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Abstract We introduce a new approach to functional causal modeling from
observational data, called Causal Generative Neural Networks (CGNN). CGNN
leverages the power of neural networks to learn a generative model of the
joint distribution of the observed variables, by minimizing the Maximum Mean
Discrepancy between generated and observed data. An approximate learning
criterion is proposed to scale the computational cost of the approach to linear
complexity in the number of observations. The performance of CGNN is studied
throughout three experiments. Firstly, CGNN is applied to cause-effect inference,
where the task is to identify the best causal hypothesis out of “X → Y ” and
“Y → X”. Secondly, CGNN is applied to the problem of identifying v-structures
and conditional independences. Thirdly, CGNN is applied to multivariate functional
causal modeling: given a skeleton describing the direct dependences in a set of
random variables X = [X1, . . . , Xd ], CGNN orients the edges in the skeleton
to uncover the directed acyclic causal graph describing the causal structure of the
random variables. On all three tasks, CGNN is extensively assessed on both artificial
and real-world data, comparing favorably to the state-of-the-art. Finally, CGNN is
extended to handle the case of confounders, where latent variables are involved in
the overall causal model.
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1 Introduction

Deep learning models have shown extraordinary predictive abilities, breaking
records in image classification (Krizhevsky et al. 2012), speech recognition (Hinton
et al. 2012), language translation (Cho et al. 2014), and reinforcement learning
(Silver et al. 2016). However, the predictive focus of black-box deep learning
models leaves little room for explanatory power. More generally, current machine
learning paradigms offer no protection to avoid mistaking correlation by causation.
For example, consider the prediction of target variable Y given features X and Z,
assuming that the underlying generative process is described by the equations:

X,EY ,EZ ∼ Uniform(0, 1),

Y ← 0.5X + EY ,

Z ← Y + EZ,

with (EY ,EZ) additive noise variables. The above model states that the values of
Y are computed as a function of the values of X (we say that X causes Y ), and that
the values of Z are computed as a function of the values of Y (Y causes Z). The
“assignment arrows” emphasize the asymmetric relations between all three random
variables. However, as Z provides a stronger signal-to-noise ratio than X for the
prediction of Y , the best regression solution in terms of least-square error is

Ŷ = 0.25X + 0.5Z

The above regression model, a typical case of inverse regression after Goldberger
(1984), would wrongly explain some changes in Y as a function of changes in Z,
although Z does not cause Y . In this simple case, there exists approaches over-
coming the inverse regression mistake and uncovering all true cause-effect relations
(Hoyer et al. 2009). In the general case however, mainstream machine learning
approaches fail to understand the relationships between all three distributions, and
might attribute some effects on Y to changes in Z.

Mistaking correlation for causation can be catastrophic for agents who must plan,
reason, and decide based on observations. Thus, discovering causal structures is of
crucial importance.

The gold standard to discover causal relations is to perform experiments (Pearl
2003). However, experiments are in many cases expensive, unethical, or impossible
to realize. In these situations, there is a need for observational causal discovery, that
is, the estimation of causal relations from observations alone (Spirtes et al. 2000;
Peters et al. 2017).
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In the considered setting, observational empirical data (drawn independent
and identically distributed from an unknown distribution) is given as a set of n

samples of real valued feature vectors of dimension d . We denote the corresponding
random vector as X = [X1, . . . , Xd ]. We seek a Functional Causal Model
(FCM), also known as Structural Equation Model (SEM), that best matches the
underlying data-generating mechanism(s) in the following sense: under relevant
manipulations/interventions/experiments the FCM would produce data distributed
similarly to the real data obtained in similar conditions.

Let intervention do(X=x) be defined as the operation on distribution obtained by
clamping variable X to value x, while the rest of the system remains unchanged
(Pearl 2009). It is said that variable Xi is a direct cause of Xj with respect to
X1, . . . , Xd iff different interventions on variable X result in different marginal
distributions on Xj , everything else being equal:

PXj |do(Xi=x,X\ij =c) �= PXj |do(Xi=x ′,X\ij =c) (1)

with X\ij := X{1,...,d}\i,j the set of all variables except Xi and Xj , scalar values x �=
x ′, and vector value c. Distribution PXj |do(Xi=x,X\ij =c) is the resulting interventional
distribution of the variable Xj when the variable Xi is clamped to value x, while
keeping all other variables at a fixed value (Mooij et al. 2016).

As said, conducting such interventions to determine direct causes and effects
raises some limitations. For this reason, this paper focuses on learning the causal
structure from observational data only, where the goal and validation of the proposed
approach is to match the known “ground truth” model structure.

A contribution of the paper is to unify several state-of-art methods into one single
consistent and more powerful approach. On the one hand, leading researchers at
UCLA, Carnegie Mellon, University of Crete and elsewhere have developed pow-
erful algorithms exploiting Markov properties of directed acyclic graphs (DAGs)
(Spirtes et al. 2000; Tsamardinos et al. 2006; Pearl 2009). On the other hand, the
Tübingen School has proposed new and powerful functional causal models (FCM)
algorithms exploiting the asymmetries in the joint distribution of cause-effect pairs
(Hoyer et al. 2009; Stegle et al. 2010; Daniusis et al. 2012; Mooij et al. 2016).

In this paper, the learning of functional causal models is tackled in the search
space of generative neural networks (Kingma and Welling 2013; Goodfellow
et al. 2014), and aims at the functional causal model (structure and parameters),
best fitting the underlying data generative process. The merits of the proposed
approach, called Causal Generative Neural Network (CGNN) are extensively and
empirically demonstrated compared to the state of the art on artificial and real-world
benchmarks.

This paper is organized as follows: Sect. 2 introduces the problem of learning
an FCM and the underlying assumptions. Section 3 briefly reviews and discusses
the state of the art in causal modeling. The FCM modeling framework within the
search space of generative neural networks is presented in Sect. 4. Section 5 reports
on an extensive experimental validation of the approach comparatively to the state
of the art for pairwise cause-effect inference and graph recovery. An extension of
the proposed framework to deal with potential confounding variables is presented
in Sect. 6. The paper concludes in Sect. 7 with some perspectives for future works.
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2 Problem Setting

A Functional Causal Model (FCM) upon a random variable vector X =
[X1, . . . , Xd ] is a triplet (G , f,E ), representing a set of equations:

Xi ← fi(XPa(i;G ), Ei), Ei ∼ E , for i = 1, . . . , d (2)

Each equation characterizes the direct causal relation explaining variable Xi from
the set of its causes XPa(i;G ) ⊂ {X1, . . . , Xd}, based on some causal mechanism fi

involving besides XPa(i;G ) some random variable Ei drawn after distribution E ,
meant to account for all unobserved variables.

Letting G denote the causal graph obtained by drawing arrows from causes
XPa(i;G ) towards their effects Xi , we restrict ourselves to directed acyclic graphs
(DAG), where the propagation of interventions to end nodes is assumed to be
instantaneous. This assumption suitably represents causal phenomena in cross-
sectional studies. An example of functional causal model with five variables is
illustrated on Fig. 1.

2.1 Notations

By abuse of notation and for simplicity, a variable X and the associated node in the
causal graph, in one-to-one correspondence, are noted in the same way. Variables
X and Y are adjacent iff there exists an edge between both nodes in the graph. This
edge can model (1) a direct causal relationship (X → Y or Y → X); (2) a causal
relationship in either direction (X − Y ); (3) a non-causal association (X ↔ Y ) due
to external common causes (Richardson and Spirtes 2002).

E1

f1

X1 E3E2 E4

f4

X4E5

f2 f3

X3

f5

X5

X2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X1 = f1(E1)
X2 = f2(X1,E2)
X3 = f3(X1,E3)
X4 = f4(E4)
X5 = f5(X3,X4,E5)

Fig. 1 Example of a functional causal model (FCM) on X = [X1, . . . , X5]. Left: causal graph G ;
right: causal mechanisms
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Conditional independence: (X ⊥⊥ Y |Z) is meant as variables X and Y are
independent conditionally to Z, i.e. P(X, Y |Z) = P(X|Z)P(Y |Z).

V-structure, a.k.a. unshielded collider: Three variables {X,Y,Z} form a v-
structure iff their causal structure is: X → Z ← Y .

Skeleton of the DAG: the skeleton of the DAG is the undirected graph obtained
by replacing all edges by undirected edges.

Markov equivalent DAG: two DAGs with same skeleton and same v-structures
are said to be Markov equivalent (Pearl and Verma 1991). A Markov equivalence
class is represented by a Completed Partially Directed Acyclic Graph (CPDAG)
having both directed and undirected edges.

2.2 Assumptions and Properties

The state of the art in causal modeling most commonly involves four assumptions:

Causal sufficiency assumption (CSA): X is said to be causally sufficient if no
pair of variables {Xi,Xj } in X has a common cause external to X\i,j .

Causal Markov assumption (CMA): all variables are independent of their non-
effects (non descendants in the causal graph) conditionally to their direct causes
(parents) (Spirtes et al. 2000). For an FCM, this assumption holds if the graph
is a DAG and error terms Ei in the FCM are independent on each other (Pearl
2009).

Conditional independence relations in an FCM: if CMA applies, the data gen-
erated by the FCM satisfy all conditional independence (CI) relations among
variables in X via the notion of d-separation (Pearl 2009). CIs are called Markov
properties. Note that there may be more CIs in data than present in the graph
(see the Faithfulness assumption below). The joint distribution of the variables is
expressed as the product of the distribution of each variable conditionally on its
parents in the graph.

Causal Faithfulness Assumption (CFA): the joint distribution P(X) is faithful to
the graph G of an FCM iff every conditional independence relation that holds
true in P is entailed by G (Spirtes and Zhang 2016). Therefore, if there exists
an independence relation in X that is not a consequence of the Causal Markov
assumption, then X is unfaithful (Scheines 1997). It follows from CMA and
CFA that every causal path in the graph corresponds to a dependency between
variables, and vice versa.

V-structure property: Under CSA, CMA and CFA, if variables {X,Y,Z} satisfy:
(1) {X,Y } and {Y,Z} are adjacent; (2) {X,Z} are NOT adjacent; (3) X ⊥�⊥ Z|Y ,
then their causal structure is a v-structure (X → Y ← Z).
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3 State of the Art

This section reviews methods to infer causal relationships, based on either the
Markov properties of a DAG such as v-structures or asymmetries in the joint
distributions of pairs of variables.

3.1 Learning the CPDAG

Structure learning methods classically use conditional independence (CI) relations
in order to identify the Markov equivalence class of the sought Directed Acyclic
Graph, referred to as CPDAG, under CSA, CMA and CFA.

