
Chapter 5
Analyzing Your Location Data
with Provable Privacy Guarantees

Ashwin Machanavajjhala and Xi He

Abstract The ubiquity of smartphones and wearable devices coupled with the
ability to sense locations through these devices has brought location privacy into
the forefront of public debate. Location information is actively collected to help
improve ad targeting, provide useful services to users (e.g., traffic prediction), or
study human mobility/activity patterns and correlate them to the health of individ-
uals. In this chapter, we highlight the privacy concerns in large-scale collections
of location data from user-centric mobile devices and explain how simple cloaking
based techniques might be ineffective. This motivates the need for algorithms that
collect and analyze location data with formal provable privacy guarantees. We
discuss the state of the art in specifying formal privacy guarantees for location data,
as well as algorithms that achieve these formal privacy guarantees. We conclude
with open research directions in this area.

5.1 Introduction

The advancement of location-sensing technology such as GPS together with mobile
devices has brought forth numerous location-based applications to track, record
and share individuals’ locations. Long sequences of detailed location records
about individuals are passively collected by organizations or actively shared by
individuals. Analysis of this giant collection of location data for the benefits of
individuals, business and society has been the focus of many research studies and
applications. For instance, the human location patterns learned from taxi trips can
help the discovery of important crossroads in a road network [54] and encourage
vehicle pooling [45]. Location data has also been found predictive of human
purchasing behavior [3], emergency behavior following large-scale disaster [47],
and epidemiological patterns [50], and hence improves existing prediction models in
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many fields. These location-based studies can potentially enhance our understanding
of human behavior and foster the development of tools to facilitate our life. To
realize these potentials, location data has to be made available to the interested
researchers or analysts. However, this data releasing process may reveal sensitive
properties of individuals.

What are the special properties about location data of individuals compared
to general tabular databases that make privacy protection challenging? The first
property is that individuals’ location data are highly identifiable. Montjoye et al.
[14] showed using mobility data of 1.5 million individuals over a period of
15 months that approximately 95% of the individuals in this dataset can be
uniquely identified by 4 spatio-temporal points, and the uniqueness of the location
data decays insignificantly as their spatial and temporal resolution coarsens. The
second property of location data is that individual’s location patterns exhibit high
predictability. Song et al. [46] found a more than 90% potential predictability in the
future whereabouts of each individual despite heterogeneous travel patterns among
the population.

Based on these properties, what kind of privacy guarantees can we hope to
achieve when releasing location trajectories? A good notion of privacy for location
data should consider adversaries with background knowledge. Even if the adversary
knows a small set of location points visited by an individual, these points can help
the adversary uniquely identify this individual from the location data, and infer
the other sensitive locations visited by this individual. Moreover, since location
trajectories are highly predictable, adversaries can leverage correlations between
points in a user’s trajectory to infer sensitive information even if the locations are
coarsened [1, 28, 40, 55], or perturbed [4]. For instance, sensitive locations such as
home and work addresses can be discerned easily based on the frequency with which
locations are visited [5, 21], and perturbed locations can be reconstructed based
on temporal correlations within the sequence of locations [53]. Next, linking these
location records of individuals to public information can further reveal more about
these individuals such as their health status based on their visits to hospitals. Ma
et al. [35] showed that an adversary can infer an extended view of a user including
the true identity in an anonymous trace with a small amount of side information
with high probability. Thus, it is important to consider adversaries with background
knowledge (about points in the trajectory as well as other side information) when
quantifying the privacy loss of a method for sharing location trajectories. Finally,
many applications (especially in upcoming IoT applications) require users to share
their locations multiple times, or even periodically. For every release to be useful,
more information about individuals must be disclosed each time. Hence, any method
for sharing locations must be able to provide privacy guarantees across multiple
releases and not just one release. A graceful degradation of privacy protection is
highly desired over multiple releases.

Traditional location privacy preserving practices are mainly based on anonymiza-
tion. For instance, k-anonymity removes identifiers and coarsens data values
such that each individual is indistinguishable from k − 1 others. However, these
practices fail to achieve the privacy desiderata discussed above. It is well known
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that k-anonymous releases do not protect against adversaries with background
knowledge [38]. Besides, k-anonymous releases do not guarantee privacy under
composition; i.e., two k-anonymous release can be combined to learn the sensitive
locations of an individual exactly. Moreover, many anonymization algorithms are
susceptible to attacks like the minimality attack [51], where the decisions made by
the anonymization algorithm reveal information to the attacker. Therefore, in this
work, we will present a formal framework that allows the releases or analysis of
location data of individuals with provable privacy guarantees that can achieve these
desiderata.

The rest of this chapter is organized as follows. Section 5.2 describes an
important provable privacy notion that satisfies all these desiderata, known as
differential privacy, and presents several variants of differential privacy for location
data and corresponding algorithms for these variants. Section 5.3 introduces a
more general privacy framework, Pufferfish privacy, which can capture all the
variants of differential privacy for location data discussed in Sect. 5.2, explain the
privacy semantics underlying these notions, and allow new and rigorous privacy
definitions to be created based on the needs of different applications. A general
algorithm to ensure Pufferfish privacy is also presented. However, not all the
privacy definitions instantiated under Pufferfish privacy can guarantee privacy under
composition. Hence, we present a special class of privacy notions instantiated under
this framework, called Blowfish privacy, in Sect. 5.4. This privacy class guarantees
privacy under composition, and allows users to tune privacy-utility tradeoffs by
specifying privacy policies. We conclude in Sect. 5.5 with a discussion of challenges
and some open research directions.

5.2 Differential Privacy

Differential privacy was first introduced in 2006 [15] as a promise to ensure
the private information of an individual while allowing the learning of useful
information about a population. This promise has quickly arisen as the state of
the art privacy definition with a rich class of mechanisms satisfying it. Unlike
anonymization, this privacy guarantee specifies a provable property of the privacy-
preserving mechanisms and satisfies many of the privacy desiderata discussed in the
previous section. In this chapter, we define differential privacy (Sect. 5.2.1), discuss
variants of this definition in the context of location data (Sect. 5.2.2), and survey
algorithms for differentially private release of location data (Sect. 5.2.3).

5.2.1 Definition and Properties of Differential Privacy

Let I be the set of all possible database instances, and let each database instance
be a collection of record values/tuples. The variable r is used to represent a record



100 A. Machanavajjhala and X. He

Table 5.1 Table of notation

I The set of possible database instances

D A database instance belonging to I
T The domain of tuples/record values in the database

t A tuple/record value, a value in T
H The set of all individuals. H = {h1, h2, . . .}
ri The record associated with individual hi

Data A random variable representing the true dataset (which is unknown to the
adversary)

tuples(Data) The tuples in the database (record values without explicit reference to the
identities of individuals)

records(Data) The identities and record values of individuals in the data

M A privacy mechanism: a deterministic or randomized algorithm (ofter used
in the context of a privacy definition)

Nnp The set of neighboring databases for unbounded differential privacy

Nn
np The set of neighboring databases for bounded differential privacy

σi ri ∈ records(Data): The statement that the record ri belonging to
individual hi is in the data

S Set of potential secrets. Revealing s or ¬s may be harmful if s ∈ S

Spairs Discriminative pairs, Spairs ⊆ S × S

D The set of evolution scenarios: a conservative collection of plausible data
generating distributions

θ A probability distribution. The probability, under θ , that the data equals
Di is Pr(Data = Di |θ)

Σ The spatial domain with distance metric d(·)

and is associated with an individual hi in the population H. Let T be the domain
for the record variable r , and a tuple t ∈ T be a value taken by a record. The data
curator will choose a privacy definition and a privacy mechanism (algorithm) M
that satisfies that privacy definition. Then the data curator will apply M to the data
to obtain a sanitized output ω ≡ M(Data), where Data is the random variable
representing the true database instance owned by the data curator which is unknown
to the adversary. We use records(Data) to denote the set of records in Data and
t(Data) to denote the record values (tuples). These notations and the key notations
from the rest of this chapter is summarized in Table 5.1.

An algorithm satisfies differential privacy if adding, removing or changing a
record in terms of the input does not significantly alter the output of the algorithm.
More formally:

Definition 5.1 (Differential Privacy [15, 16]) Given a privacy parameter ε > 0,
a randomized algorithm M satisfies ε-differential privacy if for any outputs ω ∈
range(M) and all pairs of datasets D and D′ in I that differ in one record (i.e.
D can be derived from D′ by either adding or deleting one record), the following
holds:
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Pr[M(D) = ω] ≤ exp(ε) Pr[M(D′) = ω], (5.1)

where the probability only depends on the randomness in M.

