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Privacy-Preserving Release of
Spatio-Temporal Density
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Abstract In today’s digital society, increasing amounts of contextually rich spatio-
temporal information are collected and used, e.g., for knowledge-based decision
making, research purposes, optimizing operational phases of city management,
planning infrastructure networks, or developing timetables for public transportation
with an increasingly autonomous vehicle fleet. At the same time, however, publish-
ing or sharing spatio-temporal data, even in aggregated form, is not always viable
owing to the danger of violating individuals’ privacy, along with the related legal and
ethical repercussions. In this chapter, we review some fundamental approaches for
anonymizing and releasing spatio-temporal density, i.e., the number of individuals
visiting a given set of locations as a function of time. These approaches follow
different privacy models providing different privacy guarantees as well as accuracy
of the released anonymized data. We demonstrate some sanitization (anonymiza-
tion) techniques with provable privacy guarantees by releasing the spatio-temporal
density of Paris, in France. We conclude that, in order to achieve meaningful
accuracy, the sanitization process has to be carefully customized to the application
and public characteristics of the spatio-temporal data.

12.1 Introduction

Spatio-temporal, geo-referenced datasets are growing rapidly nowadays. With
billions of location-aware devices in use worldwide, the large scale collection
of space-time trajectories of people produces gigantic mobility datasets. Such
datasets are invaluable for traffic and sustainable mobility management, or studying
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accessibility to services. Even more, they can help understand complex processes,
such as the spread of viruses or how people exchange information, interact, and
develop social interactions. While the benefits provided by these datasets are
indisputable, their publishing or sharing is not always viable owing to the danger of
violating individuals’ privacy, along with the related legal and ethical repercussions.
This problem is socially relevant: companies and researchers are reluctant to publish
any mobility data by fear of being held responsible for potential privacy breaches.
This limits our ability to analyze such large datasets to derive information that could
benefit the general public.

Unsurprisingly, personal mobility data reveals tremendous sensitive information
about individuals’ behavioural patterns such as health life or religious/political
beliefs. Somewhat more surprisingly, such mobility data is also unique to individu-
als even in a relatively large population containing millions of users. For instance,
only four spatio-temporal positions are enough to uniquely identify a user 95%
of the times in a dataset of one and a half million users [13], even if the dataset
is pseudonymized, i.e., identitifiers such as personal names, phone numbers, home
address are suppressed. Moreover, the top 2 mostly visited locations of an individual
is still unique with a probability of 10–50% [63] among millions of users. Notice
that the most visited locations, such as home and working places, are easy to learn
today from different social media where people often publicly reveal this seemingly
harmless personal information. Therefore, publishing mobility datasets would put at
risk our own privacy; if someone knows where we live and work could potentially
find our record and learn all of our potentially sensitive location visits. Moreover,
due to the large uniqueness of records, these datasets are regarded as personal
information under several laws and regulations internationally, such as overall in the
European Union. Therefore, their release prompt not only serious privacy concerns
but also possible monetary penalties [18].

12.1.1 Privacy Implications of Aggregate Location Data

One might argue that publishing aggregate information, such as the number of
individuals at a given location, is enough to reconstruct aggregate mobility patterns,
and has no privacy implications. Indeed, aggregated information is usually related
to large groups of individuals and is seemingly safe to disclose. However, this
reasoning is flawed as shown next. First, an attack is described that can reconstruct
even entire individual trajectories from aggregate location data, if aggregates are
periodically and sufficiently frequently published (e.g., in every half an hour).
We also illustrate the potential privacy threats of irregularly published aggregate
location data, for example, when a querier (or the adversary) specifies the spatio-
temporal points whose visits are then aggregated and released.

Consequently, aggregation per se do not necessarily prevent privacy breaches,
and we need additional countermeasures to guarantee privacy for individuals even
in a dataset of aggregate mobility data such as spatio-temporal densities.
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12.1.1.1 Reconstruction from Periodically Published Aggregate Data

The attack described in [61] successfully reconstructed more than 70% of 100,000
trajectories merely from the total number of visits at 8000 locations, which were
published every half an hour over a whole week in a large city. The attack exploits
three fundamental properties of location trajectories:

Predictability: The current location of an individual can be accurately predicated
from his previous location because consecutively visited locations are usually
geographically close. This implies that trajectories can be well-separated in
space; if two trajectories are far away in time t then they remain so in time (t +1)

assuming that t and t + 1 are not too distant in time.
Regularity: Most people visit very similar (or the same) locations every day.

Indeed, human mobility is governed by daily routines and hence periodic. For
example, people go to work/school and return home at almost the same time
every day.

Uniqueness: Every person visits quite different locations than any other person
even in a very large population, which has already been demonstrated by several
studies. For example, any four locations of an individual trajectory are unique to
that trajectory with a probability of more than 95% for one and a half million
individuals [13].

The attack has three main phases. In the first phase, it reconstructs every
trajectory within every single day by exploiting the predictability of trajectories.
This is performed by finding an optimal match of locations between consecutive
time slots, where geographically close locations are more likely to be matched.
After the first phase, we have the daily fragments of every trajectory, but we do
not know which fragments belong to the same trajectory. Hence, in the second
phase, complete trajectories are reconstructed by identifying their daily fragments.
This is feasible due to the regularity and uniqueness properties of trajectories, i.e.
every trajectory has similar daily fragments which are also quite different from the
fragments of other trajectories. Similarity of fragments can be measured by the
frequency of visits per location within a fragment. Finally, in the last phase, re-
identification of individuals are carried out by using the uniqueness property again;
a few locations of any individual known from external sources (e.g., social media)
will single out the individual’s trajectory [13]. As individual trajectories are regarded
as personal data in several regulations internationally, the feasibility of this attack
demonstrates that aggregate location data can also be regarded as personal data.

12.1.1.2 Reconstruction from Irregularly Published Aggregate Data

Another approach of releasing spatio-temporal density is to answer some counting
queries executed on the location trajectories. The querier is interested in the number
of people whose trajectories satisfy a specified condition (e.g., the number of
trajectories which contain a certain hospital). Queries can be filtered instantly by
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an auditor, e.g. all queries which have too small support, say less than k (i.e., only
k trajectories satisfy the condition), are simply refused to answer. However, this
approach is not enough to prevent privacy breaches; if the support of two queries
are both greater than k, their difference can still be 1. For instance, the first query
may ask for the number of people who visited a hospital, and the second query for
the number of people who visited the same hospital except locations L1 and L2. If
the querier knows that L1 and L2 are unique to John then it learns whether John
visited the hospital.

Defenses against such differencing attacks are not straightforward. For example,
verifying whether the answers of two or more queries disclose any location visit can
be computationally infeasible; if the query language is sufficiently complex there is
no efficient algorithm to decide whether two queries constitute a differencing attack
[30]. In Sect. 12.3.1, we show more principled techniques to recover individual
location visits from the answers of a given query set.

12.1.2 Applications of Spatio-Temporal Density

Spatio-temporal density data, albeit aggregated in nature, can enable a wide variety
of optimization use cases by providing a form of location awareness, especially
in the context of the Smart City concept [46]. Depending on both its spatial
and temporal granularity, such data can be useful for optimizing the (1) design
and/or (2) operational phases of city management with regard to e.g., public
transportation, local businesses or emergency preparedness. Obviously, spatial
resolution determines the scale of such optimization, e.g., whether we can tell a
prospective business owner to open her new cafe in a specific district or a specific
street. On the other hand, it is the temporal granularity of density data that separates
the application scenarios in terms of design and operational use cases.

