield in that
section. In Sect.6.3.2 we imposed a warehousing constraint and obtained
the same decision horizon and a strong forecast horizon, which occurred
when y(t) = 1.

Note that if we had solved the problem with 7' = 1, then y*(1) = 0;
and if we had solved the problem with 7" = 17/6, then y*(1) = 0 and
y*(17/6) = 1. The latter problem has the smallest 7" such that both
y* = 0 and y* = 1 occur for t > 0, given the price trajectory. This is
one of the ways that time ¢ = 17/6 can be found to be a forecast horizon
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along with the decision horizon at time ¢ = 1. There are other ways to
find strong forecast horizons. For a survey of the literature, see Chand
et al. (2002).

Exercises for Chapter 6

E 6.1 Verify the expressions for a; and ag given in (6.16) and (6.17).
E 6.2 Verify (6.27). Note that p = 0 is assumed in Sect. 6.1.4.
E 6.3 Verify (6.29). Again assume p = 0.
E 6.4 Given the demand function

S=t(t—4)(t—8)(t—12)(t — 16) + 30,
p=0,I=15"T =16, and o = 1, obtain Q(t) from (6.27).
E 6.5 Complete the solution of Example 6.2 in Sect.6.1.4.

E 6.6 For the model of Sect.6.1.6, derive the turnpike triple by using
the conditions in (6.39).

E 6.7 Solve the production-inventory model of Sect.6.1.6 for the pa-
rameter values listed on Fig. 6.4, and draw the figure using MATLAB or
another suitable software.

E 6.8 Give an intuitive interpretation of (6.55).

E 6.9 Assume that there is a transaction cost cv? when v units of wheat
are bought or sold in the model of Sect.6.2.1. Derive the form of the
optimal policy.

E 6.10 In Exercise 6.9, assume 7' = 10, z(0) = 10, y(0) = 0, ¢ = 1/18,
h(y) = (1/2)y?, Vi = Vo = oo, r = 0, and p(t) = 10 + t. Solve the
resulting TPBVP to obtain the optimal control in closed form.

E 6.11 Set up the two-point boundary value problem for Exercise 6.9
with ¢ = 0.05, h(y) = (1/2)y?, and the remaining values of parameters
as in the model of Sect. 6.2.3.

E 6.12 Use Excel, as illustrated in Sect. 2.5, to solve the TPBVP of
Exercise 6.11.
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E 6.13 Show that the solution obtained for the problem in Sect.6.2.3
satisfies the necessary conditions of the maximum principle. Conclude
the optimality of the solution by showing that the maximum principle
conditions are also sufficient.

E 6.14 Re-solve the problem of Sect.6.2.3 with V4, =2 and V5 = 1.

E 6.15 Compute the optimal trajectories for pq, py, and n for the model
in Sect. 6.2.4.

E 6.16 Solve the model in Sect. 6.2.4 with each of the following condi-
tions:

(a) y(0)=2.

(b) T =10 and p(t) =2t — 2 for 3 <t < 10.

E 6.17 Verify that the solutions shown in Figs.6.10 and 6.11 satisfy the
maximum principle.

E 6.18 Re-solve the model of Sect.6.3.2 with y(0) = 1/2 and with the
warehousing constraint y < 1/2 in place of (6.82).

E 6.19 Solve and interpret the following production planning problem
with linear inventory holding costs:

T C
max {J = / —[hI + 5P?]dt }
0

subject to
(6.94)

I =P I(0)=0, I(T)=B; 0 < B < hT?/2c,

P>0and I >0.

E 6.20 Re-solve Exercise 6.19 with the state equation I(t) = P(t)—S(t),
where I(0) = Iy > 0 and I(T) is not fixed. Assume the demand S(t) to
be continuous in ¢ and non-negative. Keep the state constraint I > 0, but
drop the production constraint P > 0 for simplicity. For specificity, you
may assume S = —sinnt 4+ C with the constant C' > 1 and T' = 4. (Note
that negative production can and will occur when initial inventory I is
too large. Specifically, how large is too large depends on the parameters
of the problem.)
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E 6.21 Re-solve Exercise 6.19 with the state equation I(t) = P(t) — S,
where S > 0 and h > 0 are constants, I(0) = Iy > ¢S%/2h, and I(T) is
not fixed. Assume that T is sufficiently large. Also, graph the optimal
P*(t) and I*(t), t € [0,T].



t')

Check for
updates

Chapter 7

Applications to Marketing

Over the years, a number of applications of optimal control theory have
been made to the field of marketing. Many of these applications deal with
the problem of finding or characterizing the optimal advertising rate over
time. Others deal with the problem of determining the optimal price and
quality over time, in addition to or without advertising. The reader is
referred to Sethi (1977a) and Feichtinger et al. (1994a) for comprehensive
reviews on dynamic optimal control problems in advertising and related
problems. In this chapter we discuss optimal advertising policies for
two of the well-known models called the Nerlove-Arrow model and the
Vidale-Wolfe model.

To describe the specific problems under consideration, let us assume
that a firm has some way of knowing or estimating the dynamics of sales
and advertising. Such knowledge is expressed in terms of a differential
equation with either goodwill or the rate of sales as the state variable and
the rate of advertising expenditures as the control variable. We assume
that the firm wishes to maximize an objective function (the criterion
function) which reflects its profit motives expressed in terms of sales and
advertising rates. The optimal control problem is to find an advertising
policy which maximizes the firm’s objective function.

The plan of this chapter is as follows. Section 7.1 will cover the
Nerlove-Arrow model as well as a nonlinear extension of it. Section 7.2
deals with the Vidale-Wolfe advertising model and its detailed analy-
sis using Green’s theorem in conjunction with the maximum principle.
The switching-point analysis for this problem is a good example of the
reverse-time construction technique used earlier in Chaps. 4 and 5. Ex-
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tensions of these models to multi-state problems are treated in Turner
and Neuman (1976) and Srinivasan (1976).

7.1 The Nerlove-Arrow Advertising Model

The belief that advertising expenditures by a firm affect its present and
future sales, and hence its present and future net revenues, has led a
number of economists including Nerlove and Arrow (1962) to treat ad-
vertising as an investment in building up some sort of advertising capital,
usually called goodwill. Furthermore, the stock of goodwill depreciates
over time. Vidale and Wolfe (1957), Palda (1964), and others present
empirical evidence that the effects of advertising linger but diminish over
time.

Goodwill may be created by adding new customers or by altering
the tastes and preferences of consumers and thus changing the de-
mand function for the firm’s product. Goodwill depreciates over time
because consumers “drift” to other brands as a result of advertising
by competing firms and the introduction of new products and/or new
brands, etc.

7.1.1 The Model

Let G(t) > 0 denote the stock of goodwill at time ¢. The price of (or cost
of producing) one unit of goodwill is one dollar so that a dollar spent on
current advertising increases goodwill by one unit. It is assumed that
the stock of goodwill depreciates over time at a constant proportional
rate §, so that

G=u—-6G, G(0) =Gy, (7.1)
where v = u(t) > 0 is the advertising effort at time ¢ measured in
dollars per unit time. In economic terms, Eq.(7.1) states that the net
investment in goodwill is the difference between gross investment wu(t)
and depreciation dG(t).

To formulate the optimal control problem for a monopolistic firm,
assume that the rate of sales S(t) depends on the stock of goodwill
G(t), the price p(t), and other exogenous factors Z(t), such as consumer
income, population size, etc. Thus,

S=8(p,G; 7). (7.2)
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Assuming the rate of total production cost is ¢(.5), we can write the total
revenue net of production cost as

R(p,G; Z) =pS(p,G; Z) — ¢(S(p, G; Z)). (7.3)

The revenue net of advertising expenditure is therefore R(p, G;Z) — u.
We assume that the firm wants to maximize the present value of net
revenue streams discounted at a fixed rate p, i.e.,

max {J _ /0 T PR, G Z) — ] dt} (7.4)

u20,p2>0

subject to (7.1).
Since the only place that p occurs is in the integrand, we can max-
imize J by first maximizing R with respect to price p while holding G
fixed, and then maximize the result with respect to u. Thus,
OR oS oS
=t _g _

7_/ - =
ap —i—pap c(S)ap

which implicitly gives the optimal price p*(t) = p(G(t); Z(t)). Defining
n = —(p/S)(0S/dp) as the elasticity of demand with respect to price,
we can rewrite condition (7.5) as

0, (7.5)

. n(s)

b = ﬁ’ (7.6)
which is the usual price formula for a monopolist, known sometimes as
the Amoroso-Robinson relation. You are asked to derive this relation
in Exercise 7.2. In words, the relation means that the marginal revenue
(n—1)p/n must equal the marginal cost ¢/(5). See, e.g., Cohen and Cyert
(1965, p. 189).

Defining II(G; Z) = R(p*, G; Z), the objective function in (7.4) can
be rewritten as

max {J:/Oooe_pt[H(G;Z) —u]dt}.

u>0

For convenience, we assume Z to be a given constant. Thus, we can
define 7(G) = II(G; Z) and restate the optimal control problem which
we have just formulated:

ma {J - /OOO (@) — 1] dt}

subject to (7.7)

G =u—6G, G(0)=Gy.
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Furthermore, it is reasonable to assume the functions introduced in (7.2)
and (7.3) to satisfy conditions so that 7(G) is increasing and concave in
goodwill G. More specifically, we assume that 7/(G) > 0 and 7”(G) < 0.

7.1.2 Solution by the Maximum Principle

While Nerlove and Arrow (1962) used calculus of variations, we use
Pontryagin’s maximum principle to derive their results. We form the
current-value Hamiltonian

H=m(G) —u+ \u—6G] (7.8)

with the current-value adjoint variable A satisfying the differential equa-
tion

. OH dm
A=p\— — = N\ — — 7.9
and the condition that
. —pt o
tllglooe A(t) = 0. (7.10)

Recall from Sect. 3.6 that this limit condition is only a sufficient condi-
tion.

The adjoint variable A(¢) is the shadow price associated with the
goodwill at time ¢. Thus, the Hamiltonian in (7.8) can be interpreted as
the dynamic profit rate which consists of two terms: (1) the current net
profit rate (7(G) —u) and (2) the value A\G' = Au — 6G] of the goodwill
rate G created by advertising at rate u. Also, Eq. (7.9) corresponds to
the usual equilibrium relation for investment in capital goods; see Arrow
and Kurz (1970) and Jacquemin (1973). It states that the marginal
opportunity cost A(p + d)dt of investment in goodwill, by spending on
advertising, should equal the sum of the marginal profit #'(G)dt from the
increased goodwill due to that investment and the capital gain dA := Adt
on the unit price of goodwill.

We use (3.108) to obtain the optimal long-run stationary equilibrium
or turnpike {G, 4, A\}. That is, we obtain A = A = 1 from (7.8) by using
OH/du = 0. We then set A=A =1and A =0in (7.9) to obtain
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(G) = p+9. (7.11)

In order to obtain a strictly positive equilibrium goodwill level G, we
may assume 7’(0) > p+ ¢ and 7'(c0) < p + 4.

Before proceeding further to obtain the optimal advertising policy, let
us relate (7.11) to the equilibrium condition for G obtained by Jacquemin
(1973). For this we define 5 = (G/5)(05/0G) as the elasticity of demand
with respect to goodwill. We can now use (7.3), (7.5), (7.6), and (7.9)
with A=0and A =1 to derive, as you will in Exercise 7.3,

G _ B

pS  nlp+6)
The interpretation of (7.12) is that in the equilibrium, the ratio of good-
will to sales revenue pS is directly proportional to the goodwill elasticity,
inversely proportional to the price elasticity, and inversely proportional
to the cost of maintaining goodwill given by the marginal opportunity
cost A(p + ) of investment in goodwill.

The property of G is that the optimal policy is to go to G as fast
as possible. If Gy < G, it is optimal to jump instantaneously to G by
applying an appropriate impulse at t = 0 and then set u*(t) = 4 = G
for t > 0. If Gy > G, the optimal control u*(t) = 0 until the stock of
goodwill depreciates to the level G, at which time the control switches
to u*(t) = dG and stays at this level to maintain the level G of goodwill.
This optimal policy is graphed in Fig. 7.1 for these two different initial
conditions.

Of course, if we had imposed an upperbound M > 0 on the control
so that 0 < u < M, then for Gy < G, we would use u*(t) = M until
the goodwill stock reaches G and switch to u*(t) = @ thereafter. This is
shown as the dotted curve in Fig. 7.1.

Problem (7.7) is formulated with the assumption that a dollar spent
on current advertising increases goodwill by one unit. Suppose, instead,
that we need to spend m dollars on current advertising to increase good-
will by one unit. We can then define u as advertising effort costing the
firm mu dollars, and reformulate problem (7.7) by replacing [7(G) — u]

(7.12)
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Figure 7.1: Optimal policies in the Nerlove-Arrow model

in its integrand by [7(G) — mu]. In Exercise 7.4, you are asked to solve
problem (7.7) with its objective function and the control constraint
replaced by

max {J _ /0 e —mu]dt}, (7.13)

0<u<M

and show that the equilibrium goodwill level formula (7.11) changes to
7(G) = (p+ d)m. (7.14)

With G thus defined, the optimal solution is as shown in Fig. 7.1 with
the dotted curve representing the solution in Case 2: Gy < G.

For a time-dependent Z, however, G(t) = G(Z(t)) will be a func-
tion of time. To maintain this level of G(t), the required control is
u(t) = 0G(t) + G(t). If G(t) is decreasing sufficiently fast, then @(t) may
become negative and thus infeasible. If u(¢) > 0 for all ¢, then the opti-
mal policy is as before. However, suppose @(t) is infeasible in the interval
[t1,t2] shown in Fig.7.2. In such a case, it is feasible to set u(t) = u(t)
for t < t;; at t = t; (which is point A in Fig.7.2) we can no longer stay
on the turnpike and must set u(¢) = 0 until we hit the turnpike again (at
point B in Fig.7.2). However, such a policy is not necessarily optimal.
For instance, suppose we leave the turnpike at point C anticipating the
infeasibility at point A. The new path CDEB may be better than the
old path CAB. Roughly the reason this may happen is that path CDEB
is “nearer” to the turnpike than CAB. The picture in Fig. 7.2 illustrates
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such a case. The optimal policy is the one that is “nearest” to the turn-

pike. This discussion will become clearer in Sect.7.2.2, when a similar
situation arises in connection with the Vidale-Wolfe model. For further
details; see Sethi (1977b) and Breakwell (1968).

The Nerlove-Arrow model is an example involving bang-bang and
impulse controls followed by a singular control, which arises in a class of
optimal control problems of Model Type (b) in Table 3.3 that are linear
in control.

Nonlinear extensions of the Nerlove-Arrow model have been offered
in the literature. These amount to making the objective function non-
linear in advertising. Gould (1970) extended the model by assuming a

G(1)
y

»

— bk ! ! .
0 sz

Figure 7.2: A case of a time-dependent turnpike and the nature of opti-
mal control

convex cost of advertising effort, which implies a marginally diminishing
effect of advertising expenditures. Jacquemin (1973) assumed that the
current demand function S in (7.2) also depends explicitly on the current
advertising effort u. In Exercise 11.6, you are asked to analyze Gould’s
extension via the phase diagram analysis introduced in Chap.11. The
analysis of Jacquemin’s extension is similar.
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7.1.3 Convex Advertising Cost and Relaxed Controls

Another nonlinear extension of the Nerlove-Arrow model would involve
a concave advertising cost resulting from quantity discounts that may be
available in the purchase of advertising. Such an extension results in an
optimal control problem with a profit rate that is convex in advertising,
and this has a possibility of rendering the problem without an optimal
solution within the class of admissible controls discussed thus far. What
is then required is an enlargement of the class to include what are known
as relaxed controls. To introduce such controls, we formulate and solve
a convex optimal control problem involving the Nerlove-Arrow model.

Let ¢(u) be a strictly concave advertising cost function with ¢(0) = 0,
d(u) > 0 and ¢'(u) < 0 for 0 < u < M, where M > 0 denotes an
upperbound on the advertising rate. Let us also consider 7' > 0 to be
the fixed terminal time. Then, our problem is the following modification
of problem (7.7):

max {le /O Te_pt[W(G)—c(u)]dt}

0<uM

subject to (7.15)

G =u—0G, G(0)=Gy.

Note that with concave c(u), the profit rate 7(G) — c¢(u) is convex
in w. Thus, its maximum over u would occur at the boundary 0 or M
of the set [0, M]. It should be clear that if we replace ¢(u) by the linear
function mu with m = ¢(M)/M, then

m(G) — c(u) < 7(G) — mu, u e (0, M). (7.16)

This means that if problem (7.15) with mu in place of ¢(u), i.e., the
problem

max {J2: /O " [r(G) — mu] dt}

0<usM

subject to (7.17)

G =u—-6G, G(0)=Gy

has only the bang-bang solution, then the solution of problem (7.17)
would also be the solution of the convex problem (7.15). Given the
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similarity of problem (7.17) to problem (7.7), we can see that for a suf-
ficiently small value of T, the solution of (7.17) will be bang-bang only,
and therefore, it will also solve (7.15). However, if T' is large or infinity,
then the solution of (7.17) will have a singular portion, and it will not
solve (7.17).

In particular, let us consider problems (7.15) and (7.17) when T' = oo
and Gy < G. Note that problem (7.17) is the same as the problem in
Exercise 7.4, and its optimal solution is as shown in Fig. 7.1 with G given
by (7.14) and the optimal trajectory given by the dotted line followed by
the solid horizontal line representing the singular part of the solution.

Let uj denote the optimal control of problem (7.17). Since the sin-
gular control is in the open interval (0, M), then in view of (7.16),

Ti(uh) < Ja(ul). (7.18)

Thus, for sufficiently small e; > 0 and €5 > 0, we can “chatter” between
G1 = (G +¢1) and Gy = (G — &2) by using controls M and 0 alternately,
as shown in Fig. 7.3, to obtain a near-optimal control of problem (7.15).
Clearly, in the limit as e; and €5 go to 0, the objective function of problem
(7.15) will converge to Ja(us).

G

A
G frmmmmmm e e e e e e e e e
G

= N
Gy e e e N e
u=M
Gy
| S
0 f

Figure 7.3: A near-optimal control of problem (7.15)
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This is an intuitive explanation that there does not exist an opti-
mal control of problem (7.15) in the class of controls discussed thus far.
However, when the class of controls is enlarged to include relaxed or gen-
eralized controls, which are the limits of the approximating controls like
the ones constructed above, we can recover the existence of an optimal
solution; see Gamkrelidze (1978) and Lou (2007) for details.

The manner in which the theory of relaxed controls manifests itself
for our problem is to provide a probability measure on the boundary
values {0, M }. Thus, let v be the probability that control M is used, so
that the probability of using control 0 is (1 —v). With this, we transform
problem (7.15) with 7' = oo as follows:

max 4 s = [ e (@) — ve(M)] di
1o |

velo,1

subject to (7.19)

G =vM -G, G(0) = Gy.
We can now use the maximum principle to solve problem (7.19).
Thus, the Hamiltonian

H =7G —ve(M) + ANvM — 0G)

with the adjoint equation as defined by (7.9) and (7.10). The optimal
control is given by

v* = bang|0, 1; \M — c¢(M)]. (7.20)
The singular control is given by
A=m, 7(G) = (p+d)m, v = 6G/M. (7.21)

The way we interpret this control is by use of a biased coin with the
probability of heads being v. We flip this coin infinitely fast, and use the
maximum control M when heads comes up and the minimum control
0 when tails comes up. Because the control will chatter infinitely fast
according to the outcome of the coin tosses, such a control is also referred
to as a chattering control.

While such a chattering control cannot be implemented, it can be
arbitrarily approximated by using alternately u* = M for 7v periods and
u* =0 for 7(1 — v) periods for a small 7 > 0. With reference to Fig. 7.3
and with G1 and G to be determined for the given 7, this approximate
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policy of rapidly switching the control between M and 0 can be said to
begin at time t1, when the goodwill reaches Gs. After that goodwill goes
up to GG1 and then back down to G3, and so on. The values of G; and
G, corresponding to the given 7, are specified in Exercise 7.8, and you
are asked to derive them.

In marketing parlance, advertising rates that alternate between max-
imum and zero are known as a pulsing policy. While there are other rea-
sons for pulsing that are known in the advertising literature, the convex
cost of advertising is one of them; see Feinberg (1992, 2001) for details.

Another example of relaxed control appears in Haruvy et al. (2003)
in connection with open-source software development. This is given as
Exercise 7.14.

7.2 The Vidale-Wolfe Advertising Model

We now present the analysis of the Vidale-Wolfe advertising model
which, in contrast to the Nerlove-Arrow model, does not make use of
the idea of advertising goodwill; see Vidale and Wolfe (1957) and Sethi
(1973a, 1974b). Instead the model exploits the closely related notion
that the effect of advertising tends to persist, but diminishes over subse-
quent time periods. This carryover effect is modeled explicitly by means
of a differential equation that gives the relationship between sales and
advertising.

Vidale and Wolfe argued that changes in the rate of sales of a prod-
uct depend on two effects: the action of advertising (via the response
constant a) on the unsold portion of the market and the loss of sales (via
the decay constant b) from the sold portion of the market. Let M(t),
known as the saturation level or market potential, denote the maximum
potential rate of sales at time ¢. Let S(t) be the actual rate of sales at
time t. Then, the Vidale-Wolfe model for a monopolistic firm can be
stated as

. S
S =au(l— M) —bS. (7.22)
The important feature of this equation, which distinguishes it from
the Nerlove-Arrow equation (7.1), is the idea of the finite saturation level
M. The Vidale-Wolfe model exhibits diminishing returns to the level of
advertising as a direct consequence of this saturation phenomenon. Note
that when M is infinitely large, the saturation phenomenon disappears,
reducing (7.22) to the equation (with constant returns to advertising)

similar to the Nerlove-Arrow equation (7.1). Nerlove and Arrow, on the
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other hand, include the idea of diminishing returns to advertising in their
model by making the sales S in (7.2) a concave function of goodwill.

Vidale and Wolfe based their model on the results of several experi-
mental studies of advertising effectiveness, which are described in Vidale
and Wolfe (1957).

7.2.1 Optimal Control Formulation for the Vidale-Wolfe
Model

Whereas Vidale and Wolfe offered their model primarily as a description
of actual market phenomena represented by cases which they had ob-
served, we obtain the optimal advertising expenditures for the model in
order to maximize a certain objective function over the horizon T, while
also attaining a terminal sales target; see Sethi (1973a). For this, it is
convenient to transform (7.22) by making the change of variable

S
z=. (7.23)

Thus, x represents the market share (or more precisely, the rate of sales
expressed as a fraction of the saturation level M). Furthermore, we
define

a M
=—,0=b0+—. 7.24
Ve + 7 (7.24)
Now we can rewrite (7.22) as
=ru(l —2x)—ox, x(0) ==x. (7.25)

From now on we assume M, and hence ¢ and r, to be positive con-
stants. It would not be difficult to extend the analysis when M depends
on t, but we do not carry it out here. In Exercise 7.35 you are asked to
partially analyze the time-dependent case.

To define the optimal control problem arising from the Vidale-Wolfe
model, we let m denote the maximum sales revenue corresponding to
x = 1, with 7z denoting the revenue function for z € [0, 1]. Also let @ be
the maximum allowable rate of advertising expenditure and let p denote
the continuous discount rate. With these definitions the optimal control
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problem can be stated as follows:

max{ 7= | . wi}

subject to
t=ru(l —x)—ox, x(0) =z,
the terminal state constraint (7.26)

x(T) = xp,

and the control constraint

\ 0<u<Q.

Here @ can be finite or infinite and the target market share xr is in
[0,1]. Note that the problem is a fixed-end-point problem. It is obvious
that the requirement 0 < x < 1 holds without being imposed, where
xo € [0,1] is the initial market share.

It is possible to solve this problem by an application of the maximum
principle; see Exercise 7.18. However, we will use instead a method based
on Green’s theorem which does not make use of the maximum principle.
This method provides a convenient procedure for solving fixed-end-point
problems having one state variable and one control variable, and where
the control variable appears linearly in both the state equation and the
objective function; see Miele (1962) and Sethi (1977b). Problem (7.26)
has these properties, and therefore it is also a good example with which
to illustrate the method. For the application of Green’s theorem we
require that @ be large. In particular we can let Q) = co.

7.2.2 Solution Using Green’s Theorem When () Is Large

In this section we will solve the fixed-end-point problem starting with x
and ending with x7, under the assumption that @ is either unbounded
or very large. The places where these assumptions are needed will be
indicated.

To make use of Green’s theorem, it is convenient to consider times 7
and 0, where 0 <7 < 6 < T, and the problem:

max { J(1,0) = /T ’ e P (rx — u)dt } (7.27)
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subject to

t=ru(l—x)—dx, x(r)=A4, z(0) =B, (7.28)

0<u<@Q. (7.29)

To change the objective function in (7.27) into a line integral along any
feasible arc I'y from (7, A) to (6, B) in (¢, x)-space as shown in Fig. 7.4,
we multiply (7.28) by dt and obtain the formal relation

udt — dr + (5a:dt7
r(l—z)

which we substitute into the objective function (7.27). Thus,

Jr, = /F 1 { [m: - 1”(15fm)} ePtdt — T(ll_x)eptda:} .

X
A
1
I,
B (0.B)
R
A
(r,A) I
> ¢

0 T 0 T

Figure 7.4: Feasible arcs in (¢, x)-space

Consider another feasible arc I's from (7, A) to (0, B) lying above I'y
as shown in Fig.7.4. Let I' =T'; — I'9, where I" is a simple closed curve
traversed in the counter-clockwise direction. That is, I' goes along I'; in
the direction of its arrow and along I's in the direction opposite to its
arrow. We now have

Jr = JF1—F2 = JF1 — JFQ. (7.30)
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Since I' is a simple closed curve, we can use Green’s theorem to
express Jr as an area integral over the region R enclosed by I'. Thus,
treating x and t as independent variables, we can write

b= e el
- [14GL T—ZJ - g |t e e
_ // [ ot _x) - m} e;ptdtdx. (7.31)

Denote the term in brackets of the integrand of (7.31) by

1) = _‘Sx)Q +a P 5o (7.32)

Note that the sign of the integrand is the same as the sign of I(z).

Lemma 7.1 (Comparison Lemma) Let 'y and 'y be the lower and
upper feasible arcs as shown in Fig.7.4. If I(x) > 0 for all (z,t) €
R, then the lower arc 'y is at least as profitable as the upper arc T's.
Analogously, if I(x) < 0 for all (z,t) € R, then Iy is at least as profitable
as I'y.

Proof If I(z) > 0 for all (z,t) € R, then Jr > 0 from (7.31) and (7.32).
Hence from (7.30), Jr, > Jr,. The proof of the other statement is similar.
g

To make use of this lemma to find the optimal control for the problem
stated in (7.26), we need to find regions where I(x) is positive and where
it is negative. For this, note first that I(x) is an increasing function of
x in [0, 1]. Solving I(z) = 0 will give that value of x, above which I(x)
is positive and below which I(z) is negative. Since I(z) is quadratic in
1/(1 — z), we can use the quadratic formula (see Exercise 7.16) to get

26
x=1- . (7.33)

—p+/p?+4mrd

To keep x in the interval [0, 1], we must choose the positive sign before
the radical. The optimal x must be nonnegative so we have

(7.34)

20
z® =max<1— 00,
{ —p 4/ p? +4mrd }
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where the superscript s is used because this will turn out to be a singular
trajectory. Since x® is nonnegative, the control
s o0x°

u’® = m (7.35)
corresponding to (7.34) will always be nonnegative. Also since @ is as-
sumed to be large, ©® will always be feasible. Moreover, in Exercise 7.17,
you will be asked to show that z* = 0 and v®* = 0 if, and only if,
wr < 6+ p.

We now have enough machinery to obtain the optimal solution for
(7.26) when @ is assumed to be sufficiently large, i.e., @ > u®, where u® is
given in (7.35). We state these in the form of two theorems: Theorem 7.1
refers to the case in which T is large; Theorem 7.2 refers to the case in
which T is small. To define these concepts, let ¢; be the shortest time
to go from zg to x® and similarly let 5 be the shortest time to go from

1

xS - ; > ‘ -
//' =0
o d=0 | |

t

1

T—t T
Figure 7.5: Optimal trajectory for Case 1: zg < 2° and zp < 2°

xz® to xp. Then, we say T is large if T' > t1 + to; otherwise T' is small.
Figures 7.5, 7.6, 7.7, and 7.8 show cases for which T is large, while
Figs. 7.10 and 7.11 show cases for which 7' is small. In Exercise 7.21 you
are asked to determine whether T is large or small in specific cases. In
the statements of the theorems we will assume that zg and x7 are such
that z7 is reachable from xg. In Exercise 7.15 you are asked to find the
reachable set for any given initial condition xg.

In Figures 7.5, 7.6, 7.7, and 7.8, the quantities ¢; and ts are case
dependent and not necessarily the same; see Exercise 7.20.
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Theorem 7.1 Let T be large and let x7 be reachable from xo. For the
Cases 1-4 of inequalities relating xo and 1 to x°, the optimal trajectories
are given in Figures 7.5, 7.6, 7.7, and 7.8, respectively.

Proof We give details for Case 1 only. The proofs for the other cases
are similar. Figure 7.9 shows the optimal trajectory for Fig. 7.5 together
with an arbitrarily chosen feasible trajectory, shown dotted. It should
be clear that the dotted trajectory cannot cross the arc xzg to C, since
u = @ on that arc. Similarly the dotted trajectory cannot cross the arc
G to 7, because u© = 0 on that arc.

We subdivide the interval [0, 7] into subintervals over which the dot-
ted arc is either above, below, or identical to the solid arc. In Fig.7.9

1
> X,
u*=us w=9Q
x§ pooe ’ > *
Xo i i
0 t T—1t T

Figure 7.6: Optimal trajectory for Case 2: zg < z° and xzp > x°

1

T

(e}
_t
~
I
[N

Figure 7.7: Optimal trajectory for Case 3: zg > ° and zp < x°
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1
Xo ¢ u*:O » X
u*=Q
u*=us
x$ B
0 f T-1t, T

Figure 7.8: Optimal trajectory for Case 4: zg > z® and zp > z°

these subintervals are [0,d], [d, €], [e, f], and [f,T]. Because I(z) is pos-
itive for z > x® and I(z) is negative for x < z*, the regions enclosed
by the two trajectories have been marked with a 4+ or — sign depending
on whether I(z) is positive or negative on the regions, respectively. By
Lemma 7.1, the solid arc is better than the dotted arc in the subintervals
[0,d], [d,e], and [f,T]; in interval [e, f], they have identical values. Hence
the dotted trajectory is inferior to the solid trajectory. This proof can
be extended to any (countable) number of crossings of the trajectories;
see Sethi (1977b). O

Figures 7.5, 7.6, 7.7, and 7.8 are drawn for the situation when T >
t1 + to. In Exercise 7.25, you are asked to consider the case when T =
t1 + to. The following theorem deals with the case when T < t1 + to.

Theorem 7.2 LetT be small, i.e., T < t1+1t9, and let xp be reach- able
from xg. For the two possible Cases 1 and 2 of inequalities relating xg
and xp to x°, the optimal trajectories are given in Figs.7.10 and 7.11,
respectively.

Proof The requirement of feasibility when T is small rules out cases
where x¢ and xp are on opposite sides of or equal to x°. The proofs of
optimality of the trajectories shown in Figs.7.10 and 7.11 are similar to
the proofs of the parts of Theorem 7.1, and are left as Exercise 7.25. In
Figs. 7.10 and 7.11, it is possible to have either t; > T or to > T. Try
sketching some of these special cases. O

All of the previous discussion has assumed that ) was finite and
sufficiently large, but we can easily extend this to the case when @) = oc.
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xS

Xo

0

Figure 7.9: Optimal trajectory (solid lines)

u*=Q

T—1,

I T

Figure 7.10: Optimal trajectory when T is small in Case 1: z¢p < z° and

xzp >

This possibility makes the arcs in Figs. 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10,
corresponding to u* = (), become vertical line segments corresponding to
impulse controls. For example, Fig. 7.6 becomes Fig. 7.12 when @) = oo
and we apply the impulse control imp(zg, z°;0) when z¢ < z°.

Next we compute the cost of imp(zg,z®;0) by assessing its effect
on the objective function of (7.26). For this, we integrate the state
equation in (7.26) from 0 to € with the initial condition o and u treated
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Figure 7.11: Optimal trajectory when T is small in Case 2: z¢ > z° and

T >

A
1
} R
Impulse
L= S Control
g >
Impulse
Control
Xo @
» ¢
0 T

Figure 7.12: Optimal trajectory for Case 2 of Theorem 7.1 for Q) = ¢
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as constant. By using (A.7), we can write the solution as

J}(z’f) _ xoe—((S-ﬁ-ru)a +/ e(ﬁ-i—ru)(r—a)rud,r
0
_ . U —(6+ru)e U
<:1:0 (5+ru>e +<5+7“u'

According to the procedure given in Sect. 1.4, we must, for u, choose
u(e) so that x(e) is . It should be clear that u(e) — oo as e — 0. With
F(z,u,7) =mx(7) —u(r) and ¢t = 0 in (1.23), we have the impulse
I=i 5:0) = lim[—u(e)e].
imp (o, 2°;0) = lim[~u(e)e]

It is possible to solve for I by letting ¢ — 0, —u(e)e — I, u(e) — oo, and
x(g) = z* in the expression for z(¢) obtained above. This gives

2(04) = e (xg — 1) + 1.
Therefore,

1
imp(zg,2%;0) = ——1In [
r

1-— i)

: 7.36
=1 (7.36)
We remark that this formula holds for any time ¢, as well as t = 0. Hence
it can also be used at t = T to compute the impulse at the end of the

period; see Fig. 7.12 and Exercise 7.28.

7.2.3 Solution When () Is Small

When @ is small, it is not possible to go along the turnpike x*, so the
arguments based on Green’s theorem become difficult to apply. We there-
fore return to the maximum principle approach to analyze the problem.
By “@ is small” we mean @ < u®, where u® is defined in (7.35). An-
other characterization of the phrase “@Q) is small” in terms of the problem
parameters is given in Exercise 7.30.

We now apply the current-value maximum principle (3.42) to the
fixed-end-point problem given in (7.26). We form the current-value
Hamiltonian as

H = 7mz—u+ Aru(l—zx)—dz]
= 7z — 0 r+u[-1+7rA(1 -2z, (7.37)

and the Lagrangian function as

L=H+ puQ —u). (7.38)
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The adjoint variable X\ satisfies

: L
)\:p)\—g—x:p)mt)\(ru—l—é)—w, (7.39)

where A\(T') is a constant, as in Row 2 of Table 3.1, that must be deter-
mined. Furthermore, the Lagrange multiplier p in (7.38) must satisfy

>0, u(@—u)=0. (7.40)

From (7.37) we notice that the Hamiltonian is linear in the control. So
the optimal control is

u*(t) = bang[0, Q; W(t)], (7.41)

where

W(t) = W(a(t), \(t) = rA(t)(1 — z(t)) — 1. (7.42)

We remark that the sufficiency conditions of Sect.2.4, which require
concavity of the derived Hamiltonian H®, do not apply here; see Exer-
cise 7.33. However, the sufficiency of the maximum principle for this
kind of problem has been established in the literature; see, for example,
Lansdowne (1970).

When W = rA(1 — z) — 1 = 0, we have the possibility of a singular
control, provided we can maintain this equality over a finite time interval.
For the case when @ is large, we showed in the previous section that the
optimal trajectory contains a segment on which x = z° and v* = u®,
where 0 < u® < Q. (See Exercise 7.30 for the condition that () is small.)
This can obviously be a singular control. Further discussion of singular
control is given in Sect. D.6.

A complete solution of problem (7.26) when @ is small requires a
lengthy switching point analysis. The details are too voluminous to give
here, but an interested reader can find the details in Sethi (1973a).
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7.2.4 Solution When T Is Infinite

In Sects. 7.2.1 and 7.2.2, we assumed that T was finite. We now formulate
the infinite horizon version of (7.26):

max {J _ /OOO e — u)dt}

subject to
(7.43)

z=ru(l —x)—dz, z(0) = xo,

0<u<Q.

We divide the analysis of this problem into the same two cases defined
as before, namely, “Q is large” and “Q is small”.

When @ is large, the results of Theorem 7.1 suggest the solution
when T is infinite. Because of the discount factor, the ending parts of
the solutions shown in Figs. 7.5, 7.6, 7.7, and 7.8 can be shown to be
irrelevant (i.e., the discounted profit accumulated during the interval
(T — t9,T) goes to 0 as T goes to oo0). Therefore, we only have two
cases: (a) g < 2°, and (b) g > x°. The optimal control in Case (a) is
to use u* = @ in the interval [0,¢1) and u* = w® for ¢ > ¢;. Similarly, the
optimal control in Case (b) is to use u* = 0 in the interval [0,¢;) and
u* = u® for t > t.

An alternate way to see that the above solutions give u* = u® for
t >t is to check that they satisfy the turnpike conditions (3.107). To do
this we need to find the values of the state, control, and adjoint variables
and the Lagrange multiplier along the turnpike. It can be easily shown
that x = 2%, u = u®, \* = w/(p+ 6 + ru®), and p® = 0 satisfy the
turnpike conditions (3.107).

When @ is small, i.e., Q < u®, it is not possible to follow the turnpike
x = x°, because that would require u = u*, which is not a feasible control.
Intuitively, it seems clear that the “nearest” stationary path to x® that
we can follow is the path obtained by setting £ = 0 and u = @, the
largest possible control, in the state equation of (7.43). This gives

rQ
T = 7.44
T rQto (744)
and correspondingly we obtain
A= — (7.45)

p+o+1rQ



248 7. Applications to Marketing

by setting u = Q and A = 0 in (7.39) and solving for A.

To find an optimal solution from any given initial g, the approach we
take is to find a feasible path that is “nearest” to z*; See Sethi (1977b) for
further discussion. As we shall see, for zg < z°, such a path is obtained
by using the maximum possible control @ all the way. For xg > z°, the
situation is more difficult. Nevertheless, the following two theorems give
the turnpike as well as the optimal path starting from any given initial
zg. Let us define # and fi such that W(2,A) = 7A(1 — %) — 1 = 0 and
Ly(Z,0, A\, i) = W(z,\) — i = 0. Thus,

1—1/r), (7.46)

n=r\1-2z)—1. (7.47)

Theorem 7.3 When Q is small, the quadruple {Z,Q,\, i} forms a
turnpike.

Proof We show that the turnpike conditions (3.107) hold for the quadru-
ple. The first two conditions of (3.107) are (7.44) and (7.45). By Ex-
ercise 7.31 we know z < &, which, from definitions (7.46) and (7.47),
implies 1 > 0. Furthermore 4 = @, so (7.40) holds and the third con-
dition of (3.107) also holds. Finally because W = p from (7.42) and
(7.47), it follows that W > 0, so the Hamiltonian maximizing condition
of (3.107) holds with w = Q. O

Theorem 7.4 When Q is small, the optimal control at any time 7 > 0
s given by:

(a) If x(1) < &, then u* (1) = Q.
(b) If (1) > &, then u*(t) = 0.

Proof (a) We set A(t) = A for all + > 7 and note that \ satisfies the
adjoint equation (7.39) and the transversality condition (3.99).

By Exercise 7.31 and the assumption that x(7) < Z, we know that
x(t) < z for all t. The proof that (7.40) and (7.41) hold for all ¢ > 7
relies on the fact that x(t) < & and on an argument similar to the proof
of the previous theorem.

Figure 7.13 shows the optimal trajectories when xy < Z for two dif-
ferent starting values of xg, one above and the other below . Note that
in this figure we are always in Case (a) since z(7) < & for all 7 > 0.
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X
A
1
N =0
K,
S \5/‘
X
Xo u'=Q
0

Figure 7.13: Optimal trajectories for z(0) < &

(b) Assume zp > Z. In this case we will show that the optimal trajec-
tory is as shown in Fig.7.14, which is obtained by applying u = 0 until
x = 2 and u = @ thereafter. Using this policy we can find the time #;
at which z(t1) = Z, by solving the state equation in (7.43) with v = 0.
This gives

t = %m % (7.48)

Clearly for t > t;, the policy u = @ is optimal because Case (a)
applies. We now consider the interval [0,¢1], where we set u = 0. Let 7
be any time in this interval as shown in Fig.7.14, and let x(7) be the
corresponding value of the state variable. Then z(7) = 2¢e™%". With

u =0 in (7.39), the adjoint equation on [0,¢;] becomes
A= (p+0)\—

We also know that z(t1) =
we would like to have A(t1)
A(t1) = A and obtain

T. Thus Case (a) applies at time t1, and
= . So, we solve the adjoint equation with

s < ™
A7) = — N | elpo)(r—t1) 1. 4
()= Tt (A= T re (a9

Now, with the values of z(7) and A(7) in hand, we can use (7.42)
to obtain the switching function value W (7). In Exercise 7.34, you are
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<«— Case(b) —> Case(@d) ————— >

Figure 7.14: Optimal trajectory for z(0) > &

asked to show that the switching function W (7) is negative for each 7 in
the interval [0,¢1) and W (¢;) = 0. Therefore by (7.41), the policy u =0
used in deriving (7.48) and (7.49) satisfies the maximum principle. This
policy “joins” the optimal policy after t; because A(t1) = .

In this book the sufficiency of the transversality condition (3.99) is
stated under the hypothesis that the derived Hamiltonian is concave;
see Theorem 2.1. In the present example, this hypothesis does not hold.
However, as mentioned in Sect.7.2.3, for this simple bilinear problem
it can be shown that (3.99) is sufficient for optimality. Because of the
technical nature of this issue we omit the details. O

Exercises for Chapter 7

E 7.1 In Egs. (7.2) and (7.3), assume S(p,G) = 1000 — 5p + 2G and
¢(S) = 5S. Substitute into (7.5) and solve for the optimal price p* in
terms of G.

E 7.2 Derive the optimal monopoly price formula in (7.6) from (7.5).
E 7.3 Derive the equilibrium goodwill level formula (7.12).

E 7.4 Re-solve problem (7.7) with its objective function and the control
constraint replaced by (7.13), and show that the only possible singular
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level of goodwill (which can be maintained over a finite time interval) is
the value G obtained in (7.14).

E 7.5 Show that the total cost of advertising required to go from
Go < G to G instantaneously (by an impulse) is G — Gy.

Hint: Integrate G = u—6G, G(0) = Gy, from 0 to e and equate

G = lim G(e), where the limit is taken as ¢ — 0 and u — oo in such a
way that ue — cost = —imp(Go, G;0). See also the derivation of (7.36).

E 7.6 Assume the effect of the exogenous variable Z(t) is seasonal so
that the goodwill G(t) = 2 + sint. Assume § = 0.1. Sketch the graph
of u(t) = 6G + G, similar to Fig.7.2, and identify intervals in which
maintaining the singular level G(t) is infeasible.

E 7.7 In the Nerlove-Arrow Model of Sects.7.1.1 and 7.1.2, assume
S(p,A,Z) = ap™GPZY and ¢(S) = cS. Show that the optimal sta-
tionary policy gives u/pS = constant, i.e., that the optimal advertising
level is a constant fraction of sales regardless of the value of Z. (Such
policies are followed by many industries.)

