
Chapter 11
Systems for Privacy-Preserving Mobility
Data Management

Despina Kopanaki, Nikos Pelekis, and Yannis Theodoridis

Abstract The increasing availability of data due to the explosion of mobile devices
and positioning technologies has led to the development of efficient management
and mining techniques for mobility data. However, the analysis of such data may
result in significant risks regarding individuals’ privacy. A typical approach for
privacy-aware mobility data sharing aims at publishing an anonymized version of
the mobility dataset, operating under the assumption that most of the information
in the original dataset can be disclosed without causing any privacy violation. On
the other hand, an alternative strategy considers that data stays in-house to the
hosting organization and privacy-preserving mobility data management systems are
in charge of privacy-aware sharing of the mobility data. In this chapter, we present
the state-of-the-art of the latter approach, including systems such as HipStream,
Hermes++, and Private-Hermes.

11.1 Introduction

Recent advances in mobile devices, positioning technologies and spatiotemporal
database research, have made possible the tracking of mobile devices at a high
accuracy, while supporting the efficient storage of mobility data in databases. From
this perspective, we have nowadays the means to collect, store and process mobility
data of an unprecedented quantity, quality and timeliness. As ubiquitous computing
pervades our society, user mobility data represents a very useful but also sensitive
source of information. On the one hand, the movement traces of the users can aid
traffic engineers, city managers and environmentalists towards decision making
in a wide spectrum of applications, such as urban planning, traffic engineering
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and environmental pollution. On the other hand, the disclosure of mobility data
to untrusted parties may jeopardize the privacy of the users whose movement is
recorded, leading the way to abuse scenarios such as user tailing and profiling. As
it becomes evident, the sharing of user mobility data for analysis purposes has to be
done only after the data has been protected against potential privacy breaches.

In this chapter, we consider the following data sharing scenario: a data holder
(telecom operator, governmental agency, etc.) collects movement information about
a community of people. The raw movement data, capturing the location of each
individual in the course of time, is processed to generate user trajectories that are
subsequently stored in a database. Apart from the analysis that this data undergoes
within the premises of the hosting organization, we assume that at least part of the
data has to be made available to external, possibly untrusted, parties for querying
and analysis purposes. As is evident, direct publishing of this information, even if
the data is first deprived from any explicit identifiers, would severely compromise
the privacy of the individuals whose movement is recorded in the database. This
is due to the fact that malevolent end-users could potentially link the published
trajectories to sensitive locations of the individuals (such as their houses), thus
identify the users. To ensure privacy-aware sharing of in-house mobility data, a
mechanism is necessary to control the information that is made available to external
parties when they query the database, so that only nonsensitive information leaves
the premises of the hosting organization.

Recently, several methodologies have been proposed to enable privacy-
preserving mobility data sharing. Existing approaches, such as [1, 2, 9, 10, 16, 30],
aim at publishing an anonymous counterpart of the original dataset in which
adversaries can no longer match the recorded movement of each user to the
real identity of the user. A common assumption that is implicitly made in these
approaches is that most of the information stored in the original dataset can be
disclosed without causing any privacy violations. However, this assumption can
be proven unrealistic in certain data sharing scenarios. In order to avoid privacy
breaches a more conservative approach can be employed by assuming that the
majority of the information that is captured in the mobility dataset should remain
private and that the data should stay in-house to the hosting organization. This
assumption is primarily based on the following arguments:

• The data owner may be reluctant to publish the entire mobility dataset, or
conformance to certain business regulations may require that the dataset resides
in-house to the hosting organization.

• Mobility datasets typically support many types of data analysis. In order for the
anonymous dataset to be useful in practical applications, it is necessary that the
anonymization approach can offer specific utility guarantees and this, in turn,
requires knowledge of the intended workload. When data resides in-house, the
privacy preservation algorithms can support many types of data analysis (which
may be unknown apriori) by guaranteeing at the same time the privacy of the
users, whose information is recorded in the dataset.
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• Data sharing policies may change from time to time and new types of privacy
attacks to mobility data may be identified, yielding previously released data
unprotected. In such events, it is crucial for the data owner to have knowledge of
the sensitive information that was leaked, as well as be capable of safeguarding
the data based on the new evidence. When data resides in-house, the privacy-
aware query engine can be updated to conform to the new policies and block
new types of attack. Additionally, the auditing of queries allows the data owner
to have knowledge about the extent of the data leakage by examining the history
of user queries to the database and keeping track of the returned answers.

In this chapter, we present the state-of-the-art systems which are based on
the assumption that data should stay in-house to the hosting organization in
order to ensure that no privacy violation may occur during analysis processes.
First, Gkoulalas-Divanis and Verykios [8] proposed a query engine that offers k-
anonymous answers to user queries. The engine generates fake records to guarantee
about what can be found by untrusted third parties. Based on the same notion,
Hermes++ which was proposed by Pelekis et al. [22], is a novel query engine for
sensitive trajectory data that allows subscribed end-users to gain restricted access
to the database to accomplish various analysis tasks. Hermes++ can shield the
trajectory database from potential attacks to user privacy, while supporting popular
queries for mobility data analysis, such as range queries, distance queries and near-
est neighbor queries. Hermes++ operates by retrieving real user trajectories from
the database and generating carefully crafted fake trajectories in order to reduce the
confidence of attackers regarding the information of the real trajectories in the query
result. Hermes++ achieves to (a) audit end-user queries and block an extended set
of attacks to user privacy, securing the database against user identification, sensitive
location tracking, and sequential tracking attacks, (b) generate smooth and more
realistic fake trajectories that preserve the trend of the original data, and (c) ensure
that no sensitive locations that would lead to user identification are reported as part
of the returned trajectories. The latter goal is achieved by modifying parts of the
trajectories that are close to sensitive locations, such as the houses of the users.

Moreover, we present Private-Hermes [23], a benchmark framework for privacy-
preserving mobility data querying and mining methods. The first dimension of this
benchmark with respect to privacy issues involves in-house stored data and privacy-
aware query answering. Private-Hermes incorporates Hermes [21], a query engine
based on a powerful query language for trajectory databases, which enables the
support of aggregative queries. Hermes supports a variety of well-known queries
such as range, nearest neighbor, topological, directional queries, etc. On top of this
functionality, Hermes++ audits queries for trajectory data to block potential attacks
to user privacy, supports the most popular spatiotemporal queries (range, distance,
k − NN ) and preserves user privacy by generating carefully crafted, realistic fake
trajectories. The second dimension with respect to privacy that is supported by
this benchmark involves privacy-preserving MOD publishing. Two state-of-the-art
algorithms, namely NWA [1] and W4M [2], have been integrated in Private-Hermes
to help anonymize trajectories. The objective is to support the evaluation of such
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anonymization techniques and to study their effect in the utility of the sanitized
data, when compared with queries into the original MOD.

