
Incremental Data Partitioning of RDF
Data in SPARK

Giannis Agathangelos1, Georgia Troullinou1, Haridimos Kondylakis1(B),
Kostas Stefanidis2, and Dimitris Plexousakis1

1 FORTH-ICS, Heraklion, Greece
{jagathan,troulin,kondylak,dp}@ics.forth.gr

2 University of Tampere, Tampere, Finland
kostas.stefanidis@uta.fi

Abstract. Significant efforts have been dedicated recently to the devel-
opment of architectures for storing and querying RDF data in distributed
environments. Several approaches focus on data partitioning, which are
able to answer queries efficiently, by using a small number of computa-
tional nodes. However, such approaches provide static data partitions.
Given the increase on the continuous and rapid flow of data, nowadays
there is a clear need to deal with streaming data. In this work, we pro-
pose a framework for incremental data partitioning by exploiting machine
learning techniques. Specifically, we present a method to learn the struc-
ture of a partitioned database, and we employ two machine learning
algorithms, namely Logistic Regression and Random Forest, to classify
new streaming data.

1 Introduction

The recent explosion of the Data Web and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF
datasets [2,4,5]. To efficiently store, manage and query these ever increasing
RDF data, new clustered RDF database systems are constantly developed and
produced [1], whereas when focusing on streaming data, incremental partitioning
approaches are of crucial importance. A common way of incremental partition-
ing is to follow hash partitioning. For example, [8] adopts hash partitioning on
triples subjects using MapReduce. [9] applies a graph partitioning approach for
streaming RDF data. Query driven partitioning [3] leverages query knowledge
to partition data so as to answer queries by single node computations.

Our approach combines the classical predicate and subject based partitioning
along with the query workload knowledge. With this combination, we maximize
the intra node execution when it comes to the chosen queries, but also other
similar queries that contain combinations of predicate and subject categories
we have seen so far. We manage and partition the incoming data incrementally,
using machine learning techniques. Specifically, we demonstrate a method to
learn the structure of a partitioned knowledge base eliciting its properties, and

c© Springer Nature Switzerland AG 2018
A. Gangemi et al. (Eds.): ESWC 2018 Satellite Events, LNCS 11155, pp. 50–54, 2018.
https://doi.org/10.1007/978-3-319-98192-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98192-5_10&domain=pdf


Incremental Data Partitioning of RDF Data in SPARK 51

then classify the new streaming data to the appropriate computational nodes.
We performed preliminary experiments using Logistic Regression and Random
Forest for classification, and show the effectiveness of these algorithms in the
incremental partition procedure.

2 Incremental Partitioning

Data partitioning is thorny issue in distributed RDF data storage. A step further,
the classification of new incoming data to a distributed database should also
follow the same policy in order to maintain the efficiency of the computational
environment. Our goal is to extract the properties of partitioned data and learn
from this structure in order to classify effectively streaming data respecting the
existing distribution. The architecture of our incremental partitioning framework
consists of two major components:

Data Manager: This component manages the distributed environment that con-
sists of a set of computational nodes that interact to issue queries on existing
data. As an RDF dataset is a collection of triples, usually in distributed envi-
ronments, triples are partitioned across a cluster of machines and at querying,
graph patterns are queried in parallel. Existing approaches try to minimize inter-
machine communication during querying processing e.g. via vertical partition-
ing, partitioning triples based on their subject, or by combining different parts
of the triples [6]. These techniques guarantee that all triples sharing a common
property, i.e. a predicate, are stored on the same machine. We assume in our
environment, the partitioning is performed using a combination of subject and
predicate. Thus, the triples that contain the same combination of predicate and
the corresponding instances of the domain classes can be accessed locally.

Incremental Partitioner: This component deals with incremental incoming data,
selecting the appropriate computational node to store the corresponding triples.
The functionality offered, is based on a machine learning classifier that assim-
ilates the structure of the distributed database and assigns effectively the new
triples to partitions.

Dataset Creation. A basic goal of a distributed database is to answer queries
using a small number of computational nodes. Thus, triples found in same queries
should be stored in the same machine. Based on this idea, we construct the
dataset for training a classifier. The interesting part of this procedure is how
to transform data and queries to samples, features and categories. Since effi-
cient and effective query answering is the main goal of the partitioning process,
queries should guide data distribution as well. As such, we select the user queries
to represent the features of our dataset. In turn, the triples of our knowledge
base will be the samples. Specifically, each sample is represented by a vector of
binary values that corresponds to the existence of the specific sample/triple in
each particular feature/query. Figure 1 depicts the stages for the construction of
the final dataset for the classifier. Parsing each user query, we collect subjects



52 G. Agathangelos et al.

Fig. 1. Dataset construction.

and predicates that appear in each triple pattern and create the correspond-
ing matrix. Each entry represents a pair (of a predicate and the corresponding
domain class) that its instances are identified within the queries. In case that
one subject or a predicate uses a variable, we generalize to every possible com-
bination of the corresponding subject class with all predicates that have this
class as a domain and vice versa. Thus, we use the produced pairs (of query
predicates/domains) to create the first form of our dataset. However, we are
interesting in creating a set of samples derived from the (instance) triples and
the associated label/category for each triple. So, in a second step, all triples that
have the predicate and the instances of its domain classes are represented by the
corresponding feature vector of their domain-predicate pair. Then, each sample
is assigned to the computational node to which the corresponding triple belongs.

