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Abstract Privacy is an ever-growing concern in our society and is becoming
a fundamental aspect to take into account when one wants to use, publish and
analyze data involving human personal sensitive information, like data referring to
individual mobility. Unfortunately, it is increasingly hard to transform the data in a
way that it protects sensitive information: we live in the era of big data characterized
by unprecedented opportunities to sense, store and analyze social data describing
human activities in great detail and resolution. This is especially true when we work
on mobility data, that are characterized by the fact that there is no longer a clear
distinction between quasi-identifiers and sensitive attributes. Therefore, protecting
privacy in this context is a significant challenge. As a result, privacy preservation
simply cannot be accomplished by de-identification alone. In this chapter, we
propose the Privacy by Design paradigm to develop technological frameworks for
countering the threats of undesirable, unlawful effects of privacy violation, without
obstructing the knowledge discovery opportunities of social mining and big data
analytical technologies. Our main idea is to inscribe privacy protection into the
knowledge discovery technology by design, so that the analysis incorporates the
relevant privacy requirements from the start. We show three applications of the
Privacy by Design principle on mobility data analytics. First we present a framework
based on a data-driven spatial generalization, which is suitable for the privacy-
aware publication of movement data in order to enable clustering analysis. Second,
we present a method for sanitizing semantic trajectories, using a generalization of
visited places based on a taxonomy of locations. The private data then may be
used for extracting frequent sequential patterns. Lastly, we show how to apply the
idea of Privacy by Design in a distributed setting in which movement data from
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individual vehicles is made private through differential privacy manipulations and
then is collected, aggregated and analyzed by a centralized station.

10.1 Introduction

The big data originating from the digital breadcrumbs of human activities, generated
by ICT systems that we use every day, record the multiple facets of social life:
automated payment systems record the tracks of our purchases; search engines
record the logs of our queries for finding information on the web; social networks
record our connections and communications with friends and colleagues; mobile
devices record the traces of our movements. These big data are at the heart of the
vision of a “knowledge society”, where the understanding of social phenomena
is sustained by the knowledge extracted from data describing human activities
across the various social dimensions by using social mining technologies. Thus, the
analysis of our digital traces can create new opportunities to understand complex
aspects, such as mobility behaviors, economic and financial crises, the spread of
epidemics, the diffusion of opinions and so on.

The worrying side of the story is that big data contain personal sensitive
information, so that the occasions of discovering knowledge increase with the risks
of privacy violation. Indeed, when personal sensitive data are published and/or
analyzed, it must be checked if this may violate the right of individuals to have
full control of their personal sphere. It is clear that maintaining control of personal
data is increasingly difficult and it cannot simply be achieved by de-identification
(i.e., by removing the direct or explicit identifiers contained in the data, such as
name, address and phone number [33]).1 In the scientific literature and in the media,
many examples of re-identification from supposedly anonymous data have been
reported, from health records to querylogs to GPS trajectories. In the past years,
several techniques have been developed for countering privacy violations, without
losing the benefits of big data analytics technology [4, 12, 22, 28, 34]. Despite these
results, no general method exists that is able of handling both general personal data
and preserving general analytical results. Anonymity in a global sense is believed to
be a chimera, and the concern about infringement of the private sphere by means of
big data is now in news headlines of major media. Nevertheless, big data analytics
and privacy are not necessarily enemies: the goal of this chapter is exactly to show
that practical and effective services based on big data analytics can be proposed in
such a way that the quality of results can coexist with high protection of personal
data. The magic word is Privacy by Design. Here, we review a methodology for
purpose-driven privacy protection, where the purpose is a target knowledge service
to be deployed on top of data analysis. The key observation is that providing a

1This definition of de-identified data is compliant with the General Data Protection Regulation
(GDPR) [18], especially referring to Recital 26. Indeed, with the de-identification process we are
going to transform identified persons in identifiable persons.
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reasonable trade-off between a measurable protection of individual privacy together
with a measurable quality of service is unfeasible in general, but it becomes feasible
in context, i.e., if we have a previous knowledge of the desired analytical goal and
the expected level of privacy.

In this chapter, we elaborate on the above ideas the Privacy by Design paradigm,
introduced by Anne Cavoukian, in the 1990s, to deploy big data analytical services.
Firstly, we discuss the Privacy by Design principle highlighting and how it has been
embraced by the United States and Europe.
Secondly, we introduce the idea of Privacy by Design in mobility data analytics
domain and show how inscribing privacy “by design” in three different specific
scenarios assuring a good balance between privacy protection and quality of data
analysis. As first example, we present a framework based on a data-driven spatial
generalization, which is suitable for the privacy-aware publication of movement
data in order to enable clustering analysis [23]. Then, we present a method for
sanitizing semantic trajectories [25], using a generalization of visited places based
on a taxonomy of locations. The private data then may be used for extracting
frequent sequential patterns.
Lastly, we show how to apply the idea of Privacy by Design in a distributed
setting in which movement data from individual vehicles is made private through
differential privacy manipulations and then is collected, aggregated and analyzed by
a centralized station [26].

The remaining of the chapter is organized as follows. In Sect. 10.2 we discuss
the Privacy by Design paradigm and its articulation in data analytics. Sections 10.3
and 10.4 discuss the application of the Privacy by Design principle in the case
of publication of personal mobility trajectories, regarding clustering analyses and
semantic trajectories respectively, while in Sect. 10.5 we show a possible distributed
scenario for privacy preserving mobility analytics. Lastly, Sect. 10.6 concludes the
chapter.

10.2 Privacy by Design

Privacy by Design is a paradigm developed by Dr. Ann Cavoukian, the former
Ontario’s Information and Privacy Commissioner, in the 1990s, to address the
emerging and growing threats to online privacy. The key idea of this model is to
inscribe the privacy protection into the design of information technologies from the
very start. It represents a significant innovation w.r.t. traditional privacy protection
approaches since it requires a significant shift from a reactive model to a proactive
one. In other words, the idea is preventing privacy issues, instead of remedying to
them.