Finally, HipStream [31] is a privacy-preserving system for managing mobil-
ity data streams. The system enforces three fundamental Hippocratic principles
introduced by Agrawal et al. [4] of limited use, limited disclosure and limited
collection of data during data stream management. Hippocratic databases extend the
functionalities of traditional databases with privacy-preserving capabilities. Service
providers have limited access to the data w.r.t. the privacy requirements that the data
owner has enforced. Queries are modified if needed from the system and data are
partially anonymized if necessary before being processed.

The rest of this chapter is organized as follows. Section 11.2 provides a
description of the background of privacy-preserving mobility data management,
highlighting the design principles of a privacy-aware trajectory query engine and
the types of attacks to user privacy that such an engine should be able to block.
Section 11.3 discusses Hermes++ putting emphasis on the auditing and the fake
trajectory generation algorithms that are implemented as part of the query engine
to support its functionality. Section 11.4 demonstrates the Private-Hermes bench-
mark framework. In Sect. 11.5, HipStream privacy-preserving system is presented.
Section 11.6 summarizes this chapter.

11.2 Background

Research in the domain of privacy-preserving data publishing has progressed along
two main directions: providing off-site publication of sanitized data and providing
on-site, restricted access to in-house data.

The first direction in privacy-preserving data publishing collects methodologies
that provide off-site publication of sanitized data. Several methodologies have been
proposed to support different data types and analysis tasks [1, 2, 13, 16, 27, 29, 30].

Hoh and Gruteser [9] present a data perturbation algorithm that is based on path
crossing. The approach identifies when two nonintersecting trajectories that belong
to different users are “sufficiently” close to each other in the original dataset and
generates a fake crossing of these trajectories in the sanitized counterpart to prevent
adversaries from tracking a complete user’s trajectory. Terrovitis and Mamoulis
[30] consider datasets that depict user movement in the form of sequences of
places that each user has visited, set out in the order of visit. They propose an
anonymization approach that suppresses selected places from user trajectories to
protect users from adversaries who hold projections of the data on specific sets
of places. Nergiz et al. [16] also rely on the sequential nature of mobility data
and propose a coarsening strategy to generate a sanitized dataset that consists of
k-anonymous [27, 29] sequences. The algorithm consolidates the trajectories of
the original dataset into clusters of k and then anonymizes the trajectories in each
cluster. Abul et al. [1] propose a k-anonymity approach that relies on the inherent
uncertainty that exists with respect to the whereabouts of the users in historical
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datasets representing user mobility. The anonymity algorithm identifies trajectories
that lie close to each other in time, employs space translation and generates clusters
of at least k trajectories. Each cluster of k trajectories forms an anonymity region
and the co-clustered trajectories can be released. In order to achieve space-time
translation, the authors proposed W4M [2], which uses a different distance measure
that allows time-warping.

In the second category, methodologies have been proposed for disclosure control
in statistical databases [3]. These approaches protect sensitive information in a
database while allowing statistical queries such as count and/or sum queries but
no other information can be made available to the inquirer. According to the
authors, addressing privacy violation problems can be classified into four main
categories: (1) conceptual, (2) query restriction, (3) data perturbation, and (4) output
perturbation. In the conceptual approach, two different data models are included.
The conceptual model explores the privacy problem at the conceptual level while
the lattice model comprises a framework for data represented in tabular form. Query
restriction approach provides answer either by restricting the size of the set of the
query or by controlling the overlap between successive queries. In the third category,
attacks can be handled through data perturbation. Queries are answered according
to a perturbed database. Essentially, a set of alteration / modification methodologies
is used aiming for the best possible result w.r.t. privacy-preservation and data utility.
Contrary, in the output perturbation approach the answer of the query is computed
and then noise is added to the answer.

A privacy-aware query engine, as a protection mechanism, was first envisioned
by Gkoulalas-Divanis and Verykios [8] (Fig. 11.1). The design principles of a query
engine that protects users’ privacy by generating fake trajectories are described. The
idea behind that work is that malevolent users who query the trajectory database
should not be able to discover (with high confidence) any real trajectories that are
returned as part of the answer set of their queries, while they can use the returned

Fig. 11.1 A big picture of the system architecture [8]
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data to support their analytic tasks. The engine allows subscribed end-users to
gain restricted access to the trajectory data in order to perform various analysis
tasks while preserving users’ privacy from several types of attacks. It supports
range, distance, k-nearest neighbor, landmark, route and queries for aggregative
statistics for both trajectory (movement) and non-trajectory (relational) data. When
a user poses a query, the engine retrieves the real trajectories r that belong to the
answer set and combine them with k − r fake trajectories in order to maintain k-
anonymity principle by ensuring that the malevolent is not able to distinguish the
real trajectories with high confidence. The necessary fake trajectories are generated
based on an interpolation technique applied on pairs of real trajectories without
though taking into consideration the time dimension.

Regarding the attacks that malevolent users may try to pursue in the original
database, they are classified in three types:

• User identification attack: the identity of the user can be exposed by ad-hoc
queries involving overlapping spatiotemporal regions.

• Sensitive location tracking attack: the malevolent user tries to map match one or
more locations in a user trajectory to known locations that can effectively expose
the identity of the user (e.g., the address of a house or a betting office). Such
locations are called sensitive for the user as they should not be disclosed to the
attackers.

• Sequential tracking attack: the user is tracked down through his trajectory by a
set of focused queries on regions that are near to each other, in terms of space and
time. The attacker can “follow” the user and learn the places that she has visited.

In the section that follows, we present Hermes++, a privacy-aware query engine,
and we pay particular attention to the specific procedures it performs in order to
block these types of attacks.

11.3 Hermes++ Query Engine

In this section, we present the architecture of Hermes++ query engine proposed by
Pelekis et al. [22] and the algorithms that deliver its functionality. In particular,
Sect. 11.3.1 provides details about Hermes++ architecture, Sect. 11.3.2 describes
the algorithm that generates realistic fake trajectories, and Sect. 11.3.3 presents the
auditing technique that is used to audit user queries and preserve the privacy in the
answers to the queries.