Considering the functional model on X = [X1, . . . , X5] on Fig. 1, the associated
DAG G and graph skeleton are respectively depicted on Fig. 2a, b. Causal modeling
exploits observational data to recover the G structure from all CI (Markov proper-

X1

X2 X3

X5

X4

(a) (b)

(c) (d)

(e)

X1

X2 X3

X5

X4

X1

X2 X3

X5

X4

X1

X2 X3

X5

X4

X1

X2 X3

X5

X4

Fig. 2 Example of a Markov equivalent class. There exists three graphs (a, d, e) consistent with a
given graph skeleton (b); the set of these consistent graphs defines the Markov equivalent class (c).
(a) The exact DAG of G . (b) The skeleton of G . (c) The CPDAG of G . (d) A Markov equivalent
DAG of G . (e) Another Markov equivalent DAG of G
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ties) between variables.1 Under CSA, CMA and CFA, as (X3 ⊥⊥ X4|X5) does not
hold, a v-structure X3 → X5 ← X4 is identified (Fig. 2c). However, one also has
(X1 ⊥⊥ X5|X3) and (X2 ⊥⊥ X3|X1). Thus the DAGs on Figs. 2d, e encode the same
conditional independences as the true DAG (Fig. 2a). Therefore the true DAG cannot
be fully identified based only on independence tests, and the edges between the pairs
of nodes {X1,X2} and {X1,X3} are left undirected. The identification process thus
yields the partially undirected graph depicted on Fig. 2c, called Completed Partially
Directed Acyclic Graph (CPDAG).

The main three families of methods used to recover the CPDAG of an FCM with
continuous data are constraint-based methods, score-based methods, and hybrid
methods (Drton and Maathuis 2016).

3.1.1 Constraint-Based Methods

Constraint-based methods exploit conditional independences between variables to
identify all v-structures. One of the most well-known constraint-based algorithms is
the PC algorithm (Spirtes et al. 1993). PC first builds the DAG skeleton based on
conditional independences among variables and subsets of variables. Secondly, it
identifies v-structures (Fig. 2c). Finally, it uses propagation rules to orient remaining
edges, avoiding the creation of directed cycles or new v-structures. Under CSA,
CMA and CFA, and assuming an oracle indicating all conditional independences,
PC returns the CPDAG of the functional causal model. In practice, PC uses statis-
tical tests to accept or reject conditional independence at a given confidence level.
Besides mainstream tests (e.g., s Z-test or T-Test for continuous Gaussian variables,
and χ-squared or G-test for categorical variables), non-parametric independence
tests based on machine learning are becoming increasingly popular, such as kernel-
based conditional independence tests (Zhang et al. 2012). The FCI algorithm
(Spirtes et al. 1999) extends PC; it relaxes the causal sufficiency assumption and
deals with latent variables. The RFCI algorithm (Colombo et al. 2012) is faster than
FCI and handles high-dimensional DAGs with latent variables. Achilles’ heel of
constraint-based algorithms is their reliance on conditional independence tests. The
CI accuracy depends on the amount of available data, with exponentially increasing
size with the number of variables. Additionally, the use of propagation rules to direct
edges is prone to error propagation.

3.1.2 Score-Based Methods

Score-based methods explore the space of CPDAGs and minimize a global score.
For example, the space of graph structures is explored using operators (add edge,

1The so-called constraint-based methods base the recovery of graph structure on conditional
independence tests. In general, proofs of model identifiability assume the existence of an “oracle"
providing perfect knowledge of the CIs, i.e. de facto assuming an infinite amount of training data.
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remove edge, and reverse edge) by the Greedy Equivalent Search (GES) algorithm
(Chickering 2002), returning the optimal structure in the sense of the Bayesian
Information Criterion.2

In order to find the optimal CPDAG corresponding to the minimum score, the
GES algorithm starts with an empty graph. A first forward phase is performed,
iteratively adding edges to the model in order to improve the global score. A second
backward phase iteratively removes edges to improve the score. Under CSA, CMA
and CFA, GES identifies the true CPDAG in the large sample limit, if the score used
is decomposable, score-equivalent and consistent (Chickering 2002). More recently,
Ramsey (2015) proposed a GES extension called Fast Greedy Equivalence Search
(FGES) algorithm. FGES uses the same scores and search algorithm with different
data structures; it greatly speeds up GES by caching information about scores during
each phase of the process.

3.1.3 Hybrid Algorithms

Hybrid algorithms combine ideas from constraint-based and score-based algo-
rithms. According to Nandy et al. (2015), such methods often use a greedy search
like the GES method on a restricted search space for the sake of computational
efficiency. This restricted space is defined using conditional independence tests. For
instance the Max-Min Hill climbing (MMHC) algorithm (Tsamardinos et al. 2006)
firstly builds the skeleton of a Bayesian network using conditional independence
tests and then performs a Bayesian-scoring greedy hill-climbing search to orient the
edges. The Greedy Fast Causal Inference (GFCI) algorithm proceeds in the other
way around, using FGES to get rapidly a first sketch of the graph (shown to be
more accurate than those obtained with constraint-based methods), then using the
FCI constraint-based rules to orient the edges in presence of potential confounders
(Ogarrio et al. 2016).

3.2 Exploiting Asymmetry Between Cause and Effect

The abovementioned score-based and constraint-based methods do not take into
account the full information from the observational data (Spirtes and Zhang 2016),
such as data asymmetries induced by the causal directions.

2After Ramsey (2015), in the linear model with Gaussian variable case the individual BIC score to
minimize for a variable X given its parents is up to a constant n ln(s) + c k ln(n), where n ln(s)

is the likelihood term, with s the residual variance after regressing X onto its parents, and n the
number of data samples. c k ln(n) is a penalty term for the complexity of the graph (here the
number of edges). k = 2p + 1, with p the total number of parents of the variable X in the graph.
c = 2 by default, chosen empirically. The global score minimized by the algorithm is the sum over
all variables of the individual BIC score given the parent variables in the graph.
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Fig. 3 Left: Joint distribution P (X, Y ) generated from DAG X → Y +E, with E a uniform noise
variable. The linear regression of Y on X (respectively of X on Y ) is depicted as a blue (resp. red)
curve. Middle: Error f (X) − Y is independent of X. Right: Error g(Y ) − X is not independent of
Y . The asymmetry establishes that the true causal model is X → Y . Better seen in color

3.2.1 The Intuition

Let us consider FCM Y = X + E, with E a random noise independent of X

by construction. Graph constraints cannot orient the X − Y edge as both graphs
X → Y and Y → X are Markov equivalent. However, the implicit v-structure
X → Y ← E can be exploited provided that either X or E does not follow a
Gaussian distribution. Consider the linear regression Y = aX + b (blue curve in
Fig. 3); the residual is independent of X. Quite the contrary, the residual of the linear
regression X = a′Y + b′ (red curve in Fig. 3) is not independent of Y as far as the
independence of the error term holds true (Shimizu et al. 2006). In this toy example,
the asymmetries in the joint distribution of X and Y can be exploited to recover the
causal direction X → Y (Spirtes and Zhang 2016).

3.2.2 Restriction on the Class of Causal Mechanisms Considered

Causal inference is bound to rely on assumptions such as non-Gaussianity or
additive noise. In the absence of any such assumption, Zhang et al. (2016) show
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that, even in the bivariate case, for any function f and noise variable E independent
of X such that Y = f (X,E), it is always feasible to construct some f̃ and Ẽ,
with Ẽ independent of Y , such that X = f̃ (Y, Ẽ). An alternative, supporting
asymmetry detection and hinting at a causal direction, is based on restricting
the class of functions f (e.g. only considering regular functions). According to
Quinn et al. (2011), the first approach in this direction is LiNGAM (Shimizu et al.
2006). LiNGAM handles linear structural equation models, where each variable is
continuous and modeled as:

Xi =
∑

k

αkP
k
a (Xi) + Ei, i ∈ �1, n� (3)

with Pk
a (Xi) the kth parent of Xi and αk a real value. Assuming further that all

probability distributions of source nodes in the causal graph are non-Gaussian,
Shimizu et al. (2006) show that the causal structure is fully identifiable (all edges
can be oriented).

3.2.3 Pairwise Methods

In the continuous, non-linear bivariate case, specific methods have been developed
to orient the variable edge.3 A well known example of bivariate model is the additive
noise model (ANM) (Hoyer et al. 2009), with data generative model Y = f (X)+E,
f a (possibly non-linear) function and E a noise independent of X. The authors
prove the identifiability of the ANM in the following sense: if P(X, Y ) is consistent
with ANM Y = f (X)+E, then (1) there exists no AMN X = g(Y )+E′ consistent
with P(X, Y ); (2) the true causal direction is X → Y . Under the independence
assumption between E and X, the ANM admits a single non-identifiable case, the
linear model with Gaussian input and Gaussian noise (Mooij et al. 2016).

A more general model is the post-nonlinear model (PNL) (Zhang and Hyvärinen
2009), involving an additional nonlinear function on the top of an additive noise:
Y = g(f (X) + E), with g an invertible function. The price to pay for this higher
generality is an increase in the number of non identifiable cases.

The Gaussian Process Inference model (GPI) (Stegle et al. 2010) infers the causal
direction without explicitly restricting the class of possible causal mechanisms. The
authors build two Bayesian generative models, one for X → Y and one for Y → X,
where the distribution of the cause is modeled with a Gaussian mixture model, and
the causal mechanism f is a Gaussian process. The causal direction is determined
from the generative model best fitting the data (maximizing the data likelihood).
Identifiability here follows from restricting the underlying class of functions and

3These methods can be extended to the multivariate case and used for causal graph identification
by orienting each edge in turn.
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enforcing their smoothness (regularity). Other causal inference methods (Sgouritsa
et al. 2015) are based on the idea that if X → Y , the marginal probability
distribution of the cause P(X) is independent of the causal mechanism P(Y |X),
hence estimating P(Y |X) from P(X) should hardly be possible, while estimating
P(X|Y ) based on P(Y ) may be possible. The reader is referred to Statnikov et al.
(2012) and Mooij et al. (2016) for a thorough review and benchmark of the pairwise
methods in the bivariate case.

A new ML-based approach tackles causal inference as a pattern recognition
problem. This setting was introduced in the Causality challenges (Guyon 2013,
2014), which released 16,200 pairs of variables {Xi, Yi}, each pair being described
by a sample of their joint distribution, and labeled with the true �i value of their
causal relationship, with �i ranging in {Xi → Yi , Yi → Xi , Xi ⊥⊥ Yi , Xi ↔ Yi

(presence of a confounder)}. The causality classifiers trained from the challenge
pairs yield encouraging results on test pairs. The limitation of this ML-based
causal modeling approach is that causality classifiers intrinsically depend on the
representativity of the training pairs, assumed to be drawn from a same “Mother
distribution” (Lopez-Paz et al. 2015).

Note that bivariate methods can be used to uncover the full DAG, and inde-
pendently orient each edge, with the advantage that an error on one edge does
not propagate to the rest of the graph (as opposed to constraint and score-based
methods). However, bivariate methods do not leverage the full information available
in the dependence relations. For example in the linear Gaussian case (linear model
and Gaussian distributed inputs and noises), if a triplet of variables {A,B,C} is
such that A,B (respectively B,C) are dependent on each other but A ⊥⊥ C), a
constraint-based method would identify the v-structure A → B ← C (unshielded
collider); still, a bivariate model based on cause-effect asymmetry would neither
identify A → B nor B ← C.

