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Abstract Humans are intrinsically social creatures and our mobility is central
to understanding how our societies grow and function. Movement allows us to
congregate with our peers, access things we need, and exchange information.
Human mobility has huge impacts on topics like urban and transportation planning,
social and biologic spreading, and economic outcomes. Modeling these processes
has however been hindered so far by a lack of data. This is radically changing with
the rise of ubiquitous devices. In this chapter, we discuss recent progress deriving
insights from the massive, high resolution data sets collected from mobile phone
and other devices. We begin with individual mobility, where empirical evidence
and statistical models have shown important intrinsic and universal characteristics
about our movement: we as human are fundamentally slow to explore new places,
relatively predictable, and mostly unique. We then explore methods of modeling
aggregate movement of people from place to place and discuss how these estimates
can be used to understand and optimize transportation infrastructure. Finally, we
highlight applications of these findings to the dynamics of disease spread, social
networks, and economic outcomes.
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2.1 Introduction

Mobility has been a steering force for much of human history. The movement of
peoples has determined the dynamics of numerous social and biological processes
from tribal mixing and population genetics to the creation of nation-states and the
very definition of our living areas and identities. Urban and transportation planners,
for example, have long been interested in the flow of vehicles, pedestrians, or goods
from place to place.

With more than half of the world’s population is now living in urban areas,1

understanding how these systems work and how we can improve the lives of people
using them is more important than ever. Insights from models informed by novel
data sources can identify critical points in road infrastructure, optimize public
services such as busses or subways, or study how urban form influences its function.
Epidemiologists are also relying heavily on models of human movement to predict
and prevent disease outbreaks [13, 66] as global air travel makes it possible for
viruses to quickly jump continents and dense urban spaces facilitate human-to-
human contagion. This has made understanding human movement a crucial part
of controlling recent disease outbreaks.2 Finally, social scientists are increasingly
interested in understanding how mobility impacts a number of social processes
such as how information spreads from person to person in offices and cafes across
the world. These interactions have been theorized to impacts crime rates, social
mobility, and economic growth [6, 46] and understanding their dynamics may
improve how we live, work, and play.

The growing need to understand and model human mobility has driven a large
body of research seeking to answer basic questions. However, the lack of reliable
and accessible data sources of individual mobility has greatly slowed progress
testing and verifying these theories and models. Data on human mobility has thus
far been collected through pen and paper surveys that are prohibitively expensive
to administer and are plagued by small and potentially biased sample sizes. Digital
surveys, though more convenient still require active participation and often rely on
self-reporting [14]. Despite the development of statistical methods to carefully treat
this data [5, 26, 45] new, cheaper, and larger data sources are needed to push our
understanding of human mobility efforts further.

The evolution of technology over the past decade has given rise to ubiquitous
mobile computing, a revolution that allows billions of individuals to access people,
goods, and services through ‘smart’ devices such as cellular phones. The penetration
of these devices is astounding. The six billion mobile phones currently in use
triples the number of internet users and boast penetration rates above 100% in
the developed word, e.g. 104% in the United States and 128% in Europe.3 Even

1United Nations Department of Economic and Social Affairs—World Urbanization Prospects—
2014 Update. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.
2http://www.worldpop.org.uk/ebola/.
3GSMA European Mobile Industry Observatory 2011. http://www.gsma.com/publicpolicy/wp-
content/uploads/2012/04/emofullwebfinal.pdf.

http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf
http://www.worldpop.org.uk/ebola/
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
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in developing countries, penetration rates are of 89%4 and growing fast. These
devices and the applications that run on them passively record the actions of their
users including social behavior and information on location5 with high spatial and
temporal resolution. Cellular antennas, wifi access points, and GPS receivers are
used to measure the geographic position of users to within a few hundred meters or
less. While the collection, storage, and analysis of this data presents very real and
important privacy concerns [15, 16], it also offers an unprecedented opportunity for
researchers to quantify human behavior at large-scale. With billions of data points
captured on millions of users each day, new research into computational social
science [37] has begun to augment and sometimes replace sparse, traditional data
sources, helping to answer old questions and raise new.

In this chapter, we present an overview of mobility research in the current data
rich environment. We describe a variety of new data sources and detail the new
models and analytic techniques they have inspired. We start by exploring research on
individuals that emphasizes important intrinsic and universal characteristics about
our movement: we are slow to explore, we are relatively predictable, and we are
mostly unique. We then discuss efforts to add context and semantic meaning to
these movements. Finally, we review research that models aggregates of human
movements such as the flow of people from place to place. Throughout and at
the end of this chapter, we point out applications of this research to areas such
as congestion management, economic growth, or the spreading of both information
and disease.