In case of low temporal granularity (i.e., not more than a few data points per area
per day), city officials can use the data for optimizing design tasks such as:

• planning infrastructure networks, such as new roads, railways or communication
networks;

• advising on the location of new businesses such as retail, entertainment and food;
• developing timetables for public transportation;
• deploying hubs for urban logistics systems such as post, vehicle depos (e.g., for

an urban bike rental system), electric vehicle chargers and even city maintenance
personnel;

In case of high temporal granularity (i.e., several data points per area per hour)
[33], spatio-temporal density data might enable on-the-fly operational optimization
in the manner of:

• reacting to and forecasting traffic-related phenomena including traffic anomaly
detection and re-routing;
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• implementing adaptive public transportation timetables also with an increasingly
autonomous vehicle fleet [52];

• scheduling maintenance work adaptively causing the least amount of disturbance
to inhabitants;

• promoting energy efficiency by switching off unneeded electric equipment on-
demand (cell towers, escalators, street lighting);

• location-aware emergency preparedness protocols in case of natural disasters or
terrorist attacks [7].

These lists of application scenarios are not comprehensive. Interestingly, such an
aggregated view on human mobility enables a large set of practical applications.

12.2 Privacy Models

Privacy has a multitude of definitions, and thus different privacy models have been
proposed. In terms of privacy guarantee, we distinguish between syntactic and
semantic privacy models. Syntactic models focus on syntactic requirements of the
anonymized data (e.g., each record should appear at least k times in the anonymized
dataset) without any guarantee on what sensitive information the adversary can
exactly learn about individuals. As opposed to this, semantic models1 are concerned
with the private information that can be inferred about individuals using the
anonymized data as well as perhaps some prior (or background) knowledge about
them. The commonality of all privacy models is the inherent trade-off between
privacy and utility: guaranteeing any meaningful privacy requires the distortion
of the original dataset which yields imprecise, coarse-grained knowledge even
about the population as a whole. There is no free lunch: perfect privacy with
maximally accurate anonymized data is impossible. Each model has different
privacy guarantees and hence provide different accuracy of the (same) data.

12.2.1 Syntactic Privacy Models

One of the most influential privacy model is k-anonymity, which was first introduced
in computer science by Sweeney [53], albeit the same notion had already existed
before in statistical literature. In general, for location data, k-anonymity guarantees
that any record is indistinguishable with respect to spatial and temporal information

1In our context, semantic privacy is not analogous to semantic security used in cryptography, where
ciphertexts must not leak any information about plaintexts. Anonymized data (“ciphertext”) should
allow partial information leakage about the original data (“plaintext”), otherwise any data release
would be meaningless. Such partial leakage should include the release of useful population (and
not individual specific) characteristics.
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from at least k − 1 other records. Hence, an adversary who knows some attributes
of an individual (such as few visited places) may not be able decide which record
belongs to this person. Now, let us define k-anonymity more formally.

Definition 12.1 (k-Anonymity [53]) Let P = {P1, . . . , P|P|} be a set of public
attributes, and S = {S1, . . . , S|S|} be a set of sensitive attributes. A relational table
R(P,S) satisfies k-anonymity iff, for each record in r in R, there are at least k − 1
other records in R which have the same public attribute values as r .

k-anonymity requires (syntactic) indistinguishability of every record in the
dataset from at least k − 1 other records with respect to their public attributes.
Originally, public attributes included all (quasi)-identifiers of an individual (such
as sex, ZIP code, birth date) which are easily learnable by an adversary, while
the sensitive attribute value (e.g., salary, medical diagnosis, etc.) of any individual
should not be disclosed. Importantly, the values of public attributes are likely to be
unique to a person in a population [23], and hence can be used to link multiple
records of the same individual across different datasets, if these datasets share
common public attributes. In the context of location data, where a spatio-temporal
point (L, t) corresponds to a binary attribute whose value is 1 if the individual
visited location L at time t and 0 otherwise, such distinction of public and sensitive
attributes is usually pointless. Indeed, the same location can be insensitive to one
person while sensitive to another one (e.g., a hospital may be an insensitive place
for a doctor, who works there, and sensitive for a patient). Therefore, in a location
dataset, k-anonymity should require that each record (trajectory) must be completely
identical to at least k − 1 other trajectories in the same dataset. Syntactically
indistinguishable trajectories/records form a single anonymity group.

k-anonymity can be achieved by generalizing and/or suppressing the location
visits of individuals in the anonymized dataset. Generalization can be performed
by either forming clusters of similar trajectories, where each cluster has at least k

trajectories, or by replacing the location and/or time information of trajectories with
a less specific, but semantically consistent, one. For example, cities are represented
by their county, whereas minutes or hours are represented by the time of day
(morning/afternoon/evening/night).

A relaxation of k-anonymity, called km-anonymity, was first proposed in [54].
This model imposes an explicit constraint on the background knowledge of the
adversary, and requires k-anonymity with respect to this specific knowledge. For
example, if the adversary can learn at most m location visits of an individual,
then, for any set of m location visits, there must be at least 0 or k records in the
anonymized dataset which contain this particular set of visits. Formally:

Definition 12.2 (km-Anonymity [54]) Given a dataset D where each record is
subset of items from a universe U. D is km-anonymous iff for any m items from
U there are 0 or at least k records which contain these items.

In our context, universe U represents all spatio-temporal points, and an individ-
ual’s record has an item from U if the corresponding spatio-temporal is visited by
the individual.
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Table 12.1 Examples for k- and km-anonymity, where each row represents a record, public and
sensitive attributes are not distinguished, and temporal information is omitted for simplicity

(a) Original (b) 2-anonymous (c) 22-anonymous

No. Locations No. Locations No. Locations

1 {LA} 1 {West US} 1 {LA}

2 {LA, Seattle} 2 {West US} 2 {LA, Seattle}

3 {NYC, Boston} 3 {NYC, Boston} 3 {West US}

4 {NYC, Boston} 4 {NYC, Boston} 4 {West US}

5 {LA, Seattle, NYC} 5 {LA, Seattle, West US} 5 {LA, Seattle, West US}

6 {LA, Seattle, NYC} 6 {LA, Seattle, West US} 6 {LA, Seattle, West US}

7 {LA, Seattle, NYC, Boston} 7 {LA, Seattle, West US} 7 {LA, Seattle, West US}

22-anonymity requires fewer generalizations and hence provides more accurate data at the cost of
privacy

If m equals the maximum number of location visits per record, then km-
anonymity boils down to standard k-anonymity. However, the rationale behind
km-anonymity is that the adversary is usually incapable of learning more than a few
locations visits per individual (e.g., most people publicly reveal only their home
and working places on social media, in which case m = 2 if temporal data is
disregarded). Clearly, requiring indistinguishability with respect to only m instead
of all location visits of an individual requires less generalization and/or suppression
thereby providing more accurate anonymized data. This is also illustrated in
Table 12.1.

We must note that many more different syntactic privacy models (e.g., �-diversity
[39], t-closeness [37], (L,K,C)-privacy [42], etc.) have been proposed to mitigate
the deficiencies of k-anonymity. We refer the interested reader to [21] and [56] for
more details on privacy models and their usage. In this chapter, we only consider
syntactic anonymization schemes which rely on k- or km-anonymity.