11.3.1 Hermes++ Architecture

Hermes++ exploits on the trajectory storage functionality and the spatiotemporal
query processing capabilities of Hermes for providing privacy-aware queries to
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Fig. 11.2 The architecture of Hermes++ [22]

end-users. More specifically, Hermes defines a trajectory data type and a collection
of operations as an Oracle data cartridge, which is further enhanced by the TB-
tree access method [26] for efficient querying on trajectory data. Hermes++ directly
utilizes this functionality at the ORDBMS level to store fake trajectories, as well
as any historical information of all the users’ queries (and the corresponding
responses), in order to avoid different types of tracking attacks (e.g., sequential
tracking). It succeeds so by the embedded auditing module, which invokes the
Hermes queries and the fake trajectory generator algorithm. Since the entire
framework is built at the ORDBMS level, end-users are also able to pose their
queries through PL/SQL (i.e. not only via the GUI). As such, from an architectural
point of view, Hermes++ acts as a wrapper over the Hermes query engine and not as
a secure middleware. Figure 11.2 illustrates the Hermes++ architectural framework.

As observed in this architecture, the two key components of Hermes++ function-
ality are the fake trajectory generator and the auditing mechanism (see the top left
part of the architecture). These components are crucial for Hermes++ performance
and will be described in detail in the sections that follow.

11.3.2 Fake Trajectory Generation

The Fake Trajectory Generation algorithm, originally presented in [22], aims to
produce trajectories that follow the trend of the input set of real trajectories,
thus minimize the potential of privacy breaches when query results are released
to the end-users. This algorithm plays a central role in the privacy-aware query
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mechanism. When a user poses a query to the database, the engine provides the
answer only if at least L real user trajectories exist in the area. Lower bounding
the number of users is a simple way to prevent answering queries whose original
result set is very small (e.g., a range query in a region with very few trajectories),
as in this case the generated fake trajectories may fail to capture the trend of the
real trajectories. Prior to releasing any real trajectory, an approach is employed
(see Sect. 11.3.3) to protect any sensitive locations in the trajectory that could be
used by malevolent end-users to identify the corresponding user. To produce the
answer set for the query, the engine generates N fake trajectories, where N is an
owner-specified threshold. The algorithm has the ability to produce fake trajectories
for different types of queries, such as range, nearest neighbor and distance queries,
while it is used by the auditing mechanism (to be presented in Sect. 11.3.3) to handle
different types of attacks from malevolent users.

The fake trajectory generation algorithm is based on the idea of the Represen-
tative Trajectory Generation (RTG for short) algorithm, introduced by Lee et al.
[12]. The main idea of this algorithm is that the resulting representative trajectory
describes the overall movement of a set of directed segments, produced after
the partitioning of a set of trajectories. The partitioned trajectories (i.e., directed
segments) are clustered according to a distance function taking into account the
parallel, perpendicular and angle distance of the segments. The outcome of the RTG
algorithm, applied on each cluster, produces a smooth (more or less) linear trajectory
that best describes the corresponding cluster. However, the original RTG algorithm
fails to consider the temporal dimension of the generated trajectory. Therefore,
fake trajectory generation algorithm transforms the RTG output by appropriately
integrating the time dimension into the fake trajectory generation process.

Algorithm 11.1 provides the details of the fake trajectory generation approach.
The algorithm takes as an input a set of line segments Si resulting from a set
of trajectories which form the answer to a user query. In the first step (line 1),
the representative trajectory is produced based on this set of line segments of
trajectories. For simplicity, in Fig. 11.3 segments are depicted as consecutive parts

Fig. 11.3 Generating a fake trajectory over a set of line segments [22]
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of trajectories; however, in the general case, they could be disconnected and
independent segments that are filtered in a way that all move towards (more or
less) the same direction. This is because RTG assumes that all segments follow
the same directional pattern. Then, RTG sweeps a rotated vertical line according to
the average direction vector towards the major axis, counting the number of line
segments that are either the starting or the ending point of a line segment.

If the resulted number is equal to or greater than a threshold MinLns, the
algorithm calculates the average coordinate of those points and assigns the average
into the set of representative trajectory; otherwise, it proceeds to the next point.
To avoid segments that are too close to each other, a smoothing parameter γ is
utilized. The final outcome of this step is the trajectory with the dotted line shown
in Fig. 11.3.

After calculating the representative trajectory, the algorithm inserts the time
dimension to each line segment and performs additional computations to adjust
it and make it more plausible. In detail, a realistic length and speed for the
3D segments of the fake trajectory are examined and required. In Fig. 11.3, the
grey solid line depicts the final fake trajectory after assigning the time dimension
to the segments and adjusting them to be more realistic. In order to achieve
this, the algorithm takes as parameter the spatiotemporal Minimum Bounding Box
(MBB), which is set by the auditing mechanism and may be either the MBB
of the user’s query parameter (in the case of range queries), or the MBB that
is formed by the whole trajectories whose parts belong to the results of user’s
query. An additional set of input parameters that is provided by the auditing
mechanism corresponds to statistical computations regarding dmin, dmax, lmin, lmax,
which are the minimum and maximum trajectories’ duration and segments’ length,
respectively, and avgUmin, avgUmax, lavg, which are the average minimum and
maximum speed, as well as, the average length of the segments, respectively. The
Timestep parameter is the duration of a line segment and is considered to be constant
indicating that the moving object transmits its location update at regular temporal
intervals. The outcome of the algorithm is a set of line segments forming a trajectory,
which are stored in the array fake_trajectory.

Having calculated the set of line segments, the algorithm computes the initial
timestamp t0 that the fake trajectory will start at (line 2). The initial timestamp
is defined as: t0 = tMBBmin + random(0, SP ), where SP = (tmax − tmin) −
random(dmin, dmax) corresponds to a value used to ensure that time t0 of the first
point of the fake trajectory will not be placed near tMBBmax. Moreover, the maximum
timestamp of the fake trajectory should not exceed tMBBmax, otherwise it will differ
from the real trajectories. In order to ensure this, the maximum timestamp tmax

of the fake trajectory is calculated (line 3) as a function of the initial timestamp
t0 and the duration of the fake trajectory (i.e., |f ake_trajectory| ∗ T ). If (tmax >

tMBBmax) then a line simplification procedure is applied to reduce the number of line
segments (lines 5–9). Douglas-Peucker algoriothm [6] compresses the generated
segments by using a polyline representation and a parameter f that corresponds
to a distance threshold, defined as a percentage of the trajectory’s length (line 6).



290 D. Kopanaki et al.

The compression procedure is repeated until tmax < tMBBmax and at each iteration
parameter f is halved.

