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Location Privacy in Spatial
Crowdsourcing

Hien To and Cyrus Shahabi

Abstract Spatial crowdsourcing (SC) is a new platform that engages individuals
in collecting and analyzing environmental, social and other spatiotemporal infor-
mation. With SC, requesters outsource their spatiotemporal tasks (tasks associated
with location and time) to a set of workers, who will perform the tasks by physically
traveling to the tasks’ locations. However, current solutions require the locations of
the workers and/or the tasks to be disclosed to untrusted entities (SC server) for
effective assignments of tasks to workers.
This chapter first identifies privacy threats toward both workers and tasks during
the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is
the process of identifying which tasks should be assigned to which workers. This
process is handled by a spatial crowdsourcing server (SC server). The latter phase
is reporting, in which workers travel to the tasks’ locations, complete the tasks and
upload their reports to the server. The challenge is to enable effective and efficient
tasking as well as reporting in SC without disclosing the actual locations of workers
(at least until they agree to perform a task) and the tasks themselves (at least to
workers who are not assigned to those tasks).
This chapter aims to provide an overview of the state-of-the-art in protecting
users’ location privacy in spatial crowdsourcing. We provide a comparative study
of a diverse set of solutions in terms of task publishing modes (push vs. pull),
problem focuses (tasking and reporting), threats (server, requester and worker), and
underlying technical approaches (from pseudonymity, cloaking, and perturbation to
exchange-based and encryption-based techniques). The strengths and drawbacks of
the techniques are highlighted, leading to a discussion of open problems and future
work.
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7.1 Introduction

The increase in computational and communication performance of mobile devices,
coupled with the advances in sensor technology, leads to an exponential growth
in data collection and sharing by smartphones. Exploiting mobility of such a
large volume of potential users, a new mechanism for efficient and scalable data
collection has emerged, namely, spatial crowdsourcing (SC) [13]. SC has numerous
applications in domains such as environmental sensing (iRain [1]), smart cities
(TaskRabbit), journalism, and crisis response (MediaQ [15]). With SC, requesters
and workers typically register with a crowdsourcing server that acts as a broker
between parties, and often also plays a role in how tasks are assigned to workers. A
requester issues one or more tasks to the server (i.e., the platform). The server then
assigns the task to a worker. We refer to this phase as tasking (or task assignment).
After tasking, workers travel to the locations of the tasks, perform them and report
the results to the server. This phase is referred to as reporting.

Both tasking and reporting phases often require workers and requesters to reveal
locations of workers and tasks to potentially untrusted entities (server, other workers
and other requesters). Several studies (e.g., [5, 13, 14, 30]) focus on effective tasking
by maximizing the number of assigned tasks while minimizing workers travel
distances, for which they require workers to reveal their locations and requesters
to disclose their tasks’ locations to the server. Similarly, reporting spatial tasks
would enable the server to infer the workers’ locations since they must have
visited the locations of the tasks. However, disclosing individual locations has
serious privacy implications. Leaked locations often lead to a breach of sensitive
information such as an individual’s health (e.g., presence in a cancer treatment
center), alternative lifestyles, political and religious preferences (e.g., presence in a
church). Knowing user locations, an adversary can stage a broad spectrum of attacks
such as physical surveillance and stalking, and identity theft [25]. Particularly,
in [36], the authors show that hackers can stalk users in Waze—a popular SC
application—by generating fake events such as accidents. Consequently, mobile
users may not agree to engage in spatial crowdsourcing if their privacy is violated;
thus, ensuring location privacy is key to the success of SC.

The first step of the tasking phase is task publication. There are two modes of task
publication in SC: push (e.g., iRain) vs. pull (e.g., TaskRabbit). With the pull mode,
the server publishes the spatial tasks and online workers can choose any spatial
task in their vicinity without the need to coordinate with the server. With the push
mode, online workers send their locations to the server, which then assigns to every
worker his nearby tasks (posted by requesters). Each mode shares similar challenges
and has its own unique challenge. The common challenges are that a worker should
know a task location only if he plans to perform the task; likewise, only requesters
who have tasks performed by the worker should know his location. Furthermore, the
unique challenge with the push mode is that the server must match workers to tasks
without compromising their privacy. This requires strategies to ensure effective task
assignment without revealing locations of tasks and workers. On the other hand, the
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Table 7.1 Attacks on SC
users

Tasking Reporting

Push [12] [27]

Pull [Sect. 7.3.2] [27, 36], [Sect. 7.3.2]

unique challenge with the pull mode is to enable every worker to request tasks,
perform them and subsequently post the results to the server without revealing
his location and identity. Finally, providing privacy protection simultaneously both
tasking and reporting phases introduces another set of challenges to both push and
pull modes.

Among the two modes of task publishing, privacy protection in the push mode is
more challenging because tasking in the push mode is more complex than that of the
pull mode. Countermeasure studies in the pull mode have been the main focus in the
past decade with an emphasis on a special class of SC, named participatory sensing
(PS). PS usually assumes the pull mode of task publication (workers choose tasks);
therefore, the main privacy threats to workers occur during reporting. Meanwhile,
the most recent studies in SC have focused on the push mode (server assigns
tasks to workers); for this reason, main privacy breaches occur during tasking [12].
Consequently, the existing studies in SC can be classified into two groups: (1)
preserving privacy during reporting in the pull mode [2, 27, 37], and (2) preserving
privacy when tasking in the push mode [8, 10, 12, 22, 26, 31, 32, 35, 38].

In this chapter we study the privacy threats to workers and requesters1 in SC,
during both tasking and reporting phases with either push or pull mode. Throughout
this chapter we also identify three major drawbacks of the existing studies. First,
they solely focus on protecting privacy during either phase of tasking or reporting,
but not both. Second, most of these studies ensure privacy for workers only. To
elaborate, we perform a set of simple attacks on TaskRabbit to demonstrate that
locations of workers and requesters can be learned during both tasking and reporting
phases. Third, despite the fact that most studies focus on either reporting in the
pull mode or tasking in the push mode, privacy threats to SC users may also occur
in other scenarios. Table 7.1 shows that there have been known attacks under the
tasking and reporting phases with either the push or pull mode of task publishing.
We demonstrate such threats in Sect. 7.3.2 via another set of attacks on TaskRabbit.
These observations open some new research questions such as: how do we protect
location privacy of both workers and tasks, simultaneously, during both the tasking
and reporting phases of SC, and what are the promising privacy techniques to be
used?

There have been recent surveys in privacy-preserving participatory sensing [4,
24] and mobile crowdsourcing [21]. Unlike these surveys, which provide an
overview of a broad range of related problems, this chapter provides an in-depth
study of the privacy challenges and the solutions proposed in the prior studies.