12.2.2 Semantic Privacy Models

Most syntactic privacy models, such as k-anonymity, aim to mitigate only identity
disclosure, when the adversary re-identifies a record in the dataset (i.e., infer the
exact identity of the record owner). Although re-identification is clearly undesirable
and explicitly addressed by most legal regulations worldwide, it is not a necessary
condition of privacy violations. That is, locating the anonymity group of a person
(e.g., using his home and working places), the group itself can still leak a person’s
visited places no matter how large the group is. For instance, each of the k trajectory
may contain the same sensitive place, which means that the person also passed this
place. The real culprit is the lack of uncertainty about the individuals’ presence
in the anonymized dataset; even a knowledgeable adversary, who may know that
a person’s record is part of the original dataset, should not be able learn if this
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record was indeed used to generate the anonymized data. Another common pitfall
of syntactic privacy models is the lack of composability; the privacy of independent
releases of the same or correlated datasets should not collapse but rather “degrade
gracefully”. However, this does not hold for k-anonymity: the composition of k-
anonym datasets, where k can be arbitrarily large, can only be 1-anonym (i.e., the
anonymity guarantee completely collapses), which is also demonstrated in [22].
Composability is a natural requirement of any privacy model in the era of Big
Data where many different pieces of personal data get anonymized and published
about people by many different stakeholders independently. These different pieces
may be gathered and combined by a knowledgeable adversary in order to breach
individuals’ privacy. Next, we present a model which addresses these concerns.

Intuitively, differential privacy [15] requires that the outcome of any computation
be insensitive to the change of any single record inside and outside the dataset.
It allows a party to privately release a dataset: with perturbation mechanisms, a
function of an input dataset is modified, prior to its release, so that any information
which can discriminate a record from the rest of the dataset is bounded [16].

Definition 12.3 (Differential Privacy [16]) A privacy mechanism A guarantees
(ε, δ)-differential privacy if for any database D and D′, differing on at most one
record, and for any possible output S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] + δ

or, equivalently, PrO∼A(D)

[
log

(
Pr[A(D)=O]
Pr[A(D′)=O]

)
> ε

]
≤ δ.

Here, ε is typically a modest value (i.e., less than 1), and δ is a negligible function
of the number of records in D (i.e., less then 1/|D|) [16].

We highlight two consequences of the above definition which are often over-
looked or misinterpreted. First, differential privacy guarantees plausible deniability
to every individual inside as well as outside of the dataset, as an adversary, provided
with the output of A, can draw almost the same conclusions about any individual
no matter if this individual is included in the input of A or not [16]. Specifically,
Definition 12.3 guarantees that every output of algorithm A is almost equally
likely (up to ε) on datasets differing in a single record except with probability
at most δ. This implies that every possible binary inference (i.e., predicate) has
almost the same probability to be true (false) on neighboring datasets [15]. For
example, if an adversary can infer from A(D) that an individual, say John, visited
a hospital with probability 0.95, where D excludes John’s record, then the same
adversary infers the same from A(D′) with probability ≈ e±ε × 0.95 + δ, where
D′ = D ∪ {John’s record}. This holds for any adversary and inference irrespective
of the applied inference algorithm and prior (background) knowledge.2 That is, the

2The inference algorithm and background knowledge influences only the probability of the
conclusion, which is 0.95 in the current example.
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privacy measure ε and δ are “agnostic” to the adversarial background knowledge
and inference algorithm.

Second, Definition 12.3 does not provide any guarantee about the (in)accuracy of
any inference. There can be inferences (adversaries) which may predict the hospital
visit of John quite accurately, e.g., by noticing that all records, which are very
similar to John’s record (such as the records having the same age and profession
as John), also visited a hospital [11], while other inferences may do a bad job of
prediction as they cannot reliably sort out the records being similar (correlated) to
John’s record. Definition 12.3 guarantees that the accuracy of any inferences, no
matter how sensitive are, remain unchanged (up to ε and δ) if John’s own record is
included in the anonymized data. In other words, differential privacy allows to learn
larger statistical trends in the dataset, even if these trends reveal perhaps sensitive
information about each individual, and protects secrets about individuals which can
only be revealed with their participation in the dataset.3 Learning such trends (i.e.,
inferences which are generalizable to a larger population in interest) is the ultimate
goal of any data release in general.

Therefore, the advantage of differential privacy, compared to the many other
models proposed in the literature, is twofold. First, it provides a formal and
measurable privacy guarantee regardless what other background information or
sophisticated inference technique the adversary uses even in the future. Second,
following from Definition 12.3, it is closed with respect to sequential and parallel
composition, i.e., the result of the sequential or parallel combination of two
differential private algorithms is also differential private.

Theorem 12.1 ([40]) If each of A1, . . . ,Ak is (ε, δ)-differential private, then their
k-fold adaptive composition4 is (kε, kδ)-differential private.

Composition property has particular importance in practice, since it does not
only simplify the design of anonymization (sanitization) solutions, but also allows
to measure differential privacy when a given dataset, or a set of correlated datasets,
is anonymized (and released) several times, possibly by different entities.

There are a few ways to achieve DP and all of them are based on the
randomization of a computation whose result ought to be released. Most of these
techniques are composed of adding noise to the true output with zero mean and
variance calibrated to desired privacy guarantee which is measured by ε and δ. A
fundamental concept of these techniques is the global sensitivity of the computation
(function) [16] whose result should be released:

Definition 12.4 (Global Lp-Sensitivity) For any function f : D → R
d , the Lp-

sensitivity of f is Δpf = maxD,D′ ||f (D) − f (D′)||p, for all D,D′ differing in at
most one record, where || · ||p denotes the Lp-norm.

3These secrets are the private information which discriminate the individual from the rest of the
dataset and should be protected.
4Adaptive composition means that the output of Ai−1 is used as an input of Ai , that is, their
executions are not necessarily independent except their coin tosses.
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The Gaussian Mechanism [16] consists of adding Gaussian noise to the true
output of a function. In particular, for any function f : D → R

d , the mechanism
is defined as G(D) = f (D) + 〈N1(0, σ ), . . . ,Nd(0, σ )〉, where Ni (0, σ ) are
i.i.d. normal random variables with zero mean and with probability density function
g(z|σ) = 1√

2πσ 2
e−z2/2σ 2

. The variance σ 2 is calibrated to the L2-sensitivity of f

which is shown by the following theorem.

Theorem 12.2 ([16]) For any function f : D → R
d , the mechanism A

A(D) = f (D) + 〈G1(σ ), . . . ,Gd(σ )〉

gives (ε, δ)-differential privacy for any ε < 1 and σ 2 ≥ 2(Δ2f )2 ln(1.25/δ)/ε2,
where Gi (σ ) are i.i.d Gaussian variables with variance σ 2.

For example, if there are d possible locations and f returns the number of visits
per location (i.e., the spatial density), then Δ1f equals the maximum number of all
visits of any single individual in any input dataset, where Δ2f ≤ Δ1f . If Δ2f

is “too” large or ε and/or δ are “too” small, large noise is added providing less
accurate visit counts. Also notice that the noise variance is calibrated to the worst-
case contribution of any single individual to the output of f , which means that
the count of popular locations visited by many individuals can be more accurately
released than less popular locations with smaller counts. Indeed, all location counts
are perturbed with the same magnitude of noise, hence the signal-to-noise ratio is
higher for larger counts providing smaller relative error.

12.3 Releasing Spatio-Temporal Data

Suppose a geographical region which is composed of a set L of locations visited by
N individuals over a time of interest with T discretized epochs.5 These locations
may represent a partitioning of the region (e.g., all districts of the metropolitan area
of a city). The mobility dataset D of N users is a binary data cube with size N ·|L|·T ,
where Di,L,t = 1 if individual i visited location L in epoch t otherwise Di,L,t = 0.
That is, each individual’s record (or trajectory) is represented by a binary vector with
size |L| × T . The spatio-temporal density of locations L is defined by the number
of individuals who visited these locations as a function of time. More precisely,
there is a time series XL = 〈XL

0 , XL
1 , . . . , XL

T −1〉 for any location L ∈ L, where

XL
t = ∑N

i=1 Di,L,t and 0 ≤ t < T . XL denotes the set of time series of all locations
L and is referred to as the spatio-temporal density of locations L in the sequel.