Having calculated the initial timestamp, the algorithm adjusts the maximum
length lmax of the segments that have been generated (lines 10–13) in order to
manipulate long segments that will lead to the generation of non-realistic fake
trajectories. Specifically, if lmax is greater than twice the average length lavg, then
lmax is being recalculated as a random value between lavg and the twice of lavg.
Otherwise, the algorithm sets lmax randomly between lavg and lmax. Then, the
algorithm enters a loop (line 14) and assigns the time dimension to each line segment
of the fake trajectory. The initial timestamp t0 of the first line segment has been
calculated in previous steps. The timestamp of the ending point of this segment
equals to t0 increased by the sampling rate’s duration, i.e., is equal to t0 + Timestep.
The ending timestamp of the initial segment will be the starting timestamp of the
next segment. Generally, for each line segment it holds that ti+1 = ti + Timestep,
where 0 ≤ i < |fake_trajectory|).

Algorithm 11.1 Fake trajectory generation
function FAKE-GEN(line segments Si , minimum number of points MinLns, smoothing parameter
γ , time step of sampling rate Timestep, MBB(tMBBmin, tMBBmax), dmin, dmax, lmin, lmax, lavg,

avgUmin, avgUmax
1: fake _trajectory ← RTG (Si , MinLns, γ)
2: calculate initial timestamp t0 of the fake trajectory
3: tmax ← t0 + |fake_trajectory | ∗ Timestep
4: if tmax > tMBBmax then
5: repeat
6 Douglas _Peucker(fake_trajectory, f)
7: f ← f/2
8: tmax ← t0 + |f ake_trajectory | ∗ Timestep
9: until tmax < tMBBmax
10: if lmax > 2 ∗ lavg then
11: lmax ← random (lavg, 2 ∗ lavg)

12: else
13: lmax ← lavg ∗ random (1, lmax/lavg)

14: for each pi ∈ f ake_trajectory do
15: set timestamps of the initial and final point of pi

16: calculate speed Ui of pi

17: if Ui < avgUmin or Ui > avgUmax then
18: repeat
19: l ← random (lmin, lmax)

20: calculate new speed Ui of pi

21: until Umin < Ui < Umax
22: calculate angle ϕi

23: define coords of new ending point based on l

24: map match fake_trajectory
25: return fake_trajectory

After assigning the time dimension to the current segment pi (line 15), the
algorithm proceeds to calculate the speed Ui for each segment pi (line 16) and
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checks if it lies within avgUmin and avgUmax (lines 17–21). If it is outside this
range, the algorithm calculates a random segment length l, between lmin and lmax,
such that the speed Ui of the specific segment is within the limits. As a final step, the
coordinates of the new ending point are identified based on the length of segment l

that was calculated before (lines 22–23).
Depending on the direction of the segment and its angle φi with x-axis, the

fake trajectory generation algorithm calculates the new coordinates (xt+1, yt+1),
according to the following formulas (l is the length of the line segment):

φi = arctan 2(yt+1 − yt , xt+1 − xt )

xt+1 = xt + l ∗ cos (φ), yt+1 = yt + l ∗ sin (φ)

In the case that trajectory data are related to an underlying road network, the
fake trajectory generation algorithm map-matches the generated fake trajectory with
the specific road network (line 24) by employing a state-of-the-art map-matching
algorithm [5]. This functionality of the algorithm can lead to a more realistic
representation of the fake trajectory. After calculating the new coordinates, the
algorithm proceeds to the next segment and the procedure continues until all line
segments are examined. Finally, the generated fake trajectory is returned (line 25).

11.3.3 Query Auditing

The main goal of Hermes++ query engine is to prevent the potential attacks
that may occur while a malevolent user query the database. User identification
attack is possible when the query engine answers a query involving a spatial
(or spatiotemporal) region and then another, more specific query, involving part
of this region. In this case, the attacker can breach the enforced privacy model
by identifying the differences between the created fake trajectories which, in
turn, increases her confidence regarding information about the corresponding real
trajectories. To block this type of attack, Hermes++ uses auditing to track the queries
initiated by each end-user in the system and denies answering overlapping queries.

Sensitive location tracking attack allows malevolent users to learn sensitive
locations that real users have visited, and (possibly) reveal the identity of these users.
To block these attacks, Hermes++ protects the starting and the ending location of
trajectories, as well as any other (owner-specified) location in the course of the user
trajectory that can be considered as sensitive for the user. As an example of this type
of attack, assume a query that involves region Q4, illustrated in Fig. 11.4. Since
in this region the trajectory has its end point to a sensitive location, the attacker can
map-match this location and reveal the user’s identity. The attack can succeed even if
fake trajectories are generated in this region by collecting more precise information
about the real trajectories on every focused query, which in turn increases her
confidence. To block the sensitive location tracking attack, the auditing approach
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Fig. 11.4 Sensitive location tracking and sequential tracking attacks to user privacy [22]

identifies sensitive locations of trajectories that appear in the query window and
proceeds to dislocate them so that the sensitive location is not disclosed.

Finally, in the sequential tracking attack an attacker attempts to “follow” a user
trajectory in the system by using a set of focused queries involving spatiotemporal
regions that are adjacent to each other. To block this attack, the auditing algorithm
takes the necessary measures to smoothly continue the movement of fake trajecto-
ries from neighboring regions (returned as part of previous queries of the user) to
the current region.

The query auditing approach for shielding the database against malevolent
users (to be presented in Algorithm 11.3) is based on the Hide Sensitive Location
Algorithm, originally presented in [22], that is discussed first. This algorithm (listed
in Algorithm 11.2) takes as input a set of sensitive locations SL, a set of trajectories
T and the MBB formed by user’s query. Initially, the algorithm selects all sensitive
locations SL′ that lie inside the MBB (line 1). For each trajectory of the given set
T, it defines those sensitive locations, SL′

i , that correspond to the current trajectory
(lines 2–3). For every sensitive location, SL′

i,j , it examines if fake sub-trajectories
that hide the sensitive locations have been previously computed for this trajectory
and retrieves them from History (lines 4–6). Otherwise, it computes a new synthetic
(fake) trajectory that is then stored for future reference (lines 8–13).