1Task locations can indirectly reveal requesters’ location, i.e., requesters often post tasks in the
proximity of their locations.
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The remainder of this chapter is organized as follows. In Sect. 7.2 we introduce
spatial crowdsourcing and compare it with related concepts. Section 7.3 illustrates
potential privacy risks to both workers and requesters. Section 7.4 summarizes
existing solutions addressing the privacy concerns in both the tasking and reporting
phases of SC. Finally, we present our conclusions and future research directions in
Sect. 7.5.

7.2 Spatial Crowdsourcing

In this section we define spatial crowdsourcing and present two modes of task
publishing, push vs. pull, with the push mode recently being dominant in the
research community. Thereafter, we differentiate SC from the related topic of
participatory sensing, which usually assumes the pull mode of task publication.

7.2.1 Generic Framework

Spatial crowdsourcing (SC) [13] is a type of online crowdsourcing where perform-
ing tasks requires workers to physically be present at the locations of the tasks,
termed spatial tasks. A spatial task is a query to be answered at a particular location
and must be performed before a deadline. An example of a spatial task is taking
a picture of a particular dish in a restaurant. This means that the workers need
to physically travel to the location of the restaurant in order to take the picture.
A worker is a carrier of a mobile device who will perform spatial tasks for some
incentives.

Spatial crowdsourcing has gained popularity in both the research community
(e.g., [13, 32]) and industry (e.g., TaskRabbit, Gigwalk). A recent study [34]
distinguishes SC from related fields, such as generic crowdsourcing, participatory
sensing, volunteered geographic information, and online matching. Research efforts
have focused on different aspects of SC, including task assignment, task scheduling,
privacy, trust and incentive mechanism.

7.2.2 Task Assignment: The Focus of Spatial Crowdsourcing

The main challenges of spatial crowdsourcing are due to the large-scale, ad hoc
and dynamic nature of the workers and tasks. To continuously match thousands
of SC campaigns, where each campaign consists of many spatiotemporal tasks
with millions of workers, a server must be able to run efficient task assignment
(aka tasking). According to [13], there are two types of tasking modes based
on how workers are matched to tasks—server-assigned tasks (SAT) and worker-
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selected tasks (WST)—which are also known as push and pull modes, respectively.
Depending on the choice of a particular mode, the focus of privacy protection is
either at the tasking or the reporting stage of SC.

With the pull mode, the server publicly2 publishes the spatial tasks, and online
workers autonomously choose tasks in their vicinity without coordinating with the
server. One advantage of the pull mode is that the workers do not need to reveal their
locations to server. However, one drawback of this mode is that the server does not
have any control over the allocation of spatial tasks; this may result in some spatial
tasks never be assigned, while others are assigned redundantly. Another drawback
of the pull mode is that workers choose tasks based on their own objectives (e.g.,
choosing the k closest spatial tasks to minimize their travel cost), which may not
result in a globally optimal assignment. Examples of the pull mode are TaskRabbit
and Waze.

With the push mode, requesters post tasks that include locations, while online
workers send their locations to the server, which assigns tasks to nearby workers.
The advantage of this mode is that unlike the pull mode, the server has the big
picture and can assign to every worker his nearby tasks while maximizing the overall
task assignment. However, the drawback is that locations of both tasks and workers
should be sent to the server for effective assignment, which can pose privacy threats.
Examples of the push mode include Uber, iRain [30] and MediaQ [15].

Most SC studies assume the push mode and thus emphasize privacy protection
during the tasking phase. With the pull mode, the main focus of privacy protection
is shifted to the reporting phase, which has been well studied in the context of
participatory sensing (e.g., [2, 12, 27, 35, 37]). With participatory sensing, the
goal is to exploit the ability of mobile users to collect and share data using
their sensor-equipped phones for a given campaign. Most studies on participatory
sensing focus on small campaigns with a limited number of workers; hence,
they do not have issues of task assignment. However, with SC, the focus is on
devising a scalable, generic and multipurpose crowdsourcing framework, similar to
Amazon Mechanical Turk, but spatial, where multiple campaigns can be handled
simultaneously. Therefore, the main challenge with SC is to devise an efficient
approach to assign tasks to workers given the large scale of an environment.

7.3 Privacy Threats

There have been known attacks on SC applications, such as location-based attacks
during tasking in the push mode [12] and collusion attacks during reporting in the
pull mode [36] (see Table 7.1). Despite the fact that most studies have solely focused
on one of the two major threats, privacy risks to SC users may occur in the other

2Exact geographical coordinates of the tasks may not be published; instead, their cloaked locations
or representative names are provided.
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scenarios: reporting in the push mode and tasking in the pull mode. In this section
we present a threat model which characterizes the full spectrum of privacy threats to
workers and requesters during both tasking and reporting phases with either push
or pull mode. Next, we illustrate the privacy risks on TaskRabbit.

7.3.1 Threat Model

As the privacy threats vary according to the modes of task publishing, we discuss
possible threats associated with each mode.

7.3.1.1 Privacy Threats with the Push Mode

With the push mode, the server takes as input the perturbed locations of both workers
and tasks to perform effective task assignment; hence, there is a serious privacy
threat from the server which might become a single point of attack. Figure 7.1a
depicts the threat model for the push mode of spatial crowdsourcing. The first row
means that locations of workers and tasks are protected from the server at all the
time. The role of the server is to create the assignment links between the workers
and the requesters so that they can establish a direct communication channel among
themselves. Each worker-requester pair cooperatively decides whether to accept
the assignment from the server. If yes, they send a consent message to the server,
confirming that the worker will perform the requester’s tasks. This agreement is
illustrated by the first reporting link in Fig. 7.1a. We argue that to preserve location
privacy during both tasking and reporting phases, task locations need to be protected
from the server. Otherwise, the completion of a task reveals that some workers

Fig. 7.1 Threat models in spatial crowdsourcing. W and R denote workers and requesters,
respectively. The dotted circles surrounding them denote that they are protected from an untrusted
entity shown in the first column. After tasking and reporting, the assignment and reporting links
between W and R represent the established connections during each phase. The dashed links
indicate connections that are oblivious to the corresponding malicious entity. (a) Push mode. (b)
Pull mode
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must have visited the task’s location. In restrictive privacy settings, workers and
requesters can also be malicious to each other. Hence, to ensure minimum disclosure
among them, only workers who aim to perform the tasks should know the tasks’
locations (see the second row in Fig. 7.1a). Likewise, a requester should only know
the workers’ locations once her tasks are matched to and then performed by those
workers (see the third row in Fig. 7.1a).

We emphasize the minimum disclosure of location information for both workers
and tasks. The reason for this is twofold. First, the server knows only the assignment
links between workers and tasks. Due to such links, the assigned workers (or
tasks) may infer that there exist nearby tasks (or workers). These disclosures are
unavoidable in the push mode of SC. Second, the disclosure of workers’ locations
to their corresponding requester is inevitable at the reporting phase per definition
of SC. It is worth mentioning that this threat model is restrictive; hence, weaker
variants exist. For example, most existing studies in the push mode assume that
workers are trusted [10, 12, 22] and task locations are public [8, 26, 32, 35, 38].

