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Abstract. Voice rehabilitation is needed after several diseases, when a subject’s
vocal ability is compromised by surgical interference or removal of phonation
organs (e.g. the larynx), by neural degeneration or by neurological injury to the
motor component of the motor-speech system in the phonation area of the brain
(e.g. dysarthria in Parkinson disease). A novel approach to voice rehabilitation
consists of predicting the phonetic control sequence of the voice-production
apparatus (larynx, tongue, etc.) by drawing inferences on the basis of myoelectric
(EMG) signals captured by a set of contact electrodes, applied to the neck area
of a subject with important phonatory alteration (e.g. laryngectomised) and intact
neural control. The inference paradigm is based on an EFuNN (Evolving Fuzzy
Neural Network) that has been trained to use the sampled EMG signal to predict
the phoneme that corresponds to the motor control of the sublingual muscle
movements monitored at phonation time. A phoneme-to-speech synthesizer
generates audio output corresponding to the utterance the subject has tried to
enunciate.

Keywords: EFuNN · Evolving Fuzzy Neural Network · Voice dysarthria ·
Voice rehabilitation · Myoelectric signal

1 Introduction

Voice rehabilitation may be required in several conditions or post-surgical settings. The
worst case scenario involving the phonation production organ is total laryngectomy.
Voice rehabilitation for such patient is a challenging task [1] because of the total removal
of this fundamental organ. On the other hand, when compared to other diseases that
involve the voice production (e.g. neurological diseases) laryngectomised subjects
maintain the integrity and the control of the remaining phonation organs, so a rehabili‐
tation strategy could be implemented as non-surgical (esophageal speech or laryngo‐
phone) or surgical (esophageal puncture with voice prosthesis insertion).
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Laryngectomy drastically alters the speech production capabilities of human beings,
since for speech production three main physiologic elements are necessary: the power
source (lung air), the sound source (larynx) and the sound modifier (vocal tract). The
only element that is active after laryngectomy is the sound modifier that is controlled
by the brain.

Three main options are available to restore voice after laryngectomy: laryngophone
speech (non-surgical, apparatus-based), esophageal speech (non-surgical, apparatus-
free), and tracheoesophageal speech (surgical, hand-held device-based).

The non-surgical approach is interesting because it could be fully under the control
of the subject without requiring hospitalization. In the esophageal speech production the
air is swallowed into the esophagus and then released, inducing a vibration of the phar‐
yngeal mucosa. This vibrations are modulated and articulated by the tongue movements
and the control of the oral cavities.

This rehabilitation method is completely noninvasive, but it is difficult to learn (only
20% of laryngectomised patients succeed in this endeavor).

The laryngophone (or electrolarynx) is a non-surgical device-based approach that
try to mimic electronically the larynx functionality of subjects who lost the larynx after
the surgical removing.

The electrolarynx is a vibrating devices that is applied to the submandibular region
and induces on the air in the oral cavities the vibration at a frequency mimicking that
produced by the vibrating folds of the larynx. This fundamental vibration is modulated
and articulated by the tongue and other mouth muscles producing an intelligible utter‐
ance.

The use of this machine requires a training phase and the use of the hands that holds
the device in contact with the neck (it is almost impossible to talk to over the telephone).
Other disadvantages concern the voce quality: the voice quality is metallic and unnatural.
Furthermore, it is not applicable if the skin is not sound conductive. To minimize the
disadvantages of the traditional electrolarynx device as voice prosthesis some investi‐
gations occurred in the past using electro-myoelectric activity to synchronize the device
with the brain control of vocal tract at utterance-time [2].

The electrolarynx (Fig. 1) is the real demonstration that the best approach to voice
rehabilitation in laryngectomised subjects consists in the reuse of the preserved voice
control ability (vocal tract motion control). Following this idea we assumed that the
myoelectric control of the phonation organs is driven by the phonetic information of the
speech utterance. In the brain it exists a mapping between the language phonemes and
the language words set, so when a word is to be uttered the corresponding phones
sequence is predicted in terms of myoelectric control of voice articulation muscles
(mainly the tongue).