In general, any data release is modelled by the execution of data queries. For
example, if the querier is interested in the spatio-temporal density of locations

5An epoch can be any time interval such as a second, a minute, an hour, etc.
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SL ⊆ L at time ST ⊆ {0, 1, . . . , T − 1}, then the query Q(SL, ST ) is computed
as Q(SL, ST ) = ∑

L∈SL,t∈ST

∑N
i=1 Di,L,t = ∑

L∈SL,t∈ST
XL

t . This gives rise to at
least three approaches for the privacy-preserving release of spatio-temporal density:

Approach 1: compute any query Q on the original data D (or XL) and release
only the anonymized query result Q̂(SL, ST );

Approach 2: anonymize the mobility dataset D into D̂, then release D̂ which can
be used to answer any query Q as Q̂(SL, ST ) = ∑

L∈SL,t∈ST

∑N
i=1 D̂i,L,t ;

Approach 3: compute the density XL from the original mobility data D as XL
t =∑N

i=1 Di,L,t , and release the anonymized X̂L, where X̂L can be used to answer
any query Q.

In Approach 1, a querier can adaptively (i.e., interactively) choose its queries
depending on the result of previously answered queries. By contrast, in Approach
2 and 3, the released data are used to answer arbitrary number and type of queries
non-interactively (i.e., the queries are independent of each other). In fact, Approach
1, 2 and 3 only differ in their adversary models: Approach 2 and 3 are instantiations
of Approach 1 in the non-interactive setting where the possibly adversarial querier
must fix all queries before learning any of its results. Specifically, Approach 2 is
simply consists of answering N ·|L|·T binary queries at once, where a query returns
an element of the cube D. Similarly, in Approach 2, |L ·T | queries can represent the
elements of every time series, where all queries are answered together. As detailed in
the sequel, the decreased number of queries as well as the non-interactive answering
mechanism is the reason that Approach 3 usually outperforms Approach 1 and 2 in
practice as long as the only goal is to release XL as accurately as possible meanwhile
preserving the privacy of individuals. Hence, we will detail a specific solution of
Approach 3 in Sect. 12.3.3 and briefly review the rest in Sects. 12.3.1 and 12.3.2.

12.3.1 Approach 1: Anonymization of Specific Query Results

12.3.1.1 Syntactic Anonymization

Privacy breaches may be alleviated by query auditing which requires to
maintain all released queries. The database receives a set of counting queries
Q1(SL1 , ST1), . . . ,Qn(SLn, STn), and the auditor needs to decide whether the
queries can be answered without revealing any single visit or not. Specifically, the
goal is to prevent the full disclosure of any single visit of any spatio-temporal point
in the dataset.

Definition 12.5 (Full Disclosure) Di,L,t is fully disclosed by a query set
{Q1(SL1 , ST1), . . . ,Qn(SLn, STn)} if Di,L,t can be uniquely determined, i.e., in
all possible data sets D consistent with the answers c = (c1, . . . , cn) to queries
Q1, . . . ,Qn, Di,L,t is the same.
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As each query corresponds to a linear equation on location visits, the auditor can
check whether any location visit can be uniquely determined by solving a system of
linear equations specified by the queries. To ease notation, let x = (x1, . . . , xN ·|L|·T )

denote the set of all location visits, i.e., there is a bijection α : [1, N]×L×[1, T ] →
[1, N · |L| · T ] such that xα(i,L,t) = Di,L,t . Let Q be a matrix with n rows and
N · |L| ·T columns. Each row in Q corresponds to a query, which is represented by a
binary vector, indexing the visits that are covered by the query. The system of linear
equations is described in matrix form as Qx = c. Hence, the auditor checks whether
any xi can be uniquely determined by solving the following system of equations:

Qx = c

subject to xi ∈ {0, 1} for 1 ≤ i ≤ N · |L| · T
(12.1)

In general, this problem is coNP-hard as the variables xi have boolean values [34].
However, there exists an efficient polynomial time algorithm in the special case
when the queries are 1-dimensional, i.e. there is a permutation of x where each query
covers a subsequence of the permutation. Typical examples include range queries.
For instance, if locations are ordered according to their coordinates on a space-filling
Hilbert curve, then range queries can ask for the total number of visits of locations
(over all epochs) that are geographically also close. In the case of 1-dimensional
queries, the auditor has to determine the integer solutions of the following system
of equations and inequalities:

Qx′ = c

subject to 0 ≤ x′
i ≤ 1 for 1 ≤ i ≤ N · |L| · T

(12.2)

Notice that the variables in Eq. (12.2) are no longer over boolean data and hence
Eq. (12.2) can be solved in polynomial time with any LP solver [55]. The integer
solutions of Eq. (12.2) equals the solutions of Eq. (12.1) for 1-dimensional location
queries [34].

In the general case, when the queries are multi-dimensional, the auditor can
also solve Eq. (12.2), and the final solutions are obtained by rounding: x̂i = 1 if
x′
i > 1/2 and x̂i = 0 otherwise. In that case, x̂ ≈ x for sufficiently large number of

queries [14]. In particular, if each query covers a visit with probability 1/2, then
O(|x| log2 |x|) queries are sufficient to recover almost the whole x (i.e., dataset
D). Even more, only |x| number of deterministically chosen queries are enough to
recover almost the entire original data [17]. In fact, these reconstruction techniques
are the best known attacks against a database curator who answers only aggregate
counting queries over boolean data.

Therefore, equipped with the original data x, the auditor can check whether any
of the above attacks would be successful by comparing x with the reconstructed
values x̂ (or x′). If so, the auditor refuses to answer any of the n queries.

The above query auditing techniques have several problems. First and foremost,
refusing to answer a query itself can leak information about the underlying dataset
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(i.e., D) [44]. This would not be the case if refusal was independent of the
underlying dataset (e.g., auditing is carried out without accessing the true answers
c). Second, they can be computationally expensive. Indeed, using the solver in [55]
the worst-case running time is O(n|x|4) if |x| � n. Finally, most query auditing
schemes assume that the adversary has either no background knowledge about
the data, or it is known to the auditor. These are impractical assumptions which
is also demonstrated in Sect. 12.1.1.1, where the adversary reconstructed complete
trajectories from aggregate location counts exploiting some inherent characteristics
of human mobility.

12.3.1.2 Semantic Anonymization

An alternative approach to query auditing perturbs each query result with some
random noise and releases these noisy answers. In order to guarantee (ε, δ)-
differential privacy, the added noise usually follows a Laplace or Gaussian distri-
bution. If the noise is added independently to each query answer, then the error is
O(

√
n log(1/δ)/εN) [16], where N is the number of individuals and n is the number

of queries. This follows from the advanced composition property of differential
privacy [16]. Therefore, Ω̃(N2) queries can be answered using this approach with
non-trivial error (i.e., it is less than the magnitude of the answer). We note that at
least Ω(

√
N) noise is needed per query in order to guarantee any reasonable notion

of privacy [14, 16]. There also exist better techniques that add correlated noise to the
answers. For instance, the private multiplicative weight mechanism [26] can answer
exponentially many queries in N with non-trivial error, where the added noise scales
with O(

√
log(T |L|) · log(1/δ) · log(n)/εN)1/2.