Given the ever growing availability and diffusion of big data and also the
impact of big data analytics on both human privacy risks and the possibility
of comprehending relevant phenomena, many companies are understanding the
necessity to consider privacy at every stage of their business and, thus, to integrate
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privacy requirements “by design” into their business model. Unfortunately, in many
contexts, it is not completely clear which are the methodologies for incorporating
Privacy by Design.

10.2.1 Privacy by Design in Law

The Privacy by Design paradigm has been recognized in legislation, and in the last
years, privacy officials in Europe and the United States are embracing this attitude.

In 2010, at the annual conference of “Data Protection and Privacy Commis-
sioners” the International Privacy Commissioners and Data Protection Authorities
approved a resolution recognizing Privacy by Design as an essential component of
fundamental privacy protection [1] and advocates the adoption of this principle as
part of an organization’s default mode of operation. In 2009, the EU Article 29 Data
Protection Working Party and the Working Party on Police and Justice released a
joint Opinion, encouraging the incorporation of Privacy by Design principles into
a new EU privacy framework [2]. In March 2010, the European Data Protection
Supervisor advocated to “include unequivocally and explicitly the principle of
Privacy by Design into the existing data protection regulatory framework” [17].
This recommendation was taken into consideration in the reform of Data Protection
Rules, entered into force on 5 May 2016. Indeed, in this new European Directive
[3], in particular in Article 20, there is an explicit reference to data protection “by
design” and “by default”.

Privacy by Design has been embraced with the same enthusiasm in the United
States. Indeed, the U.S. Federal Trade Commission hosted a series of public
discussions on privacy issues in the digital age and in a recent staff report [19]
it describes a proposed framework with three main recommendations: privacy by
design, simplified consumer choice, and increased transparency of data practices.
Moreover, in April 2011, Senators John Kerry (D-MA) and John McCain (R-
AZ) proposed their legislation entitled “Commercial Privacy Bill of Rights Act of
2011” that would require companies that collect, use, store or transfer consumer
information to implement a version of Privacy by Design when developing products.

10.2.2 Privacy by Design in Big Data Analytics and Social
Mining

Unfortunately, it is not always clear what means applying the Privacy by Design
principle and which is the best way to apply it for obtaining the desired result. In
this section, we discuss the articulation of the general “by design” principle in the
big data analytics domain.
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Our key idea is to consider privacy protection into any analytical process by
design, so that the analysis incorporates the relevant privacy requirements from the
very start, evoking the concept of Privacy by Design discussed above.

The application of the general “by design” principle in the big data analytics
domain is based on a key concept: higher protection and quality can be better
achieved in a goal-oriented approach. Indeed, the data analytical process is designed
with assumptions about:

(a) the sensitive personal data subject of the analysis;
(b) the attack model, i.e., the knowledge and purpose of a malicious party that has

an interest in discovering the sensitive data of certain individuals;
(c) the category of analytical queries that are to be answered with the data.

These assumptions are essential for the design of a privacy-aware technology.
First of all, privacy preservation techniques strongly depend on the nature of the
data to be protected, e.g., an algorithm suitable for social networking data could
not be appropriate for trajectory data. Second, a valid framework has to define the
attack model based on a specific adversary’s background knowledge and correspon-
dent countermeasure: different assumptions on the background knowledge require
different defense strategies. For example, an attacker could possess an approximated
information about the mobility behavior of an individual and exploit it to infer all his
movements. It is worth noting that a defense strategy designed for counter attacks
with approximate knowledge could be too weak in case of more detailed knowledge.
Finally, a privacy-aware solution should find an acceptable trade-off between data
privacy and data utility. Thus, it is fundamental to consider the kind of analytical
queries to be answered for understanding which data properties must be preserved.
As an example, a defense strategy for spatio-temporal data should consider that
these data might be useful for collective mobility analyses in an urban area.

Under the above hypotheses, we claim that it is possible to design a privacy-
aware analytical process able to:

1. transform the data into an anonymous version with a quantifiable privacy
guarantee, i.e., measuring the probability that the malicious attack fails;

2. guarantee that a category of analytical queries can be answered correctly, within
a quantifiable approximation that specifies the data utility, using the transformed
data instead of the original ones.

We want to point out that different legal frameworks could imply different
techniques that are considered to be sufficient for data protection. To define an
adequate anonymization level, we mainly rely on the GDPR [18]. Indeed, Privacy by
Design is compliant with the GDPR also regarding the principle of reasonableness
stated in GDPR (Article 26), where it is stated that “to determine whether a natural
person is identifiable, account should be taken of all the means reasonably likely to
be used”, where the reasonableness should consider some objective factors, such as
the costs and the amount of time required for identification, taking into consideration
the available technology and technological developments.
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In the following, we show three existing ways to apply the Privacy by Design for
the design of the same amount of analytical frameworks: one for clustering analysis,
one for the publication of trajectory data and one for computing aggregation of
movement data in a distributed setting. In the three scenarios we first analyze the
privacy issues related to this kind of data; second, we identify the attack model;
and third, we provide a method for assuring data privacy taking into consideration
the data analysis to be maintained valid. However, these are not the unique privacy-
preserving frameworks adopting the Privacy by Design principle, many approaches
proposed in the literature can be seen as instances of this promising paradigm (see
[4, 12, 27, 28, 34]).

10.3 Privacy by Design in Mobility Data Publishing

In this section, we present a framework that offers an instance of the privacy by
design paradigm concerning personal mobility trajectories, obtained from GPS
devices or cell phones [23]. It is convenient for the privacy-aware publication of
movement data, and its focus is on clustering analysis useful for the comprehension
of human mobility behavior in specific urban areas. The released trajectories are
made anonymous by a suitable process that realizes a generalized version of the
original trajectories.

In the following, we consider a mobility dataset as a collection of trajectories
D = {T1, T2, . . . , Tm} where each Ti is a trajectory represented by a sequence of
spatio-temporal points.

