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Abstract. In the situation where there are one sender and multiple
receivers, a receiver selective opening (RSO) attack for a public key
encryption (PKE) scheme considers adversaries that can corrupt some
of the receivers and get their secret keys and plaintexts. Security against
RSO attacks for a PKE scheme ensures confidentiality of ciphertexts
of uncorrupted receivers. Simulation-based RSO security against chosen
ciphertext attacks (SIM-RSO-CCA) is the strongest security notion in
all RSO attack scenarios. Jia, Lu, and Li (INDOCRYPT 2016) proposed
the first SIM-RSO-CCA secure PKE scheme. However, their scheme used
indistinguishability obfuscation, which is not known to be constructed
from any standard computational assumption. In this paper, we pro-
pose two constructions of SIM-RSO-CCA secure PKE from standard
computational assumptions. First, we propose a generic construction of
SIM-RSO-CCA secure PKE using an IND-CPA secure PKE scheme and
a non-interactive zero-knowledge proof system satisfying one-time simu-
lation soundness. Second, we propose an efficient concrete construction
of SIM-RSO-CCA secure PKE based on the decisional Diffie-Hellman
assumption.

1 Introduction

1.1 Background and Motivation

In the context of public key encryption (PKE), the generally accepted secu-
rity notions are IND-CPA and IND-CCA security [10,12]. However, Bellare,
Hofheinz, and Yilek [4] pointed out that IND-CPA and IND-CCA security might
not be strong enough when considering Selective Opening (SO) attacks in a
multi-user scenario. Intuitively, SO attacks consider the corruptions of some
fraction of users and the extortions of their secret information. Motivated by the
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above problem, they firstly introduced SO security for PKE. Even if an adversary
can mount SO attacks, SO security can guarantee confidentiality of ciphertexts
of uncorrupted users. In practice, considering secret communication among many
users, we should take account of information leakage from some users. Therefore,
SO security is an important security notion for PKE in practice. To date, two
settings have been considered for SO security: Sender Selective Opening (SSO)
security [4,5] and Receiver Selective Opening (RSO) security [3,15]. The main
focus in this paper is on RSO security. In the situation where one sender and
multiple receivers exist, RSO security guarantees confidentiality of uncorrupted
ciphertexts even if an adversary can corrupt some fraction of receivers and get
their plaintexts and secret keys. SO security is defined in both the chosen plain-
text attack (CPA) and the chosen ciphertext attack (CCA) settings. In order to
take active adversaries into account, we should consider CCA security for many
situations.

Furthermore, there are two types of definitions for SO security:
indistinguishability-based SO security and simulation-based SO security. The
definition of indistinguishability-based SO security usually has a restriction for
a plaintext distribution that an adversary can choose. More specifically, the def-
inition of indistinguishability-based SO security usually requires the plaintext
distribution to satisfy a notion called efficient resamplability [4]. Intuitively, effi-
cient resamplability requires a plaintext distribution to be such that even if
some plaintexts are fixed, the other plaintexts can be efficiently sampled. This
requirement is somewhat artificial and limits application scenarios since plaintext
distributions appearing in practice do not necessarily satisfy this requirement.

On the other hand, simulation-based SO security does not have such a restric-
tion on the plaintext distribution. This security requires that the output of
any adversary that is given the public keys, ciphertexts, and plaintexts and
secret information of corrupted users, can be simulated by a simulator which
only takes the corrupted plaintexts as its input. The secret information corre-
sponds to randomnesses (used in encryptions) of the senders in the SSO setting
and secret keys of the receivers in the RSO setting, respectively. Compared to
indistinguishability-based SO security, simulation-based SO security can guar-
antee security even if an adversary chooses an arbitrary plaintext distribution.
Since there is no restriction on the plaintext distributions, we can say that
simulation-based SO security is preferable to indistinguishability-based SO secu-
rity considering the utilization of PKE. Also, the previous works [3,15] showed
that simulation-based SO security is stronger than indistinguishability-based SO
security in the CPA setting. It seems that this implication also holds in the CCA
setting.

From the above arguments, we aim to achieve simulation-based RSO security
against chosen ciphertext attacks which we call SIM-RSO-CCA security for PKE.
So far, the only construction of SIM-RSO-CCA secure PKE is of Jia, Lu, and
Li [16], but their construction is based on a very strong cryptographic primitive,
indistinguishability obfuscation (iO) [2,11]. This primitive is not known to be
constructed from standard computational assumptions. Hence, in this paper, we
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tackle the following question: Is it possible to construct a SIM-RSO-CCA secure
PKE scheme from standard computational assumptions?

1.2 Our Contributions

Based on the above motivation, we give affirmative answers to the question.
More specifically, our technical results consist of the following three parts.

SIM-RSO-CCA Security Derived from RNC-CCA Security. As our first techni-
cal result, we introduce a new security notion that we call RNC-CCA secu-
rity for receiver non-committing encryption (RNCE) [6, Sect. 4], which is a
variant of PKE with a special non-committing property. Then, we show that
RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE. When consid-
ering SIM-RSO-CCA security for PKE, we must take into account informa-
tion of multiple users, a simulator, and an adversary. Thus, if we try to prove
SIM-RSO-CCA security directly from standard computational assumptions,
security proofs could become very complex. The merit of considering RNCE with
our new security notion is that the definition of RNC-CCA security involves only
a single user, a single adversary, and no simulator. Hence, we can potentially
avoid a complex security proof when proving RNC-CCA security from stan-
dard computational assumptions. We believe that this result gives us a guideline
for constructing a new SIM-RSO-CCA secure PKE scheme, and in fact, our
proposed SIM-RSO-CCA secure PKE schemes are obtained via this result, as
explained below.

A Generic Construction of RNC-CCA Secure RNCE. As our second technical
result, we show a generic construction of RNC-CCA secure RNCE using an
IND-CPA secure PKE scheme and a non-interactive zero-knowledge (NIZK)
proof system satisfying one-time simulation soundness. (In the following, we call
this primitive an OTSS-NIZK for simplicity.) This primitive is slightly stronger
than a normal NIZK proof system. However, the constructions of this primitive
based on various standard assumptions are known [13,14,19]. Therefore, our
second technical result shows that we can construct RNC-CCA secure RNCE
schemes from various standard assumptions through our generic construction.