If for each phoneme of an uttered word a corresponding myoelectric pattern sequence
exists, then we could therefore theoretically predict such phoneme from the myoelectric
pattern and use an articulatory phonetic speech synthesizer to electronically generate
high-quality voice in laryngectomized subjects. This voice prosthesis would be hand-
free operating, being fully brain-controlled.
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Fig. 1. The Electrolarynx is a non-surgical device that mimics the larynx function in
laryngectomised subjects by inducing air vibration in the vocal tract.

2 Physiology of the Phonation

Vocal production in mammals and humans originates from a complex mechanism. In a
nutshell, the main mechanical interaction is between the air emitted by the lungs and
then modulated through the main respiratory and accessory muscles (diaphragm, ster‐
nocleidomastoideus, intercostal muscles) and the action of the vocal cords and laryngeal
structures on the expiratory flow [3, 4].

In humans the action of the intrinsic laryngeal muscles is rather complex and focuses
on the rotation movements of the arytenoid cartilages, on the movements of antero-
posterior displacement of the cricoaritenoid structures and on the variation of tension
on the vocal cords, the latter resembling elastic bands with high vibratory capacity, able
to develop vibrational frequencies that exceed even 100 Hz (Fig. 2). In particular, the
abductor muscles of the vocal cords are the posterior cricoarytenoideus muscles; the
tensor muscles of the vocal cords are tyroarynenoideus, Vocal and, mainly cricothyroid
muscles; the adductor muscles of the vocal cords are the lateral cricoarytoenoideus and
the interarytoenoideus muscles [5].

Fig. 2. Endoscopic view of an adult glottis, at rest (a) and during phonation (b), with medialization
of the vocal folds in order to induce vibration and, consequently, sound formation.

The fundamental frequency and harmonics originated from the vocal folds vibration
is then filtered inside the vocal tract (laryngeal cavity, pharynx, oral and nasal cavities)
and modified by configurations and interactions of the articulators (e.g. tongue, lips and
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palate) into producing speech sounds which are naturally linked into forming words and
sentences [6].

3 Neurology of the Phonation

The emotional vocalization of the mammals seems to originate from the circuit that
reaches the central ponto-bulbar “central pattern generators” [7, 8] from the cortex of
the cingulate gyrus and the peri-aqueductal gray substance. This vocalization can be
modified by environmental conditions but it cannot be learned, being instinctive and,
probably, linked to mechanisms that are related to the survival of the species. These
types of vocalization originate from the phylogenetically older structures of the cerebral
cortex (paleocortex), present at the level of the limbic lobe and are connected to subcort‐
ical structures. Conversely, the ability to speak, that is language, is learned; it is gener‐
ative rather than imitative, since the human species is able to formulate new sentences
for communication.

The language is integrated with the auditory system and with the systems of volun‐
tary motor control [9, 10]. Only the human species has a direct cortico-bulbar pathway
that originates from the laryngeal motor cortex and reaches the ambiguous nucleus [11].
A clinical model particularly useful for understanding the different mechanisms between
communicative language and emotional vocalization is represented by a neurological
pathology called spasmodic dysphonia (DSP). In the DSP the neural systems of learning
of the voluntary spoken language are involved, while those of emotional vocalization
are not. The left cortical peri-silvial system, connected to the ability to develop the
spoken language, according to the structural and functional magnetic resonance studies,
consists of the cortical areas represented by the supragarginal tour, the arched fasciculus,
the frontal opercular area M1 and the internal capsule [12, 13]. Laryngeal muscles are
bilaterally controlled by both hemispheres [14] thus making the system vulnerable to
unilateral abnormalities that interfere with bilateral control of laryngeal muscles. Diffu‐
sion MRI techniques have shown that fractional anisotropy is reduced in the knee region
of the internal capsule in SDRs and there is an increase in diffusivity bilaterally at the
level of the cortico-bulbar tract [13]. Even basal ganglia regions such as putamen, globus
pallidus, substantia nigra, the posterior arm of the inner capsule, but also the locus
coeruleus, show degenerative neuropathological changes in patients with DSP. These
patients have also described inflammatory changes in the structures of the reticulofalic
reticular substance of the word “central pattern generators”, although this region repre‐
sents the final common path of emotional and voluntary vocalizations and is strange that
is involved in a pathology such as DSP in only the voluntary component is involved.
According to some authors it is hypothesizable that the truncated dysentery anomalies
are related to the fact that the structures affected here are a selective part of circuits used
for the correct control and propagation of the verbal timing in the spoken language and
are not involved in emotional vocalizations [15]. If, in the patient with DSP, attempts
are made to satisfy precise requests for control of the single words in the spoken
language, anomalous compensatory mechanisms may also develop in the systems of
production of the word at the cortical level [15].
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4 Capturing and Processing the Myoelectric Signal

