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Abstract. In this paper, we present rotational region-based fully con-
volutional networks (RR-FCN) for object detection. In contrast to pre-
vious detectors that do not consider rotation, our region-based detector
incorporates rotational invariance into networks efficiently and generate
more appropriate features according to the rotation angle. Specifically,
we propose component-sensitive feature maps, rotational RoI pooling
and interceptive back propagation which make RR-FCN learn rotation
situations without extra supervision information. Using the 101-layer
ResNet model, our method achieves state-of-the-art detection accuracy
on PASCAL VOC 2007 and 2012. Moreover, since the feature maps in
our network are component-sensitive, RR-FCN can find out objects with
various postures, even those appear rarely in the training set. So our
RR-FCN has better performance in the real world.
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1 Introduction

Recently, a series of deep network object detection methods have been proposed,
such as fast R-CNN [5], faster R-CNN [15] and R-FCN [2]. These methods divide
deep networks into two parts with Region of Interest (RoI) Pooling layer [5]:
(i) a CNN-based part for extracting features from the whole image, and (ii)
a part that is associated with RoI for classifying each proposal generated by
RoI pooling layer. Because the second part gets location-aware proposals, the
networks have the ability to detect objects in different places. However, object
detection also requires rotational invariance. Rotational invariance means if an
object rotates around its geometrical center, the prediction should be the same.
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Fig. 1. Illustrations of our idea. Our network selects features from different locations on
the feature maps, depending on the object under detecting. The images are the same in
(a) and (b), but the rotation angles are different. RR-FCN gives them different feature
selection methods. The colored bins mean they are selected.

Previous detectors train their parameters without considering rotational situa-
tions, which are called “rotation tolerating” in this paper. Instead of tolerating
rotation, our network is aimed to understand rotation and select appropriate
features. We call our process mode “rotation handling”.

In this paper, we introduce a framework called Rotational Region-based Fully
Convolutional Networks (RR-FCN) which can conveniently incorporate rota-
tional invariance into deep networks for object detection. The idea is shown in
Fig. 1. We use convolution operation to construct a group of component-sensitive
feature maps. Each of these feature maps is sensitive to a specific component of
an object, rather than a fixed part of region proposal. Then we use rotational
RoI pooling proposed by us to select appropriate pieces of these feature maps to
form the responses. Finally, we pick one of these responses as the output feature.
Through this way, RR-FCN can deal rotation situations without extra supervision
information or parameters. Moreover, since RR-FCN has component-sensitive
feature maps, it can detect objects in various postures as long as the relative
positions of components remain unchanged. So RR-FCN is more competitive in
the real world.

In order to preserve the spatial information, we construct our network as
a fully convolutional network. Recently, deep fully convolutional networks for
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computer vision become popular (e.g., [2,12,14]). Besides preserving spatial
information of images, they also have fewer parameters and high computational
speed. In [2], Dai et al. have solved the problem of translation variance fading in
deep fully convolution network. In this paper, we figure out the detailed requests
of translation invariance in the structure of fully convolutional networks. Further,
we design our network according to these requests to preserve both translation
variance and rotational invariance in our network.

Taking the 101-layer Residual Net (ResNet-101) [8] as our backbone and
training it with interceptive back propagation developed by us, our RR-FCN
has better robustness when the objects appear with rare postures. In simple
terms, although people are barely reversed in the dataset, RR-FCN can still find
an upside down person. Additionally, RR-FCN achieves state-of-the-art results.
Our code will be made publicly available.

In conclusion, our main contributions are:
1. We propose a fully convolutional network, which can handle the rotation

invariance of the targets with little extra computation time.
2. We preserve translation variance in the network by analysing and carefully

designing the network structure.
3. We improve the robustness of the detection network. Our network can

work normally even under the situations rarely appear in training set.

2 Related Works

In this section, we will discuss the previous works related to our work, covering
the development of object detection and researches on rotational convolution
networks.