An Efficient Concrete Construction of RNC-CCA Secure RNCE. Although our
generic construction of RNC-CCA secure RNCE can be instantiated based on
standard computational assumptions, we require an NIZK proof system as a
building block. In general, NIZK proof systems are not very efficient, and thus
the above construction does not necessarily lead to an efficient construction.
Thus, as our third technical result, we show an efficient concrete construction of
RNC-CCA secure RNCE based on the decisional Diffie-Hellman (DDH) assump-
tion. This scheme is a variant of the Cramer-Shoup encryption scheme [7], and
thus we do not need general NIZK proof systems. (We note that this efficient
concrete construction supports only a polynomial-sized plaintext space.)

In summary, combining our first and second technical results, we obtain
the first generic construction of SIM-RSO-CCA secure PKE from an IND-CPA
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secure PKE scheme and an OTSS-NIZK. This result enables us to construct
SIM-RSO-CCA secure PKE from various standard computational assumptions.
Moreover, combining our first and third technical results, we obtain the first effi-
cient concrete construction of SIM-RSO-CCA secure PKE (with a polynomial-
sized plaintext space) from the DDH assumption.

1.3 Technical Overview

As mentioned earlier, Jia et al. [16] proposed the first SIM-RSO-CCA secure PKE
scheme using iO. They pointed out that there exist common features between
an IND-CCA security proof and a SIM-RSO security proof. To date, there are
three major techniques for constructing IND-CCA secure PKE schemes: the
double encryption technique [26], the hash proof system (HPS) technique [8],
and the all-but-one (ABO) technique [24,25]. Sahai and Waters [27] pointed out
that the “punctured programming” paradigm is compatible with iO when con-
structing various cryptographic primitives, and they in particular constructed an
IND-CCA secure PKE scheme based on iO. Jia et al.’s SIM-RSO-CCA secure
PKE scheme is obtained from the Sahai-Waters PKE scheme. Since the ABO
technique has some similarity to the punctured programming paradigm, in ret-
rospect, Jia et al.’s PKE scheme can be viewed as constructed via the ABO
technique.

In contrast to their approach, we take two different paths of constructing
SIM-RSO-CCA secure PKE schemes, that is, the double encryption technique
and the HPS technique. Somewhat surprisingly, our SIM-RSO-CCA secure PKE
schemes only require underlying cryptographic primitives that were required to
construct IND-CCA secure PKE schemes. In particular, our constructions do
not need any other strong cryptographic primitives, such as iO, for achieving
SIM-RSO-CCA security.

In order to take the above approach, we adopt another strategy proposed by
Hazay, Patra, and Warinschi [15], who pointed out that RNCE [6, Sect. 4] is an
appropriate cryptographic primitive for achieving RSO security. Concretely, they
showed that CPA secure RNCE implies SIM-RSO-CPA secure PKE. Inspired by
their idea, we formalize a new security notion for RNCE which we call RNC-CCA
security, and show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure
PKE. Then, we propose a generic construction and an efficient concrete con-
struction of RNC-CCA secure RNCE based on the double encryption technique
and the HPS technique, respectively.

The Features of RNCE. Here, we explain the features of RNCE. Informally,
RNCE is special PKE having the following two algorithms, Fake and Open.1 Fake
is the fake encryption algorithm that takes a public key and a trapdoor informa-
tion (generated at the key generation) as input, and outputs a fake ciphertext
which has no information about a plaintext. Open is the opening algorithm that
takes a public key, a trapdoor information, the fake ciphertext, and a certain
1 In fact, our syntax of RNCE has additional algorithms FKG and FDec. These algo-

rithms are needed for defining RNC-CCA security. See Sect. 3 for the details.
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plaintext m as input, and outputs a fake secret key which decrypts the fake
ciphertext to the plaintext m.

RNCE requires the following two security properties. The first one is that an
adversary cannot distinguish a real ciphertext generated by the ordinary encryp-
tion algorithm and a fake ciphertext generated by Fake. The second one is that
an adversary cannot distinguish a real secret key generated by the ordinary key
generation algorithm and a fake secret key generated by Open. Canetti, Halevi,
and Katz [6, Sect. 4.1] firstly introduced RNCE and a security notion for it con-
sidering only non-adaptive chosen ciphertext attacks (CCA1). We extend their
security notion to RNC-CCA security considering adaptive chosen ciphertext
attacks.

Sufficient Condition for SIM-RSO-CCA Secure PKE. We briefly review the secu-
rity definition of RNCE. Informally, if only considering CPA, the security of
RNCE is defined using an experiment that proceeds as follows.

1. An adversary is given a public key and chooses an arbitrary plaintext from
the plaintext space.

2. The adversary is given either a real ciphertext or a fake ciphertext depending
on the challenge bit chosen uniformly at random.

3. The adversary is given either a real secret key or a fake secret key depending
on the above challenge bit.

4. The adversary guesses whether the given ciphertext and secret key are real
or fake.

When defining RNC-CCA security for RNCE, it is natural to consider a
definition in which an adversary is allowed to make a decryption query at any
time in the above security experiment. If we define such a security experiment, an
adversary can make a decryption query after he gets a secret key. Therefore, when
we show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE, an
adversary of RNC-CCA security can perfectly simulate the decryption oracle for
a SIM-RSO-CCA adversary.

However, there is one technical problem if we adopt the above definition. The
problem is that we cannot obtain an efficient concrete construction of RNCE
from the HPS technique. More specifically, it seems hard to construct an RNCE
scheme based on the Cramer-Shoup encryption scheme [7]. The critical problem
is that when proving the CCA security of the Cramer-Shoup encryption scheme,
we use the fact that the entropy of the secret key is sufficiently large. In the
security experiment of RNCE, an adversary gets the secret key used in the
experiment, and thus the entropy of the secret key is completely lost and the
security proof fails if we adopt the above definition.

In order to circumvent the above problem, we define the security experiment
for RNC-CCA security of an RNCE scheme so that an adversary is not allowed
to make decryption queries after he gets the secret key. Adopting this security
definition, we do not have to simulate the decryption oracle for the adversary
after he gets the secret key, and we can complete the security proof of our RNCE
scheme. See Sect. 5 for the details.
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Here, one might have the following question: Can we show that RNC-CCA
security implies SIM-RSO-CCA security when adopting the above modified def-
inition for RNC-CCA security? We show an affirmative answer to this question.
In a nutshell, we do not have to simulate the decryption queries which are relative
to the secret keys of corrupted users in the definition of SIM-RSO-CCA security,
and thus we can still show that RNC-CCA secure RNCE implies SIM-RSO-CCA
secure PKE. See Sect. 3 for the details.