2.2 New Data Sources

Traditional data sources for human mobility range from census estimates of daily
commutes to travel diaries filled out by individuals. These surveys are generally
expensive to administer and participate in as they require intensive manual data
encoding. To extract high-resolution data, individuals are often asked to recall large
amounts of information on when, where, and how they have traveled making them
prone to mistakes and biases. These challenges make it hard for surveys to cover
more than a day or week at a time or to include more than a small portion of the
population (typically less than 1%).

Mobile phones, however, with their high penetration rates, represent a fantastic
sensor for human behavior. A large fraction of location data from mobile phones
are currently in the form of call detail records (CDRs) collected by carriers when
users perform actions on their devices that make use of the telecommunications

4ITU (2013). ICT facts and figures. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2013-e.pdf.
5Lookout (2010). Introducing the app genome project. https://blog.lookout.com/blog/2010/07/27/
introducing-the-app-genome-project/.

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
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Fig. 2.1 Mobile phones are increasingly being used to collect high-resolution mobility data. This
figure from de Montjoye et al. [15] depicts (a) a sequence of calling events made by a user at
different locations. (b) These events are localized to the area served by the closest mobile phone
tower to the use and (c) can be aggregated into individual specific neighborhoods where a user is
likely to be found at different times of the day or week

network. The location of each device at the time a call, text, or data request is
registered (Fig. 2.1) is recorded by carriers for billing, network performance, and
legal purposes. Locations are inferred either by observing the tower through which
the phone is connected or by triangulation with nearby towers. With the increasing
use of mobile phones, each individual generates tens to hundreds of these digital
breadcrumbs on a daily basis and this number is only increasing. Through specific
agreements or through open-data challenges [17], location data on millions of
users is readily available to researchers and has been used extensively to augment
and sometimes replace traditional travel surveys. This data now forms the core of
numerous new mobility studies and models some of which we describe below.

Though generally less common than CDRs, applications running on smartphones
may access even more precise estimates of a user’s position. A variety of these
sensors, from GPS to wifi, can pinpoint the location of a device to within just a
few meters and can record data every few minutes [1]. Similarly, protocols such
bluetooth and NFC allow devices to discover and connect to one another within
a few meter radius, creating ad hoc sensor and social proximity networks [21].
Some of these applications and underlying social-networks explicitly add crucial
context to mobility data. Foursquare invites users to “check-in” at specific places and
establishments, Twitter will automatically geotag tweets with precise coordinates
from where they were sent, and the Future Mobility survey app passively maintains
an activity diary [14] requiring little input from users.

Infrastructure and public services have also become much smarter and now
collect data on their usage to improve and help plan operations. Toll booths
automatically count and track cars and this data has helped create accurate and real-
time traffic estimates used by mapping and navigation services to provide better
routing information. Subways, streetcars, and busses use electronic fare systems
that record when millions of users enter and exit transportation systems to help
better predict demand. In addition to smarter public infrastructure, the ecosystem
created by digital devices has given birth to entirely new transportation services
such as Hubway, the Boston bike rental service, that collects data on every bike ride
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and has even released some publicly6 or Uber, an on-demand car service, that uses
historical usage data to balance the time a user has to wait for a car to arrive and
the time drivers spend without clients. Finally, on-board devices and real-time data
feeds from automatic vehicle location (AVL) systems power applications such as
NextBus to track the location of thousands of busses and subways across the world
to display and predict when the next bus will arrive. While smart infrastructure
comes with its own privacy challenges [35],7 vehicle and public transport data offer
additional information to urban planners and mobility modelers to better understand
these systems.

Finally, most practical mobility models need to properly account for geography
such as mountains and rivers, transportation infrastructure such as bridges and
highways, differences in density between urban and rural areas, and numerous
other factors. Thankfully, the digitization of maps has led to an explosion of
geographic data layers. Geographic information systems (GIS) have improved
dramatically while falling data storage prices have made it possible for small and
large cities to offer their public mapping data to citizens in an online, machine
readable format. The U.S. Census Bureau’s TIGERline program, San Francisco’s
OpenSF, and New York City’s PLUTO data warehouse are just a few sources that
offer huge repositories of publicly accessible geographic data on everything from
building footprints and the location of individual trees in a city. Open- and crowd-
sourced initiatives like OpenStreetMap allow anyone in the world to contribute
and download high-resolution digital maps of roads, buildings, subways, and more,
even in developing areas that may not have institutional resources to create them.
Private efforts such as Google Maps and MapBox offer high-resolution satellite
imagery, route planning, or point of interest information through free or low cost
APIs. Put together, these resources provide a digital map of the world that serves
as a rich backdrop on which to study human mobility and the infrastructure built to
facilitate it.