2.1 Object Detection

Object detection networks can be divided into two kinds of frameworks: (i) detec-
tors with region proposals [5,10,15], and (ii) detectors without region proposals
[11,13,14]. In this paper, we focus on the first kind. Region-based object detec-
tion networks start using specialised pooling method from SPP-Net [7] (Spatial
Pyramid Pooling) and Fast R-CNN [5] (Region of Interest pooling). Instead of
resizing images into a fixed size, they pool the region proposals into a fixed size
(e.g., 7 × 7). Then the fixed size outputs will be sent into various detectors to
classify the related region proposals. R-FCN abandons fully-connected detec-
tor and shares the computation of the whole image for the first time. Without
fully connected layers and deep RoI-wise sub-network, the detection precision
becomes much lower than we expect. R-FCN uses position-sensitive RoI pooling
to improve the detection result by solving translation variance problem in object
detection, inspired by which we construct our networks. However, these meth-
ods all use the representation capacity and the powerful generalization ability
to tolerate rotations of objects. We handle the rotational invariance problem in
object detection which is also significantly important.
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2.2 Rotational Convolution Networks

There is a research [1] indicating max pooling in CNN is beneficial to accept
rotation. Max pooling ensures the output is constant when a few pixels on feature
maps change their relative locations. However, it only works in the small region
and ignores much useful information.

Several approaches have considered the rotation problems in convolutional
networks. The most representative ones are Spatial Transformer Networks (STN)
[9] and Deformable Convolutional Networks (DCN) [3]. STN adds a small net-
work in parallel on the normal CNNs construction. This small network is capa-
ble of learning the affine transformation matrixes of images, in this way, it
can accomplish translation, rotation, scale, etc. Although STN is successful in
MNIST dataset, it fails to achieve desirable performance in object detection.
This is due to the situation that detection datasets are relatively complex com-
pared to MNIST. DCN also adds several convolution layers in parallel to guide
the selection of sampling locations in convolutional operations. They both use
bilinear interpolation to ensure back propagation can run during training. It is a
success in semantic segmentation and improves the mAP in detection. However,
DCN only selects the direction and distance of the expansion in convolution
operations. Although its deformable position-sensitive Rol pooling is different
from the previous pooling methods in the last sampling area, it still uses the rel-
ative position of the region proposal as a prior condition (e.g., the top-left part
of a proposal). It cannot share rotational information across different feature
maps. So the DCN focuses on deformation as its name indicates.

3 Our Approach

Figure 2 shows the basic architecture of our network. RR-FCN is an object detec-
tion network considering the rotation problem. Moreover, it incorporates rota-
tional invariance into the network with no (or little) extra computation time. In
this section, we describe the RR-FCN from three parts in detail.

3.1 Component-Sensitive Feature Maps and Rotational RoI Pooling

To make the feature maps in RR-FCN component sensitive, we develop a novel
pooling method called rotational RoI pooling which pools feature maps clock-
wise. Figure 3 shows the relationship between component-sensitive feature maps
and rotational RoI pooling. Each component-sensitive feature map is sensitive
to a particular component of an object (e.g., head of a bird, leg of a dog). To dis-
tinguish different components, we divide every region proposal into k × k equal
parts and each part has its corresponding feature maps. So we need to combine
the k × k feature maps to get the entire detection result for one class. In our
experiment, we make these components class-aware. That means each proposal
has k × k × (C + 1) feature maps. The C is the total number of categories in a
dataset.



62 D. Zhang et al.

Fig. 2. The basic architecture of RR-FCN. We use different pooling methods with
rotation information to get different responses from the same feature maps. We classify
objects with the highest response. The proposed component-sensitive feature maps and
rotational RoI pooling are marked with a red box. They can be used in parallel to obtain
more specific information of rotation. Note that some back propagations in RR-FCN
are not normal. (Color figure online)

Fig. 3. Illustration of the component-sensitive feature maps and rotational RoI pooling.
The feature maps may have multiple pooling methods with different offset f . So there
are more than one output coming from a blank of feature maps. We take 0 and 7 offset
for example.