E 7.8 Verify that G; and G2, which are shown in Fig. 7.3 for the pulsing
policy derived from solving problem (7.19) as a near-optimal solution of
problem (7.17) with 7' = oo, are given by

M |:1 _ 6—(57'17:| M [e—&'(l—ﬁ) _ 6—(57’]

Gl:? 1—e 97 ’GQ:? 1—e o7

E 7.9 Extend the Nerlove-Arrow Model and its results by introducing
the additional capital stock variable

K =v—~K, K(0)= Ky,

where v is the research expenditure. Assume the new cost function to
be C(S, K). Note that this model allows the firm to manipulate its cost
function. See Dhrymes (1962).

E 7.10 Analyze an extension of a finite horizon Nerlove-Arrow Model
subject to a budget constraint. That is, introduce the following isoperi-

metric constraint: .
/ ue Ptdt = B.
0

Also assume 7(G) = av/G where o > 0 is a constant. See Sethi (1977c).
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E 7.11 Introduce a budget constraint in a different way into the Nerlove-
Arrow model as follows. Let B(t) be the budget at time ¢, and let v > 0
be a constant. Assume B satisfies

B =e " (~u+~G), B(0)= By

and B(t) > 0 for all ¢. Solve only the infinite horizon model. See Sethi
and Lee (1981).

E 7.12 Maximize the present value of total sales in the Nerlove-Arrow

model, i.e.,
o0
max{J:/ e "'pS(p, G)dt}
0

u>0

subject to (7.1) and the isoperimetric profit constraint

/ e [pS(p, ) — O(S) — uldt = 7.
0
See Tsurumi and Tsurumi (1971).

E 7.13 A Logarithmic Advertising Model (Sethi 1975).

(a) With 7r > p+ 4, solve

max {7 = [ " - Wi}

subject to
& =rlogu— dz, x(0) =z,
and the control constraint

u > 1.

(b) Find the value of T' for which the minimum advertising is optimal
throughout, i.e., u*(t) =1, 0 <t <T.

(c) Let T = co. Obtain the long-run stationary equilibrium (Z,a, ).
E 7.14 Let

Q(t) = the quality of the software at time ¢t; Q(0) > 0,
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P(t) = the price of the software at time t; P(t) > 0,
D(P,Q) = the demand; D(P,Q) >0, Dg >0, Dp <0,
g(z) = a decreasing function; g(z) > 0, ¢'(z) <0, ¢"(z) >0,
and g(z) — 0 as © — oo,
p = the discount rate; p > 0,
6 = the obsolescence rate for software quality; § > 0.

Assume that
lim PD(P,Q) =0, for each Q.
P—0

Furthermore, we assume that there is a price that maximizes the revenue
(in the case when there is more than one global maximum, we will choose
the largest of these) and denote it as P™(Q).

We assume that 0 < P™(Q) < oo and define

R(Q) = P™(Q)D(P™(Q), Q).
By the envelope theorem (see Derzko et al. 1984), we have

Rq(Q) = P™(Q)Do(P™(Q), Q) = 0.

In an open-source approach to software development, the improve-
ment in software quality is proportional to the number of volunteer pro-
grammers participating at any point in time. The volunteer program-
mers’ willingness to contribute to software quality is driven by fairness
considerations.

To capture the loss of motivation that results from the profit making
of the firm, we formulate the motivations of the programmers based on
the current or projected future profit of the firm. Then, let g(PD) be
the quality improvement affected by the volunteer programmers. The
optimal dynamic price and quality paths can be obtained by solving the
following problem due to Haruvy et al. (2003):

max {J = / ” e”PDdt},
P(t)>0 0
st.  dQ/dt=g(PD)-4dQ, Q0)= Qo.

Because of the convexity of function g in this case, argue that the problem
would require the inclusion of chattering controls. Then reformulate the
problem as

_ > —rt
0@32{1{:]_/0 e ’UR(Q)dt},
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st dQ/dt = (1 —-v)g(0) +vg(R(Q)) - 6Q, Q(0) = Qo.
Apply the Green’s theorem approach to solve this problem.

E 7.15 For problem (7.26), find the reachable set for a given initial xq
and horizon time 7.

E 7.16 Solve the quadratic equation I(z) = 0, where I(z) is defined in
(7.32), to obtain its solution as shown in (7.33).

E 7.17 Show that both z° in (7.34) and «* in (7.35) are 0 if, and only
if, 7r <9+ p.

E 7.18 For problem (7.26) with 7 > § + p and @ sufficiently large,
derive the turnpike {Z,u, A} by using the maximum principle. Check
to see that ¥ and w correspond, respectively, to = and u® derived by
Green’s theorem. Show that when p = 0, T reduces to the golden path
rule.

E 7.19 Let 2° denote the solution of I(z) = 0 and let A < 2® < B in
Fig. 7.4. Assume that I(x) > 0 for x > 2® and I(x) < 0 for z < z*.
Construct a path I's such that Jr, > Jr, and Jr, > Jr,.

Hint: Use Lemma 7.1.

E 7.20 For the problem in (7.26), suppose x¢ and zp are given and
define z* as in (7.34). Let ¢; be the shortest time to go from zg to x*,
and to be the shortest time to go from x° to xp.

(a) If zg < ® and 2* > x7, show that

where Z = 7Q/(rQ + 0); assume T > z°.

(b) Using the form of the answers in (a), find ¢; and ¢2 when xg > x*
and 2° < xp < Z.

E 7.21 For Exercise 7.20(a), write the condition that 7' is large, i.e.,
T > t1 + to, in terms of all the parameters of problem (7.26).

E 7.22 Perform the following:
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(a) For problem (7.26), assume r = 0.2, 6 = 0.05, p = 0.1, Q =
5, m=2, xop = 0.2 and zr = 0.3. Use Exercises 7.20(a) and 7.21 to
show that T' = 13 is large and T" = 8 is small. Sketch the optimal
trajectories for T'= 13 and T = 8.

(b) Redo (a) when zp = 0.7. Show that both 7' = 13 and T' = 8 are
large.

E 7.23 Prove Theorem 7.1 for Case 3.

E 7.24 Draw four figures for the case T' = t; + ty corresponding to
Figs. 7.5, 7.6, 7.7, and 7.8.

E 7.25 Prove Theorem 7.2.

E 7.26 Sketch one or two other possible curves for the case when T is
small.

E 7.27 An intermediate step in the derivation of (7.36) is to establish
that

19
li et - = lim[— :
lim ; e P ma(t) — u(t)]dt 51_I>I(1)[ u(e)e]
Show how to accomplish this by using the Mean Value Theorem.
E 7.28 Obtain the impulse function, imp(x®, zp; T'), required to take the

state from x*® up to zr instantaneously at time T as shown in Fig.7.12
for the Vidale-Wolfe model in Sect. 7.2.2.

E 7.29 Perform the following:

(a) Re-solve Exercise 7.22(a) with () = co. Show 7" = 10.5 is no longer
small.

(b) Show that 7" > 0 is large for Exercise 7.22(b) when @ = oco. Find
the optimal value of the objective function when T" = 8.

E 7.30 Show that @ is small if, and only if,

7rd

G+t Q0 +rQ)
E 7.31 Perform the following:

> 1.
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(a) Show that z < x® < & when (@ is small, where Z is
defined in (7.46).

(b) Show that £ > z* when @ is large.
E 7.32 Derive (7.48).

E 7.33 Show the derived Hamiltonian H® corresponding to (7.37) and
(7.41) is not concave in x for any given A > 0.

E 7.34 Show that the switching function defined in (7.42) is concave in
t, and then verify that the policy in Fig. 7.14 satisfies (7.41).

E 7.35 In (7.25), assume 7 and § are positive, differentiable functions
of time. Derive expressions similar to (7.31)—(7.35) in order to get the
new turnpike values.

E 7.36 Write the equation satisfied by the turnpike level Z for the model

max {J = / e " (mx — uQ)dt}

subject to
& =ru(l —x)—dz, z(0)=x.
Show that the turnpike reduces to the golden path when p = 0.

E 7.37 Obtain the optimal long-run stationary equilibrium for the fol-
lowing modification of the model (7.26), due to Sethi (1983b):

( [e’e}
max/ e P(mx —u?)dt
0
subject to
(7.50)
T =ruy/(1—x)—dx, zo € [0,1],
u > 0.
In particular, show that the turnpike triple (Z, A, ) is given by
Z)/2 VAR
g= M2 g rAIZZ (7.51)

r2N/2+ 6 2
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and

A= et S o) (752)

Show that the optimal value of the objective function is

ey
J*(ZL‘()) = Axg + i . (7.53)

E 7.38 Consider (7.43) with the state equation replaced by
& =ru(l —z)+ px(l —z) -z, x(0) =z,

where the constant u > 0 reflects word-of-mouth communication between
buyers (represented by x) and non-buyers (represented by (1 —z)) of the
product. Assume @ is infinite for convenience. Obtain the turnpike for
this problem. See Sethi (1974b).

E 7.39 The Ozga Model (Ozga 1960; Gould 1970). Suppose the informa-
tion spreads by word of mouth rather than by an impersonal advertising
medium, i.e., individuals who are already aware of the product inform
individuals who are not, at a certain rate, influenced by advertising ex-
penditure. What we have now is the Ozga model

t=ux(l —x)—ox, z(0)=xo.
The optimal control problem is to maximize
J = /000 e PHm(z) — w(u)]dt
subject to the Ozga model. Assume that 7(x) is concave and w(u) is

convex. See Sethi (1979c) for a Green’s theorem application to this
problem.
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Chapter 8

The Maximum Principle:
Discrete Time

For many purposes it is convenient to assume that time is represented by
a discrete variable, k = 0,1, 2, ..., T, rather than by a continuous variable
t € [0,T]. This is particularly true when we wish to solve a large control
theory problem by means of a computer. It is also desirable, even when
solving small problems which have state or adjoint differential equations
whose solutions cannot be expressed in closed form, to formulate them as
discrete problems and let the computer solve them in a stepwise manner.

We will see that the maximum principle, which is to be derived in
this chapter, is not valid for the discrete-time problem in as wide a
sense as for the continuous-time problem. In fact, we will reduce it to
a nonlinear programming problem and state necessary conditions for its
solution by using the well-known Kuhn-Tucker theorem. In order to
follow this procedure, we have to make some simplifying assumptions
and hence will obtain only a restricted form of the discrete maximum
principle. In Sect. 8.3, we state without proof a more general form of the
discrete maximum principle.

8.1 Nonlinear Programming Problems

We begin by stating a general form of a nonlinear programming prob-
lem. Let x be an n-component column vector, a an r-component col-
umn vector, and b an s-component column vector. Let the functions
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h:E" — E', f:E" - E" and g : E® — E* be continuously dif-
ferentiable. We assume functions f and g to be column vectors with r
and s components, respectively. We consider the nonlinear programming
problem:

max h(z) (8.1)

subject to r equality constraints and s inequality constraints given, re-
spectively, by

flx) = a, (8.2)
8.3

N}
—~
8
~—
v
=

Next we develop necessary conditions, called the Kuhn-Tucker condi-
tions, which a solution z* to this problem must satisfy. We start with
simpler problems and work up to the statement of these conditions for
the general problem in a heuristic fashion. References are given for rig-
orous developments of these results.

In this chapter, whenever we take derivatives of functions, we assume
that those derivatives exist and are continuous. It would be also helpful
to recall the notation developed in Sect. 1.4.

8.1.1 Lagrange Multipliers

Suppose we want to solve (8.1) without imposing constraints (8.2) or
(8.3). The problem is now the classical unconstrained maximization
problem of calculus, and the first-order necessary conditions for its solu-
tion are

he = 0. (8.4)

The points satisfying (8.4) are called critical points. Critical points which
are maxima, minima, or saddle points are of interest in this book. Ad-
ditional higher-order conditions required to determine whether a critical
point is a maximum or a minimum are stated in Exercise 8.2. In an
important case when the function A is concave, condition (8.4) is also
sufficient for a global maximum of h.

Suppose we want to solve (8.1) while imposing just the equality con-
straints (8.2). The method of Lagrange multipliers permits us to obtain
the necessary conditions that a solution to the constrained maximization
problem (8.1) and (8.2) must satisfy. We define the Lagrangian function

L(z,\) = h(z) + A[f(z) — a], (8.5)
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where A is an r-component row vector. The necessary condition for x*
to be a (maximum) solution to (8.1) and (8.2) is that there exists an
r-component row vector A such that (z*, \) satisfy the equations

L, = hg+Afz=0, (8.6)
Ly = f(x)—a=0. (8.7)

Note that (8.7) states simply that z* is feasible according to (8.2).

The system of n + r Egs. (8.6) and (8.7) has n 4+ r unknowns. Since
some or all of the equations are nonlinear, the solution method will, in
general, involve nonlinear programming techniques, and may be difficult.
In other cases, e.g., when h is linear and f is quadratic, it may only
involve the solution of linear equations. Once a solution (z*, ) is found
satisfying the necessary conditions (8.6) and (8.7), the solution must still
be checked to see whether it satisfies sufficient conditions for a global
maximum. Such sufficient conditions will be stated in Sect. 8.1.4.

Suppose (z*,\) is in fact a solution to equations (8.6) and (8.7).
Note that #* depends on a and we can show this dependence by writing
x* = z*(a). Now h* = h*(a) = h(z*(a)) is the optimum value of the
objective function. By differentiating h*(a) with respect to a and using
(8.6), we obtain

dz* dz*
hy =hy— = —Afg—.
@ da f da
But by differentiating (8.7) with respect to a at x = z*(a), we get
dz*
;= 17
J da
and therefore we have
hy =—A\. (8.8)

We can see that the Lagrange multipliers have an important managerial
interpretation, namely, )\; is the negative of the imputed value or shadow
price of having one unit more of the resource a;. In Exercise 8.4 you are
asked to provide a proof of (8.8).

Example 8.1 Consider the two-dimensional problem:
max{h(z,y) = 2 -y}
subject to

2z +y = 10.
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Solution We form the Lagrangian

The necessary conditions for an optimal solution (z*,y*) are that
(z*,y*, \) satisfy the equations

L, = —2x+2\=0,
Ly, = —2y+A=0,
Ly = 2x+y—-10=0.

From the first two equations we get A = x = 2y. Solving this with the
last equation yields the quantities

=4, y" =2, A=4, h¥ = =20,

which can be seen to give a maximum value to h, since h is concave
and the constraint set is convex. The interpretation of the Lagrange
multiplier A = 4 can be obtained to verify (8.8) by replacing the constant
10 by 10 + € and expanding the objective function in a Taylor series; see
Exercise 8.5.

8.1.2 Equality and Inequality Constraints

Now suppose we want to solve the problem defined by (8.1)—(8.3). As
before, we define the Lagrangian

L(z, A, p) = h(x) + Alf () — a] + plg(z) —b]. (8.9)

The Kuhn-Tucker necessary conditions for this problem cannot be as
easily derived as for the equality-constrained problem in the preceding
section. We will write them first, and then give interpretations to make
them plausible. The necessary conditions for z* to be a solution of (8.1)—
(8.3) are that there exist an r-dimensional vector A and an s-dimensional
row vector u such that

Ly =hy+ Ao + 1492 0, (8.10)
f a, (8.11)

g > b (8.12)

0. (8.13)

w=>0, u(g—>)



8.1. Nonlinear Programming Problems 263

Note that g is appended in (8.10) in the same way f is appended in
(8.6). Also (8.12) repeats the inequality constraint (8.3) in the same way
that (8.11) repeats the equality constraint (8.2). However, the conditions
in (8.13) are new and particular to the inequality-constrained problem.
We will see that they include some of the boundary points of the feasible
set of points as well as unconstrained maximum solution points, as can-
didates for the solution to the maximum problem. This is best brought
out by examples.

Example 8.2 Solve the problem:
max{h(z) = 8z — x?}
subject to
x > 2.
Solution We form the Lagrangian
L(z, p) = 8z — 2% + p(z — 2).

The necessary conditions (8.10)—(8.13) become

L,=8—-2z+ =0, (8.14)
z—2>0, (8.15)
w>0, plx—2)=0. (8.16)

Observe that the constraint pu(z —2) = 0 in (8.16) can be phrased as:
either ;. = 0 or x = 2. We treat these two cases separately.

Case 1: p = 0. From (8.14) we get x = 4, which also satisfies (8.15).
Hence, this solution, which makes h(4) = 16, is a possible candidate for
the maximum solution.

Case 2: = = 2. Here from (8.14) we get ;1 = —4, which does not satisfy
the inequality © > 0 in (8.16).

From these two cases we conclude that the optimum solution is z* = 4
and h* = h(z*) = 16.
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Example 8.3 Solve the problem:
max{h(z) = 8z — 2}

subject to

x > 0.
Solution The Lagrangian is
L(z, 1) = 8z — 2% + p(z — 6).

The necessary conditions are

L,=8-2zx+pu = 0, (8.17)
x—6 > 0, (8.18)
w>0, u(x—6) = 0. (8.19)

Again, the condition p(z — 6) = 0 is an either-or relation which gives
two cases.

Case 1: = 0. From (8.17) we obtain x = 4, which does not satisfy
(8.18), so this case is infeasible.

Case 2: z = 6. Obviously (8.18) holds. From (8.17) we get © = 4, so
(8.19) holds as well. The optimal solution is then

¥ =6, h* = h(z*) = 12,
since it is the only solution satisfying the necessary conditions.

The examples above involve only one variable, and are relatively
obvious. The next example, which is two-dimensional, will reveal more
of the power and the difficulties of applying the Kuhn-Tucker conditions.

Example 8.4 Find the shortest distance between the point (2,2) and
the upper half of the semicircle of radius one with its center at the origin,
shown as the curve in Fig.8.1. In order to simplify the calculation, we
minimize h, the square of the distance. Hence, the problem can be stated
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as the following nonlinear programming problem:
max {~h(z,y) = —(z — 2)? — (y - 2)%}

subject to

y > 0.

The Lagrangian function for this problem is
L=—(x—-2%—(y—22+X2*+v*— 1)+ uy. (8.20)

The necessary conditions are

—2(x—2)+2\z =0, (8.21)
—2(y—2)+2\y+p=0, (8.22)
2242 —-1=0, (8.23)
y =0, (8.24)
>0, py=0. (8.25)

First, we conclude that A # 0, since otherwise A\ = 0 would imply
x = 2 from (8.21), which would contradict (8.23). Next, from (8.25) we
conclude that either ;4 = 0 or y = 0. If 4 = 0, then from (8.21) and (8.22),
we get = y. Solving the equation z = y together with 22 +y? = 1 gives:

(a) (1/v/2,1/4/2) and h = —(9 — 41/2).

If y = 0, then solving with 22 + 32 = 1 gives:
(b) (1,0) and h = —5,
(¢) (=1,0) and h = —13.

These three points are shown in Fig.8.1. Of the three points found that
satisfy the necessary conditions, clearly the point (1/v/2,1/+/2) found in
(a) is the nearest point and solves the closest-point problem. The point
(—1,0) in (c) is in fact the farthest point; and the point (1,0) in (b)
is neither the closest nor the farthest point. The associated multiplier
values can be easily computed, and these are: (a) A = 1 —2v/2, p = 0;
(b)) A\=—1, p=4;and (¢c) A\ =3, p=4.
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Y

Closest
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(-1,0) (1,0)

Figure 8.1: Shortest distance from point (2,2) to the semicircle

The fact that there are three points satisfying the necessary condi-
tions, and only one of them actually solves the problem at hand, empha-
sizes that the conditions are only necessary and not sufficient. In every
case it is important to check the solutions to the necessary conditions to
see which of the solutions provides the optimum.

Next we work two examples that show some technical difficulties that
can arise in the application of the Kuhn-Tucker conditions.

Example 8.5 Consider the problem:

max{h(z,y) =y} (8.26)
subject to
1-y?P—-2" > 0, (8.27)
x > (8.28)
> (8.29)

The set of points satisfying the constraints is shown shaded in Fig. 8.2.
From the figure it is obvious that the solution point (0,1) maximizes the
value of y.

Hence, the optimum solution is (z*,y*) = (0,1) and h* = 1. Let us
see if we can find it using the above procedure. The Lagrangian is

L=y+A(1—y)® =2 + pz + vy, (8.30)
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(0, 0) 1, 0)

Figure 8.2: Graph of Example 8.5

so that the necessary conditions are

L, = —2zA+pu=0, (8.31)
L, = 1-3\1-y)?+v=0, (8.32)
A > 0, M(1—-9y)P -2 =0, (8.33)
pw > 0, pz =0, (8.34)
v > 0, vy=0, (8.35)

together with (8.27)—(8.29). Let us check if these conditions hold at the
point (0,1). At y = 1, the constraint y > 0 is not active, and we have
v =0. With v = 0 and y = 1, (8.32) cannot be satisfied.

The reason for failure of the method in Example 8.5 is that the con-
straints do not satisfy what is called the constraint qualification. A com-
plete study of the topic is beyond the scope of this book, but we state
in the next section a constraint qualification sufficient for our purposes.
For further information, see Mangasarian (1969).

8.1.3 Constraint Qualification

Example 8.5 shows the need for imposing some kind of condition to rule
out features such as the cusp at (0,1) in Fig. 8.2 on the boundary of the
constraint set. One way to accomplish this is to assume that the gradi-
ents of the equality constraints and of the active inequality constraints at
the candidate point under consideration are linearly independent. Equiv-
alently, we say that the constraints (8.2) and (8.3) satisfy the constraint
qualification at x if the following full-rank condition holds at z, that is,

dg/0x diag(g
rank / (9) =min(s +r,s +n), (8.36)

of/ox 0
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where dg/0x and 0f /0x are s x n and 7 x n gradient matrices, respect-
fully, as defined in Sect. 1.4.3, the notation diag(g) refers to the diagonal
s X s matrix

g 0 - 0
0 ¢go - 0
0 0 - g,

and therefore the matrix in (8.36) is an (s 4+ r) x (s + n) matrix.

Let us now return to Example 8.5 and examine whether the con-
straints (8.27)—(8.29) satisfy the constraint qualification at point (0,1).
In this example, s = 3, r = 0 and n = 2, and the matrix in (8.36) is

—2r —3(1-y)? (1—-y3—-22 0 0 00000
1 0 0 z 0[=]10000
0 1 0 0y 01001

at point (z,y) = (0,1). It has a null vector in the first row, and therefore
its rows are not linearly independent; see Sect.1.4.10. Thus, it does
not have a full rank of three, and the condition (8.36) does not hold.
Alternatively, note that the inequality constraints (8.27) and (8.28) are
active at point (x,y) = (0, 1), and their respective gradients (—2z, —3(1—
y)?) = (0,0) and (1,0) at that point are clearly not linearly independent.

8.1.4 Theorems from Nonlinear Programming

In order to derive our version of the discrete maximum principle, we
use two well-known results from nonlinear programming. These provide
sufficient and necessary conditions for the problem given by (8.1)—(8.3).
The Lagrangian function for this problem is

Lz, A\ p) = h + A(f(x) —a) + p(g(z) —b), (8.37)

where A and p are row vectors of multipliers associated with the con-
straints (8.2) and (8.3), respectively. We now state two theorems whose
proofs can be found in Mangasarian (1969).
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Theorem 8.1 (Necessary Conditions) If h, f, and g are differen-
tiable, =* solves (8.1)-(8.3), and the constraint qualification (8.36) holds
at x*, then there exist multipliers X and p such that (z*,\, u) satisfy the
Kuhn-Tucker conditions

Lo(x, A 1) = he(27) + Mo (2") + pgz(z*) = 0, (8.38)
f(z*) = a, (8.39)

g(z®) > b, (8.40)

p=0, plg(x™) —b) = 0, (8.41)

Theorem 8.2 (Sufficient Conditions) If h, f, and g are differen-
tiable, f is affine, g is concave, and (x*,\, ) satisfy the conditions

(8.38)—(8.41), then x* is a solution to the mazimization problem (8.1)—
(8.3).

8.2 A Discrete Maximum Principle

We will now use the nonlinear programming results of the previous sec-
tion to derive a special form of the discrete maximum principle. Some
references in this connection are Luenberger (1972), Mangasarian and
Fromovitz (1967), and Ravn (1999). A more general discrete maximum
principle will be stated in Sect. 8.3.

8.2.1 A Discrete-Time Optimal Control Problem

In order to state a discrete-time optimal control problem over the periods
0,1,2,...,T, we define the following;:

© = theset{0,1,2,...,7 -1},

¥ = an n-component column state vector; k=0,1,...,T,

v = an m-component column control vector; k=0,1,2,...,T — 1,
v = an s-component column vector of constants; k=0,1,...,T—1.

Here, the state z* is assumed to be measured at the beginning of
period k and control u* is implemented during period k. This convention
is depicted in Fig. 8.3.
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Figure 8.3: Discrete-time conventions

We also define continuously differentiable functions f : E™ x E™ x
© - E", F:E"xE"x0 = E' g: E"x0 — E* and S :
E™x©U{T} — EL.

Then, a discrete-time optimal control problem in the Bolza form (see
Sect.2.1.4) is:

T-1
max {J =Y F(a"u" k) + S@a", T)} (8.42)

k=0

subject to the difference equation
Axh = ghtl — gk = f(xk,uk, k), k=0,...,T —1, 2° given,  (8.43)
and the constraints
gk k) > vk k=0,....,T—1. (8.44)

In (8.43) the term AxF = zF*1 — ¥ is known as the difference operator.

This problem is clearly a special case of the nonlinear programming
problem (8.1)—(8.3) with z = (2!, 22,..., 2T v !, ... uT~1) as the (n+
m)T vector of variables, nT equality constraints (8.43), and sT" inequality
constraints (8.44).

8.2.2 A Discrete Maximum Principle

We now apply the nonlinear programming theory of Sect.8.1 to find
necessary conditions for the solution to the Mayer form of the control
problem of Sect. 8.2.1.

We let A¥F! be an n-component row vector of Lagrange multipliers,
which we rename adjoint variables and associate with Eq. (8.43). Sim-
ilarly, we let i* be an s-component row vector of Lagrange multipliers
associated with constraint (8.44). These multipliers are defined for each
time kK =0,...,7 — 1.
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The Lagrangian function of the problem is

T—1 T—1
L=> F(*u* k) +S@",T) + > MHfEk uh k) — a5 4 2]
k=0 k=0
T—1
- 1Fg(uk, k) — ). (8.45)
k=0

We now define the Hamiltonian function H* to be

H* = H(aF uF k) = F(2®,u® k) + N (2, uP k). (8.46)
Using (8.46) we can rewrite (8.45) as
T—-1
L=S",T) + Y [HF = NH(F! —oh)]

k=0
T-1

+ > g k) = bY). (8.47)
k=0

We can now apply the Kuhn-Tucker conditions (8.38)—(8.41). Con-
ditions (8.39) and (8.40) in this case give (8.43) and (8.44), respectively.
Application of (8.38) results in (8.48)—(8.50) below and application of
(8.41) gives the complimentary slackness conditions (8.51) below.

By differentiating (8.47) with respect to x* for k = 1,2,...,7 — 1,
we obtain

oL  oH*
= _ 7 )\k )\k‘-f—l -0
oxk  Oxk + ’
which upon rearranging terms becomes
OHF
ANE = NP Nk =0,1,...,T 1. 8.48
awk ) 9 ) ) ( )
By differentiating (8.47) with respect to z”, we get
oL oS a8
== _\Nr'—p A= 8.49
oxT 92T o oxT (849)

The difference equations (8.48) with terminal boundary conditions (8.49)
are called the adjoint equations.

By differentiating L with respect to u* and stating the corresponding
Kuhn-Tucker conditions for the multiplier ;% and constraint (8.44), we

have 3
pr— pr— 0
ouk  Ouk T ouk

or
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OHF dg
o = M G (8.50)
and
pk >0, pFlg(u® k) — ¥ =0. (8.51)

We note that, provided H” is concave in u*, g(u¥, k) is concave in u*, and

the constraint qualification holds, then conditions (8.50) and (8.51) are
precisely the necessary and sufficient conditions for solving the following
Hamiltonian maximization problem:

max H*
uk

subject to (8.52)
g(uf k) > bk

We have thus derived the following restricted form of the discrete maxi-
mum principle.

Theorem 8.3 If for every k, H" in (8.46) and g(u*, k) are concave in
u®, and the constraint qualification holds, then the necessary conditions
for u** k = 0,1,...,T — 1, to be an optimal control for the problem

(8.42)(8.44), with the corresponding state x**, k =0,1,..., T, are

Azk* = f(ab* uF* k), 20 given,

k _ _9H*[ ks o kx yk+1 T _ 9SET*T
AN __&Ek[x *aU*7>\+7k]7)\ - ((%cT )7

HF (b ub* XL k) > HF (2h ub, A k),

for all u* such that g(u* k) >0b¥, k=0,1,...,7 — 1.
(8.53)

\

Section 8.2.3 gives examples of the application of this maximum prin-
ciple (8.53). In Sect. 8.3 we state a more general discrete maximum prin-
ciple.

8.2.3 Examples

Our first example will be similar to Example 2.4 and it will be solved
completely. The reader will note that the solutions of the continuous
and discrete problems are very similar. The second example is a discrete
version of the production-inventory problem of Sect. 6.1.
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Example 8.6 Consider the discrete-time optimal control problem:

:Tfl_l -
max < J Z 2(33) (8.54)
k=1

subject to
Ak =uF 20 =5, 8.55)
ub e Q=[-1,1]. (8.56)
We will solve this problem for T'=6 and T > 7.
Solution The Hamiltonian is
H = —%(xk)Q AR (8.57)

from which it is obvious that the optimal policy is bang-bang. Its form
is

1 if AP >0,
uk* = bang[—1, 1; )\k—H] =4 singular if A1 =0, (8.58)
—1 if AFFL < 0.
Let us assume, as we did in Example 2.4, that \¥ < 0 as long as z¥
is positive so that u¥ = —1. Given this assumption, (8.55) becomes
AzF = —1, whose solution is
2 = —k+5for k=1,2,...,T—1. (8.59)

By differentiating (8.57), we obtain the adjoint equation

oH*
- axk xh*

Let us assume T = 6. Substitute (8.59) into (8.60) to obtain

ANF = =zF AT = 0. (8.60)

AN = —k+5, A®=0.

From Sect. A.5, we find the solution to be

1 11
PUES —§k:2 + 5kt
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where ¢ is a constant. Since A® = 0, we can obtain the value of ¢ by
setting £ = 6 in the above equation. Thus,

1 11
so that 1 1
PLE —518 + 5k 15. (8.61)

A sketch of the values for A¥ and z* appears in Fig.8.4. Note that
A5 = 0, so that the control u* is singular. However, since z* = 1 we
choose u* = —1 in order to bring z° down to 0.

The solution of the problem for T" > 7 is carried out in the same
way that we solved Example 2.4. Namely, observe that 2°* = 0 and
A° = A% = 0, so that the control is singular. We simply make A\¥ = 0 for
k > 7 so that v** = 0 for all k > 7. It is clear without a formal proof
that this maximizes (8.54).

Example 8.7 Let us consider a discrete version of the production-
inventory example of Sect.6.1; see Kleindorfer et al. (1975). Let I*,
P% and S* be the inventory, production, and demand at time k, respec-
tively. Let I be the initial inventory, let I and P be the goal levels of
inventory and production, and let h and ¢ be inventory and production
cost coefficients. The problem is:

T—1
1 R
J = - Pk — P)? 8.62
g}%{ Z;] 5 )2+ c( ) ]} (8.62)
subject to
AP =PF—SF k=0,1,...,T — 1, I° given. (8.63)

Form the Hamiltonian

HY = —S[(I" = 1)* + o(P* = P*]+ MY (PR = 5%), (8.64)

= =n(I*—1), AT =0. (8.65)
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Figure 8.4: Optimal state 2*" and adjoint A\*

To maximize the Hamiltonian, let us differentiate (8.64) to obtain

OHk

W:—C(Pk—_ﬁ)+)\k+1:0

Since production must be nonnegative, we obtain the optimal production
as
P = max[0, P + A1/ (8.66)

Expressions (8.63), (8.65), and (8.66) determine a two-point bound-
ary value problem. For a given set of data, it can be solved numerically
by using spreadsheet software like Excel; see Sect. 2.5 and Exercise 8.21.
If the constraint P* > 0 is dropped it can be solved analytically by the
method of Sect. 6.1, with difference equations replacing the differential
equations used there.
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8.3 A General Discrete Maximum Principle

For the maximum principle (8.53) we assumed that H* and g were con-
cave in uy so that the set of admissible controls was convex. These are
fairly strong assumptions which will now be relaxed and a general max-
imum principle stated. The proof can be found in Canon et al. (1970).
Other references on discrete maximum principles are Halkin (1966) and
Holtzman (1966). The problem to be solved is:

T-1
maX{J ZF:L’ uF k‘} (8.67)
k=0

subject to

NAzF = f(a:k,uk,k:), z¥ given
ub e Qp, k=0,1,...,(T —1). (8.68)

Assumptions required are:

(i) F(z* u* k) and f(2* u”, k) are continuously differentiable in z*

for every u* and k.

(ii) The sets {—F(z, Q% k), f(z,QF, k)} are b-directionally convex for
every x and k, where b = (—1,0,...,0). That is, given v and w in
QF and 0 < A < 1, there exists u()\) € Q¥ such that

F(z,u(N), k) > AF(x,v,k) + (1 = \)F(z,w, k)

and
flzyu(N), k) = Af(z,0,k) + (1 — A) f(z,w, k)

for every x and k. It should be noted that convexity implies b-
directional convexity, but not the converse.

(iii) ©QF satisfies the Kuhn-Tucker constraint qualification.

With these assumptions replacing the assumptions of Theorem 8.3,
and since there is no salvage value term in (8.67) meaning that
S(zT,T) = 0, the maximum principle (8.53) with AT = 0 holds with
control constraint set g(u*, k) > b* replaced by u¥ € Q. When the sal-
vage function S(z”,T) is not identically zero, the objective function in
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(8.67) is replaced by the Bolza form objective function (8.42). In Ex-
ercise 8.20, you are asked to convert the problem defined by (8.42) and
(8.68) to its Lagrange form, and then obtain the corresponding assump-
tions on the salvage value function S(z”, T) for the results of this section
to apply. For a fixed-end-point problem, i.e., when 2’ is also given in
(8.68), the more general maximum principle holds with A7 a constant to
be determined. Exercise 8.17 is an example of a fixed-end-point problem.
Finally, when there are lags in the system dynamics, i.e., when the state
of the system in a period depends not only on the state and the control
in the previous period, but also on the values of these variables in prior
periods, it is easy to adapt the discrete maximum principle to deal with
such systems; see Burdet and Sethi (1976). Exercise 8.22 presents an
advertising model containing lags in its sales-advertising dynamics.

Some concluding remarks on the applications of discrete-time optimal
control problems are appropriate. Real-life examples that can be mod-
eled as such problems include the following: payments of principal and
interest on loans; harvesting of crops; production planning for monthly
demands; etc. Such problems would require efficient computational pro-
cedures for their solution. Some references dealing with computational
methods for discrete optimal control problems are Murray and Yakowitz
(1984), Dunn and Bertsekas (1989), Pantoja and Mayne (1991), Wright
(1993), and Dohrmann and Robinett (1999). Another reason that makes
the discrete optimal control theory important arises from the fact that
computers are being used increasingly in the control of dynamic systems.

Finally, Pepyne and Cassandras (1999) have explored an optimal con-
trol approach to treat discrete event dynamic systems (DEDS). They also
apply the approach to a transportation problem, modeled as a polling
system.

Exercises for Chapter 8
E 8.1 Determine the critical points of the following functions:
(a) h(y,z) = —5y* — 22 + 10y + 62 + 27,
(b) h(y,z) = 5y? —yz + 22 — 10y — 182 + 17.
E 8.2 Let h be twice differentiable with its Hessian matrix defined to

be H = hg;. Let T be a critical point, i.e., a solution of h; = 0. Let H;
be the jth principal minor, i.e., the j x j submatrix found in the first j
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rows and the first j columns of H. Let |H;| be the determinant of Hj.
Then, 3" is a local maximum of A if

Hy <0, |Ho| >0, |H3| <O0,...,(-1)"|Hy| = (-1)"|H| >0
evaluated at Z, and T is a local minimum of A if
H, >0, |H2| > 0, |H3| >O,...,|Hn|=|H| >0

evaluated at Z. Apply these conditions to Exercise 8.1 to identify local
minima and maxima of the functions in (a) and (b).

E 8.3 Find the optimal speed in cases (a) and (b) below:

a) During times of an energy crisis, it is important to economize on

During ti ¢ oy crisis, it is i tant t .
fuel consumption. Assume that when traveling = mile/hour in high
gear, a truck burns fuel at the rate of

1 12500
500

— + x] gallons/mile.
x

If fuel costs 50 cents per gallon, find the speed that will minimize
the cost of fuel for a 1000 mile trip. Check the second-order con-
dition.

(b) When the government imposed this optimal speed in 1974, truck
drivers became so angry that they staged blockades on several free-
ways around the country. To explain the reason for these blockades,
we found that a crucial figure was the hourly wage of the truckers,
estimated at $3.90 per hour at that time. Recompute a speed that
will minimize the total cost of fuel and the driver’s wages for the
same trip. You do not need to check for the second-order condition.

E 8.4 Use (8.5)—(8.7) to derive Eq. (8.8).

E 8.5 Verify Eq. (8.8) in Example 8.1 by determining h*(a) and expand-
ing the function ~A*(10 + €) in a Taylor series around the value 10.

E 8.6 Maximize h(z) = (1/3)2 — 622 + 32z + 5 subject to each of the
following constraints:

(a) <6

(b) z < 20.
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E 8.7 Rework Example 8.4 by replacing (2, 2) with each of the following
points:

(a) (07_1>
(b) (1/2,1/2).

E 8.8 Add the equality constraint 22 = y to the problem in Example 8.4
and solve it.

E 8.9 Solve the problem:

max h(z,y)
subject to
{L‘2§ (2_y)37 9207

for (a) h(z,y) =z +y, (b) h(z,y) = = + 2y, and (c) h(z,y) = = + 3y.
Comment on the solution in each of the cases (a), (b), and (c).

E 8.10 Constraint Qualification. Show that the feasible region in two
dimensions, determined by the constraints (1 — z)3 —y >0, 2 > 0, and
y > 0, does not satisfy the constraint qualification (8.36) at the boundary
point (1,0). Also sketch the feasible region to see the presence of a cusp
at point (1,0).

E 8.11 Constraint Qualification. Show that the feasible region in two
dimensions, determined by the constraints 2 +y? < 1, z > 0, and y > 0,
satisfies the constraint qualification (8.36) at the boundary point (1,0).
Also sketch the feasible region to contrast it with that in Exercise 8.10.

E 8.12 Solve graphically the problem of minimizing x subject to the
constraints
1—-2>0, y=>0, a:3—y20.

Show that the constraints do not satisfy the constraint qualification
(8.36) at the optimal point.

E 8.13 Rewrite the maximum principle (8.53) for the special case of the

linear Mayer form problem obtained when F = 0 and S(z7,7T) = cx7,

where ¢ is an n-component row vector of constants.
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E 8.14 Show that the necessary conditions for u* to be an optimal so-
lution for (8.52) are given by (8.50) and (8.51).

E 8.15 Prove Theorem 8.3.

E 8.16 Formulate and solve a discrete-time version of the cash balance
model of Sect.5.1.1.

E 8.17 Minimum Fuel Problem. Consider the problem:
min {J S0 |k |}

subject to

AzF = AzF + buF, 20 and 27 given

kFel[-1,1], k=0,1,...,T —1,

\

where A is a given matrix. Obtain the expression for the adjoint variable
and the form of the optimal control.

E 8.18 Current-Value Formulation. Obtain the current-value formula-
tion of the discrete maximum principle. Assume that r is the discount
rate, i.e., 1/(1 4 r) is the discount factor.

E 8.19 Convert the Bolza form problem (8.42)—(8.44) to the equiva-
lent linear Mayer form; see Sect.2.1.4 for a similar conversion in the
continuous-time case.

E 8.20 Convert the problem defined by (8.42) and (8.68) to its La-
grange form. Then, obtain the assumptions on the salvage value function
S(z”,T) so that the results of Sect. 8.3 apply. Under these assumptions,
state the maximum principle for the Bolza form problem defined by
(8.42) and (8.68).

E 8.21 Use Excel to solve the production planning problem given by
(8.62) and (8.63) with 10 = 1, P=30,1=15 h=c=1,T =8, and
Sk = k3 — 12k + 32k + 30, k = 0,1,2,...,(T — 1). This is a discrete
time version of Example 6.1 so that you can compare your solution with
Fig.6.1.
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E 8.22 An Advertising Model (Burdet and Sethi 1976). Let z* denote
the sale and u*,k =1,2,...,T — 1, denote the amount of advertising in
period k. Formulate the sales-advertising dynamics as

k
NxF = =62k + ’I“Z f,é(xl,ul),xo given,
=0

where § and r are decay and response constants, respectively, and
fL(z!,u!) is a nonnegative function that decreases with z! and increases
with u!. In the special case when

fila!ut) =yt g > 0,

obtain optimal advertising amounts to maximize the total discounted

profit given by
T—1

S (mak — by (14 p)7H,

k=1
where, as in Sect. 7.2.1, m denotes per unit sales revenue, p denotes the
discount rate, and the inequalities 0 < u* < QF represent the restric-
tions on the advertising amount «*. For the continuous-time version of
problems with lags, see Hartl and Sethi (1984b).
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Chapter 9

Maintenance and
Replacement

The problem of simultaneously determining the lifetime of an asset or an
activity along with its management during that lifetime is an important
problem in practice. The most typical example is the problem of opti-
mal maintenance and replacement of a machine; see Rapp (1974) and
Pierskalla and Voelker (1976). Other examples occur in forest manage-
ment, such as in Néslund (1969), Clark (1976), and Heaps (1984), and
in advertising copy management, such as in Pekelman and Sethi (1978).

The first major work dealing with machine replacement problems ap-
peared in 1949 as a MAPI (Machinery and Applied Products Institute)
study by Terborgh (1949). For the most part, this study was confined to
those problems where the optimization was carried out only with respect
to the replacement lives of the machines under consideration. Boiteux
(1955) and Massé (1962) extended the single machine replacement prob-
lem to include the optimal timing of a partial replacement of the machine
before its actual retirement. Néslund (1966) was the first to solve a gen-
eralized version of the Boiteux problem by using the maximum principle.
He considered optimal preventive maintenance applied continuously over
the entire period instead of a single optimal partial replacement before
the machine is retired. Thompson (1968) presented a modification of
Néslund’s model which is described in the following section.

(© Springer Nature Switzerland AG 2019 283
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9.1 A Simple Maintenance and Replacement
Model

Consider a single machine whose resale value gradually declines over
time. Its output is assumed to be proportional to its resale value. By
applying preventive maintenance, it is possible to slow down the rate of
decline of the resale value. The control problem consists of simultane-
ously determining the optimal rate of preventive maintenance and the
sale date of the machine. Clearly this is an optimal control problem with
unspecified terminal time; see Sect. 3.1 and Example 3.6.