In contrast to query auditing described in Sect. 12.3.1, the above mechanisms can
answer queries in an on-line fashion (i.e., each query is answered as it arrives) and
run in time poly(N, T |L|) per query. Moreover, the privacy guarantee is independent
of the adversarial background knowledge (see Sect. 12.2.2). On the other hand,
they distort (falsify) the data by perturbation, which may not be desirable in some
practical applications of spatio-temporal density. Another drawback is that they are
data agnostic and may not exploit some inherent correlation between query results
which are due to the nature of the location data. For example, query results usually
follow a publicly known periodic trend, and adding noise in the frequency domain
can provide more accurate answers [5].

12.3.2 Approach 2: Anonymization of the Mobility Dataset

12.3.2.1 Syntactic Anonymization

In general, anonymizing location trajectories (i.e., the whole cube D) while
preserving practically acceptable utility is challenging. This is due to the fact that
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Fig. 12.1 Never-Walk-Alone anonymization. Original dataset (city of Oldenburg in Germany)
with 1000 trajectories (left) and its anonymized version (NWA from [2]) with k = 3 where the
distance between any points of two trajectories within the same cluster is at most 2000 m (right)
(image courtesy of Gábor György Gulyás)

location data is typically high-dimensional and sparse, that is, any individual can
visit a large number of different locations, but most of them typically visit only a
few locations which are quite different per user. This has devastating effect on the
utility of anonymized datasets: most k-anonymization schemes generalize multiple
trajectories into a single group (or cluster) and represent each trajectory with the
centroid of their cluster [2, 43, 47]. Hence, every record becomes (syntactically)
indistinguishable from other records within its cluster. This generalization is often
implemented by some sophisticated clustering algorithm, where the most similar
trajectories are grouped together with an additional (privacy) constraint: each cluster
must contain at least k trajectories. Unfortunately, such approaches fail to provide
sufficiently useful anonymized datasets because of the curse of dimensionality [6]:
any trajectory exhibits almost identical similarity to any other trajectory in the
dataset. This implies that the centroid of each cluster tend to be very dissimilar
from the cluster members implying weak utility. Moreover, as the distribution
of the number of visits of spatio-temporal points are typically heavy-tailed [45],
projection to low dimensions and then clustering in low dimension also loses almost
all information about the trajectories. This is illustrated by Fig. 12.1 which shows the
result of a state-of-the-art anonymization scheme, referred to as Never-Walk-Alone
(NWA) [2], on a synthetic dataset with 1000 trajectories.6 This scheme groups k co-
localized trajectories within the same time period to form a k-anonymized aggregate
trajectory, where k was set to 3 in our experiment and the greatest difference between
any spatial point of two members of the same cluster is set to 2000 m. Figure 12.1

6We used a subset of a larger synthetic trajectory dataset available on https://iapg.jade-hs.de/
personen/brinkhoff/generator/.

https://iapg.jade-hs.de/personen/brinkhoff/generator/
https://iapg.jade-hs.de/personen/brinkhoff/generator/
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shows that even with modest values of k, the anonymized dataset provides quite
imprecise spatial density of the city.

To improve utility while relaxing privacy requirements, km-anonymity has
also been considered to anonymize location trajectories in [48]. However, most
anonymization solutions guaranteeing km-anonymity has a computational cost
which is exponential in m in the worst-case, hence this approach is only feasible
if m is small. This drawback is alleviated in [3], where a probabilistic relaxation
of km-anonymity is proposed to release the location visits of individuals without
temporal information. In theory, temporal data can also be released along with the
location information if the m items are composed of pairs of spatial and temporal
positions. However, care must be taken as the background knowledge of a realistic
adversary cannot always be represented by m items (e.g., it perhaps also knows the
frequency of m items of a targeted individual).

Another approach improving on k-anonymization is p-confidentiality [10];
instead of grouping the trajectories, the underlying map is anonymized, i.e., points of
interest are grouped together creating obfuscation areas around sensitive locations.
More precisely, given the path of a trajectory, p bounds the probability that the
trajectory stops at a sensitive node in any group. Supposing that (1) the background
knowledge of the adversary consists of stopping probabilities for each location in
a single path and (2) sensitive locations are pre-specified by data owners, groups
of locations are formed in such a way that the parts of trajectories entering the
groups do not increase the adversary’s belief in violating the p-confidentiality.
Trajectories are then anonymized based on the above map anonymization. The
efficiency and utility of this solution is promising, however, in cases where the
adversarial background knowledge cannot be approximated well (or at all), semantic
privacy models such as differential privacy is preferred.

12.3.2.2 Semantic Anonymization

A more promising approach is to publish a synthetic (anonymized) mobility dataset
resembling the original dataset as much as possible, while achieving provable
guarantees w.r.t. the privacy of each individual. The records in both datasets follow
similar underlying distributions, i.e., after modeling the generator distribution of
the original dataset, random samples (records) are drawn from a noisy version of
this distribution. A few solutions exist in literature where the generator distribution
is modeled explicitly and noised to guarantee differential privacy. For example,
DP-WHERE [41] adds noise to the set of empirical probability distributions
which is derived from CDR (Call-Detail-Record) datasets, and samples from these
distributions to generate synthetic CDRs which are differential private. Although
this synthetic dataset can also be used to compute spatio-temporal density, it
is usually not as accurate as perturbing the generator distribution of the spatio-
temporal density exclusively [4]. Indeed, the accurate model of more complex data
(such as the original mobility data) is also more complex in general (i.e., have larger
number of parameters), which usually requires increased perturbation.
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Some other works generate synthetic sequential data using more general data
generating models such as different Markov models [8, 9, 29]. These approaches
have wide applicability but they are usually not as accurate as a specific model
tailored to the publicly known characteristics of the dataset to be anonymized. We
illustrate this important point by the following example. DP-WHERE is designed
for CDR datasets, and provides more accurate anonymized CDR data than a simple
n-gram model [8]. For example, DP-WHERE models the distribution of commute
distances per home location and then generates a pair of home and working places as
follows. First, a home location is selected, which is followed by picking a distance
from the (noisy) distribution of commute distances. Finally, a working place is
selected which has this distance from the selected home location. This approach
results in more accurate representation of home and working places than using the
noisy occurrence counts of different pairs of home and working places like in [8].
This is because commute distances are modeled by an exponential distribution [41],
and its single rate parameter can be estimated by the median of the empirical data
(i.e., commute distances). Therefore, in DP-WHERE, the probability of a particular
pair of home and working location depends on their distance, while in an n-gram
model, it depends on the occurrence count of this pair in the original dataset.
For instance, New York, as a home location, occurs equally likely with LA and
Philadelphia, as working places, in an n-gram model, if these pairs have the same
frequency in the original dataset. By contrast, in DP-WHERE, New York is much
more likely to co-occur with the geographically closer Philadelphia than with LA.
The moral of the story is that achieving the best performance requires to find the
most faithful model of the data whose accuracy does not degrade significantly due
to additional perturbation.

12.3.3 Approach 3: Anonymization of Spatio-Temporal Density

A simple k-anonymization of time series XL releases XL
t only if XL

t ≥ k. However,
as it is detailed in Sect. 12.1, this still allows privacy violations through various
reconstruction attacks. Hence, releasing spatio-temporal density with provable
privacy guarantees, such as differential privacy, is preferred in many practical
scenarios.