How to Derive RNC-CCA Secure RNCE from the Double Encryption Technique.
Here, we give an overview of our generic construction of RNC-CCA secure RNCE
derived from the classical double encryption technique [23,26]. One can see that
our generic construction is an extension of a CPA secure RNCE scheme observed
by Canetti et al. [6, Sect. 4.1]. Their RNCE scheme is inspired by the double
encryption technique without considering CCA security. The trick for the non-
committing property of their construction is that the secret key used in the
decryption algorithm is chosen at random from the two underlying secret keys,
and thus their scheme is very simple. In order to upgrade the CPA security of
this RNCE scheme to CCA security, we focus on the work by Lindell [19] who
constructed an IND-CCA secure PKE scheme based on an IND-CPA secure PKE
scheme and an OTSS-NIZK using the double encryption technique. Applying a
similar method to the above RNCE scheme, we obtain our generic construction
of RNC-CCA secure RNCE. See Sect. 4 for the details.

We note that the technique for achieving the non-committing property, i.e.,
generating multiple secret keys and using only one of them for decryption, has
been adopted in a number of works, e.g., in the construction of an adaptively and
forward secure key-evolving encryption scheme [6, Sect. 3], and more recently in
the construction of a tightly secure key encapsulation mechanism in the multi-
user setting with corruption [1]. Furthermore, our construction shares an idea
of binding two ciphertexts with an NIZK proof system with [6, Sect. 3] to resist
against active behaviors of an adversary (e.g., decryption queries). However, one
difference is that we require one-time simulation-soundness for the underlying
NIZK proof system, while they require unbounded simulation-soundness.

How to Derive RNC-CCA Secure RNCE from the HPS Technique. Here, we
explain an overview of our concrete construction of RNC-CCA secure RNCE
derived from the HPS technique [7,8]. Our concrete construction is an extension
of the CCA1 secure RNCE scheme proposed by Canetti et al. [6, Sect. 4.2].
Their RNCE scheme is a variant of the Cramer-Shoup-“lite” encryption scheme
[7], which is an IND-CCA1 secure PKE scheme based on the DDH assumption.
The only difference is that they encode a plaintext m by the group element gm,
where g is a generator of the underlying group. This encoding is essential for
the opening algorithm Open of their proposed scheme, and the plaintext space
of their scheme is of polynomial-size since they have to compute the discrete
logarithm of gm in the decryption procedure. We extend their scheme to a CCA
secure RNCE scheme based on the “full”-Cramer-Shoup encryption scheme [7].
See Sect. 5 for the details.
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1.4 Related Work

To date, SSO secure PKE schemes have been extensively studied, and several
constructions of SIM-SSO-CCA secure PKE have been shown based on various
standard computational assumptions [18,20–22]. On the other hand, RSO secure
PKE schemes have been much less studied.

As mentioned above, the only existing construction of SIM-RSO-CCA secure
PKE is the construction using iO proposed by Jia et al. [16]. Jia, Lu, and
Li [17] proposed indistinguishability-based RSO-CCA (IND-RSO-CCA) secure
PKE schemes based on standard computational assumptions. Concretely, they
showed two generic constructions of IND-RSO-CCA secure PKE schemes. First,
they gave a generic construction based on an IND-RSO-CPA secure PKE scheme,
an IND-CCA secure PKE scheme, an NIZK proof system, and a strong one-time
signature scheme. Second, they gave a generic construction based on universal
HPS. It is not obvious whether their schemes (can be easily extended to) satisfy
SIM-RSO-CCA security.

1.5 Organization

The rest of the paper is organized as follows: In Sect. 2, we review the notations
and definitions of cryptographic primitives. In Sect. 3, we introduce RNC-CCA
security for RNCE and show its implication to SIM-RSO-CCA security for PKE.
In Sect. 4, we show a generic construction of RNC-CCA secure RNCE with a
binary plaintext space, which is constructed from an IND-CPA secure PKE
scheme and an OTSS-NIZK. In Sect. 5, we show a DDH-based concrete con-
struction of RNC-CCA secure RNCE.

2 Preliminaries

In this section, we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x ← X denotes sampling an element from a finite set X uniformly
at random. y ← A(x; r) denotes that a probabilistic algorithm A outputs y for
an input x using a randomness r, and we simply denote y ← A(x) when we need
not write an internal randomness explicitly. For strings x and y, x‖y denotes the
concatenation of x and y, and x := y denotes the substitution y for x. In other
cases, x := y denotes that x is defined as y. λ denotes a security parameter. A
function f(λ) is a negligible function in λ, if f(λ) tends to 0 faster than 1

λc for
every constant c > 0. negl(λ) denotes an unspecified negligible function. PPT
stands for probabilistic polynomial time. If n, a, b are integers such that a ≤ b,
[n] denotes the set of integers {1, · · · , n} and [a, b] denotes the set of integers
{a, · · · , b}. If m = (m1, · · · ,mn) is an n-dimensional vector, mJ denotes the
subset {mj}j∈J where J ⊆ [n]. If O is a function or an algorithm and A is an
algorithm, AO denotes that A has oracle access to O.
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2.2 Public Key Encryption

A public key encryption (PKE) scheme with a plaintext space M consists of
a tuple of three PPT algorithms Π = (KG,Enc,Dec). KG is the key generation
algorithm that, given a security parameter 1λ, outputs a public key pk and
a secret key sk . Enc is the encryption algorithm that, given a public key pk
and a plaintext m ∈ M, outputs a ciphertext c. Dec is the (deterministic)
decryption algorithm that, given a public key pk , a secret key sk , and a ciphertext
c, outputs a plaintext m ∈ {⊥} ∪ M. As the correctness for Π, we require that
Dec(pk , sk ,Enc(pk ,m)) = m holds for all λ ∈ N, m ∈ M, and (pk , sk) ← KG(1λ).

Next, we define IND-CPA and SIM-RSO-CCA security for a PKE scheme.

Definition 1 (IND-CPA security). We say that Π = (KG,Enc,Dec) is IND-
CPA secure if for any PPT adversary A = (A1,A2),

Advind-cpaΠ,A (λ) := 2
∣
∣
∣Pr[b ← {0, 1}; (pk, sk) ← KG(1λ); (m∗

0,m
∗
1, st1) ← A1(pk);

c∗ ← Enc(pk,m∗
b); b

′ ← A2(c∗, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

where it is required that |m∗
0| = |m∗

1|.
Definition 2 (SIM-RSO-CCA security). Let n be the number of users. For
a PKE scheme Π = (KG,Enc,Dec), an adversary A = (A1,A2,A3), and a
simulator S = (S1,S2,S3), we define the following pair of experiments.