Put together, new sources from CDRs to public transport data, from mobile
phone applications to AVLs generate a dataset with size and richness prohibitively
expensive to match via traditional methods. Collected passively and without any
effort from the user, this data is often more robust to manipulation by conscious
or unconscious biases and provide a signal that is difficult to fake. While we are
convinced of the potential of this data, it is always important to remember that it is
not without pitfalls. It would be illusory to think that all of the old biases or hidden
variables would simply disappear because the data is large. In some cases, data
is only recorded when an individual interacts with a device which may bias when
samples are taken [47]. Similarly it is important to keep in mind that even if it covers
a significant fraction of the population this data might not be representative. Finally,
these data generally come stripped of context. We do not know why an individual

6Hubway Data Visualization Challenge (2012). http://hubwaydatachallenge.org/.
7New York taxi details can be extracted from anonymized data, researchers say (2014). http://www.
theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-
warn.

http://hubwaydatachallenge.org/
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
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has chosen to move or what they will be doing there. For these reasons, sampling
and robust statistical methods are still—maybe more than ever8—needed to use this
data to augment our current understanding of human mobility while still providing
robust conclusions. We now discuss a number of studies that aim to do just this.

2.3 Individual Mobility Models

Understanding mobility at an individual level entails collecting and analyzing sets
of times, places, and semantic attributes about how and why users travel between
them. For example, on a typical morning one may wake up at home, walk to a local
coffee shop on the way to the bus that takes them to work. After work they may
go to the grocery store or meet a friend for dinner before returning home only to
repeat the process the next day. The goal modeling this mobility is to understand
the underlying patterns of individuals using new high resolution data. While models
have been used to plan infrastructure or public transport, they have also uncovered
insights into the underlying nature of human behavior: we are slow to explore,
relatively predictable, and mostly unique.

Early modeling work draws a great amount of inspiration from statistical physics,
with numerous efforts making parallels with human mobility and random walk or
diffusion processes. One of the used data from the crowdsourced “Where’s George”
project. Named after George Washington, whose head appears on the $1 bill, the
project stamped bills asking volunteers to enter the geographic location and serial
number of the bills in order to build a travel history of various banknotes. As
bills are primarily carried by people when traveling from store to store, a note’s
movement serves as a proxy for human movement. Modeling the bills trajectories
as continuous random walks, Brockmann et al. found that their movement appears to
follow a Levy flight process [8]. This process is characterized by subsequent steps
whose angular direction is uniformly distributed, but whose step-lengths follow a
fat-tailed distribution. While small jumps are most probable, bills have a significant
probability of making long jumps from time to time. These findings are aligned with
observations that humans tend to make many short trips in a familiar area, but also
take longer journey’s now and then.

In 2008, Gonzalez et al. [23] showed that the movement of these bills does
not tell the whole story. Using a CDRs dataset of more than 100,000 users over
a 6 month period in a European country (Fig. 2.2a), they showed that the step-
length distribution for the entire population was better approximated by a truncated
power-law P(�r) = (�r + �r0)

−β exp(−�r/κ) with exponent β = 1.79 and
cutoff distances between 80 and 400 km. This suggests that Levy flights are only a
good approximation of individual’s mobility for short distances.To understand the

8Flowing data—where people run in major cities. http://flowingdata.com/2014/02/05/where-
people-run/.

http://flowingdata.com/2014/02/05/where-people-run/
http://flowingdata.com/2014/02/05/where-people-run/
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Fig. 2.2 (a) Individual mobility trajectories are passively collected from mobile devices [23].
(b) Measuring the distribution of radius of gyrations, rg within a population of 100,000 users in
a European country reveals considerable heterogeneity in typical travel distance of individuals.
Moreover, this distribution cannot be explained by modeling each individual’s movement as
realizations of a single Levy flight process [23]. (c and d) Show the slower than linear growth
in new locations visited over time S(t) and that the probability a location is visited next is
inversely proportional to the frequency it has been visited in the past [54]. (e) This preferential
return contributes to strikingly high predictability R(t) over time while (f) the number of unique
locations visited in any given hour is highly periodic and corresponds to the sleep-wake cycles of
individuals [55]
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mechanism that gives rise to this distribution, the authors borrowed a quantity from
polymer physics known as the “radius of gyration” rg :

rg(t) =
√
√
√
√

1

N(t)

N(t)
∑

i=1

(r − rcm)2, (2.1)

where N(t) are the number of observed locations and rcm is the mean location
of the user during the observation period. In essence, the radius of gyration
is a measurement of the characteristic distance an individual travels during an
observation period t . The authors then showed that the distribution of rg in the
population is itself well approximated by a truncated power-law with r0

g = 5.8 km,
βrg = 1.65, and a cutoff of κ = 350 km (Fig. 2.2b). Simulations suggest that
the step-length distribution of the entire population is produced by the convolution
of heterogeneous Levy flight processes, each with a different characteristic jump
size determined by an individual’s radius of gyration. Put differently, each person’s
mobility can be approximated by a Levy flight process up to trips of some individual
characteristic distance rg . After this distance, however, the probability of long trips
drops far faster than would be expected from a traditional Levy flight.