9.1.1 The Model

In order to define Thompson’s model, we use the following notation:

T = the sale date of the machine to be determined,
p = the constant discount rate,
xz(t) = the resale value of the machine in dollars at time ¢; let
z(0) = o,
u(t) = the preventive maintenance rate at time ¢ (mainte-

nance here means money spent over and above the
minimum required for necessary repairs),

g(t) = the maintenance effectiveness function at time ¢ (mea-
sured in dollars added to the resale value per dollar
spent on preventive maintenance),

d(t) = the obsolescence function at time ¢ (measured in terms
of dollars subtracted from z at time t),
m = the constant production rate in dollars per unit time

per unit resale value; assume m > p or else it does not
pay to produce.
It is assumed that g(¢) is a nonincreasing function of time and d(t)
is a nondecreasing function of time, and that for all ¢

u(t) € Q=[0,U], (9.1)
where U is a positive constant.
The present value of the machine is the sum of two terms, the dis-

counted income (production minus maintenance) stream during its life
plus the discounted resale value at T*

T
J = / [ra(t) — u(t)]e Ptdt 4+ z(T)e P, (9.2)
0
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The state variable x is affected by the obsolescence factor, the amount
of preventive maintenance, and the maintenance effectiveness function.
Thus,

#(t) = —d(t) + g(t)u(t), (0) = 0. (9.3)

In the interests of realism we assume that
—d(t)+g(t)U <0, t > 0. (9.4)

The assumption implies that preventive maintenance is not so effective
as to enhance the resale value of the machine over its previous values;
rather, it can at most slow down the decline of the resale value, even
when preventive maintenance is performed at the maximum rate U. A
modification of (9.3) is given in Arora and Lele (1970). See also Hartl
(1983b).

The optimal control problem is to maximize (9.2) subject to (9.1)
and (9.3).

9.1.2 Solution by the Maximum Principle

This problem is similar to Model Type (a) of Table 3.3 with the free-
end-point condition as in Row 1 of Table 3.1. Therefore, we follow the
steps for solution by the maximum principle stated in Chap. 3.

The standard Hamiltonian as formulated in Sect. 2.2 is

H = (rz —u)e " + \(—d + gu), (9.5)
where the adjoint variable A\ satisfies
A= —me P, ANT)=e"T. (9.6)

Since T is unspecified, the required additional terminal condition (3.15)
for this problem is
— pePTa(T) = —H, (9.7)

which must hold on the optimal path at time T.
The adjoint variable A can be easily obtained by integrating (9.6),
ie.,

T
At) =e T + / e PTdr = e P14 %[e_pt —e 1. (9.8)
t

The interpretation of A(¢) is as follows. It gives, in present value
terms, the marginal profit per dollar of gain in resale value at time ¢.
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The first term represents the present value of one dollar of additional
salvage value at T' brought about by one dollar of additional resale value
at the current time ¢. The second term represents the present value of
incremental production from ¢ to T brought about by the extra produc-
tivity of the machine due to the additional one dollar of resale value at
time ¢.

Since the Hamiltonian is linear in the control variable u, the optimal
control for a problem with any fixed T is bang-bang as in Model Type
(a) in Table 3.3. Thus,

u*(t) = bang [0, U; {e "1 + E(e_pt —e P Y}g(t) —e P . (9.9)
p
To interpret this optimal policy, we see that the term
{4 2 — e M)l
p

is the present value of the marginal return from increasing the preventive
maintenance by one dollar at time t. The last term e~ in the argument
of the bang function is the present value of that one dollar spent for pre-
ventive maintenance at time ¢. Thus, in words, the optimal policy means
the following: if the marginal return of one dollar of additional preven-
tive maintenance is more than one dollar, then perform the maximum
possible preventive maintenance, otherwise do not perform any at all.

To find how the optimal control switches, we need to examine the
switching function in (9.9). Rewriting it as

e ”gp(t) - (=)o g(t) -1 (9.10)

and taking the derivative of the bracketed terms with respect to ¢, we
can conclude that the expression inside the square brackets in (9.10) is
monotonically decreasing with time ¢ on account of the assumptions that
m/p > 1 and that g(¢) is nonincreasing with ¢ (see Exercise 9.1). It follows
that there will not be a singular control for any finite interval of time.
Furthermore, since e=#* > 0 for all ¢, we can conclude that the switching
function can only go from positive to negative and not vice versa. Thus,
the optimal control will be either U, or zero, or U followed by zero. The
switching time ¢° is obtained as follows: equate (9.10) to zero and solve
for t. If the solution is negative, let ¢* = 0, and if the solution is greater
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than T, let t* = T, otherwise set t* equal to the solution. It is clear that
the optimal control in (9.9) can now be rewritten as

U t<ts,
w*(t) = (9.11)

0 t>1%

Note that all of the above calculations were made on the assumption
that T was fixed, i.e., without imposing condition (9.7). On an optimal
path, this condition, which uses (9.5), (9.7), and (9.8), can be restated
as

et TN T = () — (1)
(9.12)
—e P {=d(T™) + g(T*)u(T™)}.
This means that when v*(7*) =0 (i.e.,t®* < T™), we have
a(T™)
(T = 9.13
r(r) = 45, (9.13)
and when v*(T*) = U (i.e.,t®* = T*), we have
d(r*) —|g(T*) -1

T—p
Since d(t) is nondecreasing, ¢(t) is nonincreasing, and z(t) is non-

increasing, Eq.(9.13) or Eq.(9.14), whichever the case may be, has a
solution for 7.

9.1.3 A Numerical Example

It is instructive to work an example of this model in which specific values
are assumed for the various functions. Examples that illustrate other
kinds of qualitatively different behavior are left as Exercises 9.3-9.5.

Suppose U = 1, z(0) = 100, d(t) = 2, = = 0.1, p = 0.05, and
g(t) =2/(1 4+ t)*/2. Then (9.3) specializes to

2u(t)
VT

First, we write the condition on t* by equating (9.10) to 0, which
gives

B(t) = -2 + , z(0) = 100. (9.15)

7 — (m—p)e Tt = %. (9.16)
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In doing so, we have assumed that the solution of (9.16) lies in the open
interval (0, 7). As we will indicate later, special care needs to be exercised
if this is not the case.

Substituting the data in (9.16) we have

0.1 — 0.05¢~00(T=%*) — 0.025(1 + ¢%)'/2,
which simplifies to
(14 t5)1/2 = 4 — 2¢7005(T—) (9.17)
Then, integrating (9.15), we find
a(t) = =2t +4(1 4+ )2 + 96, if t < ¢°,
and hence

w(t) = —20°+4(1 4152 496 — 2(t — t°)
A1+ t%)2 496 —2t, if t > t°.

Since we have assumed 0 < t* < T, we substitute z(T") into (9.13), and

obtain
4(1 + %)% 4+ 96 — 2T = 2/0.05 = 40,

which simplifies to
T =2(1+t%)"2 4 28. (9.18)

We must solve (9.17) and (9.18) simultaneously. Substituting (9.18) into
(9.17), we find that ¢* must be a zero of the function

h(t°) = (14 °)Y2 — 4 4 2~ ROHP=0428)/20 (g 1)

A simple binary search program was written to solve this equation, which
obtained the value t* = 10.6. Substitution of this into (9.18) yields 7" =
34.8. Since this satisfies our supposition that 0 < t* < T, we can conclude
our computations. Thus, if we let the unit of time be 1 month, then the
optimal solution is to perform preventive maintenance at the maximum
rate during the first 10.6 months, and thereafter not at all. The sale date
is at 34.8 months after purchase. Figure 9.1 gives the functions z(¢) and
u(t) for this optimal maintenance and sale date policy.

If, on the other hand, the solution of (9.17) and (9.18) did not satisfy
our supposition, we would need to follow the procedure outlined earlier
in the section. This would result in t* =0 or t* =T If t* = 0, we would
obtain T from (9.18), and conclude u*(¢) = 0, 0 < ¢ < T. Alternatively,
if t* = T, we would need to substitute z(7") into (9.14) to obtain 7' In
this case the optimal control would be w*(t) = U, 0 <t < T.
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Sale Date

Figure 9.1: Optimal maintenance and machine resale value

9.1.4 An Extension

The pure bang-bang result in the model developed above is a result of the
linearity in the problem. The result can be enriched as in Sethi (1973b)
by generalizing the resale value equation (9.3) as follows:

@(t) = —d(t) + g(u(t), 1), (9.20)

where ¢ is nondecreasing and concave in w. For this section, we will
assume the sale date T to be fixed for simplicity and g to be strictly
concave in u, i.e., g, > 0 and gy,, < 0 for all ¢. Also, g; <0, gyt <0, and
9(0,t) = 0; see Exercise 9.7 for an example of the function g(u,t).

The standard Hamiltonian is

H = (rz —u)e " + N\—d + g(u, 1)), (9.21)

where A is given in (9.8). To maximize the Hamiltonian, we differentiate
it with respect to u and equate the result to zero. Thus,

H,=—e "+ )\g, =0. (9.22)

If we let u°(t) denote the solution of (9.22), then u°(¢) maximizes the
Hamiltonian (9.21) because of the concavity of g in u. Thus, for a fixed
T, the optimal control is

u*(t) = sat[0, U; u®(t)]. (9.23)
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To determine the direction of change in u*(t), we obtain u°(t). For
this, we use (9.22) and the value A(¢) from (9.8) to obtain

e Pt 1

Since m > p, the denominator on the right-hand side of (9.24) is mono-
tonically decreasing with time. Therefore, the right-hand side of (9.24)
is increasing with time. Taking the time derivative of (9.24), we have

p*(m — p)ert=T)
7~ (7~ p)er TP

Gut + guu'ao = > 0.

But gy <0 and gy < 0, it is therefore obvious that uO(t) < 0. In order
now to sketch the optimal control u*(¢) specified in (9.23), let us define
0 <t <ty <T such that u®(t) > U for t < t; and u®(t) < 0 for t > to.
Then, we can rewrite the sat function in (9.23) as

U for t € [O,tl],
ut(t) = Q¢ u0(t) for t € (t1,ta), (9.25)
0 forté€ [te, T).

In (9.25), it is possible to have ¢; = 0 and/or to = T. In Fig. 9.2 we have
sketched a case when t; > 0 and t5 < T.

Note that while u°(¢) in Fig.9.2 is decreasing over time, the way
it will decrease will depend on the nature of the function g. Indeed,
the shape of u%(t), while always decreasing, can be quite general. In
particular, you will see in Exercise 9.7 that the shape of u°(t) is concave
and, furthermore, u®(t) > 0, t > 0, so ta = T in that case.

9.2 Maintenance and Replacement for
a Machine Subject to Failure

In Kamien and Schwartz (1971a), a related model is developed which has
somewhat different assumptions. They assume that the production rate
of the machine is independent of its age, while its probability of failure
increases with its age. Consistent with this assumption, the purpose of
preventive maintenance in the Kamien-Schwartz model is to influence
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t=0

Figure 9.2: Sat function optimal control

the failure rate of the machine rather than arrest the deterioration in
the resale value as before. Furthermore, their model also allows for sale
of the machine at any time, provided it is still in running condition, and
for its disposal as junk if it breaks down for good. The optimal control
problem is therefore to find an optimal maintenance policy for the period
of ownership and an optimal sale date at which the machine should be
sold, provided that it has not yet failed. Other references to related
models are Alam et al. (1976), Alam and Sarma (1974, 1977), Sarma
and Alam (1975), Gaimon and Thompson (1984a, 1989), Dogramaci and
Fraiman (2004), Dogramaci (2005), Bensoussan and Sethi (2007), and
Bensoussan et al. (2015a).

9.2.1 The Model

In order to define the Kamien-Schwartz model, we use the following
notation:

T = the sale date of a machine to be determined,
u(t) = the preventive maintenance rate at time t;
0 <u(t) <1,
R = the constant positive rate of revenue produced by a

functioning machine independent of its age at any
time, net of all costs except preventive maintenance,
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p = the constant discount rate,
L = the constant positive junk value of the failed machine
independent of its age at failure,
B(t) = the (exogenously specified) resale value of the machine
at time ¢, if it is still functioning; B(t) < 0,
h(t) = thenatural failure rate (also termed the natural hazard
rate in the reliability theory); h(t) >0, h(t) > 0,
F(t) = the cumulative probability that the machine has failed
by time ¢,
C(u;h) = the cost function depending on the preventive mainte-

nance v when the natural failure rate is h.

To make economic sense, an operable machine must be worth at least
as much as an inoperable machine and its resale value should not exceed
the present value of the potential revenue generated by the machine if it
were to function forever. Thus,

0<L<B(t)<R/p, t>0. (9.26)

Also for all t > 0,
u(t) € Q=[0,1]. (9.27)

Finally, when the natural failure rate is h and a controlled failure rate of
h(1—w) is sought, the action of achieving this reduction will cost C'(u; h)
dollars. For simplicity, we assume that C(u;h) = C(u)h with

C(0)=0, C, >0, Cy, >0, for u e [0,1]. (9.28)

Thus, the cost of reducing the failure rate increases more than pro-
portionately as the fractional reduction increases. But the cost of a
given fractional reduction increases linearly with the natural failure rate.
Hence, these conditions imply that a given absolute reduction becomes
increasingly more costly as the machine gets older.

To derive the state equation for F(t), we note that F'/(1—F) denotes
the conditional probability density for the failure of the machine at time
t, given that it has survived to time ¢. This is assumed to depend on
two things, namely (i) the natural failure rate that governs the machine
in the absence of preventive maintenance, and (ii) the current rate of
preventive maintenance.

Thus,

F(t)

T = MOl - u) (9.29)
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which gives the state equation
F=h(1—u)(1—-F), F(0)=0. (9.30)

Thus, the controlled failure rate at time ¢ is h(¢)(1 — u(t)). If u =0,
the failure rate assumes its natural value h. As u increases, the failure
rate decreases and drops to zero when u = 1.

The expected present value of the machine is the sum of the expected
present values of (i) the total revenue it produces less the total cost of
maintenance, (ii) its junk value if it should fail before it is sold, and (iii)
the salvage value if it does not fail and is sold. That is,

T
J= / e (R~ Cluh)(L— F) + LE} dt + " BT)[1 — F(D)].
0
Using (9.30), we can rewrite J as follows:

J = /T e P'[R — C(u)h + L(1 — w)h] (1 — F)dt + e~ "TB(T) [1 — F(T)].
0
(9.31)

The optimal control problem is to maximize J in (9.31) subject to (9.30)
and (9.27).

Remark 9.1 In the absence of discounting, the expected junk value
term fOT LF(t)dt reduces to LF(T), i.e., the junk value times the prob-
ability that the machine fails by time 7.

Remark 9.2 While the maintenance and replacement problem of
Kamien and Schwartz is stochastic, they formulate and solve it as a
deterministic optimal control problem. Bensoussan and Sethi (2007) for-
mulate the underlying stochastic problem as a stochastic optimal control
problem, and show how their solution relates to that of the Kamien-
Schwartz model. They also provide a sufficient condition for an optimal
maintenance and replacement policy.

9.2.2 Optimal Policy

The problem is similar to Model Type (f) in Table 3.3 subject to the
free-end-point condition as in Row 1 of Table 3.1. Therefore, we follow
the steps for solution by the maximum principle stated in Chap. 3. The
standard Hamiltonian is

H=e¢" R~ Cu)h+ L1 —u)h](1 = F)+ X1 —u)h(1 - F), (9.32)
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and the adjoint variable satisfies

A = e MR- Cwh+ L(1 — u)h] + Mh(1 — u), (9.33)

ANT) = —e*TB(T).

Since T" > 0 is also to be decided, we require the additional transversality
condition (3.77) for an optimal T* to satisfy.

R — C[u*(T*)]h(T*) + L[1 — u*(T*)]h(T*) 050

—[1 = w*(T)W(T*)B(T*) — pB(T*) + Bp(T*) = 0.

In Exercise 9.8, you are asked to derive this condition by using (9.31)—
(9.33) in (3.77).

While we know from (3.79) that (9.34) has a standard economic in-
terpretation of having zero marginal profit of changing 7%, it is still
illuminating to flesh out a more detailed interpretation of each term in
what looks like a fairly complex expression. A good way to accomplish
that is totally what we get if we decide to sell the machine at time T +¢
in comparison to selling it at 7. We will do this only for a small § > 0,
and leave it as Exercise 9.9 for a small § < 0.

First we note that in solving Exercise 9.8 to obtain (9.34) from
(3.77), a simplification involved canceling the common factor e ?T" (1 —
F(T*)) > 0. Removing e ?T" brings the revenue and cost terms from
present-value dollars to dollars at time 7. The presence of the probabil-
ity term 1 — F(T*) means that the machine will be replaced at T* if it
has not failed by time 7™ with that probability. Its removal means that
(9.34) can be interpreted as if we are at 7™ and we find the machine to
be working, which is tantamount to interpreting (9.34) with F'(7T%) = 0.

Now consider keeping the machine to T* + §. Clearly we lose its
selling price B(T™) in doing so. But then we gain the following amounts
discounted to time 7:

{R — C(u*(T*))W(T*)} e~ = {R — C(u*(T*))h(T*)}5 + 0(5), (9.35)
L(1 — u*(T*)h(T*)de " = L(1 — u*(T*)R(T*)5 4+ 0o(8),  (9.36)
B(T* +6)(1 — F(T* 4 6))e " = B(T*) — B(T*)(1 — u*(T*))h(T*)é

—pB(T*)6 + Br(T*)6 + o(9).
(9.37)
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The RHS of these equations can be obtained by noting that e ?0 =
1 —pd+o0(6), B(T*+9) = B(T*) + Br(T*)d + 0(0) and F(T* +0) =
F(T*) + F(T*)§ = F(T*) + (1 — u*(T*)h(T*)(1 — F(T*)§ = (1 —
w*(T*))h(T*)d + 0(0), since we had set F(T*) = 0 for interpreting (9.34)
upon arrival at T and finding the machine to be working. The net
gain is the sum of (9.35), (9.36) and (9.37) less B(T™), where (9.35)
gives the net cash flow (revenue—cost of preventative maintenance from
T* to T* + 0), (9.36) represents the junk value L multiplied by the
probability [1 — w(T™*)]h(T%)d that the machine fails during the short
time ¢ when the machine is found to be working at 7™, and (9.37) less
B(T™*) has three terms —pB(T*)d+ Br(T*)6 — B(T*) (1 —u*(T™*))h(T™)0:
the first of which is the loss of interest pB(71™)d on the resale value B(T™)
not obtained when deciding to keep the machine to T* + 4, the second
term Br(T™) < 0 is the decrease in the resale value from 7% to T + 4,
and the third term represents the loss of the entire resale value if the
machine fails with the probability (1 — u*(7™))h(T™*)d given that the
machine was found to be working at time 7. Moreover, if we divide
the net gain by § and then let § — 0, we obtain the marginal profit of
keeping the machine from time 7™ to T™ 4 4, and setting it equal to zero
gives precisely the transversality condition (9.34). If we separate the
revenue and cost terms in the resulting expression of the marginal profit,
then (9.34) determining the optimal sale date 7™ is the usual economic
condition equating marginal revenue to marginal cost.

Next, we analyze the problem to obtain the optimal maintenance
policy for a fixed T'. If the optimal solution is in the interior, i.e., u* €
(0,1), then the Hamiltonian maximizing condition gives

H, = —eP'h(1 — F)[Cy + L + e\ = 0. (9.38)
In the trivial cases in which the natural failure rate h(t) is zero or when
the machine fails with certainty by time ¢ (i.e., F'(t) = 1), then u*(¢) = 0.

Assume therefore h > 0 and F' < 1. Under these conditions, we can infer
from (9.28) and (9.38) that

(i) Cu(0)+ L+ et > 0= u*(t) =0,
(i) Cu(1)+ L+ et < 0= u*(t) = 1. (9-39)

(iii) Otherwise, Cy, + L + Ae”* = Odetermines u*(t).
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Using the terminal condition A(T) = —e ?T B(T) from (9.33), we can
derive u*(T) satisfying (9.39):

(i) Cu(0) > B(T)— L and u*(T) =0,
(i) Cu(1) < B(T) — L and u*(T) = 1. (9.40)
(iii) Otherwise, C, = B(T') — L = u*(T).

Next we determine how wu*(t) changes over time. Kamien and
Schwartz (1971a, 1992) have shown that «*(¢) is nonincreasing; see Ex-
ercise 9.10. Thus, there exists T' > t9 > t1 > 0 such that

1 for t € [0, 1],
ut(t) = q u0(t) for t € (t1,ta), (9.41)
0 for t € (t2,T],

where u°(t) is the solution of (9.39)(iii). Clearly, it must also be shown
that 1°(¢) < 0 as part of Exercise 9.10. Of course, u*(T) is immediately
known from (9.40). If w*(T") € (0, 1), it implies t2 = T; and if u*(T") = 1,
it implies t1 = to = T.

For this model, the sufficiency of the maximum principle follows from
Theorem 2.1; see Exercise 9.11.

9.2.3 Determination of the Sale Date

For a fixed T', we know that the terminal optimal control u*(7') is deter-
mined by (9.40). If this u*(7T) also satisfies (9.34), we have determined
an optimal trajectory as well as the optimal life of the machine. This,
of course, is subject to the second-order condition since (9.34) is only a
necessary condition for an optimal 7™ to satisfy. It is clear that the deter-
mination of 7%, in most cases, will require numerical computations. The
algorithm needs only to be a simple search method because it requires
consideration of the single variable T.

Before we go to the next section, we remark that a business is usually
a continuing entity and does not end at the sale date of one machine.
Normally, an existing machine will be replaced by another, which in
turn will be replaced by another, and so on. The technology of the newer
machines will generally be different from that of the existing machine. In
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what follows, we address these issues. We will choose the discrete-time
setting and illustrate the use of the discrete-time maximum principle
developed in Chap. 8.

9.3 Chain of Machines

We now extend the problem of maintenance and replacement to a chain of
machines. By this we mean that given the time periods 0,1,2,...,7T —1,
we begin with a machine purchase at the beginning of period zero. Then,
we find an optimal number of machines, say ¢, and optimal times 0 <
ty < to,...,tpy_1 < ty < T of their replacements such that the existing
machine will be replaced by a new machine at time t;, j = 1,2,..., /.
At the end of the horizon defined by the beginning of period T, the last
machine purchased will be salvaged. Moreover, the optimal maintenance
policy for each of the machines in the chain must be found.

Two approaches to this problem have been developed in the litera-
ture. The first attempts to solve for an infinite horizon (7' = o0) with a
simplifying assumption of identical machine lives, i.e.,

tj — tj_l = tj+1 — tj (9.42)

for all j > 1; see Sethi (1973b) as well as Exercise 9.16. In this case £ = oo
as well. The second relaxes the assumption (9.42) of identical machine
lives, but then, it can only solve a finite horizon problem involving a
finite chain of machines, i.e., ¢ is finite; see Sethi and Morton (1972)
and Tapiero (1973). For a decision horizon formulation of this problem,
see Sethi and Chand (1979), Chand and Sethi (1982), and Bylka et al.
(1992).

In this section, we will deal with the latter problem as analyzed by
Sethi and Morton (1972). The problem is solved by a mixed optimization
technique. The subproblems dealing with the maintenance policy are
solved by appealing to the discrete maximum principle. These subprob-
lem solutions are then incorporated into a Wagner and Whitin (1958)
model formulation for solution of the full problem. The procedure is
illustrated by a numerical example.

9.3.1 The Model

Consider buying a machine at the beginning of period s and salvaging it
at the beginning of period ¢ > s. Let Jg denote the present value of all
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net earnings associated with the machine. To calculate Jg we need the
following notation:

x, = the resale value of the machine at the beginning of
period k, k=s,5s4+1,...,t,

Psk = the production quantity (in dollar value) during period
k., k=s,s+1,...,t—1,

Ef = the necessary expense of the ordinary maintenance (in

dollars) during period k,
RF = PF_EF k=ss+1,...,t—1,

u” = the rate of preventive maintenance (in dollars) during
period k, k=s,s+1,...,t —1,
Cs = the cost of purchasing the machine at the beginning of
period s,
p = the periodic discount rate.

It is required that
0<ul <U* kelst—1]. (9.43)

We can calculate Jg in terms of the variables and functions defined
above:

t—1 t—1
Jst = Y RE(14p)F = " (14p) " =Cs(14p) " +al(14p) " (9.44)
k=s k=s

We must also have functions that will provide us with the ways in
which states change due to the age of the machine and the amount
of preventive maintenance. Also, assuming that at time s, the only
machines available are those that are up-to-date with respect to the
technology prevailing at s, we can subscript these functions by s to reflect
the effect of the machine’s technology on its state at a later time k. Let
T, (u¥, k) and ®,(u¥, k) be such concave functions so that we can write
the following state equations:

ARF = R _ RF — w (uF k), RS (9.45)

given,

Axf = (uF k), 25 = (1-06)Cs, (9.46)

where 9§ is the fractional depreciation immediately after the purchase of
the machine at time s.
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To convert the problem into the Mayer form, define

:ZRgu +p)7, (9.47)
k—1 ‘ A
= Z u'(1+p)~ (9.48)

Using Eqgs. (9.47) and (9.48), we can write the optimal control prob-
lem as follows:

r{na)}([Jst = AL - Bl - Cs(1+p) " +2L(1+p)7 (9.49)
U
subject to
AAY = RF1+p)7F A3=o, (9.50)
ABY = Wk +p)7F Bi=o, (9.51)

and the constraints (9.45), (9.46), and (9.43).

9.3.2 Solution by the Discrete Maximum Principle

We associate the adjoint variables )\If+1,)\]§+1,)\§+1, and /\ZH, respec-
tively with the state equations (9.50), (9.51), (9.45), and (9.46). There-
fore, the Hamiltonian becomes

H = MR+ p) ™ + NP (1 4 p)7F 4 M D, + AL Dy, (9.52)

where the adjoint variables A1, A2, A3, and A4 satisfy the following differ-
ence equations and terminal boundary conditions:

OH

AN = —871,;:0, No=1, (9.53)
AN = g;—o A= 1, (9.54)
AN = gg N L p)7R M =0, (9.55)
AN = gf =0, Ny=0+p) " (9.56)

The solutions of these equations are

Moo=, (9.57)



300 9. Maintenance and Replacement

A= (9.58)
t—1

o= > 1+ (9.59)
i=k

Moo= 14p7n (9.60)

Note that A¥, A5, and A} are constants for a fixed machine salvage time
t. To apply the maximum principle, we substitute (9.57)—(9.60) into the
Hamiltonian (9.52), collect terms containing the control variable u*, and
rearrange and decompose H as

H = Hy + Hy(ub), (9.61)

where H; is that part of H which is independent of v* and

t—1
Hy(wb) = —uF(1+p)F+ 3" (14p) 0+ (1+p) "0, (9.62)
i=k+1

Next we apply the maximum principle to obtain the necessary con-
dition for the optimal schedule of preventive maintenance expenditures
in dollars. The condition of optimality is that H should be a maximum
along the optimal path. If u* were unconstrained, this condition, given
the concavity of ¥, and ®,, would be equivalent to setting the partial
derivative of H with respect to u equal to zero, i.e.,

t—1
He = [HQ]uk =-(1 +p)7k + (W) e Z (1+p)71+ ((I)S)uk(l—i_p)it =0.
i=k+1

(9.63)
Equation (9.63) is an equation in u* with the exception of the particular
case when U, and ®, are linear in u* (which will be treated later in this
section). In general, (9.63) may or may not have a unique solution. For
our case we will assume W, and ®; to be of the form such that they
give a unique solution for u*. One such case occurs when ¥, and ®, are
quadratic in w*. In this case, (9.63) is linear in u* and can be solved
explicitly for a unique solution for u*. Whenever a unique solution does
exist, let this be

ub = Uk, (9.64)
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The optimal control u** is given as

0 ifUk <o,

uPt = Uk it < Uk < U, (9.65)

Usk if Uk > Usk.

9.3.3 Special Case of Bang-Bang Control

We now treat the special case in which the problem, and therefore H, is
linear in the control variable «*. In this case, H can be maximized simply
by having the control at its maximum when the coefficient of u* in H is
positive, and minimum when it is negative, i.e., the optimal control is of
bang-bang type.

In our problem, we obtain the special case if ¥, and &, assume the
form

W, (u”, k) = uFy¥ (9.66)

and
Dy (uf k) = uF ok, (9.67)

s

respectively, where @Z)’; and qbl; are given constants. Then, the coefficient
of u* in H, denoted by Wy (k,t), is

t—1

Wk, t) = =(1+p) F+ 8 Y (1+p) " +65(1+p) 7", (9.68)
i=k+1

and the optimal control u** is given by

uP* = bang[0, U%; Wy(k,t)], k=s,5+1,...,t — 1. (9.69)

9.3.4 Incorporation into the Wagner-Whitin
Framework for a Complete Solution

Once u"* has been obtained as in (9.65) or (9.69), we can substitute it
into (9.45) and (9.46) to obtain R** and x**, which in turn can be used
in (9.44) to obtain the optimal value of the objective function denoted
by J3. This can be done for each pair of machine purchase time s and
sale time ¢t > s.
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Let g5 denote the present value of the profit (discounted to period 0)
of an optimal replacement and preventive maintenance policy for periods
s,s+1,...,T — 1. Then,

gs = t:g?f,T[J:t +aq),0<s<T-1 (9.70)

with the boundary condition
gr = 0. (9.71)

The value of gg will give the required maximum.

The mixed optimization technique presented here avoids many of
the shortcomings of either pure dynamic programming or pure control
theory formulations. Since the solution technique used to optimize a
given machine represents a submodule of the overall method, the pure
dynamic programming approach may be recognized as a special case. It
should be advantageous, however, to be able to use a methodology for the
submodule that is most efficient for a given particular problem. Previous
control theory formulations do not seem to be easily adaptable to the
situation of an existing initial machine; see Sethi and Morton (1972) for
other similar asymmetries.

The mixed technique can also be adapted to the case of probabilistic
technological breakthroughs (Exercise 9.17). Here the path of technolog-
ical growth is assumed to be a tree with probabilities associated with its
branches. The subproblems can be solved by using the maximum prin-
ciple for stochastic networks given in Sethi and Thompson (1977). How-
ever, the number of subproblems that must be solved increases rapidly
with the number of branches, thus putting computational limitations on
the general usefulness of this extension.

Another application of the mixed technique has been used by Pekel-
man and Sethi (1978) to obtain the optimal durations of advertising
copies, and the optimal level of advertising expenditures for each copy.

9.3.5 A Numerical Example

To illustrate the procedure, a simple three-period example will be pre-
sented and solved for the case where there is no existing machine at time
ZEro.

Machines may be bought at times 0, 1, and 2. The cost of a machine
bought at time s is assumed to be

Cs = 1,000 + 500s>.
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The discount rate, the fractional instantaneous depreciation at purchase,
and the maximum preventive maintenance per period are assumed to be

p=0.06, § = 0.25, and U = $100,

respectively.

Let R? be the net return (net of necessary maintenance) of a machine
purchased at the beginning of period s and operated during period s. We
assume

R = $600, Ri = $1,000, and R3 = $1,100.

In a period k subsequent to the period s of machine purchase, the
returns R¥, k > s, depend on the preventive maintenance performed on
the machine in the periods prior to period k. The incremental return
function is given by Wy (u, k), which we assume to be linear. Specifically,

ARL‘J = U, (u¥, k) = —d, + asu®,
where
do = 200, dy = 50, dg = 100, and a5 = 0.5 + 0.1s>.

This means that, in the absence of any preventative maintenance, the
return in period k£ on a machine purchased in period s goes down by
an amount ds every period from s to k, including s, in which there is
no preventive maintenance. This decrease can be offset by an amount
proportional to the amount of preventive maintenance.

Note that the function ¥, is assumed to be stationary over time in
order to simplify the example.

Let z¥ be the salvage value at time k of a machine purchased at s.
We assume

28 = (1 - 6)C,s = 0.75[1,000 + 500s2].

The incremental salvage value function is given by
Azt = —0,C, + bk,

where

0.1 when s=0,1,

0.2 when s = 2,

and
bs = (0.5 — 0.05s).
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That is, the decrease in salvage value is a constant percentage of the pur-
chase price if there is no preventive maintenance. With preventive main-
tenance, the salvage value can be enhanced by a proportional amount.

Let J3; be the optimal value of the objective function associated with
a machine purchased at s and sold at ¢t > s + 1. We will now solve for
J%, s=0,1,2, and s <t < 3, where ¢ is an integer.

Before we proceed, we will as in (9.68) denote by Wy(k,t), the coef-
ficient of «* in the Hamiltonian H, i.e.,

t—1
Wk, t)==(1+p)F+as D 1+p) " +b(1+p) " (9.72)
i=k+1

The optimal control is given by (9.69).
It is noted in passing that

Wik +1,8) — Wa(k,t) = (1 + p)~**D(p — ay),

so that
sgn[Ws(k + 1,t) — Wy(k,t)] = sgn[p — as). (9.73)

This implies that

>0 if (p—as) >0,

ulbtD* — k8 _ 0 if (p—ay) =0, (9.74)

<0 if (p—as) <O0.

In this example p — a5 < 0, which means that if there is a switching in
the preventive maintenance trajectory of a machine, the switch must be
from $100 to $0.

Solution of Subproblems We now solve the subproblems for various
values of s and t(s < t) by using the discrete maximum principle.

Subproblem: s =0, t = 1.
Wo(0,1) = —1+0.5(1.06) " < 0.

From (9.69) we have
u’ = 0.
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Now,

R) = 600,
R} 600 — 200 = 400,
9 0.75 x 1,000 = 750,
! 750 — 0.1 x 1,000 = 650,
Ji = 600 — 1,000 + 650 x (1.06)"! = $213.2.

8
co o
Il

8
=}
I

Similar calculations can be carried out for other subproblems
list these results.

Subproblem: s =0, t = 2.
Wo(O,Q) < 0, Wo(l, 2) < 0,
’U,O* — 07 ul* — 07
Subproblem: s =0, t = 3.
W()(O, 3) > 0, W0(1,3) < 0, W0(2,3) < 0,
u =100,  u'* =100, u** =0,
Jgq = 639.

Subproblem: s =1, t = 2.

Wl(172> < 07
u* = 0,
Jikg = 559.9.

Subproblem: s =1, t = 3.
W1(1,3) > 0, W1(2,3) < 0,

u'™* = 100, u?* =0,

Jis = 1024.2.

305

. We will
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Subproblem: s =2, ¢t = 3.

W2(2)3) < 07
u? = 0,

Wagner-Whitin Solution of the Entire Problem With reference to
the dynamic programming equation in (9.70) and (9.71), we have

g3 = 0,
g2 = Ja3 =880,
g1 = max [Jf3,Ji5 + g
= max [1024.2,559.9 + 80]
= $1024.2,
go = max [Joz, Jo, + g1, oz + 92]
= max [639.0,213.2 + 1024.2,466.9 + 80]
= $1237.4.

Now we can summarize the optimal solution. The optimal number of
machines is 2, and their optimal purchase times, maintenance rates, and
sell times are as follows:

First Machine Optimal Policy: Purchase at s = 0 and sell at
t = 1. The optimal preventive maintenance policy is u®* = 0.

Second Machine Optimal Policy: Purchase at s = 1 and sell at

= 3. The optimal preventive maintenance policy is u'* = 100, u** = 0.
The associated value of the objective function is J*= $1237.4.

Exercises for Chapter 9

E 9.1 Show that the bracketed expression in (9.10) is monotonically
decreasing in t.

E 9.2 Change the values of U and d(t) in Sect.9.1.3 to the new values
U =1/2 and d(t) = 3 and re-solve the problem.

E 9.3 Show for the model in Sect.9.1.1 that if it is optimal to have
the maximum maintenance throughout the life of the machine, then its
optimal life 7" must satisfy ¢g(7') — 1 > 0. In particular, for the example
in Sect.9.1.3, show T' < 3.
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E 9.4 Re-solve the example in Sect.9.1.3 with x(0) = 40.

E 9.5 Replace the maintenance effectiveness function in Sect.9.1.3 by
g(t) = 2/(16 +1)"/?

and solve the resulting problem.

E 9.6 Re-solve Exercise 2.20 when T is unspecified and it denotes the
sale date of the machine to be determined.

E 9.7 Let the maintenance effectiveness function in the model of
Sect.9.1.4 be

2U1/2
(1+0)1/2

Derive the formula for u°() for this case. Furthermore, solve the problem
with T'=34.8, U = 1, z(0) = 100, d(t) = 2, # = 0.1 and p = 0.05, and
compare its solution to that of the numerical example in Sect. 9.1.3. Note
that the sale date T is assumed to be fixed in Sect.9.1.4 for simplicity
in exposition.

g(u7 t) =

E 9.8 Derive the formula in (9.34) by using (3.77).

E 9.9 Redo the analysis providing the detailed economic interpretation
of (9.34) when selling the machine at time 7™ + ¢, which is earlier than
time T when the small § < 0.

Hint: The salvage value function required in (3.77) for the problem here
is S(F(T),T) = e PTB(T)(1 — F(T)) as given in (9.31). Its partial
derivative with respect to T'is [—pe ?T B(T) + e~ T By (T)(1 — F(T)).

E 9.10 To show that the singular control in the third alternative in
(9.39) can be sustained, we set dH,,/dt = 0 for all ¢ for which a singular
control obtains. That is, u®(t) satisfies

Cuut’® = Cylp+ (1 —u®)h] + pL — R+ C(u®)h. (9.75)

Show that 7°(¢) < 0. Furthermore, show that u*(t) is nonincreasing over
time.

E 9.11 For the model of Sect. 9.2, prove that the derived Hamiltonian H
is concave in F' for each given A and ¢, so that the Sufficiency Theorem 2.1
holds.
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E 9.12 A firm wants to price its product to maximize the stream of
discounted profits. If it maximizes current profits, the high price and
profits may attract the entry of rivals, which in turn will reduce future
profit possibilities. Let the current profit rate Ry (p) be a strictly concave
function of price p with Rlll (p) < 0. The profit rate that the firm believes
will be available to it after rival entry is Ry < max, R;(p) (independent
of current price and lower than current monopoly profits). Whether, or
when, a rival will enter is not known, but let F'(¢) denote the probability
that entry will occur by time ¢, with F(0) = 0. The conditional prob-
ability density of entry at time ¢, given its nonoccurrence prior to ¢, is
F(t)/[1 — F(t)]. We assume that this conditional entry probability den-
sity is a strictly increasing, convex function h(p) of product price p. This
specification reflects the supposition that as price rises, the profitability
of potential entrants of a given size increases and so does their likelihood
of entry. Thus, we assume

F(#)/[1 = F®)] = h(p(t))

where
h(0) =0, h’(p) > 0, h”(p) > 0.

Discounting future profits at rate p, the firm seeks a price policy p(t) to
o
max / e PRy (p(£))[1 = F(£)] + RaF(£)}dt
0

subject to
() = h(p(t)[L — F(£)], F(0)=0.

The integrand represents the expected profits at ¢, composed of R; if no
rival has entered by ¢, and otherwise Rs.

(a) Show that the maximum principle necessary conditions are satisfied
by p(t) = p*, where p* is a constant. Obtain the equation satisfied
by p* and show that it has a unique solution.

(b) Let p™ denote the monopoly price (in the absence of any rival), i.e.,
Ry (p™) = max, Ri(p). Show that p* < p™ and Ry (p™) > Ri(p*) >
Ry. Provide an intuitive explanation of the result.

(¢) Verify the sufficiency condition for optimality by showing that the
mazximized Hamiltonian is concave.
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E 9.13 Let us define the state of a machine to be ‘0’ if it is working
and ‘1’ if it is being repaired. Let A be the breakdown rate and u be the
service rate as in waiting-line theory, so that we have

Py = —APy+ p(1—Py), Py(0) =1,

where Py(t) is the probability that the machine is in the state 0 at time ¢.
Let Py(t) = 1—Py(t), which is the probability that the machine is in state
1 at time t. This equation along with (9.3) gives us two state equations.
In view of the equation for Py, we modify the objective function (9.2) to

T
J = / [z (t) Po(t) — u(t) — kPy(t)]e Ptdt + x(T)e P71,
0

where k characterizes the additional expenditure rate while the machine
is being repaired. Solve this model to obtain the optimal control. See
Alam and Sarma (1974).

E 9.14 Starting from Ws(k,t) in (9.72), derive the result in (9.74).

E 9.15 Extend the Thompson model in Sect.9.1 to allow for process
discontinuities. An example of this type of machine is an airplane as-
signed to passenger transportation which may, after some deterioration
or obsolescence, be assigned to freight transportation before its eventual
retirement. Formulate and analyze the problem. See Tapiero (1971).

E 9.16 Extend the Thompson model in Sect.9.1 to allow for a chain
of machines with identical lines. See Sethi (1973b) for an analysis of a
similar model.

E 9.17 Extend the formulation of the Sethi-Morton model in Sect. 9.3
to allow for probabilistic technological breakthroughs. See Sethi and
Morton (1972) and Sethi and Thompson (1977).
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Chapter 10

Applications to Natural
Resources

The increase in world population is causing a corresponding increase in
the demand for consumption of natural resources. As a consequence the
optimal management and utilization of natural resources is becoming
increasingly important. There are two main kinds of natural resource
models: those involving renewable resources such as fish, food, timber,
etc., and those involving nonrenewable or exhaustible resources such as
petroleum, minerals, etc.

In Sect. 10.1 we deal with a fishery resource model, the sole owner of
which is considered to be a regulatory agency. The management prob-
lem of the agency is to control the rate of fishing over time so that
an appropriate objective function is maximized over an infinite horizon.
A differential game extension known as the common property fishery
resource model is discussed in Sect.13.2.3. For other applications of
optimal control theory to renewable resource models including those in-
volving predator-prey relationships, see Clark (1976), Goh et al. (1974),
Jorgensen and Kort (1997), and Munro and Scott (1985).

Section 10.2 deals with an optimal forest thinning model, where thin-
ning is the process of removing some trees from a forest to improve its
growth rate and quality. An extension to a chain of forests model is
presented in Sect. 10.2.3.

The final model presented in Sect.10.3 deals with an exhaustible
resource such as petroleum, which must be utilized optimally over a
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given horizon under the assumption that when its price reaches a given
high threshold, a substitute will be used instead. Therefore, the analysis
of this section can also be viewed as a problem of optimally phasing in
an expensive substitute.

10.1 The Sole-Owner Fishery Resource Model

With the establishment of 200-mile territorial zones in the ocean for
most countries having coastlines, the control of fishing in these zones
has become highly regulated by these countries. In this sense, fishing
in territorial waters can be considered as a sole owner fishery problem.
On the other hand, if the citizens and commercial fishermen of a given
country are permitted to fish freely in their territorial waters, the prob-
lem becomes that of an open access fishery. The solutions of these two
extreme problems are quite different, as will be shown in this section.

10.1.1 The Dynamics of Fishery Models

We introduce the following notation and terminology which is due to
Clark (1976):

p = the discount rate,

8
—

o~
N—

the biomass of fish population at time ¢,

the natural growth function,

the rate of fishing effort at time ¢; 0 < u < U,
the catchability coefficient,

S
=8
N—

ol

the unit price of landed fish,

oR"R o
I

= the unit cost of effort.

Assume that the growth function g is differentiable and concave, and
it satisfies

g(0) =0, g(X)=0, g(z)>0for0 <z <X, (10.1)
where X denotes the carrying capacity, i.e., the maximum sustainable
fish biomass.

The state equation due to Gordon (1954) and Schaefer (1957) is

= g(x) — quz, z(0)= xo, (10.2)
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where quz is the catch rate assumed to be proportional to the biomass
as well as the rate of fishing effort. The instantaneous profit rate is

m(x,u) = pqur — cu = (pgr — ¢)u. (10.3)

From (10.1) and (10.2), it follows that z will stay in the closed interval
0 < x < X provided zg is in the same interval.