3.3 Discussion

This brief survey has shown the complementarity of CPDAG and pairwise methods.
The former ones can at best return partially directed graphs; the latter ones do not
optimally exploit the interactions between all variables.

To overcome these limitations, an extension of the bivariate post-nonlinear model
(PNL) has been proposed (Zhang and Hyvärinen 2009), where an FCM is trained for
any plausible causal structure, and each model is tested a posteriori for the required
independence between errors and causes. The main PNL limitation is its super-
exponential cost with the number of variables (Zhang and Hyvärinen 2009). Another
hybrid approach uses a constraint based algorithm to identify a Markov equivalence
class, and thereafter uses bivariate modelling to orient the remaining edges (Zhang
and Hyvärinen 2009). For example, the constraint-based PC algorithm can identify
the v-structure X3 → X5 ← X4 in an FCM (Fig. 2), enabling the bivariate PNL
method to further infer the remaining arrows X1 → X2 and X1 → X3. Note that
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an effective combination of constraint-based and bivariate approaches requires a
final verification phase to test the consistency between the v-structures and the edge
orientations.

This paper aims to propose a unified framework getting the best out of both
worlds of CPDAG and bivariate approaches.

An inspiration of the approach is the CAM algorithm (Bühlmann et al. 2014),
which is an extension to the graph setting of the pairwise additive model (ANM)
(Hoyer et al. 2009). In CAM the FCM is modeled as:

Xi =
∑

k∈Pa(i;G )

fk(Xk) + Ei, for i = 1, . . . , d (4)

Our method can be seen an extension of CAM, as it allows non-additive
noise terms and non-additive contributions of causes, in order to model flexible
conditional distributions, and addresses the problem of learning FCMs (Sect. 2):

Xi = fi(XPa(i;G ), Ei), for i = 1, . . . , d (5)

An other inspiration of our framework is the recent method of Lopez-Paz and
Oquab (2016), where a conditional generative adversarial network is trained to
model X → Y and Y → X in order to infer the causal direction based on the
Occam’s razor principle.

This approach, called Causal Generative Neural Network (CGNN), features
two original contributions. Firstly, multivariate causal mechanisms fi are learned
as generative neural networks (as opposed to, regression networks). The novelty
is to use neural nets to model the joint distribution of the observed variables and
learn a continuous FCM. This approach does not explicitly restrict the class of
functions used to represent the causal models (see also Stegle et al. 2010), since
neural networks are universal approximators. Instead, a regularity argument is used
to enforce identifiability, in the spirit of supervised learning: the methods searches
a trade-off between data fitting and model complexity.

Secondly, the data generative models are trained using a non-parametric score,
the Maximum Mean Discrepancy (Gretton et al. 2007). This criterion is used instead
of likelihood based criteria, hardly suited to complex data structures, or mean square
criteria, implicitly assuming an additive noise (e.g. as in CAM, Eq. (4)).

Starting from a known skeleton, Sect. 4 presents a version of the proposed
approach under the usual Markov, faithfulness, and causal sufficiency assumptions.
The empirical validation of the approach is detailed in Sect. 5. In Sect. 6, the causal
sufficiency assumption is relaxed and the model is extended to handle possible
hidden confounding factors. Section 7 concludes the paper with some perspectives
for future work.
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4 Causal Generative Neural Networks

Let X = [X1, . . . , Xd ] denote a set of continuous random variables with joint
distribution P , and further assume that the joint density function h of P is
continuous and strictly positive on a compact subset of Rd and zero elsewhere.

This section first presents the modeling of continuous FCMs with generative
neural networks with a given graph structure (Sect. 4.1), the evaluation of a
candidate model (Sect. 4.2), and finally, the learning of a best candidate from
observational data (Sect. 4.3).

4.1 Modeling Continuous FCMs with Generative Neural
Networks

We first show that there exists a (non necessarily unique) continuous functional
causal model (G , f,E ) such that the associated data generative process fits the
distribution P of the observational data.

Proposition 1 Let X = [X1, . . . , Xd ] denote a set of continuous random variables
with joint distribution P , and further assume that the joint density function h of P

is continuous and strictly positive on a compact and convex subset of Rd , and zero
elsewhere. Letting G be a DAG such that P can be factorized along G ,

P(X) =
∏

i

P (Xi |XPa(i;G ))

there exists f = (f1, . . . , fd) with fi a continuous function with compact support
in R

|Pa(i;G )| × [0, 1] such that P(X) equals the generative model defined from FCM
(G , f,E ), with E = U [0, 1] the uniform distribution on [0, 1].
Proof In section “Proofs” in Appendix.

In order to model such continuous FCM (G , f,E ) on d random variables
X = [X1, . . . , Xd ], we introduce the CGNN (Causal Generative Neural Network)
depicted on Fig. 4.

Definition 1 A CGNN over d variables [X̂1, . . . , X̂d ] is a triplet CĜ ,f̂
= (Ĝ , f̂ ,E )

where:

1. Ĝ is a Directed Acyclic Graph (DAG) associating to each variable X̂i its set of
parents noted X̂Pa(i;Ĝ )

for i ∈ [[1, d]]
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⎧
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X̂1 = f̂1(E1)
X̂2 = f̂2(X̂1,E2)
X̂3 = f̂3(X̂1,E3)
X̂4 = f̂4(E4)
X̂5 = f̂5(X̂3, X̂4,E5)

Fig. 4 Left: Causal generative neural network over variables X̂ = (X̂1, . . . , X̂5). Right: Corre-
sponding functional causal model equations

2. For i ∈ �1, d�, causal mechanism f̂i is a 1-hidden layer regression neural
network with nh hidden neurons:

X̂i = f̂i(X̂Pa(i;Ĝ )
, Ei) =

nh∑

k=1

w̄i
kσ

⎛

⎝
∑

j∈Pa(i;G )

ŵi
jkX̂j + wi

kEi + bi
k

⎞

⎠ + b̄i

(6)

with nh ∈ N∗ the number of hidden units, w̄i
k, ŵ

i
jk, w

i
k, b

i
k, b̄

i ∈ R the
parameters of the neural network, and σ a continuous activation function.

3. Each variable Ei is independent of the cause Xi . Furthermore, all noise variables
are mutually independent and drawn after same distribution E .

It is clear from its definition that a CGNN defines a continuous FCM.

4.1.1 Generative Model and Interventions

A CGNN CĜ ,f̂
= (Ĝ , f̂ ,E ) is a generative model in the sense that any sample

[e1,j , . . . , ed,j ] of the “noise” random vector E = [E1, . . . , Ed ] can be used as
“input” to the network to generate a data sample [x̂1,j , . . . , x̂d,j ] of the estimated
distribution P̂ (X̂ = [X̂1, . . . , X̂d ]) by proceeding as follow:

1. Draw {[e1,j , . . . , ed,j ]}nj=1, n samples independent identically distributed from
the joint distribution of independent noise variables E = [E1, . . . , Ed ].

2. Generate n samples {[x̂1,j , . . . , x̂d,j ]}nj=1, where each estimate sample x̂i,j of

variable X̂i is computed in the topological order of Ĝ from f̂i with the j th
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estimate samples x̂
Pa(i;Ĝ ),j

of X̂Pa(i;Ĝ )
and the j th sample ei,j of the random

noise variable Ei .

Notice that a CGNN generates a probability distribution P̂ which is Markov with
respect to Ĝ , as the graph Ĝ is acyclic and the noise variables Ei are mutually
independent.

Importantly, CGNN supports interventions, that is, freezing a variable Xi to
some constant vi . The resulting joint distribution noted P̂do(X̂i=vi)

(X̂), called inter-
ventional distribution (Pearl 2009), can be computed from CGNN by discarding
all causal influences on X̂i and clamping its value to vi . It is emphasized that
intervening is different from conditioning (correlation does not imply causation).
The knowledge of interventional distributions is essential for e.g., public policy
makers, wanting to estimate the overall effects of a decision on a given variable.

4.2 Model Evaluation

The goal is to associate to each candidate solution CĜ ,f̂
= (Ĝ , f̂ ,E ) a score

reflecting how well this candidate solution describes the observational data. Firstly
we define the model scoring function (Sect. 4.2), then we show that this model
scoring function allows to build a CGNN generating a distribution P̂ (X̂) that
approximates P(X) with arbitrary accuracy (Sect. 4.2.2).

4.2.1 Scoring Metric

The ideal score, to be minimized, is the distance between the joint distribution P

associated with the ground truth FCM, and the joint distribution P̂ defined by the
CGNN candidate C

Ĝ ,f̂
= (Ĝ , f̂ ,E ). A tractable approximation thereof is given

by the Maximum Mean Discrepancy (MMD) (Gretton et al. 2007) between the n-
sample observational data D , and an n-sample D̂ sampled after P̂ . Overall, the
CGNN CĜ ,f̂

is trained by minimizing

S(CĜ ,f̂
,D) = M̂MDk(D, D̂) + λ|Ĝ |, (7)

with M̂MDk(D, D̂) defined as:

M̂MDk(D, D̂) = 1

n2

n∑

i,j=1

k(xi, xj )+ 1

n2

n∑

i,j=1

k(x̂i, x̂j )− 2

n2

n∑

i,j=1

k(xi, x̂j ) (8)

where kernel k usually is taken as the Gaussian kernel (k(x, x ′) = exp(−γ ‖x −
x ′‖2

2)). The MMD statistic, with quadratic complexity in the sample size, has the
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good property that as n goes to infinity, it goes to zero iff P = P̂ (Gretton et al.
2007). For scalability, a linear approximation of the MMD statistics based on m =
100 random features (Lopez-Paz 2016), called M̂MD

m

k , will also be used in the
experiments (more in section “The Maximum Mean Discrepancy (MMD) Statistic”
in Appendix).

Due to the Gaussian kernel being differentiable, M̂MDk and M̂MD
m

k are differ-
entiable, and backpropagation can be used to learn the CGNN made of networks f̂i

structured along Ĝ .
In order to compare candidate solutions with different structures in a fair manner,

the evaluation score of Eq. (7) is augmented with a penalization term λ|Ĝ |, with
|Ĝ | the number of edges in Ĝ . Penalization weight λ is a hyper-parameter of the
approach.

4.2.2 Representational Power of CGNN

We note D = {[x1,j , . . . , xd,j ]}nj=1, the data samples independent identically
distributed after the (unknown) joint distribution P(X = [X1, . . . , Xd ]), also
referred to as observational data.

Under same conditions as in Proposition 1, (P(X) being decomposable along
graph G , with continuous and strictly positive joint density function on a compact
in R

d and zero elsewhere), there exists a CGNN (Ĝ , f̂ ,E ), that approximates P(X)

with arbitrary accuracy:

Proposition 2 For m ∈ [[1, d]], let Zm denote the set of variables with topological
order less than m and let dm be its size. For any dm-dimensional vector of noise
values e(m), let zm(e(m)) (resp. ẑm(e(m))) be the vector of values computed in
topological order from the FCM (G , f,E ) (resp. the CGNN (G , f̂ ,E )). For any
ε > 0, there exists a set of networks f̂ with architecture G such that

∀e(m), ‖zm(e(m)) − ẑm(e(m))‖ < ε (9)

Proof In section “Proofs” in Appendix.