Further investigation by the authors revealed the source of this behavior: the
idiosyncrasy of human movements. Unlike random processes, humans are creature
of habits and tend to returns to previously visited locations such as home or work.
The nature of these returns was also found to follow a very particular pattern. An
individual returns to a previously visited location with a probability proportional
to that location’s rank P(L) 1/L amongst all the places he or she visits. These
non-random, predictable return visits are unaccounted for in random walk and Levy
flight models and have been shown to be at the heart of deviations of observed
behavior from random processes. Additional studies [9] have found similar patterns
in both other CDRs datasets and Foursquare or Twitter check-ins.

Subsequent work by Song et al. [54] further studied how individual-specific
locations need to be taken into account in mobility models. Using a similar CDR
dataset, the authors showed three important characteristics of human behavior. First,
the number of unique locations visited by individuals S(t) scales sub-linearly with
time S(t) tμ where μ = 0.6 (Fig. 2.2c). Second, the probability an individual
returning to a previously visited locations scales with the inverse of the rank of that
location P(L) L−ζ where ζ = 1.2 (Fig. 2.2d), a phenomena labeled as ‘preferential
return’. And third, the mean displacement (�r) of an individual from a given starting
point shows slower than logarithmic growth, demonstrating the extremely slow
diffusion of humans in space. In essence, these finding pinpoint the dampening of
explorative human movement overtime. Long jumps are observed so infrequently
that they do not affect the average displacement of individuals. The authors then
propose a new model of human mobility to capture these three characteristics. The
model is as follows: starting at time t , an individual will make a trip at some
future time �t drawn from a fat-tailed probability distribution measured from
CDRs. With probability ρS−γ , the individual travels to a new, never-before visited
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location some distance �r away, where �r is drawn from the fat-tailed distribution
characterized in the previous model. With probability 1−ρS−γ an individual returns
to a previously visited location according to the inverse rank equation.

These early models do not attempt to recover periodic aspects of movement
(e.g. daily commuting) or semantic meaning of visits (e.g. to visit a friend or go
shopping), or attempt to do so. They do, however, emphasize important statistical
and scaling properties of human mobility and often successfully reproduce them.
Taken together, these models show how we slow we human are in our exploration,
returning more often than not to known places and with less long steps than
predicted by a power-law distribution.

Approaching the problem from the perspective of machine and statistical learn-
ing, another set of models has uncovered and explored another facet of human
mobility: how predictable we are. In [55], Song et al. used information theory
metrics on CDRs to show the theoretical upper-bound on predictability using three
entropy measures the entropy S, the random entropy Srand , and the uncorrelated
entropy Sunc. They then use their empirical distributions to derived an upper
bound on a user’s predictability (

∏max ,
∏rand , and

∏unc). On average, the
potential predictability of an individual’s movement is an astounding 93% and
no user displayed a potential predictability of less than 80%. To further quantify
predictability, the author introduced two new metrics. They defined regularity R(t)

as the probability a user is found at their most visited location during a given hour t ,
along with the number of unique locations visited during a typical hour of the week
N(t) (Fig. 2.2e and f). Both show strong periodicity and regularity. These quantities
have since been measured in different data sets in different cities and countries and
have been shown to be consistent among them [9].

While the previous study provided a theoretic upper bound on the predictability
of an individual, a number of statistical learning techniques have been developed to
make predictions of where an individual will be at a given time. Early work in the
area, predating even analytic computations, used Markov models and information
on underlying transportation networks to predict transitions between mobile phone
towers within cities. These models have been used to improve quality of service
of wireless networks through proper resource allocation [33, 36, 40, 58]. Later
work incorporated various trajectory estimation and Kalman filtering algorithms to
predict movements in small spaces such as college campuses [38, 43].

Temporal periodicity was used by Cho et al. [12] in their Periodic Mobility
Model and social behavior incorporated in the Period Social and Mobility Model.
At their core, these models are mixture models in two-dimensional space that learn
the probability distribution of a user to be at any given location at a given time
from previous location data. The latter also account for the location history of social
contacts. The authors used these models to estimate that as much as 30% of our trips
may be taken for social purposes. Multivariate nonlinear time series forecasting
produced similar results [19, 51] predicting where an individual will be either in
the next few hours or at a given time of a typical day. These models, however, are
all focused on predicting the geographic position of individuals at different times
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and do not attempt to understand what individuals may be doing there or any other
semantics of place.