Algorithm 11.2 produces fake (synthetic) sub-trajectories by applying a variant
of the GSTD trajectory synthesizer, called GSTD*, proposed by Pelekis et al. [24].
GSTD* produces trajectories following complex mobility patterns based on a given
distribution of spatiotemporal focal points, to be visited by each trajectory in a
specific order. The general idea behind GSTD* is to use the focal points so as to
attract each trajectory’s movement. When a particular trajectory has reached the area
around a focal point, having at the same time completed the respective temporal
predicate, the generation algorithm changes the attracting point to the next focal
point in the list, and so on, until no focal points are left unvisited.
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Fig. 11.5 Protecting
sensitive locations of user
trajectories [22]

The idea of hiding sensitive locations of a trajectory by misplacing its route
is illustrated in Fig. 11.5. The algorithm discovers the intersection points of the
trajectory with a circle that is formed around a sensitive location by taking as radius
the distance between the sensitive location from a point where the object would have
been moved after a certain period of time tw (i.e., tw is a temporal window), if it was
moving with its current speed. The idea is to use these intersection points as the focal
points in GSTD* (line 8) (see the filled gray circles in Fig. 11.5). If the number of
focal points is greater than two (i.e. the object enters and/or leaves the circle more
than two times), the algorithm utilizes the first (entering) and the last (leaving) one.
In case where the sensitive location is either the initial or the ending point causing
the creation of only one focal point, the algorithm randomly selects another random
focal point in the perimeter of the circle (lines 9–10). After determining focal points
it produces a synthetic (fake) trajectory by applying GSTD* between the two chosen
focal points as illustrated in the figure with the dotted line (line 11). The algorithm
returns the set of trajectories that does not any longer contain sensitive locations
(line 14).

Algorithm 11.2 Hide sensitive locations
function HideSensitiveLocations(set of sensitive locations SL, set of trajectories T, user’s query
MBB, temporal window tw)
1: SL′ ← SL inside MBB
2: for each (Ti ∈ T ) do
3: SL′

i ←select the subset of SL′ that correspond to Ti

4: for each (sensitive location of Ti, SL′
i,j ∈ SL

′
i
) do

5: if (fake sub-trajectory computed in the past for this SL′
i,j ) then

6: Retrieve the fake sub-trajectory from History and update Ti

7: else
8: f ocalpoints ← Intersection(Ti , buffer(SL′

i,j , tw))

9: if (
∣
∣f ocalpoints

∣
∣ = 1) then

10: f ocalpoints ←AddRandomPointOnSurface(buffer(SL′
i,j , tw))

11: Produce a fake trajectory by applying GSTD* on f ocalpoints

12: Update the part of Ti with the fake sub-trajectory
13: UpdateHistory
14: return (T)
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Algorithm 11.3, originally presented in [22], describes the query auditing
mechanism. When a new query is submitted to the engine, the auditing algorithm
first examines if this query involves an area that (partially) overlaps with that of a
previous query, submitted by the same end-user. If this is the case, then it denies
serving the query (lines 1–2) to block a potential user identification attack. If the
previous test is negative, the auditing mechanism executes the actual query of the
user and retrieves the result set (line 3). In order to prohibit the identification of an
individual by an adversary that is able to link sensitive locations that are visited by
a user (e.g., the home of the user) with trajectories that belong to the specific query,
the Hide Sensitive Location Algorithm presented earlier is invoked (line 4).

Having protected the sensitive locations of the trajectories in the querying region,
Algorithm 11.3 commands the generation of the necessary fake trajectories for this
region (lines 11–21). To generate the requested number of fake trajectories, the
algorithm calculates a set of basic statistics (line 11) that are needed by the fake
trajectory generation approach (Algorithm 11.1), while trying to find trajectories
that follow more or less the same direction in the query region (lines 12–20).
Specifically, a step dirstep (in degrees) is randomly selected (line 13) in the range
of (0, dirstepmax

), with dirstepmax being an input parameter that defines the size of
an angular range used to divide the Cartesian plane. As illustrated in Fig. 11.6, the
algorithm selects those segments from the real trajectories that belong to the range
(dirmin, dirmax) (see the solid lines in the figure), which are set by randomly assign-
ing dirmin and then setting dirmax equal to dirmin + dirstep. Subsequently, it calls
Algorithm 11.1 on these segments and passes the query window to create one new
fake trajectory. The same process is repeated for the next range of directions, which
leads to the generation of another fake trajectory, until the 360◦ range is exceeded.
Then, the algorithm selects a new dirstep and repeats the same process, until the
requested number of fake trajectories is generated (line 21). Note that the filtering
approach on the directional property of the segments guarantees that the fake
generation algorithm will produce nice representative trajectories of the query result,
as it acts as a simple clustering methodology on the overall set of available segments.

After generating the fake trajectories, Algorithm 11.3 takes the necessary
measures to protect the privacy of the users whose movement is depicted in the

Fig. 11.6 Selecting segments
from real trajectories [22]
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query window by smoothly continuing the movement of the fake trajectories from
neighboring regions, returned as part of previous queries posed by the end-user, to
the current one. Specifically, the algorithm examines if the query posed by the end-
user has a nearby query made by the same end-user in the past, which does not
exceed a spatial sthr and a temporal tthr threshold. In case that the query has only
one such neighbor, the algorithm performs a one-by-one matching (line 23) between
the fake trajectories of MBB and MBBhist (i.e. the nearby query saved in History). In
detail, it first finds the MBB with the minimum number of fake trajectories and then
it randomly matches each one of them with fakes from the other query, by producing
pairs Pi of fake trajectories. For each pair, it examines if MBB touches MBBhist or
if they are apart. In the first case, illustrated in Fig. 11.7a, a space time translation is
performed to connect the two fake trajectories. The fake trajectory is transferred in
the x and y axes, if necessary.

Algorithm 11.3 Query auditing algorithm
function TrajAuditor (user’s query MBB, number of generated fake trajectories N, lower bound
threshold L, spatial threshold sthr , temporal threshold tthr , maximum direction step dirstepmax

, set
of sensitive locations SL, temporal window tw, Minlns, γ, Timestep)
1: if CheckHistory(user posed in the past an overlapping query w.r.t. MBB) = true then
2: Privacy threat: Overlapping queries
3: TR←SpatioTemporalRangeQuery(MBB)
4: TR← HideSensitiveLocations(SL, TR, MBB, tw)
5: if (CheckHistory(user posed in the past a nearby query w.r.t. sthr , tthr ) = true) then
6: Privacy threat: Sequential tracking attack
7: else
8: if |T R| ≤ L) then
9: Privacy threat: Lower bound threshold violation
10: else
11: CalculateStatistics (dmin, dmax, lmin, lmax, lavg, avgUmin, avgUmax)

12: repeat
13: dirstep ← random(0, dirstepmax

)