7.3.1.2 Privacy Threats with the Pull Mode

With the pull mode, despite the fact that workers do not need to send their locations
to the server, the locations can still be learned during both tasking and reporting
phases. As long as a worker connects to the server to either request some tasks
or report results, he may reveal to the server patterns of where and when the
connections were made and what kind of tasks he wants to perform. Consequently,
in [27], the authors show that linking multiple requests or reports of the worker
may allow an adversary to trace him since the worker’s location information can be
tracked through several stationary connection points (e.g., cell towers). In addition,
the worker’s location trace can be inferred by both the server and requesters since
he must be in the vicinity of the tasks in order to perform them. Figure 7.1b depicts
the proposed threat model for the pull mode. To preserve privacy and identity of
the workers from the server, both assignment links and reporting links should be
secure during tasking and reporting phases, respectively. This is because if the
connections are discovered by the server, which already knows the locations of
tasks, the server learns the locations of workers since they must have visited the
locations of the performed tasks. Hence, the workers must request tasks without
revealing their identity to the server; once the tasks are performed, the workers
must also disassociate their connections with the performed tasks while uploading
task content to the server. Similar to the push mode, both workers and requesters
themselves can be hostile to one another. Thus, the privacy threats from workers
and requesters (rows 2 and 3 in Fig. 7.1a) are similar to those in the push mode
(rows 2 and 3 in Fig. 7.1b), except the difference in the assignment links of the two
second rows. The reason for this is that the requester is oblivious to the requests
between the worker and the server during tasking.
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Fig. 7.2 Screenshots of TaskRabbit web application from worker Bob. (a) Task locations. (b) Task
price. (c) Task status. (d) Performed tasks

7.3.2 Case Study of TaskRabbit

We show that an adversary can perform harmful attacks on a typical SC application
without much effort. TaskRabbit is a pull-based3 online and mobile marketplace that
matches workers with requesters, allowing requesters to find immediate help with
everyday tasks including, but not limited to, cleaning, moving, and delivery. In the
following we discuss the aforementioned threats to TaskRabbit users. Note that the
following attacks on TaskRabbit.com were conducted in October 2014; the website
has been updated since then.

We first show the breach of task location during tasking. We signed up as a
worker account and searched for delivery tasks in Los Angeles; 2381 spatial tasks
were found. We obtained various information about a particular task by clicking
on it, such as description, price, task status and cloaked locations. Although each
location is cloaked in a circle with a radius of half a km4 (Fig. 7.2a) to protect task
locations from workers, the actual drop-off and pick-up locations were mentioned
in the task description, i.e., “Please pick up a box of mini-muffins from (S) promptly
at 8 am on Tues, 9/4, and drive them straight to me at (D).” It is also worth noting
that task requests often contain sensitive information, such as health status of the
requesters. An example of a sensitive task is one with title “super easy task deliver
a bag to the doorstep of a sick friend.” Nonetheless, these privacy risks are due to
the disclosure of task content, which is beyond the scope of this study.

We then show the leak of worker location during tasking and reporting. To
gain a competitive advantage, a worker may wish to not disclose locations of his
visits to other workers and requesters. The task status (Fig. 7.2c) infers that the
worker, referred to as Bob, was at the pick-up and drop-off locations of the task
during the 1-h period between his assigned time and his completed time. The risk
of precisely inferring Bob’s locations is even higher for time-sensitive tasks such
as delivery and help at home, which requires him to meet requesters in-person

3We present the privacy threats to a pull-based SC system only; however, some of these privacy
threats also occur in push-based SC such as iRain.
4We obtained this information via JavaScript code.



7 Location Privacy in Spatial Crowdsourcing 175

Table 7.2 Three tasks requested by requester Alice

Task description Corresponding JavaScript

Quick post-party dishwashing clean up
needed

“radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

Take down light Christmas decorations “radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

Put up 20 yard sale signs in
Mid-Wilshire area

“radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

We replaced six digits after the decimal point of “geo_center” by ‘x’ to protect the privacy of the
requester

at a specific place and time. This inference attack shows that TaskRabbit does
not guarantee privacy protection for the pull mode in Sect. 7.3.1, which says that
Bob’s locations are private to the server and only requesters who have their tasks
performed by Bob should know his locations. In addition, one can also see much
more information about Bob, including his previously performed tasks (Fig. 7.2d)
and all reviews from the requesters who hired him. These associations between Bob
and his performed tasks indicate that the assignment links and reporting links are
known to the server.

Among Bob’s requesters, we randomly picked one named Alice. We further show
that her home location can be learned by tracking her task requests. We searched
for household tasks that Alice requested in the past; three of them are shown in
Table 7.2. These tasks were in the proximity of each other and likely situated at
her home. Our hypothesis is that the tasks’ locations were randomly cloaked such
that the cloaking regions covered the actual location of the tasks. The location
must be in the overlapped area using triangulation. We validated our hypothesis by
confirming that the location of another task, whose location was known, is within
the overlapped region. This attack suggests that the more task requests are posted,
the more accurately their locations can be learned. This simple attack is against the
threat model, which states that the locations of Alice’s tasks should only be revealed
to the workers who performed her tasks.

7.4 Privacy Countermeasures

In this section we survey some state-of-the-art approaches addressing the privacy
issues in spatial crowdsourcing. We first categorize the studies into two groups:
tasking in the push mode and reporting in the pull mode. Subsequently, each
subgroup is further classified according to the applied techniques. Within each
subgroup we identify one key paper shown in boldface to be presented in depth
while follow-up studies are briefly discussed. An overview of these studies is
presented in Table 7.3. The table shows that the studies solely focus on location
privacy of workers and assume that the locations and content of tasks are public.
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Table 7.3 Overview of problem focuses (Re: reporting, Ta: tasking); privacy techniques used (Ps:
pseudonym, Cl: cloaking, Pt: perturbation, Ex: exchange-based, En: encryption-based); threats (W:
worker, T: requester, S: server); trusted third party (TTP); optimization type (ST: single task, MT:
multiple tasks). x and (x) represent primary and secondary aspects, respectively