Though acquiring semantic information about mobility is more difficult than
simply measuring geographic coordinates, it provides a much richer abstraction
to study behavior. In one of the first studies to mine the behavior of college
students using mobile phones, Eagle and Pentland [20] gave a few hundred students
smart phones that recorded not only locations, but asked users to label each place
with its function such as home or work. Applying principal component analysis
to these abstract movements from semantic place to semantic place (as opposed
to geographic movements alone), the authors found that an individual’s behavior
could be represented as a linear combination of just a few ‘eigenbehaviors’. These
eigenbehaviors are temporal vectors whose components represent activities such
as being at home or being at work. They can be used to predict future behaviors,
perform long range forecasts of mobility, and label social interactions [21, 48].
The price paid for such detailed predictions, however, is the need for semantic
information about locations. Geographic positions need to be tagged with attributes
such as home or work in order for them to be grouped and compared across
individuals.

Another approach to studying more abstract measurements of individual location
information comes from recent work by Schneider et al. [52]. The authors intro-
duced mobility motifs by examining abstract trip chains over the course of a day.
A daily mobility motif is defined a set of locations and a particular order that a
person visits them over the course of a day. More formally, these motifs constitute
directed networks where nodes are locations and edges are trips from one location
to another. For example, the motif of an individual whose only trips in a day are
to and from work will consist of two nodes with a two directed edges (one in
both directions). Counting motifs in mobility data from both CDRs and traditional
travel surveys, they find on average individuals visit three different places in a given
day. They then construct all possible daily motifs for a given number of locations
n and compute the frequencies that those motifs appear in human mobility data.
Shockingly, while there exist over 1 million ways for a user to travel between 6 or
fewer locations, 90% of people use one of just 17 motifs and nearly a quarter follow
the simple two location commute motif introduced earlier (Fig. 2.3a). The authors
found similar results in travel survey data and introduced a simple Markov model
for daily mobility patterns which reproduces empirical results.

It is tempting to hypothesize that high theoretical and practical predictability
results from high levels of similarity between individuals in a region. Perhaps the
pace of life, pull of mono-centric downtowns, or the structure of transportation
systems funnel users to the same places and route choices. de Montjoye et
al. [15] explored this hypothesis and found that, while predictable, an individual’s
movement patterns are also unique. The authors introduced unicity, Ep, as the
fraction of traces uniquely defined by a random set of p spatiotemporal points
where a trace T is a set of spatiotemporal points, each containing a location and
a timestamp. A trace is said to be uniquely defined by a set of points Ip if it is the
only trace that matches Ip in the entire dataset. Applying this measure to a CDR
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Fig. 2.3 (a) Removing geographic coordinates from locations and only focusing on a set of unique
places and the directed travel between them, mobility motifs reveal that the daily routines of people
are remarkably similar. Despite over 1 million unique ways to travel between 6 or fewer points, just
17 motifs are used by 90% of the population. Moreover, the frequency of their appearance in CDR
data matches very closely with more traditional survey methods [52]. (b) Despite this similarity
and predictability, our movement displays a high degree of unicity. Just four spatiotemporal points
is enough to differentiate a user from 95% of all others individuals [15]

dataset on 1.5 million users, the authors found that just four spatiotemporal points is
enough to uniquely identify 95% of all users (Fig. 2.3b). The authors further study
unicity when the data is coarsened spatially or temporally. They found E∼ (v ∗h)β

unicity decrease as a power function with the spatial (v) and temporal resolution
of the data (h) and that β ∼ −p/100. Taken together, these equations show that
unicity decreases slowly with the spatial and temporal resolution of the data and that
this decrease is easily compensated by the number of points p. High uniqueness in
human mobility traces exists across many spatiotemporal scales. These results raise
many questions about the privacy of massive, passively collected metadata datasets,
but also highlight an interesting nuance of human mobility: though individuals are
predictable, they are also unique.

Merging concepts of predictability and unicity, work by Sun et al. [57] used
temporal encounter networks to study repeated co-locations between passengers
using data from bus passengers in Singapore. Temporal encounter networks were
constructed by connecting individuals if they rode the same bus at the same time.
An average individual encountered roughly 50 people per trip and these trips were
highly periodic, occurring at intervals associated with working hours as well as daily
and weekly trips. A pair of individuals who encountered each other tended to meet
an average of 2.5 times over the course of a week. The distribution of time between
encounters reveals strong periodicity, with passengers riding the same bus to work
in the morning riding the same home, or riding the same bus at the same time each
morning. This finding illustrates the idiosyncrasies of human mobility. We not only
visit just a few places during the day, we do so at the same times and by the same
routes. Though both of these results suggest that our unicity should be low, the
previous work shows us that this is not the case.