In this definition, the number of individuals in the database is unknown, and hence
this definition is also known as unbounded differential privacy. When the number
of the individuals is known in the database, the neighboring databases are defined
as a pair of databases that differ in the value of only one individual’s record, and
the remaining individuals all have the same record values. This is also known
as bounded differential privacy or indistinguishability. We represent the set of
neighbors for unbounded differential privacy by Ndp, and the set of neighbors for
unbounded differential privacy by Nn

dp, where n is the number of records in the
database.

Intuitively, changing an individual’s record value to the database for bounded
differential privacy (or adding or removing an individual’s record for unbounded
differential privacy) has little impact on the distribution of the output of a random-
ized algorithm. The parameter ε is usually known as the privacy budget. When ε is
small, the output distributions of M are similar regardless of whether an individual’s
record value was used in the computation. The definition only applies to randomized
algorithms, since it is easy to see that deterministic algorithms cannot satisfy this
definition.

Laplace mechanism is an important building block for designing differentially
private algorithms.

Definition 5.2 (The Laplace Mechanism) Given any function f : I → R
k , the

Laplace mechanism is defined as:

ML(D, f (·), ε) = f (D) + (η1, . . . , ηk), (5.2)

where ηi are i.i.d random variables drawn from Lap(Δf/ε), and Δf is the l1-
sensitivity of the query f .

The l1-sensitivity of the query f is a key concept for the Laplace mechanism,
defined as the maximum difference in the query output between any two neighboring
databases. Formally,

Definition 5.3 (l1-Sensitivity) The l1-sensitivity of a function f : I → R
k is

Δf = max
D,D′∈I,(D,D′)∈Ndp( or Nn

dp)
||f (D) − f (D′)||1, (5.3)

where ||x − y||1 denotes the l1 norm of the difference between vectors x and y, and
is defined as

∑
i |x[i] − y[i]|.

Intuitively, the Laplace mechanism adds noise that is large enough to hide the
maximum difference in the query output between any two neighboring databases
such that adversaries cannot distinguish the neighboring databases from the noisy
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output. Besides Laplace mechanism, there are many other algorithmic building
blocks for differential privacy. Readers may refer to [18] for more details.

An important property of differentially private algorithms is that their composi-
tion also satisfies differential privacy.

Theorem 5.1 (Sequential Composition [15, 16]) Let D ∈ I be an input database.
Let M1(·) and M2(·, ·) be algorithms with independent sources of randomness that
satisfy ε1- and ε2-differential privacy, resp. Then an algorithm that outputs both
M1(D) = ω1 and M2(ω1,D) = ω2 satisfies (ε1 + ε2)-differential privacy.

If the second algorithm M2 does not access the raw data (ε2 = 0), but only
applies on the output of the first algorithm, the provable privacy guarantee of the
first algorithm after applying M2 is unchanging. Formally,

Theorem 5.2 (Post-processing [15, 16]) Let D ∈ I be an input database. Let
M1(·) be an algorithm that satisfies ε-differential privacy. Then if an algorithm M2
is applied to the output of M1(·), then the overall mechanism M2 ◦ M1(·) also
satisfies ε-differential privacy.

All steps in the post-processing algorithm do not access the raw data, and hence
they do not affect the privacy analysis. While it seems intuitive that postprocessing
the output of a privacy algorithm should not result in additional privacy loss, there
are some privacy metrics, like k-anonymity, that do not satisfy the postprocessing
theorem.

Theorem 5.3 (Parallel Composition [15, 16]) Let D ∈ I be an input database.
Let H1, . . . ,Hp be disjoint subsets of individuals H; D ∩ Hi denotes the dataset
restricted to the individuals in Hi . Let Mi be mechanisms that each ensure εi-
differential privacy. Then the sequence of Mi (D∩Hi ) ensures (maxi εi)-differential
privacy.

These composition properties are very useful in proving the privacy guarantees
of complex algorithms. Sequential composition theorem allows us to decompose
an algorithm into a few sequential components, and then analyze each component
separately. The parallel composition theorem enables us to analyze an algorithm
that works on disjoint partitions of the data. The postprocessing theorem ensures
that we only need to analyze the steps in the algorithm that actually touch the private
database. Then the overall privacy guarantee of an algorithm over the entire database
can be established with the two theorems above. These composition theorems are
also very important, as they can address the impossibility result by Dinur and Nissim
[51] that a database of size n can be reconstructed with high accuracy from the
answers to n log(n)2 statistical queries even if each answer is perturbed with up to
o(

√
n) error. Differential privacy conforms to this negative result as the privacy

guarantee degrades as the number of sequential accesses to the data increases
(according to the sequential composition result). Nevertheless, unlike k-anonymity,
the privacy degradation is gradual and can be theoretically quantified. We would
like to note that the sequential composition theorem holds (a) in the worst case and
(b) even when the next query or differential private mechanism in the sequence is
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chosen adversarially and adaptively based on the answers to the previous queries.
There are more sophisticated but advanced composition theorems [18]. When the
queries are not adaptively chosen, tighter bounds on the privacy loss are known
[18, 23, 32].

There are other privacy axioms which differential privacy and other good
provable privacy notions can satisfy [36]. These properties make differential privacy
an appealing choice for many privacy-aware applications and research.

5.2.2 Variants of Differential Privacy for Location Data

Differential privacy has arisen as a popular choice for privacy sensitive applications
that use location data. We map the differential privacy definition to location data
as follows. Consider Σ as the spatial domain for the location data with a distance
metric, denoted by d(·). The spatial domain is usually a set of latitude-longitude
coordinates, or a discretized 2-dimensional space, e.g. a uniform grid over a map.
A location database D ∈ I consists of individuals with their location data. Each
individual hi ∈ H has a variable ri to represent his or her location trajectories. If the
events are recorded at regular time intervals, known as regular trajectories, ri[j ] for
j = 1, 2, . . ., represents the j th event of individual hi which takes a location value
from the spatial domain Σ at time point j . Otherwise, each event has a temporal
dimension in addition to the space domain, where privacy notions and techniques
for regular trajectories can be adapted accordingly.

We will focus on regular trajectories and bounded differential privacy in this
section. Neighboring databases for bounded differential privacy Nn

np differ in the
record value/tuple for the record ri of a single individual hi ∈ H in the database. We
can define neighboring databases in multiple ways for location data of individuals,
and they result in distinct privacy notions with different levels of privacy protection.
We describe these in detail below: (1) ri can differ in one event with two different
location values; or (2) differ completely in all the events of a single individual; or
(3) differ in a short window of consecutive events. Therefore, these choices result in
three key variants of differential privacy with details shown below.

• Event-differential privacy (Event-DP): In event-differential privacy, neighbor-
ing databases differ in only one single location (at a single time) of a single
individual. Intuitively this definition ensures that the output of an algorithm is
insensitive to changing one location at one time point. More formally,

Definition 5.4 (Neighboring Databases for Event-DP) Databases D and D′
are neighbors for event-DP if they differ in a single record ri which takes values
t in D and t ′ in D′ such that

|t | = |t ′|, and if t[j∗] �= t ′[j∗], then ∀j �= j∗, t[j ] = t ′[j ] (5.4)
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Algorithms designed under this privacy notion are commonly applied in the
scenarios where each individual has one or few sensitive events in the database.

• User-differential privacy (User-DP): In user-differential privacy, neighboring
databases differ in the record of a single individual. Intuitively, this definition
ensures that the output of an algorithm is insensitive to changing locations of an
individual at any time point. More formally,

Definition 5.5 (Neighboring Databases for User-DP) Databases D and D′ are
neighbors for user-DP if they differ in a single record ri which takes values t in
D and t ′ in D′ such that

t �= t ′ (5.5)

This protection is applicable to scenarios where the entire location sequences are
released [10, 26, 37, 39, 56].

• Window-differential privacy (w-event privacy/Window-DP): This window-
level protection takes in a privacy parameter w to specify how the neighboring
databases differ. Intuitively, this definition ensures that the output of an algorithm
is insensitive to changing of a window of w consecutive events of a single
individual. More formally,

Definition 5.6 (Neighboring Databases for w-Event Privacy) Databases D

and D′ are neighbors for window-DP (or w-event privacy) if they differ in a
single record ri which takes values t in D and t ′ in D′ such that

∀j1 < j2, if t[j1] �= t ′[j1] & t[j2] �= t ′[j2], then j2 − j1 + 1 ≤ w

Hence, any pairs of neighbors that differ in an event window of length at most
w are considered window-level neighbors. This variant is typically used in the
streaming setting [29]. When the window size w is 1, this definition is equivalent
to the event-level differential privacy.