Phase Techniques Protection Threats TTP Opt. type

Paper Re Ta Ps Cl Pt En Ex W T W R S Yes No ST MT

Shin et al.
2011 [27]

x x x (x) (x) x N/A N/A x x x

Boutsis et al.
2013 [2]

x (x) x x N/A (x) N/A x x x

Zhanget al.
2016 [37]

x x x N/A N/A x x x

Kazemi et al.
2011 [12]

x (x) x x (x) x x x

Vu et al.
2012 [35]

x x (x) x (x) (x) x x x

Sun et al.
2017 [28]

x x x x x x

Pham et al.
2017 [20]

x x x x x x x

To et al.
2014 [32]

x x x (x) (x) x x x

Gong et al.
2015 [8]

x x x (x) (x) x x x

Zhang et al.
2015 [38]

x x x (x) (x) x x x

To et al.
2016 [31]

x x x (x) (x) x x x

Pournajaf et
al. 2014 [22]

x x x (x) x x x

Hu et al.
2015 [10]

x x x (x) x x x

Shen et al.
2016 [26]

x x x (x) (x) x x x

Liu et al.
2017 [17]

x x x x x x

Liu et al.
2017 [16]

x x x x x x x

Moreover, the server is regarded as a primary threat in all studies, while some
consider workers and requesters as secondary adversaries. We also notice that the
most recent studies focus on the push mode, which requires privacy protection
during tasking. This problem is considerably more challenging when compared to
the problem of privacy-preserving reporting in the pull mode.
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7.4.1 Protection in the Pull Mode

Privacy protection in the pull mode has been studied in the context of participa-
tory sensing. In this section we highlight recent studies that often focus on the
reporting phase of the pull mode. They use either pseudonymity [27] or exchange-
based techniques [2, 37]. The pseudonymity method disassociates the connections
between one’s uploaded data and his/her identity while the latter exchanges workers’
crowdsourced data and location information before uploading them to a server so
that the server is uncertain about locations of individual workers.

7.4.1.1 Pseudonymity Techniques

Shin et al. [27] propose a privacy-preserving framework for the pull mode as
illustrated in Fig. 7.3. A requester submits a task to a registration authority (RA) that
will verify the task before sending it to a task service (TS). Also, a worker connects
to TS through an anonymizing network such as Tor to request new tasks, referred to
as a task subset. After receiving the requested tasks, the worker chooses which tasks
to accept. He then performs the tasks and uploads the corresponding task reports to
a report service (RS) via an anonymous service (AS). In this framework, RA and AS
are trusted while TS, RS and requesters can be hostile. TS and RS can be considered
as services performed by the server.

This study [27] provides privacy protection in both tasking and reporting phases.
During tasking, the role of the anonymizing network is to disassociate the worker
and his requested tasks, depicted by the first and the third assignment links in
Fig. 7.1b. To preserve privacy during reporting, a worker typically sends his task
report to RS via AS, which routes the report through multiple servers so that the
server (i.e., TS and RS) cannot associate multiple locations (i.e., IP addresses) with

Fig. 7.3 A framework for privacy protection during tasking and reporting in the pull mode.
Dashed entities are malicious, while others are trusted



178 H. To and C. Shahabi

the identity of the same worker. Consequently, the server is oblivious to the first
reporting link in Fig. 7.1b. More recently, there has been closely related work in
participatory sensing that enables workers to hide their locations and data ownership
by passing the collected data through a random neighboring worker multiple times
before uploading the data to the server [11].

7.4.1.2 Exchange-Based Techniques

Pseudonymity techniques are ad hoc and do not provide quantifiable privacy
protection. For more sensitive tasks that require strong privacy guarantee, k-
anonymity [29] is used in [27] to ensure that each report is anonymized with k − 1
reports generated by other workers with similar sensitive information. However,
such techniques may not be applicable to SC because the worker location is part
of the report. To address such a problem, Boutsis and Kalogeraki [2] propose
the exchange-based technique to obscure the workers by exchanging their reports
between them before disclosing the sensitive information to an untrusted server (i.e.,
server). Such a technique can be used as AS in Fig. 7.3, aiming to protect the first
reporting link in Fig. 7.1b from the server.

To provide a quantifiable privacy guarantee, in [2] the authors use location
entropy as the measure of privacy or the attacker’s uncertainty. The study aims
to make all workers’ trajectories as equiprobable to contain sensitive locations by
maximizing the location entropy of an individual’s trajectories to be defined later. To
maximize the location entropy, trajectories with sensitive locations are distributed
among multiple workers. Particularly, each worker’s mobile phone identifies the k

most frequently visited locations as sensitive data from a local trajectory database.
A trajectory is selected for exchange if removing the trajectory increases the entropy
of the database, computed as follows.

Hi =
∑

locij ∈L

P r(locij )log(P r(locij )))

where L is the set of locations and Pr(locij ) is the fraction of total visits to location
j that belongs to user i. Consequently, an attacker will not be able to identify
sensitive locations or identities of the workers.

For each worker, the trajectories that contain locations with high frequency
are exchanged with other workers since removing high-frequency trajectories
(trajectories that contain sensitive locations) makes the frequency of the locations in
L more homogeneous and thus increases the entropy. Furthermore, as other workers
may not be trustful, not only the set of high-frequency trajectories are exchanged
but also another set of trajectories that do not contain the sensitive locations. This
guarantees that neighboring workers are not able to associate the worker with
his sensitive data. Consequently, both frequent and non-frequent trajectories are
selected and forwarded to individual workers so that no worker can be certain about
the sensitivity of any trajectory.



7 Location Privacy in Spatial Crowdsourcing 179

A drawback of computing entropy locally is that the exchange decisions can
be suboptimal due to the lack of a global view of all workers. This is because
individual workers try to maximize their own entropy regardless of each other,
which goes contrary to the fact that exchanging trajectories alters the location
entropy of multiple workers. Thus, the exchange-based technique should consider
the entropy with respect to all workers as opposed to individual workers. Therefore,
Zhang et al. [37] introduce a similar framework, but here workers coordinate with
each other to exchange their sensing data, including locations before uploading to
the server. As a result, all sensitive locations are equally likely visited by any worker
so that the actual trajectory of each worker cannot be learned. However, unlike [2]
where entropy is computed for a single worker, here entropy is calculated for all
workers.

Although the exchange-based technique is simple and does not rely on a trusted
server, the actual location information is still uploaded to the server. Therefore, this
approach is vulnerable to background knowledge attack. For instance, if the server
knows that only worker wi visits a particular location where a report was uploaded,
the server is certain that wi actually made the report.

7.4.2 Protection in the Push Mode

While preserving privacy during reporting in the pull mode has been largely studied
in the context of participatory sensing (a recent survey can be found in [4]), recent
SC studies focus on the more challenging phase of tasking. These studies generally
assume the push mode. We emphasize that focusing on the tasking step in the push
mode is the correct approach, given that SC workers have to physically travel to the
task location. The completion of a task discloses the fact that some worker must have
been at that location, and this is unavoidable in SC. Focusing on tasking also makes
sense from a disclosure volume standpoint. During the assignment, all workers are
candidates for participation; therefore, locations of all workers are exposed, absent a
privacy-preserving mechanism. Nevertheless, after task request dissemination, only
a few workers will participate in task completion, and only if they give their explicit
consent (see the threat model for the push mode in Sect. 7.3.1).

Various techniques have been proposed to protect location privacy of workers
during task assignment in SC, including cloaking (hide the accurate location in a
cloaked region) [10, 13, 22, 35], perturbation (distort the actual location information
by adding artificial noise) [8, 31, 32, 38] and encryption [26, 27].