An open access fishery is one in which exploitation is completely
uncontrolled. Gordon (1954) analyzed this model, also known as the
Gordon-Schaefer model, and showed that the fishing effort tends to reach
an equilibrium, called a bionomic equilibrium, at the level where total
revenue equals total cost. In other words, the so-called economic rent is
completely dissipated. From (10.3) and (10.2), this level is simply

g(fvb)p‘

xp = £ and up = (10.4)
pq

Let U > g(¢/pq)p/c so that uy is in the interior of [0, U]. The economic
basis for (10.4) is as follows: If the fishing effort u > w; is made, then
total costs exceed total revenues so that at least some fishermen will lose
money, and eventually some will drop out, thus reducing the level of the
fishing effort. On the other hand, if the fishing effort u < wp is made, then
total revenues exceed total costs, thereby attracting additional fishermen,
and increasing the fishing effort.

The Gordon-Schaefer model does not maximize the present value of
the total profits that can be obtained from the fish resources. This is
done next.

10.1.2 The Sole Owner Model

The bionomic equilibrium solution obtained from the open access fishery
model usually implies severe biological overfishing. Suppose a fishing
regulatory agency is established to improve the operation of the fishing
industry. In determining the objective of the agency, it is convenient
to think of it as a sole owner who has complete rights to exploit the
fishing resource. It is reasonable to assume that the agency attempts to
maximize

J :/ e P(pqx — c)udt (10.5)
0

subject to (10.2). This is the optimal control problem to be solved.
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10.1.3 Solution by Green’s Theorem

The solution method presented in this section generalizes the one based
on Green’s theorem used in Sect.7.2.2. Solving (10.2) for u we obtain

u = w, (10.6)

qr

which we substitute into (10.3), giving

_ > —pt x_cg(:v)—:fc
J—/O e " (pq ) ” dt. (10.7)

Rewriting, we have

J = /OO e PH[M(z) + N(z)Z)dt, (10.8)
0
where c .
N(z)=—-p+ w and M(x) = (p — q—x)g(x) (10.9)

We note that we can write ©dt = dx so that (10.8) becomes the following
line integral

g = /B o7 M (2)dt + e~7 N (2)da], (10.10)

where B is a state trajectory in (x,t) space, t € [0, 00).

In this section we are only interested in the infinite horizon solution.
The Green’s theorem method achieves such a solution by first solving a
finite horizon problem as in Sect. 7.2.2, and then determining the infinite
horizon solution for which you are asked to verify that the maximum
principle holds in Exercise 10.1. See also Sethi (1977b).

In order to apply Green’s Theorem to (10.10), let I denote a simple
closed curve in the (z,t) space surrounding a region R in the space.
Then,

Jr = é[eptM(x)dt + e PIN(z)dx]

_ / /R {gt[e_pt]\f(x)] - ;C[e_ptM(x)]}dtdx

_ //R —e P [pN(z) + M’ (z)]dtdz. (10.11)
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If we let
I(z) = —[pN(z)+ M'(2)]
S VNV C)
= (p—d@)(p qx) .

we can rewrite (10.11) as

Jr :// e P'I(z)dtdx.
R

We can now conclude, as we did in Sects. 7.2.2 and 7.2.4, that the turn-
pike level Z is given by setting the integrand of (10.11) to zero. That is,

S I@) =@ - - )+ D o (0.12)

In addition, a second-order condition must be satisfied for the solution Z
of (10.12) to be a turnpike solution; see Lemma 7.1 and the subsequent
discussion there. The required second-order condition can be stated as

I(x) <0 for x <z and I(z) > 0 for z > Z.

Let T be the unique solution to (10.12) satisfying the second-order condi-
tion. The procedure can be extended to the case of nonunique solutions
as in Sethi (1977b); see Appendix D.8 on the Sethi-Skiba points.

The corresponding value @ of the control which would maintain the
fish stock level at z is g(z)/qz. In Exercise 10.2 you are asked to show
that z € (xp, X) and also that « < U. In Fig.10.1 optimal trajectories
are shown for two different initial values: x¢g < T and zg > Z.

Let

r(z) = 9(@)(pgr —¢)
qz
With 7/(x) obtained from (10.13), condition (10.12) can be rewritten as

dr(@) _ <W> , (10.14)

dx qr

(10.13)

which facilitates the following economic interpretations.

The interpretation of 7(x) is that it is the sustainable economic rent
at fish stock level z. This can be seen by substituting v = g(x)/qx into
(10.3), where v = g(z)/qx, obtained using (10.2), is the fishing effort
required to maintain the fish stock at level . Suppose we have attained
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v

v

Figure 10.1: Optimal policy for the sole owner fishery model

the equilibrium level Z given by (10.12), and suppose we reduce this level
to T — € by removing € amount of fish instantaneously from the fishery,
which can be accomplished by an impulse fishing effort of ¢/¢z. The
immediate marginal revenue MR from this action is

€
MR = (pgz — ¢)—.
qz
However, this causes a decrease in the sustainable economic rent which
equals
7' (Z)e.
Over the infinite future, the present value of this stream is

/oo e P! (z)edt = 7[',(.@)5'
0 P

Adding to this the cost c£/qz of the additional fishing effort £/qz, we
get the marginal cost
' (Z)e  ce

p qz

Equating MR and MC, we obtain (10.14), which is also (10.12).
When the discount rate p = 0, Eq. (10.14) reduces to

MC =
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so that it gives the equilibrium fish stock level Z |,—¢. On account of
this level satisfying the above first-order condition, one can show that it
maximizes the instantaneous profit rate w(x). In economics, such a level
is called the golden rule level. On the other hand, when p = co, we can
conclude from (10.12) that pgz — ¢ = 0. This gives

z |p:oo =z = ¢/pq.

The latter is the bionomic equilibrium attained in the open access fishery
solution; see (10.4). Finally, by denoting & obtained from (10.12) for any
given p > 0 as T [,, you are asked in Exercise 10.3 to show that

f|p:0 >f|p>0 >j|p:oo = Tp. (10.15)

The sole owner solution Z satisfies z > x, = ¢/pq. If we regard a
government regulatory agency as the sole owner responsible for operat-
ing the fishery at level Z, then it can impose restrictions, such as gear
regulations, catch limitations, etc. that will increase the fishing cost c.
If ¢ is increased to the level pgz, then the fishery can be turned into an
open access fishery subject to those regulations, and it will attain the
bionomic equilibrium at level Z.

10.2 An Optimal Forest Thinning Model

Forests are another important kind of renewable natural resource, and
their optimal management is becoming a significant current problem. In
Kilkki and Vaisanen (1969), a model is developed for forest growth and
thinning in connection with Scotch Pine forests in Finland. Thinning is
the process of removing some but not all of the trees prior to clearcutting
the forest. Besides yielding a harvest of wood, the thinning process also
improves the growth rate and quality of the forest. The solution method
employed by Kilkki and Vaisanen was based on dynamic programming.
We will use the maximum principle approach to solve the model. For
related literature, see Clark (1976) and Bowes and Krutilla (1985).

10.2.1 The Forestry Model

We introduce the following notation:

to = the initial age of the forest,
p = the discount rate,

x(t) = the volume of usable timber in the forest at time ¢,
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u(t) = the rate of thinning at time ¢,
p = the constant price per unit volume of timber,
¢ = the constant cost per unit volume of thinning,
f(z) = the growth function, which is positive, concave, and

has a unique maximum at z™; we assume f(0) =0,
g(t) = the growth coefficient which is a positive, decreasing
function of time.

The specific function form for the forest growth used in Kilkki and
Vaisanen (1969) is as follows:

)

flz) =z, 0<zx<

Q|+

where « is a positive constant. Note that f is increasing and concave in
the relevant range, and it takes it maximum at 1/«. They use the growth
coefficient of the form

g(t) =at™",

where a and b are positive constants.
The forest growth equation is

i = g(t)f(x) - u(t), x(to) = 0. (10.16)

The objective is to maximize the discounted profit

J :/ e P(p — c)udt (10.17)
t

0

subject to (10.16) and the state and control constraints
x(t) > 0 and u(t) > 0. (10.18)

The control constraint in (10.18) implies that there is no replanting in the
forest. In Sect. 10.2.3 we extend this model to incorporate the successive
replantings of the forest each time it is clearcut.

10.2.2 Determination of Optimal Thinning

We solve the forest thinning model by using the maximum principle.
The Hamiltonian is

H = (p—cu+Agf(x) —ul (10.19)
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with the adjoint equation
A= Ap—gf'(2)). (10.20)
The optimal control is
u* = bang[0, co; p—c— Al (10.21)

The appearance of oo as an upper bound in (10.21) simply means that
impulse control is permitted.

We do not use the Lagrangian form of the maximum principle to
include constraints (10.18) because, as we will see, the forestry problem
has a natural ending at a time T for which z(7") = 0.

To get the singular control solution triple {Z, \,u}, we must observe
that due to the time dependence of ¢(t), & and u will be functions of
time. From (10.21), we have

A=p-—c, (10.22)

which is a constant so that A = 0. From (10.20),

@) = Ipw or Z(t) = f"M(p/g(t)). (10.23)

Then, from (10.14),

u(t) = g(t)f(z(t)) — 2(t) (10.24)

gives the singular control.

The solution of (10.23) can be illustrated as in Fig. 10.2. Since g(t)
is a decreasing function of time, it is clear from Fig.10.2 that z(¢) is a
decreasing function of time, and then by (10.24), a(t) > 0. It is also clear

from (10.23) that z(T") = 0 at time 7', where T is given by

P
o) f(0),

which, in view of f/(0) =1, gives
T = e~ (1/b)Inlp/a), (10.25)

In Fig.10.3 we plot Z(t) as a function of time t. The figure also
contains an optimal control trajectory for the case in which xo < Z(tp).
To determine the switching time #, we first solve (10.14) with u = 0. Let
z(t) be the solution. Then, ¢ is the time at which the z(t) trajectory
intersects the Z(t) curve; see Fig. 10.3.



320 10. Applications to Natural Resources

f'(=)
Figure drawn for:
1(0) ¢ a=20b=08,
ty = 3, a = 0.1,
p = 0.1

Z(ty) = 7.474, £(0) = 10

T =42.29, f/(0) =1

® x
z(T)=0 z(t) Z(t) z(0)

Figure drawn for:
a=2b=08,

T(to) = 7.474, T = 42.29
t =564
No Thinning

Figure 10.3: Optimal thinning «*(¢) and timber volume z*(t) for the
forest thinning model when z¢ < Z(t¢)
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For z¢ > z(tp), the optimal control at ¢y will be the impulse cutting
to bring the level from xg to Z(tp) instantaneously. To complete the
infinite horizon solution, set u*(t) = 0 for ¢ > T In Exercise 10.12 you
are asked to obtain A(t) for ¢ € [0, 00).

10.2.3 A Chain of Forests Model

We now extend the model of Sect.10.2.1 to incorporate successive re-
plantings of the forest each time it is clearcut. This extension is similar
in spirit to the chain of machines model of Sect. 9.3, but with some im-
portant differences. We will assume that successive plantings, sometimes
called forest rotations, take place at equal intervals. This is similar to
what was assumed in the machine replacement problem treated in Sethi
(1973Db).

Let T be the rotation period, i.e., the time from planting to clear-
cutting which is to be determined. During the nth rotation, the dynamics
of the forest is given by (10.17) with ¢ € [(n—1)T,nT] and z[(n—1)T] = 0.
The discounted profit to be maximized is given by

o0 T
J(T) = Ze(kl)pT/ e P(p — c)udt
k=1 0
1 T
= 16pT/0 e P (p — c)udt. (10.26)

From the solution of the model in the previous section, and the
assumption that the forest is profitable, it is obvious that 0 < T < T
as shown in Fig.10.4. We have two cases to consider, depending on
whether T'> t or T < {.

Case 1: T > t. From the preceding section it is easy to conclude that
the optimal trajectory is as shown in Fig. 10.4. Using the turnpike ter-
minology of Chap.7, the trajectory from 0 to A is the entry ramp to
the turnpike, the trajectory from A to B is on the turnpike, and the
trajectory from B to T is the exit ramp. Since u*(t) = 0 on the entry
ramp, no timber is collected from time 0 to time ¢. Timber is, however,
collected by thinning from time ¢ to 7~ and clearcutting at time 7. Note
from Fig. 10.4 that z(7") is the amount of timber collected from impulse
clearcutting v*(7T") = imp[z(T),0; T] at time 7. Thus, we can write the
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No thinning

Impulse
Clear-cutting

(1)

0 # T T t

Figure 10.4: Optimal thinning «*(¢) and timber volume z*(¢) for the
chain of forests model when T > ¢

discounted profit J*(T') of (10.26) for a given T" as

1 o
JT) = == [/t e (p = )u(t)dt + " (p — ¢)2(T)
(10.27)
Formally, the second term inside the brackets above represents
T
/ e_pt(p — ¢) imp[z(t), 0; t]dt, (10.28)

the value of clearcutting at time 7. In Exercise 10.13, you are asked to
show that this value is precisely the second term.

For finding the optimal value of T in this case, we differentiate (10.27)
with respect to T, equate the result to zero, and simplify to obtain (see
Exercise 10.14)

.
(1 — e "M)g(T) f[2(T)] — pz(T) — p /t e Pta(t)dt =0.  (10.29)
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If the solution T lies in (£, T], keep it; otherwise set 7 = T'. Note that
(10.29) can also be derived by using the transversality condition (3.15);
see Exercise 3.6.

Case 2: T < t. The optimal trajectory in this case is as shown in
Fig. 10.5. In the Vidale-Wolfe advertising model of Chap.7, a similar
case occurs when 7' is small; see Fig. 7.10 and compare it with Fig. 10.5.
The solution for z(T") is obtained by integrating (10.14) with v = 0 and
xg = 0. Let this solution be denoted as z*(t). Here (10.26) becomes

e PT

To find the optimal value of T" for this case, we differentiate (10.30)
with respect to T' and equate dJ*(T')/dT to zero. We obtain (see Exer-

cise 10.14)

(1 — ¢ T)g(T) f2(T)) — p&(T) = 0. (10.31)
If the solution lies in the interval [0, 7] keep it; otherwise set T' = f.
z(t), z° (1)
// Figure drawn for:
/ a=20b=08,
/ ty = 3, & = 0.1,
/ p =01 2y = 2
,/ T =42.29, 2(0) = 10
t=5.64

Impulse
Clear-cutting

Figure 10.5: Optimal thinning and timber volume z*(¢) for the chain of
forests model when T < ¢

The optimal value T* can be obtained by computing J*(7T') from both
cases and selecting whichever is larger; see also Néslund (1969) and Sethi
(1973c).
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10.3 An Exhaustible Resource Model

In the previous two sections we discussed two renewable resource mod-
els. However, many natural resources are nonrenewable or exhaustible.
Examples are petroleum, mineral deposits, coal, etc. Given the growing
energy shortage, the optimal production and use of these resources is
of immense importance to the world. The earliest important work in
this area is Hotelling (1931). Since then, a number of studies have been
published such as Dasgupta and Heal (1974a), Solow (1974), Weinstein
and Zeckhauser (1975), Pindyck (1978a,b), Derzko and Sethi (1981a,b),
Amit (1986) and Heal (1993).

In this section, we discuss a simple model taken from a paper by Sethi
(1979a). The paper obtains the optimal depletion rate of an exhaustible
resource that maximizes a social welfare function involving consumers’
surplus and producers’ surplus with various weights. Here we treat the
special case when these weights are equal.

q=fp)

Consumer
Surplus

0 p b

Figure 10.6: The demand function

10.3.1 Formulation of the Model

The model will be developed under the assumption that at a high enough
price, say p, a substitute, preferably renewable, will become available.
For example, if the price of fossil fuel becomes sufficiently high, solar
energy may become an economic substitute. In the North American
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context, the resource under consideration could be crude oil and its ex-
pensive substitute could be coal and/or tar sands; see, e.g., Fuller and
Vickson (1987).

We introduce the following notation:

p(t) = the price of the resource at time t,

g = f(p) is the demand function, i.e., the quantity de-
manded at price p; f/ < 0, f(p) > 0 for p < p, and
f(p) = 0 for p > p, where p is the price at which the
substitute completely replaces the resource. A typical
graph of the demand function is shown in Fig. 10.6,

¢ = G(q) is the cost function; G(0) = 0, G(q) > 0 for ¢ >
0, @ >0and G" >0 for ¢ > 0, and G'(0) < p. The
latter assumption makes it possible for the producers
to make a positive profit at a price p below p,

Q(t) = the available stock or reserve of the resource at time t¢;
Q(0) = Qo >0,
p = the social discount rate; p > 0,
T = the horizon time, which is the latest time at which the

substitute will become available regardless of the price
of the natural resource; T > 0.

Before stating the optimal control problem, we need the following
additional definitions and assumptions. Let

c=G[f(p)] = 9g(p), (10.32)

for which it is obvious that g(p) > 0 for p < p and g(p) = 0 for p > p.
Let

m(p) = pf(p) — 9(p) (10.33)

denote the profit function of the producers, i.e., the producers’ surplus.
Let p be the smallest price at which 7(p) is nonnegative. Assume further
that 7(p) is a concave function in the range [p, p] as shown in Fig. 10.7.
In the figure the point p™ indicates the price which maximizes w(p).
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Figure 10.7: The profit function

We also define 5
vio) = [ )y (10.34)
p

as the consumers’ surplus, i.e., the area shown shaded in Fig. 10.6. This
quantity represents the total excess amount that consumers would be
willing to pay. In other words, consumers actually pay pf(p), while they
would be willing to pay

/p yf'(y)dy = pf(p) + ¥ (p).

The instantaneous rate of consumers’ surplus and producers’ surplus is
the sum ¥ (p)+m(p). Let p denote the maximum of this sum, i.e., p solves

¢ (p) +7'(p) = pf'(B) — ¢'(p) = 0. (10.35)
In Exercise 10.16 you will be asked to show that p < p", as marked in
Fig. 10.7. Later we will show that the correct second-order conditions

hold at p.
The optimal control problem is:

max {J _ /0 ") + W(p)]e_ptdt} (10.36)

subject to

Q@ =—f(p), Q0)=Qo, (10.37)
Q(T) >0, (10.38)

and p € Q = [p,p]. Recall that the sum v (p) 4 7(p) is concave in p.
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10.3.2 Solution by the Maximum Principle

Form the current-value Hamiltonian

H(Q,p,\) = ¥(p) +7(p) + A[=f(»)], (10.39)

where )\ satisfies the relation
A=p\, ANT) >0, NT)Q(T) =0, (10.40)

which implies

0 if Q(T') > 0 is not binding,
At) = (10.41)

MNT)er=T) if Q(T) > 0 is binding.

To obtain the optimal control, the Hamiltonian maximizing condition,
which is both necessary and sufficient in this case (see Theorem 2.1), is

oH
a—pzzp’—i—w’—)\f':(p—)\)f’—g/:(). (10.42)

To show that the solution s(\) for p of (10.42) actually maximizes the
Hamiltonian, it is enough to show that the second derivative of the
Hamiltonian is negative at s(\). Differentiating (10.42) gives

0*’H
Tlﬁ:f/—gﬂ+(p—)\)f”~

Using (10.42) we have

0’H q

TPZ = f/ - g// + ?f//. (1043)
From the definition of G in (10.32), we can obtain
B f/g// _ g/f//
- f/3 ’

which, when substituted into (10.43), gives

G//

2
%}jj = f -G "> (10.44)
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The right-hand side of (10.44) is strictly negative because f’ < 0, and
G” > 0 by assumption. We remark that p = s(0) using (10.35) and
(10.42), and hence the second-order condition for p of (10.35) to give
the maximum of H is verified. In Exercise 10.17 you are asked to show
that s(\) increases from p as A increases from 0, and that s(\) = p when
A=p—G(0).

Case 1: The constraint Q(7') > 0 is not binding. From (10.41), A\(¢) =0
so that from (10.42) and (10.35),

p*=p. (10.45)

With this value, the total consumption of the resource is T'f(p), which
must be < Qg so that the constraint Q(7") > 0 is not binding. Hence,

Tf(p) < Qo (10.46)

characterizes Case 1 and its solution is given in (10.45).

Case 2: Tf(p) > Qo so that the constraint Q(7") > 0 is binding. Ob-
taining the solution requires finding a value of A\(7") such that

+*

F(sNT)e”=DN)dt = Qo (10.47)
0
where ) 5 G(0)
* = min bl P e L2 O )
t* = {T,T—i—pl [ D) }} (10.48)

The time ¢* | if it is less than T, is the time at which s[\(T)e?"=1)] = p.
From Exercise 10.17,

AT)er" 1) = 5 — G'(0) (10.49)

which, when solved for t*, gives the second argument of (10.48).

One method to obtain the optimal solution is to define T as the
longest time horizon during which the resource can be optimally used.
Such a T must satisfy

and therefore,

/OT £ (s [P -Gy ) dt = Qu, (10.50)
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which is a transcendental equation for 7. We now have two subcases.

Subcase 2a: T > T. The optimal control is

| s ({p - G/(O)}eﬂ<t—T>) for t < T,
D for t > T.

p(t (10.51)

Clearly in this subcase, t* = T and
NT) = [p— G'(O))e ).

A sketch of (10.51) is shown in Fig. 10.8.

Bl

S I

Figure 10.8: Optimal price trajectory for T > T

Subcase 2b: T' < T. Here the optimal price trajectory is
) = s [)\(T)ep(t_T)} , (10.52)

where A\(T) is to be obtained from the transcendental equation

/0 ' f (s [)\(T)e”(t—T)D dt = Qo. (10.53)

A sketch of (10.52) is shown in Fig. 10.9.
In Exercise 10.18 you are given specific functions for the exhaustible
resource model and asked to work out explicit optimal price trajectories

for the model.
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|
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)

Figure 10.9: Optimal price trajectory for T < T

Exercises for Chapter 10

E 10.1 As an alternate derivation for the turnpike level Z of (10.12),
use the maximum principle to obtain the optimal long-run stationary
equilibrium triple {Z, @, A\}.

E 10.2 Prove that = € (xp,X) and @ < U, where Z is the solution of
(10.12) and xy is given in (10.4).

E 10.3 Show that Z obtained from (10.12) decreases as p increases. Fur-
thermore, derive the relation (10.15).

E 10.4 Obtain the turnpike level Z of (10.12) for the special case g(x) =
z(l—2x),p=2,¢c=qg=1,and p=0.1.

E 10.5 Perform the following:

(a) For the Schaefer model with g(x) = ra(1—z/X) and ¢ = 1, derive
the formula for the turnpike level z of (10.12).

(b) Allen (1973) and Clark (1976) estimated the parameters of the
Schaefer model for the Antarctic fin-whale population as follows:
r = 0.08, X = 400,000 whales, and x; = 40,000. Solve for z for
p=0,0.10, and oo.

E 10.6 Obtain 7’(z) from (10.13) and use it in (10.12) to derive (10.14).
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E 10.7 Let n(z,u) = [p — ¢(z)](quz) in (10.3), where c¢(x) is a differ-
entiable, decreasing, and convex function. Derive an expression for &
satisfying an equation corresponding to (10.12).

E 10.8 Show that extinction is optimal if co > p > ¢(0) and p > 2¢'(0)
in Exercise 10.7.

Hint: Use the generalized mean value theorem.

E 10.9 Let the constant price p in Exercise 10.7 be replaced by a time
dependent price p(t) which is differentiable with respect to t. Derive the
equation Z corresponding to (10.12) for this nonautonomous problem.
Furthermore, find the turnpike level Z(¢) satisfying the derived equation.

E 10.10 Let 7(z,u) of Exercise 10.7 be
m(z,u) = [p = c(2))(quzr) + V(2),

where V(z) with V'(z) > 0 is the conservation value function, which
measures the value to society of having a large fish stock. By deriving
the analogue to (10.12), show that the new Z is larger than the Z in
Exercise 10.7.

E 10.11 When ¢(x) = 0 in Exercise 10.9, show that the analogue to
(10.12) reduces to

/ P
g(@) =p—=.
(z) »

Give an economic interpretation of this equation.

E 10.12 Find A(t), t € [0,00), for the infinite horizon model of
Sect. 10.2.2.

E 10.13 Derive the second term inside the brackets of (10.27) by com-
puting e=*T(p — ¢) imp[z(T), 0; T).

E 10.14 Derive (10.29) by using the first-order condition for maximizing
J*(T) of (10.27) with respect to 7. Similarly, derive (10.31).

E 10.15 Forest Fertilization Model (Naslund 1969). Consider a forestry
model in which thinning is not allowed, and the forest is to be clearcut
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at a fixed time 7. Suppose v(t) > 0 is the rate of fertilization at time ¢,
so that the growth equation is

t=r(X—z)+ f(v,t), x(0) =z,

where x is the volume of timber, r and X are positive constants, and f
is an increasing, differentiable, concave function of v. The objective is to
maximize

T
J = —c/ e Po(t)dt + e P pa(T),
0

where p is the price of a unit of timber and c is the unit cost of fertiliza-
tion.

(a) Show that the optimal control v*(¢) is given by solving the
equation
O _ ¢ ~(ptn-1)
ov p

Check that the second order condition for a maximum holds for
this v*(¢).

(b) If f(v) = (1 +1t)In(1 + v), then find explicitly the optimal control
v*(t) under the assumption that p/c > e(**"7T . Show further that
v*(t) is increasing and convex in t € [0, 7.

E 10.16 Show that p defined in (10.35) satisfies p < p < p™.

E 10.17 Show that s(\), the solution of (10.39), increases from p as A
increases from 0. Also show that s(\) = p, when A = p — G'(0).

E 10.18 For the model of Sect. 10.3, assume

p—p forp<p,
fp) =
0 for p > p,
Glq) = ¢

(a) Show that p* =2p/3 if T' < 3Q0/p.
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(b) Show that T satisfies T + e*T /p = 1/p + 3Qo/p. Moreover,

) B (ep(t_T) n 2) /3 ift<T,
p(t) = )

D ift>1T,
for T > T, and

_2p  plpT —3Q0]
3 3ert(erT —1)

for T > T.
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Chapter 11

Applications to Economics

Optimal control theory has been extensively applied to the solution of
economic problems since the early papers that appeared in Shell (1967)
and the works of Arrow (1968) and Shell (1969). The field is too vast
to be surveyed in detail here, however. Several books in the area are:
Arrow and Kurz (1970), Hadley and Kemp (1971), Takayama (1974),
Lesourne and Leban (1982), Seierstad and Sydsaeter (1987), Feichtinger
(1988), Léonard and Long (1992), Van Hilten et al. (1993), Kamien and
Schwartz (1992), and Dockner et al. (2000), and Weber (2011). We
content ourselves with the discussion of three simple kinds of models.
In Sect.11.1, two capital accumulation or economic growth models
are presented. In Sect. 11.2, we formulate and solve an epidemic control
model. Finally, in Sect. 11.3 we discuss a pollution control model.

11.1 Models of Optimal Economic Growth

In this section we develop two simple models of economic growth or
capital accumulation. The earliest such model was developed by Ramsey
(1928) for an economy having a stationary population; see Exercise 11.7
for one of his models.

The first model treated in Sect.11.1.1 is a finite horizon fixed-end-
point model with a stationary population. The problem is to maximize
the present value of the utility of consumption for the society, as well as
to accumulate a specified capital stock by the end of the horizon.

The second model incorporates an exogenously and exponentially

(© Springer Nature Switzerland AG 2019 335
S. P. Sethi, Optimal Control Theory,
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growing population in the infinite horizon setting. A technique known
as the method of phase diagrams is used to analyze the model.

For related discussion and extensions of these models, see Arrow
and Kurz (1970), Burmeister and Dobell (1970), Intriligator (1971), and
Arrow et al. (2007, 2010).

11.1.1 An Optimal Capital Accumulation Model

Consider a one-sector economy in which the stock of capital, denoted by
K(t), is the only factor of production. Let F'(K) be the output rate of
the economy when K is the capital stock. Assume F(0) =0, F(K) >
0, F/(K) > 0, and F"(K) < 0, for K > 0. These conditions imply
the diminishing marginal productivity of capital as well as the strict
concavity of F(K) in K. A part of this output is consumed and the
remainder is reinvested for further accumulation of capital stock. Let
C(t) be the amount of output allocated to consumption, and let I(t) =
F[K(t)] — C(t) be the amount invested. Let ¢ be the constant rate of
depreciation of capital. Then, the capital stock equation is

K =F(K)—-C - 4K, K(0)=Kj. (11.1)

Let U(C) be the society’s utility of consumption, where we assume
U'(0) = oo, U'(C) > 0, and U"(C) < 0, for C > 0. These conditions
ensure that U(C) is strictly concave in C. Let p denote the social discount
rate and 1" denote the finite horizon. Then, a government which is elected
for a term of T years could consider the following problem:

max {J = /OT e‘th[C(t)]dt} (11.2)

subject to (11.1) and the fixed-end-point condition
K(T) = Kr, (11.3)

where K7 is a given positive constant. It may be noted that replacing
(11.3) by K(T) > K would give the same solution.

11.1.2 Solution by the Maximum Principle

Form the current-value Hamiltonian as

H=U(C) + A[F(K) - C - §K]. (11.4)
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The adjoint equation is

: oH oF

o AT = a, (11.5)

where « is a constant to be determined.
The optimal control is given by

0H ,

5C =U'(C)—X=0. (11.6)
Since U’(0) = oo, the solution of this condition always gives C(t) > 0.
An intuitive argument for this result is that a slight increase from a zero
consumption rate brings and infinitesimally large marginal utility and
therefore optimal consumption will remain strictly positive. Moreover,
the capital stock will not be allowed to fall to zero along an optimal
path in order to avoid the consumption rate from falling to zero. See
Karatzas et al. (1986) for a rigorous demonstration of this result in a
related context.

Note that the sufficiency of optimality is easily established here by
obtaining the derived Hamiltonian H°(K, \) by substituting for C' from
(11.6) in (11.4), and showing that HY(K, )) is concave in K. This follows
easily from the facts that F(K) is concave and A > 0 from (11.6) on
account of the assumption that U'(C') > 0.

The economic interpretation of the Hamiltonian is straightforward.
It consists of two terms: the first one gives the utility of current con-
sumption and the second one gives the net investment evaluated by price
A, which, from (11.6), reflects the marginal utility of consumption.

For the economic system to be run optimally, the solution must sat-
isfy the following three conditions:

(a) The static efficiency condition (11.6) which maximizes the value of
the Hamiltonian at each instant of time myopically, provided that
A(t) is known.

(b) The dynamic efficiency condition (11.5) which forces the price A of
capital to change over time in such a way that the capital stock
always yields a net rate of return, which is equal to the social
discount rate p. That is,

OH
d)\ + —dt = pAdt.
+ K PA
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(¢) The long-run foresight condition, which establishes the terminal
price A\(T') of capital in such a way that exactly the terminal capital
stock K7 is obtained at 7.

Equations (11.1), (11.3), (11.5), and (11.6) form a two-point bound-
ary value problem which can be solved numerically. In Exercise 11.1, you
are asked to solve a simple version of the model in which the TPBVP
can be solved analytically.

11.1.3 Introduction of a Growing Labor Force

In the preceding sections of this chapter we studied the simplest capital
accumulation model in which the population was assumed to be fixed.
We now introduce labor as a new factor (treated the same as population,
for simplicity), which grows exponentially at a fixed rate g, 0 < g < p. It
is now possible to recast the new model in terms of per capita variables
so that it is formally similar to the previous model. The introduction
of the per capita variables makes it possible to treat the infinite horizon
version of the new model.

Let L(t) denote the amount of labor at time ¢. Since it is growing
exponentially at rate g, we have

L(t) = L(0)e?". (11.7)

Let F(K, L) be the production function which is assumed to be strictly
increasing and concave in both factors of production so that Fx >
0, Fr, >0, Fxrg <0, and Fr;, <0 for K > 0, L > 0. Furthermore, it is
homogeneous of degree one so that F(mK,mL) = mF(K, L) for m > 0.
We define & = K/L and the per capita production function f(k) as

F(k) = F([ZL) - F(%, 1) = F(k,1). (11.8)

It is clear from the assumptions of F' that f/(k) > 0 and f”(k) < 0 for
k> 0.
To derive the state equation for k£, we note that

K =kL+ kL = kL + kgL.

Substituting for K from (11.1) and defining per capita consumption ¢ =
C/L, we get .
F = f(k) = c— vk, K(0) = ko, (11.9)
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where v = g + 6.
Let u(c) be the utility of per capita consumption ¢, where u is as-
sumed to satisfy

u'(c) > 0 and u"(c) < 0 for ¢ > 0 and v'(0) = . (11.10)

As in Sect. 11.1.2, the last condition in (11.10) rules out zero consump-
tion.

According to the position known as total utilitarianism, the soci-
ety’s discounted total utility is [;* e " L(t)u(c(t))dt, which we aim to
maximize. In view of (11.7), this is equivalent to maximizing

J:/ e "u(c)dt, (11.11)
0

where r = p — g > 0. Note also that r +~v = p + 4.

Remark 11.1 It is interesting to note that the problem is an infinite
version of that in Sect.11.1.1, if we consider r to be the adjusted dis-
count rate and v to be the adjusted depreciation rate. This reduction of
a model with two factors of production to a one-sector model does not
work if we jettison the assumption of an exponentially growing popula-
tion. Then, the analysis becomes much more complicated. The reader
is referred to Arrow et al. (2007, 2010) for economic growth models with
non-exponentially and endogenously growing populations.

11.1.4 Solution by the Maximum Principle

The current-value Hamiltonian is
H =u(c) + M\ f(k) — c—~k]. (11.12)

The adjoint equation is

: H
A=1r)\— %—k = +NA=fl(K)X=(p+ )X — f(k)\ (11.13)
To obtain the optimal control, we differentiate (11.12) with respect to c,
set it to zero, and solve

u'(c) = A (11.14)

Let ¢ = h()\) = w/~1()\) denote the solution of (11.14). In Exercise 11.3,
you are asked to show that h'(A) < 0. This can be easily shown by
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inverting the graph of u/(c) vs. ¢. Alternatively you can rewrite (11.14)
as u/(h(A\)) = X and then take its derivative with respect to .

To show that the maximum principle is sufficient for optimality, it is
enough to show that the derived Hamiltonian

HO(k, A) = u(h(\) + A[f(E) — h()\) — k] (11.15)

is concave in k for any A satisfying (11.14). The concavity follows im-
mediately from the facts that X is positive from (11.10) and (11.14) and
f(k) is concave because of the assumptions on F(K, L).

Equations (11.9), (11.13), and (11.14) now constitute a complete au-
tonomous system, since time does not enter explicitly in these equations.
Such systems can be analyzed by the phase diagram method, which is
used next.

In Fig.11.1 we have drawn a phase diagram for the two equations

k= f(k)—h(\) —~k=0, (11.16)
A= 4+ f(BX=0, (11.17)

obtained from (11.9), (11.13), and (11.14). In Exercise 11.2 you are asked
to show that the graphs of £ = 0 and A = 0 are like the dotted curves
in Fig. 11.1. Given the nature of these graphs, known as isoclines, it is

clear that they have a unique point of intersection denoted as (k, \). In

A
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Figure 11.1: Phase diagram for the optimal growth model
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other words, (k, )\) is the unique solution of the equations
f'(k) —h(\) — vk =0 and(r +v) — f'(k) = 0. (11.18)

The two isoclines divide the plane into four regions, I, I, III, and IV,
as marked in Fig.11.1. To the left of the vertical line A = 0, we have
k < k and therefore r+~ < f'(k) in view of f”(k) < 0. Thus, A < 0 from
(11.13). Therefore, A is decreasing, which is indicated by the downward
pointing arrows in Regions I and IV. On the other hand, to the right of
the vertical line, in Regions II and III, the arrows are pointed upward
because A is increasing. In Exercise 11.3, you are asked to show that
the horizontal arrows, which indicate the direction of change in k, point
to the right above the k = 0 isocline, i.e., in Regions I and II, and they
point to the left in Regions IIT and IV which are below the k = 0 isocline.

The point (k, \) represents the optimal long-run stationary equilib-
rium. The values of k and A are obtained in Exercise 11.2. The next
important thing is to show that there is a unique path starting from
any initial capital stock kg, which satisfies the maximum principle and
converges to the steady state (k, A). Clearly such a path cannot start in
Regions II and IV, because the directions of the arrows in these areas
point away from (k,\). For kg < k, the value of \¢ (if any) must be
selected so that (kg, \g) is in Region I. For kg > k, on the other hand,
the point (kog, A\g) must be chosen to be in Region III. We analyze the
case ko < k only, and show that there exists a unique \g associated with
the given kg, and that the optimal path, shown as the solid curve in Re-
gion I of Fig. 11.1, starts from (kg, A\o) and converges to (k, A). It should
be obvious that this path also represents the locus of such (kg, A\g) for
ko € [0, k]. The analysis of the case ko > k is left as Exercise 11.4.

In Region I, k(t) > 0 and k(t) is an increasing function of ¢ as indi-
cated by the horizontal right-directed arrow in Fig. 11.1. Therefore, we
can replace the independent variable ¢ by k, and then use (11.16) and
(11.17) to obtain

, A\ d\ Jdk [f'(k) — (r + )]
Ak = dk —dt /) dt  h(\)+ak—fk) (11.19)

Thus, our task of showing that there exists an optimal path starting from
any initial ky < k is equivalent to showing that there exists a solution
of the differential equation (11.19) on the interval [0, k], beginning with
the boundary condition A(k) = A. For this, we must obtain the value
N (k). Since both the numerator and the denominator in (11.19) vanish
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at k = k, we need to derive \' (k) by a perturbation argument. To do so,
we use (11.19) and (11.18) to obtain

- SR LF(R) — £ (R)A )
JB) =4k —h(N) ~ F(k) — F(k) — vk + vk — h(3) + h(%)’

N(k) =

We use L’Hépital’s rule to take the limit as kK — k and obtain

UL S FEA

fl(k) —~v—=HW(N) o F1(R) — ~ — N (k) /a"(h(N)’ (11.20)
)
o)) N(E)f' (k) —~] + Af"(k) = 0. (11.21)

Note that the second equality in (11.20) uses the relation h'(\) =
1/u"(h()\)) obtained by differentiating u'(c) = u'(h()\)) = X of (11.14)
with respect to A at A = \.

It is easy to see that (11.21) has one positive solution and one negative
solution. We take the negative solution for \'(k) because of the following
consideration. With the negative solution, we can prove that the differ-
ential equation (11.19) has a smooth solution, such that \'(k) < 0. For
this, let

m(k) = f(k) = ky — h(A(K)).

Since k < k, we have r+vy— f’(k) < 0. Then from (11.19), since X' (k) < 0,
we have A\(k —¢) > A(k). Also since A > 0 and f”(k) < 0, Eq. (11.20)
with \'(k) implies

<0,

/ _ gt . )
x(k) = f'(R) — 7 — (@)

and thus,
m(k—¢)=f(k—¢e)—~(k—¢)— h(A(k—¢)) > 0.

Therefore, the derivative at k — ¢ is well defined and N (k — &) < 0. We
can proceed as long as

X (k)

This implies that f(k) — kv — h(\) > 0, and also since r + v — f'(k)

remains negative for k < k, we have X' (k) < 0.
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Suppose now that there is a point k < k with 7r(l;:) = (. Then, since
m(k 4 ¢) > 0, we have 7/(k) > 0. But at k, w(k) = 0 in (11.19) implies
N (k) = —o0, and then from (11.22), we have n/(k) = —oo, which is a
contradiction with 7/ (k) > 0. Thus, we can proceed on the whole interval
[0, k]. This indicates that the path A\(k) (shown as the solid line in Region

I of Fig. 11.1) remains above the curve
k= (k) = ky = h(}) =0,

shown as the dotted line in Fig.11.1 when k < k. Thus, we can set
Ao = M ko) for 0 < kg < k and have the optimal path starting from
(ko, Ao) and converging to (k, ).

Similar arguments hold when the initial capital stock kg > k, in order
to show that the optimal path (shown as the solid line in Region III of
Fig.11.1) exists in this case. You have already been asked to carry out
this analysis in Exercise 11.4.

We should mention that the conclusions derived in this subsection
could have been reached by invoking the Global Saddle Point Theorem
stated in Appendix D.7, but we have chosen instead to carry out a de-
tailed analysis for illustrating the use of the phase diagram method. The
next time we use the phase diagram method will be in Sect.11.3.3, and
there we shall rely on the Global Saddle Point Theorem.

11.2 A Model of Optimal Epidemic Control

Certain infectious epidemic diseases are seasonal in nature. Examples
are the common cold, the flu, and certain children’s diseases. When it
is beneficial to do so, control measures are taken to alleviate the effects
of these diseases. Here we discuss a simple control model due to Sethi
(1974c) for analyzing an epidemic problem. Related problems have been
treated by Sethi and Staats (1978), Sethi (1978c), and Francis (1997).
See Wickwire (1977) for a good survey of optimal control theory applied
to the control of pest infestations and epidemics, and Swan (1984) for
applications to biomedicine.

11.2.1 Formulation of the Model

Let N be the total fixed population. Let x(¢) be the number of infectives
at time ¢ so that the remaining N — z(t) is the number of susceptibles.
To keep the model simple, assume that no immunity is acquired so that
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when infected people are cured, they become susceptible again. The
state equation governing the dynamics of the epidemic spread in the
population is

&= Px(N —z) —vx, x(0)=xo, (11.23)

where 3 is a positive constant termed infectivity of the disease, and v
is a control variable reflecting the level of medical program effort. Note
that x(t) is in [0, N] for all ¢ > 0 if ¢ is in that interval.

The objective of the control problem is to minimize the present value
of the cost stream up to a horizon time T, which marks the end of the
season for that disease. Let h denote the unit social cost per infective,
let m denote the cost of control per unit level of program effort, and let
Q) denote the capability of the health care delivery system providing an
upper bound on v. The optimal control problem is:

max {J = /OT —(hz + mv)e_ptdt} (11.24)

subject to (11.23), the terminal constraint that

z(T) = zp, (11.25)
and the control constraint

0<v<Q.
11.2.2 Solution by Green’s Theorem
Rewriting (11.23) as

vdt = [fx(N — x)dt — dx]/x

and substituting into (11.24) yields the line integral

T

Jr = /F — {[hx +mB(N — x)]e Ptdt — @efptd:r} , (11.26)

where I" is a path from xg to zr in the (¢,z)-space. Let I'y and I's be
two such paths from zy to zp, and let R be the region enclosed by I'y
and I's. By Green’s theorem, we can write

Jry 1y, = Jr, — Jp, = //R_ [% — h+mB| e Pdtde.  (11.27)
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To obtain the singular control we set the integrand of (11.27) equal to
zero, as we did in Sect. 7.2.2. This yields

z = h/m%ﬁ - g, (11.28)

where 8 = h/m — (. Define the singular state z* as follows:

p/0 if0<p/f <N,
2® = / / (11.29)

N  otherwise.

The corresponding singular control level

o — B(N — &%) = B(N —p/0) if0<p/0 <N, (11.30)

0 otherwise.

We will show that x° is the turnpike level of infectives. It is instructive to
interpret (11.29) and (11.30) for the various cases. If p/6 > 0, then 6 > 0
so that h/m > (. Here the smaller the ratio h/m, the larger the turnpike
level 2, and therefore, the smaller the medical program effort should be.
In other words, the smaller the social cost per infective and/or the larger
the treatment cost per infective, the smaller the medical program effort
should be.

When p/0 < 0, you are asked to show in Exercise 11.9 that x®* = N
in the case h/m < (8, which means the ratio of the social cost to the
treatment cost is smaller than the infectivity coefficient. Therefore, in
this case when there is no terminal constraint, the optimal trajectory
involves no treatment effort. An example of this case is the common
cold where the social cost is low and treatment cost is high.

The optimal control for the fortuitous case when xp = z° is

Q if x(t) >z,
vi(a(t) = vt if a(t) = a5, (11.31)
0 ifx(t) <a®.