Definition 10.1 (Trajectory) A Trajectory or spatio-temporal sequence is a
sequence of triples T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉, where ti (i = 1 . . . n) denotes
a timestamp such that ∀1<i<n ti < ti+1 and (xi, yi) are points in R2.

Intuitively, each triple 〈xi, yi, ti〉 indicates that the object is in the position (xi, yi)

at time ti .

Definition 10.2 (Sub-Trajectory) Let T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉 be a tra-
jectory. A trajectory S = 〈x′

1, y
′
1, t

′
1〉, . . . , 〈x′

m, y′
m, t ′m〉 is a sub-trajectory of T or is

contained in T (S � T ) if there exist integers 1 < i1 < . . . < im <= n such that
∀1 ≤ j ≤ m 〈x′

j , y
′
j , t

′
j 〉 = 〈xij , yij , tij 〉.

We use g to denote the function that applies the spatial generalization to a trajectory.
Given a trajectory T ∈ D, the generalized version of T is generated by a function
g that applies the spatial generalization to the trajectory. It is represented by the
centroid sequence of areas crossed by T . More formally,

Definition 10.3 (Generalized Trajectory) Let T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉
a trajectory. A generalized version of T is a sequence of pairs Tg =
〈xc1 , yc1〉, . . . , 〈xcm, ycm〉 with m <= n where each xci

, yci
is the centroid of

an area crossed by T .
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The privacy by design framework presented in the following is based on a data-
driven spatial generalization of the dataset of trajectories and the obtained results
put in evidence how trajectories can be anonymized to a high level of protection
against re-identification attacks, preserving, at the same time, the possibility of
mining clusters of trajectories, which enables powerful analytic services for info-
mobility or location based services.

10.3.1 Attack and Privacy Model

Here, it is evaluated the linkage attack model, i.e., the ability to link the published
data to external information, which enables some respondents associated with the
data to be re-identified. In relational data, linking is made possible by quasi-
identifiers, i.e., attributes that, in combination, can uniquely identify individuals,
such as birth date and gender [30]. The remaining attributes represent the private
respondent’s information (PI), sometimes called sensitive attributes (SA), that may
be violated by the linkage attack. In privacy-preserving data publishing techniques,
such as k-anonymity, the goal is to find countermeasures to this particular attack
and to release person-specific data in such a way that the ability to link to other
information using the quasi-identifier(s) is limited. However, in the case of mobility
data, where each record is a temporal sequence of locations visited by a specific
person, the above dichotomy of attributes into quasi-identifiers (QI) and private
information (PI) does not hold anymore: here, a (sub)trajectory can play both the
role of QI and the role of PI. To understand this point, assume the attacker may
know a sequence of places visited by some specific person P : e.g., by shadowing P

for some time, the attacker may learn that P was in the shopping mall, then in the
gym, and then at the pub. The adversary could exploit such knowledge to retrieve
the complete trajectory of P in the released dataset: this attempt would succeed,
provided that the attacker knows that P ’s trajectory is actually present in the dataset
and the known sub-trajectory is compatible with (i.e., is a sub-trajectory of) just
one trajectory in the dataset. In this example of a linkage attack in the movement
data domain, the sub-trajectory known by the attacker serves as QI, while the entire
trajectory is the PI that is disclosed after the re-identification of the respondent.
Clearly, as the example suggests, it is rather difficult to distinguish QI and PI:
in principle, any specific location can be the theater of a shadowing action by a
spy, and therefore any possible sequence of locations can be used as a QI, i.e.,
as a means for re-identification. As a consequence of this remark, it is reasonable
to contemplate the radical assumption that any (sub)trajectory that can be linked
to a small number of individuals is a potentially dangerous QI and a potentially
sensitive PI. Therefore, in the trajectory linkage attack, the adversary M knows a
sub-trajectory of a respondent R (e.g., a sequence of locations where R has been
seen by M) and M would try to discover the whole trajectory belonging to R in
the data, i.e., learn all places visited by R. In particular, we assume the following
adversary knowledge.
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Definition 10.4 (Adversary Knowledge) The attacker has access to the
anonymized dataset D∗ and knows: (a) the details of the schema used to anonymize
the data, (b) the fact that a given user R is in the mobility dataset D and (c) a
sub-trajectory S relative to R.

This background knowledge is used in the following attack.

Definition 10.5 (Attack Model) Given the anonymized dataset D∗ and a sub-
trajectory S relative to a user R, the attacker: (i) generates the partition of the
territory starting from the trajectories in D∗; (ii) computes g(S) generating the
sequence of centroids of the areas containing the points of S; (iii) constructs a set
of candidate trajectories in D∗ containing the generalized sub-trajectory g(S) and
tries to identify the whole trajectory relative to R. The probability of identifying the
whole trajectory by a sub-trajectory S is denoted by prob(S).

10.3.2 Privacy-Preserving Technique

How is it possible to guarantee that the probability of success of the above attack is
very low while preserving the utility of the data for meaningful analyses? Consider
the source trajectories represented in Fig. 10.1a, obtained from a massive dataset

Fig. 10.1 (a) Milan GPS Trajectories, (b) characteristic points, (c) spatial clusters, (d) tessellation
of the territory, and (e) generalized trajectories
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of GPS traces (17,000 private vehicles tracked in the city of Milan, Italy, during a
week).