Within the literature of differential privacy, a plethora of techniques have been
proposed to release 1- and 2-dimensional range queries (or histograms) while
preserving differential privacy [5, 12, 26, 28, 35, 36, 38, 49, 59, 60, 62, 64] and
they are also systematically compared in [27]. Indeed, interpreting query results (or
bin counts in a histogram) as location counts, these techniques are directly appli-
cable to release spatial density without temporal data. In theory, low-dimensional
embedding, such as Locality-sensitive hashing (LSH) [50], may allow to use any of
the above techniques to release spatio-temporal density.

Another line of research addresses the release of time series data with the guaran-
tees of differential privacy. This is challenging as time series are large dimensional
data whose global sensitivity is usually so large that the magnitude of the added
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noise is greater than the actual counts of the series for stringent privacy requirement
(i.e., ε < 1 and δ ≤ 1/|N | where N is the number of records). Consequently, naively
adding noise to each count of a time series often results in useless data. Several
more sophisticated techniques [19, 31, 51] have been proposed to release time series
data meanwhile guaranteeing differential privacy. Most of these methods reduce the
global sensitivity of the time series by using standard lossy compression techniques
borrowed from signal processing such as sampling, low-pass filtering, Kalman
filtering, and smoothing via averaging. The main idea that the utility degradation
is decomposed into a reconstruction error, which is due to lossy compression, and
a perturbation error, which is due to the injected Laplace or Gaussian noise to
guarantee differential privacy. Although strongly compressed data is less accurate,
it also requires less noise to be added to guarantee privacy. The goal is to find a good
balance between compression and perturbation to minimize the total error.

There are only a few existing papers addressing the release of spatio-temporal
density specifically. Although data sources (and hence the definition of spatio-
temporal density) vary to a degree in these papers, the commonality is the usage
of domain-specific knowledge, i.e., the correlation of data points at hand in both
the spatial and the temporal dimension. This domain-specific knowledge helps
overcome several challenges including high perturbation error, data sparsity in the
spatial domain, and (in some of the cases) real-time data publication. In the context
of releasing multi-location traffic aggregates, road network and density are utilized
to model the auto-correlation of individual regions over time as well as correlation
between neighboring regions [20]. Temporal estimation establishes an internal time
series model for each individual cell and performs posterior estimation to improve
the utility of the shared traffic aggregate per time stamp. Spatial estimation builds
a spatial indexing structure to group similar cells together reducing the impact of
data sparsity. All computations are lightweight enabling real-time data publishing.
Drawing on the notion of w-event privacy [32], RescueDP studies the problem
of the real-time release of population statistics per regions [57]. Such w-event
privacy protects each user’s mobility trace over any successive w time stamp inside
the infinite data grouping algorithm that dynamically aggregates sparse regions
together. The criterion for regions to be grouped is that local population statistics
should follow a similar trend. Finally, a practical scheme for releasing the spatio-
temporal density of a large municipality based on a large CDR dataset is introduced
in [4]. Owing to the complexity of its scenario and the innovative techniques used,
we present this work in detail in Sect. 12.4.

12.4 A Case-Study: Anonymizing the Spatio-Temporal
Density of Paris

In this section, we present an anonymization (or sanitization) technique in order to
release the spatio-temporal density with provable privacy guarantees. Several opti-
mizations are applied to boost accuracy: time series are compressed by sampling,
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Fig. 12.2 IRIS cells of Paris (left) and Voronoi-tesselation of tower cells (right)

clustering and low-pass filtering. The distortion of the perturbation is attenuated
via further optimization and post-processing algorithms. A striking demonstration
shows that the achieved performance is high and can be practical in real-world
applications: the spatio-temporal density of the city of Paris in France, covering
roughly two million people over 105 km2, is anonymized using the proposed
approach.

The specific goal is to release the spatio-temporal density of 989 non-overlapping
areas in Paris, called IRIS cells. Each cell is defined by INSEE7 and covers about
2000 inhabitants. L denotes the set of all IRIS cells henceforth, and are depicted in
Fig. 12.2 based on their contours.8 We aim to release the number of all individuals
who visited a specific IRIS cell in each hour over a whole week. Since human
mobility trajectories exhibit a high degree of temporal and spatial regularity [24],
1 week long period should be sufficient for most practical applications. Therefore,
we are interested in the time series XL = 〈XL

0 , XL
1 , . . . , XL

167〉 of any IRIS cell
L ∈ L, where XL

t denotes the number of individuals at L in the (t + 1)th hour of
the week, such that any single individual can visit a tower only once in an hour. We
will omit t and L in the sequel, if they are unambiguous in the given context. XL

denotes the set of time series of all IRIS cells in the sequel.
To compute XL, we use a CDR (Call Detail Record) dataset provided by a large

telecom company. This CDR data contains the list of events of each subscriber (user)
of the operator, where an event is composed of the location (GPS coordinate of the
cell tower), along with a timestamp, where an incoming/outgoing call or message is
sent to/from the individual. The dataset contains the events of N = 1,992,846 users
at 1303 towers within the administrative region of Paris (i.e., the union of all IRIS
cells) over a single week (10/09/2007–17/09/2007). Within this interval, the average
number of events per user is 13.55 with a standard deviation of 18.33 (assuming that

7National Institute of Statistics and Economics: http://www.insee.fr/fr/methodes/default.asp?
page=zonages/iris.htm.
8Available on IGN’s website (National Geographic Institute): http://professionnels.ign.fr/
contoursiris.

http://www.insee.fr/fr/methodes/default.asp?page=zonages/iris.htm
http://www.insee.fr/fr/methodes/default.asp?page=zonages/iris.htm
http://professionnels.ign.fr/contoursiris
http://professionnels.ign.fr/contoursiris
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an individual can visit any tower cell only once in an hour) and with a maximum at
732. Similarly to IRIS cells, we can create another set of time series XC, where XC

t

denotes the number of visits of tower C in the (t + 1)th hour of the week.
To map the counts in XC to XL, we compute the Voronoi tessellation of the

towers cells C which is shown in Fig. 12.2. Then, we calculate the count of each
IRIS cell in each hour from the counts of its overlapping tower cells; each tower cell
contributes with a count which is proportional to the size of the overlapping area.
More specifically, if an IRIS cell L overlaps with tower cells {C1, C2, . . . , Cc}, then

XL
t =

c∑
i=1

X
Ci
t × size(Ci ∩ L)

size(Ci)
(12.3)

at time t .

Algorithm 12.1 Anonymization scheme

Input: XT - input time series (from CDR), (ε, δ)-privacy parameters, L - IRIS cells, � - maximum
visits per user
Output: Noisy time series X̂L

1: Create X
C

by sampling at most � visits per user from XC

2: Compute the IRIS time series X
L

from X
C

using Eq. (12.3)

3: Perturb X
L

into X̂L //see Algorithm 12.2
4: Apply smoothing on X̂L

The rationale behind this mapping is that users are usually registered at the
geographically closest tower at any time. Notice that this mapping technique might
sometimes be incorrect, since the real association of users and towers depends on
several other factors such as signal strength or load-balancing. Nevertheless, without
more details of the cellular network beyond the towers’ GPS position, there is not
any better mapping technique.

12.4.1 Outline of the Anonymization Process

The aim is to transform the time series of all IRIS cells XL to a sanitized version
X̂L such that X̂L satisfies Definition 12.3. That is, the distribution of X̂L will be
insensitive (up to ε and δ) to all the visits of any single user during the whole week,
meanwhile the error between X̂L and XL is small.