Using this proposition and the M̂MDk scoring criterion presented in Eq. (8), it is
shown that the distribution P̂ of the CGNN can estimate the true observational dis-
tribution of the (unknown) FCM up to an arbitrary precision, under the assumption
of an infinite observational sample:

Proposition 3 Let D be an infinite observational sample generated from (G , f,E ).
With same notations as in Proposition 2, for every sequence εt , such that εt > 0 and
goes to zero when t → ∞, there exists a set f̂t = (f̂ t

1 . . . f̂ t
d ) such that M̂MDk

between D and an infinite size sample D̂t generated from the CGNN (G , f̂t ,E ) is
less than εt .
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Proof In section “Proofs” in Appendix.

Under these assumptions, as M̂MDk(D, D̂t ) → 0, as t → ∞, it implies that the
sequence of generated P̂t converges in distribution toward the distribution P of the
observed sample (Gretton et al. 2007). This result highlights the generality of this
approach as we can model any kind of continuous FCM from observational data
(assuming access to infinite observational data). Our class of model is not restricted
to simplistic assumptions on the data generative process such as the additivity of the
noise or linear causal mechanisms. But this strength comes with a new challenge
relative to identifiability of such CGNNs as the result of Proposition 3 holds for any
DAG Ĝ such that P can be factorized along G and then for any DAG in the Markov
equivalence class of G (under classical assumption of CMA, CFA and CSA). In
particular in the pairwise setting, when only two variables X and Y are observed,
the joint distribution P(X, Y ) can be factorized in two Markov equivalent DAGs
X → Y or Y → X as P(X, Y ) = P(X)P(Y |X) and P(X, Y ) = P(Y )P (X|Y ).
Then the CGNN can reproduce equally well the observational distribution in both
directions (under the assumption of Proposition 1). We refer the reader to Zhang and
Hyvärinen (2009) for more details on this problem of identifiability in the bivariate
case.

As shown in Sect. 4.3.3, the proposed approach enforces the discovery of causal
models in the Markov equivalence class. Within this class, the non-identifiability
issue is empirically mitigated by restricting the class of CGNNs considered, and
specifically limiting the number nh of hidden neurons in each causal mechanism
(Eq. 6). Formally, we restrict ourselves to the sub-class of CGNNs, noted CĜ ,f̂ nh

=
(Ĝ , f̂ nh,E ) with exactly nh hidden neurons in each f̂i mechanism. Accordingly,
any candidate Ĝ with number of edges |Ĝ | involves the same number of parameters:
(2d +|Ĝ |)×nh weights and d ×(nh +1) bias parameters. As shown experimentally
in Sect. 5, this parameter nh is crucial as it governs the CGNN ability to model the
causal mechanisms: too small nh, and data patterns may be missed; too large nh,
and overly complicated causal mechanisms may be retained.

4.3 Model Optimization

Model optimization consists at finding a (nearly) optimum solution (Ĝ , f̂ ) in
the sense of the score defined in the previous section. The so-called parametric
optimization of the CGNN, where structure estimate Ĝ is fixed and the goal is to
find the best neural estimates f̂ conditionally to Ĝ is tackled in Sect. 4.3.1. The non-
parametric optimization, aimed at finding the best structure estimate, is considered
in Sect. 4.3.2. In Sect. 4.3.3, we present an identifiability result for CGNN up to
Markov equivalence classes.
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4.3.1 Parametric (Weight) Optimization

Given the acyclic structure estimate Ĝ , the neural networks f̂1, . . . , f̂d of the CGNN
are learned end-to-end using backpropagation with Adam optimizer (Kingma and
Ba 2014) by minimizing losses M̂MDk (Eq. (8), referred to as CGNN (M̂MDk))

or M̂MD
m

k (see section “The Maximum Mean Discrepancy (MMD) Statistic” in

Appendix, CGNN (M̂MD
m

k )).
The procedure closely follows that of supervised continuous learning (regres-

sion), except for the fact that the loss to be minimized is the MMD loss instead
of the mean squared error. Neural nets f̂i , i ∈ [[1, d]] are trained during ntrain
epochs, where the noise samples, independent and identically distributed, are drawn

in each epoch. In the M̂MD
m

k variant, the parameters of the random kernel are
resampled from their respective distributions in each training epoch (see section
“The Maximum Mean Discrepancy (MMD) Statistic” in Appendix). After training,
the score is computed and averaged over neval estimated samples of size n.
Likewise, the noise samples are re-sampled anew for each evaluation sample. The
overall process with training and evaluation is repeated nbrun times to reduce
stochastic effects relative to random initialization of neural network weights and
stochastic gradient descent.

4.3.2 Non-parametric (Structure) Optimization

The number of directed acyclic graphs Ĝ over d nodes is super-exponential in
d , making the non-parametric optimization of the CGNN structure an intractable
computational and statistical problem. Taking inspiration from Tsamardinos et al.
(2006); Nandy et al. (2015), we start from a graph skeleton recovered by other
methods such as feature selection (Yamada et al. 2014). We focus on optimizing
the edge orientations. Letting L denote the number of edges in the graph, it defines
a combinatorial optimization problem of complexity O(2L) (note however that not
all orientations are admissible since the eventual oriented graph must be a DAG).

The motivation for this approach is to decouple the edge selection task and the
causal modeling (edge orientation) tasks, and enable their independent assessment.

Any Xi − Xj edge in the graph skeleton stands for a direct dependency between
variables Xi and Xj . Given Causal Markov and Faithfulness assumptions, such
a direct dependency either reflects a direct causal relationship between the two
variables (Xi → Xj or Xi ← Xj ), or is due to the fact that Xi and Xj admit
a latent (unknown) common cause (Xi ↔ Xj ). Under the assumption of causal
sufficiency, the latter does not hold. Therefore the Xi − Xj link is associated with a
causal relationship in one or the other direction. The causal sufficiency assumption
will be relaxed in Sect. 6.

The edge orientation phase proceeds as follows:
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• Each Xi − Xj edge is first considered in isolation, and its orientation is
evaluated using CGNN. Both score S(C

Xi→Xj ,f̂
,Dij ) and S(C

Xj →Xi,f̂
,Dij )

are computed, where Dij = {[xi,l, xj,l ]}nl=1. The best orientation corresponding
to a minimum score is retained. After this step, an initial graph is built with
complexity 2L with L the number of edges in the skeleton graph.

• The initial graph is revised to remove all cycles. Starting from a set of random
nodes, all paths are followed iteratively until all nodes are reached; an edge
pointing toward an already visited node and forming a cycle is reversed. The
resulting DAG is used as initial DAG for the structured optimization, below.

• The optimization of the DAG structure is achieved using a hill-climbing algo-
rithm aimed to optimize the global score S(CĜ ,f̂

,D). Iteratively, (1) an edge
Xi − Xj is uniformly randomly selected in the current graph; (2) the graph
obtained by reversing this edge is considered (if it is still a DAG and has not been
considered before) and the associated global CGNN is retrained; (3) if this graph
obtains a lower global score than the former one, it becomes the current graph
and the process is iterated until reaching a (local) optimum. More sophisticated
combinatorial optimization approaches, e.g. Tabu search, will be considered in
further work. In this paper, hill-climbing is used for a proof of concept of the
proposed approach, achieving a decent trade-off between computational time and
accuracy.

At the end of the process each causal edge Xi → Xj in G is associated with a
score, measuring its contribution to the global score:

SXi→Xj = S(C
Ĝ−{Xi→Xj },f̂ ,D) − S(C

Ĝ ,f̂
,D) (10)

During the structure (non-parametric) optimization, the graph skeleton is fixed;
no edge is added or removed. The penalization term λ|Ĝ | entering in the score
evaluation (Eq. 7) can thus be neglected at this stage and only the MMD-losses
are used to compare two graphs. The penalization term will be used in Sect. 6 to
compare structures with different skeletons, as the potential confounding factors
will be dealt with by removing edges.

4.3.3 Identifiability of CGNN up to Markov Equivalence Classes

Assuming an infinite number of observational data, and assuming further that the
generative distribution belongs to the CGNN class CG ,f , then there exists a DAG
reaching an MMD score of 0 in the Markov equivalence class of G :

Proposition 4 Let X = [X1, . . . , Xd ] denote a set of continuous random variables
with joint distribution P , generated by a CGNN CG ,f = (G , f,E ) with G a directed
acyclic graph. Let D be an infinite observational sample generated from this CGNN.
We assume that P is Markov and faithful to the graph G , and that every pair of
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variables (Xi,Xj ) that are d-connected in the graph are not independent. We note
D̂ an infinite sample generated by a candidate CGNN, CĜ ,f̂

= (Ĝ , f̂ ,E ). Then,

(i) If Ĝ = G and f̂ = f , then M̂MDk(D, D̂) = 0.
(ii) For any graph Ĝ characterized by the same adjacencies but not belonging to

the Markov equivalence class of G , for all f̂ , M̂MDk(D, D̂) �= 0.

Proof In section “Proofs” in Appendix.

This result does not establish the CGNN identifiability within the Markov class
of equivalence, that is left for future work. As shown experimentally in Sect. 5.1,
there is a need to control the model capacity in order to recover the directed graph
in the Markov equivalence class.4

5 Experiments

This section reports on the empirical validation of CGNN compared to the state
of the art under the no confounding assumption. The experimental setting is
first discussed. Thereafter, the results obtained in the bivariate case, where only
asymmetries in the joint distribution can be used to infer the causal relationship, are
discussed. The variable triplet case, where conditional independence can be used
to uncover causal orientations, and the general case of d > 2 variables are finally
considered. All computational times are measured on Intel Xeon 2.7 Ghz (CPU) or
on Nvidia GTX 1080Ti graphics card (GPU).

5.1 Experimental Setting

The CGNN architecture is a 1-hidden layer network with ReLU activation function.
The multi-scale Gaussian kernel used in the MMD scores has bandwidth γ ranging
in {0.005, 0.05, 0.25, 0.5, 1, 5, 50}. The number nbrun used to average the score is
set to 32 for CGNN-MMD (respectively 64 for CGNN-Fourier). In this section the
distribution E of the noise variables is set to N (0, 1). The number nh of neurons
in the hidden layer, controlling the identifiability of the model, is the most sensitive
hyper-parameter of the presented approach. Preliminary experiments are conducted
to adjust its range, as follows. A 1500 sample dataset is generated from the linear
structural equation model with additive uniform noise Y = X + U (0, 0.5),X ∼
U([−2, 2]) (Fig. 5). Both CGNNs associated to X → Y and Y → X are trained

4In some specific cases, such as in the bivariate linear FCM with Gaussian noise and Gaussian
input, even by restricting the class of functions considered, the DAG cannot be identified from
purely observational data (Mooij et al. 2016).
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original data, X → Y nh = 2 nh = 5 nh = 20
C
G
N
N
s
X

→
Y

nh = 100
C
G
N
N
s
X

←
Y

Fig. 5 Leftmost: Data samples. Columns 2–5: Estimate samples generated from CGNN with
direction X → Y (top row) and Y → X (bottom row) for number of hidden neurons nh =
2, 5, 20, 100

(a) (b)

nh CX→Y CY→X Diff.