14: dirmin = random(0,360) ; dirmax = dirmin + dirstep

15: repeat
16: Si ← FilterbyDirection(dirmin, dirmax, T R)

17: FT←FT ∪ Fake_Gen(Si , MinLns, γ, Timestep, MBB, Statistics)
18: dirmin ← dirmin + dirstep

19: dirmax ← dirmax + dirstep

20: until dirmax > 360
21: until |FT | = N

22: Retrieve from History all fakes FT hist from a nearby query of the user w.r.t. sthr , tthr

23: Pmatch ← MinRandomMax(FT , FT hist )

24: for each pair Pi

(

Tj , Tk

)

ε P match do
25: if (MBB touches a historic query of the user) then
26: SpaceTimeTranslation(Pi)

27: else
28: f ocalpoints ← (Tjend

, Tkstart )

29: GSTD* (f ocalpoints )
30: Update in FT the fake trajectory that corresponds to Pi

31: FT ← HideSensitiveLocations(SL, FT, MBB, tw)
32: UpdateHistory
33: return (T R ∪ FT )
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Fig. 11.7 Prohibiting
sequential tracking: (a) case I,
(b) case II [22]
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Then, the algorithm checks the time dimension to assure that there is no temporal
gap. If such a gap exists, the algorithm recalculates the timestamp of each point of
the fake trajectory. In the second case (illustrated in Fig. 11.7b), where a spatial
and/or a temporal gap exists between MBB and MBBhist, Algorithm 11.3 generates
a connection-trajectory (see the dotted lines) between them using GSTD*. Focal
points are the ending point of the one trajectory with the starting point of its
matching trajectory in Pi . After generating the fake trajectories, the algorithm
applies the hiding process of the sensitive locations also for these trajectories
(line 31), to conceal the fact that they are fakes.

As a last remark, TrajAuditor (Algorithm 11.3) commands the generation of the
necessary number of fake trajectories based on the parts of the real trajectories
that appear inside the query window. An alternative approach (henceforth called
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TrajFaker) would be to generate wide fake trajectories that exceed the limits of the
window the user submitted. In this case, auditing would still be applicable but not
forced, contrary to the case of TrajAuditor. TrajFaker differs from TrajAuditor in the
following steps. When a user executes a query, TrajFaker finds the trajectories that
are contained in the specific spatiotemporal window (or the k nearest neighbors in
case of k − NN queries) and then retrieves the whole trajectories and not the parts
of them that lie inside the window. Subsequently, it generates fake trajectories by
employing Algorithm 11.1 on the whole trajectories. Each generated fake trajectory
is examined to see whether it crosses the spatiotemporal window of the query and,
if so, it is included to the returning set. Otherwise, the trajectory is discarded and
the same process is repeated. All generated fake trajectories are stored in order
to participate to the generation of other fake trajectories. Finally, there are no
privacy threats with respect to sequential tracking as before, since the generated
fake trajectories are based on the whole trajectories and not parts of them, and are
stored. If an adversary tries to execute overlapping or sequential queries, the fakes
will appear in all of these queries’ answers.

11.4 Private-Hermes Benchmark Framework

Building on top of Hermes++, Private-Hermes, developed by Pelekis et al. [23],
integrates algorithms that enable the privacy-aware publishing of personal mobility
data under a common, benchmark-oriented framework and gives the ability to users
to evaluate the utility either of the fake or the sanitized trajectories via a variety
of well-known mobility data mining algorithms, i.e. various types of clustering,
frequent sequential patterns, etc. The idea is that by adding fake trajectories (that
affect the cardinality of the MOD), as well as perturbating original ones (that affects
the shape of the MOD) should not destroy the patterns hidden in the original
MOD. Such an evaluation can be done by using clustering and frequent pattern
mining techniques, appropriate for mobility data. Private-Hermes incorporates the
following state-of-the-art algorithms:

• Clustering: Private-Hermes supports TRACLUS [12], T-Optics [14], and CenTR-
I-FCM [24]. Two traditional clustering techniques, namely K-medoids [11] and
Bisecting K-medoids [28], are also included with the special feature that the user
can choose different distance functions between the trajectories (i.e. grouping
only by their starting or destination point, without taking into account the whole
route) [20].

• Trajectory representatives: related to cluster analysis, a useful requirement is
to extract a compact representation of a set of trajectories (e.g. a cluster found
through cluster analysis), in terms of “representative” trajectory. To this end,
Private-Hermes supports CenTra “centroid” trajectories [24] and TRACLUS
“typical” trajectories [12].
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• Frequent pattern mining: Private-Hermes incorporates the T-pattern mining
technique [7], which models sequences of visited regions, frequently visited in
the specified order with similar transition times, out of trajectory databases.

• Sampling: Private-Hermes supports a state-of-the-art trajectory sampling tech-
nique proposed in [25].

• Trajectory anonymization: Private-Hermes incorporates NWA [1] and W4M [2].

The above-presented functionality is integrated in the Hermes MOD engine [21]
by appropriately extending the query language with new constructs, in a fashion
origi-nally proposed by Ortale et al. [19]. This allows users to progressively analyze
the MOD and interchange between querying and mining operations. In detail,
Pivate-Hermes users are given the ability to perform:

• Querying and mining operations on Hermes: the platform is capable of exe-
cuting range and k − NN queries on Hermes as well as mining operations
using the algorithms listed above. Queries and mining operations are posed
via Private-Hermes GUI, which provides essential capabilities, including query
predicate selection, parameters selection and results projection. Graphical map
user-interaction for predicate definition is also supported.

• Privacy-aware querying on Hermes++: users are able to run range and k − NN

queries enabling Hermes++, which protects from privacy attacks. The data owner
requires that at least a certain number of trajectories are returned to the end-users
in response to their queries, for all different types of supported queries. The result
consists of a set of carefully crafted, realistic fake trajectories aiming to preserve
the trend of the original user trajectories.

• Comparison/evaluation of anonymization algorithms: as already mentioned,
Private-Hermes integrates NWA and W4M anonymization algorithms. Both
algorithms take as input trajectories which may have been extracted from
a query posed to Hermes, and transform them into anonymous equivalents,
subsequently stored in the MOD. An advantage of the platform is its ability to
design and execute benchmarks that evaluate the results from the application of
anonymization algorithms regarding the distortion over real user trajectories. The
incorporated data mining techniques can be applied, and patterns steaming from
original data with patterns resulting from anonymized data can be compared.
This can be achieved by executing queries in the original and the anonymized
data (or patterns), and comparing the results.