Exprso-cca-realn,Π,A (λ) :
(pk, sk) := (pk j , sk j)j∈[n] ← (KG(1λ))j∈[n]

(Dist, st1) ← AODec(·,·)
1 (pk)

m∗ := (m∗
j )j∈[n] ← Dist

c∗ := (c∗
j )j∈[n] ← (Enc(pk j ,m

∗
j ))j∈[n]

(J, st2) ← AODec(·,·)
2 (c∗, st1)

out ← AODec(·,·)
3 (skJ ,m∗

J , st2)
Return (m∗,Dist, J, out)

Exprso-cca-simn,Π,S (λ) :
(Dist, st1) ← S1(1λ)
m∗ := (m∗

j )j∈[n] ← Dist
(J, st2) ← S2(st1)
out ← S3(m∗

J , st2)
Return (m∗,Dist, J, out)

In both of the experiments, we require that the distributions Dist output by A
and S be efficiently samplable. In Exprso-cca-realn,Π,A (λ), a decryption query (c, j) is
answered by Dec(pk j , sk j , c). A2 and A3 are not allowed to make a decryption
query (c∗

j , j) for any j ∈ [n]. Furthermore, A3 is not allowed to make a decryption
query (c, j) satisfying j ∈ J . (This is without losing generality, since A3 can
decrypt any ciphertext using the given secret keys.)

We say that Π is SIM-RSO-CCA secure if for any PPT adversary A and
any positive integer n = n(λ), there exists a PPT simulator S such that for any
PPT distinguisher D,

Advrso-ccan,Π,A,S,D(λ) := |Pr[D(Exprso-cca-realn,Π,A (λ)) = 1]

− Pr[D(Exprso-cca-simn,Π,S (λ)) = 1]| = negl(λ).



148 K. Hara et al.

Remark 1. For simplicity, we consider non-adaptive opening queries by an adver-
sary in our experiments. That is, an adversary can make an opening query
J ⊆ [n] only at once. However, our constructions of SIM-RSO-CCA secure PKE
remain secure even if we consider adaptive opening queries by an adversary.

Remark 2. In this paper, as in the previous works [16,17], we consider only the
revelation of secret keys in the definition of SIM-RSO-CCA security. Namely,
we assume that an adversary cannot obtain a random coin used for generating
a secret key. Hazay, Patra, and Warinschi [15] considered the revelation of both
secret keys and random coins used in the key generation algorithm in the RSO-
CPA security. If we take into account corruptions of both secret keys and random
coins, it seems that we need key simulatability [9,15] for building blocks.

2.3 Non-interactive Zero-Knowledge Proof System

Let R be a binary relation that is efficiently computable, and L := {x|∃w s.t.
(x,w) ∈ R}. A non-interactive proof system for L consists of a tuple of the
following five PPT algorithms Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv).

CRSGen: The common reference string (CRS) generation algorithm, given a
security parameter 1λ, outputs a CRS crs.

Prove: The proving algorithm, given a CRS crs, a statement x ∈ L, and a
witness w for the fact that x ∈ L, outputs a proof π.

Verify: The verification algorithm, given a CRS crs, a statement x, and a proof
π, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

SimCRS: The simulator’s CRS generation algorithm, given a security parameter
1λ, outputs a simulated CRS crs and a trapdoor key tk .

SimPrv: The simulator’s proving algorithm, given a trapdoor key tk and a (pos-
sibly false) statement x, outputs a simulated proof π.

As the correctness for Φ, we require that Verify(crs, x,Prove(crs, x, w)) = 1 holds
for all λ ∈ N, all crs ← CRSGen(1λ), all statements x ∈ L, and all witnesses w
for the fact that x ∈ L.

Next, we define the security notions for a non-interactive proof system: One-
time simulation soundness (OT-SS) and zero-knowledge (ZK).

Definition 3 (One-time simulation soundness). We say that a non-
interactive proof system Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satis-
fies one-time simulation soundness (OT-SS) if for any PPT adversary A =
(A1,A2),

Advot-ssΦ,A (λ) := Pr[(crs, tk) ← SimCRS(1λ); (x∗, st1) ← A1(crs);
π∗ ← SimPrv(tk , x∗); (x, π) ← A2(π∗, st1) :

(x /∈ L) ∧ (Verify(crs, x, π) = 1) ∧ ((x, π) �= (x∗, π∗))] = negl(λ).

Definition 4 (Zero-knowledge). For a non-interactive proof system Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) and an adversary A = (A1,A2), con-
sider the following pair of experiments.



Simulation-Based RSO-CCA Secure PKE from Standard Assumptions 149

Expzk-realΦ,A (λ) :
crs ← CRSGen(1λ)
(x,w, st1) ← A1(crs)
π ← Prove(crs, x, w)
b′ ← A2(π, st1)
Return b′

Expzk-simΦ,A (λ) :
(crs, tk) ← SimCRS(1λ)
(x,w, st1) ← A1(crs)
π ← SimPrv(tk , x)
b′ ← A2(π, st1)
Return b′

In both of the experiments, it is required that x ∈ L and w is a witness for x ∈ L.
We say that Φ is zero-knowledge (ZK) if for any PPT adversary A,

AdvzkΦ,A(λ) := |Pr[Expzk-realΦ,A (λ) = 1] − Pr[Expzk-simΦ,A (λ) = 1]| = negl(λ).

In this paper, we call a non-interactive proof system satisfying both OT-SS
and ZK property an OTSS-NIZK.

2.4 “+1”-Decisional Diffie-Hellman (DDH) Assumption

Here, we define the “+1”-DDH assumption. It is straightforward to see this
assumption is implied by the standard DDH assumption. This assumption is
used to simplify the security proof of our concrete construction in Sect. 5.

Definition 5 (“+1”-DDH assumption). Let p be a prime number such that
p = Θ(2λ), G be a multiplicative cyclic group of order p, and Zp be the set of
integers modulo p. We say that the “+1”-DDH assumption holds in G if for any
PPT adversary A,

Adv+1-ddh
G,A (λ) := |Pr[g ← G; a ← Z

∗
p; b ← Zp : A(g, ga, gb, gab) = 1]

− Pr[g ← G; a ← Z
∗
p; b ← Zp : A(g, ga, gb, gab+1) = 1]| = negl(λ).

2.5 Collision-Resistant Hash Function

In this section, we recall the definition of a collision-resistant hash function. A
hash function consists of a pair of PPT algorithms Λ = (HKG,Hash). HKG is
the hash key generation algorithm that, given a security parameter 1λ, outputs
a hash key hk . Hash is the (deterministic) hashing algorithm that, given a hash
key hk and a string x ∈ {0, 1}∗, outputs a hash value h ∈ {0, 1}λ.