The anonymization algorithm is sketched in Algorithm 12.1. First, the input
dataset is pre-sampled such that only � visits are retained per user (Line 1). This
ensures that the global L1-sensitivity of all the time series (i.e., XL) is no more than
�. Then, the pre-sampled time series of each IRIS cell is computed from that of the
tower cells using Voronoi-tesselation (Line 2), which is followed by the perturbation
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of the time series of all IRIS cells to guarantee privacy (Line 3). In order to mitigate
the distortion of the previous steps, smoothing is applied on the perturbed time series
as a post-processing step (Line 4).

12.4.2 Pre-sampling

To perturb the time series of all IRIS cells, we first compute their sensitivity, i.e.,
Δ1(XL). To this end, we first need to calculate the sensitivity of the time series of
all tower cells, i.e., Δ1(XC). Indeed, Eq. (12.3) does not change the L1-sensitivity
of tower counts, and hence, Δ1(XC) = Δ1(XL).

Δ1(XC) is given by the maximum total number of (tower) visits of a single
user in any input dataset. This upper bound must universally hold for all possible
input datasets, and is usually on the order of few hundreds; recall that the maximum
number of visits per user is 732 in our dataset. This would require excessive noise
to be added in the perturbation phase. Instead, each record of any input dataset is
truncated by considering at most one visit per hour for each user, and then at most �

of such visits are selected per user uniformly at random over the whole week. This
implies that a user can contribute with at most � to all the counts in total regardless
of the input dataset, and hence, the L1-sensitivity of the dataset always becomes �.

The pre-sampled dataset is denoted by X, and Δ1(X
C
) = Δ1(X

L
) = �.

In order to compute the L2-sensitivity Δ2(XL), observe that, for any t , there is
only a single tower whose count can change (by at most 1) by modifying a single
user’s data. From Eq. (12.3), it follows that the total change of all IRIS cell counts

is at most 1 at any t , and hence Δ2(X
L
) ≤ Δ2(X

C
) = √

� based on the definition
of L2-norm.

12.4.3 Perturbation

The time series X
L

can be perturbed by adding G(
√

2� ln(1.25/δ)/ε) to each count
in all time series (see Theorem 12.2) in order to guarantee (ε, δ)-DP. Unfortunately,
this naive method provides very poor results as individual cells have much smaller
counts than the magnitude of the injected noise; the standard deviation of the
Gaussian noise is 95 with ε = 0.3 and δ = 2 · 10−6, which is comparable to the

mean count in X
L

.
A better approach exploits (1) the similarity of geographically close time series,

as well as (2) their periodic nature. In particular, nearby less populated cells are first
clustered until their aggregated counts become sufficiently large to resist noise. The
key observation is that the time series of close cells follow very similar trends, but
their counts usually have different magnitudes. Hence, if we simply aggregate (i.e.,
sum up) all time series within such a cluster, the aggregated series will have a trend
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close to its individual components yet large enough counts to tolerate perturbation.
To this end, the time series of individual cells are first accurately approximated by
normalizing their aggregated time series (i.e., the aggregated count of each hour is
divided with the total number of visits inside the cluster), and then scaled back with
the (noisy) total number of visits of individual cells.

Algorithm 12.2 Perturbation

Input: Pre-sampled time series X
L

, Privacy budget ε, δ, Sensitivity Δ1(X
L
) = �

Output: Noisy time series X̂L

1: Ŝi := ∑167
t=0 X

i

t + G(2
√

2� ln(2.5/δ)/ε) for each i ∈ L

2: E := Cluster(L, Ŝ)

3: for each cluster E ∈ E do
4: X

E := 〈∑i∈E X
i

0,
∑

i∈E X
i

1, . . . ,
∑

i∈E X
i

167〉
5: X̂E := FourierPerturb(X

E
, ε/2, δ)

6: for each cell i ∈ E do
7: X̂i := Ŝi · (X̂E

t /||X̂E ||1)
8: end for
9: end for

In order to guarantee differential privacy (DP), the aggregated time series are
perturbed before normalization. To do so, their periodic nature is exploited and
a Fourier-based perturbation scheme [5, 51] is applied: Gaussian noise is added
to the Fourier coefficients of the aggregated time series, and all high-frequency
components are removed that would be suppressed by the noise. Specifically,
the low-frequency components (i.e., largest Fourier coefficients) are retained and
perturbed with noise G(

√
2� ln(1.25/δ)/ε), while the high-frequency components

are removed and padded with 0. As only (the noisy) low-frequency components are
retained, this method preserves the main trends of the original data more faithfully
than simply adding Gaussian noise to XL, while guaranteeing the same (ε/2, δ/2-
DP. Further details of this technique can be found in [4].

The whole perturbation process is summarized in Algorithm 12.2. First, the
noisy total number of visits of each cell in L is computed by adding noise

G(2
√

2� ln(2.5/δ)/ε) to
∑167

t=0 X
i

t for cell i (Line 1). These noisy total counts are
used to cluster similar cells in Line 2 by invoking any clustering algorithm aiming
to create clusters with large aggregated counts overall (i.e., the sum of all cells’ time
series within the cluster has large counts) using only the noisy total number of visits
Ŝi as input. The output E of this clustering algorithm is a partitioning of cells L.
When clusters E are created, their aggregated time series (i.e., the sum of all cells’
time series within the cluster) is perturbed with a Fourier-based perturbation scheme
[5] in Line 5. Finally, the perturbed time series of each cell i in L is computed in
Line 7 by scaling back the normalized aggregated time series with the noisy total
count cell i (i.e., with Ŝi). Since Line 1 guarantees (ε/2, δ/2)-DP to the total counts

(Δ1(X
L
) = √

�), it follows from Theorem 12.1 that Algorithm 12.2 is (ε, δ)-DP as
the Fourier perturbation of time-series is (ε/2, δ/2)-DP in Line 5 [4].
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Fig. 12.3 Algorithm 12.1 before improvements (ε = 0.3, δ = 2 · 10−6, � = 30). (a) Large counts.
(b) Small counts around local minimas

12.4.4 Improvements: Scaling and Smoothing

The result of the above perturbation technique, which is illustrated in Fig. 12.3, still
suggests a large error on average. The difference between X̂ and X is the result
of two errors: the sampling error (between X and X) is attributed to pre-sampling,
whereas the perturbation error (between X̂ and X) is due to the perturbation scheme

presented in Algorithm 12.2. Indeed, since X
i

is the pre-sampled time series of cell
i, X̂i (Line 6 of Algorithm 12.2) will be a scaled down version of the original time
series Xi due to the fact that the � visits per individual are sampled uniformly at
random.

As illustrated by Fig. 12.3a, sampling error mainly distorts large counts: although
the noisy counts are close to the counts of the truncated (pre-sampled) time series
between 9:00 AM and 11:00 PM, it is still far from the original count values. This
significantly increases the mean relative error. In addition, as Fig. 12.3b also shows,
noisy counts also deviate from pre-sampled as well as from original counts around
the local minimas (close to 4:00 AM every day), which further deteriorates the
relative error.