2 32 0 43 9 11 9
5 29 6 35 2 5 6
10 25 9 32 5 6 6
20 25 7 28 3 2 6
30 24 4 26 8 2 4
40 25 6 25 6 0 7
50 25 0 25 0 0 6
100 24 9 24 4 −0 5

Fig. 6 CGNN sensitivity w.r.t. the number of hidden neurons nh: scores associated to both causal
models (average and standard deviation over 32 runs). (a) CX→Y , CY→X with various nh values.
(b) Scores CX→Y and CY→X with their difference. 


 denotes the significance at the 0.001
threshold with the t-test

until reaching convergence (nepoch = 1000) using Adam (Kingma and Ba 2014)
with a learning rate of 0.01 and evaluated over neval = 500 generated samples. The
distributions generated from both generative models are displayed on Fig. 5 for nh =
2, 5, 20, 100. The associated scores (averaged on 32 runs) are displayed on Fig. 6a,
confirming that the model space must be restricted for the sake of identifiability (cf.
Sect. 4.3.3 above).

5.2 Learning Bivariate Causal Structures

As said, under the no-confounder assumption a dependency between variables X

and Y exists iff either X causes Y (Y = f (X,E)) or Y causes X (X = f (Y,E)).
The identification of a Bivariate Structural Causal Model is based on comparing the
model scores (Sect. 4.2) attached to both CGNNs.
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5.2.1 Benchmarks

Five datasets with continuous variables are considered5:

• CE-Cha: 300 continuous variable pairs from the cause effect pair challenge
(Guyon 2013), restricted to pairs with label +1 (X → Y ) and −1 (Y → X).

• CE-Net: 300 artificial pairs generated with a neural network initialized with
random weights and random distribution for the cause (exponential, gamma,
lognormal, laplace. . . ).

• CE-Gauss: 300 artificial pairs without confounder sampled with the generator
of Mooij et al. (2016): Y = fY (X,EY ) and X = fX(EX) with EX ∼ pEX and
EY ∼ pEY . pEX and pEY are randomly generated Gaussian mixture distributions.
Causal mechanism fX and fY are randomly generated Gaussian processes.

• CE-Multi: 300 artificial pairs generated with linear and polynomial mechanisms.
The effect variables are built with post additive noise setting (Y = f (X) + E),
post multiplicative noise (Y = f (X) × E), pre-additive noise (Y = f (X + E))
or pre-multiplicative noise (Y = f (X × E)).

• CE-Tueb: 99 real-world cause-effect pairs from the Tuebingen cause-effect pairs
dataset, version August 2016 (Mooij et al. 2016). This version of this dataset is
taken from 37 different data sets coming from various domain: climate, census,
medicine data.

For all variable pairs, the size n of the data sample is set to 1500 for the sake of
an acceptable overall computational load.

5.2.2 Baseline Approaches

CGNN is assessed comparatively to the following algorithms6: (1) ANM (Mooij
et al. 2016) with Gaussian process regression and HSIC independence test of the
residual; (2) a pairwise version of LiNGAM (Shimizu et al. 2006) relying on Inde-
pendent Component Analysis to identify the linear relations between variables; (3)
IGCI (Daniusis et al. 2012) with entropy estimator and Gaussian reference measure;
(4) the post-nonlinear model (PNL) with HSIC test (Zhang and Hyvärinen 2009); (5)
GPI-MML (Stegle et al. 2010); where the Gaussian process regression with higher
marginal likelihood is selected as causal direction; (6) CDS, retaining the causal
orientation with lowest variance of the conditional probability distribution; (7) Jarfo
(Fonollosa 2016), using a random forest causal classifier trained from the ChaLearn
Cause-effect pairs on top of 150 features including ANM, IGCI, CDS, LiNGAM,
regressions, HSIC tests.

5The first four datasets are available at http://dx.doi.org/10.7910/DVN/3757KX. The Tuebingen
cause-effect pairs dataset is available at https://webdav.tuebingen.mpg.de/cause-effect/.
6Using the R program available at https://github.com/ssamot/causality for ANM, IGCI, PNL, GPI
and LiNGAM.

http://dx.doi.org/10.7910/DVN/3757KX
https://webdav.tuebingen.mpg.de/cause-effect/
https://github.com/ssamot/causality
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5.2.3 Hyper-Parameter Selection

For a fair comparison, a leave-one-dataset-out procedure is used to select the key
best hyper-parameter for each algorithm. To avoid computational explosion, a single
hyper-parameter per algorithm is adjusted in this way; other hyper-parameters are
set to their default value. For CGNN, nh ranges over {5, . . . , 100}. The leave-one-
dataset-out procedure sets this hyper-parameter nh to values between 20 and 40
for the different datasets. For ANM and the bivariate fit, the kernel parameter for
the Gaussian process regression ranges over {0.01, . . . , 10}. For PNL, the threshold
parameter alpha for the HSIC independence test ranges over {0.0005, . . . , 0.5}. For
CDS, the ff actor involved in the discretization step ranges over [[1, 10]]. For GPI-
MML, its many parameters are set to their default value as none of them appears to
be more critical than others. Jarfo is trained from 4000 variable pairs datasets with
same generator used for CE-Cha-train, CE-Net-train, CE-Gauss-train and CE-
Multi-train; the causal classifier is trained on all datasets except the test set.

5.2.4 Empirical Results

Figure 7 reports the area under the precision/recall curve for each benchmark and
all algorithms.

Methods based on simple regression like the bivariate fit and Lingam are
outperformed as they underfit the data generative process. CDS and IGCI obtain
very good results on few datasets. Typically, IGCI takes advantage of some
specific features of the dataset, (e.g. the cause entropy being lower than the effect
entropy in CE-Multi), but remains at chance level otherwise. ANM-HSIC yields
good results when the additive assumption holds (e.g. on CE-Gauss), but fails
otherwise. PNL, less restrictive than ANM, yields overall good results compared
to the former methods. Jarfo, a voting procedure, can in principle yield the best
of the above methods and does obtain good results on artificial data. However, it
does not perform well on the real dataset CE-Tueb; this counter-performance is
blamed on the differences between all five benchmark distributions and the lack of
generalization/transfer learning.

Cha Net Gauss Multi Tueb

1.0

0.8

0.6

0.4

0.2

0.0

A
U
PR

Best fit
LiNGAM
CDS
IGCI
ANM-HSIC
PNL
Jarfo
GPI

CGNN MMD
m
k

CGNN MMDk

Fig. 7 Bivariate causal modelling: area under the precision/recall curve for the five datasets. A
full table of the scores is given on Table 3 in section “Table of Scores for the Experiments on
Cause-Effect Pairs” in Appendix
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Lastly, generative methods GPI and CGNN (M̂MDk) perform well on most
datasets, including the real-world cause-effect pairs CE-Tüb, in counterpart for a
higher computational cost (resp. 32 min on CPU for GPI and 24 min on GPU for

CGNN). Using the linear MMD approximation Lopez-Paz (2016), CGNN (M̂MD
m

k

as explained in section “The Maximum Mean Discrepancy (MMD) Statistic” in
Appendix reduces the cost by a factor of 5 without hindering the performance.

Overall, CGNN demonstrates competitive performance on the cause-effect
inference problem, where it is necessary to discover distributional asymmetries.

5.3 Identifying v-structures

A second series of experiments is conducted to investigate the method performances
on variable triplets, where multivariate effects and conditional variable indepen-
dence must be taken into account to identify the Markov equivalence class of a DAG.
The considered setting is that of variable triplets (A,B,C) in the linear Gaussian
case, where asymmetries between cause and effect cannot be exploited (Shimizu
et al. 2006) and conditional independence tests are required. In particular strict
pairwise methods can hardly be used due to un-identifiability (as each pair involves
a linear mechanism with Gaussian input and additive Gaussian noise) (Hoyer et al.
2009).

With no loss of generality, the graph skeleton involving variables (A,B,C) is
A−B−C. All three causal models (up to variable renaming) based on this skeleton
are used to generate 500-sample datasets, where the random noise variables are
independent centered Gaussian variables.

Given skeleton A−B−C, each dataset is used to model the possible four CGNN
structures (Fig. 8, with generative SEMs):

• Chain structures ABC (A = f1(E1), B = f2(A,E2) , C = f3(B,E3) and CBA

(C = f1(E1), B = f2(C,E2) , A = f3(B,E3))
• V structure: A = f1(E1), C = f2(E2) , B = f3(A,C,E3)

• reversed V structure: B = f1(E1), A = f2(B,E2) , C = f3(B,E3)

A B C

(a)

⎧
⎪⎨

⎪⎩

A= EA

B= A+EB

C = B+EC

A B C

(b)

⎧
⎪⎨

⎪⎩

B= EB

A= B+EA

C = B+EC

A B C

(c)

⎧
⎪⎨

⎪⎩

A= EA

C = EC
B= A+C+EB

Fig. 8 Datasets generated from the three DAG configurations with skeleton A−B −C. (a) Chain
structure. (b) Reversed v-structure. (c) V-structure
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Table 1 CGNN-MMD
scores for all models on all
datasets

Non v-structures v-structure

Score Chain str. Reversed v-str. v-structure

CABC 0.122 (0.009) 0.124 (0.007) 0.172 (0.005)

CCBA 0.121 (0.006) 0.127 (0.008) 0.171 (0.004)

CreversedV 0.122 (0.007) 0.125 (0.006) 0.172 (0.004)

CV structure 0.202 (0.004) 0.180 (0.005) 0.127 (0.005)

Smaller scores indicate a better match. CGNN correctly identifies
v-structure vs. other structures. Bold value corresponds to best
match for v-structure

Let CABC , CCBA, Cv−structure and CreversedV denote the scores of the CGNN
models respectively attached to these structures. The scores computed on all three
datasets are displayed in Table 1 (average over 64 runs; the standard deviation is
indicated in parenthesis).

CGNN scores support a clear and significant discrimination between the V-
structure and all other structures (noting that the other structures are Markov
equivalent and thus can hardly be distinguished).

This second series of experiments thus shows that CGNN can effectively detect,
and take advantage of, conditional independence between variables.

5.4 Multivariate Causal Modeling Under Causal Sufficiency
Assumption

Let X = [X1, . . . , Xd ] be a set of continuous variables, satisfying the Causal
Markov, faithfulness and causal sufficiency assumptions. To that end, all experi-
ments provide all algorithms the true graph skeleton, so their ability to orient edges
is compared in a fair way. This allows us to separate the task of orienting the graph
from that of uncovering the skeleton.

