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Abstract. Recurrent auto-encoder model summarises sequential data
through an encoder structure into a fixed-length vector and then recon-
structs the original sequence through the decoder structure. The sum-
marised vector can be used to represent time series features. In this paper,
we propose relaxing the dimensionality of the decoder output so that it
performs partial reconstruction. The fixed-length vector therefore repre-
sents features in the selected dimensions only. In addition, we propose
using rolling fixed window approach to generate training samples from
unbounded time series data. The change of time series features over time
can be summarised as a smooth trajectory path. The fixed-length vec-
tors are further analysed using additional visualisation and unsupervised
clustering techniques. The proposed method can be applied in large-scale
industrial processes for sensors signal analysis purpose, where clusters of
the vector representations can reflect the operating states of the indus-
trial system.
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1 Background

Modern industrial processes are often monitored by a large array of sensors.
Machine learning techniques can be used to analyse unbounded streams of sen-
sor signal in an on-line scenario. This paper illustrates the idea using propri-
etary data collected from a two-stage centrifugal compression train driven by
an aeroderivative industrial engine (Rolls-Royce RB211) on a single shaft. This
large-scale compression module belongs to a major natural gas terminal1. The
purpose of this modular process is to regulate the pressure of natural gas at an
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1 A simplified process diagram of the compression train can be found in Fig. 6 at the
appendix.
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elevated, pre-set level. At the compression system, sensors are installed to mon-
itor the production process. Real-valued measurements such as temperature,
pressure, rotary speed, vibration... etc., are recorded at different locations2.

Streams of sensor signals can be treated as a multidimensional entity chang-
ing through time. Each stream of sensor measurement is basically a set of real
values received in a time-ordered fashion. When this concept is extended to a
process with P sensors, the dataset can therefore be expressed as a time-ordered
multidimensional vector {RP

t : t ∈ [1, T ]}.
The dataset used in this study is unbounded (i.e. continuous streaming) and

unlabelled, where the events of interest (e.g. overheating, mechanical failure,
blocked oil filters... etc) are not present. The key goal of this study is to iden-
tify sensor patterns and anomalies to assist equipment maintenance. This can
be achieved by finding the representation of multiple sensor data. We propose
using recurrent auto-encoder model to extract vector representation for multidi-
mensional time series data. Vectors can be analysed further using visualisation
and clustering techniques in order to identify patterns.

1.1 Related Works

A comprehensive review [1] analysed traditional clustering algorithms for uni-
dimensional time series data. It has concluded that Dynamic Time Warping
(DTW) can be an effective benchmark for unidimensional time series data rep-
resentation. There has been attempts to generalise DTW to multidimensional
level [5,6,8,11,13,15,16,20,21]. Most of these studies focused on analysing time
series data with relatively low dimensionality, such as those collected from Inter-
net of Things (IoT) devices, wearable sensors and gesture recognition. This paper
contributes further by featuring a time series dataset with much higher dimen-
sionality which is representative for any large-scale industrial applications.

Among neural network researches, [18] proposed a recurrent auto-encoder
model based on LSTM neurons which aims at learning video data representation.
It achieves this by reconstructing sequence of video frames. Their model was able
to derive meaningful representations for video clips and the reconstructed out-
puts demonstrate sufficient similarity based on qualitative examination. Another
recent paper [4] also used LSTM-based recurrent auto-encoder model for video
data representation. Sequence of frames feed into the model so that it learns the
intrinsic representation of the underlying video source. Areas with high recon-
struction error indicate divergence from the known source and hence can be used
as a video forgery detection mechanism.

Similarly, audio clips can treated as sequential data. A study [3] converted
variable-length audio data into fixed-length vector representation using recurrent
auto-encoder model. It found that audio segments that sound alike usually have
vector representations in same neighbourhood.

There are other works related to time series data. For instance, a recent paper
[14] proposed a recurrent auto-encoder model which aims at providing fixed-

2 A list of sensors is available in the appendix.
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length representation for bounded univariate time series data. The model was
trained on a plurality of labelled datasets with the aim of becoming a generic time
series feature extractor. Dimensionality reduction of the vector representation
via t-SNE shows that the ground truth labels can be observed in the extracted
representations. Another study [9] proposed a time series compression algorithm
using a pair of RNN encoder-decoder structure and an additional auto-encoder
to achieve higher compression ratio. Meanwhile, another research [12] used an
auto-encoder model with database metrics (e.g. CPU usage, number of active
sessions... etc) to identify anomalous usage periods by setting threshold on the
reconstruction error.

2 Methods

A pair of RNN encoder-decoder structure can provide end-to-end mapping
between an ordered multidimensional input sequence and its matching output
sequence [2,19]. Recurrent auto-encoder can be depicted as a special case of the
aforementioned model, where input and output sequences are aligned with each
other. It can be extended to the area of signal analysis in order to leverage recur-
rent neurons power to understand complex and time-dependent relationship.