To alleviate these errors, two further improvements are proposed in [4], which
are also illustrated in Fig. 12.4: first, the perturbation of total cell counts (Line
1 in Algorithm 12.2) is improved, which is used in cell clustering (Line 2 in
Algorithm 12.2) and scaling (Line 6 in Algorithm 12.2). The main idea is that the
real scaling factor

∑167
t=0 Xi

t (in Line 1 of Algorithm 12.2) is approximated by a
more accurate technique: the relative frequency of each tower is first estimated by
sampling only a single visit per user, then the perturbed relative frequencies are
multiplied with the (perturbed) total number of visits of the original data X to obtain
an estimation of

∑167
t=0 Xi

t . The relative frequencies have L2-sensitivity 1, while the
L2-sensitivity of the total number of visits is

√
753 < 27.44. Hence, the relative

error of this new estimation becomes small, as the relative frequencies of towers
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Fig. 12.4 Algorithm 12.1 after improvements (ε = 0.3, δ = 2 · 10−6, � = 30). (a) Scaling. (b)
Smoothing

require very small noise, while the total number of visits is incomparably larger
than its L2-sensitivity. The result of scaling with this more accurate scaling factor is
shown in Fig. 12.4a. Finally, in order to diminish perturbation error of small counts,
counts between 0:00 and 6:00 AM are smoothed out through non-linear least-square
fitting as a post-processing step (Fig. 12.4b).

12.4.5 Time Complexity

The pre-sampling step has a complexity of O(�N) and the computation of XL (see
Eq. (12.3)) needs O(T |C||L|) steps in the worst case. In the perturbation algorithm
(Algorithm 12.2), the clustering of time-series runs in O(T |L|2) and the Discrete
Cosine Transform can be implemented with Fast Fourier Transform that has a
complexity of O(T log T ). Therefore, the overall complexity is O(|L|T log T +
T |L|2 + T |C||L| + �N) disregarding the post-processing step (in Line 4 of
Algorithm 12.1).

12.4.6 Results

The error between the anonymized and original time series is measured by two
metrics: the mean relative error (MRE) and the Pearson Correlation (PC), where

MRE(X, X̂) = (1/n)
∑n−1

i=0
|X̂i−Xi |

max(γ,Xi)
.9 The Pearson correlation measures the linear

correlation between the noisy and the original time series (i.e., whether they have
similar trends), and it always falls between −1 and 1.

9The sanity bound γ mitigates the effect of very small counts and is adjusted to 0.1% of
∑n−1

i=0 Xi

[58].
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Fig. 12.5 Mean relative error and Pearson correlation of each IRIS cell (ε = 0.3, δ = 2·10−6, � =
30). (a) Naive Gaussian Perturbation (Avg. MRE: 1.01, PC: 0.47). (b) Algorithm 12.1 (Avg. MRE:
0.17, PC: 0.96)

The MRE and PC of individual IRIS cells are illustrated by color maps
in Fig. 12.5. This figure shows that the presented anonymization (Fig. 12.5b)
scheme outperforms the naive Gaussian Perturbation Algorithm (Fig. 12.5a) when

G(
√

2� ln(1.25/δ)/ε) is added to each count in X
L

without any further optimization.
Moreover, Algorithm 12.1 can also provide practical utility for most cells with
strong privacy guarantee. Specifically, the average MRE over all cells is only 0.17
with ε = 0.3, δ = 2 · 10−6 and � = 30.

12.5 Summary and Conclusions

In this chapter, we gave an overview of the privacy models and anonymization/san-
itization techniques for releasing spatio-temporal density in a privacy-preserving
manner. We first illustrated the privacy threats of releasing spatio-temporal density



12 Privacy-Preserving Release of Spatio-Temporal Density 331

and described two attacks that can recover individual visits or even complete
trajectories merely from spatio-temporal density. Then, we reviewed the mainstream
privacy models, and distinguished syntactic models (such as k-anonymity) and
semantic models (such as differential privacy). As spatio-temporal density is a
function of the raw mobility data, we identified three main approaches to anonymize
spatio-temporal density: (1) anonymize and release the results of queries executed
on the original mobility data, (2) anonymize and release the original mobility data
(i.e., location trajectories) used to compute the spatio-temporal density, and (3)
anonymize and release the spatio-temporal density directly which is computed from
the original mobility data.

The first approach relies on query auditing, or query perturbation using dif-
ferential privacy. Query auditing is computationally expensive, and disregards the
background knowledge of the adversary. Although query perturbation is inde-
pendent of the adversarial background knowledge and runs in polynomial time,
it ignores some inherent characteristics of human mobility which could further
diminish perturbation error. Also, unlike query auditing, perturbation is non-
truthful, i.e. releases falsified location data.

The second approach can use either a syntactic or a semantic privacy model to
anonymize trajectories. Syntactic anonymization techniques providing k-anonymity
suffer from the curse of dimensionality and provide inaccurate data in general.
km-anonymization has smaller error but guarantees weaker privacy and/or has
exponential time complexity in m. In addition, all syntactic privacy guarantees
can be violated with appropriate background knowledge, which is difficult to
model in practice. Semantic anonymization using differential privacy is much more
promising, but again, they use perturbation which is non-truthful. In addition,
anonymizing trajectories usually provides less accurate density estimation than
anonymizing the spatio-temporal density directly. Indeed, density can be modelled
accurately with a model which requires less perturbation than the model of complete
trajectories. Although some trajectory anonymization techniques have larger time
complexity, these are not serious concerns in case of one-shot release.

As the last approach provides the largest accuracy in practice, we detailed the
operation of such an anonymization process and showed its performance in a real-
world application. This demonstration also shows that differential privacy can be a
practical model for the privacy-preserving release of spatio-temporal data, even if it
has large dimension. We also showed that, in order to achieve meaningful accuracy,
the sanitization process has to be carefully customized to the application and public
characteristics of the dataset. The time complexity of this approach is polynomial
and also very fast in practice.

As a conclusion, it is unlikely that there is any “universal” anonymization/san-
itization solution that fits every application and data, i.e., provides good accuracy
in all scenarios. In particular, achieving the best performance requires finding the
most faithful model of the data, such that it withstands perturbation. In case of
spatio-temporal density, clustering and sampling with Fourier-based perturbation
are seemingly the best choices due to the periodic nature and large sensitivity of
location counts.
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Finally, we emphasize two important properties of semantic anonymization
and query perturbation with differential privacy. First, unlike all other schemes,
including query auditing and syntactic trajectory anonymization, differential privacy
composes and the privacy loss can be quantified and gracefully degrades by multiple
releases. This is crucial if the data gets updated and should be “re-anonymized”, or,
there are other independent releases with overlapping set of individuals (e.g., two
CDR datasets about the same city from two different telecom operators). Second,
privacy attacks may rely on very diverse background knowledge, which are difficult
to capture. For example, not until the appearance of the reconstruction attack in
Sect. 12.1.1.1 was it clear that individual trajectories can be recovered merely from
spatio-temporal density. Only differential privacy seems to provide adequate defense
(with properly adjusted ε and δ) against even such sophisticated attacks.

Nevertheless, there are still many interesting future directions to further improve
performance. First, the data generating distribution can be implicitly modeled using
generative artificial neural networks (ANNs) such as Recurrent Neural Networks
(RNNs) [25]. Generative ANNs have exhibited great progress recently and their
representational power has been demonstrated by generating very realistic (but
still artificial) sequential data such as texts10 or music. The intuition is that, as
deep ANNs can “automatically” model very complex data generating distributions
thanks to their hierarchical structure, they can potentially be used to produce
realistic synthetic sequential data such as spatio-temporal densities. Second, current
approaches release the spatio-temporal density only for a limited time interval. For
example, the solution described in Sect. 12.4 releases the density for only a single
week. To release density over multiple weeks, one need to use a the composition
property of differential privacy which guarantees (kε, kδ)-DP for k-fold adaptive
composition based on Theorem 12.1. These are still quite large bounds if we wish
to release the density in the whole year with k = 52. Fortunately, tighter bound has
been derived recently, building on the notions of Concentrated Differential Privacy,

which guarantees
(
O(ε

√
k), δ

)
-DP after k adaptive releases [1].
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