5.4.1 Results on Artificial Graphs with Additive and Multiplicative Noises

We draw 500 samples from 20 training artificial causal graphs and 20 test artificial
causal graphs on 20 variables. Each variable has a number of parents uniformly
drawn in [[0, 5]]; fis are randomly generated polynomials involving additive/multi-
plicative noise.7

We compare CGNN to the PC algorithm (Spirtes et al. 1993), the score-based
methods GES (Chickering 2002), LiNGAM (Shimizu et al. 2006), causal additive

7The data generator is available at https://github.com/GoudetOlivie/CGNN. The datasets consid-
ered are available at http://dx.doi.org/10.7910/DVN/UZMB69.

https://github.com/GoudetOlivie/CGNN
http://dx.doi.org/10.7910/DVN/UZMB69
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Fig. 9 Average (std. dev.) AUPR results for the orientation of 20 artificial graphs given true
skeleton (left) and artificial graphs given skeleton with 20% error (right). A full table of the scores,
including the metrics Structural Hamming Distance (SHD) and Structural Intervention (SID)
(Peters and Bühlmann 2013) is shown on Table 4 in section “Table of Scores for the Experiments
on Graphs” in Appendix

model (CAM) (Bühlmann et al. 2014) and with the pairwise methods ANM
and Jarfo. For PC, we employ the better-performing, order-independent version
of the PC algorithm proposed by Colombo and Maathuis (2014). PC needs the
specification of a conditional independence test. We compare PC-Gaussian, which
employs a Gaussian conditional independence test on Fisher z-transformations, and
PC-HSIC, which uses the HSIC conditional independence test with the Gamma
approximation (Gretton et al. 2005). PC and GES are implemented in the pcalg
package (Kalisch et al. 2012).

All hyperparameters are set on the training graphs in order to maximize the
Area Under the Precision/Recall score (AUPR). For the Gaussian conditional
independence test and the HSIC conditional independence test, the significance level
achieving best result on the training set are respectively 0.1 and 0.05 . For GES, the
penalization parameter is set to 3 on the training set. For CGNN, nh is set to 20 on
the training set. For CAM, the cutoff value is set to 0.001.

Figure 9 (left) displays the performance of all algorithms obtained by starting
from the exact skeleton on the test set of artificial graphs and measured from the
AUPR (Area Under the Precision/Recall curve), the Structural Hamming Distance
(SHD, the number of edge modifications to transform one graph into another) and
the Structural Intervention Distance (SID, the number of equivalent two-variable
interventions between two graphs) (Peters and Bühlmann 2013).

CGNN obtains significant better results with SHD and SID compared to the
other algorithms when the task is to discover the causal from the true skeleton.
One resulting graph is shown on Fig. 10. There are three mistakes on this graph (red
edges) (in lines with an SHD on average of 2.5).

Constraints based method PC with powerful HSIC conditional independence test
is the second best performing method. It highlights the fact that when the skeleton
is known, exploiting the structure of the graph leads to good results compared to
pairwise methods using only local information. Notably, as seen on Fig. 10, this
type of DAG has a lot of v-structures, as many nodes have more than one parent in
the graph, but this is not always the case as shown in the next subsection.
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Fig. 10 Orientation by
CGNN of artificial graph with
20 nodes. Green edges are
good orientation and red
arrows false orientation.
Three edges are red and 42
are green. The strength of the
line refers to the confidence
of the algorithm

Overall CGNN and PC-HSIC are the most computationally expensive methods,
taking an average of 4 h on GPU and 15 h on CPU, respectively.

The robustness of the approach is validated by randomly perturbing 20% edges
in the graph skeletons provided to all algorithms (introducing about 10 false edges
over 50 in each skeleton). As shown on Table 4 (right) in Appendix, and as
could be expected, the scores of all algorithms are lower when spurious edges
are introduced. Among the least robust methods are constraint-based methods; a
tentative explanation is that they heavily rely on the graph structure to orient edges.
By comparison pairwise methods are more robust because each edge is oriented
separately. As CGNN leverages conditional independence but also distributional
asymmetry like pairwise methods, it obtains overall more robust results when there
are errors in the skeleton compared to PC-HSIC. However one can notice that a
better SHD score is obtained by CAM, on the skeleton with 20% error. This is due
to the exclusive last edge pruning step of CAM, which removes spurious links in the
skeleton.

CGNN obtains overall good results on these artificial datasets. It offers the
advantage to deliver a full generative model useful for simulation (while e.g., Jarfo
and PC-HSIC only give the causality graph). To explore the scalability of the
approach, five artificial graphs with 100 variables have been considered, achieving
an AUPRC of 85.5 ± 4, in 30 h of computation on four NVIDIA 1080Ti GPUs.

5.4.2 Result on Biological Data

We now evaluate CGNN on biological networks. First we apply it on simulated gene
expression data and then on real protein network.

Syntren Artificial Simulator

First we apply CGNN on SynTREN (Van den Bulcke et al. 2006) from sub-networks
of E. coli (Shen-Orr et al. 2002). SynTREN creates synthetic transcriptional
regulatory networks and produces simulated gene expression data that approximates
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Fig. 11 Average (std. dev.) AUPR results for the orientation of 20 artificial graphs generated with
the SynTReN simulator with 20 nodes (left), 50 nodes (middle), and real protein network given
true skeleton (right). A full table of the scores, including the metrics Structural Hamming Distance
(SHD) and Structural Intervention (SID) (Peters and Bühlmann 2013) is included in section “Table
of Scores for the Experiments on Graphs” in Appendix

experimental data. Interaction kinetics are modeled by complex mechanisms based
on Michaelis-Menten and Hill kinetics (Mendes et al. 2003).

With Syntren, we simulate 20 subnetworks of 20 nodes and 5 subnetworks with
50 nodes. For the sake of reproducibility, we use the random seeds of 0, 1 . . . 19 and
0, 1 . . . 4 for each graph generation with respectively 20 nodes and 50 nodes. The
default Syntren parameters are used: a probability of 0.3 for complex 2-regulator
interactions and a value of 0.1 for Biological noise, experimental noise and Noise
on correlated inputs. For each graph, Syntren give us expression datasets with 500
samples.

Figure 11 (left and middle) and Table 5 in section “Table of Scores for the
Experiments on Graphs” in Appendix display the performance of all algorithms
obtained by starting from the exact skeleton of the causal graph with same hyper-
parameters as in the previous subsection. As a note, we canceled the PC-HSIC
algorithm after 50 h of running time.

Constraint based methods obtain low score on this type of graph dataset. It may
be explained by the type of structure involved. Indeed as seen of Fig. 12, there are
very few v-structures in this type of network, making impossible the orientation
of an important number of edges by using only conditional independence tests.
Overall the methods CAM and CGNN that take into account of both distributional
asymmetry and multivariate interactions, get the best scores. CGNN obtain the best
results in AUPR, SHD and SID for graph with 20 nodes and 50 nodes, showing that
this method can be used to infer networks having complex distribution, complex
causal mechanisms and interactions. The Fig. 12 shows the resulting graph obtain
with CGNN. Edges with good orientation are displayed in green and edge with false
orientation in red.

5.4.3 Results on Biological Real-World Data

CGNN is applied to the protein network problem Sachs et al. (2005), using the Anti-
CD3/CD28 dataset with 853 observational data points corresponding to general
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Fig. 12 Orientation by CGNN of E. coli subnetwork with 50 nodes and corresponding to Syntren
simulation with random seed 0. Green edges are good orientation and red arrows false orientation.
The strength of the line refers to the confidence of the algorithm

perturbations without specific interventions. All algorithms were given the skeleton
of the causal graph (Sachs et al. 2005, Fig. 2) with same hyper-parameters as in the
previous subsection. We run each algorithm on 10-fold cross-validation. Table 6 in
Appendix reports average (std. dev.) results.

Constraint-based algorithms obtain surprisingly low scores, because they cannot
identify many v-structures in this graph. We confirm this by evaluating conditional
independence tests for the adjacent tuples of nodes pip3-akt-pka, pka-pmek-pkc,
pka-raf -pkc and we do not find strong evidences for v-structure. Therefore methods
based on distributional asymmetry between cause and effect seem better suited
to this dataset. CGNN obtains good results compared to the other algorithms.
Notably, Fig. 13 shows that CGNN is able to recover the strong signal transduction
pathway raf→mek→erk reported in Sachs et al. (2005) and corresponding to clear
direct enzyme-substrate causal effect. CGNN gives important scores for edges with
good orientation (green line), and low scores (thinnest edges) to the wrong edges
(red line), suggesting that false causal discoveries may be controlled by using the
confidence scores defined in Eq. (10).

6 Towards Predicting Confounding Effects

In this subsection we propose an extension of our algorithm relaxing the causal
sufficiency assumption. We are still assuming the Causal Markov and faithfulness
assumptions, thus three options have to be considered for each edge (Xi,Xj ) of the
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Fig. 13 Causal protein network. (a) Ground truth. (b) GES. (c) CAM. (d) CGNN

skeleton representing a direct dependency: Xi → Xj , Xj → Xi and Xi ↔ Xj

(both variables are consequences of common hidden variables).

6.1 Principle

Hidden common causes are modeled through correlated random noise. Formally,
an additional noise variable Ei,j is associated to each Xi − Xj edge in the graph
skeleton.

We use such new models with correlated noise to study the robustness of our
graph reconstruction algorithm to increasing violations of causal sufficiency, by
occluding variables from our datasets. For example, consider the FCM on X =
[X1, . . . , X5] that was presented on Fig. 1. If variable X1 would be missing from
data, the correlated noise E2,3 would be responsible for the existence of a double
headed arrow connection X2 ↔ X3 in the skeleton of our new type of model.
The resulting FCM is shown in Fig. 14. Notice that direct causal effects such as
X3 → X5 or X4 → X5 may persist, even in presence of possible confounding
effects.
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Fig. 14 The Functional Causal Model (FCM) on X = [X1, . . . , X5] with the missing variable X1

Formally, given a graph skeleton S , the FCM with correlated noise variables is
defined as:

Xi ← fi(XPa(i;G ), Ei, ENe(i;S )), (11)

where Ne(i;S ) is the set of indices of all the variables adjacent to variable Xi in
the skeleton S .

One can notice that this model corresponds to the most general formulation of
the FCM with potential confounders for each pair of variables in a given skeleton
(representing direct dependencies) where each random variable Ei,j summarizes all
the unknown influences of (possibly multiple) hidden variables influencing the two
variables Xi and Xj .

Here we make a clear distinction between the directed acyclic graph denoted G
and the skeleton S . Indeed, due to the presence of confounding correlated noise,
any variable in G can be removed without altering S . We use the same generative
neural network to model the new FCM presented in Eq. (11). The difference is the
new noise variables having effect on pairs of variables simultaneously. However,
since the correlated noise FCM is still defined over a directed acyclic graph G , the
functions f̂1, . . . , f̂d of the model, which we implement as neural networks, the
model can still be learned end-to-end using backpropagation based on the CGNN
loss.