Rotational RoI pooling layers pool component-sensitive feature maps into
k × k bins with given rotation offset f which means the angle the features need
to be rotated. f ranges from 0 to 4 × (k − 1) and stands for the distance of
outermost output bins moving. Although some methods can make f continuous
and differentiable [3,9], we still use discrete f . Because f represents a channel
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choice, and the channel is an integer. Besides this, discrete f can simplify the
computation.

For convenient coding and rigorous expression, instead of calculating the
location on a feature map after rotation, we calculate which channel is selected
at a specific position. And we mark it as ϕ(i, j | f). Figure 4(a) is the situation
of feature map channel selection for rotational RoI Pooling when offset f equals
to 0 and k equals to 5 (ϕ(i, j | 0)).

Fig. 4. The selected channel of the (i, j)-th bin. The digit of each block is the serial
number of a component-sensitive feature map. Different rotations correspond to differ-
ent selections. Here, we give the examples with offset f equals to 0 (a) and 6 (b) when
k = 5.

With the definition of ϕ(i, j | 0), coupled with the use of mathematical knowl-
edge such as polar coordinates, it is not difficult to derive ϕ(i, j | f) which is:

ϕ(i, j | f) = (ϕ(i, j | 0) − (2t − 1)2 + round(
2tf

k − 1
))%n(t)

+ (2t − 1)2.
(1)

in which
t = floor((

√
ϕ(i, j | 0) + 1)/2). (2)

and

n(t) =
{

1, if t = 0,
8t, otherwise.

(3)

And a rotational RoI pooling operation in the (i, j)-th bin (0 ≤ i, j ≤ k−1) is:

rc(i, j | f,Θ) =
∑

(x,y)∈bin(i,j)

zϕ(i,j | f),c(x + x0, y + y0 |Θ)/n. (4)

We follow some definitions in [2] here. rc(i, j) is the response in the (i, j)-th
bin for the c-th category, zϕ(i,j | f),c is one of component feature maps, (x0, y0)
is the coordinate of left-top corner of an RoI, �iw

k � ≤ x < �(i + 1)w
k �, �j h

k � ≤
y < �(j + 1)h

k � (w is the width of an RoI and h is the height of an RoI) and n
is the total number of pixels in the (i, j)-th bin.
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The k × k rotation-sensitive scores then give the final response of the RoI.
In this paper we simply vote by averaging the scores, producing a (C + 1)-
dimensional vector for each RoI:

rc(f,Θ) =
∑

i,j

rc(i, j | f,Θ)/(k × k) (5)

Here, we consider objects possess axial symmetry. Therefore, we do not take
mirror operation and the rotation of mirror images into consideration. Note that
in this paper, all the rotations are anticlockwise. We give the result of offset 6
when k = 5 (Fig. 4(b)).

3.2 Parallel Rotational Feature Extraction Modules

In RR-FCN, we choose the maximum of all rotational RoI pooling output as the
final response. And we find that the feature extraction of all rotation angles on
the same set of feature maps will cause translation variance fading away. Region
proposals in different locations should get different responses. However, since we
adopt rotational RoI pooling, the responses may be similar or partly same by
rotating. Here are the analysis and solution.

Fig. 5. (a) is the image to be detected with region proposals of red, blue and purple.
(b) (c) and (d) are possible responses to the rotational RoI pooling of three region
proposals, respectively. Here, fb = 0, fc = 15, fd = 2. We mark out the same response
in pure color.