When zp # x°, there are two cases to consider. For simplicity of expo-
sition we assume xg > 2 and T and @ to be large.
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Case 1: xp > z°. The optimal trajectory is shown in Fig.11.2. In
Exercise 11.8 you are asked to show its optimality by using Green’s
theorem.

Case 2: zp < z°. The optimal trajectory is shown in Fig.11.3. It can
be shown that x goes asymptotically to N — @/ if v = Q. The level is
marked in Fig.11.3.

The optimal control shown in Figs.11.2 and 11.3 assumes 0 < z° <
N. It also assumes that 7' is large so that the trajectory will spend some
time on the turnpike and @ is large so that z° > N — @ /3. The graphs
are drawn for xg > 2® and x® < N/2; for all other cases see Sethi (1974c).

X
A

N
p X
X pH= (/ !
Nj2 9" / .....
59 v*: S -
' g
0 T

Figure 11.2: Optimal trajectory when zp > x°

11.3 A Pollution Control Model

In this section we will describe a simple pollution control model due to
Keeler et al. (1971). We will describe this model in terms of an economic
system in which labor is the only primary factor of production, which is
allocated between food production and DDT production. It is assumed
that all of the food produced is used for consumption. On the other hand,
all of the DDT produced is used as a secondary factor of production
which, along with labor, determines the food output. However, when
used, DDT causes pollution, which can only be reduced by natural decay.
The objective of the society is to maximize the total present value of the
utility of food less the disutility of pollution due to the use of DDT.
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Figure 11.3: Optimal trajectory when zp < x*

11.3.1 Model Formulation

We introduce the following notation:

= the total labor force, assumed to be constant for simplicity,

the amount of labor used for DDT production,

the amount of labor used for food production,

the stock of DDT pollution at time ¢,

the rate of DDT output; a(0) =0, @’ > 0, a” <0, for v > 0,

the natural exponential decay rate of DDT pollution,

h

|
N e

I

2
—~
o =
(I

Q
—~
<
~—
|

fIL — v,a(v)] = the rate of food output to be consumed;

C(v) is concave, C'(0) > 0, C(L) = 0; C(v) attains a

unique maximum at v =V > 0; see Fig.11.4.

Note that a sufficient condition for C'(v) to be strictly

concave is fio > 0 along with the usual concavity and

monotonicity conditions on f (see Exercise 11.10),

u(C) = the utility function of consuming the food output C' > 0;
u'(0) = oo, v/ (C) >0, u"(C) <0,

h(P) = the disutility function of pollution stock P > 0;

B'(0) =0, K'(P) >0, h"(P) > 0.
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Figure 11.4: Food output function

The optimal control problem is:

max = b e Pu(C(v)) — .
{J /0 [u(C(v)) h(P)]dt} (11.32)
subject to
P =a(v) — 6P, P(0)= Py, (11.33)
0<v<L. (11.34)

From Fig.11.4, it is obvious that v is at most V, since the production
of DDT beyond that level decreases food production and increases DDT
pollution. Hence, (11.34) can be reduced to simply

v > 0. (11.35)

11.3.2 Solution by the Maximum Principle

Form the current-value Lagrangian
L(P,v, A\, i) = u[C(v)] — h(P) + Ala(v) — §P] + pwv (11.36)
using (11.32), (11.33) and (11.35), where
A= (p+ N+ 1 (P), (11.37)

and
@ >0 and pv = 0. (11.38)
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The optimal solution is given by

I8 — IO 0) + ) + =0, (11.39)

Since the derived Hamiltonian is concave, conditions (11.36)—(11.39) to-
gether with B
lim A(f) = A = constant (11.40)

t—o00

are sufficient for optimality; see Theorem 2.1 and Sect.2.4. The phase
diagram analysis presented below gives \(t) satisfying (11.40).

11.3.3 Phase Diagram Analysis

From the assumptions on C(v) or from Fig.11.4, we see that C’(0) >
0. This means that du/dv = u/(C(v))C’(v)|y=0 > 0. This along with
R'(0) = 0 implies that v > 0, meaning that it pays to produce some
positive amount of DDT in equilibrium. Therefore, the equilibrium value
of the Lagrange multiplier is zero, i.e., i = 0. From (11.33), (11.37) and
(11.39), we get the equilibrium values P, ), and © as follows:

= a(v)
P, (11.41)
s _MP)_ _WCEIC @) (11.42)

p+o a'(v)
From (11.42) and the assumptions on the derivatives of g, C' and a, we
know that A < 0. From this and (11.37), we conclude that A(t) is always
negative. The economic interpretation of A is that —A\ is the imputed
cost of pollution. Let v = ®(\) denote the solution of (11.39) with x = 0.
On account of (11.35), define

v* = max[0, P(N)]. (11.43)

We know from the interpretation of A that when X increases, the imputed
cost of pollution decreases, which can justify an increase in the DDT
production to ensure an increased food output. Thus, it is reasonable to

assume that
dg > 0
d\ ’

and we will make this assumption. It follows that there exists a unique
A€ such that ®(\°) =0, ®(A) <0 for A < A° and ®(\) > 0 for A > \°
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To construct the phase diagram, we must plot the isoclines P = 0
and A = 0. These are, respectively,

a(v*)  a[max{0,®(N)}]

pP= —
1) ) ’

(11.44)

W(P) = —(p+ ). (11.45)

Observe that the assumption h'(0) = 0 implies that the graph of (11.45)
passes through the origin. Differentiating these equations with respect
to A and using (11.43), we obtain

dP a'(v) dv

lpo=—5 7 >0 (11.46)

as the slope of the P = 0 isocline, and

£|, _ (pt9)
dXA=0" " pr(P)

<0 (11.47)

as the slope of the A = 0 isocline.

Using (11.41), (11.42), (11.46), and (11.47), we can draw (11.44) and
(11.45) in the (A, P)-space as shown in Fig. 11.5. As in Sect. 11.1.4, these
isoclines divide the (A, P) space in four regions. At any point in each
of these regions, we have depicted the direction of the movement of the
trajectory with v* in (11.33) and (11.37). It is easy to conclude that we
have P < 0 (P > 0) above (below) the P = 0 isocline and A > 0 (A < 0)
to the right (left) of the A = 0 isocline.

The intersection point (X, P) of these isoclines denotes the equilib-
rium levels for the adjoint variable and the pollution stock, respectively.
That there exists an optimal path (shown as the solid line in Fig. 11.5)
converging to the equilibrium (), P) follows directly from the Global
Saddle Point Theorem stated in Appendix D.7.

Given A as the intersection of the P = 0 curve and the horizontal
axis, the corresponding ordinate P¢ on the optimal trajectory is the
related pollution stock level. The significance of P¢ is that if the existing
pollution stock P is larger than P¢, then the optimal control is v* = 0,
meaning no DDT is produced.

Given an initial level of pollution Py, the optimal trajectory curve in
Fig. 11.5 provides the initial value \g of the adjoint variable. With these
initial values, the optimal trajectory is determined by (11.33), (11.37),
and (11.43). If Py > P¢, as shown in Fig.11.5, then v* = 0 until such



11.3. A Pollution Control Model 351

Figure 11.5: Phase diagram for the pollution control model

time that the natural decay of pollution stock has reduced it to P¢. At
that time, the adjoint variable has increased to the value A°. The optimal
control is v* = ¢(\) from this time on, and the path converges to (), P).

At equilibrium, o = ®(\) > 0, which implies that it is optimal to
produce some DDT forever in the long run. The only time when its
production is not optimal is at the beginning when the pollution stock
is higher than P°.

It is important to examine the effects of changes in the parameters on
the optimal path. In particular, you are asked in Exercise 11.11 to show
that an increase in the natural rate of decay of pollution, §, will increase
P¢. That is, when pollution decays at a faster rate, we can increase the
threshold level of pollution stock at which to ban the production of the
pollutant. For DDT in reality, J is small so that its complete ban, which
has actually occurred, may not be far from the optimal policy.

Here we have presented a very simple model of pollution in which
the problem was to choose an optimal production process. Models in
which the control variable to determine is the optimal amount to spend
in reducing the pollution output of an existing dirty process have also
been formulated; see Wright (1974) and Sethi (1977d). For other related
models, see Luptacik and Schubert (1982), Hartl and Luptacik (1992),
and Hartl and Kort (1996a,b,c, 1997), Xepapadeas and de Zeeuw (1999),
and Moser et al. (2014).
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11.4 An Adverse Selection Model

In modern contract theory, the term adverse selection is used to describe
principal-agent models in which an agent has private information before
a contract is written. For example, a seller does not know perfectly how
much a buyer is willing to pay for a good. A related concept is that
of moral hazard, when there is present a hidden action not adversely
observed by the principal.

In such game situations, clearly the principal would like to know the
agent’s private information which he cannot learn simply by asking the
agent, because it is in the agent’s interest to distort the truth. Fortu-
nately, according to the theory of mechanism design, the principal can
design a game whose rules can influence the agent to act the way he
would like. Thanks, particularly to the revelation principle, the princi-
pal needs only consider games in which the agent truthfully reports her
private information.

There is a large literature on contract theory, and we refer the reader
to books by Laffont and Mortimort (2001), Bolton and Dewatripont
(2005) and Cvitanic and Zhang (2013). For our purposes, we shall next
consider a game between a seller and a buyer, where the buyer has private
information about her willingness-to-pay for the seller’s goods; see Bolton
and Dewatripont (2005).

11.4.1 Model Formulation

Consider a transaction between a seller (the principal) and a buyer (the
agent) of type t € [t1,t2], 0 < t; < to, represents her willingness-to-pay
for seller’s goods. We assume in particular that buyer’s preferences are
represented by the utility function

Ulg, ¢,t) = ta(q) — ¢, (11.48)

where ¢ is the number of units purchased and ¢ is the total amount paid
to the seller. We assume a(0) = 0, @’ > 0, and a” < 0.

The seller knows only the distribution F(t), having the density
f(t),t € [t1,t2]. The seller’s unit production cost is ¢ > 0, so that his
profit from selling ¢ units against a sum of money ¢ is given by

T=¢—cq. (11.49)

The question of interest here is to obtain a profit-maximizing pair
{¢,q} that the seller will be able to induce the buyer of type f to choose.
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Thanks to the revelation principle, the answer is that the seller can offer
a menu of contracts {¢(t), ¢(t)} which comes from solving the following
maximization problem:

[ lo0) — ca) () (1150
subject to
(IR) dalq(d)) — 6(0) > 0, i € [11, 1] (11.51)

(IC) ta(q(t)) — ¢(t) > ta(q(t)) — @(t), t, t € [t1,ta], t # L. (11.52)

The constraints (11.51), called individual rationality constraints (IR),
say that the agent of type ¢ will participate in the contract. Clearly,
given (11.52), we can replace these constraints by a single constraint

tra(q(t1)) — ¢(t1) = 0. (11.53)

The left-hand side of the constraints (11.52), called incentive compatibil-
ity constraints (IC), is the utility of agent # if she chooses the contract
intended for her, whereas the right-hand side represents the utility of
agent t if she chooses the constraint intended for type t # t. The IC
constraints, therefore, imply that type ¢ agent is better off choosing the
contract intended for her than any other contract in the menu.

Clearly, the seller’s problem is mathematically difficult as it involves
maximizing the seller’s profit over a class of functions. So, a way to deal
with this problem is to decompose it into an implementation problem
(which functions ¢(-) are incentive compatible?) and an optimization
problem (which one is the best implementation function for the seller?)

11.4.2 The Implementation Problem

Given a menu {q¢(-),#(-)} that satisfies the seller’s problem (11.50)—
(11.52), it must be the case in equilibrium that the buyer # will choose
the contract {q(f),¢(t)}. In other words, his utility fa(q(t)) — ¢(t) of
choosing a contract {q(t),¢(t)} will be maximized at t = . Assuming
that ¢(-) and ¢(-) are twice differentiable functions, the first-order and
second-order conditions are

A © A

ta'(q(£)q(t) — 6(t)l,—; = ta'(a(£))q (D) — o(f) = 0, (11.54)
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ta"(q(1))(d(t))* + ta’(g(£))i(t) — H(t)],—; < 0. (11.55)
From (11.54), it follows from replacing ¢ by ¢ that
ta'(q(t))d(t) — () = 0, t € [t1,t], (11.56)

called the local incentive compatibility condition, must hold. Differenti-
ating (11.56) gives,

ta"(q(t))(d(t))* + ' (a()d(t) + ta'(a(t))i(t) — $(t) = 0. (11.57)
It follows from (11.55), (11.57), and o’ > 0, that
q(t) > 0. (11.58)

This is called the monotonicity condition. In Exercise 11.12, you are
asked to show that (11.56) and (11.58) are sufficient for (11.52) to hold.
Since, these conditions are already necessary, we can say that local incen-
tive compatibility (11.56) and monotonicity (11.58) together are equiva-
lent to the IC condition (11.52).

We can now ready to formulate the seller’s optimization problem.

11.4.3 The Optimization Problem

The seller’s problem can be written as the following optimal control
problem:

max /t12[¢(t) —cq(t)]f(t)dt (11.59)
subject to
q(t) = u(?), (11.60)
é(t) = ta' (q(t))ul(t), (11.61)
tia(q(t1)) — o(t1) =0, (11.62)
u(t) > 0. (11.63)

Here, ¢(t) and ¢(t) are state variables and wu(t) is a control variable
satisfying the control constraint u(t) > 0. The objective function (11.59)
is the expected value of the seller’s profit with respect to the density f(¢).
Equation (11.60) and constraint (11.63) come from the monotonicity
condition (11.58). Equation (11.61) with u(¢) from (11.60) gives the
local incentive compatibility condition (11.56). Finally, (11.62) specifies
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the IR constraint (11.53) in view of the fact it will be binding for the
lowest agent type t; at the optimum.

We can now use the sense of the maximum principle (3.12) to write
the necessary conditions for optimality. Note that (3.12) is written
for problem (3.7) that has specified initial states and some constraints
on the terminal state vector x(7') that include the equality constraint
b(xz(T),T) = 0. Our problem, on the other hand, has this type of equal-
ity constraint, namely (11.62), on the initial states ¢(¢1) and ¢(¢1) and
no specified terminal states ¢(t2) and ¢(t2). However, since initial time
conditions and terminal time conditions can be treated in a symmetric
fashion, we can apply the sense of (3.12), as shown in Remark 3.9, to
obtain the necessary optimality conditions to problem (11.59)-(11.63).
In Exercise 11.13, you are asked to obtain (11.67) and (11.68) by fol-
lowing Remark 3.9 to account for the presence of the equality constraint
(11.62) on the initial state variables rather than on the terminal state as
in problem (3.7).

To specify the necessary optimality condition, we first define the
Hamiltonian.

A(t)u(t) + p(t)[ta' (g(t)u(t))]
(M) + p(t)ta (g(t))]u(t)
(11.64)

H(q, ¢, A pt) = [o(t) = cq(t)]f ()

Then for u* with the corresponding state trajectories ¢* and ¢* to be
optimal, we must have adjoints A and p, and a constant 3, such that

i =ut g = ta' (q*)u (11.65)

tia(q*(t1)) — ¢*(t1) =0, (11.66)

A =cf — ptd"(¢)u*, MNt1) = Btrd (¢* (t1)), A(t2) =0, (11.67)

/'L = _f> /’L(tl) = _67 M(tQ) = 07 ( )

u*(t) = bang[0, 00; A(t) + u(t)ta’(q" (t))]. (11.69)

Several remarks are in order at this point. First we see that we have

a bang-bang control in (11.69). This means that the u*(¢) can be 0,
or greater than 0, or an impulse control. Moreover, in the region when
u*(t) = 0, which will occur when \(t) + u(t)ta’(¢*(t)) < 0, we will have

a constant ¢*(¢), and we will have a singular control u*(t) > 0 if we can
keep A(t) + u(t)ta’(¢*(t)) = 0 by an appropriate choice of u*(t) along
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the singular path. An impulse control would occur if the initial ¢(t1)
were above the singular path. Since in our problem, initial states are not
exactly specified, we shall not encounter an impulse control here.

The third remark concerns a numerical way of solving the problem.
For this, let us rewrite the boundary conditions in (11.67) and (11.68)
and the condition (11.66) as below:

tra(q”(t1)) — ¢"(t1) = 0, A(t1) = —p(t1)trd'(¢" (1)) (11.70)
)\(752) = /,L(tg) =0. (11.71)

With (11.71) and a guess of ¢(t2) and ¢(t2), we can solve the differential
equation (11.65), (11.67) and (11.68), with «*(¢) in (11.69), backward in
time. These will give us the values of A(¢1), u(t1), ¢(t1) and ¢(t1). We
can check if these satisfy the two equations in (11.70). If yes, we have
arrived at a solution. If not, we change our guess for ¢(t2) and ¢(t2) and
start again. As you may have noticed, the procedure is very similar to
solving a two-point boundary value problem.

Next we provide an alternative procedure to solve the seller’s prob-
lem, a procedure used in the theory of mechanism design. This procedure
first ignores the nonnegativity constraint (11.60) and solves the relaxed
problem given by (11.59)—(11.62). In view of (11.52), let us define

u’(f) = ta(q(f)) — 6(f) = max{ta(q(t)) — ¢(1)]- (11.72)

By the envelope theorem, we have

du®(t)  oul(t) .
= g —aldd), (11.73)

which we can integrate to obtain

W) = / a(g(2)dz) + (1) = / a(g(x))dz, (11.74)

t1 t1

since u*(t1) = 0 at the optimum. Also, since ¢(t) = ta(q(t)) — u’(t), we
can write the seller’s profit as

/ tala(t)) - / a(g(@))de — cq®)f(Ddt.  (11.75)

t1 t1

Then, integrating by parts, we have
Ji2 {ta((t) — cg(t)} f(£) — alg(t))(1 = F(t))] dt
= [,2 [ta(q(t)) — cq(t) — alg(t))/h()] f(t)dt, (11.76)
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where h(t) = f(t)/[1 — F(t)] is known as the hazard rate. Since we
are interested in maximizing the seller’s profit with respect to the out-
put schedule ¢(-), we can maximize the expression under the integral
pointwise for each t. The first-order condition for that is

- = - | aao =)

which gives us the optimal solution of the relaxed problem as

q(t) =a! [c <t = h(lt)) _l] . (11.78)

In obtaining (11.78), we had omitted the nonnegativity constraint
(11.63) introduced to ensure that ¢(t) is increasing. Thus, it remains to
check if dg(t)/dt > 0. It is straightforward to verify that if the hazard
rate h(t) is increasing in ¢, then (¢) is increasing in ¢. To show this, we
differentiate (11.78) to obtain

dq(t) _  g(t)a'(4(t))
)

dt a”(4(t))g(t)’

where g(t) = [t — 1/h(t)]. Clearly, if h(t) is increasing, then g¢(t) is in-
creasing, and dq(t)/dt > 0.

In this case, ¢(t) and the corresponding ¢(t) obtained from solving
the differential equation given by (11.61) and the boundary condition
(11.62) give us the optimal menu {¢(t), G(¢)}.

What if h(t) is not increasing? In that case, there is a procedure
called bunching and ironing given by the solution of an optimal control
problem to be formulated next. This is because ¢(t) in (11.78) is obtained
by solving the relaxed problem that ignores the nonnegativity constraint
(11.63), and so it may be that dg/dt is strictly negative for some t €
[t,t] C [t1,t2] as shown in Fig. 11.6.

Then the seller must choose the optimal ¢*(¢) to maximize the fol-
lowing constrained optimal control problem:

max / i [ta(q(t))—cq(t)— | (11.79)

() Jyy

subject to
q(t) = u(t), u(t) > 0. (11.80)
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Figure 11.6: Violation of the monotonicity constraint

Now the necessary optimality conditions, with the Hamiltonian defined
as

H(q,0,\,t) = (ta(q) — cq — alq)/h) f + Au, (11.81)
A=—[(t—1/h)d'(q) — ] f, A(t1) = A(t2) =0, (11.82)

and
u* = [0,00; A (11.83)

We may also note that these conditions are also sufficient since H in
(11.81) is concave in q.
Integrating (11.82), we have

30 == [ (- 55 ) e - sra

Using the transversality conditions in the case when neither the initial
nor the terminal state is specified for the state equation (11.80), we
obtain

0= A(t) = A(ta) = — /tz [(z _ h1)> d/(q(2)) — c} f(2)dz.

t1 (Z
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Then for u*(t) = 0 on an interval ¢ € [01,602] C [t1,t2], we must have
A(t) < 0, t € [01,02]. Moreover, when u*(t) > 0, it must be a singular
control for which A\(¢) = 0.

But A(t) = 0 is the same as the condition (11.77), which means that
if ¢*(¢) is strictly increasing, then it must coincide with ¢(¢) in (11.78).
It, therefore, only remains to determine the intervals over which ¢*(¢) is
constant. Consider Fig. 11.7

qt);q (1)

Al

\
\
\
\
\
\ \
4 0t t 6 ty t
Figure 11.7: Bunching and ironing

By continuity, we must have A(f1) = \(f2) = 0, so that

/(:2 [(2 - h(lz)> a'(q"(2)) - c] dz = 0. (11.84)

In addition, we must have
q*(6h) = q*(62) (11.85)

from the continuity of ¢*(-). Thus, we have two equations (11.84) and
(11.85) and two unknowns, allowing us to obtain the values of #; and 0.
An interval [61,02] over which ¢*(t) is constant is known as a bunching
interval.

Here, we have given a procedure when §(-) has only one interval [t, ]
over which it is strictly decreasing. If there are more such intervals,
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this procedure of ironing and bunching can be extended in an obvious
manner.

11.5 Miscellaneous Applications

The number of papers which apply control theory to problems in eco-
nomics and management science is now so large that it is impossible to
cover them in detail within the confines of a single book. We satisfy
ourselves by listing selected references with a brief indication of their
contents.

For control theory applications to economics, see: Tu (1969) and
Southwick and Zionts (1974) for optimal educational investments,
Kamien and Schwartz (1971b) for limit pricing and uncertain entry,
Treadway (1970) for adjustment costs in the theory of competitive firms,
Vousden (1974) for international trade, Harris (1976) for money demand
with transaction costs, Raviv (1979) for the design of an optimal insur-
ance policy, Sethi and McGuire (1977) for optimal training and heteroge-
neous labor, Arthur and McNicoll (1977) for population policy, Brito and
Oakland (1977) for optimal income tax, Thompson (1982a,b) for contin-
uous expanding economies, Thépot (1983) for investment and marketing
policies in a duopoly, Verheyen (1985) for a theory of firm under govern-
ment regulations, Hartl and Mehlmann (1986) for renumeration patterns
for medical services, Schijndel (1986) for dynamic shareholder behavior
under personal taxation, Hartl and Kort (1997) for optimal input substi-
tution in response to environmental constraints, Feichtinger et al. (1998),
Behrens et al. (2000, 2002), Tragler et al. (2001), Grass et al. (2008), and
Seidl et al. (2016) for optimal control of crime such as illicit drugs and
terrorism.

For control theory applications to management science and opera-
tions research, see: Nelson (1960) for labor assignments, Fan and Wang
(1964), Charnes and Kortanek (1966), Tapiero and Soliman (1972) and
Bookbinder and Sethi (1980) for distribution and transportation applica-
tions, Nepomiastchy (1970) and Zimin and Ivanilov (1971) for scheduling
and network planning problems, Lucas (1971) for research and develop-
ment, Legey et al. (1973) for city congestion problems, Taylor (1974) for
warfare models, Mehra (1975) for national settlement planning, Kalish
(1983) for pricing with dynamic demand and production costs, Kalish
and Lilien (1983) for optimal price subsidy for accelerating diffusion
of innovation, Gaimon (1986¢) for optimal acquisition of new technol-
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ogy, Dockner and Jorgensen (1988) and Jedidi et al. (1989) for optimal
pricing and/or advertising for monopolistic diffusion models, Hartl and
Jorgensen (1985) for manpower planning, Ringbeck (1985) for optimal
quality and advertising under asymmetric information, Hartl and Krauth
(1989) for optimal production mix, Gaimon (1997) for planning for in-
formation technology, Hartl and Kort (2005) for advertising directed to
existing and new customers, and Shani et al. (2005) for dynamic irriga-
tion policies.

Finally, we conclude this section by citing a series of rather un-
usual but humorous applications of optimal control theory that began
with the Sethi (1979b) paper on optimal pilfering policies for dynamic
continuous thieves. These are: Hartl and Mehlmann (1982, 1983) and
Hartl et al. (1992a) on optimal blood consumption by vampires, Hartl
and Mehlmann (1986) on renumeration patterns for medical services,
Hartl and Jorgensen (1988, 1990) on optimal slidemanship at confer-
ences, Jorgensen (1992) on the dynamics of extramarital affairs, and
Feichtinger et al. (1999) on Petrarch’s Canzoniere: rational addiction
and amorous cycles. See also the monograph by Mehlmann (1997) on
unusual and humorous applications of differential games.

Exercises for Chapter 11

E 11.1 For the model formulated in Sect.11.1.1, assume F(K) = vK
and U(C) = (C—C)'?/(1 — 6), where 0 < § < 1, C' > 0 a constant, and
v—38 > 0 a constant satisfying (y—49)(1—6) < p < y—4. Let 8 = y—4§ and
assume 6 = 1/2 for simplicity. Also assume that Koe®T +C(1—eT)/p >
K for the problem to be well-posed (note that the left-hand side of this
inequality is the amount of capital at T" associated with the consumption
rate C'). Solve this problem to obtain explicit expressions for the optimal
consumption rate and the associated capital and the adjoint trajectories.

E 11.2 Perform the following:
(a) Obtain the value of k in Fig. 11.1 from Eq. (11.17).

(b) Show that the graph of k = 0 starts from +oo when k = 0, de-
creases to a minimum of \ at k: and then increases. Also obtain
the expression for \.

(c) Show that k < k.
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E 11.3 Use (11.14) to show that A'(A) < 0. Then, conclude that the
directions of the horizontal arrows above and below the k = 0 curve are
as drawn in Fig. 11.1.

E 11.4 Show that for any ky > k, there exists a unique optimal path,
such as that shown by the solid curve in Region III of Fig. 11.1.

E 11.5 In the formulation of the objective function for the economic
growth model in Sect. 11.1.3, we took the position of total utilitarianism.
Reformulate and solve the problem if our task is to maximize the present
value of the utility of per capita consumption over time.

E 11.6 Use the phase diagram method to solve the advertising model
of (7.7) with its objective function replaced by

max {J _ /0 (G — c(u)]dt} ,

where c¢(u) represents an increasing convex advertising cost function with
c(u) >0, d(u) >0, and ’(u) > 0 for u > 0. This is the model of Gould
(1970).

E 11.7 A variation of the optimal capital accumulation model with sta-
tionary population, known as Ramsey’s model, is:

max {J = /Ooo[u(c) - B]dt}

subject to ‘
k= f(k)—c—~k, k(0)= ko,
where
B =supu(c) >0
c>0
is the so-called Bliss point,
tliglo ulc(t)] = B

so that the integral in the objective function converges, and
lim u'[c(t)] = 0; see Ramsey (1928).

t—o00

(a) Show that the optimal capital stock trajectory satisfies the differ-
ential equation

u'(f(k) — vk — k)k = B —u(f(k) — vk — k).
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(b) From part (a), derive Ramsey’s rule

dfu'(c(t))]
ACAOR — ety - £ +0)
(¢) Assume u(c) = 2¢ — /B and f(k) = ak, where « —y := 3 >0
and 8 < B/ky < 28. Show that the optimal feedback consumption
rule is
c*(k) =28k - B
and the optimal capital trajectory k* is given by

1
k(1) = 3[B~ (B~ Bko)e™ ™).
E 11.8 Show that the trajectory xoBLxp shown in Fig. 11.2 is optimal

for the epidemic model under the stated assumptions. Assume 0 < 2° <
N.

E 11.9 In (11.29), show by using Green’s theorem that z® = N if
p/0 < 0.

E 11.10 Show that C(v) defined in Sect.11.3.1 satisfies C"(v) < 0 if
Ji2 > 0.

Hint: Note that the usual concavity and monotonicity conditions
on the production function f are f; > 0, fo > 0, fi1 <0 and fa2 < 0.

E 11.11 Show that the P¢ of Fig.11.5 increases as J in Eq. (11.33) in-
creases.

E 11.12 Show that (11.56) and (11.58) imply the (global) IC condition
(11.52).

Hint: The proof is by contradiction. First, begin by supposing
that (11.52) is violated for some ¢ > ¢. Then do the same with ¢ < .

E 11.13 In problem (3.7), the terminal equality constraint b(x(T),T) =
0 results in the term Sb,(x(T),T) in the terminal condition (3.11) on
the adjoint variable. In problem (11.59)—(11.63), we have the equality
constraint (11.62) on the initial states ¢(t1) and ¢(¢1) instead, which
we can write as b((q(t1), ¢(t1)),t1) = t1a(q(t1)) — ¢(t1) = 0. Now apply
(3.11) in a symmetric fashion to obtain the initial conditions (11.67) and
(11.68) on the adjoint variables.
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Chapter 12

Stochastic Optimal Control

In previous chapters we assumed that the state variables of the system
are known with certainty. When the variables are outcomes of a random
phenomenon, the state of the system is modeled as a stochastic process.
Specifically, we now face a stochastic optimal control problem where the
state of the system is represented by a controlled stochastic process. We
shall only consider the case when the state equation is perturbed by
a Wiener process, which gives rise to the state as a Markov diffusion
process. In Appendix D.2 we have defined the Wiener process, also
known as Brownian motion. In Sect. 12.1, we will formulate a stochastic
optimal control problem governed by stochastic differential equations
involving a Wiener process, known as It equations. Our goal will be to
synthesize optimal feedback controls for systems subject to Itd equations
in a way that maximizes the expected value of a given objective function.

In this chapter, we also assume that the state is (fully) observed.
On the other hand, when the system is subject to noisy measurements,
we face partially observed optimal control problems. In some important
special cases, it is possible to separate the problem into two problems:
optimal estimation and optimal control. We discuss one such case in
Appendix D.4.1. In general, these problems are very difficult and are
beyond the scope of this book. Interested readers can consult some
references listed in Sect. 12.5.

In Sect. 12.2, we will extend the production planning model of Chap. 6
to allow for some uncertain disturbances. We will obtain an optimal
production policy for the stochastic production planning problem thus
formulated. In Sect. 12.3, we will solve an optimal stochastic advertising
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problem explicitly. The problem is a modification as well as a stochastic
extension of the optimal control problem of the Vidale-Wolfe advertising
model treated in Sect.7.2.4. In Sect.12.4, we will introduce investment
decisions in the consumption model of Example 1.3. We will consider
both risk-free and risky investments. Our goal will be to find optimal
consumption and investment policies in order to maximize the discounted
value of the utility of consumption over time.

In Sect. 12.5, we will conclude the chapter by mentioning other types
of stochastic optimal control problems that arise in practice.

12.1 Stochastic Optimal Control

In Appendix D.1 on the Kalman filter, we obtain the optimal state
estimation for linear systems with noise and noisy measurements. In
Sect.D.4.1, we see that for stochastic linear-quadratic optimal control
problems, the separation principle allows us to solve the problem in two
steps: to obtain the optimal estimate of the state and to use it in the
optimal feedback control formula for deterministic linear-quadratic prob-
lems.

In this section we will introduce the possibility of controlling a sys-
tem governed by It6 stochastic differential equations. In other words,
we will introduce control variables into Eq. (D.20). This produces the
formulation of a stochastic optimal control problem.

It should be noted that for such problems, the separation principle
does not hold in general. Therefore, to simplify the treatment, it is often
assumed that the state variables are observable, in the sense that they
can be directly measured. Furthermore, most of the literature on these
problems uses dynamic programming or the Hamilton-Jacobi-Bellman
framework rather than a stochastic maximum principle. In what fol-
lows, therefore, we will formulate the stochastic optimal control problem
under consideration, and provide a brief, informal development of the
Hamilton-Jacobi-Bellman equation for the problem. A detailed analysis
of the problem is available in Fleming and Rishel (1975). For problems
involving jump disturbances, see Davis (1993) for the methodology of op-
timal control of piecewise deterministic processes. For stochastic optimal
control in discrete time, see Bertsekas and Shreve (1996).

Let us consider the problem of maximizing

T
E[/ F(Xy, Uy, t)dt + S(X7,T)| (12.1)
0
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where X, is the state at time ¢ and Uy is the control at time ¢, and together
they are required to satisfy the It6 stochastic differential equation

dXt = f(Xt, Ut, t)dt + G(Xt, Ut, t)dZt, XQ = Xxo, (122)

where Z;, t € [0,T] is a standard Wiener process.

For convenience in exposition we assume the drift coefficient function
F:E'XE'xE' - E' S: E'xE' - E' f: BE' x E' x E' = E!
and the diffusion coefficient function G : E' x E' x E' — E', so that
(12.2) is a scalar equation. We also assume that the functions F' and S are
continuous in their arguments and the functions f and G are continuously
differentiable in their arguments. For multidimensional extensions of this
problem, see Fleming and Rishel (1975).

Since (12.2) is a scalar equation, the subscript ¢ here represents only
time ¢. Thus, writing X3, Uz, and Z; in place of writing X (¢), U(t), and
Z(t), respectively, will not cause any confusion and, at the same time,
will eliminate the need for writing many parentheses.

To solve the problem defined by (12.1) and (12.2), let V(z,t), known
as the value function, be the expected value of the objective function
(12.1) from ¢ to T, when an optimal policy is followed from t to T', given
X; = z. Then, by the principle of optimality,

V(z,t) = max E[F(z,U,t)dt + V(x + dX;,t + dt)). (12.3)

By Taylor’s expansion, we have

V(e +dXy,t+dt) =V(z,t) +Vidt + VodX, + %Vm(dXt)2
+3Viu(dt)? + L Vud Xydt (12.4)
+higher-order terms.

From (12.2), we can formally write

(dX;)? f2(dt)* + G*(dZy)? + 2fGdZdt, (12.5)
dXidt = f(dt)* + GdZdt. (12.6)

The exact meaning of these expressions comes from the theory of
stochastic calculus; see Arnold (1974, Chapter 5), Durrett (1996) or
Karatzas and Shreve (1997). For our purposes, it is sufficient to know
the multiplication rules of stochastic calculus:

(dZy)? = dt, dZudt =0, dt* = 0. (12.7)
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Substitute (12.4) into (12.3) and use (12.5), (12.6), (12.7), and the prop-
erty that E[dZ;] = 0 to obtain

1
V= max | Fdt +V + Vidt + V fdt + §VIIG2dt +o(dt)|.  (12.8)

Note that we have suppressed the arguments of the functions involved
in (12.8).

Canceling the term V' on both sides of (12.8), dividing the remainder
by dt, and letting dt — 0, we obtain the Hamilton-Jacobi-Bellman (HJB)
equation

1
0 =max[F + Vi + V.. f + §VmG2] (12.9)
for the value function V (¢, z) with the boundary condition
V(z,T) = S(z,T). (12.10)

Just as we had introduced a current-value formulation of the max-
imum principle in Sect. 3.3, let us derive a current-value version of the
HJB equation here. For this, in a way similar to (3.29), we write the
objective function to be maximized as

E/T[gb(Xt, Up)e ™ +(Xr)e PT). (12.11)
0

We can relate this to (12.1) by setting
F(X:,Up,t) = ¢( Xy, Up)e " and S(X7,T) = p(Xp)e P, (12.12)

It is important to mention that the explicit dependence on time ¢ in
(12.11) is only via the discounting term. If it were not the case, there
would be no advantage in formulating the current-value version of the
HJB equation.

Rather than develop the current-value HJB equation in a manner of
developing (12.9), we will derive it from (12.9) itself. For this we define
the current-valued value function

V(z,t) = V(z,t)e (12.13)

Then we have

V;f = f/%e—pt - pf/e_pt, Vx = f/xe_pt and sz = ~acxe_pt- (1214)
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By using these and (12.12) in (12.9), we obtain

0= mgx[d)e*pt + Ve P — pVe P+ V fe P + %VmGze*pt].
Multiplying by e and rearranging terms, we get

Ve G2 (12.15)

N |

pf/:mgx[qﬂ—f/t%—vzf%—

Moreover, from (12.12), (12.13), and (12.10), we can get the boundary
condition

V(x,T) = (x). (12.16)
Thus, we have obtained (12.15) and (12.16) as the current-value HJB
equation.

To obtain its infinite-horizon version, it is generally the case that
we remove the explicit dependence on ¢ from the function f and G in
(12.2), and also assume that 1 = 0. With that, the dynamics (12.2) and
the objective function (12.11) change, respectively, to

dX; = f(Xt, Ut)dt + G(Xt, Ut)dZt, Xo = xg, (1217)

E/OO &( Xy, Up)e Pt (12.18)
0

It should then be obvious that V; = 0, and we can obtain the infinite-
horizon version of (12.15) as

pV = max[¢ + Vof + =V G, (12.19)

1
2
As for its boundary condition, (12.16) is replaced by a growth condition
that is the same, in general, as the growth of the function ¢(x,U) in
x. For example, if ¢(z,U) is quadratic in z, we would look for a value
function V (z) to be of quadratic growth. See Beyer et al. (2010), Chapter
3, for a related discussion of a polynomial growth case in the discrete
time setting.

If we can find a solution of the HJB equation with the given bound-
ary condition (or an appropriate growth condition in the infinite horizon
case), then a result called a wverification theorem suggests that we can
construct an optimal feedback control U*(x,t) (or U*(z) in the infinite
horizon case) by maximizing the right-hand side of the HJB equation
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with respect U. For further details and extension when the value func-
tion is not smooth enough and thus not a classical solution of the HJB
equation, see Fleming and Rishel (1975), Yong and Zhou (1999), and
Fleming and Soner (1992).

In the next three sections, we will apply this procedure to solve prob-
lems in production, marketing and finance.

12.2 A Stochastic Production Inventory Model

In Sect. 6.1.1, we formulated a deterministic production-inventory model.
In this section, we extend a simplified version of that model by including
a random process. Let us define the following quantities:

I; = the inventory level at time ¢ (state variable),

P, = the production rate at time ¢ (control variable),
S = the constant demand rate at time t; S > 0,

T = the length of planning period,

Iy = the initial inventory level,

B = the salvage value per unit of inventory at time T,
Zy = the standard Wiener process,

o = the constant diffusion coefficient.

The inventory process evolves according to the stock-flow equation
stated as the It0 stochastic differential equation

d[t = (Pt — S)dt + O'dZt, IO given, (1220)

where Iy denotes the initial inventory level. As mentioned in Appendix
Sect.D.2, the process dZ; can be formally expressed as w(t)dt, where
w(t) is considered to be a white noise process; see Arnold (1974). It can
be interpreted as “sales returns,” “inventory spoilage,” etc., which are
random in nature.

The objective function is:

T
maxE{BIT—/ (Pf+It2)dt}. (12.21)
0

It can be interpreted as maximization of the terminal salvage value less
the cost of production and inventory assumed to be quadratic. In Ex-
ercise 12.1, you will be asked to solve the problem with the objective
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function given by the expected value of the undiscounted version of the
integral in (6.2).

As in Sect. 6.1.1 we do not restrict the production rate to be nonneg-
ative. In other words, we permit disposal (i.e., P, < 0). While this is
done for mathematical expedience, we will state conditions under which
a disposal is not required. Note further that the inventory level is allowed
to be negative, i.e., we permit backlogging of demand.

The solution of the above model due to Sethi and Thompson (1981a)
will be carried out via the previous development of the HJB equation
satisfied by a certain value function.

Let V(x,t) denote the expected value of the objective function from
time t to the horizon T" with I; = x and using the optimal policy from
t to T. The function V(z,t) is referred to as the value function, and it
satisfies the HJB equation

1
0= m]zjix[—(PQ + 22+ Vi + V(P - S) + 5g2vm] (12.22)
with the boundary condition
V(z,T) = Bz. (12.23)

Note that these are applications of (12.9) and (12.10) to the production
planning problem.

It is now possible to maximize the expression inside the bracket of
(12.22) with respect to P by taking its derivative with respect to P and
setting it to zero. This procedure yields

Va(,t)

Pr(z,t) = =70 (12.24)

Substituting (12.24) into (12.22) yields the equation

2

V. 1
0= Tx—l‘2+‘/},_SVm+§O’2mea (1225)

which, after the max operation has been performed, is known as the
Hamilton-Jacobi equation. This is a partial differential equation which
must be satisfied by the value function V' (z,t) with the boundary con-
dition (12.23). The solution of (12.25) is considered in the next section.

Remark 12.1 It is important to remark that if the production rate were
restricted to be nonnegative, then, as in Remark 6.1, (12.24) would be
changed to

P*(x,t) = max [O, ‘/””(;jﬂ] : (12.26)
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Substituting (12.26) into (12.23) would give us a partial differential equa-
tion which must be solved numerically. We will not consider (12.26)
further in this chapter.

12.2.1 Solution for the Production Planning Problem
To solve Eq. (12.25) with the boundary condition (12.23) we let

V(x,t) = Q(t)x® + R(t)x + M(t). (12.27)
Then,
Vi = Qa2+ Rx+ M, (12.28)
V, = 2Qz+R, (12.29)
Ve = 20Q, (12.30)

where Y denotes dY/dt. Substituting (12.28)—(12.30) in (12.25) and col-
lecting terms gives

x2[Q+Q2—1]+m[R+RQ—25Q]+M+];2—RS+02Q 0. (12.31)

Since (12.31) must hold for any value of x, we must have

Q = 1-Q° Q(T)=0, (12.32)
R = 258Q - RQ, R(T)=B, (12.33)
M = RS- }f —0%Q, M(T) =0, (12.34)

where the boundary conditions for the system of simultaneous differential
equations (12.32), (12.33), and (12.34) are obtained by comparing (12.27)
with the boundary condition V(z,T) = Bx of (12.23).

To solve (12.32), we expand Q/(1—Q?) by partial fractions to obtain

QI 1 1]
2[1—Q+1+Q]_1’

which can be easily integrated. The answer is

y—1

where
y =X, (12.36)
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Since S is assumed to be a constant, we can reduce (12.33) to
R+ R°Q=0, R (T)=B-2S
by the change of variable defined by R® = R — 2S. Clearly the solution
is given by
T
kgR%T)—bgR%ﬂ:r—/ Q(r)dr,
t
which can be simplified further to obtain
2(B —25)\/y
y+1 '

Having obtained solutions for R and @), we can easily express (12.34) as

R=25+ (12.37)

T
M(t) = —/t [R(1)S — (R(7))?/4 — 0*Q()]dr. (12.38)

The optimal control is defined by (12.24), and the use of (12.35) and
(12.37) yields

(y— 1)z + (B - 25)\/@

P*z,t)=V,/2=Qzr+R/2=S + 12.39
(0,0) = Va/2 = Qu + R/ - (12:39)
This means that the optimal production rate for ¢ € [0, T]

2=T) — 1) + (B —28)et=D)
PPy =S+ © M7 + (B - 25)e (12.40)

e?(t—T) +1 ’

where I}, ¢t € [0,T7, is the inventory level observed at time ¢ when using
the optimal production rate Py, t € [0,7], according to (12.40).

Remark 12.2 The optimal production rate in (12.39) equals the de-
mand rate plus a correction term which depends on the level of inven-
tory and the distance from the horizon time 7. Since (y — 1) < 0 for
t < T, it is clear that for lower values of x, the optimal production rate
is likely to be positive. However, if = is very high, the correction term
will become smaller than —S, and the optimal control will be negative.
In other words, if inventory level is too high, the factory can save money
by disposing a part of the inventory resulting in lower holding costs.