2.1 Encoder-Decoder Structure

At high level, the RNN encoder reads an input sequence and summarises all
information into a fixed-length vector. The decoder then reads the vector and
reconstructs the original sequence. Figure 1 below illustrates the model.

Fig. 1. Recurrent auto-encoder model. Both the encoder and decoder are made up of
multilayered RNN. Arrows indicate the direction of information flow.

Encoding. The role of the recurrent encoder is to project the multidimensional
input sequence into a fixed-length hidden context vector c. It reads the input
vectors {RP

t : t ∈ [1, T ]} sequentially from t = 1, 2, 3, ..., T . The hidden state
of the RNN has H dimensions which updates at every time step based on the
current input and hidden state inherited from previous steps.
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Recurrent neurons arranged in multiple layers are capable of learning complex
temporal behaviours. In this proposed model, LSTM neurons with hyperbolic
tangent activation are used at all recurrent layers [7]. An alternative choice of
using gated recurrent unit (GRU) neurons [2] can also be used but was not
experimented within the scope of this study. Once the encoder reads all the
input information, the sequence is summarised in a fixed-length vector c which
has H hidden dimensions.

For regularisation purpose, dropout can be applied to avoid overfitting. It
refers to randomly removing a fraction of neurons during training, which aims
at making the network more generalisable [17]. In an RNN setting, [22] suggested
that dropout should only be applied non-recurrent connections. This helps the
recurrent neurons to retain memory through time while still allowing the non-
recurrent connections to benefit from regularisation.

Decoding. The decoder is a recurrent network which uses the representation
c to reconstruct the original sequence. To exemplify this, the decoder starts by
reading the context vector c at t = 1. It then decodes the information through
the RNN structure and outputs a sequence of vectors {RK

t : t ∈ [1, T ]} where K
denotes the dimensionality of the output sequence.

Recalling one of the fundamental characteristics of an auto-encoder is the
ability to reconstruct the input data back into itself via a pair of encoder-decoder
structure. This criterion can be slightly relaxed such that K � P , which means
the output sequence is only a partial reconstruction of the input sequence.

Recurrent auto-encoder with partial reconstruction:{
fencoder : {RP

t : t ∈ [1, T ]} → c

fdecoder : c → {RK
t : t ∈ [1, T ]} K � P (1)

In the large-scale industrial system use case, all streams of sensor measure-
ments are included in the input dimensions while only a subset of sensors is
included in the output dimensions. This means that the entire system is visible
to the encoder, but the decoder only needs to perform partial reconstruction
of it. End-to-end training of the relaxed auto-encoder implies that the context
vector would summarise the input sequence while still being conditioned on the
output sequence. Given that activation of the context vector is conditional on
the decoder output, this approach allows the encoder to capture lead variables
across the entire process as long as they are relevant to the selected output
dimensions.

It is important to recognise that reconstructing part of the data is an eas-
ier task to perform than fully-reconstructing the entire original sequence. How-
ever, partial reconstruction has practical significance for industrial applications.
In real-life scenarios, multiple context vectors can be generated from different
recurrent auto-encoder models using identical sensors in the encoder input but
different subset of sensors in the decoder output. The selected subsets of sensors
can reflect the underlying operating states of different parts of the industrial
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system. As a result, context vectors produced from the same temporal segment
can be used as different diagnostic measurements in industrial context. We will
illustrate this in the results section by two examples.

2.2 Sampling

For a training dataset of T ′ time steps, samples can be generated where T < T ′.
We can begin at t = 1 and draw a sample of length T . This process continues
recursively by shifting one time step until it reaches the end of the training
dataset. For a subset sequence with length T , this method allows T ′ −T samples
to be generated. Besides, it can also generate samples from an unbounded time
series in an on-line scenario, which are essential for time-critical applications
such as sensor data analysis.

Algorithm 1. Drawing samples consecutively from the original dataset
Input: Dataset length T ′

Input: Sample length T
1 i ← 0 ;
2 while i � i + T do
3 Generate sample sequence (i, i + T ] from the dataset;
4 i ← i + 1;
5 end

Given that sample sequences are recursively generated by shifting the win-
dow by one time step, successively-generated sequences are highly correlated with
each other. As we have discussed previously, the RNN encoder structure com-
presses sequential data into a fixed-length vector representation. This means that
when consecutive sequences are fed through the encoder structure, the resulting
activation at c would also be highly correlated. As a result, consecutive context
vectors can join up to form a smooth trajectory in space.

Context vectors in the same neighbourhood have similar activation there-
fore the industrial system must have similar underlying operating states. Con-
trarily, context vectors located in distant neighbourhoods would have different
underlying operating states. These context vectors can be visualised in lower
dimensions via dimensionality reduction techniques such as principal component
analysis (PCA).