Conflict with Translational Variance. Figure 5 is a simplified region-based
detection situation with only three proposals. We can see if proposals are close to
each other, they may get partly same outputs. And since we select the maximum
response, the probability of this situation is high. So the total number of conflicts
is larger even though every two proposals have a little overlap. Therefore, if we
train a network with rotation information on the same feature maps, the output
bins with different predicted results but same response value will conflict with
themselves and lead to the unstable loss oscillation. However, if the difference of
two offsets is a multiple of (k−1), they will share no response. That means there
are up to four kinds of rotational RoI pooling on a blank of component-sensitive
feature maps. Thus we use rotational RoI pooling with discrete offset f to ensure
that the difference is fixed. By this method, the translation variance can be kept
in our network.
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Parallel Rotational Feature Extraction Modules. As is analysed above,
the available offsets are limited on a blank of component-sensitive feature maps.
Thus we make the feature maps and rotational RoI pooling into a feature extrac-
tion module (shown in Fig. 2) which can be added in parallel easily. Each module
has an initial offset fi (0 ≤ i < k). Because the difference of every two offsets
should be a multiple of (k − 1), the offsets of four rotational RoI pooling layers
are fi, fi + (k − 1), fi + 2(k − 1) and fi + 3(k − 1). Therefore, there are four
rotation-sensitive outputs in a module, and we select the maximum of these four
as the ouput of this module. The four RoI pooling layers here share feature maps
and thus come free of cost which is quite different from maxout [6]. In RR-FCN,
we have several feature extraction modules in parallel with different initial fi to
cover more rotational situations and select the max response as the output, too.
Therefore, the final rotation-sensitive response in RR-RCN is:

rc(Θ) = max
f

rc(f,Θ) (6)

Then we use softmax function to normalize the responses across categories.

Interceptive Back Propagation. As we will introduce in Sect. 3.3, we train
our networks with only one offset (equals to 0) first and with rotational fea-
ture extraction modules in the next step. In order to make our feature maps
component-sensitive, we make changes to back propagation in extraction mod-
ule. We make the network focus on rare situations rather than ones. Table 1
shows the back propagation selections in feature extraction modules. When a
region proposal is an object (e.g a dog) and it chooses offset 0 in extraction
modules, RR-FCN will ignore this back propagation. In other cases, they run as
usual.

Table 1. The back propagation selections in feature extraction module. Note that
objects here are class-aware.

Class-aware object (yes) Class-aware object (no)

Offset (0) × �
Offset (otherwise) � �

3.3 Rotational Region-Based Fully Convolutional Networks

Architecture. We take ResNet-101 as our backbone. Since RR-FCN shares
the same physical significance with R-FCN [2] when offset f equals to 0, we
refer to its structure and make our transformation (we choose the python ver-
sion code py-R-FCN1). As shown in Fig. 2, we use parallel rotational feature
extraction modules to get rotation-sensitive responses. However, the bounding
box regression method is different. Because bounding boxes are more relative
to features without correcting rotation, we use position-sensitive RoI pooling [2]
for bounding boxes.
1 https://github.com/YuwenXiong/py-R-FCN.

https://github.com/YuwenXiong/py-R-FCN
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Training. As is in [5], we define a multi-task loss function on each RoI as
L = Lcls + Lreg. Lcls is the cross-entropy loss and Lcls is the smooth L1 loss
defined in [5]. Firstly, we set the hyper-parameters the same as [2] and use the
model pre-trained on ImageNet [16] to train our network with only a single rota-
tional RoI pooling layer whose offset f equals to 0 for 110k iterations. Then we
train RR-FCN with rotational feature extraction modules based on the model we
get previously. If there are more than one rotational feature extraction module,
we make convolution parameters of their component-sensitive feature maps all
initialized from the previous model. We use a learning rate of 0.0001, a weight
decay of 0.0005 and a momentum of 0.9 to train our model 20k iterations. It
is worth mentioning, because we do not know which proposal is rotated and
every proposal is important for our network equally, we do not use online hard
example mining (OHEM) [17]. Instead of OHEM, we use the interceptive back
propagation (Sect. 3.2).