Each trajectory is a de-identified sequence of time-stamped locations, visited by
one of the tracked individuals or vehicles. Although de-identified, each trajectory
is essentially unique—two different trajectories seldom are exactly the same, due
to the extremely fine spatio-temporal resolution involved. Therefore, the chances of
success for this attack are not low. If the attacker M has access to a sufficiently long
sub-sequence S of locations visited by the individual R, it is possible that only a
few trajectories in the dataset match with S, possibly just one. Indeed, publishing
raw trajectory data such as those depicted in Fig. 10.1a is an unsafe practice, which
leads to a high risk of infringement on the private sphere of the tracked drivers
(e.g., guessing the home place and the work place of most respondents is very
easy). Now, assume that one wants to discover the trajectory clusters emerging
from the data through data mining, i.e., the groups of trajectories sharing common
mobility behavior, such as the commuters following similar routes in their home-
work and work-home trips. A privacy transformation of the trajectories consists of
the following steps:

1. characteristic points are extracted from the original trajectories: starting points,
ending points, points of significant turn, points of significant stop (Fig. 10.1b);

2. characteristic points are clustered into small groups by spatial proximity
(Fig. 10.1c);

3. the central points of the groups are used to partition the space by means of
Voronoi tessellation (Fig. 10.1d);

4. each original trajectory is transformed into the sequence of Voronoi cells that it
crosses (Fig. 10.1e).

As a consequence of this data-driven transformation, where trajectories are general-
ized from sequences of points to sequences of cells, the re-identification probability
already drops significantly. Further transformation can be applied to lower this
probability even more, obtaining a safe theoretical upper bound for the worst case
(i.e., the maximal probability that the linkage attack succeeds), and an extremely
low average probability. A possible technique is to ensure that for any sub-trajectory
used by the attacker, the re-identification probability is always controlled below a
given threshold 1

k
; in other words, ensuring the k-anonymity property in the released

dataset. Here, the notion of k-anonymity is based on the definition of k-harmful
trajectory, i.e., a trajectory occurring in the database with a frequency less than k.
Thus, a trajectory database D∗ is considered a k-anonymous version of a database
D if: each k-harmful trajectory in D appears at least k times in D∗ or if it does
not appear in D∗ anymore. To obtain this k-anonymous database, the generalized
trajectories, produced after the data-driven transformation, are transformed in such
a way that all the k-harmful sub-trajectories in D are not k-harmful in D∗. In the
example shown in Fig. 10.1a, the probability of success is theoretically bounded by
1
20 (i.e., 20-anonymity is achieved), but the real upper bound for 95% of attacks is
below 10−3.
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10.3.3 Analytics Quality

The above results highlight that the transformed trajectories are orders of magnitude
safer than the original ones in a measurable sense: but are they still useful to achieve
the desired result, i.e., discovering trajectory clusters?

Figure 10.2(top) and (down) listed the most relevant clusters found by mining
the original trajectories and the anonymized trajectories, respectively.

A direct consequence of the anonymization process is an increase in the
concentration of trajectories, i.e., many original trajectories are bundled on the

Fig. 10.2 10 largest clusters of the original trajectories (top) and of the anonymized trajectories
(down)



10 Privacy by Design for Mobility Data Analytics 263

same route; the clustering method will be influenced by the variation in the density
distribution. This change is mainly caused by the reduction of noisy data. In fact, the
anonymization procedure tends to render each trajectory similar to the neighboring
ones. This means that the original trajectories, initially classified as noise, can now
be “promoted” as members of a cluster. This phenomenon may produce an enlarged
version of the original clusters. F-measure is adopted to evaluate quantitively the
clustering preservation. This measure is usually used to express the combined
values of precision and recall and is defined as the harmonic mean of the two
measures. Here, the recall measures how the cohesion of a cluster is preserved:
if the whole original cluster is mapped into a single anonymized cluster its value
is 1; otherwise, the value tends to zero if the original elements are scattered among
several anonymized clusters. The precision indicates how the singularity of a cluster
is mapped into the anonymized version: it is 1 if the anonymized cluster contains
only elements corresponding to the original cluster, it tends to zero if there are other
elements corresponding to other clusters. The contamination of an anonymized
cluster may depend on two factors: (1) there are elements corresponding to other
original clusters or (2) there are elements that were formerly noise and have been
promoted to members of an anonymized cluster.

The immediate visual perception that the resulting clusters are very similar in
the two cases in Fig. 10.2(top) and (down) is also confirmed by various cluster
comparisons by F-measure, re-defined for clustering comparison (Fig. 10.3).

The conclusion is that in the illustrated process the desired quality of the
analytical results can be achieved in a privacy-preserving setting with concrete
formal guarantees and the protection w.r.t. the linkage attack can be quantified.

Fig. 10.3 F-measure for
comparison of the clusterings
of the anonymized dataset
versus the clustering of the
original trajectories
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10.4 Privacy by Design in Semantic Trajectories
Anonymization

In this section, we present a framework that offers an instance of the Privacy by
Design paradigm concerning mobility trajectories enriched with semantic informa-
tion, i.e., semantic trajectories introduced in [31] for reasoning over trajectories
from a semantic point of view.

In detail, a semantic trajectory is a sequence of stops and moves of an individual
during her movement. Stops are the important parts of a trajectory where the
moving object has stayed for a minimal amount of time. Moves are the sub-
trajectories describing the movements between two consecutive stops. Each location
of the stop can be attached to some contextual information such as the visited
place or the purpose—either by explicit sensing or by inference. An example of
semantic trajectory is the sequence of places visited by a moving individual such as
Supermarket, Restaurant, Gym, Hospital, Museum.

Important parts of a trajectory, i.e., stops, correspond to the set of x, y, t points of
a trajectory that are important from an application point of view. A set of important
places characterizes a semantic trajectory.

Definition 10.6 (Semantic Trajectory) Given a set of important places I, a
semantic trajectory T = p1, p2, . . . , pn with pi ∈ I is a temporally ordered
sequence of important places, that the moving object has visited.

The Privacy by Design framework presented in this section (introduced in
[25]) enables sophisticated reasoning on the scope of people’s movements by
maintaining under control the individual privacy. In particular, the released semantic
trajectories are made safe concerning the inference of sensitive information derived
from the knowledge of the reason of the individual’s movement and from the
knowledge of the place that the individual visited. The framework is based on a data
transformation that generalizes places driven by a place taxonomy, thus providing a
way to preserve the semantics of the generalized trajectories.