Definition 6 (Collision-resistance). We say that Λ = (HKG,Hash) is a
collision-resistant hash function if for any PPT adversary A,

AdvcrΛ,A(λ) := Pr[hk ← HKG(1λ); (x, x∗) ← A(hk) :

(Hash(hk , x) = Hash(hk , x∗)) ∧ (x �= x∗)] = negl(λ).

3 CCA Security for Receiver Non-commiting Encryption

In this section, we introduce a new security notion that we call RNC-CCA
security for receiver non-commiting encryption (RNCE). Next, we show that
RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE.
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3.1 Receiver Non-commiting Encryption

Here, we give definitions of RNCE and RNC-CCA security for this primitive.
Informally, RNCE is PKE having the property that it can generate a fake cipher-
text which can be later opened to any plaintext (by showing an appropriate secret
key). Canetti, Halevi, and Katz [6, Sect. 4.1] gave a definition of RNCE consider-
ing security against non-adaptive chosen ciphertext attacks (CCA1). We extend
their definition to one considering security against adaptive CCA.

Informally, an RNCE scheme Π consists of the seven PPT algorithms
(KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the same algorithms as
those of a PKE scheme. The remaining four algorithms (FKG,Fake,Open,FDec)
are used for defining the security notion of this primitive. Therefore, these algo-
rithms are not used when using this scheme in practice. We note that the def-
inition of RNCE in [6, Sect. 4.1] does not contain FKG and FDec, but they are
necessary for our formalization of RNC-CCA security. The formal definition is
as follows.

Definition 7 (Receiver non-commiting encryption). An RNCE scheme
Π with a plaintext space M consists of the following seven PPT algorithms
(KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the same algorithms as
those of a PKE scheme. (FKG,Fake,Open,FDec) are defined as follows.

FKG: The fake key generation algorithm, given a security parameter 1λ, outputs
a public key pk and a trapdoor td.

Fake: The fake encryption algorithm, given a public key pk and a trapdoor td,
outputs a fake ciphertext c̃.

Open: The opening algorithm, given a public key pk, a trapdoor td, a fake cipher-
text c̃, and a plaintext m, outputs a fake secret key s̃k .

FDec: The fake decryption algorithm, given a public key pk, a trapdoor td, and
a ciphertext c, outputs m ∈ {⊥} ∪ M.

Next, we define RNC-CCA security for RNCE as follows.

Definition 8 (RNC-CCA security). For an RNCE scheme Π = (KG,Enc,
Dec,FKG,Fake,Open,FDec) and an adversary A = (A1,A2,A3), consider the
following pair of experiments.

Exprnc-realΠ,A (λ) :
(pk, sk) ← KG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Enc(pk,m∗)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ := sk
Return b′ ← A3(sk∗, st2)

Exprnc-simΠ,A (λ) :
(pk, td) ← FKG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Fake(pk, td)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ ← Open(pk, td, c∗,m∗)
Return b′ ← A3(sk∗, st2)

In Exprnc-realΠ,A (λ), a decryption query c is answered by Dec(pk , sk , c). On the other
hand, in Exprnc-simΠ,A (λ), a decryption query c is answered by FDec(pk , td , c). In
both of the experiments, A2 is not allowed to make a decryption query c = c∗

and A3 is not allowed to make any decryption query.
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We say that Π is RNC-CCA secure if for any PPT adversary A,

Advrnc-ccaΠ,A (λ) := |Pr[Exprnc-realΠ,A (λ) = 1] − Pr[Exprnc-simΠ,A (λ) = 1]| = negl(λ).

3.2 RNC-CCA Secure RNCE Implies SIM-RSO-CCA Secure PKE

In this section, we show that an RNC-CCA secure RNCE scheme implies a
SIM-RSO-CCA secure PKE scheme. Specifically, we show the following theorem.

Theorem 1. If an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,Open,FDec) is
RNC-CCA secure, then Πrso := (KG,Enc,Dec) is a SIM-RSO-CCA secure PKE
scheme.

Here we describe an intuition of the proof. (Due to the space limitation,
the formal proof of Theorem 1 is given in the full version of this paper.) Let n
be the number of key pairs and A be an adversary against the SIM-RSO-CCA
security of Πrso in security experiments. In the proof, we firstly construct a
PPT simulator S in Exprso-cca-simn,Πrso,S (λ). Specifically, S computes fake ciphertexts
(c̃j)j∈[n] using Fake and fake secret keys (s̃k j)j∈J using Open, where J is the set
of corrupted indices. Here, S can perfectly simulate the decryption oracle for A
using the trapdoors (td j)j∈[n] generated by S.

Next, in order to move from the real experiment Exprso-cca-realn,Πrso,A (λ) to the
simulated experiment Exprso-cca-simn,Πrso,S (λ), we change, step by step, n real chal-
lenge ciphertexts (c∗

j )j∈[n] to n fake ciphertexts (c̃j)j∈[n] and n real secret keys
(sk j)j∈[n] to n fake secret keys (s̃k j)j∈[n] which are given to A, respectively. We
can show this by the RNC-CCA security of Π using a hybrid argument. Here, we
have to deal with some technically subtle point when simulating the decryption
oracle for A. Namely, we have to program the behavior of an adversary B against
the RNC-CCA security of Π depending on whether the index i is contained in
the corrupted set J output by A2, where i is the position that B embeds his own
challenge instance into the challenge instances of A. See the full version of this
paper for the details.

4 Our Generic Construction of RNC-CCA Secure RNCE

In this section, we show our generic construction of an RNC-CCA secure RNCE
scheme with the plaintext space {0, 1}. First, in Sect. 4.1, we describe our generic
construction. Then, in Sect. 4.2, we give a proof of RNC-CCA security for our
generic construction.

4.1 The Description of Our Generic Construction

Here, we formally describe our generic construction of an RNC-CCA secure
RNCE scheme with the plaintext space {0, 1}. Let Π = (KG,Enc,Dec) be a
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KG (1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
crs ← CRSGen(1λ)
pk := (pk0, pk1, crs)
sk := (α, skα)
Return (pk , sk)

Enc (pk , m) :
(r0, r1) ← R2

Π

c0 ← Enc(pk0, m; r0)
c1 ← Enc(pk1, m; r1)
x := (pk0, pk1, c0, c1)
w := (m, r0, r1)
π ← Prove(crs, x, w)
Return c := (c0, c1, π)

Dec (pk , sk , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1
then

m ← Dec(pkα, skα, cα)
Return m

else Return ⊥

FKG (1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, tk) ← SimCRS(1λ)
pk := (pk0, pk1, crs)
td := (α, sk0, sk1, tk)
Return (pk , td)

Fake (pk , td) :
cα ← Enc(pkα, 0)
c1⊕α ← Enc(pk1⊕α, 1)
x := (pk0, pk1, c0, c1)
π ← SimPrv(tk , x)
Return c := (c0, c1, π)

Open (pk , td , c, m) :
sk := (α ⊕ m, skα⊕m)
Return sk

FDec (pk , td , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1
then

m ← Dec(pk0, sk0, c0)
Return m

else Return ⊥

Fig. 1. Our generic construction of RNC-CCA secure RNCE Π ′.