7.4.2.1 Cloaking Techniques

The studies in this category generally implement spatial k-anonymity by generating
a cloaking region (CR) for each worker, which includes k − 1 other workers. To
guarantee strong privacy protection, peer-to-peer spatial k-anonymity [3] has been
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adopted in these studies. In the following we first present a simplified version
of tasking without constraints. Next, we survey some recent studies that consider
real-world constraints, such as the travel budget of each worker and a worker’s
willingness to perform tasks.

Task Assignment Without Constraints

In [27], each worker requests a task subset of size p at a time; however, choosing
an appropriate value of p is not trivial. Large p may lead to not only high
communication overhead between workers and TS, but tasks are also unnecessarily
disclosed to the workers. In contrast, small p may result in some tasks that will
never be accepted by any worker. One reason for this is that a worker can browse
far-away tasks that he cannot complete before the tasks’ deadlines. This redundant
disclosure incurs additional privacy threats to the requesters of those tasks.

In order to minimize such disclosure, Kazemi and Shahabi [12] propose a privacy
framework that enables each worker wi to query the server for a set of nearby spatial
tasks. Particularly, the server needs to distribute a set of spatial tasks to workers
such that each worker is assigned a subset of tasks that are closer to him than to
any other worker. Without privacy protection, the server can construct a Voronoi
diagram of the workers, including a set of cells where each cell belongs to a worker,
and any spatial task in the cell is closer to the worker than to any other worker.
Once the server computes the Voronoi diagram of the workers, it forwards to each
worker all the spatial tasks lying inside the corresponding cell. However, in such a
scenario, an adversary may infer the worker’s identity by associating the query to
query location (i.e., the location from which the query is issued. This is referred to as
location-based attack. Consequently, the framework aims to protect worker identity
from location-based attacks by disassociating a query from the query location.5 The
framework named PiRi (partial-inclusivity and range independence) has both query
formation and query selection.

Query Formation

In the query formation step, each worker wi computes his Voronoi cell by
communicating with his neighboring peers [3]. The worker forms his CR, where
his location is blurred among k − 1 other peers (with k = 3, the solid-lined
rectangle in Fig. 7.4a). The worker can send the CR along with the radius r (i.e.,
the smallest enclosing circle of wi’s Voronoi cell) to the server to retrieve all the
tasks which lay inside his Voronoi cell. However, the range query is dependent on
the size of the worker’s Voronoi cell (range dependency), which is a potential for
information leaks. Considering an extreme scenario where the server knows the

5However, this study assumes that workers trust one another. Hence, a more recent study [35]
solves a similar problem as in [12] without the assumption of trusted workers.
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Fig. 7.4 Examples of range dependency and all-inclusivity. (a) Query formation. (b) Range
dependency leak. (c) All-inclusivity leak

workers’ locations, it also knows their Voronoi cells and therefore the radius r for
each of them. Consequently, the server can easily identify the query issuer (i.e, the
set of all workers in the CR with radius r). Figure 7.4b depicts such a scenario,
where w1 (black-filled circle) cloaks himself with w2, and sends the CR along with
radius r1 to the server (see the size of r1 as compared to r2). The server, knowing
the location of the workers, and hence their Voronoi cells (i.e., r1, and r2), relates
the query with radius r1 to its query location (i.e., the location of a worker with the
Voronoi cell of the same radius).

In order to avoid the range dependency leak, each worker wi should cloak not
only his location but also his range query among k − 1 other peers. In other words,
instead of forming his range query with radius ri , the worker forms his query
with radius rmax–the maximum radius among all the k peers inside the CR. This
guarantees the k-anonymity at all times. In Fig. 7.4a, R1 (the dotted line rectangle)
shows the query region formed by rmax .

Query Selection

Once all workers have formed their query regions, they can send them out to the
server. However, the server can utilize the gathered information (i.e, query regions)
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from all workers to attack the system (all-inclusivity leak). Figure 7.4c illustrates
such scenario, in which workers w1..3 participate in the system. The figure shows
that w1 cloaks himself with w2. Similarly, w2 forms a cloaked region with w1.
Subsequently, both w1 and w2 form identical query regions. The figure also depicts
that w3 cloaks himself with w1. Accordingly, the server can easily identify w3 by
relating it to the query region R3, since w3 appears only once (i.e., R3) in all the three
submitted query regions to the server. This indicates that the more workers submit
queries to the server, the more information the server has to infer the workers’
identities. To prevent this leak, the authors attempt to minimize the number of
queries submitted to the server while assigning the nearby tasks to every single
worker.

Since there is a large overlap among the query regions of the workers, a worker
can share his result received from the server with all the peers whose Voronoi cells
lay completely inside his query region. The problem is how to select the group of
representative workers, formally stated as follows. Given a set of workers W , and
a set of spatial tasks T , let R and V be the set of query regions and Voronoi cells
for the set W , respectively, where Ri corresponds to the query region for worker wi ,
and Vi is the Voronoi cell for wi . The problem is to find a set C ⊆ R that covers
the entire set V with minimum cardinality. This problem is shown to be NP-hard
by reduction from the minimum set cover problem [12]. One well-known approach
for solving the set cover problem is a greedy algorithm that picks a representative
worker whose query region covers the largest number of uncovered Voronoi cells
from V . However, this approach is applicable only in a centralized setting, where a
global knowledge of the environment is available. To address this issue, the greedy
heuristic is extended to support the distributed environment. Particularly, a voting
mechanism is devised to select the set of representative workers, whose CRs are
sent out to the server. These query results will later be shared with the rest of the
workers. This step has been shown to prevent the all-inclusivity leak [12].

Task Assignment with Constraints

In [12, 35], spatial tasks are distributed to the corresponding nearest workers. This
objective may not necessarily fit SC applications as workers often have various
constraints that need to be considered. For example, they may be willing to
perform tasks that are far away, but within their daily travel routes. To capture such
constraints, each worker wi has a cloaked area ai and a limited travel budget bi ,
which denotes the maximum distance he is willing to travel [22]. Given the cloaking
regions of a set of workers, the objective of the server is to match a set of spatial
tasks to the workers such that task assignment is maximized while satisfying the
travel budget constraint of each worker.

As travel cost (often measured by the distance between tasks and assigned
workers) is an important performance metric in SC, in the following we first present
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Fig. 7.5 Distance estimation methods. (a) Centroid-point method. (b) Expected probabilistic
method

two methods for estimating the travel cost from the cloaked areas of the workers.
Thereafter, we present the problem of spatial task assignment with cloaked locations
(STAC) [22].