In summary, new data sources have allowed researchers to show that, over weeks
and months, human movement is characterized by slow exploration, preferential
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return to previous visited places, exploration of daily motifs, and predictable unique-
ness. These regularities have been used to develop algorithms capable of predicting
movement with high degrees of accuracy and have been shown to mediate other
important processes such as social behavior and disease spread. Individual mobility
patterns, however, are not the only level of granularity of interest to researchers,
city planners, or epidemiologist. Aggregate movement can be either derived from
individual level model or modeled as an emergent, personified phenomena. In the
next section, we discuss works and models which aim at describing and modeling
aggregate movement and flows of many individuals from place to place.

2.4 Aggregate Mobility

Aggregated mobility is used for planning urban spaces, optimizing transportation
networks, studying the spread of ideas or disease, and much more. Perhaps the
largest component in these models are origin-destination matrices that store the
number of people traveling from any location to any other at different times or
by different means. Like many complex systems, aggregate behavior is often more
than the sum of individual parts and can be modeled separately. Additional layers of
complexity are also needed to account for and sometimes explain individual choice
of mode of transportation or route as described by the “four step model” [41, 45].

Like their individual-focused counterparts, many of these aggregate models are
inspired by physical processes. Some of the earliest techniques for estimating origin-
destination matrices are gravity models which have been used to model flows on
multiple scales, from intra-city to international [27, 45]. Borrowed directly from
Newton’s law of gravitation, the number of trips Tij taken from place i to place
j is modeled as a function of the population of each place mi and mj and some
function of the distance between them f (rij ). The intuition is that the population of
a place, it’s mass, is responsible for generating and attracting trips and thus the total
flux between the two places should be proportional to the product of the two masses
while the distance between them mitigates the strength of this connection. In the
fully parameterized version of this model, an exponent is applied to the population

at the origin and destination Tij = a
mα

i m
β
j

f (rij )
to account for hidden variables that may

be specific to local regions or populations. While the classical gravity model from
physics is recovered by setting α = β = 1, and f (rij ) = r2

ij , these parameters are
generally calibrated for specific application using survey data.

Gravity models, however, are not without limitation. First, they rely on a large
number of parameters to be estimated from sparse survey data which often leads
to overfitting and, second, they fail to account for opportunities that exist between
the two masses of people. The latter fault results in the same flow of people being
estimated between two locations whether there is an entire city or an empty desert
between them. Intuitively, one would expect that trips between places would be
affected by the intervening opportunities to complete a journey. These shortcomings
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led Simini et al. to develop the radiation model [53]. Again borrowing from physics
(this time radiation and absorption), they imagined individuals being emitted from a
place at a rate proportional to its population and absorbed by other locations at a rate
proportional to the population there. In this model, the probability that an emitted
person arrives at any particular place is a function of their probability of not being
absorbed before getting there. The model is as follows: Tij = Ti

mimj

(mi+sij )(mi+mj +sij )
,

where Ti is total number of trips originating from location i and sij is the population
within a disc centered on location i with a radius equal to the distance between
i and j . The radiation model does not directly depend on the distance between
the two places, taking instead into account the opportunities in-between them
(Fig. 2.4a). Unlike the gravity model, the radiation model is parameterless and
requires only data on populations to estimate flow. The authors showed that despite
its lack of parameters, the radiation model provides better estimates of origin-
destination flows than the gravity model for areas the size of counties or larger.

Yang et al. adapted Simini’s radiation model to correct for distortions caused at
different scales [67]. They showed the original radiation model’s lower accuracy in
urban environment is due to the relatively uniform density and small distances that
characterize cities. In dense urban areas, distances are all relatively short and an
individual may choose to visit a particular location due to hedonic attributes regard-
less of whether it is convenient to get to or not. Yang et al. subsequently introduced a
scaling parameter α in the function describing the conditional probability an individ-
ual is absorbed at a location. This single parameter was enough to correct for these
distortions and to provide a model that works on any length scale. Moreover, the
authors suggested that for urban areas, the density of points of interest (POIs) such
as restaurants and businesses is a better predictor of the absorption of a place than
its population. Iqbal et al. [31] have demonstrated an improved way to extract valid,
empirical OD matrices from call detail records (CDRs) data to validate the model.