In summary, these variants of differential privacy ensure the output of an
algorithm is insensitive to different levels of changes in location data. Based on
the levels of changes, user-DP offers the strongest privacy protection, following by
w-event privacy and event-DP. User-DP is preferred over other variants when we
would like to protect the properties of the entire location trajectory, for instance, to
protect the home locations of an individual since it can reappear many times, or to
protect the routines of an individual. w-event privacy suits the scenarios where short
activities of an individual such as in a day or an hour require protection. Event-DP
is applicable for one-time release of a single event of an individual. Moreover, by
the sequential composition theorem, an event-DP algorithm simultaneously ensures
both w-event DP and user-DP, albeit with a much larger value of ε. If an algorithm
ensures ε-event DP, then it also satisfies (w · ε,w)-event DP, and (T · ε)-user-DP
where T is the maximum possible number of events per individual in the database.
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Finally, user-DP implies that only a finite number of queries can be answered, while
a potentially infinite number of queries could be answered under event/window-DP.

5.2.3 Differentially Private Algorithms for Location Data

We have seen three variants of differential privacy for location data. Given the
same query, algorithms that satisfy these different privacy guarantees can result in
different utilities. Thus, in addition to tuning ε, one can navigate the privacy-utility
tradeoff space by using these variants of differential privacy. We illustrate with the
example of point queries. A point counting query across time asks for the number
of events in D that occur at location l ∈ Σ , denoted by f (D, l), (across all time),
where Σ is the spatial domain.1 Under event-DP, the l1-sensitivity of f (D, l) is just
1 as neighboring databases differ in at most one location of an individual, and hence
the count for location l is affected by at most 1. Adding noise drawn from Lap(1/ε)

satisfies ε-event-DP and the error in terms of the l2 norm of the difference between
the noisy answer and the true count is

√
2/ε in expectation. On the other hand,

under user-DP, the l1-sensitivity of f (D, l) is T , where T is the maximum possible
number of events per individual in the database. To ensure ε-user-DP, the noise
added to the query is drawn from Lap(T /ε), and hence the answer has an expected
error of

√
2T/ε. Similarly, to ensure w-event privacy, adding noise from Lap(w/ε)

to f (D, l) is sufficient. This noise results in an expected error
√

2w/ε, which is
smaller than the error under user-DP, but larger than event-DP.

There are many interesting queries for location data, but we will focus on three
important settings: (a) answering counting queries on a single snapshot in time;
(b) answering counting queries in a streaming fashion; (c) synthesizing location
trajectory databases. We will present corresponding algorithms for each setting.

5.2.3.1 Answering Counting Queries on a Single Snapshot in Time

In a snapshot location database, each individual has a single location. Hence, all
the three variants of differential privacy described in Sect. 5.2.2 provide equivalent
privacy protections. In this setting, besides point counting queries, range counting
queries are commonly asked. A range counting query asks for the number of
individuals in D within rectangle R ⊆ Σ , denoted by f (D,R). We represent a
set of counting queries by {f (D, li)}i , where li ∈ Σ , and represent a set of range
counting queries by {f (D,Ri)}i , where Ri ⊆ Σ . A naive way to answer all possible
point and range counting queries is to first obtain a differentially private answer to
all point counting queries, i.e, {f (D, l)}l∈Σ , using the Laplace mechanism. Then
each range counting query can be answered by adding up all noisy counts of points

1The domain is assumed to be discrete, otherwise it can be discretized.
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falling into the rectangle R. The summation step is a post-processing step which
does not require the original data, and hence does not change the privacy guarantee.
However, this approach injects too much noise to query answers. The expected error

for this algorithm is
√

8|R|
ε2 , and it can easily dominate the true count, especially

when the range queries span large sparse rectangles.
To improve the query accuracy, many prior work [13, 25, 42, 43, 48, 56] proposed

quad-tree based solutions. A quad-tree denoted by T is built from the partitioned
spatial domain, where each node of the tree, v, is associated to a sub-region, denoted
by dom(v) and a noisy count for the number of events in D falling into that region,
denoted by c̃(v). The set of children of a node v is a partition of the region associated
to v. The counts stored in T can be used to answer all possible range counting
queries. Given range rectangle R, we first traverse T from the root and initiate the
query answer 0. As traversing downwards, each node v is examined whether its
associated region intersects with the query rectangle R. The count of v is considered
only when dom(v) intersects with R. If dom(v) is fully contained in R, the answer
is incremented by c̃(v). If dom(v) partially intersects R and v is not a leaf node,
then every child of v that is not disjoint with R will be visited. If dom(v) partially
intersects q and v is a leaf node, then we inspect the data points in dom(v), and the
answer is incremented by the number of points contained in q. In this way, a range
counting query associated with a large rectangle can be answered with few nodes
and hence this approach gives a smaller amount of noise.

Given a fixed tree height h, the l1 sensitivity for answering all counts in T is
2(h + 1). By the Laplace mechanism, adding noise drawn from Lap(2(h + 1)/ε)

to the count of each node in T satisfies ε-DP. As both sensitivity and hence the
amount of noise depends on the tree height h, existing work has made tremendous
effort in improving the accuracy by exploring privacy budgeting strategy [13],
correlations between noisy counts [13, 25] and pruning tree nodes [42, 43, 48]
where the maximum tree height h is given, or by designing algorithms independent
of h [56].

• Optimizations with a given maximum tree height h. Most of the prior work
proposed algorithms [13, 25, 42, 43, 48] with the maximum tree height given.
The first key optimization with a given maximum tree height is to distribute
different privacy budget to each level of the tree [13] by applying the sequential
and parallel composition of DP mechanisms. The intuition behind is that the
nodes at a higher level have larger counts and hence are more resistant to
perturbation while nodes at a lower level with smaller counts are less prone
to noise. The baseline method that adds noise drawn from Lap(2(h + 1)/ε)

to all nodes is equivalent to uniform budgeting by split ε uniformly across
each level. Cormode et al. [13] aim to improve the total error injected to the
tree T with given height h, by considering the total error as the sum of the
node variances. The variance of the Laplace mechanism with parameter εi is
V ar(Lap(εi)) = 2/ε2

i . Since the noise is independently generated in each

node, the total variance is Err(q) = ∑h
i=0 2ni/ε

2
i , where ni is the number
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of nodes at height i contributed to the query q and εi is the privacy budget
assigned to the nodes at height i. This error is minimized with the constraint

that
∑h

i=0 εi = ε when εi = 2(h−i)/3ε 21/3−1
2h+1/3−1

. This strategy corresponds
to a geometric budgeting strategy where nodes at higher level receive smaller
budgets, and the budget increases geometrically downwards the tree. Another
popular optimization technique considers the consistency correlation between
the noisy counts, thus to further reduce the total variance of the noise injected
to the tree counts [13, 25]. The last optimization [42, 43, 48] is to prune nodes
that have small counts and hence their descendants in the tree. This approach can
introduce biased noise, but can reduce the total amount of noise with respect to
the true counts.

• Private partition without the maximum tree height. Another research direc-
tion explores spatial partition without the specification of the maximum tree
height. A recent work [56] adds a constant amount of noise (regardless of the
maximum tree height) to a bias count of each node. If this noisy count is
bigger than the threshold, this node will be further partitioned. After obtaining
this partition, only the leaf nodes are published with their noisy counts. The
intermediate nodes obtain their counts by summing up the counts of all the leaf
nodes under them. This approach is the first algorithm that does not require the
maximum tree height as an input. The constant amount of noise instead of height-
dependent noise largely improves the accuracy of the query answer. The details
of this algorithm can be referred to [56].

There are other data-dependent methods, such as kd-tree to partition the spatial
domain based on other mechanisms. These algorithms can be referred to [13].

5.2.3.2 Answering Counting Queries in a Streaming Fashion

For infinite sequences of locations, stream counting queries have been well studied
and are defined as a sequence of counting queries (f (D[j ], l))j=1,2,... for location
l ∈ Σ in database D at time stamp j = 1, 2, . . . . Event-DP is a special case
of w-event privacy where w = 1. User-DP does not apply here, as there is no
bound on the maximum possible length of the sequence. However, an (ε/2)-user-DP
mechanism can be applied to disjoint subsequences of the stream prefix, where each
subsequence has a length w. This ensures (ε, w)-event privacy, but this approach is
not optimal.