Remark 12.3 If the demand rate S were time-dependent, it would have
changed the solution of (12.33). Having computed this new solution
in place of (12.37), we can once again obtain the optimal control as
P*(z,t) = Qx + R/2.



374 12. Stochastic Optimal Control
Remark 12.4 Note that when T' — oo, we have y — 0 and
P*(z,t) » S — =z, (12.41)

but the undiscounted objective function value (12.21) in this case be-
comes —oo. Clearly, any other policy will render the objective function
value to be —oo. In a sense, the optimal control problem becomes ill-
posed. Omne way to get out of this difficulty is to impose a nonzero
discount rate. You are asked to carry this out in Exercise 12.2.

Remark 12.5 It would help our intuition if we could draw a picture of
the path of the inventory level over time. Since the inventory level is
a stochastic process, we can only draw a typical sample path. Such a
sample path is shown in Fig. 12.1. If the horizon time T is long enough,
the optimal control will bring the inventory level to the goal level = 0.
It will then hover around this level until ¢ is sufficiently close to the
horizon T'. During the ending phase, the optimal control will try to build
up the inventory level in response to a positive valuation B for ending

inventory.
Xt
5 Figure drawn for:
Xp=2,T=12,B=20
4 S=50=2 E
3 '
e { -
I ;
i' )
0 ik i A |I i ] 1 o
T
-1
2 |

Figure 12.1: A sample path of optimal production rate I} with Iy =
zo>0and B >0
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12.3 The Sethi Advertising Model

In this section, we will discuss a stochastic advertising model due to
Sethi (1983b). The model is:

max F {/ e P Xy — Up)dt
0

subject to
(12.42)

dXy = (rUp/1 — X3 — 6 Xp)dt + o(X1)dZ;, Xo = o,

kUtzov

where X; is the market share and U; is the rate of advertising at time ¢,
and where, as specified in Sect.7.2.1, p > 0 is the discount rate, = > 0
is the profit margin on sales, » > 0 is the advertising effectiveness pa-
rameter, and ¢ > 0 is the sales decay parameter. Furthermore, Z; is the
standard one-dimensional Wiener process and o(z) is the diffusion coef-
ficient function having some properties to be specified shortly. The term
in the integrand represents the discounted profit rate at time ¢. Thus,
the integral represents the total value of the discounted profit stream on
a sample path. The objective in (12.42) is, therefore, to maximize the
expected value of the total discounted profit.

The Sethi model is a modification as well as a stochastic extension
of the optimal control formulation of the Vidale-Wolfe advertising model
presented in (7.43). The It6 equation in (12.42) modifies the Vidale-
Wolfe dynamics (7.25) by replacing the term rU(1 — x) by rUp/1 — X
and adding a diffusion term o(X;)dZ; on the right-hand side. Further-
more, the linear cost of advertising U in (7.43) is replaced by a quadratic
cost of advertising U? in (12.42). The control constraint 0 < U < @ in
(7.43) is replaced by simply U; > 0. The addition of the diffusion term
yields a stochastic optimal control problem as expressed in (12.42).

An important consideration in choosing the function o(x) should be
that the solution X; to the Ité equation in (12.42) remains inside the
interval [0, 1]. Merely requiring that the initial condition xg € [0, 1], as in
Sect. 7.2.1, is no longer sufficient in the stochastic case. Additional con-
ditions need to be imposed. It is possible to specify these conditions by
using the theory presented by Gihman and Skorohod (1972) for stochas-
tic differential equations on a finite spatial interval. In our case, the
conditions boil down to the following, in addition to z¢ € (0, 1), which
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has been assumed already in (12.42):
o(x) >0, z € (0,1) and ¢(0) = o(1) = 0. (12.43)
It is possible to show that for any feedback control U(x) satisfying
U(x) >0, x € (0,1], and U(0) > 0, (12.44)

the It6 equation in (12.42) will have a solution X such that 0 < X; < 1,
almost surely (i.e., with probability 1). Since our solution for the optimal
advertising U*(x) would turn out to satisfy (12.44), we will have the
optimal market share X} lie in the interval (0,1).

Let V(x) denote the value function for the problem, i.e., V(x) is the
expected value of the discounted profits from time ¢ to infinity, when
X; = x and an optimal policy U} is followed from time ¢ onwards. Note
that since T = oo, the future looks the same from any time ¢, and
therefore the value function does not depend on ¢. It is for this reason
that we have defined the value function as V(x), rather than V(x,t) as
in the previous section.

Using now the principle of optimality as in Sect. 12.1, we can write
the HJB equation as

pV(x) = max (72 — U + Vo (rUV1 — 2 — 62) 4+ Vou (o (2))?/2] .
(12.45)

Maximization of the RHS of (12.45) can be accomplished by taking its
derivative with respect to U and setting it to zero. This gives

rVev1—x
—
Substituting of (12.46) in (12.45) and simplifying the resulting expression
yields the HJB equation

2,2
1—
pv(x)zﬂx+w

U*(z) = (12.46)

1
1 — Vo + 502(3:)‘/”. (12.47)

As shown in Sethi (1983b), a solution of (12.47) is

(12.48)

where

A= : (12.49)
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as derived in Exercise 7.37. In Exercise 12.3, you are asked verify that
(12.48) and (12.49) solve the HJB equation (12.47).
We can now obtain the explicit formula for the optimal feedback

control as -
A1 —
U*(z) = % (12.50)
Note that U*(z) satisfies the conditions in (12.44).
As in Exercise 7.37, it is easy to characterize (12.50) as
>U if X; < X,
Uf =U(Xy) =9 =U if X, =X, (12.51)
<U ifX,>X,
where 2y
> r°A/2
X =— 12.52
r2A/2+ 4 ( )
and -
- MN1—2Z
U= % (12.53)

as given in (7.51).

The market share trajectory for X; is no longer monotone because
of the random variations caused by the diffusion term o(X;)dZ; in the
Itd equation in (12.42). Eventually, however, the market share process
hovers around the equilibrium level Z. It is, in this sense and as in the
previous section, also a turnpike result in a stochastic environment.

12.4 An Optimal Consumption-Investment
Problem

In Example 1.3 in Chap. 1, we had formulated a problem faced by Rich
Rentier who wants to consume his wealth in a way that will maximize his
total utility of consumption and bequest. In that example, Rich Rentier
kept his money in a savings plan earning interest at a fixed rate of r > 0.

In this section, we will offer Rich the possibility of investing a part
of his wealth in a risky security or stock that earns an expected rate
of return that equals a > r. Rich, now known as Rich Investor, must
optimally allocate his wealth between the risk-free savings account and



378 12. Stochastic Optimal Control

the risky stock over time and consume over time so as to maximize his
total utility of consumption. We will assume an infinite horizon problem
in lieu of the bequest, for convenience in exposition. One could, however,
argue that Rich’s bequest would be optimally invested and consumed by
his heir, who in turn would leave a bequest that would be optimally
invested and consumed by a succeeding heir and so on. Thus, if Rich
considers the utility accrued to all his heirs as his own, then he can justify
solving an infinite horizon problem without a bequest.

In order to formulate the stochastic optimal control problem of Rich
Investor, we must first model his investments. The savings account is
easy to model. If Sy is the initial deposit in the savings account earning
an interest at the rate r > 0, then we can write the accumulated amount
S; at time t as

St = S()ert.
This can be expressed as a differential equation, dS;/dt = Sy, which we
will rewrite as
dSy = rSidt, Sy > 0. (12.54)
Modeling the stock is much more complicated. Merton (1971) and

Black and Scholes (1973) have proposed that the stock price P; can be
modeled by an Itd equation, namely,

dP,
?t = adt + odZ;, Py > 0, (12.55)
t
or simply,
dP, = aP,dt + o PdZ;, Py > 0, (12.56)

where Py > 0 is the given initial stock price, « is the average rate of
return on stock, o is the standard deviation associated with the return,
and Z; is a standard Wiener process.

Remark 12.6 The LHS in (12.55) can be written also as dlnP;. Another
name for the process Z; is Brownian Motion. Because of these, the price
process Py given by (12.55) is often referred to as a logarithmic Brownian
Motion. 1t is important to note from (12.56) that P; remains nonnegative
at any t > 0 on account of the fact that the price process has almost
surely continuous sample paths (see Sect.D.2). This property nicely
captures the limited liability that is incurred in owning a share of stock.

In order to complete the formulation of Rich’s stochastic optimal
control problem, we need the following additional notation:

Wy = the wealth at time £,
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Cy = the consumption rate at time t,
Q); = the fraction of the wealth invested in stock at time ¢,
1—Q; = the fraction of the wealth kept in the savings account
at time t,
U(C) = the utility of consumption when consumption is at the

rate C'; the function U(C') is assumed to be increasing
and concave,
p = the rate of discount applied to consumption utility,

B = the bankruptcy parameter, to be explained later.

Next we develop the dynamics of the wealth process. Since the in-
vestment decision () is unconstrained, it means Rich is allowed to buy
stock as well as to sell it short. Moreover, Rich can deposit in, as well
as borrow money from, the savings account at the rate r.

While it is possible to rigorously obtain the equation for the wealth
process involving an intermediate variable, namely, the number N; of
shares of stock owned at time ¢, we will not do so. Instead, we will write
the wealth equation informally as

th = QtWtOédt + QtWtO'dZt + (1 — Qt)WtTdt — Ctdt
= (Oé — T)QtWtdt + (TWt — Ct)dt + O'QtWtdZt, W() given,
(12.57)

and provide an intuitive explanation for it. The term Q;Wiadt represents
the expected return from the risky investment of ), W; dollars during the
period from ¢ to t+dt. The term Q;W;odZ; represents the risk involved in
investing Q;W; dollars in stock. The term (1 — Q;)W;rdt is the amount
of interest earned on the balance of (1 — Q¢)W; dollars in the savings
account. Finally, C}dt represents the amount of consumption during the
interval from ¢ to ¢ + dt.

In deriving (12.57), we have assumed that Rich can trade contin-
uously in time without incurring any broker’s commission. Thus, the
change in wealth dW; from time ¢ to time ¢+ dt is due to consumption as
well as the change in share price. For a rigorous development of (12.57)
from (12.54) and (12.55), see Harrison and Pliska (1981).

Since Rich can borrow an unlimited amount and invest it in stock,
his wealth could fall to zero at some time T. We will say that Rich goes
bankrupt at time 7', when his wealth falls zero at that time. It is clear
that T is a random variable defined as

T = inf{t > 0|W, = 0}. (12.58)
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This special type of random variable is called a stopping time, since it is
observed exactly at the instant of time when wealth falls to zero.
We can now specify Rich’s objective function. It is:

max {J =F UOT e PHU(Cy)dt + e_pTB} } : (12.59)

where we have assumed that Rich experiences a payoff of B, in the units
of utility, at the time of bankruptcy. B can be positive if there is a
social welfare system in place, or B can be negative if there is remorse
associated with bankruptcy. See Sethi (1997a) for a detailed discussion
of the bankruptcy parameter B.

Let us recapitulate the optimal control problem of Rich Investor:

( T
max {J =F {/ e P'U(Cy)dt + e_pTB} }
0

subject to

th = (a - T’)QtWtdt + (T’Wt - Ct)dt + O'QtWtdZt, WO given,

C, > 0.

(12.60)
As in the infinite horizon problem of Sect.12.2, here also the value
function is stationary with respect to time ¢. This is because T is a stop-
ping time of bankruptcy, and the future evolution of wealth, investment,
and consumption processes from any starting time ¢ depends only on the
wealth at time ¢ and not on time ¢ itself. Therefore, let V(x) be the
value function associated with an optimal policy beginning with wealth
W = x at time t. Using the principle of optimality as in Sect.12.1, the
HJB equation satisfied by the value function V' (x) for problem (12.60)
can be written as

pV(x) = Juax (o —7)QzxVy + (rx — C)Vy

+(1/2)Q202%V,, + U(C)], (12.61)
V(0) = B.

This problem and a number of its generalizations are solved explicitly
in Sethi (1997a). Here we shall confine ourselves in solving a simpler
problem resulting from the following considerations.
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It is shown in Karatzas et al. (1986), reproduced as Chapter 2 in
Sethi (1997a), that when B < U(0)/p, no bankruptcy will occur. This
should be intuitively obvious because if Rich goes bankrupt at any time
T > 0, he receives B at that time, whereas by not going bankrupt at
that time he reaps the utility of strictly more than U(0)/p on account
of consumption from time 7" onward. It is shown furthermore that if
U’(0) = oo, then the optimal consumption rate will be strictly positive.
This is because even an infinitesimally small positive consumption rate
results in a proportionally large amount of utility on account of the
infinite marginal utility at zero consumption level. A popular utility
function used in the literature is

U(C) = InC, (12.62)

which was also used in Example 1.3. This function gives an infinite
marginal utility at zero consumption, i.e.,

U'(0) =1/C|e=o = . (12.63)

We also assume B = U(0)/p = —oo. These assumptions imply a strictly
positive consumption level at all times and no bankruptcy.

Since @ is already unconstrained, having no bankruptcy and only
positive (i.e., interior) consumption level allows us to obtain the form of
the optimal consumption and investment policy simply by differentiating
the RHS of (12.61) with respect to @ and C' and equating the resulting
expressions to zero. Thus,

(a — 1)V, + Qo?z?V,, = 0,

i.e.,

Q*(x) = - (Z;‘rf)vx, (12.64)
and 1
C*(2) = 5 (12.65)

Substituting (12.64) and (12.65) in (12.61) allows us to remove the
max operator from (12.61), and provides us with the equation

V(Vm)Q ( 1 >
Vi) =——"—4+|re — — | Vo — InV,, 12.66
V@) = I - (12.66)
where )
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This is a nonlinear ordinary differential equation that appears to be
quite difficult to solve. However, Karatzas et al. (1986) used a change
of variable that transforms (12.66) into a second-order, linear, ordinary
differential equation, which has a known solution. For our purposes, we
will simply guess that the value function is of the form

V(z)=Alnzx+ B, (12.68)

where A and B are constants, and obtain the values of A and B by
substitution in (12.66). Using (12.68) in (12.66), we see that
A A
pAlnx +pB = ~A+ (m: — E) — —1In ()
A x x
= yA+rA—1—-InA+1Inz.

By comparing the coefficients of Inx and the constants on both sides,
we get A =1/p and B = (r — p+~)/p? + In p/p. By substituting these
values in (12.68), we obtain

1 _
V(z) = (pr) + rﬁ;ﬂ, x> 0. (12.69)

In Exercise 12.4, you are asked by a direct substitution in (12.66)
to verify that (12.69) is indeed a solution of (12.66). Moreover, V(x)
defined in (12.69) is strictly concave, so that our concavity assumption
made earlier is justified.

From (12.69), it is easy to show that (12.64) and (12.65) yield the
following feedback policies:

Q*(z) = 77 (12.70)

C*(x) = p=x. (12.71)

The investment policy (12.70) says that the optimal fraction of the wealth
invested in the risky stock is (a —r)/0?, i.e.,

* * a—r
Qi =Q@" (W)= —5—, 120, (12.72)

which is a constant over time. The optimal consumption policy is to
consume a constant fraction p of the current wealth, i.e.,

This problem and its many extensions have been studied in great
detail. See, e.g., Sethi (1997a).
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12.5 Concluding Remarks

In this chapter, we have considered stochastic optimal control problems
subject to It6 differential equations. For impulse stochastic control, see
Bensoussan and Lions (1984). For stochastic control problems with jump
Markov processes or, more generally, martingale problems, see Fleming
and Soner (1992), Davis (1993), and Karatzas and Shreve (1998). For
problems with incomplete information or partial observation, see Ben-
soussan (2004, 2018), Elliott et al. (1995), and Bensoussan et al. (2010).

For applications of stochastic optimal control to manufacturing prob-
lems, see Sethi and Zhang (1994a), Yin and Zhang (1997), Sethi et al.
(2005), Bensoussan (2011), and Bensoussan et al. (2007b,c,d, 2008a,b,
2009a,b,c). For applications to problems in finance, see Sethi (1997a),
Karatzas and Shreve (1998), and Bensoussan et al. (2009d). For ap-
plications in marketing, see Tapiero (1988), Raman (1990), and Sethi
and Zhang (1995b). For applications of stochastic optimal control to
economics including economics of natural resources, see, e.g., Pindyck
(1978a,b), Rausser and Hochman (1979), Arrow and Chang (1980),
Derzko and Sethi (1981a), Bensoussan and Lesourne (1980, 1981),
Malliaris and Brock (1982), and Brekke and Oksendal (1994).

Exercises for Chapter 12

E 12.1 Solve the production-inventory problem with the state equation
(12.20) and the objective function

min {J - E/OT[Z(I — 2+ g(P ~ P)Q]dt} ,

where h > 0,¢ > 0,1 > 0 and P > 0; see the objective function (6.2) for
the interpretation of these parameters.

E 12.2 Formulate and solve the discounted infinite-horizon version of

the stochastic production planning model of Sect. 12.2. Specifically, as-
sume B = 0 and replace the objective function in (12.21) by

max F {/ —e PH(P?+ If)dt} .
0

E 12.3 Verify by direct substitution that the value function defined by
(12.48) and (12.49) solves the HJB equation (12.47).
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E 12.4 Verify by direct substitution that the value function in (12.69)
solves the HIB equation (12.66).

E 12.5 Solve the consumption-investment problem (12.60) with the util-
ity function U(C) = C?, 0 < 8 < 1, and B = 0.

E 12.6 Solve Exercise 12.5 when U(C) = —C? with # < 0 and B =
—00.

E 12.7 Solve the optimal consumption-investment problem:

V(z) = max {J _E [ /0 T e rn(C, — s)dt] }

subject to
aw, = (Oé — T')QtWtdt + (T’Wt — Ct)dt + O’QtWtdZt, Wy =z,
Ct > s.

Here s > 0 denotes a minimal subsistence consumption, and we assume
0 < p < 1. Note that the value function V(s/r) = —oo. Guess a solution
of the form

V(z) = Aln(z — s/r) + B.

Find the constants A, B, and the optimal feedback consumption and in-
vestment allocation policies C*(z) and Q*(z), respectively. Characterize
these policies in words.

E 12.8 Solve the consumption-investment problem:

V(r) = max {J =FE [/OOO e PHCy — s)ﬁdt] }

subject to
th = (Oé - T‘)QtWtdt + (TWt - Ct)dt + O'QtWtdZt, W() =,
Ct Z S.

Here s > 0 denotes a minimal subsistence consumption and we assume
0 <p<land 0 < f < 1. Note that the value function V(s/r) = 0.
Therefore, guess a solution of the form

V(z) = Az — s/r)P.

Find the constant A and the optimal feedback consumption and invest-
ment allocation policies C*(z) and Q*(z), respectively. Characterize
these policies in words.
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Chapter 13

Differential Games

In previous chapters, we were mainly concerned with the optimal control
problems formulated by a single objective function (or a single decision
maker). However, there are situations when there may be more than
one decision maker, each having one’s own objective function that each
is trying to maximize, subject to a set of differential equations. This
extension of optimal control theory is referred to as the theory of differ-
ential games.

The study of differential games was initiated by Isaacs (1965). Af-
ter the development of Pontryagin’s maximum principle, it became clear
that there was a connection between differential games and optimal con-
trol theory. In fact, differential game problems represent a generalization
of optimal control problems in cases where there is more than one con-
troller or player. However, differential games are conceptually far more
complex than optimal control problems in the sense that it is no longer
obvious what constitutes a solution; see Starr and Ho (1969), Ho (1970),
Varaiya (1970), Friedman (1971), Leitmann (1974), Case (1979), Selten
(1975), Mehlmann (1988), Berkovitz (1994), Basar and Olsder (1999),
Dockner et al. (2000), and Basar et al. (2010). Indeed, there are a num-
ber of different types of solutions such as minimax, Nash, Stackelberg,
along with possibilities of cooperation and bargaining; see, e.g., Tolwin-
ski (1982) and Haurie et al. (1983). We will discuss minimax solutions for
zero-sum differential games in Sect. 13.1, Nash solutions for nonzero-sum
games in Sect. 13.2, and Stackelberg differential games in Sect. 13.3.

(© Springer Nature Switzerland AG 2019 385
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https://doi.org/10.1007/978-3-319-98237-3_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98237-3_13&domain=pdf
https://doi.org/10.1007/978-3-319-98237-3_13

386 13. Differential Games

13.1 Two-Person Zero-Sum Differential Games

Consider the state equation
a‘? = f(x7 u7 U7 t)) x(o) = "L‘07 (]‘3']‘)

where we may assume all variables to be scalar for the time being. Ex-
tension to the vector case simply requires appropriate reinterpretations
of each of the variables and the equations. In this equation, we let u
and v denote the controls applied by players 1 and 2, respectively. We
assume that

u(t) e U, v(t) € V, t € [0,T],

where U and V are convex sets in E'. Consider further the objective
function

T
J(u,v) = S[z(T)] —|—/0 F(z,u,v,t)dt, (13.2)

which player 1 wants to maximize and player 2 wants to minimize. Since
the gain of player 1 represents a loss to player 2, such games are appro-
priately termed zero-sum games. Clearly, we are looking for admissible
control trajectories u* and v* such that

J(u*,v) > J(uv") > J(u,v"). (13.3)

The solution (u*,v*) is known as the minimaz solution. Here u* and v*
stand for u*(t), t € [0,T], and v*(t), t € [0, T], respectively.

The necessary conditions for u* and v* to satisfy (13.3) are given by
an extension of the maximum principle. To obtain these conditions, we
form the Hamiltonian

H=F+\f (13.4)

with the adjoint variable A satisfying the equation

A= —H,, NT) = S,[z(T)]. (13.5)

The necessary condition for trajectories u* and v* to be a minimax so-
lution is that for ¢ € [0, T,

H(x*(t),u"(t),v*(t), A(t),t) = f}rg‘r/l max H(z*(t),u,v,\(t),t), (13.6)

which can also be stated, with suppression of (), as

H(z",u* v, A\ t) > H(z",u", 0", \,t) > H(x", u,v™, \, t) (13.7)
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for w € U and v € V. Note that (u*,v*) is a saddle point of the Hamil-
tonian function H.

Note also that if © and v are unconstrained, i.e., when, U =V = E!,
condition (13.6) reduces to the first-order necessary conditions

H,=0and H, =0, (13.8)
and the second-order conditions are
Hy, <0and Hy, > 0. (13.9)

We now turn to the treatment of nonzero-sum differential games.

13.2 Nash Differential Games

In this section, let us assume that we have N players where N > 2. Let
ut e U’ i=1,2,..., N, represent the control variable for the ith player,
where U’ is the set of controls from which the ith player can choose. Let
the state equation be defined as

:'U:f(x,ul,uQ,...,uN,t). (13.10)

Let J?, defined by
J' = S'z(T)] +/ Fi(z,ul,u?, . ulN t)dt, (13.11)
0

denote the objective function which the ith player wants to maximize. In
this case, a Nash solution is defined by a set of N admissible trajectories

{u u®, . uNY, (13.12)

which have the property that

Ji(ul*,UZ*, o ,UN*) _
max J'(ut*, u?*, ..., w0 gt D uN*) (13.13)
uelU*

fori=1,2,..., N.

To obtain the necessary conditions for a Nash solution for nonzero-
sum differential games, we must make a distinction between open-loop
and closed-loop controls.
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13.2.1 Open-Loop Nash Solution

The open-loop Nash solution is defined when the set of trajectories in
(13.12) are given as functions of time satisfying (13.13). To obtain the
maximum principle type conditions for such solutions to be a Nash so-
lution, let us define the Hamiltonian functions

Hi(z,ul,u?, . ulN N = FE 4 Xif (13.14)

for i =1,2,..., N, with \* satisfying
¥

N = —H. \(T) = S.[z(T)]. (13.15)

The Nash control u** for the ith player is obtained by maximizing the
ith Hamiltonian H* with respect to u’, i.e., u** must satisfy

Hi(z* ub, . w0 g 0Dy N* ) 1) >

Hi(z u, . w0 qf 00 N X ), ¢ e [0,T],
(13.16)
for all w' € U?, i =1,2,...,N.

Deal et al. (1979) formulated and solved an advertising game with
two players and obtained the open-loop Nash solution by solving a two-
point boundary value problem. In Exercise 13.1, you are asked to obtain
their boundary value problem. See also Deal (1979).

13.2.2 Feedback Nash Solution

A feedback Nash solution is obtained when (13.12) is defined in terms of
the current state of the system. To avoid confusion, we let

u*(x,t) = ¢'(x,t), i=1,2,...,N. (13.17)

For these controls to represent a feedback Nash strategy, we must rec-
ognize the dependence of the other players’ actions on the state variable
x. Therefore, we need to replace the adjoint equation (13.15) by

N
= —H' — ZH;qu; =—H,— > H,¢l. (13.18)
j=1j#i
The presence of the summation term in (13.18) makes the necessary

condition for the feedback solution virtually useless for deriving compu-
tational algorithms; see Starr and Ho (1969). It is, however, possible
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to use a dynamic programming approach for solving extremely simple
nonzero-sum games, which require the solution of a partial differential
equation. We will use this approach in Sect. 13.3.

The troublesome summation term in (13.18) is absent in three im-
portant cases: (a) in optimal control problems (N = 1) since Hyu, = 0,
(b) in two-person zero-sum games because H! = —H? so that H}, u? =
—HZ%u2 =0 and H2ul = —H! uj = 0, and (c) in open-loop nonzero-
sum games because ul =0. Tt certainly is to be expected, therefore, that
the feedback and open-loop Nash solutions are going to be different, in
general. This can be shown explicitly for the linear-quadratic case.

We conclude this section by providing an interpretation to the adjoint
variable \’. It is the sensitivity of the ith player’s profit to a perturbation
in the state vector. If the other players are using closed-loop strategies,
any perturbation dx in the state vector causes them to revise their con-
trols by the amount ¢/dz. If the ith Hamiltonian H® were maximized
with respect to u/, j # i, this would not affect the ith player’s profit;
but since AH* /Ou’ # 0 for i # j, the reactions of the other players to the
perturbation influence the ith player’s profit, and the ith player must
account for this effect in considering variations of the trajectory.

13.2.3 An Application to Common-Property Fishery
Resources

Consider extending the fishery model of Sect. 10.1 by assuming that there
are two producers having unrestricted rights to exploit the fish stock in
competition with each other. This gives rise to a nonzero-sum differential
game analyzed by Clark (1976).

Equation (10.2) is modified by

&= g(x) — ¢'u'z — ¢*uPz, 2(0) = z, (13.19)

where u‘(t) represents the rate of fishing effort and ¢‘u’x is the rate of
catch for the ith producer, i = 1, 2. The control constraints are

0<u'(t)y<U", i=1,2, (13.20)

the state constraints are
x(t) >0, (13.21)

and the objective function for the ith producer is the total present value
of his profits, namely,

J :/ (pq'z — ule Pldt, i = 1,2. (13.22)
0
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To find the feedback Nash solution for this model, we let Z* denote the
turnpike (or optimal biomass) level given by (10.12) on the assumption
that the ¢th producer is the sole-owner of the fishery. Let the bionomic

equilibrium l‘é and the corresponding control ui associated with producer
i be defined by (10.4), i.e.,

i

. . €T

xp = f - and uj, = g 2)10 . (13.23)
pq c

As shown in Exercise 10.2, x}; < 7', and we assume U’ to be sufficiently

large so that ui < U*. We also assume that
xy < w7, (13.24)

which means that producer 1 is more efficient than producer 2, i.e.,
producer 1 can make a positive profit at any level in the interval (xé, mg],
while producer 2 loses money in the same interval, except at a:g, where
he breaks even. For x > :1:%, both producers make positive profits.

Since U > ué by assumption, producer 1 has the capability of driving
the fish stock level down to at least 2} which, by (13.24), is less than 7.
This implies that producer 2 cannot operate at a sustained level above
$z; and at a sustained level below :E%, he cannot make a profit. Hence,
his optimal feedback policy is bang-bang:

U? if x> a2,
u* () = (13.25)
0 if x < x%

As far as producer 1 is concerned, he wants to attain his turnpike level
zhif 2! < 22 If 21 > 22 and 29 > #', then from (13.25) producer 2
will fish at his maximum rate until the fish stock is driven to xg. At this
level, it is optimal for producer 1 to fish at a rate which maintains the
fish stock at level x% in order to keep producer 2 from fishing. Thus, the
optimal feedback policy for producer 1 can be stated as

Ul if x> z!

u () =< gl=9@) ol b, if 7 < (13.26)
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Ul ifﬂ?>$§

ul(z) = ¢ Ao gp g g2 b, i E > af. (13.27)
q Ty
0 if z < x%

The formal proof that policies (13.25)—(13.27) give a Nash solution
requires direct verification using the result of Sect.10.1.2. The Nash
solution for this case means that for all feasible paths u!' and u?,

JH ™ u?) > TNt u?), (13.28)

and
J2(ur u®) > T2 (ul*, u?). (13.29)

The direct verification involves defining a modified growth function

. g(x) — ?U%x if x> a3,
g (z) =
g(z) ifz < a:g,

and using the Green’s theorem results of Sect.10.1.2. Since U? > ug
by assumption, we have g'(z) < 0 for z > z?. From (10.12) with g¢
replaced by ¢!, it can be shown that the new turnpike level for producer
1 is min(z', 2?), which defines the optimal policy (13.26)-(13.27) for
producer 1. The optimality of (13.25) for producer 2 follows easily.

To interpret the results of the model, suppose that producer 1 orig-
inally has sole possession of the fishery, but anticipates a rival entry.
Producer 1 will switch from his own optimal sustained yield #; to a
more intensive exploitation policy prior to the anticipated entry.

We can now guess the results in situations involving N producers.
The fishery will see the progressive elimination of inefficient producers
as the stock of fish decreases. Only the most efficient producers will
survive. If, ultimately, two or more maximally efficient producers exist,
the fishery will converge to a classical bionomic equilibrium, with zero
sustained economic rent.

We have now seen that a feedback Nash solution involving N > 2
competing producers results in the long-run erosion of economic rents.
This conclusion depends on the assumption that producers face an in-
finitely elastic supply of all factors of production going into the fishing
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effort, but typically the methods of licensing entrants to regulated fish-
eries make some attempt to also control the factors of production such
as permitting the licensee to operate only a single vessel of specific size.

In order to develop a model for the licensing of fishermen, we let the
control variable v* denote the capital stock of the ith producer and let
the concave function f(v*), with f(0) = 0, denote the fishing mortality
function for i = 1,2,...,N. This requires the replacement of ¢'u’ in
the previous model by f(v?). The extended model becomes nonlinear in
control variables. You are asked in Exercise 13.3 to formulate this new
model and develop necessary conditions for a feedback Nash solution for
this game involving N producers. The reader is referred to Clark (1976)
for further details. For other papers on applications of differential games
to fishery management, see Haméldinen et al. (1984, 1985, 1986, 1990).

13.3 A Feedback Nash Stochastic Differential
Game in Advertising

In this section, we will study a competitive extension of the Sethi ad-
vertising model discussed in Sect.12.3. This will give us a stochastic
differential game, for which we aim to obtain a feedback Nash equilib-
rium by using a dynamic programming approach developed in Sect. 12.1.
We should note that this approach can also be used to obtain feedback
Nash equilibria in deterministic differential games as an alternative to
the maximum principle approach developed in Sect. 13.2.2.

Specifically, we consider a duopoly market in a mature product cate-
gory where total sales are distributed between two firms, labeled as Firm
1 and Firm 2, which compete for market share through advertising ex-
penditures. We let X; denote the market share of Firm 1 at time ¢, so
that the market share of Firm 2 is (1 — X3). Let U4 and Us; denote the
advertising effort rates of Firms 1 and 2, respectively, at time ¢. Using
the subscript ¢ € {1,2} to reference the two firms, let r; > 0 denote
the advertising effectiveness parameter, m; > 0 denote the sales margin,
p; > 0 denote the discount rate, and ¢; > 0 denote the cost parame-
ter so that the cost of advertising effort u by Firm i is c;u®. Further,
let 6 > 0 be the churn parameter, Z; be the standard one-dimensional
Wiener process, and o(z) be the diffusion coefficient function as defined
in Sect. 12.3. Then, in view of the competition between the firms, Prasad
and Sethi (2004) extend the Sethi model dynamics in (12.42) as the It6
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stochastic differential equation

dXy = [MUnuvV1—Xp —0Xy —roUnv/ Xe + 6(1 — Xy)]dt + o(Xy)dZy,
X(0) =x9 €[0,1]. (13.30)

We formulate the optimal control problem faced by the two firms as

max {Vl(xo) = E/ e ! [m Xy — e1Ug] dt} , (13.31)
U1>0 0

max {VQ(;UO) = E/ e P2t [19(1 — Xy) — U3 ] dt} , (13.32)
Uz>0 0

subject to (13.30). Thus, each firm seeks to maximize its expected,
discounted profit stream subject to the market share dynamics.

To find the feedback Nash equilibrium solution, we form the
Hamilton-Jacobi-Bellman (HJB) equations for the value functions V!(x)
and V2(z) :

plvl = max{Hl(x, Uy, Us, V;cl) + (U(x))Qlez/2}

U1>0
= glzi%{mx — U2 + V rh1 — 2 — roUs/x — §(22 — 1)]
1=
+(0(2))* Vi /2 (13.33)

poV? = max{H(@,U1, Uz, V) + (0(2))° V2, /2}
22

- 1—2x)— 2
rUg%{ﬂz( z) — c2U;
V2 UV1 — & — rUsy/z — (22 — 1)]
+(o(2))?Vi/2}, (13.34)
where the Hamiltonians are as defined in (13.14). We use the first-order

conditions for Hamiltonian maximization to obtain the optimal feedback
advertising decisions

U (x) = VM (x)rivV1 —x/2¢; and Uj (x) = —V2(x)roy/x/2c2. (13.35)

Since it is reasonable to expect that V! > 0 and V.2 < 0, these controls
will turn out to be nonnegative as we will see later.
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Substituting (13.35) in (13.33) and (13.34), we obtain the Hamilton-
Jacobi equations
VY = ma+ (VH2E(1 - ) /4 + VIVEr3a/2co
~Vie(2x — 1) + (o(x))*V,}, /2, (13.36)

PV = ma(l—a)+ (V) rw/des + VIVI(1 —x) /201

As in Sect. 12.3, we look for the following forms for the value functions
V=0 + Bz and V2 = ag + B5(1 — z). (13.38)

These are inserted into (13.36) and (13.37) to determine the unknown
coefficients ay, 8, a2, and (5. Equating the coefficients of x and the
constants on both sides of (13.36) and the coefficients of (1 — ) and the
constants on both sides of (13.37), the following four equations emerge,
which can be solved for the unknowns ay, 8;, o, and By:

pion = Biri/dei + B8, (13.39)
;B = w1 — Biri/dc — BiByrs/2co — 2349, (13.40)
pocz = [B3r3/4cs + By, (13.41)
paBy = my— B33 /dce — B1Byri/2¢1 — 2B50. (13.42)

Let us first consider the special case of symmetric firms, i.e., when
T=T] =Ty, C=1C] = Co, T =11 =79, and p = p; = p,, and therefore
a =a; = ag, f = f; = Py The four equations in ((13.39)-(13.42))
reduce to the following two:

pa = B*r? 4c + B6 and pf = 7 — 35%r%/4c — 230. (13.43)

There are two solutions for 5. One is negative, which clearly makes no
sense. Thus, the remaining positive solution is the correct one. This also
allows us to obtain the corresponding a. The solution is

a = [(p—90)(W —+W?2+12Rm) + 6Rn|/18Rp,  (13.44)

B = (VW?2+12Rr — W)/6R, (13.45)

where R = 72/4c and W = p + 2§. With this the value functions in
(13.38) are defined, and the controls in (13.35) for the case of symmetric
firms can be written as

v1-— V31—
UT(QE) — Blrl €z — 5T xz and U;(ﬂf) — 62742\/5 — BT\/E’
2cq 2c 2co 2c
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which are clearly nonnegative as required.

We return now to the general case of asymmetric firms. For this, we
re-express equations ((13.39)—(13.42)) in terms of a single variable j,
which is determined by solving the quartic equation

3RIBT + 2R (W1 + Wa)B3 +  (4Rgme — 2Rymy — Wi + 2W 1 Wa) B3
+ 27T1(W1 — WQ),Bl — W% =0. (13.46)
This equation can be solved explicitly to give four roots. We will find
that only one of these is positive, and select it as our value of ;. With

that, other coefficients can be obtained by solving for «; and £, and
then, in turn, as, as follows:

ar = By(B1R1+0)/p1, (13.47)
By = (m1 —BIR1— BW1)/2B1 R, (13.48)
ag = By(BaR2+0)/pa, (13.49)

where Ry = 72 /4cy, Ry =13 /4co, Wi = p; + 23, and Wy = psy + 26.

It is worthwhile to mention that firm i’s advertising effectiveness pa-
rameter r; and advertising cost parameter ¢; manifest themselves through
R; = 1r;? /4c;. This would suggest that R; is a measure of firm i’s adver-
tising power. This can be seen more clearly in Exercise 13.6 involving
two firms that are identical in all other aspects except that Ry > Rj.
Specifically in that exercise, you are asked to use Mathematica or an-
other suitable software program to solve (13.46) to obtain ; and then
obtain the coefficients a, as, and B, by using (13.47)-(13.49), when
p1:p2:o.05, 7T1:7T2:1, 5:0.01, R1:1, R2:4, Trog =
0.5, and o(z) = /0.52(1 — x). Figure 13.1 represents a sample path of
the market share of the two firms with this data.

It is noteworthy to see that both firms are identical except in their
advertising powers Ry and Rs. With Re > Ry, firm 2 is more powerful
and we see that this results in its capture of an increasing share of the
market average over time beginning with exactly one half of the market
at time 0.

13.4 A Feedback Stackelberg Stochastic
Differential Game of Cooperative
Advertising

The preceding sections in this chapter dealt with differential games in
which all players make their decisions simultaneously. We now discuss
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Figure 13.1: A sample path of optimal market share trajectories

a differential game in which two players make their decisions in a hier-
archical manner. The player having the right to move first is called the
leader and the other player is called the follower. If there are two or
more leaders, they play Nash, and the same goes for the followers.

In terms of solutions of Stackelberg differential games, we have open-
loop and feedback solutions. An open-loop Stackelberg equilibrium spec-
ifies, at the initial time (say, t = 0), the decisions over the entire horizon.
As in Sect. 13.1, there is a maximum principle for open-loop solutions.
Typically, open-loop solutions are not time consistent in the sense that
at any time t > 0, the remaining decision may no longer be optimal; see
Exercise 13.2. A feedback or Markovian Stackelberg equilibrium, on the
other hand, consists of decisions expressed as functions of the current
state and time. Such a solution is time consistent.

In this section, we will not develop the general theory, for which
we refer the reader to Basar and Olsder (1999), Dockner et al. (2000),
and Bensoussan et al. (2014, 2015a, 2018). Instead, we will formulate a
Stackelberg differential game of cooperative advertising between a manu-
facturer as the leader and a retailer as the follower, and obtain a feedback
Stackelberg solution. This formulation is due to He et al. (2009). A veri-
fication theorem that applies to this problem can be found in Bensoussan
et al. (2018).
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The manufacturer sells a product to end users through the retailer.
The product is in a mature category where sales, expressed as a fraction
of the potential market, is influenced through advertising expenditures.
The manufacturer as the leader decides on an advertising support scheme
via a subsidy rate, i.e., he will contribute a certain percentage of the
advertising expenditure by the retailer. Specifically, the manufacturer
decides on a subsidy rate Wy, 0 < W; < 1, and the retailer as the
follower decides on the advertising effort level Uy > 0, ¢ > 0.

As in Sect. 12.3, the cost of advertising is quadratic in the advertising
effort U;. Then, with the advertising effort U; and the subsidy rate W4,
the manufacturer’s and the retailer’s advertising expenditures are W;U?
and (1 — W;)UZ, respectively. The market share dynamics is given by
the Sethi model

dX; = (’I"Ut\/ 1—X; — 5Xt)dt + O'(Xt)dZt, Xo = xg. (1350)

The corresponding expected profits of the retailer and the manufacturer
are, respectively, as follows:

Jr=E UOOO e Xy — (1 — Wt)UE)dt] , (13.51)

Ju=E U e " (X, — WUP) dt] : (13.52)
0

A solution of this Stackelberg differential game depends on the avail-
able information structure. We shall assume that at each time ¢, both
players know the current system state and the follower knows the action
of the leader. The concept of equilibrium that applies in this case is
that of feedback Stackelberg equilibrium. For this and other information
structures and equilibrium concepts, see Bensoussan et al. (2015a).

Next we define the rules, governing the sequence of actions, by which
this game will be played over time. To be specific, the sequence of
plays at any time ¢ > 0 is as follows. First, the manufacturer observes
the market share X; at time ¢ and selects the subsidy rate W;. Then,
the retailer observes this action W; and, knowing also the market share
X at time t, sets the advertising effort rate U; as his response to W;.
The system evolves over time as this game is played in continuous time
beginning at time ¢ = 0. One could visualize this game as being played
at times 0, 0t, 26t, ..., and then let 6t — 0.

Next, we will address the question of how players choose their actions
at any given t. Specifically, we are interested in deriving an equilibrium
menu W (z) for the leader representing his decision when the state is =
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at time ¢, and a menu U (x, W) for the follower representing his decision
when he observes the leader’s decision to be W in addition to the state x
at time t. For this, let us first define a feedback Stackelberg equilibrium,
and then develop a procedure to obtain it.

We begin with specifying the admissible strategy spaces for the man-
ufacturer and the retailer, respectively:

w = {W|W:0,1] = [0,1]
and W (z) is Lipschitz continuous in x}
U = {U|U:[0,1] x [0,1] — [0, 0)
and U(xz, W) is Lipschitz continuous in (z, W)}.

For a pair of strategies (W, U) C WxU, let Ys, s > t, denote the solution
of the state equation

dY, = (rU(Ye, W)\/1 = Y, — §Y.)ds + 0(Ye)dZ,, Yy =z, (13.53)

We should note that Yy here stands for Yy(¢t,z; W, U), as the solution

depends on the specified arguments. Then J]t\/[z(W(),U(,W())) and
Jf;f(W(-), U(-,W(-))) representing the current-value profits of the man-
ufacturer and retailer at time ¢ are, respectively,

Tt (W), UCW()))
= E [ e P60 [myYs — WY){U(Ye, W(Y))Y?,  (13.54)

TR (WELUCW())
=B [7 e o0y, — (1= W)U, W(Y))}), (13.55)
where we should stress that W (-), U(-, W(-)) evaluated at any state ¢ are
W (), U(¢,W(()). We can now define our equilibrium concept.
A pair of strategies (W*,U*) € WxU is called a feedback Stackelberg
equilibrium if
Ty (W2 (), U7 (L W())
> Tyt (W), U, W (), WeW,ze0,1], t>0, (13.56)
and
TR W ().U (W ()
> TR WH(), U W*(-), UelU,x €[0,1], t > 0. (13.57)
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It has been shown in Bensoussan et al. (2014) that this equilibrium is
obtained by solving a pair of Hamilton-Jacobi-Bellman equations where
a static Stackelberg game is played at the Hamiltonian level at each t,
and where

M@, W, U, M) = nye — WU + XM (rUVT =z —62)  (13.58)

HE(x, W,U N =z — (1 = W)U? + ME(rUV1 — 2 — 6z)  (13.59)

are the Hamiltonians for the manufacturer and the retailer, respectively.
To solve this Hamiltonian level game, we first maximize H? with respect
to U in terms of x and W. The first order condition gives

M yT= 7

U@ W) = Sy

(13.60)
as the optimal response of the follower for any decision W by the leader.
We then substitute this for U in H™ to obtain

M($,W, U*(JZ, W), )\M) — Ty — W()\Rr)g(l — {L‘)

41— W)2
R.2(1_,
+AM <)\2(1£1W))_6x> . (13.61)

The first-order condition of maximizing HM with respect to W gives us

oANM _ \R

W) = o

(13.62)
Clearly W (x) > 1 makes no intuitive sense because it would induce the
retailer to spend an infinite amount on advertising, and that would not be
optimal for the leader. Moreover, A and A%, the marginal valuations of
the market share of the leader and the follower, respectively, are expected
to be positive, and therefore it follows from (13.62) that W (x) < 1. Thus,
we set,

(13.63)

M _ \R
W*(x) = max {O, 22 A }

IAM 4 \R

We can now write the HJB equations as

pVE = Ha,W*(x), U (z, W*(2)), ;) + (0())?V,ii /2

= 7nr+ M VR59C+ (O'(a:))QVx};

) (13.64)
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pVM = HM(z, W (2), U (2, W*(2)), V;Y') + (0(2))*Vyy /2
(VxRT)2<1 — SC)W*(.%) VIMVmRT2(1 — ‘Z.)