The myoelectric signal was detected by two surface electrodes (Ambu Neuroline 715
silver-cloridate 10 mm x 6 mm) set placed over the skin of the suprahyoid subchin
muscles. These muscles represent the main complex for the elevation of laryngeal-
pharyngeal structures during swallowing and speech, the neck sublingual muscles
(infrahyoid muscles) that depress the hyoid bone and larynx during swallowing and
speech. The electrodes distance was 30 mm (15 mm lateral to the middleline of the neck
of each electrode). A third electrode (reference - ground) was placed on the shoulder
(clavicle). The three-electrode set (Fig. 3) detects in differential mode the electric poten‐
tial that controls the muscle during utterance of each phoneme of the word. The elec‐
trodes are connected to a computer-based electromyograph (Viasys Healthcare’s
Medelec Synergy SYN5-C) to display and record the signals applying the following
setup:

• Channel 1: connected to electrodes
• Preprocessing: rectification, band pass filtering – 100–2000 Hz.

The recorded myoelectric patterns have been exported from the memory electro‐
myographer and processed by a Matlab application (software program) to window the
pattern corresponding to the uttered phoneme.

Fig. 3. Neurology surface electrode (Ambu Neuroline 715) (a) set placed over the skin of the
suprahyoid subchin muscles and the reference electrode set placed over the clavicle (b).

5 Predicting from the Myoelectric Signal

The myoelectric sublingual muscle control signal embeds in its patterns the control
sequence that moves the tongue to utter the word’s phonemes. These patterns (Fig. 4)
can be captured at speaking time and labeled with the corresponding phonemes to build
up a labeled dataset to train a machine learning predicting paradigm.
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Fig. 4. Myoelectric signal captured synchronously at the utterance-time of the vocal /a/.

The training dataset consisted of the raw sampled data from the myoelectric signal
and one label that classify the pattern as corresponding to a specific phoneme. Thousands
of patterns need to be collected and classified to proceed to supervised training of the
predicting paradigm (learning). After learning the paradigm will be able to predict from
a myoelectric pattern the phoneme that the subject is to utter.

To accomplish this task, two main systems need to be deployed:

• The data acquisition of the myoelectric signal
• The predicting paradigm.

The data acquisition of the myoelectric signal is a challenging task due to the very
low voltage physical nature of such signals, the noninvasive requirements of this medical
but non clinical application and the high presence of artifacts in the captured signal.

The predicting paradigm is also challenging because the requirements cannot be
accomplished by the hardcomputing digital signal processing algorithms.

Traditional softcomputing methods (Neural networks and Fuzzy Logic) demon‐
strated to be effective and powerful in solving nonlinear pattern matching issues but not
adequate for on-line, life-long learning through adaptation in a changing environment.
The new framework named Evolving Connectionist Systems (ECOS) [16], specifically
the Evolving Fuzzy Neural Network (EFuNN), capable to build intelligent agents, is
adequate to execute the phoneme’s prediction from the myoelectric signal at silent
phonation time.