Finally, activity-based models [5] model user intent more explicitly. They
hypothesize that all trips are made to fulfill certain needs or desires of an individual.
Travel and survey diaries are used to identify those needs for different segments
of the population and how they are typically fulfilled. This knowledge can then be
used by the model given the demographics of individuals and environmental factors.
These models are closely related to agent-based models simulating the behavior of
city residents and rely heavily on the idea of economic utility.

From a practical perspective, city planners need to know not only how many
people will go from point A to point B at a certain time of the day but also the mode
of transportation and route choice of these individuals. For example, we would like
to predict which route they will take so that we can properly estimate the stress
placed on transportation systems and potentially optimize performance. Models of
route choice typically assume that individual rationally chose the path from A to B
that minimize some cost function such as total travel time or distance. Paths can be
computed on a road network using shortest path algorithms such as the traditional
Dijkstra algorithm or A-Star, an extension that enjoy better performance thanks to
heuristics. Other information such as speed limits can also be taken into account to
estimate free flow travel times.
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Fig. 2.4 (a) The radiation model accounts for intervening opportunities, producing more accurate
estimates of flows between two places than more traditional gravity models [53]. (b) Routing
millions of trips measured from CDR data to real road networks makes it possible to measure the
importance of a road based on how many different locations contribute traffic to it, Kroad . Under-
standing how transportation systems perform under different loads presents new opportunities to
solve problems related to congestion and make infrastructure more efficient [63]
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More advanced models are needed to account for the impact of congestion as
drivers rarely encounter completely empty freeways. Incremental traffic assignment
algorithms model congestion endogenously [56]. Trips are first split into increments
containing only a fraction of total flow between two points. Trips in each increment
are then routed along shortest paths independently of all other trips in that increment
keeping counts of how many trips were assigned to each road. The travel times are
then adjusted according to a volume delay function that accounts for the current
congestion on a road where congestion is computed as the ratio between the volume
of traffic assigned to the segment and the capacity of the road (referred to as volume-
over-capacity). Trips in the next increment are then routed using updated costs until
all flow has been accounted for. In this way, as roads become more congested and
the travel time increases, drivers in later iterations are assigned to different, less
congested routes. Values of total volume on each road, congestion, and travel times
can then be validated against traffic counters, speed sensors, or data from vehicle
fleets like taxis and busses but also smartphones such as in the Mobile Millennium
project [28, 30, 32, 49].

Wang et al. [63] further explored the use of CDRs as input for these incre-
mental algorithms to estimate traffic volume and congestion. After correcting for
differences in market share and vehicle usage rates, they measure trips by counting
consecutive phone calls of individuals as they move through the city to generate
flow estimates that were then routed. Using this approach, Wang et al. show
the distribution of traffic volume and congestion to be well approximated by an
exponential mixture model. This model depends on the number of major and minor
roadways in a cities network. Using the same approach, the authors describe the
usage patterns of drivers by a bipartite usage graph connecting locations in the city
to roads used by those travelers (Fig. 2.4b). Roads can be defined by the number of
locations that contribute traffic them and places can be described by the roads used
to visit. The “function” of a road can then be classified by comparing its topological
to its behavioral importance. For example, a bridge may be topologically important
because it is the only way to cross a river, but a main street may be behaviorally
important because it attracts motorists from many different neighborhoods. Using
these measures, researchers were able to devise congestion reduction strategies that
target the 2% of neighborhoods where trip reduction will have the largest network
wide effect. They found this smart reduction strategy is three to six times as effective
as a random trip reduction strategy. Further work used this analysis to predict traffic
jams [62, 64].

Private cars, however, are not the only mode of transportation studied. Using
smartphones and AVL data, researchers have been mapping the routes followed
by public transport and even privately owned mini-buses in the developing coun-
tries [11, 18, 50]. Similarly, data on air travel has been increasingly available to
study aggregated mobilities between cities for applications in epidemiology (see
below).
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2.5 Human Behavior and Mobility

While of obvious interest to travelers, urban planners and transportation engineers,
people’s movement strongly impacts other areas. Though by no means an exhaustive
list, we highlight three areas here: social behavior, disease and information spread,
and economic outcomes. Many of these dynamics are discussed in greater detail in
further sections of this volume.

2.5.1 Mobility and Disease Spread

Human movement via cars, trains, or planes has always been a major vector in
the propagation of diseases. Consequently, the human mobility data and models
discussed so far have increasingly been used to study the propagation of diseases.
For example, CDR data has been used to map mobility patterns in Kenya helping
researchers in their fight against Malaria [65, 66]. More recently, CDR and other
data from West-Africa has been used to model regional transportation patterns to
help control the spread of Ebola.9 Finally, air travel data has become central to the
study of global epidemics when planes allow an individual to travel between nearly
any two points on the globe in a matter of hours. The global airline network therefore
often determines how potent an epidemic could be and its likely path across the
globe [3, 4, 13, 42, 44] (Fig. 2.5a).