4(1 = W*(z))? 2(1 = W(z))
—VMsz + (o(x))*V M /2 (13.65)

= TMT —

The solution of these equations will yield the value functions V¥ (x) and
VE(z). With these in hand, we can give the equilibrium menu of actions
to the manufacturer and the retailer to guide their decisions at each ¢.
These menus are

. UM VR . Viry1—x
W (.’L’) :maX{O7W} and U (IIZ',W) = W
(13.66)

To solve for the value function, we next investigate the two cases
where the subsidy rate is (a) zero and (b) positive, and determine the
condition required for no subsidy to be optimal.

Case (a): No Co-op Advertising (W* = 0). Inserting W*(z) = 0 into
(13.66) gives

R
V1=
U*(2,0) = Tvxfx (13.67)
Inserting W*(z) = 0 into (13.65) and (13.64), we have
My Rp2(1 _ 21/ M
VM =y 4 L2 Ve g( ) yMg+ (J(x); Ve (13.68)
VR 2,2 1— 2vR
VR =gy V) =8) g, (0(@) Ve (13.69)

4 2

Let VM(z) = apr + Bz and VE(z) = o + B2. Then, VM = 3,, and
VIt = B. Substituting these into (13.68) and (13.69) and equating like
powers of x, we can express all of the unknowns in terms of 3, which
itself can be explicitly solved. That is, we obtain

5 = 2T B, = 27 v
Vo2 +2n+(p+s) M 20040+
(13.70)
2..2 2
o = BT gy = BBur (13.71)

4p 2p
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Using (13.71) in (13.67), we can write U*(z) = /pa(1l — x). Finally, we
can derive the required condition from the right-hand side of W*(z) in
(13.66), which is 2V;M < V.2, for no co-op advertising (W* = 0) in the
equilibrium. This is given by 28M < 3, or

4 2
TP ™ < — = = (13.72)
(p+0)+ V(p+6)2+r2m+(p+6) (p+0)* +rim+(p+9)
After a few steps of algebra, this yields the required condition
0= M T <0.  (13.73)

Vet p+ P+ + (o +9)

Next, we obtain the solution when 6 > 0.

Case (b): Co-op Advertising (W* > 0). Then, W*(z) in (13.66) reduces
to

* 2VmM — VxR
Inserting this for W*(z) into (13.65) and (13.64), we have
2(1 _ M\2 _ (17 R)2
VMp2(1 — 2)[2VM 4 V.F]
_.I_
4
2y M
~VMsz + W (13.75)
R _ (VzR)ZTQ(l — l’) 2VxM + VzR _ 1R (J('x))zvxlfc
pV' =mx + [ 1 SV R Vo + S —
(13.76)

Once again, VM (z) = ay + Byz, VE = a + Bz, VM = 3,,, V.E = 8.
Substituting these into (13.75) and (13.76) and equating like powers of
x, we have

o= W, (13.77)
(p+0)B=m— W, (13.78)
(B4 28y)°r?

an = , (13.79)

16p
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) 2,.2
(P+5)5M=7TM—(ﬁ+1B6M)T-

Using (13.66), (13.74), and (13.79), we can write U*(z, W*(x)), with a
slight abuse of notation, as

r(VE My/T =2
U (z) = "Wz HZU L2 Jpam(1—2). (13.81)

The four equations (13.77)—(13.80) determine the solutions for the
four unknowns, «, 3, anr, and §,;. From (13.78) and (13.80), we can
obtain

(13.80)

2
4 jiﬂgﬁz N %5 - —8|-7T5)T2 —0. (13.82)
If we denote
27 p 8w —8m?
alzm, a2:ﬁ7 anda,g:m,

then a1 > 0, ag > 0, and a3z < 0. From Descarte’s Rule of Signs, there
exists a unique, positive real root. The two remaining roots may be
both imaginary or both real and negative. Since this is a cubic equation,
a complete solution can be obtained. Using Mathematica or following
Spiegel et al. (2008), we can write down the three roots as

1
/B(].) = S+T—§a1,

8(2) = —;(S+T)—;a1+\fi(5—T),
3(3) = —;(S+T)—;a1—\g§z’(5—T),

with

S= YR+ V@ IR T=YR- VPR, i=VT,

where

3as — a% R 9a1ao — 27a3 — 2a§

©=" - 54
Next, we identify the positive root in each of the following three cases:

Case 1 (Q > 0): We have S > 0 > T and Q3 + R? > 0. There is
one positive root and two imaginary roots. The positive root is § =
S+T—(1/3)ay.
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Table 13.1: Optimal feedback Stackelberg solution

(a)if 0 <0 (b)if6>0

No co-op equilibrium Co-op equilibrium
Retailer’s
profit V1 VE(z)=a+ pr VE(z)=a+ Bz
Manufacturer’s
profit VM VM(z) = ay + By VM(z) = apn + By
profit functions, Bu = 2(pfg)1viﬁr2 Bu = % - wﬁ(ﬁ%jﬁ
a, B, anr, By = % o= 4ﬁ(ﬁ+§§mr2
obtained from: ay = ﬁ%‘gr oy = W
Subsidy
rate W*(z) = 0 ggﬁilg =1-
Advertising
effort U*(z) = r8 21_9” =+/pa(l —x) w =/pay(1— 1)

Case 2 (Q < 0 and Q* + R? > 0): There are three real roots with one
positive root, which is § =S+ T — (1/3)a;.

Case 3 (Q <0 and Q3+ R? < 0): S and T are both imaginary. We
have three real roots with one positive root. While subcases can be given
to identify the positive root, for our purposes, it is enough to identify it
numerically.

Finally, we can conclude that 23;, — 8 > 0 so that W* > 0, since if
this were not the case, then W* would be zero, and we would once again
be in Case (a).

We can now summarize the optimal feedback Stackelberg equilibrium
in Table 13.1. In Exercises 13.7-13.10, you are asked to further explore
the model of this section when the parameters m = 0.25, mp; = 0.5, r =
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2, p=20.05, 6 =1, and o(x) = 0.25y/z(1 — z). For this case, He et al.
(2009) obtain the comparative statics as shown in Fig. 13.2.

(@)

G

0.6

0.6 T T
0.55F Figure drawn for: 05 Figure drawn for:
T =05, r=2 ’ =05 r=2
& 05r 5=1, p=005 1 = o4} 5=1, p=0.05
= 045+ & 0al
% 0.4} %
= ossf = 02
7 < 01t
% 03} g o
3 £ ol
& 0.25f E
0.2t -0.1
015 . . . . . . 02 . . . . . .
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Retailer’s Margin m Manufacturer’s Margin m,,

Figure 13.2: Optimal subsidy rate vs. (a) Retailer’s margin and (b)
Manufacturer’s margin

There have been many applications of differential games in mar-
keting in general and optimal advertising in particular. Some refer-
ences are Bensoussan et al. (1978), Deal et al. (1979), Deal (1979),
Jorgensen (1982a), Rao (1984, 1990), Dockner and Jgrgensen (1986,
1992), Chintagunta and Vilcassim (1992), Chintagunta and Jain (1994,
1995), Fruchter (1999a), Jarrar et al. (2004), Martin-Herran et al. (2005),
Breton et al. (2006), Jorgensen and Zaccour (2007), He and Sethi (2008),
Naik et al. (2008), Zaccour (2008a), Jgrgensen et al. (2009), Prasad and
Sethi (2009). The literature on advertising differential games is surveyed
by Jorgensen (1982a) and the literature on management applications
of Stackelberg differential games is reviewed by He et al. (2007). Mono-
graphs are written by Erickson (2003) and Jgrgensen and Zaccour (2004).
For applications of differential games to economics and management sci-
ence in general, see the book by Dockner et al. (2000).

Exercises for Chapter 13

E 13.1 A Bilinear Quadratic Advertising Model (Deal et al. 1979). Let
x; be the market share of firm ¢ and u; be its advertising rate, i = 1, 2.
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The state equations are

1 = bui(l —x1 —x9) +er1(ug —ug)(r1 + 22) — a1
71(0) = w10,

o = boua(l —x1 — x2) + ea(ug — uy)(x1 + z2) — agws
72(0) = w90,

where b;, e;, and a; are given positive constants. Firm ¢ wants to maxi-
mize

T
J; = wie_pT:rZ-(T) + / (cix; — u?)e_ptdt,
0

where w;, ¢;, and p are positive constants. Derive the necessary condi-
tions for the open-loop Nash solution, and formulate the resulting bound-
ary value problem. In a related paper, Deal (1979) provides a numerical
solution to this problem with e; = ey = 0.

E 13.2 Let z(t) denote the stock of pollution at time ¢ € [0,77] that
affects the welfare of two countries, one of which is the leader and the
other the follower. The state dynamics is

T =u+v, z(0)=x,

where u and v are emission rates of the leader and the follower, respec-
tively. Let their instantaneous utility functions be

u— (u? +22)/2 and v — (v? + %) /2,

respectively. Obtain the open-loop Stackelberg solution. By re-solving
this problem at time 7, 0 < 7 < T, show that the first solution obtained
is time inconsistent.

Hint: Apply first the maximum principle to the follower’s prob-
lem for any given leader’s decision w. Let A denote the adjoint
variable associated with the state x; Clearly A(T) = 0. Then apply
the maximum principle to the leader’s problem, treating the follower’s
adjoint equation as a “state” equation in addition to the state equation
for z. Let the adjoint variables associated with = and A" be A¥ and p,
respectively. Clearly A“(T) = 0. However, the transversality condition
for p will be pu(0) = 0 in view of Remark 3.9. See Basar and Olsder
(1999) and Dockner et al. (2000) for further details.
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E 13.3 Develop the nonlinear model for licensing of fisherman described
toward the end of Sect.13.2.3 by rewriting (13.19) and (13.22) for the
model. Derive the adjoint equation for A\’ for the ith producer, and show
that the feedback Nash policy for producer i is given by

CZ

/ ’Ui* .
) (' = Az
E 13.4 Consider an N-firm oligopoly. Let S;(¢) denote the cumulative
sales by time ¢ of firm ¢ € {1,2,..., N} and define S(t) = Zf\;l Si(t). Let
A;(t) denote firm i’s advertising rate. With positive constants a, b, and
d, assume that the differential game has the diffusion dynamics

$i(t) = [a+ blog Ay(t) + dS(WO[M — S(1)], Si(0) = S0 > 0,

which means that a firm can stimulate its sales through advertising (but
subject to decreasing returns) and that demand learning effects (imita-
tion) are industry-wide. (If these effects were firm-specific we would have
S; instead of S in the brackets on the right-hand side of the dynamics.)
Payoffs are given by

. T .
Jzé[mm&wm@w,

in which prices and unit costs are constant. Since S;(t) in the expression
for J® is stated in terms of the state variable S(t) and the control vari-
ables A;(t), i € {1,2,..., N}, formulate the differential game problem
with S(t) as the state variable. In the open-loop Nash equilibrium,
show that the advertising rates are monotonically decreasing over time.

Hint: Assume 9?H'/0S? < 0 so that H' is concave in S. Use this
condition to prove the monotone property.

E 13.5 Solve (13.43) to obtain the solution for o and /3 given in (13.44)
and (13.45).

E 13.6 Use Mathematica or another suitable software program to solve
the quartic equation (13.46). Show that for p; = p, = 0.05, 711 = ™3 = 1,
0 =0.01, Ry =1, Ry = 4, the only positive solution for 3, is 0.264545.
Figure 13.1 gives a sample path of the optimal market shares of the two
firms for this problem. Draw another sample path.
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E 13.7 In the Stackelberg differential game of Sect.13.4 let # =
0.25, may = 0.5, r = 2, p = 0.05, and § = 1. Obtain the coefficients
o, B,au, B, and show that W* = 0.58. Graph the value functions
VM(2) = ay + By, V(z) = a + Bz, and their sum VM (z) + V (), as
the functions of the market share x.

E 13.8 Suppose the manufacturer in Exercise 13.7 does not behave op-
timally and decides instead to offer no cooperative advertising. Obtain
the value functions of the manufacturer and the retailer. Compare the
manufacturer’s value function in this case with Vj/(z) in Exercise 13.7.
Furthermore, when zg = 0.5, obtain the manufacturer’s loss in expected
profit when compared to the optimal expected profit Vjs(zo) in Exer-
cise 13.7.

E 13.9 Suppose that the manufacturer and the retailer in the prob-
lem of Sect. 13.4 are integrated into a single firm. Then, formulate the
stochastic optimal control problem of the integrated firm. Also, using
the data in Exercise 13.7, obtain the value function V/(z) = a; + B,z
of the integrated firm, and compare it to VM (z) 4+ V(z) obtained in
Exercise 13.7.

E 13.10 Let o(z) = 0.25y/2(1 — ) and the initial market share zy =
0.1. Use the optimal feedback advertising effort U*(z) in (13.50) to de-
termine the optimal market share X} over time. You may use MATLAB
or another suitable software to graph a sample path of X},¢ > 0.
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Solutions of Linear
Differential Equations

A.1 First-Order Linear Equations
Consider the equation
4 ax = b(t), x(0) = xo, (A.1)

where a is a constant real number and b(¢) is a given function of ¢. If we
multiply both sides of this equation by the integrating factor e®, we get

ie™ + ave™ = b(t)e™,
which can be written at any time 7 as

d(xz(1)e) = b(1)e*"dr.

at

Integrating from 0 to ¢ and then multiplying throughout by e~%*, we get
the solution of (A.1) as
t
z(t) = e Y —I—/ e p(7)dr. (A.2)
0
If we generalize (A.1) by replacing the constant a by a function a(t),
we get
&(t) + a(t)z(t) = b(t), z(0) = xo. (A.3)
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We can then use the integrating factor eJo als)ds , and with that you are

asked to show in Exercise A.1 by employing a procedure similar to that
for the solution of (A.3) that

. t
z(t) = zoe~ Jo als)ds / b(r)e” Jrads gy (A.4)
0

A.2 Second-Order Linear Equations with
Constant Coefficients

Consider the equation
&+ a1t + ax = b(t), (A.5)

where a and a; are constants and b(¢) is a function of ¢. This equation
requires two boundary conditions to be completely specified. These, for
example, could be the values of z(¢) at two points in time or the values
of z(0) and #(0).

A general solution of (A.5) has the form

2(t) = 2at) + 2,(0), (A.6)

where z,(t) is a homogeneous solution, defined to be a solution of (A.5)
with b(t) set at 0, and z,(t) is the particular solution. Clearly &, +
a1&n + axy, = 0 and &, + a1&p + az, = b(1).
To obtain a homogeneous solution, let m1 and mo be the roots of the
auxiliary equation
m? + aym+a = 0.

Then there are 3 cases shown in Table A.1.

Next we provide the particular solution of Eq. (A.5). Since this solu-
tion depends on the function b(t), we will provide this in Table A.2.

It is easy to extend Row 3 and Row 5 of Table A.2 for a polynomial
P(t) of degree n. See Zwillinger (2003) for details.

For solutions of higher order linear differential equations with con-
stant coefficients and many other differential equations, the reader is
referred to Zwillinger (2003) and Polyanin and Zaitsev (2003).

A.3 System of First-Order Linear Equations

In vector form, a system of first-order linear equations reads

4+ Az = b(t), z(0) = xq, (A.7)
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Table A.1: Homogeneous solution forms for Eq. (A.5)

Root General solution form

m £ m, xeal £{t) = Cremt 4 Cpema

mi1 = mg = m, real x(t) = (C1 + Cot)e™
my=p+qi,me=p—qi | x(t) = eP(Cysin gt + Cocos qt)

Table A.2: Particular solutions for Eq. (A.5)

b(t) The particular solution of (A.5)
(1) | et e’ /(r? + air + a)
(2) sin Ot (a—6?) sin t—ay cos Ot

(@—67)2+(16)

(3) | P()=a+ 5492 | §IPW) — 4P(0) + "5 P(0)

e sin 6 Multiply row 2 by e"t
(4) Replace a; by a1 + 2r

Replace a by a + ar + 2

P(t)e" Multiply row 3 by e"
(5) Replace a1 by a1 + 2r

Replace a by a + ar + 2

where x is an n-column vector, A is an n X n matrix of constants, and
b is a function of t. We will present two ways of solving the first-order
system (A.7).

The first method involves the matrix exponential function et defined
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by the power series

t2A? (tA)F
tA
e I+tA+2!+-~§O T (A.8)

It can be shown that this series converges (component by component)
for all values of ¢. Also it is differentiable (component by component) for
all values of ¢ and satisfies

d

() = 4t = (M)A, (A.9)

By analogy with (A.2), we can write the solution of (A.7) as
t
z(t) = e My —i—/ e~ A(7)dr. (A.10)
0

Although (A.10) represents a formal expression for the solution of
(A.7), it does not provide a computationally convenient way of getting
explicit solutions.

For the second method we assume that the matrix A is diagonalizable,
i.e., that there exists a nonsingular square matrix P such that

P7lAP =A. (A.11)

Here A is the diagonal matrix

MO - 0
0 Ay - 0
A= , (A.12)
o 0 --- A
where the diagonal elements, A1,..., A,, are eigenvalues of A. The ith

column of P is the column eigenvector associated with the eigenvalue \;
(to see this multiply both sides of (A.11) by P on the left). By looking
at (A.8) it is easy to see that

P71 p = ¢ and Pet* P71 = !4, (A.13)
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where ~ _
et 0 0
0 etr2 .. 0
et = . (A.14)
0 0 - etAn

Using (A.13) into (A.10), we can write the solution to (A.7) as
t
z(t) = (Pe ™ P Vag + / Pe= DA p=lp(7)dr. (A.15)
0

Since well-known algorithms are available for finding eigenvalues and
eigenvectors of a matrix, the solution (A.15) can be computed in a
straightforward manner.

A.4 Solution of Linear Two-Point Boundary
Value Problems
In linear-quadratic control problems with linear salvage values (e.g., the

production-inventory problem in Sect. 6.1) we require the solution of lin-
ear two-point boundary value problems of the form

& A App x b1
— + (A.16)

A A9 Ag A ba
with boundary conditions
z(0) =xz9 and A(T) = . (A.17)

The solution of this system will be of the form (A.15), which can be
restated as

o) | _ | Qult) Qul) | =0 1 (D) . (A18)

A(t) Q21(t) Q22(1) A(0) Rs(t)
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where the A(0) is a vector of unknowns. They can be determined by
setting

A = Q21(T)z(0) + Q22(T)A(0) + Ro(T), (A.19)

which is a system of linear equations for the variables A(0).

A.5 Solutions of Finite Difference Equations

In this book we will have uses for finite difference equations only in
Chaps. 8 and 9. For that reason we will give only a brief introduction to
solution techniques for them. Readers who wish more details can consult
one of several texts on difference equations; see, e.g., Goldberg (1986) or
Spiegel (1971).

If f(k) is a real function of time, then the difference operator applied
to f is defined as

Af(k) = f(k+1)— f(k). (A.20)

The factorial power of k is defined as
E =k(k—1)(k—2)...(k—(n—1)). (A.21)

It is easy to show that
AE™ = pkr=1), (A.22)

Because this formula is similar to the corresponding formula for the
derivative d(k™)/dk, the factorial powers of k play an analogous role
for finite differences that the ordinary powers of k play for differential
calculus.

If f(k) is a real function of time, then the anti-difference operator
A~! applied to f is defined as another function g = A~!f(k) with the
property that

Ag = f(k). (A.23)

One can easily show that
AT = (1/(n+1))ECTY 4 ¢, (A.24)

where ¢ is an arbitrary constant. Equation (A.24) corresponds to the
integration formula for powers of k in calculus.

Note that formulas (A.22) and (A.24) are similar to, respectively,
differentiation and integration of the power function k™ in calculus. By



A.5. Solutions of Finite Difference Equations 415

analogy with calculus, therefore, we can solve difference equations in-
volving polynomials in ordinary powers of k by first rewriting them as
polynomials involving factorial powers of k£ so that (A.22) and (A.24)
can be used. We show next how to do this.

A.5.1 Changing Polynomials in Powers of k into
Factorial Powers of &

We first give an abbreviated list of formulas that show how to change
powers of k into factorial powers of k:

o= kW 4 76@ 46k 4 kW,
K = kW +155@ 1+ 2560 + 10k@W 4+ kO,

= k© =1 (by definition),
o= kW,
K = k1)+k:()
o= kW 4 3k@ 4 k)
)
)

(
(
(
(

The coefficients of the factorial powers on the right-hand sides of these
equations are called Stirling numbers of the second kind, after the person
who first derived them. This list can be extended by using a more com-
plete table of these numbers, which can be found in books on difference
equations cited earlier.

Example A.1 Express k* — 3k + 4 in terms of factorial powers.
Solution Using the equations above we have
k= kD + 7@ 4 6kG) 4 kD 3k = -3k 4 = 4,

so that
kY =3k + 4 =k® 4+ 65® + 76® — 2k 4 4

Example A.2 Solve the following difference equation in Example 8.7:
AN = -k 45X =0.

Solution We first change the right-hand side into factorial powers so
that it becomes
AN = kM 45
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Applying (A.24), we obtain
A= —(1/2)k® + 5M 4 ¢,

where ¢ is a constant. Applying the condition A® = 0, we find that
c = —15, so that the solution is

A= —(1/2)k@ + 561 — 15. (A.25)

However, we would like the answer to be in ordinary powers of k.
The way to do that is discussed in the next section.

A.5.2 Changing Factorial Powers of k£ into Ordinary
Powers of k

In order to change factorial powers of k into ordinary powers of k, we
make use of the following formulas:

1

>~

pu— k7
= —k+k%

(1)
(2)
G = 2k —3k2+ k3,
@)
(5)

xS

D = —6k+11k% — 6K + K*,

5 24k — 50k> + 35k% — 10k* + k°.

RA
|

The coefficients of the factorial powers on the right-hand sides of these
equations are called Stirling numbers of the first kind. This list can also
be extended by using a more complete table of these numbers, which
can be found in books on difference equations.

Solution of Example A.2 Continued By substituting the first two
of the above formulas into (A.25), we see that the desired answer is

M= —(1/2)k? + (11/2)k — 15, (A.26)

which is the solution needed for Example 8.7.
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Exercises for Appendix A

E A.1 Show that the solution of Eq. (A.3) is given by (A.4).

3 2 5 0
EA2If A = , show that A = and P =
2 3 0 2
1 1
1 -1
1
Use (A.15) to solve (A.7) for this data, given that z(0) =
2
3 3 6 0
EA3If A = , show that A = and P =
2 4 0 1
1 3
1 -2
0
Use (A.15) to solve (A.7) for this data, given that z(0) =
)

E A.4 After you have read Sect. 6.1, re-solve the production-inventory
example stated in Egs. (6.1) and (6.2), (ignoring the control constraint
(P > 0) by the method of Sect. A.4. The linear two-point boundary
value problem is stated in Egs. (6.6) and (6.7).



Appendix B

Calculus of Variations and
Optimal Control Theory

Here we introduce the subject of the calculus of variations by analogy
with the classical topic of maximization and minimization in calculus;
see Gelfand and Fomin (1963), Young (1969), and Leitmann (1981) for
rigorous treatments of the subject. The problem of the calculus of varia-
tions is that of determining a function that maximizes a given functional,
the objective function. An analogous problem in calculus is that of de-
termining a point at which a specific function, the objective function, is
maximum. This, of course, is done by taking the first derivative of the
function and equating it to zero. This is what is called the first-order
condition for a maximum. A similar procedure will be employed to de-
rive the first-order condition for the variational problem. The analogy
with classical optimization extends also to the second-order maximiza-
tion condition of calculus. Finally, we will show the relationship between
the maximum principle of optimal control theory and the necessary con-
ditions of the calculus of variations. It is noted that this relationship is
similar to the one between the Kuhn-Tucker conditions in mathematical
programming and the first-order conditions in classical optimization.
We start with the “simplest” variational problem in the next section.

(© Springer Nature Switzerland AG 2019 419
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B.1 The Simplest Variational Problem

Assume a function = : C0,T] — E!, where C'[0,T] is a class of
functions defined over the interval [0, 7] with continuous first derivatives.
For simplicity in exposition, we are assuming x(t) to be a scalar function
of t € [0,T], and the extension to a vector function is straightforward.
Here t simply denotes the independent variable which need not be time.
Assume further that a function in this class is termed admissible if it
satisfies the terminal conditions

z(0)=x9 and «x(T)=xr. (B.1)

We are thus dealing with a fixed-end-point problem. Examples of ad-
missible functions for the problem are shown in Fig. B.1; see Chapters 2
and 3 of Gelfand and Fomin (1963) for problems other than the simplest
problem, i.e., the problems with other kinds of conditions for the end
points.

\/

0 T
Figure B.1: Examples of admissible functions for the problem

The problem under consideration is to obtain the admissible function
x* for which the functional

T
J(z) = /0 Fla, i, 1)dt (B.2)

has a relative maximum. We will assume that all first and second partial
derivatives of the function F : E! x E' x E! — E' are continuous.
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B.2 The Euler-Lagrange Equation

The necessary first-order conditions in classical optimization were ob-
tained by considering small changes about the solution point. For the
variational problem, we consider small variations about the solution func-
tion. Let x(t) be the solution and let

y(t) = x(t) +en(t),

where n(t) : C1[0,T] — E! is an arbitrary continuously differentiable
function satisfying

1(0) = n(T) =0, (B.3)

and € > 0 is a small number. A sketch of these functions is shown in
Fig. B.2.

v

0 T

Figure B.2: Variation about the solution function

The value of the objective functional associated with y(¢) can be
considered a function of ¢, i.e.,

T
V(e) = J(y) = / Fla+en, i + il t)dt.
0

However, z(t) is a solution and therefore V' (¢) must have a maximum at

e = 0. This means

d
572

de =0,

e=0
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where 0J is known as the variation dJ in J. Differentiating V (¢) with
respect to € and setting € = 0 yields

v

T
6= | = Fyn+ Fyn)dt =0,
A /0( n+ Fim)

e=0

which after integrating the second term by parts provides

%

T T

d
6] = —— = | FEundt+ (Fun)| — Z(Fy)ndt = 0. B.4
= /0 ndt + (Fzn), /Odt( n (B.4)

e=

Because of the end conditions on 7, the expression simplifies to

A%
0] = —
d de

T d
= [ [Fy— —Fi]ndt =0.
A

We now use the fundamental lemma of the calculus of variations
which states that if h is a continuous function and fOT h(t)n(t)dt = 0 for
every continuous function 7n(t), then h(t) = 0 for all ¢ € [0, T]. The reason
that this lemma holds, without going into details of a rigorous proof
which is available in Gelfand and Fomin (1963), is as follows. Suppose
that h(t) # 0 for some t € [0,7]. Since h(t) is continuous, there is,
therefore, an interval (¢1,t2) C [0, 7] over which A is nonzero and has the
same sign. Now selecting 7(t) such

>0, te(ti,ta)
n(t) is
0, otherwise,

it is possible to make the integral fOT h(t)n(t)dt # 0. Thus, by contradic-
tion, h(t) must be identically zero over the entire interval [0, 7.
By using the fundamental lemma, we have the necessary condition

d
F,——F;=0 B.5
Todt " (B-5)
known as the FEuler-Lagrange equation, or simply the Fuler equation,
which must be satisfied by a maximal solution z*. In other words, the

solution z*(¢) must satisfy

ing(x*,ga*,t) = 0. (B.6)

Fy(z*, 2" t) — T
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We note that the Fuler equation is a second-order ordinary differen-
tial equation. This can be seen by taking the total time derivative of Fj
in (B.5) to obtain

Fy — Fiy — (Fyud) — (Fyait) = 0. (B.7)

The boundary conditions for this equation are obviously the end-point
conditions z(0) = zp and z(T") = x7.

Special Case (i): When F' does not depend explicitly on z.

In this case, the Euler equation (B.5) reduces to
F, =0,

which is nothing but the first-order condition of classical optimization.
In this case, the dynamic problem is a succession of static classical opti-
mization problems.

Special Case (ii): When F' does not depend explicitly on z.

The Euler equation reduces to

d

—F; =0, B.8

o (B.8)
which we can integrate as

where C is a constant.
Special Case (iii): When F' does not depend explicitly on ¢.
In this important special case, the Euler equation (B.7) reduces to
Fy — (Fpp) — (Fpzt) = 0. (B.10)

On multiplying the left hand side of (B.10) by & on the right, and adding
and subtracting the term FjZ, transforms (B.10) to

d .
a(F — Fyx) = 0. (B.11)
We can solve the above equation as
F—-Fx=C, (B.12)

where C' is a constant.
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B.3 The Shortest Distance Between Two Points
on the Plane

The problem is to show that the straight line passing through two points
on a plane is the shortest distance between the two points. The problem
can be stated as follows:

T
min/ 1+ 22dt
0

subject to

z(0) = o and z(T) = 7.

Here t refers to distance rather than time. Since F' = —+v/1 + 22 does
not depend explicitly on x, we are in the second special case and the first
integral (B.9) of the Euler equation is

Fy=—i(1+4%)72 =C.
This implies that & is a constant, which results in the solution

where C] and Cy are constants. These can be evaluated by imposing
boundary conditions which give C; = (zp — z¢)/T and Cy = z¢. Thus,

T — X0

x*(t) = [T} t + xo,

which is the straight line passing through x¢ and z7p.

B.4 The Brachistochrone Problem

The problem arises from the search for the shape of a wire along which
a bead will slide, without friction, in the least time from a given point
A to another point B, under the influence of gravity; see Fig. 1.1.

Let ¢ denote the horizontal axis, x denote the vertical axis (measured
vertically down), and let the (¢, x) coordinates of A and B be (0,0) and
(T,b), respectively. Thus, x(0) = 0 and x(7") = b. It is reasonable to
assume b > 0, so that point B is not higher than point A.
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The time Tap required for the bead to slide from point A to point B
along a wire formed in the shape of a curve z(t) is given as

5T ds
TAB :/ T
0 v

where v represents velocity and st is the final displacement measured
along the curve. Since ds? = da? + dt?, we can write

= /1 + @2dt,

where & = dx/dt (note that ¢ does not denote time here). From ele-
mentary physics, it is known that if v(¢ = 0) = 0 and a denotes the
acceleration due to gravity, then

v(t) = v/2ax(t), tel0,T].

T )

1+2z
= \/ dt. B.13
TAB /0 2ax ( )

The purpose of the Brachistochrone problem is to find z(t), ¢ € [0, 7],
so as to minimize the time 7op. This is a variational problem, which in
view of a being a constant, can be stated as follows:

min{J(m) _ /OT Fla, i, t)dt = /OT\/ ! Zith}. (B.14)

As we can see, the integral F' in the above problem does not depend
explicitly on ¢, and the problem (B.14) belongs to the third special case.
Using the first integral (B.11) of the Euler equation for this case, we have

1 2
\/ +i ) (a constant).
\/ &

We can reduce this to

Then,

dx -

dt xz

which we rewrite as

dx

k2—z
x

= dt. (B.15)
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By performing a change of variable according to
1 1
r = k?sin? 0 = k? <2 -3 cos29> (B.16)

and recognizing that (¢ = 0) = 0 corresponds to # = 0, we can integrate
(B.15) to obtain

0 t
1
/ 2k? sin? 0df = k(6 — 5 5in20) = / dt =t. (B.17)
0 0

By setting 20 = ¢ in (B.16) and (B.17), we can write the solution para-
metrically as

t = k*¢—sing)/2
r = k*1—cos¢)/2

, (B.18)

which are known to be equations representing a cycloid, as depicted in
Fig.1.1 in Chap. 1. Furthermore, since the initial condition z(0) = 0 is
already incorporated in performing the integration in (B.17), we must
use the terminal condition z(7') = b for determining the constant k.

Clearly, if we let ¢; be defined by the relation
b _ 1zcosdy (B.19)
T ¢ —sing,
then we can write
2b 2T
k? = = _ : B.20
1 —cosdr) (0~ singy) (:20)

The value of ¢; can be easily obtained numerically for any given values
of b>0and T > 0.

With these, the optimal solution z*(t) is the cycloid given paramet-
rically as

t _ T( ¢—s§n¢>>
$1—sin ¢, (B.Ql)
_ 1—cos¢
v = b(eg)

Furthermore, the minimum time 77 5 can be obtained as

. _ o [T L+ )2
Thp = V2aJ(z*) = /0 e dt. (B.22)

In Exercise B.1, you are asked to obtain ¢; for 7' = b = 1m, and
then obtain the minimum time 77 .
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B.5 The Weierstrass-Erdmann Corner
Conditions

So far we have only considered functionals defined for smooth curves.
This is, however, a restricted class of curves which qualify as solutions,
since it is easy to give examples of variational problems which have no
solution in this class. Consider, for example, the objective functional

1

min {J(x) = / (1 — 9‘5)2dt} ., xz(-1)=0, z(1)=1.
-1

The greatest lower bound for J(z) for smooth x = x(t) satisfying the

boundary conditions is obviously zero. Yet there is no x € C'[—1,1]

with (—1) = 0 and x(1) = 1, which achieves this value of J(x). In fact,

the minimum is achieved for the curve

0, —1<t<0,
z*(t) =
t, 0<t<l,

which has a corner (i.e., a discontinuous first derivative) at t = 0. Such
a piecewise smooth extremal with corners is called a broken extremal.

We now enlarge the class of admissible functions by relaxing the
requirement that they be smooth everywhere. The larger class is the class
of piecewise continuous functions which are continuously differentiable
almost everywhere in [0, 77, i.e., except at some points in [0, 7).

Let x, defined on the interval [0, 7], have a corner at 7 € [0,T]. Let
us decompose J(z) as

J(x) = /OTF(:c,i:,t)dt:/OTF(a:,:i:,t)dt+/TF(a:,:t,t)dt
= Jl(a:)—i-Jg(a?).

It is clear that on each of the intervals [0, 7) and (7, T, the Euler equation
must hold.

To compute variations dJ; and d.J3, we must recognize that the two
‘pieces’ of x are not fixed-end-point problems. We must require that the
two pieces of x join continuously at t = 7; the point ¢ = 7 can, however,
move freely as shown in Fig. B.3.

This will require a slightly modified version of formula (B.4) for
writing out the variations; see pp. 55-56 in Gelfand and Fomin (1963).
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Xo

T T

Figure B.3: A broken extremal with corner at

Equating the sum of variations
0J =0J1+d6J5=0

for * to be an extremal and using the fact that it must be continuous
at t = 7 implies

Fj@|7’* = Fi‘T+ ) <B23>
(F = Fyd], = [F — Fyil,:. (B.24)

These conditions are called Weierstrass-Erdmann corner conditions,
which must hold at the point 7 where the extremal has a corner.

In each of the interval [0, 7) and (7, ¢], the extremal = must satisfy the
Euler equation (B.5). Solving these two equations will provide us with
four constants of integration since the Euler equations are second-order
differential equations. These constants can be found from the end-point
conditions (B.1) and Weierstrass-Erdmann conditions (B.23) and (B.24).

B.6 Legendre’s Conditions: The Second
Variation

The Euler equation is a necessary conditions analogous to the first-order
condition for a maximum (or minimum) in the classical optimization
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problems of calculus. The condition analogous to the second-order nec-
essary condition for a maximum x* is the Legendre condition

Fiy < 0. (B.25)

To obtain this condition, we use the second-order condition of classical
optimization on function V(g) to be a maximum at ¢ = 0, i.e.,

d*V (e)
de?

T
= / (Fuan® + 2Fpsmi + Fpen?)dt < 0. (B.26)
0

e=0

Integrating the middle term by parts and using (B.3), we can transform
(B.26) into a more convenient form

T
/ (Qn* + Pi*)dt <0, (B.27)
0
where
d
Q = Q(t) = F;m' — gch and P = P(t) = sz

While it is possible to rigorously obtain (B.25) from (B.27), we will
only provide a qualitative argument for this. If we consider the quadratic
functional (B.27) for functions n(t) satisfying 7(0) = 0, then n(¢) will be
small in [0, 7] if 7)(¢) is small in [0, T']. The converse is not true, however,
since it is easy to construct 7(t) which is small but has a large derivative
f(t) in [0,7]. Thus, Pi? plays the dominant role in (B.27); i.e., P7i?
can be much larger than @n? but it cannot be much smaller (provided
P #0). Therefore, it might be expected that the sign of the functional
in (B.8) is determined by the sign of the coefficient P(t), i.e., (B.27)
implies (B.25). For a rigorous proof, see Gelfand and Fomin (1963).

We note that the strengthened Legendre condition (i.e., with a strict
inequality in (B.25)), the Euler equation, and one other condition called
strengthened Jacobi condition are sufficient for a maximum. The reader
can consult Chapter 5 of Gelfand and Fomin (1963) for details.

B.7 Necessary Condition for a Strong

Maximum

So far we have discussed necessary conditions for a weak mazimum. By
weak maximum we mean that the candidate extremals are smooth or
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piecewise smooth functions. The concept of a strong mazimum on the
other hand requires that the candidate extremal need only be continuous
functions. Without going into details, which are available in Gelfand and
Fomin (1963), we state a necessary condition for a strong maximum. This
is called the Weierstrass necessary condition. The condition is analogous
to the one in the static case that the objective function be concave. It
states that if the functional (B.2) has a strong maximum for the extremal
x* satisfying (B.1), then

B(z*, 2 t,u) <0 (B.28)

for every finite u, where F is the Weierstrass Fxcess Function defined
as

E(z,%,t,u) = F(z,u,t) — F(z,%,t) — Fy(z,2,t)(u — ). (B.29)
Note that this condition is always met if F'(x,,t) is concave in Z.

The proof of (B.28) is by contradiction. Suppose there exists a 7 €
[0,7] and a vector ¢ such that

E(r,z*(1),2*(1),q) > 0.

It is then possible to suitably modify x* to y, which is close to z* in
C1[0,T), such that

AT = /F(y,g),t)dt—/F(m*,j:*,t)dt >0,

contradicting the hypothesis that J(x) has a strong maximum at z*.

B.8 Relation to Optimal Control Theory

It is possible to derive the necessary conditions of the calculus of varia-
tions from the maximum principle. This is strongly reminiscent of the
relationship between the first-order conditions of classical optimization
and the Kuhn-Tucker conditions of mathematical programming.

First, we note that the calculus of variations problem can be stated
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as an optimal control problem as follows:

( T
maX{J:/ F(J:,u,t)dt}
0

subject to
(B.30)
z=u, x(0) = xo, z(T) =z,
ueQ=FE"
The Hamiltonian is
H(z,u,\t) = F(z,u,t) + \u (B.31)
with the adjoint variable A satisfying
AN=—H,=—-F,. (B.32)
Maximizing the Hamiltonian with respect to u yields
H,=F;,+X=0, (B.33)
from which we obtain
A=—F;. (B.34)

Differentiating (B.34) with respect to time gives

: d
A=——F;.
dt

This equation with (B.32) implies the Euler equation

d
F,— —F; =0.
dt

From (B.30) and (B.32), the second-order condition H,, < 0 for the
maximization of the Hamiltonian leads to

Fii <0,

known as the Legendre condition.
By the maximum principle, if «* is an optimal control with z* de-
noting the corresponding trajectory, then for each t € [0, 7],

H('r*’ u*? )\7 t) Z H(x*7 u? )\7 t)?
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where w is any other control. By the definition of the Hamiltonian (B.31),
#* = u* from (B.32), and Eq. (B.33), we have

F(z*, 2", t) — Fip(x*, 2%, t)z* > F(2*,u,t) — Fp(z*, ", t)u,

which by transposition of the terms yields the Weierstrass necessary
condition

E(a*, & t,u) = F(z*,u,t) — F(a*, i, 1) — Fy(z*, i, 1) (u — &) < 0.

We have just proved the equivalence of the maximum principle and
the Weierstrass necessary condition in the case where € is open. In cases
when €2 is closed and when the optimal control is on the boundary of
2, the Weierstrass necessary condition holds no longer in general. The
maximum principle still applies, however.

Finally, according to the maximum principle, both A and H are con-
tinuous functions of time. That is,

However,
A=—-F; and H=F-F;zt,

which means that the right-hand sides must be continuous with respect
to time, i.e., even across corners. These are precisely the Weierstrass-
Erdmann corner conditions.

Exercises for Appendix B

E B.1 Solve (B.19) numerically to obtain ¢; for T = b = 1m. Then,
use the formulas (B.21) and (B.22) to compute the minimum time 7% .
Note that the gravitational acceleration rate a = 9.81m/s?.



Appendix C

An Alternative Derivation
of the Maximum Principle

Recall that in the derivation of the maximum principle in Chap. 2, we
assumed the twice differentiability of the value function V' (z,t) with re-
spect to the state variable z. Looking at (2.31), we can observe that
the smoothness assumptions on the value function do not arise in the
statement of the maximum principle. Also since it is not an exogenously
given function, there is no a priori reason to assume the twice differen-
tiability. Moreover, there arise cases in which the value function V' (z,t)
is not even differentiable in x.

In what follows, we will give an alternate derivation. This proof fol-
lows the course pointed out by Pontryagin et al. (1962) but with certain
simplifications. It appears in Fel’dbaum (1965) and, in our opinion, it
is one of the simplest proofs for the maximum principle which is not
related to dynamic programming and thus permits the elimination of
assumptions about the differentiability of the return function V' (¢, z).

We select the Mayer form of the problem (2.5) for deriving the max-
imum principle in this section. It will be convenient to reproduce (2.5)
here as (C.1):

max {J =cz(T)}

u(t)eQ(t)
subject to (C.1)
= f(z,u,t), x(0)=xo.
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C.1 Needle-Shaped Variation

Let u*(t) be an optimal control with corresponding state trajectory z*(t).
We sketch w*(t) in Fig. C.1 and 2*(¢) in Fig. C.2 in a scalar case. Note
that the kink in z*(¢) at t = 6 corresponds to the discontinuity in u*(t)
at t =40.
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Figure C.1: Needle-shaped variation
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Figure C.2: Trajectories z*(t) and z(t) in a one-dimensional case

Let 7 denote any time in the open interval (0,7). We select a suffi-
ciently small € to insure that 7 —e > 0 and concentrate our attention on
this small interval (7 — &, 7]. We vary the control on this interval while
keeping the control on the remaining intervals [0, 7 —¢] and (7, T fixed.