Kellaris et al. [29] proposed a sliding window methodology. The overall mech-
anism denoted by M which takes an input stream with prefix D[1 : j ] can be
decomposed into j sub-mechanisms M1, . . . ,Mj . Let each Mk for k ∈ [1 : j ]
generate independent randomness to achieve εk-event-DP. If for all 0 ≤ j2−j1 ≤ w,
∑j2

k=j1
εk ≤ ε, then the overall mechanism M satisfies w-event privacy. This means

that if the sum of privacy budgets per sliding w-window is no more than ε, the
overall mechanism ensures (ε, w)-event privacy.
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With this sliding window methodology, two baselines were given by [29]: (1)
uniformly allocating ε/w budget to each event so that the sum of the budget per
sliding window is always ε; (2) publishing a single event with privacy budget ε for
every w timestamps. The first baseline does not work well if w is large as each event
is given a small budget. The second baseline approximates the other unpublished
counts from the released one. If the released count is very different from the others,
the overall estimation is very poor. In order to address these shortcomings, the same
work [29] proposed to skip publications of counts that are similar to previously
released ones.

In the new solutions, each sub-mechanism Mj has two parts Mj,1 and Mj,2. The
first part Mj,1 differentially privately computes the distance between the current
count and the preceding released counts. If the distance is small, the publication of
this count is skipped; otherwise then the second part Mj,2 releases the noisy count
with part of the remaining budget available for the current sliding window. There
are two ways to deal with the privacy budget for events within a window: (1) budget
distribution, and (2) budget absorption. Both schemes assign some budget ε1/w to
Mj,1 for computing distance differentially privately at time stamp j , and use the
remaining budget ε2 for publishing counts, where ε2 = ε − ε1. We will see how the
publication budget ε2 is spent within each sliding window.

• Budget Distribution: The publication budget ε2 is distributed in an exponen-
tially decreasing fashion to the timestamps where a publication is decided to
occur. Formally, at each timestamp, remaining budget is computed as εrm =
ε2 − ∑j−1

k=j−w+1 εk,2, where εk,2 is the privacy budget assigned to each of the
last w − 1 aggregated statistics. Then a Laplace noise with a budget of εrm/2
is added to the query output. If a publication is skipped, its budget is saved and
spent in timestamps falling outside the active window. If there are m publications
per window, the sequence of budget can be ε2/2, ε2/4, . . . , ε2/2m.

• Budget Absorption: This scheme uniformly distributes the publication budget
to all timestamps. If it decides not to publish at a timestamp based on the noisy
distance, the corresponding budget becomes available for future publication. If it
decides to publish at a timestamp, it absorbs all the budget that became available
from the previous skipped publications. This allows higher accuracy for the
current statistics. To ensure the total budget within a window not exceeding the
maximum ε2, after the absorption of budgets from previous timestamps, the same
amount of budget must be nullified from the immediate succeeding timestamps.

Both mechanisms satisfy w-event privacy. There are no theoretic guarantees that
they can do better than the baseline methods, but the experiments in [29] show
their superiority over the baselines in most of their settings. In general, this sliding
window methodology highly depends on the choice of w for both privacy and utility.
It remains an interesting question that what w should be set for each application.

The algorithms discussed so far can achieve w-event privacy (and hence event-
DP) in a streaming setting. There are more event-DP algorithms [6–8, 11] developed
for streaming setting. Among them, only PeGaSus [11] can simultaneously support
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a variety of stream processing tasks—counts, sliding windows, event monitoring—
over multiple resolutions of the stream, and outperform the other solutions spe-
cialized to individual queries. These event-DP algorithms can also be extended to
user-DP algorithms when each user has a limited number of contributions to the
streaming data. If each user contributes a count of 1 at most l times to the entire
streaming setting, then an ε-event-DP algorithm can automatically guarantee lε-
user-DP. This assumption is valid for certain scenarios. For instance, in a hotel,
most customers stay there for a few days. There are also algorithms that summarize
or sample user’s information so that their contributions to the streaming data is
bounded [20], but may result in poorer data quality.

5.2.3.3 Synthesizing Location Trajectory Databases

Synthetic location databases are important for applications and research in city/-
traffic planning, epidemiology, and location-driven advertising, especially when the
analysis cannot be limited to a set of counting queries. The synthetic data also keeps
the same format of the true data such that data analysts do not have to adapt to a new
tool for exploring the private data. Synthesizing location databases corresponds to a
non-interactive setting. Under this setting, we learn a model first from the original
ground truth and then generate a synthetic database from the model. Depending on
the privacy definition, the sensitivities of the queries used to compute the sufficient
statistics of the model will change. We will focus on user-DP here for databases of
location sequences, but the techniques presented can be extended for event/window-
DP. Counting queries for sub-sequence of locations are common queries used for
building the model. If the entire sequence per user is short and fixed, e.g. home
location and work location, the l1-sensitivity for the sub-sequence counting queries
is small, and hence the privacy budget can be split over different sets of queries.
Related work can be found in [37, 39, 56]. On the other hand, if sequences are long,
a Markov process is commonly considered [10, 26, 56] to model the correlation
between the events. Formally,

Definition 5.7 (Markov Process) A sequence of locations (l1l2 · · · ln) ∈ Σn is
said to follow an order 	 Markov process if for every 	 ≤ j < n, l ∈ Σ

Pr[li+1 = l|l1 · · · li] = Pr[li+1 = l|li−	+1 · · · li]. (5.6)

We refer to the probability Pr[li+1 = l|li−	+1 · · · li] as a transition probability
of the Markov process. The collection of transition probabilities for all x =
li−	+1 · · · li ∈ Σ	 can be estimated using the set of all 	- and 	+1-gram counts, i.e.

Pr[li+1 = l|li−	+1 · · · li] = f (D,xl)
f (D,x)

, (5.7)

where f (D, x) denotes the number of occurrences of x in the database D. Starting
symbols (�) and stopping symbols (⊥) are prepended and appended (respectively)
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to the original trajectories to capture the starting and stopping probabilities in the
Markov process. The synthesis of a trajectory begins with a starting symbol (�).
Based on the transition probabilities from the Markov process, a next location is
sampled continuously till reaching the stopping symbol (⊥). This model requires
to maintain all 	-gram counts for 1 ≤ 	 ≤ h, where h − 1 is the maximum order
of Markov process considered. A prefix tree T of heights h is used to store these
counts, where nodes in T are Σ1 ∪ . . .∪Σh, and edges connected each 	-gram x to
	 + 1-gram xl for all l ∈ Σ .

To ensure user-DP, prior approaches add noises drawn from a Laplace distri-
bution to parts of the prefix tree T [10, 56]. These prior work performed well for
small domain, and can be applied to continuous spatial domains by discretizing
locations (e.g. via a uniform coarse grid). However, they failed to scale to realistic
location sequences that span large geographical regions. Though a sufficiently fine
discretization of the spatial domain can capture all the mobility patterns in the data,
this discretization results in very large domain sizes (of several tens of thousands),
and hence making the model fitting procedure very slow and overfitting the data.
Moreover, the amount of noise added to ensure differential privacy also grows with
the number of nodes in the tree. On the other hand, if a coarse discretization of the
space is used for a small prefix tree, then much of the spatial correlation information
in the original trajectories is lost. Hence, He et al. [26] proposed an end-to-end
system, named Differentially Private Trajectories (DPT) to address these challenges.
The schematic overview of this system is shown in Fig. 5.1.