The results obtained with the application of this framework show how it
possible to preserve the semantics of trajectories making them useful for extracting
valid mobility semantic patterns while guaranteeing the limitation of sensitive
information inferences from the individual visits.

10.4.1 Attack and Privacy Model

The use of a domain taxonomy for generalizing places enables the identification of
sensitive and non-sensitive places. A place is considered sensitive when it allows
inferring personal information about the individual who has stopped there. For
example, a stop at an oncology clinic may indicate that the user has some health
problem. Other places (such as parks, restaurants, cinemas, etc.) are considered as
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Fig. 10.4 The places taxonomy

quasi-identifiers. The labeled taxonomy is given by the domain expert who tags each
concept with the corresponding “sensitivity” label.

In this context, the attack model considers an attacker with the following
adversary knowledge:

Definition 10.7 (Adversary Knowledge) The attacker has access to the general-
ized dataset D∗ and knows: (a) the algorithm used to anonymize the data, (b) the
privacy place taxonomy PT ax, (c) that a given user is in the dataset and (d) a quasi-
identifier place sequence SQ visited by the given user R.

In this model, the idea is to keep private all the sensitive places visited by a
given user. As a consequence, the attack model considers the ability to link the
released data to other external information enabling the inference of visited sensitive
places.

In practice, given the quasi-identifier sequence SQ, the attacker constructs a set of
candidate semantic trajectories in D∗ containing SQ and tries to infer the sensitive
leaf places related to R. Prob(SQ, S) denotes the probability that, given a quasi-
identifier place sequence SQ related to a user R, the attacker infers his/her set of
sensitive places S which are the leaves of the taxonomy PT ax. An example of
labelled taxonomy is depicted in Fig. 10.4.

10.4.2 Privacy-Preserving Technique

How to guarantee that the probability of success of the above attack is very low
while preserving the utility of the data for meaningful analyses? From a data
protection perspective it is necessary to control the probability Prob(SQ, S) and
a solution is to release a c-safe dataset, i.e., a dataset where for every quasi-
identifier place sequence SQ, we have that for each set of sensitive places S the
Prob(SQ, S) ≤ c with c ∈ [0, 1]. On the contrary, for a data utility point of view, a
data analyst might use the semantic trajectories to extract common and frequent
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human behaviors by sequential pattern mining analyses, having in this way the
possibility to reason on the semantic of the human movements. Therefore, we need a
privacy transformation that tries to minimize the cost of a trajectory generalization.
A privacy transformation of semantic trajectories consists of the following steps:

1. suppressing from the original semantic trajectories each sensitive place when, for
that given user, that place is a quasi-identifier;

2. grouping semantic trajectories in groups of a predefined size, m;
3. building a generalized version of each semantic trajectory in the group gen-

eralizing the quasi-identifier places. In each group, the quasi-identifiers of the
generalized trajectories should be identical. Sensitive places are generalized
when the quasi-identifiers generalization is not enough to get a c-safe dataset.
The generalization is performed with the support of the taxonomy PT ax.

This method generates a c-safe version of a dataset of semantic trajectories keeping
under control both the probability to infer sensitive places and the generalization
level (thus the information loss) introduced in the data. In other words, the obtained
dataset guarantees the c-safety and maintains the information useful for the data
mining tasks, as much as possible. The taxonomy defined by the domain expert is
crucial in this process. In fact, having more levels of abstraction allows the method
in finding a better generalization in terms of information loss. In order to consider
the generalization cost it is possible to use distance functions that measure the
cost to transform an original semantic trajectory into a generalized one, based on
the taxonomy. A measure might be the distance in steps from two places in the
taxonomy tree, the so called Hops-based distance.

If we consider the dataset in Fig. 10.1a, after the privacy transformation where the
probability of success is theoretically bounded by 0.3 we have an empirical upper
bound of 0.07 in average on 10,000 attacks using as background knowledge 5 places
(see Fig. 10.5).

Fig. 10.5 The empirical disclosure probability on Milano dataset



10 Privacy by Design for Mobility Data Analytics 267

10.4.3 Analytics Quality

Now, the point is to understand if the guaranteed privacy protection also allows
the possibility to perform some analysis based on the sequential pattern mining
extractable from the c-safe data. To evaluate this, it is necessary to measure the
quality of the sequential patterns. Figure 10.6a shows the effect of the privacy
transformation on the number of patterns extractable from the dataset after the
sanitization.The figure highlights the fact that the generalization has a double effect
on the patterns: (1) the frequency of generalized places increases, (2) the frequency
of leaf places of the taxonomy decreases. Therefore, with a high support threshold,
the difference between the patterns created and removed by the generalization phase
is positive, and this increases the size of the resulting patterns set. Figure 10.6b
depicts instead the trend of the coverage coefficient. This index measures how many

Fig. 10.6 (a) Number of patterns extracted from Milan data and (b) coverage of the patterns
varying the support threshold
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patterns extracted from the original dataset are covered at least by the patterns
extracted from the anonymized dataset with a certain level of generalization. It is
important to notice that the coverage does not measure how much the patterns are
generalized, but only if they are covered by a pattern obtained from the anonymized
dataset or not. The results highlight that the coverage guaranteed by the patterns
after the privacy transformation is not 100% but the levels are high enough to enable
analyses; in fact, by changing the support (i.e., the minimum frequency used for the
pattern extraction) the coverage is always greater than 75%.

10.5 Privacy by Design in Distributed Systems

The previous scenarios (Sects. 10.3 and 10.4) are based on centralized environments,
where the privacy preservation step is performed by a central entity; in fact, we
showed two variants of k-anonymity which can be used only by a trusted aggrega-
tion center. However, Privacy by Design paradigm can also be applied with success
to distributed systems. In this section, we discuss an instance of this case [26];
in particular, we analyze the handling of personal mobility trajectories, generated
by several vehicles distributed in a territory and collected by a central entity,
called coordinator. Streams of data updates arrive continuously at remote sites (i.e.,
vehicles), while the coordinator is responsible for computing the aggregation of
movement data on a territory by combining the information received by each node.