6 The Evolving Fuzzy Neural Network (EFuNN) Paradigm

The EFuNN [17, 18] (Fig. 5) is a particular implementation of the ECOS [16] (Evolving
COnnectionist System) a biologically inspired framework [16]. It is a softcomputing

Fig. 5. EFuNN is a five layers Artificial Neural Network where each layer corresponds to a layer
of a fuzzy logic engine.
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paradigm that evolves through incremental, on-line learning, both supervised and unsu‐
pervised. EFuNN is order magnitude faster than multilayer perceptrons and fuzzy-neural
networks.

EFuNNs are FuNNs that evolve according to the ECOS paradigm. FuNNs are Neural
Networks that implements a set of fuzzy rules and the fuzzy inference engine in connec‐
tionist mode. FuNN is a feed-forward architecture-based with five layers of neurons and
four layers of connections (Fig. 5). The first layer of neurons implements the input
information layer. The second implements the membership layer that calculates the
fuzzy membership degrees to which the input belongs to a fuzzy membership function.
The third implements the fuzzy rules that encodes the associations between the input
and the output data. The fourth calculates the degree to which the input data match the
output membership functions. The fifth executes the defuzzification and calculates the
crisp value for the output data. The FuNN is a combination of a Neural Network with a
fuzzy engine The number of nodes and connections can change during the operation.

The peculiarity of EFuNN is its evolving capability and the one-pass learning. The
nodes representing the membership function can be modified during the learning.

The rule nodes layer evolves through learning (supervised/unsupervised) that means
all nodes are created/connected during learning. The nodes representing the membership
functions can be modified at training-time. The same for the nodes representing the rules
(input-output data association).

The evolving capability is incremental and adaptive. It is a bio-inspired way to make
more effective the learning.

7 Dataset, Training and Test

To train and test the EFuNN’s prediction capabilities related to the myoelectric patterns
a dataset has been built. The dataset consists of several N-length raw sampled sequences
of the myoelectric signal labeled by the corresponding phoneme code: V1 V2 V3 V4 V5
V6 V7 V8 V9 V10 V11 V… Vj … VN Ln

Vj: j-th amplitude of the j-th sample of the n-th myoelectric pattern
Ln: n-th label associated to the n-th sequence.

The N sequences composing the dataset are fed to the EFuNN settled in training
mode. The EFuNN learns immediately from the data and it setups ready to be tested for
prediction. A test dataset has been built in similar fashion of the training dataset. If the
test is successful then the EFuNN is ready to run as phoneme predictor from myoelectric
signal at silent speech production-time. If the test fails due to too many false predictions
then the EFuNN is trained in evolving mode until the error rate is as low as required.

The first set of experiments to evaluate the EFuNN’s phoneme prediction capabilities
concerned the Italian language’s vocal utterances (/a/ /e/ /i/ /o/ /u/ and the word /aiuola/).

The training dataset consists of myoelectric patterns captured and sampled synchro‐
nously with the utterance from an healthy subject.

The training consists only of the vocals, the test word is /aiuola/ that articulates
almost all the vocals in a single word.
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At training-time the EFuNN do not learn effectively. At test time it do not predict
the right vocals sequence of the uttered word /aiuola/ under test (Fig. 6). After an
evolving step (Fig. 7) the EFuNN learned to predict. At test-time it predicts without
errors the right vocals phoneme sequence of the word /aiuola/: /a/ /i/ /u/ /o/ /a/ (Fig. 7).

Fig. 6. Test /aiuola/ after one step training with single vocals /a/ /i/ /u/ /o/.

Fig. 7. Test /aiuola/ after one step evolving with single vocals /a/ /i/ /u/ /o/.

The modeling, training and test of the EFuNN have been executed with the simula‐
tion environment NeuCom developed at the Knowledge Engineering and Discovery
Research Institute (KEDRI) Auckland – New Zeeland [19].