PKE scheme with the plaintext space {0, 1} and RΠ be a randomness space for
the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv)
be a non-interactive proof system for Leq, where

Leq :=
{

(pk0, pk1, c0, c1)| ∃(m, r0, r1) s.t.

(c0 = Enc(pk0,m; r0)) ∧ (c1 = Enc(pk1,m; r1))
}

.

Then, we construct an RNCE scheme Π ′ = (KG′,Enc′,Dec′,FKG′,Fake′,
Open′,FDec′) with the plaintext space {0, 1} as described in Fig. 1. We note
that, considering a real ciphertext c and a real secret key sk , the correctness of
the decryption of Π ′ is straightforward due to the correctness of Π and Φ.

How to Expand the Plaintext Space of Our Generic Construction. In the above,
we only give the construction whose plaintext space is {0, 1}. However, we can
expand the plaintext space by using our single-bit construction in a parallel
way except for the generation of a proof of an OTSS-NIZK. More concretely,
if we encrypt an �-bit plaintext m = m1‖ · · · ‖m�, the procedure is as follows.
Firstly, we generate a public key pk = ((pk i

0, pk
i
1)i∈[�], crs) and a secret key

sk = (αi, sk i
αi

)i∈[�], where α1, · · · , α� ← {0, 1}, (pk i
v, sk i

v) ← KG(1λ) for all
(i, v) ∈ [�]×{0, 1}, and crs denotes a CRS of an OTSS-NIZK. Next, we compute
a ciphertext c = ((ci

0)i∈[�], (ci
1)i∈[�], π), where ci

v ← Enc(pk i
v,mi) for all (i, v) ∈

[�] × {0, 1} and π is a proof proving that, for each i ∈ [�], the ciphertexts ci
0 and

ci
1 encrypt the same plaintext mi ∈ {0, 1}. Similarly, for the other procedures,

we execute one-bit version algorithms in a parallel way for all i ∈ [�] except
for the procedure of the OTSS-NIZK. See the full version of the paper for the
details.
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4.2 Security Proof

In this section, we show the following theorem.

Theorem 2. If Π is an IND-CPA secure PKE scheme and Φ is an
OTSS-NIZK, then Π ′ is RNC-CCA secure.

Before describing the formal proof, we highlight the flow of the proof. We
change Exprnc-realΠ′,A (λ) to Exprnc-simΠ′,A (λ) step by step, where A is an adversary that
attacks the RNC-CCA security of Π ′. Although the main part of our proof is
similar to that of the original double encryption paradigm [23,26], we have the
following three remarkable changes.

First, toward transforming the challenge ciphertext to a fake ciphertext, we
make the challenge ciphertext component c∗

1⊕α encrypts 1 ⊕ m∗. Second, in
order to eliminate the information of the bit α from the decryption oracle, when
answering a decryption query c = (c0, c1, π) made by A, we use the compo-
nents (pk0, sk0, c0) corresponding to the position 0 instead of the components
(pkα, skα, cα) corresponding to the position α. Third, we use α⊕m∗ instead of α
in order to make the challenge ciphertext c∗ and the secret key sk be independent
of the challenge plaintext m∗. Due to these changes, the challenge ciphertext c∗

and the real secret key sk are respectively switched to the fake ciphertext c̃ and
the fake secret key s̃k . The proof is as follows.

Proof of Theorem 2. Let A = (A1,A2,A3) be any PPT adversary that attacks
the RNC-CCA security of Π ′. We introduce the following experiments {Expi}5i=0.

Exp0 : Exp0 is the same as Exprnc-realΠ′,A (λ). The detailed description is as follows.
1. First, Exp0 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ),

(pk1, sk1) ← KG(1λ), and crs ← CRSGen(1λ). Next, Exp0 sets pk :=
(pk0, pk1, crs) and sk := (α, skα) and runs A1(pk). When A1 makes a
decryption query c = (c0, c1, π), Exp0 checks whether Verify(crs, (pk0, pk1,
c0, c1), π) = 1 holds. If this holds, Exp0 computes m ← Dec(pkα, skα, cα),
and returns m to A1. Otherwise, Exp0 returns ⊥ to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the challenge
ciphertext c∗ as follows. First, Exp0 samples (r∗

0 , r
∗
1) ← R2

Π , computes
c∗
0 ← Enc(pk0,m

∗; r∗
0), c∗

1 ← Enc(pk1,m
∗; r∗

1), and π∗ ← Prove(crs, (pk0,
pk1, c

∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)). Next, Exp0 sets c∗ = (c∗

0, c
∗
1, π

∗), and runs A2(c∗,
st1). When A2 makes a decryption query c, Exp0 answers in the same way
as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk ,
st2). When A3 outputs a bit b′ and terminates, Exp0 outputs b′.

Exp1 : Exp1 is identical to Exp0 except for the following change. The common
reference string crs is generated by executing (crs, tk) ← SimCRS(1λ), and
Exp1 generates a simulated proof π∗ ← SimPrv(tk , (pk0, pk1, c

∗
0, c

∗
1)) when

computing the challenge ciphertext c∗.
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Exp2 : Exp2 is identical to Exp1 except that when computing the challenge
ciphertext c∗, Exp2 computes c∗

1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗) instead of c∗
1⊕α ←

Enc(pk1⊕α,m∗).
Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption

query c = (c0, c1, π), Exp3 answers m ← Dec(pk0, sk0, c0) instead of m ←
Dec(pkα, skα, cα), if Verify(crs, (pk0, pk1, c0, c1), π) = 1 holds. Note that the
decryption procedure in Exp3 is exactly the same as FDec′.

Exp4 : Exp4 is identical to Exp3 except that α ⊕ m∗ is used instead of α. That
is, when computing the challenge ciphertext c∗, Exp4 computes c∗

0 and c∗
1

by c∗
α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and c∗

α⊕(1⊕m∗) ← Enc(pkα⊕(1⊕m∗), 1 ⊕ m∗).
Moreover, Exp4 gives the secret key sk = (α ⊕ m∗, skα⊕m∗) to A3 instead of
sk = (α, skα).