2.5.2 Mobility and Social Behavior

Intent is a crucial element of human mobility and movement is often a means to a
social end. Despite new communications technologies making it easier than ever to
connect across vast distances, face to face interactions still play an important role
in social behavior whether it is the employees of a company commuting to a central
workplaces or friends meeting at a restaurant on a weekend. The link between social
contacts and mobility has becoming increasingly prominent in research as mobility
data is often collected through mobile phones or location-based social networks.

Using data from an online social-network, Liben-Nowell showed the probability
of being friends with another individual to decrease at a rate inversely proportional
to the distance between them suggesting a gravity model of the form discussed
above [39]. Subsequent work verified Liben-Nowell findings in other social net-
works [2, 24] while Toole et al. [59] showed the importance of taking into account
geography when studying social-networks and how information spreads through

9Cell-Phone Data Might Help Predict Ebola’s Spread (2014). http://www.technologyreview.com/
news/530296/cell-phone-data-might-help-predict-ebolas-spread/.

http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
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Fig. 2.5 (a) Global air travel has dramatically increased the speed at which diseases can spread
from city to city and continent to continent [44]. (b) Mobility also adds context to social networks.
When two individuals visit the same locations can suggest the nature of a social relationship [60].
(c) Mobility and the access it provides has strong correlations with economic outcomes. Children
have dramatically different chances at upward economic mobility in certain places of the United
States than others [10]

them. Moreover, geographic characteristics can be used to predict the social fluxes
between places [29]. Conversely, social contacts are very useful in predicting where
an individual would travel next [12, 19, 61] and Cho et al. find that while 50–70%
of mobility can be explained as periodic behavior, another 10–30% are related to
social interactions.

Models such as the one proposed by Grabowicz et al. [24] or Toole et al. [60] have
subsequently been developed to incorporate this dynamic and evolve both social
networks and mobility simultaneously. For example, Grabowicz et al. incorporate
social interactions by having individuals travel in a continuous 2D space where an
individual travel’s is determined by the location of their contacts and use location as
a determinant of new social tie creation. The model is as follows: with probability
pv , an individual moves to the location of a friend, and, with probability 1 − pv ,
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they choose a random point to visited some distance �r away. But, while social
ties impact mobility, mobility can also impact social ties. Upon arriving at a new
location, the individual can thus choose to form social ties with other individuals
within a radius with probability p or random individuals anywhere in the space
with probability pc, a free parameter. A simple model is here also able to reproduce
many empirical relationships found in social and mobility data.

2.5.3 Mobility and Economic Outcomes

Mobility not only provides people with social opportunities, it also provides
economic ones. Economists and other social scientists have developed numerous
theories on the role of face to face interactions in socio-economic outcomes and
economic growth. In-person meetings are thought to unlock human capital, making
us productive [22, 34]. For example, jobs in dense cities tend to pay higher wages
than the same jobs in more rural areas even after controlling for factors such as age
and education [68] in part due to productivity and creativity gains made possible by
the rich face to face interactions that close spatial proximity facilitates. Universal
urban scaling laws have been repeatedly found showing that societal attributes
from the number of patents to average walking speed scales with population and
theoretic models have been proposed that suggest density is at the heart of these
relationships [6, 7, 46]. While density is one way to propagate these benefits,
increased mobility is another. Poorer residents of cities have for example been
shown to have better job prospects and higher chances of retaining jobs when given
a personal car instead of being constrained by public transit [25]. Finally, Chetty
et al. [10] found strong correlations between intergenerational economic mobility
and variables related to the commuting times and spatial segregation of people
(Fig. 2.5c). While we are only beginning to explore these relationships, early returns
suggest that mobility is a critical component of many economic systems.

2.6 Conclusion

In this chapter, we reviewed a number of ways new data sources are expanding
our understanding of human mobility. Applying methods from statistical physics,
machine learning, and traditional transportation modeling, reproducible characteris-
tics of human movement become visible. We explore slowly [23, 54], we are highly
predictability [19, 55], and we are mostly unique [15]. Models of aggregate flows
of people from place to place have also found success with analogies to statistical
physics validated by new data sources [53]. More accurate measurements of city-
wide traffic has made it easier than ever to assess the performance of transportation
systems and devise strategies to improve them [63]. Valuable in their own rights,
these insights have informed our understanding of other social phenomena as well,
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leading to more accurate models of disease spread, social interactions, and economic
outcomes. As cities become home to millions for people each year, the insights
gained from these new data are critical for making them more sustainable, safer,
and better places to live.
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