8 Myo-To-Speech System Framework

The Myo-to-Speech System Framework (Fig. 8) consists of three subsystems to trans‐
form the myoelectric signal from the sublingual muscle controlled by the phonation area
of the subject’s brain to the acoustical emission of the utterance.
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Fig. 8. Block chart of the prototyped myo-to-speech framework.

The first subsystem is the myoelectric signal acquisition AFE (Analog Front-End)
consisting of the contact electrodes connected to an instrumentation amplifier and a set
of filters to derive the bipolar electric signal from the differential electric signal captured
by the contact electrodes.

The second subsystem is the Mixed-Signal MCU (Micro Controller Unit) that
samples and collects in numeric format the myoelectric signal. This MCU executes also
the inference paradigm (EFuNN) that predicts the phoneme from the myoelectric
pattern.

The third subsystem is the phonemic speech synthesizer, that generates the electronic
speech signal to be reproduced by a loudspeaker. The speech synthesizer is derived by
the output of the predictor that encodes each predicted phoneme by a code embedded
in the control part of the synthesizer.

9 Prototyping the Framework

To prototype the framework (Fig. 9) we used a set of fast prototyping COTS (Commer‐
cial Of The Shelf) boards. The most valuable part of the system is the analog front-end
(AFE), that is available from Analog Devices in a CSP (Chip Scale Package) assembled
on a prototyping COTS board (the AD8233 AFE). The AD8233 AFE is a fully integrated
single lead electrocardiogram (ECG) analog front-end capable of 2–3 electrodes config‐
uration with high signal gain (G = 100) with DC blocking capabilities and 80 dB (DC
to 60 Hz) common rejection ratio. It integrates on a single-chip a 2-pole adjustable high-
pass filter, one uncommitted operational amplifier and one 3-pole adjustable low-pass
filter with adjustable gain.

A precision FET input unity-gain buffer (AD 8244) has been used to isolate source
impedance from the of the signal chain.

Analog Devices AD8244’s 2 pA maximum bias current, near zero current noise, and
10 TΩ input impedance introduce almost no error, even with source impedance well
into the megaohms.

The AFE’s input are connected to the three surface electrodes one reference and two
differential. The AFE’s output are connected to the bipolar input of the ADC (Analog
to Digital Converter) of the MCU (MicroController Unit). The microcontroller unit is
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the NXP K64F an ARM Cortex M4F MCU running at 120 MHz, an ultra-low power
processor integrating a rich set of mixed-signal peripheral and a huge amount of fast
and non-volatile memory available for data acquisition and processing. The M4
processing core enables the computing intensive processing requirements without
increasing of power consumption. The MCU is integrated on the evaluation board NXP
Freedom K64 F.

A microphone (preamplified, band –pass filtered and amplified) is also connected to
a separate input of the MCU’s ADC for synchronous acquisition of the utterance with
the myoelectric signal.

An SD non-volatile memory is used to storage the sampled myoelectric signal and
the uttered signal. A TFT touch screen display controlled by an FTDI VM800C multi‐
media controller is used for signal acquisition monitoring and human-machine interface
(HMI).

10 Conclusion and Future Developments

Compared to other similar approaches [20], our method is innovative as it refers to latest
microelectronic technologies, to the most promising inference paradigm (evolving) and
because its invasivity has been minimized. Methods like that proposed in [20] are largely
invasive because multiple surface electrodes are applied to subject’s face, and no wear‐
able electronics has been developed to minimize the degree of invasiveness.

The first round of research and developments leads to the deploying of a prototype
device that enables the Myoelectric-To-Speech (MyoToSpeech) synthesis for voice
rehabilitation in laryngectomized subjects. The tests demonstrated that the predicting
paradigm is effective but several issues need to be solved, concerning the automatic
segmentation and labeling of the myoelectric signal, the porting of the electronics to a
wearable (patch) size, the building of the datasets for different languages, to preserve
and synthesize the subject’s original voice.
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Fig. 9. The prototype integrates all the function blocks of the system framework using COTS
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