• Profiling end-user’s behavior to identify malevolent users: The platform supports
query auditing techniques [8], which can be used to monitor the behavior of
the end-users and build user profiles. These user profiles can be subsequently
analyzed by the data owner, as explained in [8], to help her identify suspicious
behavior of end-users in the system.

Figures 11.8 and 11.9 illustrate representative snapshots of Private-Hermes GUI.
More specifically, in Fig. 11.8a, a dataset has been extracted using a range query,
while in Fig. 11.8b the dataset has been anonymized using NWA [1]. From these
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Fig. 11.8 The result of a range query in its (a) original vs. (b) NWA anonymized version [23]

outputs, a user can compare the distortion that has been caused to the dataset due
to the anonymization algorithm. As a progressive analysis, Fig. 11.9a illustrates the
result from the application of T-Optics [14] clustering on the original dataset (i.e.
the one illustrated in Fig. 11.8a) in comparison with Fig. 11.9b, which presents the
respective result when T-Optics is applied on the anonymized dataset (i.e. the one
illustrated in Fig. 11.8b).

As for the technicalities of Private-Hermes components, illustrated in Fig. 11.10,
the user interacts with a GUI with 3D rendering capabilities developed in Java and
based on the Swing GUI widget toolkit [18]. The results from the operations that the
program supports are visualized in the 3D globe provided by NASA World Wind
[15]. To draw the charts reporting performance results, the JFreeChart library is
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Fig. 11.9 T-Optics applied on (a) the original vs. (b) the anonymized dataset [23]

used [17]. Every component and library used during the development process is
open source. Through the provided GUI, the user is able to setup his/her benchmark
or, more generally, his/her analysis scenario. Private-Hermes retrieves the necessary
data by calling the Hermes MOD engine.

The supported mobility data mining and anonymization algorithms have been
incorporated as modules of the extensible DAEDALUS’s MO-DMQL [19], while
both of these sets of algorithms exchange data (i.e. real/fake/anonymized trajectories
and mining models) directly with the database layer.
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Fig. 11.10 Private-Hermes architecture [23]

11.5 HipStream: A Privacy-Preserving System for Managing
Mobility Data Streams

The ability to build database systems able to connect individuals’ information across
different data repositories turns out to be simpler since individual information
become more ubiquitous. Consequently, the privacy provisions incorporated into
data collections and the privacy regulations that shield personal data, are debilitated.
Data owners have no guarantee that the data that are donating are not misused for
the sake of knowledge extraction since they have no control whether the privacy
policies are enforced or not.

In order to deal with the lack of systemic control over the data use, the
concept of Hippocratic management system was introduced by Agrawal et al.
[4] to guarantee privacy and security of information they manage as a founding
principle. Hippocratic databases extend the functionalities of traditional databases
with privacy-preserving capabilities. The goal is to prevent disclosure of private
information by placing data donor privacy as a main concern throughout data
collection and management. Ten fundamental principles have been proposed that
guide the behavior of Hippocratic stream data management:

• Purpose Specification: description of the purpose for which the data is collected
needs to be collected and associated with the data itself.

• Consent: the purpose for which the data is collected has the consent of the user.
• Limited collection: collect the minimum amount of data from a user that satisfies

the user’s specified purposes
• Limited use: the purposes of the collected data should not be violated by

operations carried out.
• Limited Disclosure: no personal information should be released to third parties

without data owner’s permission.
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• Limited Retention: after the purpose of data collection is satisfied, user’s data
should be directly deleted.

• Accuracy: the information stored in the database system should be accurate and
up-to-date.

• Safety: the adoption of security measures for protecting sensitive data from
various types of attack.

• Openness: the individual whose data are recorded is allowed to access all in-
formation that is stored in the database and is related to herself.

• Compliance: data owners are able to validate that the privacy principles are
conformed.

Wu et al. [31] developed a data management system, the so-called HipStream,
which implements some of the aforementioned Hippocratic principles such as
limited collection, limited use and limited disclosure. Data streams are collected
and dropped dynamically in a system according to the data owner’s policy.
When data tuples arrive, the system is responsible to decide whether the data
should be collected to serve the query or stored for analysis purposes in order to
achieve limited collection. Controlling the access to the data w.r.t. data provider’s
preferences leads to limited disclosure. HipStream is able to preserve the privacy of
the data streams that are shared between data providers and data users. The system
guarantees not only that data providers’ defined privacy specifications are enforced
but also that the access to the data is limited. The idea behind HipStream is that
service providers are allowed to access part of the data streams which are entirely
controlled by data providers.

The architecture of HipStream is illustrated in Fig. 11.11. The basic components
of the system are Security Manager, Privacy Controller, Query Management and
Stream Manager. Through Web interface each end user has the ability to generate,
retrieve and manage protected stream data.

A data owner is first registered to the system and specifies her privacy preferences
such as who, for what purpose, under what conditions and which parts. Privacy
policies are designed based on modelling users, data to be accessed and data
accessing purposes with hierarchical categories. The preferences are then registered
into the Policy Controller which is responsible for maintaining the privacy.

Prior to the registration of a data stream to the system, the Stream Registration
acquires the purpose of the stream data and the consent of the stream owner. The
Stream Manager receives the input stream and prepares it for further processing
inside the system.

On the other hand, service providers may pose queries directly to the system
while defining at the same time the query purpose. The query is forwarded through
query getaway to the query rewriter. Query rewriter is then responsible to examine if
the privacy preferences are satisfied. In case where the policies are not met, the query
is rewritten. The query is dropped if its purpose is not in line with the authorised
purpose on using the data. At this level, limited disclosure and limited use principles
are enforced.

Next, the query is forwarded to the query manager and the stream filter. The
stream filter is in charge of enforcing limited collection principle. The records that
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Fig. 11.11 HipStream architecture [31]

are participating to the answer set are maintained while the others are dropped.
Moreover, the attributes that are not asked by any query are anonymized (i.e.
replaced by null). Query processor executes the registered continuous queries and
streams the result out to the query owner.

11.6 Conclusions

In this chapter, we presented techniques and Mobility Data Management Systems
that have been proposed in the literature able to preserve the privacy of the
users whose data are kept to the hosting organisation for analysis purposes.
Hermes++ is a privacy-aware query engine that enables the remote analysis of
user mobility data, supports a variety of popular spatial and spatiotemporal queries
and uses auditing and fake trajectory generation techniques to identify and block,
respectively, potential attacks to user privacy. On top of Hermes++, Private-Hermes
is an integrated platform for applying data mining and privacy-preserving querying
over mobility data. Finally, Hipstream, a data stream management system aiming
at preserving users’ privacy by enforcing Hippocratic principles was presented.
Limited collection, limited use and limited disclosure of data are the main privacy
requirements that the system implements.