Exp5 : Exp5 is exactly the same as Exprnc-simΠ′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 5]. Then, we have Advrnc-ccaΠ′,A (λ) =
|Pr[Exprnc-realΠ′,A (λ) = 1] − Pr[Exprnc-simΠ′,A (λ) = 1]| = |p0 − p5| ≤ ∑4

i=0 |pi − pi+1|.
It remains to show how each |pi − pi+1| is upper-bounded. Due to the space
limitation, we will show them formally in the full version of the paper. There,
we will show that there exist an adversary E = (E1, E2) against the ZK property
of Φ such that |p0 − p1| = AdvzkΦ,E(λ), an adversary F = (F1,F2) against the
IND-CPA security of Π such that |p1 − p2| = Advind-cpaΠ,F (λ), and an adversary
G = (G1,G2) against the OT-SS of Φ such that |p2 − p3| ≤ Advot-ssΦ,G (λ). Then, we
will show that |p3 − p4| = 0 holds. The main reason why this is true, is because
since α is chosen uniformly at random, α ⊕ m∗ is also distributed uniformly at
random. Finally, we will show that |p4 − p5| = 0 holds, by showing that Exp4
and Exp5 are identical.

Putting everything together, we obtain Advrnc-ccaΠ′,A (λ) = |p0 − p5| ≤
∑4

i=0 |pi − pi+1| ≤ AdvzkΦ,E(λ) + Advind-cpaΠ,F (λ) + Advot-ssΦ,G (λ). Since Π is IND-CPA
secure and Φ is an OTSS-NIZK, for any PPT adversary A, Advrnc-ccaΠ′,A (λ) = negl(λ)
holds. Therefore, Π ′ satisfies RNC-CCA security. 
� (Theorem 2)

5 Our DDH-Based Concrete Construction of RNC-CCA
Secure RNCE

In this section, we show our concrete construction of RNC-CCA secure RNCE
with a polynomial-sized plaintext space, based on the DDH assumption and a
collision-resistant hash function. First, in Sect. 5.1, we describe our DDH-based
concrete construction. Then, in Sect. 5.2, we give a proof of RNC-CCA security
for our DDH-based construction.

5.1 The Description of Our Concrete Construction

Here, we give the formal description of our DDH-based construction of RNC-
CCA secure RNCE with a polynomial-sized plaintext space. One can see that
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KG(1λ) :
g1 ← G; w ← Z

∗
p; g2 := gw

1

x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy1
1 gy2

2

t := gz1
1 gz2

2

hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
sk := (x1, x2, y1, y2, z1, z2)
Return (pk , sk)

Enc(pk , m) :
r ← Zp

u1 := gr
1

u2 := gr
2

e := kr · gm
1

μ ← Hash(hk , u1 u2 e)
v := srtrμ

Return c := (u1, u2, e, v)

Dec(pk , sk , c) :
Parse c = (u1, u2, e, v)
μ ← Hash(hk , u1 u2 e)
If uy1+z1μ

1 uy2+z2μ
2 = v

then
m := logg1

( e

(u
x1
1 u

x2
2 )

)

Return m
else Return ⊥

FKG(1λ) :
g1 ← G; w ← Z

∗
p

g2 := gw
1

x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy1
1 gy2

2

t := gz1
1 gz2

2

hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
r ← Zp

td := (r, w, x1, x2,
y1, y2, z1, z2)

Return (pk , td)

Fake(pk , td) :
u1 := gr

1

u2 := g1g
r
2

e := gx2
1 kr

μ ← Hash(hk , u1 u2 e)
v := gy2+z2μ

1 srtrμ

Return c := (u1, u2, e, v)
Open(pk , td , c, m) :

x1 := x1 + mw (mod p)
x2 := x2 − m (mod p)
sk := (x1, x2, y1, y2, z1, z2)
Return sk

FDec(pk , td , c) :
Parse c = (u1, u2, e, v)
μ ← Hash(hk , u1 u2 e)
u1 := gr

1

u2 := g1g
r
2

e := gx2
1 kr

μ ← Hash(hk , u1 u2 e)
If (μ = μ) ∧ (uw

1 = u2)
∧(uy1+z1μ

1 uy2+z2μ
2 = v)

then
m := logg1

( e

(u
x1
1 u

x2
2 )

)

Return m
else Return ⊥

Fig. 2. Our DDH-based construction of RNC-CCA secure RNCE Πddh.

our scheme is a variant of the Cramer-Shoup encryption scheme [7]. The only
difference is that we encode a plaintext m by the group element gm

1 , where g1 is
a generator of the underlying group. This encoding is essential for the opening
algorithm Open of our proposed scheme. The plaintext space of our scheme needs
to be of polynomial-size since we need to compute the discrete logarithm of gm

1

for the decryption procedure.
Formally, we let Λ = (HKG,Hash) be a hash function. Let G be a multiplica-

tive cyclic group of prime order p = Θ(2λ). We naturally encode an element in
{0, 1}λ as one in Zp. Then, we construct our RNCE scheme Πddh = (KG,Enc,
Dec,FKG,Fake,Open,FDec) as described in Fig. 2. We note that the correctness
of the decryption of Πddh is straightforward due to the correctness of the original
Cramer-Shoup encryption scheme.

5.2 Security Proof

In this section, we show the following theorem.

Theorem 3. If the “+1”-DDH assumption holds in G, and Λ = (HKG,Hash)
is a collision-resistant hash function, then Πddh is RNC-CCA secure.
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Since the “+1”-DDH assumption is implied by the ordinary DDH assump-
tion, Theorem 3 implies that our construction Πddh is indeed RNC-CCA secure
under the ordinary DDH assumption.

Before describing the proof, we highlight the flow of the proof. We change
Exprnc-realΠddh,A(λ) to Exprnc-simΠddh,A(λ) step by step, where A is an adversary that attacks
the RNC-CCA security of Πddh. Although the main part of our proof is similar
to that of the original HPS technique [7,8], we have the following two remarkable
changes in order to change the challenge ciphertext c∗ to a fake ciphertext c̃.

First, toward transforming the challenge ciphertext to a fake ciphertext, we
change the challenge ciphertext component u∗

2 = gr∗
2 to u∗

2 = g1g
r∗
2 . Second, we

change the real secret key component (x1, x2) to the fake secret key component
(x′

1, x
′
2) computed by Open described in Fig. 2. Due to these changes, the chal-

lenge ciphertext component e∗ is changed to the fake ciphertext component ẽ
and the real secret key sk is changed to the fake secret key s̃k . The proof is as
follows.