4 Experiments

4.1 Detection Results

We evaluate our methods on PASCAL VOC datasets, and the results are shown
in Table 2. We give the detection results of R-FCN [2] model we used in the first
step. Besides, we conduct two experiments with different number of rotation
offsets (i.e. different number of parallel rotational feature extraction modules).
We note the RR-FCN with one rotational feature extraction module as RR-
FCN4 (initial offset: 0) and the RR-FCN with two modules as RR-FCN8 (initial
offsets: 0 and 1).

As is shown in Table 2, our method achieves state-of-the-art accuracy. And
more importantly, feature maps in RR-FCN become component-sensitive. It
makes our networks figure out objects’ structures and detect successfully under
special circumstances (e.g., rotation).

Table 2. Comparisons on PASCAL VOC 2007 and 2012 using ResNet-101. Timing
is evaluated on a single NVIDIA TITAN XP, 300 RoIs per image. †: http://host.
robots.ox.ac.uk:8080/anonymous/EAVGYV.html ‡: http://host.robots.ox.ac.uk:8080/
anonymous/LU6RUU.html

mAP(%)
(VOC07)

test time
(sec/img)
(VOC07)

mAP(%)
(VOC12)

test time (sec/img)
(VOC12)

R-FCN 78.83 0.093 74.50 0.097

RR-FCN4 77.75 0.093 73.31† 0.097

RR-FCN8 77.26 0.102 73.12‡ 0.102

http://host.robots.ox.ac.uk:8080/anonymous/EAVGYV.html
http://host.robots.ox.ac.uk:8080/anonymous/EAVGYV.html
http://host.robots.ox.ac.uk:8080/anonymous/LU6RUU.html
http://host.robots.ox.ac.uk:8080/anonymous/LU6RUU.html
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4.2 Analysis

Robustness Analysis. Since we construct several blanks of component-
sensitive maps in RR-FCN, our model is more robust in real world. Instead of
matching directly, RR-FCN can adjust the feature extraction method according
to the responses and give more robust predictions.

In order to better illustrate the robustness of the RR-FCN, we detect on the
freestyle motorbikes [4] test set2. It contains a hundred pictures which contain
128 motorbikes with planar rotations. The test results are shown in Table 3. The
RR-FCN4 improves AP by 13.7% which shows that the RR-FCN has better sta-
bility under abnormal conditions. Here we give some of detection results (Fig. 6).
In these pictures, objects are not in their usual position.

Table 3. Test results on the freestyle test set. All of these networks here are still
trained on PASCAL VOC 2007 and 2012.

R-FCN RR-FCN4 RR-FCN8

AP(%) 62.4 76.1 74.4

As we can see in Fig. 6, RR-FCN is more accurate under rotation operations.
Even these postures are not usual in training set, RR-FCN can still deal it
well. That means our network is more robust and it can comprehend the object
structure.

Feasibility Analysis. RR-FCN learns rotation information from dataset with-
out extra supervision information. We further analyse the convergence of our
model. We introduce the ability of RR-FCN to detect objects in rare postures
in previous section. The “rare” is opposite to “normal”. For example, we are
used to seeing people standing, thus we know what handstand looks like even
though we rarely see it. A more mathematical statement is: If I rotate myself x
degrees and find a “normal” object, in fact, the object is in a “rare” posture by
rotating itself x degrees. In our experiment, we make our RR-FCN learn what is
“normal” on tens of thousands of images from PASCAL VOC datasets and then
get the rotation information through component-sensitive feature map and rota-
tional RoI pooling. Moreover, we develop interceptive back propagation which
can stop our network tolerating rotations.