Classification. Next, we train the classifier and estimate its expected perfor-
mance. Since the train procedure is crucial for the performance of the predictor,
we have to select the qualified parameters of the classifier that maximize its accu-
racy. This selection was done with the procedure of k-Fold Cross-Validation [7].

3 Preliminary Evaluation and Conclusion

To evaluate our approach, we used a part of the 3.8 version of DBpedia. To
create our vector space, we exploited the query logs from the corresponding
DBpedia endpoints and got access to more than 50 K user queries (features)
for a specific period of time. Specifically, our dataset consists of 1.9 M triples
derived from the triples contained in the corresponding DBpedia user queries.
We initially distributed data to computational nodes, using k-means, the most
widely adopted clustering algorithm. Euclidean distance was used as a distance
metric for k-means to assign each triple to one of 16 computational nodes based
on the existing features. In this part we do not intend to evaluate the performance
of the partitioning algorithm, but the correct categorization of the new incoming
triples. Thus our approach can be adapted to any partitioning algorithm.



Incremental Data Partitioning of RDF Data in SPARK 53

We implemented our system in Apache Spark. Spark has been set up in
a clustered environment of 4 computational nodes, each of them equipped with
230 GB of memory and a 38 core processor. For evaluation, we consider accuracy,
precision and recall.

Algorithms: To model our problem as a classification task, we used two well-
established classifiers, Random Forest and Logistic Regression. Both algorithms
can handle the large number of features that we are dealing with. To find the
best parameters for our algorithms, we implemented a 5-Fold Cross Validation1.

Preliminary Results: Our dataset, by its nature, contains large number
of duplicates, since large number of triples are instantiated under the same
predicate-domain combination. This condition offers an efficient categorization
of triples in different machines; correlated triples are placed in the same node.
Nevertheless, due to the many duplicates, a classifier may not be able to classify
efficiently new data. In our evaluation, we used as test samples data that in their
majority has already been seen in the training procedure (Case I), while in a
different scenario, we dealt with data unknown for the classifier (Case II). The
dataset used in Case I contains the 20% of the original dataset, while in Case II
we have a much smaller subset since we need samples that do not overlap with
the train part. In Case I (Table 1), clearly both classifiers predict accurately, as
they give an accuracy of 0.99. Due to the fact that a model classifies accurately
the data instantiated to the majority of predicate-domain pairs, the classifier
succeeds in categorizing data commonly queried by users. This is a crucial com-
ponent of data partitioning. In Case II, we examine triples unknown to the
classifier and we observe that the resulting metrics are as good as the first case
for both classifiers. Thus, new incoming triples can be partitioned effectively in
the distributed environment. Examining further Logistic Regression results, we
observe that in Case I there is a small False Positive Rate since we can find
samples that do not belong in their actual class. In the second case we do not
observe the same result since the smaller sample size, results in statistically less
plausible False Positives.

Table 1. Algorithms evaluation.

Case I Case II

Random Forest Logistic Regression Random Forest Logistic Regression

Precision 0.937 0.999 0.897 1.0

Recall 0.932 0.999 0.90 1.0

Accuracy 0.998 0.999 0.985 1.0

1 The best selected parameters for the final training are, for Random Forest, Max
Depth: 10 and Number of Trees: 60, and for Logistic Regression, Regularization:
0.01, Max Iterations: 30 and Elastic Net Parameter: L2.



54 G. Agathangelos et al.

To conclude, in this paper, we propose an approach that combines machine
learning algorithms and data partitioning techniques to classify data incremen-
tally, and show the feasibility of our solution. As future work, we plan to deploy
our work in a real clustered environment and measure the actual improve-
ment on query execution times, comparing our solution with other competitive
approaches.

References

1. Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.:
RDF query answering using apache Spark: Review and assessment. In: IEEE ICDE
(2018)

2. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity resolution in the web of
data. Synth. Lect. Semant. Web Theory Technol. 5(3), 1–122 (2015)

3. Hose, K., Schenkel, R.: WARP: workload-aware replication and partitioning for
RDF. In: IEEE ICDE (2013)

4. Kondylakis, H., Plexousakis, D.: Ontology evolution in data integration: query
rewriting to the rescue. In: ER (2011)

5. Kondylakis, H., Plexousakis, D.: Ontology evolution: assisting query migration. In:
ER (2012)

6. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

7. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 532–538. Springer, Boston (2009). https://
doi.org/10.1007/978-0-387-39940-9 565

8. Rohloff, K., Schantz, R.E.: High-performance, massively scalable distributed sys-
tems using the mapreduce software framework: the SHARD triple-store. In:
SPLASH (2010)

9. Wang, R., Chiu, K.: A stream partitioning approach to processing large scale dis-
tributed graph datasets. In: IEEE Big Data (2013)

https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565

	Incremental Data Partitioning of RDF Data in SPARK
	1 Introduction
	2 Incremental Partitioning
	3 Preliminary Evaluation and Conclusion
	References