DPT discretizes the spatial domain at multiple resolutions to capture different
step sizes (see Step 1 in Fig. 5.1). Every resolution has a prefix tree (Step 2). Within
each resolution, only movements from each grid cell to neighboring cells in one
step are allowed. Though there is a larger number of prefix trees, each prefix tree
has a much smaller branching factor, thus resulting in a big reduction in the number
of counts maintained by the model. DPT uses a novel model selection algorithm
(Step 3) to set the tree heights and to prune unrealistic resolutions in a differentially
private manner. The following steps add noises drawn from the Laplace distribution
to the chosen prefix trees (Step 4), and prune adaptively these noisy trees (Step 5) to
further improve utility. In the last sampling step (Step 6), a novel postprocessing
strategy is applied by DPT to restore the directionality of synthetic trajectories
which could be lost due to the noise added to the private model. Based on these
optimizations, this end-to-end system can synthesize trajectories spanning large
geographical areas with significantly more utility than the prior work [10] and is
orders of magnitude faster. These synthetic trajectories have been shown mirroring
the original trajectories on three utility metrics—distribution of diameter (i.e.,
distance traveled), conditional distributions of destinations given starting regions,
and frequent patterns. However, synthetic trajectories cannot join with other datasets
due to the absence of join keys. Prior work [16] has shown that non-interactive
setting can have more error than an interactive setting, main due to the difficulty
of supplying utility that has not yet been specified at the time the data synthesis is
carried out. Moreover, additional efforts have to be applied to synthetic trajectories
such that they are realistic and satisfying real-world constraints.
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Fig. 5.1 DPT framework overview

In summary, from these prior work [4, 10, 13, 19, 26, 29, 37, 39, 49, 53, 56], we
see that differential privacy has been well explored for location data. Applications
considered various forms of neighboring databases and hence different algorithms.
However, it is not clear that (1) what information is protected via the different
specification of neighboring databases; and (2) which algorithms can be used to
protect against adversaries with prior background knowledge. Moreover, the algo-
rithms presented so far are designed mainly for counting queries. For location-based
services that require location information at a particular time stamp, even event-
DP, the weakest privacy notion seen so far, is too strong to provide good accuracy.
Hence, we will first see how to quantify the privacy guarantees of algorithms
through the lens of secrets and adversaries using a more general framework called
Pufferfish in Sect. 5.3. Then, we will show how to design algorithms for location-
based services that can achieve both accuracy and provable privacy guarantees
named as Blowfish Privacy under this framework in Sect. 5.4.2.
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5.3 Pufferfish Privacy

In this section, we summarize the Pufferfish privacy framework [31] that generalizes
differential privacy, helps understand the privacy semantics underlying privacy
definitions, and create new privacy definitions customized to the requirements of
an application. In Sect. 5.3.1, we introduce how the Pufferfish framework defines
privacy in terms of secrets and (the prior knowledge available to) adversaries, rather
than neighboring databases. In Sect. 5.3.2, we show that variants of differential
privacy are instantiations of the Pufferfish framework, and explain under what
assumptions about secrets and adversaries each of these variants ensure semantic
privacy guarantees. Finally, in Sect. 5.3.3, we describe algorithms for general
Pufferfish privacy definitions.

5.3.1 Definition of Pufferfish Framework

Pufferfish framework requires domain expert to specify three components: (1) a
set of potential secrets S, (2) a set of discriminative pairs Spairs ⊆ S × S, and
(3) a collection of data evolution scenarios D. The specification of these three
components in this framework gives a rich class of privacy definitions.

• The set of potential secrets S represents the information that data curator would
like to protect. A secret can be specified as a statement such as “Bob is at location
l ∈ T ”, “Bob is not at location l ∈ T ”. In general, a domain expert should
add a statement s to the potential secrets S if either the claim that s is true or
the claim that s is false can be harmful. The resulted S forms a domain for the
discriminative pairs, a subset of S × S.

• The set of discriminative pairs Spairs , is a subset of S × S. The role of Spairs

is to tell how to protect the potential secrets S. For any discriminative pair
(si, sj ) ∈ Spairs , we would like to guarantee that adversaries are unable to
distinguish between the case where si is true of the actual data and the case where
sj is true of the actual data. For this reason, si and sj must be mutually exclusive,
but not necessarily exhaustive (it could be the case that neither is true). One
example of a discriminative pair is (“Bob is at location l1”, “Bob is at location
l2”), where l1 �= l2, or (“Bob is at location l1”, “Bob is not at location l1”), where
l1, l2 ∈ T . The set of changes for neighboring databases shown in Sect. 5.2.2 are
examples for the set of discriminative pairs.

This specification allows highly customizable privacy guarantees. For
instance, many location-based applications such as OpenPaths [41] and
Airbnb [2] state in their policies that user’s location information will only be
shared or collected at coarse granularity. This property can be specified by pairs
of secrets, such as (“Bob is at location l1 ∈ T ”, “Bob is at location l2 ∈ T ),
where l1 is 21 miles away from l2. Or if users are fine with releasing their
location at city-level, but not at any street level within a city [34], this privacy
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preference can be expressed via a set of discriminative pairs Spairs that exclude
pairs of secrets like (“Bob is at Durham”, “Bob is at New York”), but includes
pairs of secrets with nearby places, such as (“Bob is at a cafe in Durham”, “Bob
is at home in Durham”).

• The evolution scenarios D can be viewed as a set of conservative assumptions
how the data evolved (or were generated) and about knowledge of potential
adversaries. Note that assumptions are absolutely necessary—privacy definitions
that can provide privacy guarantees without making any assumptions provide
little utility beyond the default approach of releasing nothing at all [17, 30].
In order to release useful information about the database, the domain expert
should be able to identify a reasonable set of assumptions. In many cases, they
already do this informally [44]. Formally, D is represented as a set of probability
distributions over I (the possible database instances). Each probability distri-
bution θ ∈ D corresponds to an adversary that we want to protect against and
represents that adversary’s belief in how the data were generated (incorporating
any background knowledge and side information). For D ∈ I, we use the
notation Pr(Data = D|θ) to represent the probability, under θ , that the true
database is D. Below we give some examples of possible choices of D and their
interpretations.

Example 5.1 (No Assumptions) D can consist of all possible probability distri-
butions over database instances (i.e. including those with arbitrary correlations
between records). This corresponds to making no assumptions.

Example 5.2 (Independent Individuals but Markov Model-Based Events) Sev-
eral work [49, 53] consider that individuals are independent, but the events per
individual are correlated by Markov model. The individuals in the database are
independent of each other, that is, D consists of all θ for which

Pr[Data = {r1, . . . , rn|θ}] = f1(r1) × f2(r2) × . . . × fn(rn) (5.8)

for arbitrary f1, f2, . . . , fn. The correlation within the events of an individual is
modeled by a transition matrix or a class of transition matrices Pθ for D, where
each (l1, l2)th entry of this matrix specifies the probability an individual hi being
at location l2 at time stamp j given the previous (j − 1)th event, i.e. Pr(ri[j ] =
l2|ri[j − 1] = l1).

Readers may refer to [31] for more examples of data evolution scenarios.

To use the Pufferfish framework, the domain expert simply does what he or she
does best, and is no longer required to be a privacy expert. After specifying the
assumptions explicitly, the corresponding Pufferfish privacy instance is formally
stated as follows.

Definition 5.8 (Pufferfish Privacy [31]) Given a set of potential secrets S, a set
of discriminative pairs Spairs , a set of data evolution scenarios D, and a privacy
parameter ε > 0, a potentially randomized algorithm M satisfies ε-Pufferfish
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(S,Spairs ,D) privacy if (i) for all possible outputs ω ∈ range(M), (ii) for all pairs
(si, sj ) ∈ Spairs of potential secrets, (iii) for all distributions θ ∈ D for which
Pr(si |θ) �= 0 and Pr(sj |θ) �= 0, the following holds:

Pr[M(Data) = ω|si, θ ] ≤ eε Pr[M(Data) = ω|sj , θ ] (5.9)

Pr[M(Data) = ω|sj , θ ] ≤ eε Pr[M(Data) = ω|si, θ ], (5.10)

where Data is a random variable representing the true dataset (which is unknown
to the adversaries).

5.3.2 Relation to Differential Privacy

Recall that the definition of differential privacy is based on neighboring databases
by changing an individual’s record. This definition is a condition of a randomized
algorithm—the output of the randomized algorithm is insensitive to the change of
an individual’s record to the database. In this definition, there is no mention or
assumption of data evolution scenarios known by the adversaries. In this section,
we would like to show how to understand and analyze differential privacy in the
framework of Pufferfish.

Consider the following specifications. Let H = {h1, h2, . . . , hN } be the set
of all individuals in a population of size N . Define σi be the statement ri ∈
records(Data) (i.e. “records ri belonging to individual hi is in the data”, and let
σ(i,t) be the statement ri ∈ records(Data) ∧ ri = t(i.e. “record ri belonging to
individual hi has value t and is in the data”). Let the set of secrets and the set of
discriminative secret pairs be specified respectively as

S = {σi,t : hi ∈ H, t ∈ T } ∪ {¬σi : hi ∈ H} (5.11)

Spairs = {(σi,t ,¬σi) : hi ∈ H, t ∈ T } (5.12)

This specification of secret pairs aim to prevent an adversary from distinguishing
whether the record ri associating with hi is in the data and has the value t v.s. the
record about individual hi is not in the data, for any individual hi in the population
H, and any possible tuple value t ∈ T . Consider the data evolution scenario D

where all individuals are independent (including their presence/absence in the data
and their tuple values if present in the data). This distribution can be specified as

Pr[Data|θ}] =
∏

ri∈records(Data)

fi(ri) Pr[σi]
∏

ri /∈records(Data)

(1 − Pr[σi]), (5.13)

where fi(ri) is the distribution for the value taken by record ri of an individual hi ,
and Pr[σi] is the probability of the record of an individual being in the data.
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Theorem 5.4 ([31]) With the choices of S and Spairs defined in Eqs. (5.11)
and (5.12), and the set of data evolution scenarios D as specified in Eq. (5.13),
unbounded ε-differential privacy is equivalent to ε-Pufferfish(S,Spairs ,D).