304 D. Kopanaki et al.

References

1. Abul, O., Bonchi, F., and Nanni, M. (2008) Never walk alone: Uncertainty for anonymity in
moving objects databases. In Proceedings of ICDE, pages 376–385.

2. Abul, O., Bonchi, F., and Nanni, M. (2010) Anonymization of moving objects databases by
clustering and perturbation. Information Systems, 35(8), pages 884–910.

3. Adam, N.R. and Worthmann, J. C. (1989) Security-control methods for statistical databases: A
comparative study. ACM Computing Surveys, 21(4), pages 515–556.

4. Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2002) Hippocratic databases. In Proceedings
of VLDB Endowment, pages 143–154

5. Brakatsoulas, S., Pfoser, D., Salas, R. and Wenk, C. (2005) On map-matching vehicle tracking
data. In Proceedings of VLDB Endowment, pages 853–864.

6. Douglas, D. and Peucker, T. (1973) Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization, 10(2), pages 112–122.

7. Giannotti, F., Nanni, M., Pedreschi, D., and Pinelli, F. (2007) Trajectory Pattern Mining. In
Proceedings of SIGKDD, pages 330–339.

8. Gkoulalas-Divanis, A. and Verykios, V. S. (2008) A privacy–aware trajectory tracking query
engine. ACM SIGKDD Explorations Newsletter, 10(1), pages 40–49.

9. Hoh, B. and Gruteser, M. (2005) Protecting location privacy through path confusion. In
SECURECOMM, pages 194–205.

10. Hoh, B., Gruteser, M., Xiong, H. and Alrabady, A. (2007) Preserving privacy in GPS traces via
uncertainty-aware path cloaking. In Proceedings of CCS, pages 161–171.

11. Kaufman, L., Rousseeuw, P. J. (1990) Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, NY, Vol. 334.

12. Lee, J. G., Han, J., and Whang, K. Y. (2007) Trajectory clustering: a partition-and-group
framework. In Proceedings of SIGMOD, pages 593–604.

13. LeFevre, K., DeWitt, D. and Ramakrishnan, R. (2006) Mondrian multidimensional k-
anonymity. In Proceedings of ICDE, page 25.

14. Nanni, M. and Pedreschi, D. (2006) Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems, 27(3), pages 267–289.

15. NASA, World Wind Java SDK. URL: http://worldwind.arc.nasa.gov/java. (accessed: 6 Oct.
2011).

16. Nergiz, M. E., Atzori, M. and Saygin, Y. (2008) Towards trajectory anonymization: A
generalization-based approach. In Proceedings of the SIGSPATIAL, pages 52–61.

17. Object Refinery, the JFreeChart project. URL: http://www.jfree.org/jfreechart. (accessed: 6
Oct. 2011)

18. Oracle, The Swing Tutorial. URL: http://download.oracle.com/javase/tutorial/uiswing.
(accessed: 6 Oct. 2011).

19. Ortale, R., Ritacco, E., Pelekis, N., Trasarti, R., Costa, G., Giannotti, F., Manco, G., Renso, C.,
and Theodoridis, Y. (2008) The DAEDALUS Framework: Progressive Querying and Mining
of Movement Data. In Proceedings of ACM SIGSPATIAL, page 52.

20. Pelekis, N., Andrienko, G., Andrienko, N., Kopanakis, I., Marketos, G., and Theodoridis, Y.
(2011) Visually Exploring Movement Data via Similarity-based Analysis. Journal of Intelligent
Information Systems, 38(2), pages 343–391.

21. Pelekis, N., Frentzos, E., Giatrakos, N., and Theodoridis, Y. (2008) Hermes: Aggregative LBS
via a trajectory DB engine. In Proceedings of SIGMOD, pages 1255–1258.

22. Pelekis, N., Gkoulalas-Divanis, A., Vodas, M., Kopanaki, D., and Theodoridis, Y. (2011).
Privacy-aware querying over sensitive trajectory data. In Proceedings of CIKM, pages 895–
904.

23. Pelekis, N., Gkoulalas-Divanis, A., Vodas, M., Plemenos, A., Kopanaki, D., and Theodoridis,
Y. (2012) Private-Hermes: A Benchmark Framework for Privacy-Preserving Mobility Data
Querying and Mining Methods. In Proceedings of EDBT, pages 598–601.

http://worldwind.arc.nasa.gov/java
http://www.jfree.org/jfreechart
http://download.oracle.com/javase/tutorial/uiswing


11 Systems for Privacy-Preserving Mobility Data Management 305

24. Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E. and Theodoridis, Y. (2011) Clustering
uncertain trajectories. Knowledge and Information Systems, 28(1), pages 117–147.

25. Pelekis, N., Panagiotakis, C., Kopanakis, I., and Theodoridis, Y. (2010) Unsupervised trajec-
tory sampling. In Proceedings of ECML PKDD, pages 17–33.

26. Pfoser, D., Jensen, C. S., and Theodoridis, Y. (2000) Novel approaches to the indexing of
moving object trajectories. In Proceedings of VLDB, pages 395–406.

27. Samarati, P. (2001) Protecting respondents’ identities in microdata release. Transactions on
Knowledge and Data Engineering, 13(6), pages 1010–1027.

28. Steinbach, M., Karypis, G., Kumar, V. (2000). A comparison of document clustering tech-
niques. In Proceedings of KDD Workshop on Text Mining, 400(1), pages 525–526.

29. Sweeney, L. (2002) k-anonymity: A model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge Based Systems, 10(5), pages 557–570.

30. Terrovitis, M. and Mamoulis, N. (2008) Privacy preservation in the publication of trajectories.
In Proceedings of Mobile Data Management, pages 65–72.

31. Wu, H., Xiang, S., Ng, W. S., Wu, W., & Xue, M. (2014) HipStream: A Privacy-Preserving
System for Managing Mobility Data Streams. In Proceedings of Mobile Data Management,
Vol. 1, pages 360–363.


	11 Systems for Privacy-Preserving Mobility Data Management
	11.1 Introduction
	11.2 Background
	11.3 Hermes++ Query Engine
	11.3.1 Hermes++ Architecture
	11.3.2 Fake Trajectory Generation
	11.3.3 Query Auditing

	11.4 Private-Hermes Benchmark Framework
	11.5 HipStream: A Privacy-Preserving System for Managing Mobility Data Streams
	11.6 Conclusions
	References