Distance Estimation

Given the cloaked area ai of the workers, STAC proposes two methods for
estimating the expected distances between pairs of workers wi and tasks tj , named
d̂i,j . The baseline method approximates the worker location as the centroid of his
cloaking area as depicted in Fig. 7.5a. Another method uses the travel budget of the
worker to prune the cloaking area (i.e., the dashed area in Fig. 7.5b), resulting in a
shrunk area that contains only accessible locations of the worker. Consequently, d̂i,j

is estimated by the distance between the task location and shrunk areas.
Next, we present a two-phase optimization approach to STAC. The first phase,

denoted as G-STAC, globally optimizes task assignment using cloaked locations
of the workers. The second phase, referred to as L-STAC, locally optimizes the
assignment of individual workers using their own exact locations.

Global Optimization

Given a set of workers and a set of spatial tasks, G-STAC aims to achieve a particular
goal of task coverage with the minimum travel cost. G-STAC is formally defined as
follows.
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min T C =
∑

i∈W

∑

j∈T

d̂i,j xi,j

s.t. T U =
∑

j∈T

∑
i∈W xi,j

kj

≥ gm

∑

j∈T

d̂i,j xi,j ≤ bi

where task cost (T C) is the total distance traveled by all workers, while task
coverage or utility (T U ) is the total covered fraction of tasks. d̂i,j is the estimated
distance between worker i and task j , xi,j = 1 means worker i is assigned to task
j , otherwise xi,j = 0, kj is the required coverage of tj (i.e., the number of workers
to perform tj ) while g ∈ (0, 1] indicates the required fraction of coverage for a task.
The last constraint guarantees that wi’s travel distance is within his budget bi .

G-STAC is shown to be NP-hard by reduction from the minimum set cover
problem. Therefore, a greedy algorithm is proposed that iteratively selects the most
cost-effective worker-task pair and updates T U until either the coverage goal is
achieved or the travel budgets of all workers are spent. A worker-task pair is cost-
effective if the ratio of expected distance to the expected coverage contributed by
this worker is small.

Local Optimization

The output of G-STAC is the best mapping of tasks to workers, which is sent
to workers as suggested assignments. However, a worker may be assigned tasks
whose locations exceed his travel budget, or nearby tasks are not assigned to him
because their distance has been estimated as being farther away. Thus, the local
refinement phase (L-STAC) is performed by individual workers’ devices for more
coverage and lower travel cost. A caveat is that selecting the closest tasks for
each worker may result in over-coverage for some tasks, while the others remain
unperformed. Consequently, in addition to minimizing the travel cost, L-STAC also
tries to minimize the change in the local optimization when compared to the global
optimization. L-STAC is formally defined as follows.

min T Ci =
∑

j∈T

di,j yi,j

s.t. |yi − xi | < ε

∑

j∈T

yi,j

kj

≥
∑

j∈T

xi,j

kj

∑

j∈T

di,j yi,j ≤ bi
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where for each worker wi , xi and yi are the binary assignment vectors of the global
and local phases of STAC, respectively. The first constraint, |yi−xi |, is the Hamming
distance between xi and yi , which is bounded by a threshold ε aiming to keep
minimum changes in the local assignment. The second constraint ensures that wi’s
contribution to the task coverage is not decreased when compared to his contribution
in the global phase. In the same fashion, L-STAC is NP-hard by reduction from the
minimum set cover problem; thus, another greedy algorithm has been proposed to
solve L-STAC.

Recently, Hu et al. [10] extended the travel budget constraint in [22] to a spatial
region, represented by a rectangle R, within which the worker is willing to travel.
Similar to [12], workers employ the peer-to-peer cloaking technique [3] to cloak
their locations among k − 1 other workers. Also, each worker’s cloaking area must
contain his spatial region R, otherwise the cloaking area is extended to cover R.
Observing that workers’ cloaking areas often contain multiple spatial regions of
other workers, to reduce the communication overhead, only some cloaking areas
that could cover all the workers’ spatial regions will be sent to the server. This
technique limits the disclosure of information when compared to sending all the
workers’ cloaking areas to the server [22].

The cloaking techniques used in [10, 22] are intuitive; nevertheless, their privacy
guarantee is weak. Such obfuscation-based techniques do not provide rigorous
privacy protection and are prone to homogeneity attack [18] when all k workers are
at the same location. Also, the value k needs to be specified to guarantee the desired
level of privacy protection. Unfortunately, choosing an appropriate k value can be
difficult because k-anonymity does not consider the frequency of user visits. To
elaborate, a location may be visited by many workers—those who have a dominant
contribution to the location (i.e., home or office) are most likely to be the subject of
attack. Consequently, one with a background knowledge of who visits the location
the most can easily perform such an attack.

7.4.2.2 Perturbation Techniques

Methods in this category use differential privacy (DP) to protect workers’ locations
during task assignment [8, 31–33, 38], which overcomes the aforementioned issues
of the obfuscation technique. DP has emerged as the de facto standard with strong
protection guarantees rooted in statistical analysis. It provides a semantic privacy
model as opposed to a syntactic model in other sanitization techniques (e.g., k-
anonymity, l-diversity). DP has been adopted by major industries for various tasks
without compromising individual privacy, e.g., discovering users’ usage patterns
with Apple [9] or crowdsourcing statistics from end-user client software with
Google [7]. DP ensures that an adversary is not able to reliably learn from the
published sanitized data whether or not a particular individual is present in the
original data, regardless of the adversary’s prior knowledge.
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The authors in [32] propose system model, privacy model and performance
metrics, followed by two main steps that preserve privacy and identity of workers:
sanitization of workers’ locations and task assignment on the sanitized data.

System Model

To protect location privacy of workers participating in spatial tasks, the server must
only have access to data sanitized according to ε-differential privacy [6] (ε is privacy
loss or privacy budget). Figure 7.6a shows the system architecture. Workers send
their locations (Step 0) to a trusted cellular service provider (CSP) which collects
updates and releases a private spatial decomposition (PSD) according to privacy
budget ε mutually agreed upon with the workers. The PSD is accessed by the server
(Step 1), which also receives tasks from a number of requesters (Step 2). When
the server receives a task t , it queries the PSD to determine a geocast region (GR)
that encloses with high probability workers close to t . Next, the server initiates a
geocast communication [19] process (Step 3) to disseminate t to all workers within
GR. According to DP, sanitizing a dataset requires the creation of fake locations in
the PSD. If the server is allowed to directly contact workers, then failure to establish

Fig. 7.6 Differentially
private framework for spatial
crowdsourcing. (a) System
architecture. (b) Worker PSD
using adaptive grid
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a communication channel would breach privacy, as the server is able to distinguish
fake workers from real ones. Using geocast is a unique feature of the framework
which is necessary to achieve privacy protection. Geocast can be performed either
with the help of the CSP infrastructure, or through a mobile ad hoc network where
the CSP contacts a single worker in the GR, and then the message is disseminated
on a hop-by-hop basis to the entire GR. The latter approach keeps CSP overhead
low and can reduce operation costs for workers. Upon receiving request t , a worker
wi decides whether to perform the task or not. If yes (Step 4), she sends a consent
message to the server (or requesters) confirming wi’s availability. If wi is not willing
to participate in the task, then no consent is sent, and no information about the
worker is disclosed.