We show how privacy can be obtained before data leave users, ensuring the utility
of some data analysis performed at the collective level, also after the transformation.
This example brings evidence to the fact that the Privacy by Design model has
the potential of delivering high data protection combined with high quality even
in massively distributed techno-social systems.

10.5.1 Attack and Privacy Model

As in the case analyzed in Sect. 10.3, any data from which the typical mobility
behavior of a user may be inferred is assumed as sensitive information. This
information is considered sensitive for two main reasons: (1) typical movements can
be used to identify drivers even when a simple de-identification of the individual
in the system is applied; and (2) the places visited could identify distinguishing
sensitive areas such as clinics, hospitals and routine locations such as the user’s
home and workplace.

The assumption is that each node in the system is honest; in other words, attacks
at the node level are not considered. Instead, potential attacks are from any adversary
between the node and the coordinator (i.e., attacks during the communications), and
from any adversary at coordinator site, so this privacy preserving technique has to
guarantee privacy even against a malicious behavior of the coordinator. For example,
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the coordinator may be able to obtain real mobility statistic information from other
sources, such as from public datasets on the web, or through personal knowledge
about a specific individual, like in the previously (and diffusely) discussed linking
attack.

The solution proposed in [26] is based on Differential Privacy, a recent paradigm
of randomization presented in [14] by Dwork. The general idea of this model is
that the privacy risks should not increase for a respondent as a result of occurring
in a statistical database; differential privacy ensures, in fact, that the ability of an
adversary to inflict harm should be essentially the same, independently of whether
any individual opts in to, or opts out of, the dataset. This privacy model is called
ε-differential privacy, due to the level of privacy guaranteed ε, also called privacy
budget. Note that when ε grows very little perturbation is introduced and this yields
a low privacy protection; on the contrary, better privacy guarantees are obtained
when ε tends to zero. Differential privacy guarantees a record owner that any
privacy breach will not be a result of participating in the database since nothing,
or almost nothing, that can be learned from the database with his record can be
learned from the database without his data. Moreover, in [14] is formally proved
that ε-differential privacy can provide a guarantee against adversaries with arbitrary
background knowledge, thus, in this case, we do not need to define any explicit
background knowledge for attackers.

In a nutshell, the differential privacy mechanism works by adding appropriately
chosen random noise (from a specific distribution) to the true answer, then returning
the perturbed answer. The formal definition of differential privacy [14] is the
following. Here the parameter, ε, specifies the level of guaranteed privacy.

Definition 10.8 (ε-Differential Privacy) [14] A privacy mechanism A gives ε-
differential privacy if for any dataset D1 and D2 differing on at most one record, and
for any possible output D′ of A we have Pr[A(D1) = D′] ≤ eε ×Pr[A(D2) = D′]
where the probability is taken over the randomness of A.

A basic notion used by differential privacy mechanisms is the sensitivity of a
query, which provides a way to set the noise distribution in order to calibrate the
noise magnitude on the basis of the type of query.

Definition 10.9 (Global Sensitivity) [13] For any function f : D → Rd , its
sensitivity is Δf = maxD1,D2 ||f (D1) − f (D2)||1 for all D1, D2 differing in at
most one record.

Intuitively, the sensitivity measures the maximum distance between the same
query executed on two close datasets, i.e., datasets differing on one single element
(either a user or an event). As an example, consider a count query on a medical
dataset, which returns the number of patients having a particular disease. The result
of the query performed on two close datasets, i.e., differing exactly on one patient,
can change at most by 1; thus, in this case (or, more generally, in count query cases),
the sensitivity is 1.

A little variant of this model is the (ε, δ)-differential privacy [16], where the noise
is bounded at the cost of introducing a privacy loss, δ. (ε, δ)-differential privacy
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allows a small amount of privacy loss due to a variation in the output distribution
for the privacy mechanism A.

Definition 10.10 ((ε, δ)-Differential Privacy) [16] A privacy mechanism A gives
(ε, δ)-differential privacy if for any dataset D1 and D2 differing on at most one
record, and for any possible output D′ of A we have Pr[A(D1) = D′] ≤ eε ×
Pr[A(D2) = D′] + δ where the probability is taken over the randomness of A.

The questions are: How can we hide the event that the user moved from a location
a to a location b in a time interval τ? And how can we hide the real count of moves
in that time window? In other words, How can we enable collective movement data
aggregation for mobility analysis while guaranteeing individual privacy protection?
The solution that we report is based on (ε,δ)-differential privacy, and provides a
good balance between privacy and data utility.

10.5.2 Privacy-Preserving Technique

First of all, each participant must share a common partitioning of the considered
area; for this purpose, it is possible to use an existing division of the territory
(e.g., census sectors, road segments, etc.) or to determine a data-driven partition
as the Voronoi tessellation introduced in Sect. 10.3.2. Once this is accomplished,
each trajectory is generalized as a sequence of crossed areas (i.e., a sequence
of movements). For the sake of convenience, this information is mapped onto a
frequency vector, linked to the partition.

In order to perform this mapping task, we firstly need a function Move Frequency
(MF ) to compute how many times the move appears in a generalized trajectory Tg

within a given time interval.

Definition 10.11 (Move Frequency) Let Tg be a generalized trajectory and let
(lci

, lcj
) be a move. Given the temporal interval τ the move frequency function is

defined as:

MF(Tg, (lci
, lcj

), τ ) = |{(lci
, lcj

, ti , tj ) ∈ Tg : ti ∈ τ ∧ tj ∈ τ }|.

This function can be easily extended to take into consideration a set of general-
ized trajectories TG. In this case, computed information represents the total number
of movements from the cell ci to the cell cj in a time interval in the set of trajectories.