Specifically, the modified control is

veN, te(r—e T,
u(t) = (C.2)

u*(t), otherwise.
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This is called a needle-shaped variation as shown in Fig. C.1. It is a
jump function and is different from variations in the calculus of varia-
tions; see Appendix B. Also the difference v — u* is finite and need not
be small. However, since the variation is on a small time interval, its
influence on the subsequent state trajectory can be proved to be ‘small’.
This is done in the following.

Let the subsequent motion be denoted by z(t) # x*(t) for t > 7 — e.
In Fig. C.2, we have sketched z(t) corresponding to u(t).

Let

dx(t) =x(t) —z*(t), t>1—¢,

denote the change in the state variables. Obviously dz(r —¢) = 0.
Clearly,
dz(1) = e[x(s) — 2¥(s)], (C.3)

where s denotes some intermediate time in the interval (7 —¢,7]. In
particular, we can write (C.3) as

dx(t) = eli(r) —a*(7)] + o(e)
= elf(z(r),v,7) = f(@™(7),u’(7), 7] +o(e).  (C4)

But dx(7) is small since f is assumed to be bounded. Furthermore, since
f is continuous and the difference dz(7) = (1) — «*(7) is small, we can
rewrite (C.4) as

dx(t) me[f(z*(1),v,7) — f(z"(7),u" (1), 7)]. (C.5)

Since the initial difference dx(7) is small and since u*(7) does not change
from t > 7 on, we may conclude that dx(¢) will be small for all t > 7.
Being small, the law of variation of dz(t) can be found from linear equa-
tions for small changes in the state variables. These are called variational
equations. From the state equation in (C.1), we have

W = f(z* + oz, u*, 1) (C.6)

or,
dx* n d(ox)
dt dt

~ f(x*,u*t) + frox (C.7)
or using (C.1),

%(5:0) ~ fo(x*,u* t)ox, fort>T, (C.8)
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with the initial condition dz(7) given by (C.5).

The basic idea in deriving the maximum principle is that equations
(C.8) are linear variational equations and result in an extraordinary sim-
plification. We next obtain the adjoint equations.

C.2 Derivation of the Adjoint Equation and the
Maximum Principle

For this derivation, we employ two methods. The direct method, similar

to that of Hartberger (1973), is the consequence of directly integrating

(C.8). The indirect method avoids this integration by a trick which is
instructive.

Direct Method. Integrating (C.8) we get

T
52(T) = dx(r) + / Faola®(8), w* (), )5(t)dt, (C.9)

where the initial condition dx(7) is given in (C.5).
Since 6x(T') is the change in the terminal state from the optimal state
x*(T), the change in the objective function §J must be negative. Thus,

T
6J = cox(T) = cdx(T) —I—/ cfelx*(t), u*(t),t]dz(t)dt <0. (C.10)

Furthermore, since (C.8) is a linear homogeneous differential equation,
we can write its general solution as

dx(t) = D(t, 7)ox(T), (C.11)

where the fundamental solution matrix or the transition matrix ®(¢,7) €
E™ ™ obeys

d

() = fola® ()0 (@D (t,7),  (r,7) =1, (C.12)

where [ is an n X n identity matrix; see Appendix A.
Substituting for dz(t) from (C.11) into (C.10), we have

T
0J = cox(T) +/ cfe[z®(t), u*(t), t]@ (¢, 7)dx(T)dt < 0. (C.13)

T
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This induces the definition
T
xay:/ cfala (), 0" (£), )0 (t, 7)dt + c, (C.14)
T

which when substituted into (C.13), yields
dJ = XN (1)dx(r) < 0. (C.15)

But dz(7) is supplied in (C.5). Noting that € > 0, we can rewrite (C.15)

(1) fla*™ (1), v, 7] = X*(7) fla* (1), u" (1), 7] <O0. (C.16)

Defining the Hamiltonian for the Mayer form as
Hiz,u, M1 2 Mf(z, u,t), (C.17)
we can rewrite (C.16) as
Hiz*(1),u™ (1), (1), 7] > H[x"(T),v, \(T), T]. (C.18)

Since this can be done for almost every 7, we have the required Hamil-
tonian maximizing condition.

The differential equation form of the adjoint equation (C.14) can be
obtained by taking its derivative with respect to 7. Thus,

d\(T)
dr

do(t, )

T
:‘/chmwmwwi]ahﬁ

—cfy[z*(T),u" (1), T]. (C.19)

It is also known that the transition matrix has the property:

dd(t, )
dr

which can be used in (C.19) to obtain

= —®B(t,7) fula* (), u* (1), 7],

d\(T)
dr

T
= —/ cflx™(t),u* (t), t|®(t, 7) folz” (1), u* (1), T]dt
—cfolz*(7),u" (1), 7]. (C.20)
Using the definition (C.14) of A(7) in (C.20), we have

d\(T)
dr

— A7) fula™ (7), " (7),7]
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with A(T") = ¢, or using (C.17) and noting that 7 is arbitrary, we have
A= —Nolz*, u t] = —Hp[z*, u*, A\ 1), MNT)=c (C.21)

This completes the derivation of the maximum principle along with the
adjoint equation using the direct method.

Indirect Method. The indirect method employs a trick which simpli-
fies considerably the derivation. Instead of integrating (C.8) explicitly,
we now assume that the result of this integration yields cdz(T") as the
change in the state at the terminal time. As in (C.10), we have

0J = cox(T) <0. (C.22)

First, we define

NOED (C.23)

which makes it possible to write (C.22) as
0J = cox(T) = NT)ox(T) <O0. (C.24)

Note parenthetically that if the objective function J = S(z(T")), we must
define A\(T") = 9S[z(T)]/0x(T) giving us

_ 95[x(T)]

6] = 5a 52(T) = NT)5z(T).

Now, A(T')éz(T) is the change in the objective function due to a
change dz(T) at the terminal time 7. That is, A(T") is the marginal
return or the marginal change in the objective function per unit change
in the state at time 7. But dx(7") cannot be known without integrating
(C.8). We do know, however, the value of the change dz(7) at time 7
which caused the terminal change dz(T') via (C.8).

We would therefore like to pose the problem of obtaining the change
dJ in the objective function in terms of the known value dz(7); see
Fel’dbaum (1965). Simply stated, we would like to obtain the marginal
return A(7) per unit change in state at time 7. Thus,

A()oz(r) = 6J = N(T)8z(T) < 0. (C.25)

Obviously, knowing A\(7) will make it possible to make an inference about
0J, which is directly related to the needle-shaped variation applied in the
small interval (7 — ¢, 7].
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However, since 7 is arbitrary, our problem of finding A(7) can be
translated to one of finding A(t), t € [0, 7], such that

At)ox(t) = N(T)ox(T), te€]0,T], (C.26)
or in other words,
A(t)ox(t) = constant, \(T') =c. (C.27)

It turns out that the differential equation which A\(¢) must satisfy can
be easily found. From (C.27),

d oxr .
ZADF(1)] = A2+ Aox =0, (C.28)

which after substituting for ddz/dt from (C.8) becomes
M0z + Moz = (M, + N)dz = 0. (C.29)
Since (C.29) is true for arbitrary dz, we have
A= -\, =—H, (C.30)

using the definition (C.17) for the Hamiltonian.

The Hamiltonian maximizing condition can be obtained by substi-
tuting for dx(7) from (C.5) into (C.25). This is the same as what we did
in (C.15) through (C.18).

The purpose of the alternative proof was to demonstrate the valid-
ity of the maximum principle for a simple problem without knowledge
of any return function. For more complex problems, one needs compli-
cated mathematical analysis to rigorously prove the maximum principle
without making use of return functions. A part of mathematical rigor is
in proving the existence of an optimal solution without which necessary
conditions are meaningless; see Young (1969).



Appendix D

Special Topics in Optimal
Control

In this appendix we will discuss a number of specialized topics in seven
sections. These are the Kalman and Kalman-Bucy filters, the Weiner
Process, It6’s Lemma, linear-quadratic problems, second-order varia-
tions, singular control, and the Sethi-Skiba points. These topics are
referred to but not discussed in the main body of the text. While we will
not be able to go into great detail, we will provide an adequate descrip-
tion of these topics for our purposes. For further details, the reader can
consult the references cited in the respective sections dealing with these
topics.

D.1 The Kalman Filter

So far in this book, we have assumed that the values of the state variables
can be measured with certainty. In many cases the assumption that the
value of a state variable can be directly measured and exactly determined
may not be realistic.

There are two types of random disturbances present. The first kind,
termed measurement noise, arises because of imprecise measurement in-
struments, inaccurate recording systems, etc. In many cases the mea-
surement technique involves observations of functions of state variables,
from which the values of some or all of the state variables are inferred;
e.g., measuring the inventory of a natural gas reservoir involves pressure
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measurements together with physical laws relating pressure and volume.

The second kind can be termed system moise, in which the system
itself is subjected to random disturbances. For instance, sales may follow
a stochastic process, which affects the system equation (6.1) relating in-
ventory, production, and sales. In the cash balance example, the demand
for cash as well as the interest rates in (5.1) and (5.2) can be represented
by stochastic processes.

In analyzing systems in which one or both of these kinds of noises
are present, it is important to be able to make good estimates of the
values of the state variables. We discuss the Kalman and Kalman-Bucy
filters devoted to optimal estimation of current values of state variables
given past measurements. The Kalman filter will be described in this
section, for which further details can be obtained from references such as
Kalman (1960a,b), Bryson and Ho (1975), Anderson and Moore (1979),
and Kumar and Varaiya (1986). The Kalman-Bucy filter for continuous-
time linear systems will be described briefly in Sect. D.3 and the readers
can refer to Fleming and Rishel (1975) and Arnold (1974) for further
details.

Consider a dynamic stochastic system in discrete time described by
the difference equation

e — ot = At + Gt t=0,1,...,N — 1, (D.1)
or

e = (A + Dat + G, t=0,1,...,N — 1, (D.2)
where 2! is an n-component (column) state vector, w! is a k-component

(column) system noise vector, A; is an n X n matrix, and G; is an n x
k matrix. The initial state xo is assumed to be a Gaussian (normal)
random variable with mean and n x n covariance matrix given by

E[z°] = z° and E[(z° — 2°) (2" — 2°)'] = . (D.3)
Without loss of generality, we confine ourselves to the case when w? is a
standard Gaussian purely random sequence with
E[w'] = 0 and E[w'(w")'] = I8, (D.4)
where for t =0,1,..., N, 7 =0,1, ..., N,
5, — 0 ift#r, (D.5)

1 ift=r.
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Thus, the random vectors w' and w” are independent standard normal
variables for ¢ # 7. We also assume that the sequence w! is independent
of the initial condition 2z, i.e., the k x n matrix

Ew'(z® —z°)] =0, t=0,1,..., N. (D.6)
The process of measurement of the state variables a! yields a 7-
dimensional vector y* which is related to x! by the transformation

yt = Hyzt + %, t=0,1,...,N, (D.7)

where H; is the state-to-measurement transformation matrix of dimen-
sion 7 x n, and v! is a Gaussian purely random sequence of r-dimensional
measurement noise vectors having the following properties:

E['] =0, Ep'(v")] = Ribir, (D.8)

Elwt(w™)] =0, E[®—z°)@@)]=0. (D.9)

In (D.8) the matrix Ry is the r X r covariance matrix for the random
variable v?, and it is therefore positive semidefinite, symmetric, and non-
singular. The requirements in (D.9) mean that the additive measurement
noise is independent of the system noise as well as the initial state.

Given a sequence of observations y°,y!', 9%, ...,4" up to time i, we
would like to obtain the maximum likelihood estimate of the state z,
or equivalently, to find the weighted least squares estimate. In order to
derive the estimate 2 of 2’, we require the use of the Bayes theorem
and an application of calculus to find the unconstrained minimum of
a quadratic form. This derivation is straightforward but lengthy. It
yields the following recursive procedure for finding the estimate #!, t =
0,1,...,4, 1t < N:

it '+ Ki(yt — Hyz),

= (A4, + Db, z° given, D.11
K, =
P = X'+ H/R7'H)TY D.13

(D.10)
(D.11)
P.H/R ", (D.12)
(D.13)
i1 = (A +DP(I+ A)' + GG, 3o given. (D.14)

The procedure in expressions (D.10)—(D.14) is known as the Kalman
filter for linear discrete-time processes.
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The interpretation of (D.10) is that the estimate 2! is equal to the
mean value Z! plus a correction term which is proportional to the differ-
ence between the actual measurement 3 and the predicted measurement
H,zt. Also,

5 = B! — #')(a' — 7

the error covariance before the measurement at time ¢, and
P, = E[(a" - 2")(a' — 2")],

the error covariance matrix after the measurement at time ¢. In other
words, ¥; and P, are measures of uncertainties in the state before and
after the measurement at time ¢, respectively. Thus, the proportionality
matrix K; can be interpreted as the ratio between the uncertainty P, in
the state and the measurement uncertainty R;. Because of this property
of K3, it is called the Kalman gain in the engineering literature.

It is important to note that the propagation of P; given by (D.13) and
(D.14) is independent of the measurements. Thus, it can be computed
offline and stored. The computation of updated estimates by (D.10) and
(D.11) involves only the current measurement and error covariance, and
can therefore be done in real time. Finally, prediction of the state beyond
the period up to which measurements are available can be done as

Ii‘t+1 = i’t—i_l - (At + I)jt + Gtwta t 2 ia Z € N7 (D15)

with 2% obtained from the filter (D.10)—(D.14).

D.2 Wiener Process and Stochastic Calculus

A continuous 1-dimensional process Z is a (standard) Wiener process on
an interval [0, T if

1. Z has independent increments;

2. The increment Z; — Z, is Gaussian with mean 0 and variance
|t — 7| for any ¢, 7, € [0,T7;

3. Zp is Gaussian with mean 0.

This definition easily generalizes to define a k-dimensional Wiener pro-
cess.

A Wiener process is also called a Brownian motion, as it models the
motion of a particle in a fluid. It has been shown that a Wiener process is
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nowhere differentiable; a Brownian particle does not possess a velocity at
any instant. Furthermore, it is a process with unbounded variation, i.e.,
its length in any finite interval is infinite. The Wiener process is difficult
to draw, although Fig. D.1 is an attempt to sketch a continuous sample
path that, at the same time, conveys the flavor of its “wild” nature.

Nevertheless, the formal time derivative of a Wiener process is termed
white noise in the engineering literature. Thus, w; = dZ/dt can be
regarded as a stationary process in which the random variables w; and
wr, t # 7, are independent with Fw; = Fw,; = 0 and the covariance
E[wyws] = ;7. One can see that w; is a continuous time analogue of the
discrete-time process w' defined in the previous section.

Next we wish to define an integral fst G(7)dZ; for a rather wide class
of processes G. Specifically, it will be the class My of all real-valued,
stochastic processes G on [0, 7| such that fOT |G(7)|*dT < oo with proba-
bility 1. Given the wild nature of the Wiener process, the integral cannot
be defined in the sense of Reimann-Steiltjes for every function in Mj.

Therefore, we resort to the concept of a stochastic integral in the Ito
sense. For this, let us define the subclass M C My such that any G € M
satisfies EfOT |G(7)|?dT < 0. Let Gj € M be a step process on [0,] in
the sense that there is a partition consisting of points 7¢, 71, ..., T, with
0<79<71<...<Typ =t. For this step process, the integral equals
the Riemann-Steiltjes sum

/O t Gj(1)dZ, =Y Gi(re-1)[Zr, — Z=,_,)- (D.16)
k=1

We then define the stochastic integral for any G € My by taking a
sequence of step processes G;,j = 1,2,..., such that fg |G (7)—G(7)|?dr
converges to zero in probability as j — oo. Then, the sequence of random
variables defined in (D.16) converges, as j — 0o, to a limit in probability,
which is defined as fg G(7)dZ;, written simply as fg GdZ. 1t can be shown
that the limit does not depend on the approximating sequence G; with
probability 1 for each ¢.

It is important to note the following important properties of It0’s
stochastic integral. The integral fg GdZ can be defined simultaneously
for all ¢ € [0,T7], so that it is continuous on [0, T]. Furthermore, for any
H,G € My, we have

t t
E/ G(r)dZ, =0, E/ H(r)dZ, =0,
0 0

and
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E [( /0 tG(T)dZT> < /0 tH(T)dZT)] "y /0 G H(r)dr.

(D.17)

Equation (D.17) serves as motivation for the frequently used symbolic
notation
(dZ;)* = dt. (D.18)

Now that we have defined the stochastic integral, it remains to spec-
ify the stochastic differential rule. Let f,G, and X be one-dimensional
stochastic processes such that fOT |fldt < oo, G € My, X is continuous,
and

t t
X, — Xo= /O f(r)dr +/0 G(r)dZ,, 0<t<T. (D.19)

This equation is a stochastic integral equation, for which it is customary
to use the suggestive notation

dX; = f(t)dt + G(t)dZ;, Xy given,

or simply
dX = fdt +GdZ, Xy given. (D.20)

Now let the one-dimensional process Y; = ¢ (Xy,t), t € [0,7T], where
the function ¢ (z,t) is continuously differentiable in ¢ and twice continu-
ously differentiable in x. Then, it possesses the stochastic differential

AV = (X0, 0) U (Ko, )+ S (Ko, DG (@)l

= [Pp(Xp,t) +Px (X, t) f(2) + %wxx(Xt, H)G(t)]dt
+x (Xe, )G (t)dZ:, Yo = (X0, 0). (D.21)

Equation (D.21) is to be interpreted in the sense that its integral
form from 0 to ¢ holds with probability 1, i.e.,

Y(ze,t) = Y(x,0)
[ 10l003) 0l ) + Gl )G )

+/ Y(xs, s)G(s)dZs, w.p.1. (D.22)
0
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It is worth pointing out that the term %¢MG2dt does not appear
in the differential rule of elementary calculus. This is an important dif-
ference as seen in Chap. 12, where we discuss stochastic optimal control
problems. Also, a multi-dimensional generalization of (D.16)—(D.22) is
straightforward.

D.3 The Kalman-Bucy Filter

The continuous-time analogue of the Kalman filter is known as the
Kalman-Bucy filter. Here, the difference equation (D.2) is replaced by
the linear stochastic differential equation

dX; = AW)Xedt + G(t)dZy, 0<t<T, (D.23

)
which is a special case of the It6 stochastic differential equation (D.20)
introduced in Chap. 12. In this equation, X; is an n-component (column)
state vector, Z; is the value at time ¢ of a standard k-component (column)
Wiener process Z, and the matrices A(t) and G(t) of dimensions n X n
and n X k, respectively, are continuous in ¢. Furthermore,

E(Xo) = Xo, and E[(Xo — Xo)(Xo — X0)'] = Xo. (D.24)
The measurement process (D.7) is replaced by
0¥, = H()X, + o(1)dé,, Yo=0. (D.25)

where ¢ is a standard r-dimensional Weiner process and the k x r» matrix
o(t) is such that the k x k matrix R(t) := o(t)o’(t) is positive definite.
Note that the term o(¢)d§, in (D.25) represents the noise term, which
corresponds to v’ in (D.7). Thus, the term R(t) corresponds to the
covariance matrix R; in Sect.D.1 on the Kalman filter.

The filtering problem is to find the weighted least square estimate
of X; given the measurements up to time ¢. It can be shown that the
optimal estimate is the conditional expectation

Xy = E[X;|Y;, 0 < s <], (D.26)

Furthermore, it can be obtained recursively by the following Kalman-
Bucy filter:

dX, = A@®)X,dt+ K(#)[dY; — H(t)X,dt], Xo = Xo, (D.27)
K(t) = P@)H (t)R™\(t), (D.28)
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P(t) = (A(t)P(t) + P(t)A'(t) — K(t)H(t)P(t)
+G ()G (1)), P(0) = X, (D.29)

where H'(t) denotes the transpose (H(t))" and R~'(¢) means the inverse
(R(t))~!, as the notational convention defined in Chap. 1. The interpre-
tations of P(t) and K (t) are the same as in the previous section.

The filter (D.27)—(D.29) is the Kalman-Bucy filter (Kalman and Bucy
1961) for linear systems in continuous time. Equation (D.29) is called the
matrix Riccati equation. Besides engineering applications, the Kalman
filter and its extensions are very useful in econometric and financial mod-
eling; see Buchanan and Norton (1971), Chow (1975), Aoki (1976), Naik
et al. (1998), and Bhar (2010).

D.4 Linear-Quadratic Problems

An important problem in systems theory, especially engineering sciences,
is to synthesize feedback controllers. These controllers provide optimal
control as a function of the state of the system. A usual method of ob-
taining these controllers is to solve the Hamilton-Jacobi-Bellman partial
differential equation (2.19). This equation is nonlinear in general, which
makes it very difficult to solve in closed form. Thus, it is not possible in
most cases to obtain optimal feedback control schemes explicitly.

It is, however, feasible in many cases to obtain perturbation feed-
back control, which refers to control in the vicinity of an optimal path.
These perturbation schemes require the approximation of the problem
by a linear-quadratic problem in the vicinity of an optimal path (see
Sect. D.5), and feedback control for the approximating problem is easy
to obtain.

A linear-quadratic control problem is a problem with linear dynamics
and a quadratic objective function. First, we treat a special case called
the Regulator Problem:

min {x’(T)STa:(T) + /0 T(a:’Cx + u’Du)dt} (D.30)

subject to
&= Az + Bu, z(0) = zo. (D.31)

Here z € E™, w € E™, and the appropriate dimensional matrices
C,D, A, and B, when time-dependent, are assumed to be continuous in
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time t. Furthermore, we shall assume the matrices C' and St to be posi-
tive semidefinite and, without loss of generality, symmetric, and matrix
D to be symmetric and positive definite.

To solve the regulator problem for an explicit feedback controller, we
rewrite it as that of maximizing

T
J = / —(2'Cx + ' Du)dt — 2/ (T)Stx(T)
0

subject to (D.31). Clearly, this is a special case of the optimal control
problem (2.4) and we can apply (2.15) and (2.16) to obtain the Hamilton-
Jacobi-Bellman equation

0 = max {—(2'Cx + v'Du) + V,[Az + Bu] + V;} (D.32)
with the terminal boundary condition
V(z,T) = —2'(T)Srx(T). (D.33)

By checking that V (yz,t) = 42V (2,t) and V(z,t)+V (y, t) = 5[V (z+
y,t) + V(x — y,t), we can establish that the value function V(z,t) is of
a quadratic form. Thus, let

V(z(t),t) = —2'(t)S(t)x(t) (D.34)

for some matrix S (t), symmetric without loss of generality. Then V; =
—a'Sz and V, = —2(Sz)’ = —22/S. Using these relations in (D.32), we
get

'Sz = max {—JJ/CI — ' Du — 22/ S Az — Qx/SBu}
u
= —min{2'Cz + v'Du + 22'SAz + 22'SBu} . (D.35)
u
To find the minimum of the expression on the right-hand side of

(D.35), we observe the following identity obtained by completing the
square:

2'Cx + v Du + 22'SAx + 22'SBu = (u + D~'B'Sz) D(u + D~ B'Sx)
+2'(C — SBD'B'S + SA+ A'S)x.

Because matrix D is positive definite, it follows that the minimum is
achieved in (D.35) by the control

u*=-D"'B'Sz. (D.36)
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Then from (D.35) and (D.36), we obtain,
2'Sx = —2'[C — SBD'B'S + SA + A'S|z. (D.37)

Since this equation holds for all x, we have the matrix differential equa-
tion

S=-SA—-A'S+SBD'B'S-C, (D.38)

called a matriz Riccati equation, with the terminal condition
S(T) = Sr (D.39)

obtained from (D.33), where St is specified in (D.30).

A solution procedure for Riccati equations appears in Bryson and Ho
(1975) or Anderson and Moore (1990). With the solution S of (D.38)
and (D.39), we have the optimal feedback control as in (D.36).

To see that the optimal control v* in (D.36) maximizes the Hamilto-
nian H = —2'/Cx — v/ Du + V,[Ax + Bul, let us use (D.32) to obtain

2(Du*) =2u*'D' = —22/SB(D')"'D' = —22/SB = V. B,

which is precisely the first-order condition for the maximum of the right-
hand side of (D.32). Moreover, the first-order condition yields a global
maximum of the Hamiltonian, which is concave since the matrix D is
positive definite.

A generalization of (D.30) to include a cross-product term to allow
for interactions between the state z and control u, which would be useful
in the next section on the second variation, is to set

L B o C N x
J =—2'(T)Srz(T) (', u') dt, (D.40)
0 N D || u

and the problem is to maximize J subject to the state equation (D.31).
It is easy to see that the integrand in (D.40) can be rewritten as
2'Cx+u'Du+ 22 Nu. Furthermore, with the definition @ = v+ D' N'z,
the generalized problem defined by (D.40) and (D.31) can be reduced to
the standard regulator problem of maximizing fOT —[@'D 4 + 2/ (C —
ND IN')z] — 2/(T)Srxz(T) subject to & = (A — BD™'N')x + B, pro-
vided that the matrix C — ND™'N’ is positive semidefinite. We can
then use formulas (D.36), (D.38), and (D.39), to obtain the solution of
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the transformed problem and then use the definition of 4 to write the
feedback control of the generalized problem as

u*(z) = —D7YN' + B'S|x, (D.41)
where
S = —-S(A-BD7'N')— (A -ND'B)S
+SBD'B'S+ ND™!N' - C
= —SA-A'S+(SB+N)DYB'S+N')-C (D.42)
with

S(T) = Sp. (D.43)

D.4.1 Certainty Equivalence or Separation Principle

Suppose Eq. (D.31) is changed by the presence of the stochastic term
G(t)dZ; as defined in (D.23) so that we have the Ité equation

dX; = (A(t) Xy + B(t)Up)dt + G(t)dZy,
and X is a normal random variable with
E[Xo] =0, E[XX{]= 0.
Because of the presence of uncertainty in the system equation, we modify

the objective function in (D.40) as follows:

T Cy Ng Xy
max{ J =F —X{FSTXT—/ (X3,U)) dt
0

N! D, U,

Assume further that X; cannot be directly measured and the mea-
surement process is given by (D.25), i.e.,

dYy = H(t)X; + o(t)dE,, Yo = 0.

The optimal control U} for this linear-quadratic stochastic optimal
control problem can be shown to be given by (D.41) with X; replaced
by its estimate X; see Arnold (1974). Thus,

Ui = —D(t)"'[N'(t) + B'()S (1) Xy,
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where S(t) is given by (D.42) and (D.43), and X, is given by the Kalman-
Bucy filter:

dX; = [AW)X;+ B)U)dt + K (t)(dY, — H(t)X,dt), X(0) =0,
K({t) = P)H (t)R(t),
P(t) = A@)P(t)+Pt)A'(t) — K(t)H(t)P(t) + Gt)G'(t), P(0) = Xo.

The above procedure has received two different names in the liter-
ature. In economics it is called the certainty equivalence principle; see
Simon (1956). In engineering and mathematics literature it is called the
separation principle; see Fleming and Rishel (1975). When we call it
the certainty equivalence principle, we are emphasizing the fact that X,
can be used for the purposes of optimal feedback control as if it were
the certain value of the state variable X;. Whereas the term separation
principle emphasizes the fact that the process of determining the optimal
control can be broken down into two steps: first, estimate X; by using the
optimal filter; second, use that estimate in the optimal feedback control
formula for the deterministic problem.

D.5 Second-Order Variations

Second-order variations in optimal control theory are analogous to the
second-order conditions in the classical optimization problem of calculus.
To discuss the second-order variational condition is difficult when the
control variable u is constrained to be in the control set 2. So we make
the simplifying assumption that Q@ = R™, and thus the control u is
unconstrained. As a result, we are now dealing with the problem:

max {J - /0 ! F(z,u, t)dt + <I>[33(T)]} (D.44)

u

subject to
&= f(z,u,t), x(0)=xo. (D.45)

From Chap. 2, we know that the first-order necessary conditions for
this problem are given by

AN=—H,, MT)=0, (D.46)

H, =0, (D.47)
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where the Hamiltonian H is given by
H=F+)\f. (D.48)

Since u is unconstrained, these conditions may be easily derived by the
method of calculus of variations. To see this, we write the augmented
objective functional as

T
J = ®[a(T)] + /0 (H (2, u, M, 1) — AildL. (D.49)

Consider small perturbation from the extremal path given by (D.45)—
(D.48) as a result of small perturbations dz(0) in the initial state. Define
the resulting perturbations in state, adjoint, and control variables by
dz(t), dA(t), and du(t), respectively. These, of course, will be obtained
by linearizing ((D.45)—(D.47)) around the external path:

dj—tx = fz0z + f,ou, Ox(0)specified, (D.50)
% = —(Hyppox)! — AT — (Hpudu), (D.51)

0.

= (Huudz)" + 6X fu + (Hudu)" = (D.52)

Alternatively, we may consider an expansion of the objective function
and the state equation to second order since the first-order terms vanish
about a trajectory which satisfies ((D.44)—(D.47)). From Bryson and Ho
(1975), this may be accomplished by expanding (D.49) to second order
and all the constraints to first order. Thus, we have

_ 1 1 T me Ha:u (5.%'
62J = 5(5xT(T)<I>m(5x(T)) + 2/ (0, ou) dt
0 Hyp Hyy ou
(D.53)
subject to
dox .
- = fz0zx + fuéu,  6x(0) specified. (D.54)

Since we are interested in a neighboring extremal path, we must deter-
mine du(t) so as to maximize §°.J subject to (D.54). This problem is
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a linear-quadratic problem discussed in the previous section. For this
problem, the optimal control du*(t) is given by the formula (D.42), pro-
vided Hyy(t) is nonsingular for 0 < t < T. The case when Hy,(t) is
singular for a finite time interval is treated in Sect. D.6. Thus, recogniz-
ing that G = ®,,, C = Hypy, N =Hyy, D= Hyy, A= f., and B = f,
we have

Su*(t) = Hy [Hyw + fLS()]02(t), (D.55)

uY

where

S+Sfot fES —(Sfu+Hpw)Hyl (f1 S+ Hyg) + How =0, S(T) = Py
(D.56)

While a number of second-order conditions can be obtained by pro-
ceeding further from this manner, we will be interested only in the con-
cavity condition (or strengthened Legendre-Clebsch condition). It is pos-
sible to show that neighboring stationary paths exist (in a weak sense;
i.e., 0z and du are small) if

Hu(t) <0 for 0<t<T, (D.57)

or in other words, H,,,(t) is negative semidefinite. First-order conditions,
conditions (D.57), and the condition that S(¢) is finite for 0 < ¢t < T
represent sufficient conditions for a trajectory to be a local maximum.
We are not being specific here because in this book we would be relying
mostly on the sufficiency conditions developed in Chaps. 2—4, which are
based on certain concavity requirements. We are stating (D.57) because
of its similarity to the second-order condition for a local maximum in
the classical maximization problem.
We must note that

H,=0 and H, <0 (D.58)

form necessary conditions for a trajectory to be a local maximum.

D.6 Singular Control

In some optimization problems including some problems treated in this
text, extremal arcs satisfying H,, = 0 occur on which the matrix H,, is
singular. Such arcs are called singular arcs. Note that these arcs sat-
isfy (D.58) but not the strengthened condition (D.57). While no general
sufficiency conditions are available for singular arcs, some additional nec-
essary conditions known as the generalized Legendre-Clebsch conditions
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have been developed. A good reference on singular control is Bell and
Jacobson (1975).

We will only discuss the case in which the Hamiltonian is linear in one
or more of the control variables. For these systems, H,, = 0 implies that
the coefficient of the linear control term in the Hamiltonian vanishes
identically along a singular arc. Thus, the control is not determined
in terms of z and A by the Hamiltonian maximizing condition H, = 0.
Instead, the control is determined by the requirement that the coefficient
of these linear terms remain zero on the singular arc. That is, the time
derivatives of H, must be zero. Having obtained the control by setting
dH, /dt = 0 (or by setting higher time derivatives to equal zero) along the
singular arc, we must check additional necessary conditions analogous to
the second-order condition (D.57). For a maximization problem with a
single control variable, these conditions turn out to be

YA e
Ou | dt2k

] <0, k=0,1,2,.. (D.59)

The conditions (D.59) are called the generalized Legendre-Clebsch
conditions.

For applications of these conditions to problems in production and
finance, see e.g., Maurer et al. (2005) and Davis and Elzinga (1971).
The Davis-Elzinga model is covered in Exercise 5.17 in Chap.5. For
numerical solutions of singular control problems, see Maurer (1976).

Example D.1 We present an example treated by Johnson and Gibson

(1963):
SR
max< J = ——= xidt (D.60)
2Jo
subject to
1 = z2+u, z1(0)=a, (D.61)
Ty = —u, z(0) = b, (D.62)
x1(T) = z2(T) = 0. (D.63)

Solution We form the Hamiltonian

1
H= —iac% + A1 (@2 + u) 4+ Ao(—u), (D.64)
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where the adjoint equations are
}\1 =21, }\2 = —)\1. (D.65)

The optimal control is bang-bang plus singular. Singular arcs must sat-
isfy

H,=X—X=0 (D.66)
for a finite time interval. The optimal control can, therefore, be obtained

by
dH,

dt

Differentiating once more with respect to time ¢, we obtain

= ).\1 — )'\2 =x1+ A =0. (D67)

d*H,

p7 :$1+}\1:ZE2+U+ZL‘1:0,

which implies
u = —(.T1 + xz) (D.68)

along the singular arc. We now verify for the example, the generalized
Legendre-Clebsch condition (D.59) for k = 1:

0 [dZHu

D en } —1<0. (D.69)

D.7 Global Saddle Point Theorem

In this section, we provide an important result for a class of station-
ary infinite-horizon optimal control problems such as those treated in
Chap. 11. In particular, we are concerned here with the one-dimensional
state problem defined in (3.97) without the mixed constraint and the
terminal inequality constraints, i.e.,

max {J = /OOO o(z, u)e_ptdt} , (D.70)

&= f(z,u), z(0) = xo. (D.71)

An application of the maximum principle results in an adjoint equation

A=pA— ¢, —Ma (D.72)
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and a Hamiltonian maximizing control w*(z, A). Substituting this for
w in (D.71) and (D.72) gives rise to a canonical system of differential
equations

@ = f*(z,\) and A = ¢*(x, \). (D.73)

A saddle point (Z, ) of the system (D.73) satisfies
f*(@,\) =0 and ¢*(z,\) = 0. (D.74)

The important issue for this problem is the existence and uniqueness
of an optimal path that steers the system from an initial value xg to the
steady state Z. This is equivalent to finding a value Ag so that the system
(D.73) starting from (7, A\g) moves asymptotically to (Z, \). A sufficient
condition for this to happen is given in the following theorem.

v
=

=

Figure D.1: Phase diagram for system (D.73)

Theorem D.1 (Global Saddle Point Theorem) Let (Z,)\) be a
unique saddle point of the canonical system (D.73) of the differential
equations and let xo be a given initial state for which the vertical line
x = xo (see Fig.D.1) intersects both isoclines & = f*(xz,A) = 0 and
A = *(x,\) = 0. Assume further that the region bounded by the iso-
clines and the line x = xy has a triangular shape as in Fig. D.1 (i.e., the
1soclines themselves do not intersect in the open interval between xg and
Z). Then, there ezists a unique saddle point path starting for x = xy and
leading to the saddle point (T, \).
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The proof of this theorem, based on Theorem 1.2 and Corollaries 1.1
and 1.2 from Hartman (1982), can be found in Feichtinger and Hartl
(1986).

D.8 The Sethi-Skiba Points

In Exercise 2.9, we defined autonomous optimal control problems. Here,
we limit the discussion to autonomous systems that are discounted
infinite-horizon optimal control problems with one-dimensional state, de-
fined as follows:

max {J = /Ooo eﬂtqs(x(t),u(t))dt}

u(t)e

subject to
() = f(x(t),u(t)), x(0) given,

with p > 0 as the discount rate. In addition to assuming that the
function ¢ and f are continuously differentiable, we assume that the in-
tegral in the objective function J converges for any admissible solution
x(t),u(t),t > 0. In such problems, there may arise multiple equilibria de-
pending on the initial condition. Suppose ¢ is an initial value for z(0),
such that the system starting from it exhibits multiple optimal solutions
or equilibria. Thus, at least in the neighborhood of xg, the system moves
to one equilibrium if x(0) > xo and to another if x(0) < xp. In other
words, xg is an indifference point from which the system could move to
either of two equilibria. Such points were originally identified by Sethi
(1977b, 1979¢). Subsequently, Skiba (1978) and Dechert and Nishimura
(1983) explored these indifference points for one-sector optimal economic
growth models with nonconvex production functions, in contrast to con-
cave production functions treated in Sect.11.1. These points are also
referred to as the DNSS points, where the acronym DNSS stands for
Dechert, Nishimura, Sethi, and Skiba. Before it became known that
Sethi (1977b) had already identified them prior to Skiba (1978), these
points were also called Skiba points.

Below we present a simple example that exhibits a Sethi-Skiba point
at xg = 0. For further discussion on these points, see Grass et al. (2008),
Zeiler et al. (2010), Kiseleva and Wagener (2010), and Caulkins et al.
(2015a).
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Example D.2 Solve the problem:

max {J = /OOO epta:(t)u(t)dt}

&(t) = —x(t) + u(t), x(0) = zo, (D.75)
u(t) € [-1,+1], t > 0.

subject to

Let us first solve this problem for zg < 0. We form the Hamiltonian
H = z(t)u(t) + A\t)(—z(t) + u(t)) (D.76)

with .
At) = (L4 p)A(t) — u(t). (D.77)

Since H is linear in u, the optimal policy is
u*(t) = bang[—1, 1; z(t) + A(t)]. (D.78)

For zp < 0, the state equation reveals that u*(¢) = —1 will give the
largest decrease of x(t) and keep x(t) < 0, ¢ > 0. Thus, it will maximize
the product x(t)u(t) for each t > 0. We also note that the long-run
stationary equilibrium in this case is (Z,a,\) = (—=1,—1,—1/(1 + p)).
It is also easy to verify that the solution u*(t) = —1, z*(t) = —1 +
e t(xzo+1), and \(t) = —1/(1+ p), t > 0, satisfies (D.75), (D.77) along
with the sufficiency transversality condition (3.99), and maximizes the
Hamiltonian in (D.76).

Similarly, we can argue that for xg > 0, the optimal solution is
u*(t) = +1, z*(t) = 1+e *(zg—1) > 0, and A(t) = 1/(1+p), ¢t > 0. The
long-run stationary equilibrium in this case is (z, @, A) = (1,1,1/(1 + p).

Then by symmetry, we can conclude that if g = 0, both u*(¢) = —1
and u*(t) = 41, t > 0, yield the same objective function, and hence
both are optimal. Thus, g = 0 is a Sethi-Skiba point for this example.

Clearly, at this point, the choice between using u*(0) = —1 and
u*(0) = 41 will determine the equilibrium the system approaches. No-
tice that once the system has moved away from x¢ = 0, there is no more
choice left in choosing the control.

It is possible that at a Sethi-Skiba point, a decision maker can in-
fluence the equilibrium that the system would move to, by choosing a
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control from the set of possible optimal controls. This may have im-
portant implications. In a model of controlling illicit drugs, Grass et al.
(2008) derive a Sethi-Skiba point, signifying a critical number of ad-
dicts, such that if there are fewer addicts than the critical number, it
is optimal to use an eradication strategy that uses massive treatment
spending that drive the number of addicts down to zero. On the other
hand, if there are more than the critical number of addicts, then it is
optimal to use an accommodation strategy that uses a moderate level
of treatment spending that balances the social cost of drug use and the
cost of treatment.

This is a case of a classic Sethi-Skiba point acting as a “tipping point”
between the two strikingly different equilibria, one of which may be more
socially or politically favored than the other, and the social planner can
use an optimal control to move to the more favored equilibrium.

We conclude this subsection by mentioning that the Sethi-Skiba
points are exhibited in the production management context by Fe-
ichtinger and Steindl (2006) and Moser et al. (2014), in the open-source
software context by Caulkins et al. (2013a), and in other contexts by
Caulkins et al. (2011, 2013b, 2015a).

D.9 Distributed Parameter Systems

Thus far, our efforts have been directed to the study of the control of
systems governed by systems of ordinary differential or difference equa-
tions. Such systems are often called lumped parameter systems. It is
possible to generalize these to systems in which the state and control
variables are defined in terms of space as well as time dimensions. These
are called distributed parameter systems and are described by a set of
partial differential or difference equations.

For example, in the lumped parameter advertising models of the type
treated in Chap. 7, we solved for the optimal rate of advertising expen-
diture at each instant of time. However, in the analogous distributed
parameter advertising models, we must obtain the optimal advertising
expenditure rate at every geographic location of interest at each instant
of time; see Seidman et al. (1987) and Marinelli and Savin (2008). In
other economic problems, the spatial coordinates might be income, qual-
ity, age, etc. Derzko et al. (1980), for example, discuss a cattle-ranching
model in which the spatial dimension measures the age of a cow.

Let y denote a one dimensional spatial coordinate, let ¢ denote time,
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and let z(t,y) be a one dimensional state variable. Let u(t,y) denote a
control at (¢,y) and let the state equation be

Ox Ox
E _g(ta yvxvaiyvu) (D79)

for t € [0,T] and y € [0, h]. We denote the region [0,7] x [0, h] by D,
and we let its boundary 0D be split into two parts I'y and I's as shown
in Fig. D.2. The initial conditions will be stated on the part I'; of the
boundary 0D as

2(0,y) = wo(y) (D.80)

and

2(t,0) = v(t). (D.81)

In Fig. D.2, (D.80) is the initial condition on the vertical portion of I'y,
whereas (D.81) is that on the horizontal portion of I';. More specifically,
in (D.80) the function zo(y) gives the starting distribution of = with
respect to the spatial coordinate y. The function v(¢) in (D.81) is an
exogenous breeding function of x at time ¢ when y = 0, which in the
cattle ranching model mentioned above, measures the number of newly
born calves at time ¢. To be consistent we make the obvious assumption
that

2(0,0) = z¢(0) = v(0). (D.82)

Figure D.2: Region D with boundaries I'; and I's

Let F(t,y,z,u) denote the profit rate when z(¢,y) = x and u(t,y)
u at a point (t,y) in D. Let Q(t) be the price of one unit of z(t,h) at
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time ¢ and let S(y) be the salvage value of one unit of z(7',y) at time 7.
Then the objective function is:

gly«%;éﬂ{ / / (t,y, z(t, y), u(t, y))dydt -

/Q thdt+/S Tydy}

where (2 is the set of allowable controls.

We will formulate, without giving proofs, a procedure for solving the
problem in (D.79)—(D.83) by a distributed parameter maximum princi-
ple, which is analogous to the ordinary one. A more complete treatment
of this topic can be found in Sage (1968), Butkowskiy (1969), Ahmed
and Teo (1981), Tzafestas (1982b), Derzko et al. (1984), Brokate (1985),
and Veliov (2008).

In order to obtain necessary conditions for a maximum, we introduce

the Hamiltonian
H=F+\f, (D.84)

where the spatial adjoint function A(¢,y) satisfies

=3 i | o [m,

gr_ g ool 9 D.
ot = oz "ot |om| oy (D-85)

Oxy

where z; = 0x/0t and x, = 0x/0y. The boundary conditions on A are
stated for the 'y part of the boundary of D (see Fig.D.2) as follows:

At R) = Q(t) (D.86)

and
XNT,y) = S(y). (D.87)

Once again we need a consistency requirement similar to (D.82). It is
(T, h) = Q(T) = S(h), (D.88)

which gives the consistency requirement in the sense that the price and
the salvage value of a unit z(T, h) must agree.

We let u*(t,y) denote the optimal control at (¢,y). Then the dis-
tributed parameter maximum prin