All edges are evaluated with these correlated noises, the goal being to see whether
introducing a correlated noise explains the dependence between the two variables
Xi and Xj .

As mentioned before, the score used by CGNN is:

S(C
Ĝ ,f̂

,D) = M̂MDk(D, D̂) + λ|Ĝ | (12)

where |Ĝ | is the total number of edges in the DAG. In the graph search, for
any given edge, we compare the score associated to the graph considered with and
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without this edge. If the contribution of this edge is negligible compared to a given
threshold lambda, the edge is considered as spurious.

The non-parametric optimization of the Ĝ structure is also achieved using a Hill-
Climbing algorithm; in each step an edge of S is randomly drawn and modified
in Ĝ using one out of the possible three operators: reverse the edge, add an edge
and remove an edge. Other algorithmic details are as in Sect. 4.3.2: the greedy
search optimizes the penalized loss function (Eq. 12). For CGNN, we set the
hyperparameter λ = 5 × 10−5 fitted on the training graph dataset.

The algorithm stops when no improvement is obtained. Each causal edge Xi →
Xj in G is associated with a score, measuring its contribution to the global score:

SXi→Xj = S(C
Ĝ−{Xi→Xj },f̂ ,D) − S(C

Ĝ ,f̂
,D) (13)

Missing edges are associated with a score 0.

6.2 Experimental Validation

6.2.1 Benchmarks

The empirical validation of this extension of CGNN is conducted on same bench-
marks as in Sect. 5.4 (Gi , i ∈ [[2, 5]]), where three variables (causes for at least
two other variables in the graph) have been randomly removed.8 The true graph
skeleton is augmented with edges X − Y for all X, Y that are consequences of a
same removed cause. All algorithms are provided with the same graph skeleton for
a fair comparison. The task is to both orient the edges in the skeleton, and remove
the spurious direct dependencies created by latent causal variables.

6.2.2 Baselines

CGNN is compared with state of art methods: (1) constraint-based RFCI (Colombo
et al. 2012), extending the PC method equipped with Gaussian conditional indepen-
dence test (RFCI-Gaussian) and the gamma HSIC conditional independence test
(Gretton et al. 2005) (RFCI-HSIC). We use the order-independent constraint-based
version proposed by Colombo and Maathuis (2014) and the majority rules for the
orientation of the edges. For CGNN, we set the hyperparameter λ = 5 × 10−5 fitted
on the training graph dataset. Jarfo is trained on the 16,200 pairs of the cause-effect
pair challenge (Guyon 2013, 2014) to detect for each pair of variable if Xi → Yi ,
Yi → Xi or Xi ↔ Yi .

8The datasets considered are available at http://dx.doi.org/10.7910/DVN/UZMB69.

http://dx.doi.org/10.7910/DVN/UZMB69
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Table 2 AUPR, SHD and
SID on causal discovery with
confounders

Method AUPR SHD SID

RFCI-Gaussian 0.22 (0.08) 21.9 (7.5) 174.9 (58.2)

RFCI-HSIC 0.41 (0.09) 17.1 (6.2) 124.6 (52.3)

Jarfo 0.54 (0.21) 20.1 (14.8) 98.2 (49.6)

CGNN (M̂MDk) 0.71a (0.13) 11.7a (5.5) 53.55a (48.1)

aDenotes significance at p = 10−2

6.2.3 Results

Comparative performances are shown in Table 2, reporting the area under the
precision/recall curve. Overall, these results confirm the robustness of the CGNN
proposed approach w.r.t. confounders, and its competitiveness w.r.t. RFCI with
powerful conditional independence test (RFCI-HSIC). Interestingly, the effective
causal relations between the visible variables are associated with a high score;
spurious links due to hidden latent variables get a low score or are removed.

7 Discussion and Perspectives

This paper introduces CGNN, a new framework and methodology for functional
causal model learning, leveraging the power and non-parametric flexibility of
Generative Neural Networks.

CGNN seamlessly accommodates causal modeling in presence of confounders,
and its extensive empirical validation demonstrates its merits compared to the state
of the art on medium-size problems. We believe that our approach opens new
avenues of research, both from the point of view of leveraging the power of deep
learning in causal discovery and from the point of view of building deep networks
with better structure interpretability. Once the model is learned, the CGNNs present
the advantage to be fully parametrized and may be used to simulate interventions on
one or more variables of the model and evaluate their impact on a set of target
variables. This usage is relevant in a wide variety of domains, typically among
medical and sociological domains.

The main limitation of CGNN is its computational cost, due to the quadratic
complexity of the CGNN learning criterion w.r.t. the data size, based on the
Maximum Mean Discrepancy between the generated and the observed data. A linear
approximation thereof has been proposed, with comparable empirical performances.

The main perspective for further research aims at a better scalability of the
approach from medium to large problems. On the one hand, the computational
scalability could be tackled by using embedded framework for the structure
optimization (inspired by lasso methods). Another perspective regards the extension
of the approach to categorical variables.
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Appendix

The Maximum Mean Discrepancy (MMD) Statistic

The Maximum Mean Discrepancy (MMD) statistic (Gretton et al. 2007) measures
the distance between two probability distributions P and P̂ , defined over Rd , as the
real-valued quantity

MMDk(P, P̂ ) =
∥∥∥μk(P ) − μk(P̂ )

∥∥∥
Hk

.

Here, μk = ∫
k(x, ·)dP(x) is the kernel mean embedding of the distribution

P , according to the real-valued symmetric kernel function k(x, x ′) =
〈k(x, ·), k(x ′, ·)〉Hk

with associated reproducing kernel Hilbert space Hk .
Therefore, μk summarizes P as the expected value of the features computed by
k over samples drawn from P .

In practical applications, we do not have access to the distributions P and P̂ ,
but to their respective sets of samples D and D̂ , defined in Sect. 4.2.1. In this case,
we approximate the kernel mean embedding μk(P ) by the empirical kernel mean
embedding μk(D) = 1

|D |
∑

x∈D k(x, ·), and respectively for P̂ . Then, the empirical
MMD statistic is

M̂MDk(D, D̂) =
∥∥∥μk(D) − μk(D̂)

∥∥∥
Hk

= 1

n2

n∑

i,j

k(xi, xj ) + 1

n2

n∑

i,j

k(x̂i , x̂j ) − 2

n2

n∑

i,j

k(xi, x̂j ).

Importantly, the empirical MMD tends to zero as n → ∞ if and only if P = P̂ ,
as long as k is a characteristic kernel (Gretton et al. 2007). This property makes the
MMD an excellent choice to model how close the observational distribution P is to
the estimated observational distribution P̂ . Throughout this paper, we will employ a
particular characteristic kernel: the Gaussian kernel k(x, x ′) = exp(−γ ‖x − x ′‖2

2),
where γ > 0 is a hyperparameter controlling the smoothness of the features.

In terms of computation, the evaluation of MMDk(D, D̂) takes O(n2) time,
which is prohibitive for large n. When using a shift-invariant kernel, such as the
Gaussian kernel, one can invoke Bochner’s theorem (Edwards 1964) to obtain a
linear-time approximation to the empirical MMD (Lopez-Paz et al. 2015), with form

M̂MD
m

k (D, D̂) =
∥∥∥μ̂k(D) − μ̂k(D̂)

∥∥∥
Rm

and O(mn) evaluation time. Here, the approximate empirical kernel mean embed-
ding has form
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μ̂k(D) =
√

2

m

1

|D |
∑

x∈D
[cos(〈w1, x〉 + b1), . . . , cos(〈wm, x〉 + bm)] ,

where wi is drawn from the normalized Fourier transform of k, and bi ∼ U [0, 2π],
for i = 1, . . . ,m. In our experiments, we compare the performance and computation

times of both M̂MDk and M̂MD
m

k .

Proofs

Proposition 1 Let X = [X1, . . . , Xd ] denote a set of continuous random variables
with joint distribution P , and further assume that the joint density function h of P

is continuous and strictly positive on a compact and convex subset of Rd , and zero
elsewhere. Letting G be a DAG such that P can be factorized along G ,

P(X) =
∏

i

P (Xi |XPa(i;G ))

there exists f = (f1, . . . , fd) with fi a continuous function with compact support
in R

|Pa(i;G )| × [0, 1] such that P(X) equals the generative model defined from FCM
(G , f,E ), with E = U [0, 1] the uniform distribution on [0, 1].
Proof By induction on the topological order of G . Let Xi be such that |Pa(i;G )| =
0 and consider the cumulative distribution Fi(xi) defined over the domain of Xi

(Fi(xi) = Pr(Xi < xi)). Fi is strictly monotonous as the joint density function is
strictly positive therefore its inverse, the quantile function Qi : [0, 1] �→ dom(Xi)

is defined and continuous. By construction, Qi(ei) = F−1
i (ei ) and setting Qi = fi

yields the result.
Assume fi be defined for all variables Xi with topological order less than m. Let

Xj with topological order m and Z the vector of its parent variables. For any noise
vector e = (ei, i ∈ Pa(j ;G )) let z = (xi, i ∈ Pa(j ;G )) be the value vector of
variables in Z defined from e. The conditional cumulative distribution Fj (xj |Z =
z) = Pr(Xj < xj |Z = z) is strictly continuous and monotonous wrt xj , and can
be inverted using the same argument as above. Then we can define fj (z, ej ) =
F−1

j (z, ej ).
Let Kj = dom(Xj) and KPa(j ;G ) = dom(Z). We will show now that the

function fj is continuous on KPa(j ;G )×[0, 1], a compact subset ofR|Pa(j ;G )|×[0, 1].
By assumption, there exist aj ∈ R such that, for (xj , z) ∈ Kj × KPa(j ;G ),

F(xj |z) = ∫ xj

aj

hj (u,z)

hj (z)
du, with hj a continuous and strictly positive density function.

For (a, b) ∈ Kj × KPa(j ;G ), as the function (u, z) → hj (u,z)

hj (z)
is continuous on the

compact Kj × KPa(j ;G ), lim
xj →a

F (xj |z) = ∫ a

aj

hj (u,z)

hj (z)
du uniformly on KPa(j ;G ) and
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lim
z→b

F (xj |z) = ∫ xj

aj

hj (u,b)

hj (b)
on Kj , according to exchanging limits theorem, F is

continuous on (a, b).
For any sequence zn → z, we have that F(xj |zn) → F(xj |z) uniformly in

xj . Let define two sequences un and xj,n, respectively on [0, 1] and Kj , such that
un → u and xj,n → xj . As F(xj |z) = u has unique root xj = fj (z, u), the root
of F(xj |zn) = un, that is, xj,n = fj (zn, un) converge to xj . Then the function
(z, u) → fj (z, u) is continuous on KPa(i;G ) × [0, 1].
Proposition 2 For m ∈ [[1, d]], let Zm denote the set of variables with topological
order less than m and let dm be its size. For any dm-dimensional vector of noise
values e(m), let zm(e(m)) (resp. ẑm(e(m))) be the vector of values computed in
topological order from the FCM (G , f,E ) (resp. the CGNN (G , f̂ ,E )). For any
ε > 0, there exists a set of networks f̂ with architecture G such that

∀e(m), ‖zm(e(m)) − ẑm(e(m))‖ < ε (14)

Proof By induction on the topological order of G . Let Xi be such that |Pa(i;G )| =
0. Following the universal approximation theorem Cybenko (1989), as fi is a
continuous function over a compact of R, there exists a neural net f̂i such that
‖fi − f̂i‖∞ < ε/d1. Thus Eq. (14) holds for the set of networks f̂i for i ranging
over variables with topological order 0.