Necessity Analysis. In the test phase, we may use the previous networks to
achieve similar detection results by rotating images. But we argue that it is not
appropriate. Firstly, it costs several times of RR-FCN computation. Secondly,
because we do not know the rotation angles of the images, the data preprocess-
ing must be unpersuasive. More seriously, there might be wrong results when
2 http://www.iri.upc.edu/people/mvillami/files/iri freestyle motocross dataset v1.1.

zip#opennewwindow.

http://www.iri.upc.edu/people/mvillami/files/iri_freestyle_motocross_dataset_v1.1.zip#opennewwindow
http://www.iri.upc.edu/people/mvillami/files/iri_freestyle_motocross_dataset_v1.1.zip#opennewwindow
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Fig. 6. Some detection results for explaining the robustness of the proposed model.
We choose objects in unusual positions and angles to detect. In each group of pictures,
the top is the detection result of R-FCN, and the bottom is the detection result of
RR-FCN. (a) and (b) are come from freestyle motorbike dataset, (c) and (d) are shot
normally, (e) and (f) are come from PASCAL VOC but rotated. We can find RR-FCN
shows advantages in detecting objects without the usual position or angle assumption.

detecting rotated images, so we cannot merge the detection results coming from
rotated images ideally.

We further analyse the necessity of training. RR-FCN guides the training
according to the responses of feature maps. The basic assumptions of our exper-
iments is that the network has been trained well with offset 0 and the most
objects appear with usual postures. Under these two assumptions, the trained
feature maps in the first step perhaps can detect objects in rare postures with
rotational RoI pooling layers. We construct the network with this idea, however,
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the experiments show that the results are not good. We also test the accuracy
of the network (Table 4) and the result is not good, either.

Because the large capacity of deep networks, even the rare objects may have
large response in normal pooling method. So we must train the network to make
the feature maps component-sensitive.

Table 4. Detection results on PASCAL VOC 2007 using ResNet-101. RR-FCN1 is the
network trained only with offset equals to 0, RR-FCN4test is still the network RR-FCN1

but using 4 offsets (0, 6, 12, 18) to test it.

RR-FCN1 RR-FCN4test

mAP(%) 78.83 70.99

5 Conclusion and Future Work

This paper presents a Rotational Region-based Fully Convolutional Network,
which is a robust detection network incorporating rotational invariance. We
develop a novel pooling method which can share rotational information across
different feature maps. To train our networks with the purpose, we propose
interceptive back propagation. Moreover, we figure out the specific requests for
constructing fully convolution detection networks. In this way, our RR-FCN can
learn rotational invariance of objects and detect well even under the situations
rarely appear in dataset. That means, It will work better in real world.

We will specify the rotation angle to guide detection and other computer
vision task in our future work.

References

1. Boureau, Y., Ponce, J., Lecun, Y.: A theoretical analysis of feature pooling in
visual recognition, pp. 111–118 (2010)

2. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing Systems,
pp. 379–387 (2016)

3. Dai, J., et al.: Deformable convolutional networks (2017)
4. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised

scale-invariant learning. In: 2003 Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol. 2, pp. II-264–II-271
(2003)

5. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1440–1448 (2015)

6. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. arXiv preprint arXiv:1302.4389 (2013)

7. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 23

http://arxiv.org/abs/1302.4389
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23


70 D. Zhang et al.

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Neural Information Processing Systems, pp. 2017–2025 (2015)

10. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. arXiv preprint arXiv:1612.03144 (2016)

11. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

14. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detec-
tion with region proposal networks. In: Advances in Neural Information Processing
Systems, pp. 91–99 (2015)

16. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

17. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 761–769 (2016)

http://arxiv.org/abs/1612.03144
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1612.08242

	RR-FCN: Rotational Region-Based Fully Convolutional Networks for Object Detection
	1 Introduction
	2 Related Works
	2.1 Object Detection
	2.2 Rotational Convolution Networks

	3 Our Approach
	3.1 Component-Sensitive Feature Maps and Rotational RoI Pooling
	3.2 Parallel Rotational Feature Extraction Modules
	3.3 Rotational Region-Based Fully Convolutional Networks

	4 Experiments
	4.1 Detection Results
	4.2 Analysis

	5 Conclusion and Future Work
	References