Privacy Model and Assumptions

The objective of the framework is to protect both the location and the identity of
workers during task assignment. Once a worker consents to a task, the worker
herself may directly disclose information to the task requester (e.g., to enable a
communication channel between worker and requester). However, such additional
disclosure is outside the scope of this work, as each worker has the right to disclose
his or her individual information. Instead, the focus of the framework is on what
happens prior to consent, when worker location and identity must be protected from
both task requesters and the server. This privacy model is a weaker version of the
restrictive model in Fig. 7.1a since task locations are public.

Workers cannot trust the server, especially as there may be many such entities
with diverse backgrounds, e.g., private companies, non-profits, government orga-
nizations, academic institutions. On the other hand, the CSP already has a signed
agreement with workers through the service contract, so there is already a trust
relationship established, as well as mutually-agreed upon rules for data disclosure.
Furthermore, the CSP already knows where subscribers are, e.g., using cell tower
triangulation, so worker location reporting does not introduce additional disclosure.
In addition, having the CSP expose a PSD release of the user location dataset can
benefit applications beyond crowdsourcing. For instance, the PSD can be shared
with law enforcement agencies for public safety, or with commercial organizations
to increase the revenue of the CSP. Therefore, there is sufficient motivation for the
CSP to provide such a location sanitization service.

However, the CSP has no expertise, and perhaps no financial interest, to host
an SC service, which needs to deal with a diverse set of issues such as interacting
with various task requester categories, managing profiles (e.g., some workers may
only volunteer for environmental tasks), etc. The role of the CSP is to aggregate
locations from subscribed workers, transform them according to DP, and release the
data in sanitized form to one or more servers for assignment. As multiple servers
can use the same PSD, it is practical for the CSP to provide PSDs for a small fee,
e.g., a percentage of the workers’ payment, or a tax incentive in the case of a public-
interest SC application.
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Design Goals and Performance Metrics

Protecting worker location significantly complicates task assignment and may
reduce the effectiveness and efficiency of worker-task matching. Due to the nature
of DP, it is possible for a region to contain no workers, even if the PSD shows a
positive count. Therefore, no workers (or an insufficient number thereof) may be
notified of the task request, and the task may not be completed. Alternatively, the
GR may comprise workers who are a long distance away from the task location,
whereas nearer workers are not included. Finally, in the non-private case, only one
selected worker, whose location and identity is known, is notified of the task request.
With location protection, redundant messages need to be sent, increasing overhead.
We focus on the following performance metrics:

• Assignment success rate (ASR). Due to PSD data uncertainty, the server may
incorrectly assign workers to tasks (e.g., no worker is reached, or task is too far
and workers do not accept it). ASR measures the ratio of tasks accepted by a
worker to the total number of task requests.

• Worker travel distance (WTD). The server is no longer able to accurately evaluate
worker-task distance, hence workers may have to travel long distances to tasks.
The challenge is to keep the worker travel distance low, even when exact worker
locations are not known.

• System overhead. Dealing with imprecise locations increases the complexity of
assignment, which poses scalability problems. A significant metric to measure
overhead is the average number of notified workers (ANW). This number affects
both the communication overhead required to geocast task requests, as well as
the computation overhead of the matching algorithm, which depends on how
many workers need to be notified of a task request.

Sanitization of Workers’ Locations Using Adaptive Grid

The first step in the proposed framework consists of building a PSD (at the CSP
side) to be used later for task assignment at the server. Building the PSD is an
essential step because it determines how accurate the released data is, which in turn
affects ASR, WTD and ANW. Worker location data are sanitized at the CSP using a
PSD, named adaptive grid (AG) [23]. PSD is a sanitized spatial index, where each
index node contains a noisy count of the workers rooted at that node. Figure 7.6b
shows a snapshot of an adaptive grid with four level-1 cells A,B,C,D. Constructing
a differentially private AG requires two steps. First, the noisy counts N ′ of A,B,C,D
are computed by adding calibrated random Laplace noise [6]. Second, based on the
noisy counts, level-1 cells are further split into level-2 cells. Cell D, which has
a higher noisy count of 200 is partitioned according to a 3 × 3 grid, while the
granularity for other cells is 2 × 2. Thereafter, AG adds to each level-2 cell (ci ,
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i = 1 . . . 21) calibrated random Laplace noise. Finally, their corresponding noisy
counts nci

are published together with the structure of the AG.
Although AG yields small errors for general spatial queries, it is not directly

applicable to SC due to its rigidity in choosing parameters. Specifically, the
granularity m2 of the level-2 grid is too coarse, leading to large geocast areas and
high communication overhead. Thus, the AG method is extended to address the
specific requirements of the SC framework. Particularly, a heuristic is proposed to
increase the granularity m2 in order to decrease overhead, but only to the point
where there is at least one worker in a cell [32].

Task Assignment on Sanitized Data

On top of the noisy data, to ensure that task assignment has a high success rate,
analytical models that consider task completion rate, worker travel distance and
system overhead are developed. When a request for a task t is posted, the server
queries the PSD and determines a geocast region GR where the task is disseminated.
The goal is to obtain a high success rate for task assignment, while at the same time
reducing the worker travel distance WTD and request dissemination overhead ANW.

Acceptance Rate and Analytical Utility Model

Travel distance is critical in SC, as workers need to physically visit the task
locations. A worker is more willing to accept nearby tasks [13], so acceptance rate is
modeled as a decreasing function of travel distance. Also, we denote by acceptance
rate (AR) the probability pa(1 ≤ pa ≤ 1) that a worker agrees to complete a task for
which he has received a request. Thereafter, an analytical utility model is developed
that allows the server to quantify the probability that a task request disseminated in a
certain GR is accepted by a worker. Intuitively, the utility depends on the AR and on
the worker count w̄ estimated to be enclosed within the GR. A server will typically
establish an expected utility threshold EU which is the targeted success rate for a
task (this is a system goal, rather than an outcome). Generally, EU is considerably
larger than an individual worker’s pa , so the GR must contain multiple workers.

We define X as a random variable for the event that a worker accepts a received
task: P(X = True) = pa and P(X = False) = 1 − pa. Assuming w independent
workers, X ∼ Binomial(w, pa). We define the utility of a geocast region covering
w workers as:

U = 1 − (1 − pa)w (7.1)

U measures the probability that at least one worker accepts the task. The utility
definition can be extended to the case of redundant task assignment, where multiple
workers are required to complete a task [31].
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Geocast Region Construction

The third step in the framework is the construction and dissemination of GR. By the
nature of the DP protection model, fake entries may need to be created in the worker
PSD. Thus the server cannot directly contact workers, not even if pseudonyms are
used, as establishing a network connection to an entity would allow the server
to learn whether an entry is real or not, and this breach privacy. To address this
challenge, the geocast mechanism was introduced for the task request dissemination.
Geocast is a routing and addressing method, which is used to deliver information to
all devices situated within a geographical area. Once a PSD partition is identified
by the analytical model outlined above, the task request is geocast to all the workers
within that partition.