Let us assume that Proposition 2 holds up to m, and let us assume for brevity that
there exists a single variable Xj with topological order m + 1. Letting f̂j be such
that ‖fj − f̂j‖∞ < ε/3 (based on the universal approximation property), letting δ

be such that for all u ‖f̂j (u)− f̂j (u+δ)‖ < ε/3 (by absolute continuity) and letting
f̂i satisfying Eq. (14) for i with topological order less than m for min(ε/3, δ)/dm,
it comes: ‖(zm, fj (zm, ej )) − (ẑm, f̂j (ẑm, ej ))‖ ≤ ‖zm − ẑm‖ + |fj (zm, ej ) −
f̂j (zm, ej )| + |f̂j (zm, ej ) − f̂j (ẑm, ej )| < ε/3 + ε/3 + ε/3, which ends the proof.

Proposition 3 Let D be an infinite observational sample generated from (G , f,E ).
With same notations as in Proposition 2, for every sequence εt such that εt > 0 goes
to zero when t → ∞, there exists a set f̂t = (f̂ t

1 . . . f̂ t
d ) such that M̂MDk between

D and an infinite size sample D̂t generated from the CGNN (G , f̂t ,E ) is less than
εt .

Proof According to Proposition 2 and with same notations, letting εt > 0 go to 0 as
t goes to infinity, consider f̂t = (f̂ t

1 . . . f̂ t
d ) and ẑt defined from f̂t such that for all

e ∈ [0, 1]d , ‖z(e) − ẑt (e)‖ < εt .
Let {D̂t } denote the infinite sample generated after f̂t . The score of the

CGNN (G , f̂t ,E ) is M̂MDk(D, D̂t ) = Ee,e′ [k(z(e), z(e′)) − 2k(z(e), ẑt (e
′)) +

k(̂zt (e), ẑt (e
′))].

As f̂t converges towards f on the compact [0, 1]d , using the bounded conver-
gence theorem on a compact subset of Rd , ẑt (e) → z(e) uniformly for t → ∞,
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it follows from the Gaussian kernel function being bounded and continuous that
M̂MDk(D, D̂t ) → 0, when t → ∞.

Proposition 4 Let X = [X1, . . . , Xd ] denote a set of continuous random variables
with joint distribution P , generated by a CGNN CG ,f = (G , f,E ) with G , a
directed acyclic graph. And let D be an infinite observational sample generated
from this CGNN. We assume that P is Markov and faithful to the graph G , and
that every pair of variables (Xi,Xj ) that are d-connected in the graph are not
independent. We note D̂ an infinite sample generated by a candidate CGNN,
CĜ ,f̂

= (Ĝ , f̂ ,E ). Then,

(i) If Ĝ = G and f̂ = f , then M̂MDk(D, D̂) = 0.
(ii) For any graph Ĝ characterized by the same adjacencies but not belonging to

the Markov equivalence class of G , for all f̂ , M̂MDk(D, D̂) �= 0.

Proof The proof of (i) is obvious, as with Ĝ = G and f̂ = f , the joint distribution
P̂ generated by CĜ ,f̂

= (Ĝ , f̂ ,E ) is equal to P , thus we have M̂MDk(D, D̂) = 0.

(ii) Let consider Ĝ a DAG characterized by the same adjacencies but that do not
belong to the Markov equivalence class of G . According to Verma and Pearl (1991),
as the DAG G and Ĝ have the same adjacencies but are not Markov equivalent, there
are not characterized by the same v-structures.

a) First, we consider that a v-structure {X,Y,Z} exists in G , but not in Ĝ . As the
distribution P is faithful to G and X and Z are not d-separated by Y in G , we
have that (X ⊥�⊥ Z|Y ) in P . Now we consider the graph Ĝ . Let f̂ be a set of
neural networks. We note P̂ the distribution generated by the CGNN CĜ ,f̂

. As

Ĝ is a directed acyclic graph and the variables Ei are mutually independent, P̂

is Markov with respect to Ĝ . As {X,Y,Z} is not a v-structure in Ĝ , X and Z

are d-separated by Y . By using the causal Markov assumption, we obtain that
(X ⊥⊥ Z|Y ) in P̂ .

b) Second, we consider that a v-structure {X,Y,Z} exists in Ĝ , but not in G . As
{X,Y,Z} is not a v-structure in G , there is an “unblocked path” between the
variables X and Z, the variables X and Z are d-connected. By assumption, there
do not exist a set D not containing Y such that (X⊥⊥Z|D) in P . In Ĝ , as {X,Y,Z}
is a v-structure, there exists a set D not containing Y that d-separates X and Z.
As for all CGNN CĜ ,f̂

generating a distribution P̂ , P̂ is Markov with respect to

Ĝ , we have that X ⊥⊥ Z|D in P̂ .

In the two cases a) and b) considered above, P and P̂ do not encode the same
conditional independence relations, thus are not equal. We have then M̂MDk(D,D ′)
�= 0.
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Table of Scores for the Experiments on Cause-Effect Pairs

See Table 3.

Table 3 Cause-effect relations: area under the precision recall curve on five benchmarks for the
cause-effect experiments (weighted accuracy in parenthesis for Tüb). Underline values correspond
to best scores

Method Cha Net Gauss Multi Tüb

Best fit 56.4 77.6 36.3 55.4 58.4 (44.9)

LiNGAM 54.3 43.7 66.5 59.3 39.7 (44.3)

CDS 55.4 89.5 84.3 37.2 59.8 (65.5)

IGCI 54.4 54.7 33.2 80.7 60.7 (62.6)

ANM 66.3 85.1 88.9 35.5 53.7 (59.5)

PNL 73.1 75.5 83.0 49.0 68.1 (66.2)

Jarfo 79.5 92.7 85.3 94.6 54.5 (59.5)

GPI 67.4 88.4 89.1 65.8 66.4 (62.6)

CGNN (M̂MDk) 73.6 89.6 82.9 96.6 79.8 (74.4)

CGNN (M̂MD
m

k ) 76.5 87.0 88.3 94.2 76.9 (72.7)

Table of Scores for the Experiments on Graphs

See Tables 4, 5 and 6.

Table 4 Average (std. dev.) results for the orientation of 20 artificial graphs given true skeleton
(left), artificial graphs given skeleton with 20% error (middle). Underline values correspond to best
scores

Skeleton without error Skeleton with 20% of error

AUPR SHD SID AUPR SHD SID

Constraints

PC-Gauss 0.67 (0.11) 9.0 (3.4) 131 (70) 0.42 (0.06) 21.8 (5.5) 191.3 (73)

PC-HSIC 0.80 (0.08) 6.7 (3.2) 80.1 (38) 0.49 (0.06) 19.8 (5.1) 165.1 (67)

Pairwise

ANM 0.67 (0.11) 7.5 (3.0) 135.4 (63) 0.52 (0.10) 19.2 (5.5) 171.6 (66)

Jarfo 0.74 (0.10) 8.1 (4.7) 147.1 (94) 0.58 (0.09) 20.0 (6.8) 184.8 (88)

Score-based

GES 0.48 (0.13) 14.1 (5.8) 186.4 (86) 0.37 (0.08) 20.9 (5.5) 209 (83)

LiNGAM 0.65 (0.10) 9.6 (3.8) 171 (86) 0.53 (0.10) 20.9 (6.8) 196 (83)

CAM 0.69 (0.13) 7.0 (4.3) 122 (76) 0.51 (0.11) 15.6 (5.7) 175 (80)

CGNN (M̂MD
m

k ) 0.77 (0.09) 7.1 (2.7) 141 (59) 0.54 (0.08) 20 (10) 179 (102)

CGNN (M̂MDk) 0.89a (0.09) 2.5a (2.0) 50.45a (45) 0.62 (0.12) 16.9 (4.5) 134.0a (55)

aDenotes statistical significance at p = 10−2
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Table 5 Average (std. dev.) results for the orientation of 20 and 50 artificial graphs coming from
Syntren simulator given true skeleton. Underline values correspond to best scores

Syntren network 20 nodes Syntren network 50 nodes

AUPR SHD SID AUPR SHD SID

Constraints

PC-Gauss 0.40 (0.16) 16.3 (3.1) 198 (57) 0.22 (0.03) 61.5 (32) 993 (546)

PC-HSIC 0.38 (0.15) 23 (1.7) 175 (16) – – –

Pairwise

ANM 0.36 (0.17) 10.1 (4.2) 138 (56) 0.35 (0.12) 29.8 (13.5) 677 (313)

Jarfo 0.42 (0.17) 10.5 (2.6) 148 (64) 0.45 (0.13) 26.2 (14) 610 (355)

Score-based

GES 0.44 (0.17) 9.8 (5.0) 116 (64) 0.52 (0.03) 21 (11) 462 (248)

LiNGAM 0.40 (0.22) 10.1 (4.4) 135 (57) 0.37 (0.28) 33.4 (19) 757 (433)

CAM 0.73 (0.08) 4.0 (2.5) 49 (24) 0.69 (0.05) 14.8 (7) 285 (136)

CGNN (M̂MD
m

k ) 0.80a (0.12) 3.2 (1.6) 45 (25) 0.82a (0.1) 10.2a (5.3) 247 (134)

CGNN (M̂MDk) 0.79 (0.12) 3.1a (2.2) 43 (26) 0.75 (0.09) 12.2 (5.5) 309 (140)

aDenotes statistical significance at p = 10−2

Table 6 Average (std. dev.) results for the orientation of the real protein network given true
skeleton. Underline values correspond to best scores

Causal protein network

AUPR SHD SID

Constraints

PC-Gauss 0.19 (0.07) 16.4 (1.3) 91.9 (12.3)

PC-HSIC 0.18 (0.01) 17.1 (1.1) 90.8 (2.6)

Pairwise

ANM 0.34 (0.05) 8.6 (1.3) 85.9 (10.1)

Jarfo 0.33 (0.02) 10.2 (0.8) 92.2 (5.2)

Score-based

GES 0.26 (0.01) 12.1 (0.3) 92.3 (5.4)

LiNGAM 0.29 (0.03) 10.5 (0.8) 83.1 (4.8)

CAM 0.37 (0.10) 8.5 (2.2) 78.1 (10.3)

CGNN (M̂MD
m

k ) 0.68 (0.07) 5.7 (1.7) 56.6 (10.0)

CGNN (M̂MDk) 0.74a (0.09) 4.3a (1.6) 46.6a (12.4)

aDenotes statistical significance at p = 10−2
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