The variants of differential privacy for location data described in Sect. 5.2.2 can
all be described under this framework. For instance, event-DP can be shown to be
equivalent to a Pufferfish instantiation where: (1) the set of secrets are properties
of an individual’s location at a single time point; and (2) adversaries may know
arbitrary prior knowledge about an individual’s location at each time point, but do
not know correlations across time points (or across trajectories). On the other hand,
user-DP can be shown to be equivalent to an instantiation where: (1) the set of
secrets are properties of the entire trajectory; and (2) adversaries may have arbitrary
prior knowledge about a user’s trajectory (including correlations across time points),
but assume that there are no correlations across trajectories.

This means that event-DP algorithms are susceptible to attacks when adversaries
know constraints or correlations between consecutive locations in a trajectory.
Consider a single user’s location sequence, and consider adversaries who know
that the individual stayed at the same location for a long period of time, e.g.
at home in the evening. Event-DP that adds noise with standard deviation about
1/ε to the histogram counts of locations over time cannot hide the evidence
of that location. While user-DP does protect against such attacks, it may be an
overkill. We can use Pufferfish to design new privacy definitions that match such
adversaries. For instance, if one wants to hide properties of individual time points,
but handle correlations, one could use the same secrets as Event-DP, but handle
more complex adversaries as defined in Example 5.2. Let’s name this privacy Event-
MarkovAdversary-Privacy. There are algorithms like the Markov Quilt Mechanism
described next, that can ensure more privacy than event-DP, and more accuracy than
user-DP, helping us better tradeoff privacy and utility.

5.3.3 Algorithms for Pufferfish Privacy

We first present a special algorithm for location data which consider adversaries with
assumptions shown in Example 5.2, that individuals are independent but sequences
of events are correlated and are modeled by Markov model. Then, we will present a
general algorithm for Pufferfish privacy.

5.3.3.1 Markov Quilt Mechanism

Markov Quilt Mechanism was proposed by Wang et al. [49]. This mechanism
applies Event-MarkovAdversary-Privacy and considers counting queries (with l1-
sensitivity of 1) over a location database over a period of time. Based on the
definition of the adversary in Event-MarkovAdversary-Privacy, the sequence of
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locations in the location trajectory can be modeled as a Bayes net, a chain X1 →
X2 → . . . XT , where each event Xi only depends on its previous event Xi−1. Based
on this correlation, the impact of Xi on Xi+1 is more significant than the impact of
Xi on Xi+k when k is large. Thus it is sufficient to add noise proportional to the
number of events that are highly correlated with the event at each time point. The
notion of Markov Quilt is based on the set of highly correlated events for a given
event. The size of the Markov Quilt depends on the strength of the correlation, and
not on the total size of the trajectory. Hence, unlike user-DP which would add noise
proportional to the length of the trajectory, Markov Quilt mechanism will add noise
proportional to the size of the Markov Quilt which could be much smaller, thus
protecting against adversaries who know correlations as well as ensuring low error.
The details of this mechanism can be referred to [49].

5.3.3.2 General Algorithm for Pufferfish Privacy

In the Laplace mechanism for differential privacy, the noise to the query output
is proportional to the l1-sensitivity defined in Eq. (5.3), which is the worst case
distance between f (D1) and f (D2) where D1 and D2 are neighboring databases
that differ in the value of a single individual. The corresponding concept for a pair
of neighboring databases in Pufferfish framework are all possible pairs of databases
that differ in a given pair of discriminative secrets (si, sj ) ∈ Spairs . Hence, Wang
et al. [49] consider the two distributions given a secret pair (si, sj ) ∈ Spairs , i.e.

μi,θ = Pr(f (Data) = ·|si, θ)

μj,θ = Pr(f (Data) = ·|sj , θ)

and apply Wasserstein distance to measure the relevant distance between distribu-
tions μi,θ and μj,θ . Wasserstein distance is formally defined as below.

Definition 5.9 (∞-Wasserstein Distance [49]) Let (X , d) be a Radon space, and
μ, ν be two probability distribution on X with finite p-th moment. The ∞-
Wasserstein distance between μ, v with d(x, y) = |x − y|:

W∞(μ, ν) = inf
γ∈Γ (μ,ν)

max
(x,y)∈A

|x − y|, (5.14)

where A = {(x, y)|γ (x, y) �= 0} is the support of γ , and Γ (μ, ν) is the set of all
couplings γ over μ and ν.

Intuitively, γ ∈ Γ (μ, ν) is a way to shift probability mass between μ and ν, and
W∞(μ, ν) can be interpreted as the maximum “distance” that any probability mass
moves while transforming μ to ν in the most optimal way. Wang et al. [49] proposed
a general mechanism for Pufferfish framework Pufferfish framework (S,Spairs ,D)
with privacy budget ε and query f . This mechanism first computes the generalized
sensitivity, defined as
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ΔW∞(f,S,Spairs ,D) = max
(si ,sj )∈Spairs

max
θ∈D | Pr(si |θ) �=0,Pr(sj |θ) �=0

W∞(μi,θ , μj,θ )

(5.15)
This generalized sensitivity iterates over all possible secret pairs in Spairs and data
evolution scenarios θ ∈ D and computes the inf-Wasserstein distance between the
distributions given each secret and θ . Similar to Laplace mechanism, Wasserstein
mechanism adds noise that is proportional to the general sensitivity of the given
function can guarantee ε-Pufferfish privacy. Here is the formal statement.

Definition 5.10 (Wasserstein Mechanism) Given any function f : I → R
k , the

Wasserstein mechanism is defined as :

MW(D, f (·),S,Spairs ,D, ε) = f (D) + (η1, . . . , ηk), (5.16)

where ηi are i.i.d random variables drawn from Lap(ΔW∞(f,S,Spairs ,D)/ε).

Wang et al. [49] showed that Wasserstein mechanism provides ε-Pufferfish
privacy in the framework (S,Spairs ,D). This mechanism is also shown with
a smaller sensitivity parameter than the l1-sensitivity of query f under group
differential privacy if f is L-Lipschitz query [49], and hence can result in higher
accuracy for query f .

5.4 Blowfish Privacy

Though Pufferfish framework provides a wide variety of privacy definitions, the
domain experts are required to specify adversarial knowledge as sets of complex
probability distributions, and this framework does not always result in composable
privacy definitions [31]. Hence, we introduce a simple but useful class of privacy
definitions named Blowfish privacy [22, 27] that addresses limitations of the general
framework of Pufferfish. The definition and properties of Blowfish privacy are
presented in Sect. 5.4.1. We also show in Sect. 5.4.2 algorithms for special instances
of Blowfish privacy and also a general algorithm for Blowfish privacy.

5.4.1 Definition and Properties of Blowfish Privacy

The key building block of an instantiation of Blowfish privacy is named policy
graph. A policy graph is a graph representation of Spairs , pairs of domain values
in T that an adversary must not be able to distinguish.

Definition 5.11 (Policy Graph [22, 27]) A policy graph is a graph G = (V ,E)

with V ⊆ T ∪ {⊥}, where ⊥ is the name of a special vertex, and E ⊆ (T ∪ {⊥}) ×
(T ∪ {⊥}).
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An edge (u, v) ∈ E corresponds to a pair of domain values that an adversary
should not be able to distinguish between. ⊥ is a dummy value not in T , and an
edge (u,⊥) ∈ E means that an adversary should not be able to distinguish between
the presence of a tuple with value u, or the absence of the tuple from the database. If
a policy graph does not include ⊥, we can focus on databases with fixed known size.
Based on this policy graph G, we re-define the concept of neighboring databases of
differential privacy in the following way.