Furthermore, additional unsupervised clustering algorithms can be applied
to the context vectors. Each context vector can be assigned to a cluster Cj

where J is the total number of clusters. Once all the context vectors are labelled
with their corresponding clusters, supervised classification algorithms can be
used to learn the relationship between them using the training set. For instance,
support vector machine (SVM) classifier with J classes can be used. The trained
classifier can then be applied to the context vectors in the held-out validation set
for cluster assignment. It can also be applied to context vectors generated from
unbounded time series in an on-line setting. Change in cluster assignment among
successive context vectors indicates a change in the underlying operating state.
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3 Results

Training samples were drawn from the dataset using windowing approach with
fixed sequence length. In our example, the large-scale industrial system has 158
sensors which means the recurrent auto-encoder’s input dimension has P = 158.
Observations are taken at 5 min granularity and the total duration of each
sequence was set at 3 h. This means that the model’s sequence has fixed length
T = 36, while samples were drawn from the dataset with total length T ′ = 2724.
The dataset was scaled into z-scores, thus ensuring zero-centred data which
facilitates gradient-based training.

The recurrent auto-encoder model has three layers in the RNN encoder struc-
ture and another three layers in the corresponding RNN decoder. There are 400
neurons in each layer. The auto-encoder model structure can be summarised
as: RNN encoder (400 neurons/3 layers LSTM/hyperbolic tangent) - Context
layer (400 neurons/Dense/linear activation) - RNN decoder (400 neurons/
3 layers LSTM/hyperbolic tangent). Adam optimiser [10] with 0.4 dropout rate
was used for model training.

3.1 Output Dimensionity

As we discussed earlier, the RNN decoder’s output dimension can be relaxed
for partial reconstruction. The output dimensionality was set at K = 6 which
is comprised of a selected set of sensors relating to key pressure measurements
(e.g. suction and discharge pressures of the compressor device).

We have experimented three scenarios where the first two have complete
dimensionality P = 158;K = 158 and P = 6;K = 6 while the remaining scenario
has relaxed dimensionality P = 158;K = 6. The training and validation MSEs
of these models are visualised in Fig. 2 below.

The first model with complete dimensionality (P = 158;K = 158) has vis-
ibility of all dimensions in both the encoder and decoder structures. Yet, both
the training and validation MSEs are high as the model struggles to compress-
decompress the high dimensional time series data.

For the complete dimensionality model with P = 6;K = 6, the model has
limited visibility to the system as only the selected dimensions were included.
Despite the context layer summarises information specific to the selected dimen-
sionality in this case, lead variables in the original dimensions have been
excluded. This prevents the model from learning any dependent behaviours
among all available information.

On the other hand, the model with partial reconstruction (P = 158;K = 6)
demonstrate substantially lower training and validation MSEs. Since all infor-
mation is available to the model via the RNN encoder, it captures the relevant
information such as lead variables across the entire system.

Randomly selected samples in the held-out validation set were fed to this model
and the predictions can be qualitatively examined in details. In Fig. 3 below, all
the selected specimens demonstrate high similarity between the original label and
the reconstructed output. The recurrent auto-encoder model captures the shift in
mean level as well as temporal variations across all output dimensions.
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Fig. 2. Effects of relaxing dimensionality of the output sequence on the training and
validation MSE losses. They contain same number of layers in the RNN encoder and
decoder respectively. All hidden layers contain same number of LSTM neurons with
hyperbolic tangent activation.

Fig. 3. A heatmap showing eight randomly selected output sequences in the held-
out validation set. Colour represents magnitude of sensor measurements in normalised
scale.
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3.2 Context Vector

Once the recurrent auto-encoder model is successfully trained, samples can be fed
to the model and the corresponding context vectors can be extracted for detailed
inspection. In the model we selected, the context vector c is a multi-dimensional
real vector R

400. Since the model has input dimensions P = 158 and sequence
length T = 36, the model has achieved compression ratio 158×36

400 = 14.22. Dimen-
sionality reduction of the context vectors through principal component analysis
(PCA) shows that context vectors can be efficiently embedded in lower dimen-
sions (e.g. two-dimensional space).

At low-dimensional space, we used supervised classification algorithm to learn
the relationship between vectors representations and cluster assignment. The
trained classification model can then be applied to the validation set to assign
clusters for unseen data. In our experiment, a SVM classifier with radial basis
function (RBF) kernel (γ = 4) was used. The results are shown in Fig. 4 below.

In two-dimensional space, the context vectors separate into two clearly iden-
tifiable neighbourhoods. These two distinct neighbourhoods correspond to the
shift in mean values across all output dimensions. When K-means clustering
algorithm is applied, it captures these two neighbourhoods as two clusters in the
scenario depicted in Fig. 4a.