Proof of Theorem 3. Let A = (A1,A2,A3) be any PPT adversary that attacks
the RNC-CCA security of Πddh and makes Qdec > 0 decryption queries. We
introduce the following experiments {Expi}7i=0.

Exp0 : Exp0 is the same as Exprnc-realΠddh,A(λ). The detailed description is as follows.
1. First, Exp0 samples g1 ← G and w ← Z

∗
p and sets g2 := gw

1 . Next, Exp0
samples x1, x2, y1, y2, z1, z2 ← Zp and sets k := gx1

1 gx2
2 , s := gy1

1 gy2
2 , and

t := gz1
1 gz2

2 . Then, it samples hk ← HKG(1λ), sets pk := (g1, g2, k, s, t, hk)
and sk := (x1, x2, y1, y2, z1, z2), and runs A1(pk). When A1 makes a
decryption query c = (u1, u2, e, v), Exp0 computes μ ← Hash(hk , u1‖u2‖e)
and checks whether uy1+z1μ

1 uy2+z2μ
2 = v holds. If this holds, Exp0 returns

m = logg1
(e · (ux1

1 ux2
2 )−1) to A1. Otherwise, Exp0 returns ⊥ to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the chal-
lenge ciphertext c∗ as follows. First, Exp0 samples r∗ ← Zp and sets
u∗
1 := gr∗

1 , u∗
2 := gr∗

2 , and e∗ := kr∗ · gm∗
1 . Next, Exp0 computes

μ∗ ← Hash(hk , u∗
1‖u∗

2‖e∗), sets v∗ := sr∗
tr

∗μ∗
and c∗ := (u∗

1, u
∗
2, e

∗, v∗),
and runs A2(c∗, st1). When A2 makes a decryption query c = (u1, u2, e, v),
Exp0 answers the query from A2 in the same way as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk ,
st2). When A3 outputs b′ and terminates, Exp0 outputs b′.

Exp1 : Exp1 is identical to Exp0 except for the following change. When computing
the challenge ciphertext c∗ = (u∗

1, u
∗
2, e

∗, v∗), Exp1 computes e∗ and v∗ by
e∗ := (u∗

1)
x1(u∗

2)
x2 · gm∗

1 and v∗ := (u∗
1)

y1(u∗
2)

y2((u∗
1)

z1(u∗
2)

z2)μ∗
, respectively.

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge
ciphertext c∗ = (u∗

1, u
∗
2, e

∗, v∗), Exp2 computes u∗
2 by u∗

2 := gwr∗+1
1 .

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption
query c = (u1, u2, e, v) made by A2, Exp3 answers ⊥ if Hash(hk , u∗

1‖u∗
2‖e∗) =

Hash(hk , u1‖u2‖e) holds.
Exp4 : Exp4 is identical to Exp3 except that when responding to a decryption

query c = (u1, u2, e, v) made by A1 or A2, Exp4 answers ⊥ if uw
1 �= u2 holds.
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Exp5 : Exp5 is identical to Exp4 except that x′
1 := x1 + wm∗ (mod p) and x′

2 :=
x2 − m∗ (mod p) are used instead of x1 and x2, respectively. That is, when
computing the challenge ciphertext c∗ := (u∗

1, u
∗
2, e

∗, v∗), Exp5 computes e∗

by e∗ := (u∗
1)

x′
1(u∗

2)
x′
2 · gm∗

1 instead of (u∗
1)

x1(u∗
2)

x2 · gm∗
1 . Note that e∗ =

(u∗
1)

x′
1(u∗

2)
x′
2 · gm∗

1 = (gr∗
1 )(x1+wm∗)(g(wr∗+1)

1 )(x2−m∗) · gm∗
1 = gx2

1 (gx1
1 gx2

2 )r∗

holds. Furthermore, Exp5 gives the secret key sk ′ := (x′
1, x

′
2, y1, y2, z1, z2) to

A3 instead of sk := (x1, x2, y1, y2, z1, z2).
Since e∗ in Exp5 is independent of the challenge message m∗, without loss of
generality we generate it before A1 is run.

Exp6 : Exp6 is identical to Exp5 except that when responding to a decryption
query c = (u1, u2, e, v) made by A1, Exp6 answers ⊥ if Hash(hk , u∗

1‖u∗
2‖e∗) =

Hash(hk , u1‖u2‖e) holds. Note that the procedure of the decryption oracle in
Exp6 is exactly the same as that of FDec(pk , td , c).

Exp7 : Exp7 is exactly the same as Exprnc-simΠddh,A(λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 7]. Then, we have Advrnc-ccaΠddh,A(λ)
= |Pr[Exprnc-realΠddh,A(λ) = 1] − Pr[Exprnc-simΠddh,A(λ) = 1]| = |p0 − p7| ≤ ∑6

i=0 |pi − pi+1|.
It remains to show how each |pi − pi+1| is upper-bounded. Due to the space
limitation, we will show them formally in the full version of the paper. There,
we will show that |p0 − p1| = 0 holds since the difference between Exp0 and
Exp1 is only conceptual. Then, we will show that there exist a PPT adversary E
against the “+1”-DDH assumption in G such that |p1 − p2| = Adv+1-ddh

G,E (λ), and
a PPT adversary F against the collision-resistance of Λ such that |p2 − p3| ≤
AdvcrΛ,F (λ). Next, we will show that |p3 − p4| ≤ Qdec

p holds by showing that the
probability that each of A’s valid queries is rejected in Exp5 but not in Exp4, is
at most 1

p . Then, we will show that |p4 −p5| = 0 holds since (x1, x2) and (x′
1, x

′
2)

are information-theoretically indistinguishable from A. Next, we will show that
there exists a PPT adversary G against the collision-resistance of Λ such that
|p5 − p6| ≤ AdvcrΛ,G(λ) + Qdec

p . Finally, we will show that |p6 − p7| = 0 holds, by
showing that Exp6 and Exp7 are identical.

Putting everything together, we obtain Advrnc-ccaΠddh,A(λ) = |p0−p7| ≤ ∑6
i=0 |pi −

pi+1| ≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) + AdvcrΛ,G(λ) + 2Qdec

p . Since the “+1”-DDH
assumption holds in G, Λ is a collision-resistant hash function, Qdec is a poly-
nomial of λ, and p = Θ(2λ), for any PPT adversary A, Advrnc-ccaΠddh,A(λ) = negl(λ)
holds. Therefore, Πddh satisfies RNC-CCA security. 
� (Theorem 3)
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