Definition 10.12 (Global Move Frequency) Let TG be a set of generalized
trajectories and let (lci

, lcj
) be a move. Let τ be a time interval. The global move

frequency function is defined as:

GMF(TG, (lci
, lcj

), τ ) =
∑

∀Tg∈TG

MF(Tg, (lci
, lcj

), τ ).
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The number of movements between two cells computed by either the function
MF or GMF describes the amount of traffic flow between the two cells in a specific
time interval τ . This information can be represented by a frequency vector. To define
the frequency vector, we first define vector of moves.

Definition 10.13 (Vector of Moves) Let C = {c1, c2, . . . , cp} be the set of the
cells composing the territory partition. The vector of moves M is a vector of size
s = |{(ci, cj )|ci is adjacent to cj }|, in which each element M[k] = (lci

, lcj
),

where 1 ≤ k ≤ s, is the move from the cell ci to the adjacent cell cj .

At this point, we can define the frequency vector.

Definition 10.14 (Frequency Vector) Let C = {c1, c2, . . . , cp} be the cells that
compose the territory partition and let M be its vector of moves. Given a set of
generalized trajectories TG in a time interval τ , its frequency vector f is a vector
of size s = |{(ci, cj )|ci is adjacent to cj }|, in which each element f [k] =
GMF(TG,M[k], τ ).

Unfortunately, releasing frequency of moves instead of raw trajectory data to
the coordinator is still not privacy-preserving, as the intruder may still infer the
sensitive typical movement information of the driver. As an example, the attacker
could discover the driver’s most frequent move; this information can be very
sensitive because it usually corresponds to a user’s transportation between home
and workplace. Thus, the proposed solution is based on the differential privacy
model, relying on a Laplace distribution [15]. At the end of a preset time interval
τ , each node, before sending the frequency vector to the coordinator and for each
element in the vector, extracts the noise from the Laplace distribution and adds it
to the original value in that position of the vector. At the end of this operation,
the node Vj converted its frequency vector fVj

into its private version ˜fVj
. This

ensures the respect of the ε-differential privacy. This simple general strategy has
some inconveniences: first, it could lead to a large amount of noise that, although
with small probability, can be arbitrarily large; second, adding noise drawn from
the Laplace distribution could produce negative frequency counts of moves, which
does not make sense in mobility scenarios. In order to fix these two problems, it is
possible to bound the noise drawn from the Laplace distribution, reducing to an (ε,δ)
differential privacy schema. In particular, for each value x of the vector fVj

, it is
possible to draw the noise bounding it in the interval [−x, x]. In other words, for any
original frequency fVj

[i] = x, its perturbed version after adding noise falls in the
interval [0, 2x]. This approach satisfies (ε,δ)-differential privacy, where δ measures
the privacy loss. Note that, since in a distributed environment communications need
to be quite limited, it is possible to reduce the amount of transmitted information,
i.e., the size of frequency vectors. A possible solution to this problem is reported
in [26], but this discussion is omitted here because is beyond the purpose of our
review.
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10.5.3 Analytical Quality

So far we reported the formal guarantees to individual privacy preservation, now
we have to show how individually transformed values are still useful once they
are collected and aggregated by the coordinator, i.e., they are still suitable at a
collective level for analysis. In the proposed framework, the coordinator gathers
the perturbed frequency vectors from all the vehicles in the time interval τ and
sums them movement by movement. This achieves to obtain the resulting global
frequency vector, which indicates the flow values for each possible link of the
spatial tessellation. Since the privacy transformation operates on the entries of the
frequency vectors, and hence on the flows, we report the comparison (before and
after the transformation) of two measures: (1) the Flow per Link, i.e., the directed
volume of traffic between two adjacent zones; (2) the Flow per Zone, i.e., the sum
of the incoming and outgoing flows in a zone. The following results refer to the
application of this technique on a large dataset of GPS vehicles traces, collected in
a period from 1st May to 31st May 2011, in the geographical areas around Pisa, in
central Italy. It counts for around 4200 vehicles, generating around 15,700 trips in
total. The τ interval is 1 day, so the global frequency vector represents the sum all the
trajectories crossing any link, at the end of each day. The reported results are relative
to 25th May 2011, but they are similar to ones obtained in the other working days.

Figure 10.7 shows the resulting Complementary Cumulative Distribution Func-
tions (CCDFs) of different privacy transformation varying ε from 0.9 to 0.01.
Figure 10.7-Left shows the global (approximated) Flow per Link distribution: fixed
a value of flow (x) is counted the number of links (y) that have that flow. Figure 10.7-
Right shows the distribution of sum of flows passing for each zone, i.e., Flow per
Zone: given a flow value (x) it shows how many zones (y) present that total flow.
From the distributions, we can observe that the privacy transformation preserves

Fig. 10.7 CCDFs of Flow per Link (Left); CCDFs of Flow per Zone (Right)
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Fig. 10.8 Visualization of Flow per Link (A-B) and Flow per Zone (C-D)

very well the distribution of the original flows, even for more restrictive values of
the parameter ε. Also considering several flows together, like those ones that are
incident to a given zone (Fig. 10.7-Right), the distributions are well preserved for
all the privacy transformations. These results reveal how a method which locally
perturbs values, at a collective level permits to obtain a very good utility.