When the number of clusters increases, they begin to capture more subtleties.
In the six clusters scenario illustrated in Fig. 4b, successive context vectors oscil-
late back and forth between neighbouring clusters. The trajectory corresponds
to the interlacing troughs and crests in the output dimensions. Similar pattern
can also be observed in the validation set, which indicates that the knowledge
learned by the auto-encoder model is generalisable to unseen data.

Furthermore, we have repeated the same experiment again with a different
configuration (K = 158;P = 2) to reassure that the proposed approach can
provide robust representations of the data. The sensor measurements are drawn
from an identical time period and only the output dimensionality K is changed
(The newly selected set of sensors is comprised of a different measurements of
discharge gas pressure at the compressor unit). Through changing the output
dimensionality K, we can illustrate the effects of partial reconstruction using dif-
ferent output dimensions. As seen in Fig. 5, the context vectors form a smooth
trajectory in the low-dimensional space. Similar sequences yield context vectors
which are located in a shared neighbourhood. Nevertheless, the clusters found
by K-means method in this secondary example also manage to identify neigh-
bourhoods with similar sensor patterns.

4 Discussion and Conclusion

Successive context vectors generated by windowing approach are always highly
correlated, thus form a smooth trajectory in high-dimensional space. Additional
dimensionality reduction techniques can be applied to visualise the change of
time series features. One of the key contributions of this study is that similar
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(a) 2 clusters

(b) 6 clusters

Fig. 4. The first example. On the left, the context vectors were projected into two-
dimensional space using PCA. The black solid line on the left joins all consecutive
context vectors together as a trajectory. Different number of clusters were identified
using simple K-means algorithm. Cluster assignment and the SVM decision boundaries
are coloured in the charts. On the right, output dimensions are visualised on a shared
time axis. The black solid line demarcates the training set (70%) and validation sets
(30%). The line segments are colour-coded to match the corresponding clusters.

context vectors can be grouped into clusters using unsupervised clustering algo-
rithms such as K-means algorithm. Clusters can be optionally labelled manually
to identify operating state (e.g. healthy vs. faulty). Alarm can be triggered when
the context vector travels beyond the boundary of a predefined neighbourhood.
Clusters of the vector representation can be used by operators and engineers to
aid diagnostics and maintenance.
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(a) 2 clusters

(b) 6 clusters

Fig. 5. The second example. The sensor data is drawn from the same time period as
the previous example, only the output dimension has been changed to K = 2 where
another set of gas pressure sensors were selected.

Another contribution of this study is that dimensionality of the output
sequence can be relaxed. This allows the recurrent auto-encoder to perform par-
tial reconstruction. Although it is easier for the model to reconstruct part of the
original sequence, such simple improvement allows users to define different sets
of sensors of particular interest. By changing sensors in the decoder output, con-
text vectors can be used to reflect underlying operating states of various aspects
of the large-scale industrial process. This ultimately enables users to diagnose
the industrial system by generating more useful insight.

This proposed method essentially performs multidimensional time series clus-
tering. We have demonstrated that it can natively scale up to very high dimen-
sionality as it is based on recurrent auto-encoder model. We have applied the
method to an industrial sensor dataset with P = 158 and empirically show that
it can represent multidimensional time series data effectively. In general, this
method can be further generalised to any multi-sensor multi-state processes for
operating state recognition.

This study established that recurrent auto-encoder model can be used to
analyse unlabelled and unbounded time series data. It further demontrated that
operating state (i.e. labels) can be inferred from unlabelled time series data.
This opens up further possibilities for analysing complex industrial sensors data
given that it is predominately overwhelmed with unbounded and unlabelled time
series data.
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Nevertheless, the proposed approach has not included any categorical sen-
sor measurements (e.g. open/closed, tripped/healthy, start/stop... etc). Future
research can focus on incorporating categorical measurements alongside real-
valued measurements.

Disclosure

The technical method described in this paper is the subject of British patent
application GB1717651.2.

Appendix A

The rotary components are driven by industrial RB-211 jet turbine on a single
shaft through a gearbox. Incoming natural gas passes through the low pressure
(LP) stage first which brings it to an intermediate pressure level, it then passes
through the high pressure (HP) stage and reaches the pre-set desired pressure
level. The purpose of the suction scrubber is to remove any remaining condensate
from the gas prior to feeding through the centrifugal compressors. Once the hot
compressed gas is discharged from the compressor, its temperature is lowered
via the intercoolers (Fig. 7).

Fig. 6. A simplified process diagram of the two-stage centrifugal compression train
which is located at a natural gas terminal.
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Fig. 7. Locations of key components around the centrifugal compressor.

Appendix B

The sensor measurements used in the analysis are listed below:
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