Definition 5.12 (Neighbors [22, 27]) Consider a policy graph G = (V ,E). Let Di

and Dj be two databases in I. Di and Dj are neighbors, denoted by (Di,Dj ) ∈
N(P ), iff exactly one of the following is true:

• Di and Dj differ in the value of exactly one entry such that (u, v) ∈ E, where u

is the value of the entry in Di and v is the value of the entry in Dj ;
• Di differs from Dj in the presence or absence of exactly one entry, with value u,

such that (u,⊥) ∈ E.

Example 5.3 (Event-DP) Recall event-DP in Sect. 5.2.2 considers neighboring
databases differ in a single event. The set of discriminative pairs for event-level
neighbors can be specified as

S
event
pairs = {(ri = t, ri = t ′)|hi ∈ H; t, t ′ ∈ Σ∗, |t | = |t ′|, (5.17)

∀j∗, if t[j∗] �= t ′[j∗], then ∀j �= j∗, t[j ] = t ′[j ]}.

Hence, the policy graph of blowfish privacy considers all possible sequence of
events as vertices V , and adds an edge to any pair of event sequences with the
same length differing in one event. This policy graph results in a set of neighboring
databases for event-DP.

Example 5.4 (Geo-indistinguishability) This is a special case of event-DP, where
discriminative pairs differ in only one event. Additionally, secrets form pairs if the
location they differ in are close to each other. More formally,

S
event,θ
pairs = {(ri = t, ri = t ′)|hi ∈ H, t, t ′ ∈ Σ∗, |t | = |t ′|, (5.18)

∀j∗, if d(t[j∗], t ′[j∗]) ≤ θ , then ∀j �= j∗, t[j ] = t ′[j ]}

This captures variants of event DP proposed in prior work like Geo-
indistinguishability [4] and (θ, ε)-location privacy [19], each discriminative secret
pair differ not only in a single event, but the difference in location value of the
event is bounded by a given distance θ . Compared to event-level discriminative
pairs S

event
pairs , Sevent,θ

pairs protects a smaller set of discriminative secret pairs with the
same privacy guarantee. This results in a sparser policy graph, as fewer pairs of
secrets are connected by an edge. It is easy to see that the policy graph for Sevent,θ

pairs

is a subgraph of the policy graph for Sevent
pairs . Correspondingly, the set of neighbors
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protected by geo-indistinguishability is a subset of neighbors protected by event-DP.
Hence, geo-indistinguishability provides a weaker guarantee than event-DP.

Besides G, Blowfish privacy policy in [27] includes IQ which denotes the
set of databases that are possible under the public constraints Q that are known
about the database. The constraints in Q makes a subset of the possible database
instances impossible, and the rest of possible database instances are denoted by IQ.
The presence of the constraints will make some neighboring databases no longer
possible. For instance, due to temporal constraints, certain sequences of locations
are impossible. Below is an example that considers such temporal constraints.

Example 5.5 (δ-Location Set Based Differential Privacy) The privacy definition
proposed by Xiao et al [53] considers temporal constraints in the database, and
these constraints are also known as the data evolution scenarios in the Pufferfish
framework. The data generation model D is represented by a hidden Markov model
(HMM) which consists of a single transition matrix Pθ and an emission probability
P e

θ . The prior distribution for an individual hi being at location l at timestamp j

given the previous (j − 1) events Pr(ri[j ] = l|lj−1 . . . l1) can be derived from Pθ

and P e
θ , and can eliminate unlikely secrets from S. The remaining possible locations

are specified by a new term called δ-location set. Formally, for any j ∈ [1, 2, . . .],
the δ-location set at time point j , is defined as a set containing minimum number of
locations that have prior distribution sum no less than 1 − δ, i.e.

ΔXj = min{l|
∑

l

Pr(ri[j ] = l|lj−1 . . . l1) ≥ 1 − δ}. (5.19)

At any time point j , a randomized mechanism M satisfies ε-differential privacy on
δ-location set ΔXj , if for any output ωj and any two locations l1 and l2 in ΔXj , the
following holds: Pr(M(l1) = ω) ≤ eε Pr(M(l2) = ω).

This privacy definition is also known as δ-location set based differential privacy,
and can be perceived as a special case of Blowfish privacy at each timestamp,
where the neighboring databases at each timestamp differ. The δ-location set
removes all impossible database instances based on the data evolution scenarios, and
hence guarantees a stronger privacy against an adversary who knows this evolution
scenario than an event-DP algorithm which assumes no correlation between events.

Readers may refer to [27] for the general version of Blowfish neighbors with
constraints. For more general policy graph with constraints, we can define Blowfish
privacy as follows.

Definition 5.13 (Blowfish Privacy [22, 27]) Let ε > 0 be a real number and policy
P = (T ,G, IQ) be a policy. A randomized mechanism M satisfies (ε, P )-Blowfish
privacy if for every pair of neighboring databases (Di,Dj ) ∈ N(P ), and every set
of outputs S ⊆ range(M), we have

Pr[M(Di) ∈ S] ≤ eεP r[M(Dj ) ∈ S] (5.20)
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If we consider policy without constraints, we simplify our notation for Blowfish
privacy as (ε,G)-Blowfish privacy.

Now the privacy guarantee is not only controlled by the privacy parameter ε, but
also by the policy graph G. Consider two databases D1 = D∪{u} and D2 = D∪{v}
that differ in one tuple. Given a mechanism M that satisfies (ε,G)-Blowfish privacy,
we have

Pr[M(Di) ∈ S] ≤ eε·dG(u,v)P r[M(Dj ) ∈ S] (5.21)

where dG(u, v) is the shortest distance between u, v in G. This implies that an
adversary may better distinguish pairs of nodes farther apart in the graph than those
that are closer. Similarly, an adversary can distinguish between u, v with probability
1, when u and v appear in disjoint components of G, where dG(u, v) → ∞. Note
that when G is a complete graph K , then (ε,K)-Blowfish privacy is equivalent to
ε-differential privacy.

Theorem 5.5 (Sequential Composition [27]) Let P = (T ,G, IQ) be a policy
and D ∈ IQ be an input database. Let M1(·) and M2(·, ·) be algorithms
with independent sources of randomness that satisfy (ε1, P ) and (ε2, P )-Blowfish
privacy, resp. Then an algorithm that outputs both M1(D) = ω1 and M2(ω1,D) =
ω2 satisfies (ε1 + ε2, P )-Blowfish privacy.

Algorithms that satisfy Blowfish also satisfy the postprocessing theorem (like
Theorem 5.2) and a restricted form of parallel composition. We refer the reader to
[27] for details.

5.4.2 Mechanisms for Blowfish Privacy

Blowfish privacy generalized (bounded and unbounded) differential privacy. In fact,
we can show that any algorithm that satisfies ε-bounded DP (or ε/2-unbounded DP)
also satisfies (ε,G)-Blowfish privacy for any policy graph G (when the definition
has no constraints Q). Thus, in the absence of constraints, differentially private
algorithms can be used to satisfy Blowfish privacy definitions. However, leveraging
the policy can lead to algorithms that provide more accuracy than DP algorithms as
we will see in the rest of this section.

5.4.2.1 Releasing Perturbed Locations

In many Location-Based Services (LBSs), an actual location needs to be shared.
While one can design event-DP algorithms using variants of randomized response
to release perturbed locations, they would have poor utility. Due to the large
domain size of locations, the probability that one would report a point close to
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the true location would be vanishingly small. On the other hand, we can develop
methods to release perturbed locations with high accuracy under Blowfish policies
corresponding to Geo-indistinguishability [4] and δ-location set differential privacy
[53]. The details of the algorithms are described below.

• Geo-indistinguishable mechanism was designed by Andres et al. [4] to ensure
ε-geo-indistinguishability. The location domain Σ is modeled as the Euclidean
plane equipped with the standard notion of Euclidean distance. For the ideal case
of the continuous plane, where Σ = R

2. Given a true location ri[j ] = l, where
l ∈ R

2 and privacy parameter ε, the mechanism would like to draw a location
l ∈ R

2 with probability function

Dε(l0)(l) = ε2

2π
e−εd(l0,l). (5.22)

It is easy to show that this mechanism satisfies ε-geo-indistinguishability. The
actual sampling process takes place in a system of polar coordinates that centered
at l. Equation 5.22 can be transformed into PDF of the polar laplacian centered in
the origin l0, where Dε,R(r) = e2re−εr , Dε,Θ(θ) = 1

2π
. Based on the PDF, the

angle θ can be drawn uniformly [0, 2π ]. For radius r , we first draw z uniformly
in [0, 1) and set r = C−1

ε (z), where Cε(r) = 1 − (1 + εz)eεz is the cumulative
function for Dε,R(r). Readers may refer to [4] for the adjusted mechanism for
discrete coordinates.