Qualitatively, Fig. 10.8 shows a visual comparison of results of the privacy
transformation with the original ones. This is an example of analyses that can
be carried out with mobility data. Since the global complementary cumulative
distribution functions are comparable, it is possible to choose a very low epsilon
(ε = 0.01) with the aim to emphasize the very good quality of mobility analysis that
an analyst can obtain even if the data are transformed by using this low ε value, i.e.
obtaining a better privacy protection. In Fig. 10.8a, b each flow is drawn with arrows
with the thickness proportional to the volume of trajectories observed on a link.
From the figure it is evident how the relevant flows are maintained in the transformed
global frequency vector, highlighting the major highways and urban centers. The
Flow per Zone is also preserved, as it is shown in Fig. 10.8c, d, where the flow per
each cell is rendered with a circle of radius proportional to the difference from the
median value of each global frequency vector. The maps allow us to recognize the
dense areas (red circles, above the median) separated by sparse areas (blue circles,
below the median). The high density traffic zones follow the highways and the major
city centers along their routes. These two comparisons confirm the intuition that,
while the transformations protect individual sensitive information, the utility of data
is preserved.
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10.6 Conclusion

The potential impact of the big data analytics and social mining is high because
it could generate enormous value to society. Unfortunately, often big data describe
sensitive human activities and the privacy of people is always more at risk. The
danger is also increasing thanks to the emerging capability to integrate diversified
data. In this chapter, we have introduced the articulation of the Privacy by Design
in big data analytics and social mining for enabling the design of analytical
processes that minimize, or even prevent, the privacy harm. We have discussed
how applying the Privacy by Design principle to three different scenarios showing
that under suitable conditions is feasible to reach a good trade-off between data
privacy and good quality of the data. We believe with the Privacy by Design
principle social mining has the potential to provide a privacy-respectful social
microscope, or socioscope, needed to observe the hidden mechanisms of socio-
economic complexity.

10.7 Bibliographic Notes

In the following, we provide a quick overview of some techniques and solutions
adopted in privacy-preserving data mining for mobility data. The Privacy by Design
model was applied in data mining in several contexts [24, 27], with special treatment
to mobility data, due to their complex nature, their sensitivity and their importance
for understanding human behaviors. Privacy issue in mobility data mining and
sharing have been intensively studied in literature [8, 20, 22], and the existing
methods of privacy-aware releasing and sharing of (trajectory) data can be classified
into two main classes: (1) generalization/suppression based data perturbation, and
(2) randomization/differential privacy perturbation.

The most widely used privacy model for generalization and suppression pertur-
bation is adapted from what so called k-anonymity [30, 32], which requires that
an individual should not be identifiable from a group of size smaller than k based
on their quasi-identifies (QIDs), i.e., a set of attributes that can be used to identify
uniquely the individuals. Unfortunately, in trajectory data, it often impossible to
distinguish clearly between quasi-identifiers and sensitive attribute. In [36], Yarovoy
et al. deeply analyze the problem of quasi-identifiers in mobility data: they show
that the anonymization groups may not be disjoint. Thus there may exist objects
that can be identified explicitly by combining different anonymization groups. They
suggest that QIs may be provided directly by personal settings or found by means
of statistical data analysis. In [4], Abul et al. propose the notion of (k,δ)-anonymity
for moving object databases, where δ represents the possible location imprecision.
This is an innovative concept of k-anonymity based on co-localization, which takes
advantage of the inherent uncertainty of the whereabouts of the moving objects. The
authors also proposed an approach, called Never Walk Alone, based on trajectory
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clustering and spatial translation, and they present its improvement, Wait for Me,
in [5]. This method is very similar to the previous one, but it is based on EDR
distance (instead of Euclidean distance), which is time-tolerant, so Wait for Me
can recognize similar trajectories even if they are (slightly) shifted in time. Finally,
Domingo Ferrer and Trujillo-Rasua [12] show a solution based on perturbation and
micro-aggregation: this method k-anonymizes each location independently, using
the whole set of trajectories. Particularly, the algorithm creates clusters of locations
(close in time and space) in such a way that the locations in each group belong to
k different trajectories. The result of this transformation is that the probability that
a location of a true trajectory appears in its anonymized version is at most 1

k
while

guaranteeing that the anonymized trajectories are suitable for range query for every
value of k.

Regarding the application of Differential Privacy mechanisms to mobility data,
many works have been proposed in last years. In [35] authors provide an algorithm,
based on Markov Chain and Differential Privacy, which aims to protect the continual
location sharing of perturbed locations in the context of Location Based Services.
In particular, they select a set of locations that are highly probable for a user,
guaranteeing that the probability of these locations is similar to the other, and
chooses one of these locations to be released outside. In this case, the event protected
by Differential Privacy is a specific request to a service, instead of a specific move.
However, they do not provide guarantees if the attacker has a stronger external
knowledge w.r.t. the history of the released locations. This additional constraint is
analyzed in [7], where Andrés et al. show a technique for Location Based Services
independent from the side information of users. They use an extension of Laplace
distribution for the continuous plane and promise a privacy level which is distance-
dependent, i.e., guarantees are stronger if you get closer to the real location of the
user. A very promising research line about Differential Privacy on spatio-temporal
data is the one related to space partitioning. Ho and Ruan [21] apply Differential
Privacy to interesting locations to perform location pattern discovery, granting
protection at the user-level also when a user contributes to more than one record.
They partition the space of the data into smaller ones, in order to limit the total
number of events and, consequently, the events connected with each individual in
each dataset, in order to overcome the problem of the presence of a clear upper-
bound to the events related to a single user. In [10], Cormode et al. describe a
solution to publish differentially private spatial index (e.g., quadtrees and kd-trees)
to provide a private description of the data distribution [10]. Its main utility concern
is the accuracy of multi-dimensional range queries (e.g., how many individuals
fall within a given region). Therefore, the spatial index only stores the counts of
a specific spatial decomposition, even their solution does not store the movement
information (e.g., how many individuals move from location i to location j). In [9],
authors rely on a prefix tree of trajectories with injected Laplace noise; the prefix
tree is data-dependent, i.e., it should have a different structure when the underlying
database changes. Qardaji et al. [29] provide an adaptive uniform partition method,
considering different density-regions, i.e., depending on the total number of points
in the dataset. In Acs et al. [6], authors apply Geometrical mechanism to a partition
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of a territory, taking advantage of a Voronoi tessellation to keep track of the presence
of individuals and use clustering and sampling with Fourier-based perturbation
Finally, Cormode et al. [11] propose to publish a contingency table of trajectory
data, that can be indexed by specific locations so that each cell in the table contains
the number of people who commute from the given source to the given destination.
The purpose of this work is to address the sparsity issue of the contingency table
and presents a method of releasing a compact summary of the contingency table
with Laplace noise.
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