Particularly, given task t , the GR construction algorithm must balance two
conflicting requirements: determine a region that (1) contains sufficient workers
such that task t is accepted with high probability, and (2) the size of the geocast
region must be small. The input to the algorithm is task t as well as the worker
PSD, consisting of the two-level AG with a noisy worker count for each grid
cell. The algorithm chooses as initial GR the level-2 cell that covers the task, and
determines its U value. As long as utility is lower than threshold EU, it expands
the GR by adding neighboring cells. Cells are added one at a time, based on their
estimated increase in GR utility. Following the task localness property, we take
into account the distance of each candidate neighboring cell to the location of t ,
and give priority to closer cells. The algorithm stops either when the utility of the
obtained GR exceeds threshold EU, or when the size of GR is larger than a particular
threshold; hence, utility can no longer be increased. The GR construction algorithm
is a greedy heuristic, as it always chooses the candidate cell that produces the highest
utility increase at each step. The experimental results show that workers’ location
privacy is protected without compromising performance, and the extra travel cost is
tolerable—a 20% increase when compared to the non-private case.

Next, we present various extensions of the worker PSD, followed by an approach
toward PSD for moving workers.

Extensions and Enhancements of Worker PSD

There have been recent studies that adopt the privacy model used in [32], assuming
a trusted CSP and differentially private location sanitization. Particularly, Gong et
al. [8] propose a framework that can protect the workers’ location privacy when
allocating tasks to the workers. Similar to [32], they develop analytical models and
task allocation strategies that balance privacy, utility, and system overhead. In [8],
the CSP not only aggregates workers’ locations but also their reputation information,
which is used to provide quality control over the reports. Consequently, a new
structure called reputation-based PSD is proposed to partition the space based on
both reputation and location information.
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Another work studies reward-based spatial crowdsourcing that enables task
assignment with optimized reward allocation (Zhang et al. [38]). The authors also
reuse the privacy framework introduced in [32], in which the server and workers
are connected by a trusted CSP. However, unlike [32] that uses the adaptive grid
to releases a sanitized location view to the server, this study constructs a contour
plot to represent the spatial distribution of workers aiming to introduce less noise
than the prior technique. The contour plot is used to perform task assignment. The
objective of task assignment is to find the minimum radius r to ensure that the ASR
of a task is equal to expected utility threshold EU, i.e., the probability that at least
one worker performs the task is no less than the threshold.

Protection for Dynamic Workers’ Locations

Previous perturbation techniques [8, 32, 38] assume a static scenario where workers’
locations do not change. However, SC systems receive continuous requests for task
assignment. Hence, it is important to keep track of the whereabouts of moving
workers and to release a sequence of worker PSDs that allow effective spatial
task assignment over multiple timestamps. The challenge is that as workers move,
new snapshots of sanitized worker locations must be disclosed to maintain task
assignment effectiveness. However, access to sequential releases gives an adversary
more powerful attack opportunities. To counter such threats, differential privacy
requires more noise injection, which in the worst case may reach amounts that
are proportional to the length of the released location history (i.e., the number of
disclosed snapshots). Clearly, such large noise would render the data useless, since
SC is likely to be a continuously offered service in practice. A recent study [31]
extends [32] to address the challenge of moving workers by investigating privacy
budget allocation techniques across consecutive releases, and employing post-
processing techniques based on Kalman filters to reduce the inaccuracy introduced
by addition of noise.

7.4.2.3 Encryption Techniques

In this section we discuss studies that use encryption-based approaches. In [27]
the identity and location (i.e., IP address) of workers are hidden from TS through
multiple Tor relays using Onion encryption. However, Tor does not try to protect
against an attacker who can see or measure both traffic going into the Tor network
and also traffic coming out of the Tor network—for example, the end-to-end timing
correlation attack. Thus, to prevent TS from performing a timing attack by linking
multiple task requests, the workers connect to TS at random intervals. Furthermore,
during tasking the workers make sure that TS does not tamper the task request from
RS; otherwise, the workers can report TS as fraudulent to RS.
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Shin et al. [27], however, focus on the pull mode, which likely results in
suboptimal task assignment. Therefore, a recent study [26] proposes a secure task-
assignment protocol to protect worker location privacy in the push mode. The
privacy framework used in [26] is similar to [32] (Fig. 7.6a), except the CSP is
replaced by a privacy service provider (PSP)—a semi-honest (i.e., honest-but-
curious) third party to provide privacy functionality and collect encrypted data from
workers, including encrypted location reports. With the framework, the server needs
to perform worker-task matching in the encrypted domain. Particularly, given a task,
the server communicates with PSP in the encrypted domain to find the worker with
minimum travel cost to the task. The travel cost is evaluated in terms of worker-task
distance and the degree of interest of the worker to the task.

The advantage of the proposed protocol is twofold. The framework is not relying
on a trusted-third-party and is robust to semi-honest adversaries. Also, the privacy
guarantees hold for moving workers. However, when compared to the cloaking
and perturbation techniques, cryptographic-based approaches may incur higher
computation overhead. In addition, the semi-honest adversary model is restrictive
in terms of privacy protection and may not always hold in the real-world SC
applications. That is, server and PSP may not follow the specified protocol, or
requesters can be malicious. Thus, a stronger privacy protocol that is resilient to
malicious adversary model needs to be developed.

7.5 Conclusion and Future Directions

With the popularity of mobile devices, spatial crowdsourcing is rising as a frame-
work that enables human workers to solve tasks in the physical world. With
spatial crowdsourcing, requesters outsource a set of spatiotemporal tasks to a set of
workers, i.e., individuals with mobile devices that perform the tasks by physically
traveling to the specified locations of interest. However, current solutions require a
worker to disclose his location to the server and/or to other requesters even before
accepting a task—or a requester to disclose his tasks’ locations, which can be used to
infer his own location, to untrusted entities. In this chapter we identified the privacy
threats to both workers and requesters in the two main phases of crowdsourcing:
task assignment and task reporting.

We surveyed some of the most notable solutions proposing various privacy
techniques, ranging from pseudonym, cloaking, perturbation to exchange-based
and encryption-based approaches. These studies have shown encouraging results
in protecting the privacy of both workers or requesters in spatial crowdsourcing.
However, protecting the privacy of workers and requesters simultaneously using
rigorous privacy guarantees such as differential privacy is still an open problem.
Another promising direction is to consider powerful adversaries with knowledge
about temporal correlations of a moving user’s locations or collusion between
workers and the server; for example, some workers may work for the SC company
or the company may use driverless cars.
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