However, this mechanism is susceptible to attacks when the adversary knows
correlations across time points in a trajectory[9, 53]. Hence, this temporal
correlation-based attacks motivates the following mechanism.

• Planar Isotropic Mechanism was proposed by Xiao et al. [53] to ensure δ-
location set based differential privacy (Example 5.5), where the sequence of
locations are correlated by a Hidden Markov model. As l1-sensitivity fails to
capture the geometric sensitivity in multidimensional space, Xiao et al. [53]
proposed a new notion, sensitivity hull to bound the change in the query output
caused by the modification of an event. The sensitivity hull of a query f is defined
as the convex hull of Δf where Δf is the set of f (l1) − f (l2) for any pair l1
and l2 in δ-location set ΔX. This sensitivity hull was further transformed into
isotropic position to ensure optimal solution of K-norm Mechanism [24] for 2-
dimensional space. K-norm Mechanism is defined as below.

Definition 5.14 (K-norm Mechanism) Given a linear function F : RN → Rd

and its sensitivity hull K , a mechanism is K-norm mechanism if for any output
z, the following holds:

Pr(z) = 1

Γ (d + 1)V OL(K/ε)
exp(−ε||z − Fx∗||K), (5.23)

where Fx∗ is the true answer, || · ||K is the (Minkowski) norm of K , Γ () is
Gamma function and V OL() indicates volume.
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The releasing of location at timestamp j can be summarized as four steps: (1) the
sensitivity hull K is computed from the given δ-location set ΔX at timestamp
j , (2) the sensitivity hull K is then transformed to its isotropic position KI to
ensure the optimal solution for K-norm mechanism, (3) a sample is picked from
Ki and perturbed to z′ by K-norm mechanism; (4) finally this perturbed sample
z′ is transformed to z in the original space and published. This mechanism has
been shown in [53] with error O

( 1
ε

√
AREA(K)

)
at most, and this is the lower

bound of any mechanism that satisfies δ-location set based differential privacy.

5.4.2.2 Aggregate Perturbation for Count Queries (General Algorithms
for Blowfish Privacy)

In [22, 27], Blowfish private mechanisms were designed to answer aggregate queries
under different policy graphs. Each policy graph can instantiate a new notion of
neighboring databases. Rather than re-designing a new algorithm for each notion
of neighboring databases, [22] showed a transformational equivalence between
a large class of Blowfish private algorithms and standard differentially private
algorithms and for many policy graphs. This equivalence can be stated as follows:
for policy graph G, there exists a transformation of the workload and database
(W, x) → (WG, xG) such that Wx = WGxG, and a mechanism M is an (ε,G)-
Blowfish private mechanism for answering workload W on input x if and only if M
is also an ε-differentially private mechanism for answering WG on xG. This result
does not hold in general, but [22] showed that under a class of mechanism called
matrix mechanism, transformational equivalence holds for any policy graph.

Equivalence for Matrix Mechanism. Matrix mechanism framework was
designed for optimally answering a workload of linear queries [33]. Some
workloads W have a high sensitivity, but they can be answered with low error
by answering a different strategy query workload A such that (a) A has a low
sensitivity ΔA, and (b) rows in W can be reconstructed using a small number of
rows in A.

In particular, let A be a p × k matrix, and A+ denote its Moore-Penrose
pseudoinverse, such that WAA+ = W . The matrix mechanism is given by the
following:

MA(W, x) = Wx + WA+Lap(ΔA/ε)p (5.24)

where, Lap(λ)p denotes p independent random variables drawn from the Laplace
distribution with scale λ. The corresponding Blowfish specific sensitivity of a
workload, Δw(G) is defined as follows:

Definition 5.15 (Policy Specific l1 Sensitivity) The l1 policy specific sensitivity of
a query matrix W with respect to policy graph G is
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Δw(G) = max
x,x′∈N(G)

||Wx − Wx′||1 (5.25)

Let PG be a matrix that satisfies the following properties.

• PG has |V | − 1 rows and |E| columns.
• Let WG = WPG. Then Δw(G) = ΔWG

. i.e. the sensitivity of workload W under
Blowfish policy G is the same as the sensitivity of WG under differential privacy.

• PG has full row rank (and therefore a right inverse P −1
G ). For vector x, we let xG

denote P −1
G x.

Given such a PG, the following theorem is true.

Theorem 5.6 ([22]) Let G be a Blowfish policy graph and W be a workload.
Suppose PG exists with the properties given above. Then the matrix mechanism
given by Eq. (5.24) is both a (ε,G)-Blowfish private mechanism for answering W

on x and an ε-differentially private algorithm for answering WG on xG. Since
Wx = WGxG, the mechanism has the same error in both instances.

We illustrate the strategies proposed in [22] with the example of answer-
ing range counting queries over two dimensional location for distance-threshold
policy graphs. These graphs are based on similar secret specification as Geo-
indistinguishability, by considering the set of discriminative secrets

S
θ
pairs = {(ri[j ] = l, ri[j ] = l′) | d(l, l′) ≤ θ, l, l′ ∈ Σ, j = 1, 2, . . .}. (5.26)

Particularly for a grid-based location domain of size k ×k, this class of policy graph
Gθ

k2 is defined based on the l1-distance in the domain [k]2, where [k] denotes the set
of integers between 1 and k (inclusive). The vertices in G are the grid cells. There
is an edge u, v in E if and only if |u − v|1 ≤ θ .

Consider rectangle range counting query q([x, y], [x′, y′]). When θ = 1, the
transformed query qG1

k2
is the sum of four disjoint range counting queries in the

transformed domain. Hence, the strategy for answering the transformed query
workload would be to answer 2(k − 1) one-dimensional range count queries
under differential privacy. The error per query under (ε,G1

k2)-Blowfish privacy for

all rectangle range counting queries is O(log3 k/ε2) while the best known data
independent strategy answering the same workload with ε-differential privacy is
the Privelet strategy [52] with a much larger asymptotic error of O(log6 k/ε2) per
query.

When θ > 1, the policy graph is more complex. The algorithm proposed
leverages subgraph approximation and can achieve an error of O(log3 k log3 θ/ε2)

per query under (ε,Gθ
k2), which is still better than using Privelet (O(log6 k/ε2) per

query) when log θ is small compared to log k.
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5.5 Conclusions and Open Challenges

In this chapter, we identified desiderata that algorithms for privacy-preserving
release and analysis of location data must ensure. These include ensuring provable
privacy guarantees of an individual’s properties even when adversaries have strong
prior knowledge and satisfying composition properties that allow for a graceful
degradation of privacy even under multiple releases of the data. We described
variants of differential privacy and algorithms that satisfy these variants for the
tasks of answering queries over a single-time snapshot of location data, continuous
queries over location streams and releasing synthetic location trajectory databases.
We also presented Pufferfish, a framework for defining privacy that allows us to
reason about the privacy semantics underlying the variants of differential privacy.
We concluded by describing instantiations of Pufferfish that allow for ensuring
privacy when adversaries may know correlations within the location stream, and
described a subclass of Pufferfish, called Blowfish, that satisfies composition
theorems.

While a wide range of provable privacy definitions are available today, it is
still unclear which of these definitions are applicable to a given scenario, and
whether the algorithms satisfying these definitions allow realistic analysis of
location data with acceptable errors. There are a number of algorithms known for
geo-indistinguishability and event-DP, but these approaches constitute the weakest
privacy guarantees. More work is needed to identify practical solutions for location-
based applications under stronger privacy notions.

Location trajectories have inherent correlations, both within a single trajectory
and across trajectories. We have seen examples of the former, and some solutions
to handle these correlations when they take a specific form. However, there is little
work that acknowledges and handles correlations across individuals. For instance, it
is known that when the location trajectories of two individuals are similar, then they
are highly likely to have strong social connections [12]. Whether techniques like the
Markov Quilt mechanism for handling correlations will be applied to such cases is
an interesting open question.

All of the work presented assumes that (a) users require the same level of privacy,
and (b) users are able to specify privacy levels in terms of the privacy parameter ε.
The former is clearly not true in the real world. There is work that suggests that users
have different privacy seeking behaviors depending on their demographic attributes
as well as based on their context. Moreover, it is not clear whether or not users
will be able to express their privacy preferences in terms of an ε privacy parameter.
These challenges will motivate new interesting privacy research to further advance
the state-of-the-art techniques, and ensure their adoption in real systems.
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