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Abstract. We present a new public key broadcast encryption scheme
where both the ciphertext and secret keys consist of a constant number
of group elements. Our result improves upon the work of Boneh, Gentry
and Waters (Crypto ’05) as well as several recent follow-ups (TCC ’16-
A, Asiacrypt ’16) in two ways: (i) we achieve adaptive security instead
of selective security, and (ii) our construction relies on the decisional k-
Linear Assumption in prime-order groups (as opposed to q-type assump-
tions or subgroup decisional assumptions in composite-order groups); our
improvements come at the cost of a larger public key. Finally, we show
that our scheme achieves adaptive security in the multi-ciphertext set-
ting with a security loss that is independent of the number of challenge
ciphertexts.

1 Introduction

Broadcast encryption schemes [FN94] allow a sender to encrypt messages to a
set Γ ⊂ [n] of authorized users such that any user in the set Γ can decrypt, and
no (possibly colluding) set of unauthorized users can learn anything about the
plaintext. Two key measures of efficiency for broadcast encryption are the size of
the secret keys and the ciphertext overhead (beyond description of the recipient
set and the symmetric encryption of the message). The early contructions of
broadcast encryption schemes achieve ciphertext overhead that grows with the
number of either authorized or excluded users [NNL01,HS02,DF02,GST04].

The BGW Cryptosystem. Ideally, we would like a broadcast encryption scheme
where the size of secret keys and ciphertext overhead is independent of the
number of users. This was first achieved in the break-through work of Boneh,
Gentry and Waters [BGW05], which presented a broadcast encryption scheme
in bilinear groups where both the secret keys and ciphertext overhead consist of
a constant number of group elements. In their scheme, the decryption algorithm
needs to know the public key, which is linear in the number of users.
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The BGW cryptosystem has two main limitations, which is the focus of
several follow-up works as well as our current one:

– First, the BGW scheme achieves selective security, where an adversary must
declare a target set of unauthorized users with which it will attack the scheme
before even seeing the system parameters. This restriction does not capture
the power of many kinds of attackers (for instance: an attacker might choose
to corrupt a user after seeing the public parameters, or in response to seeing
secret keys for already corrupted parties), so in practice, we would prefer to
have schemes that satisfy the more general and stronger notion of adaptive
security, which does not place such restrictions on the adversary.

– Next, the BGW scheme relies on parameterized assumptions. Parameter-
ized assumptions (a.k.a q-type assumptions), while in some cases allowing
for improvements over the state-of-the-art, are not particularly well under-
stood. The assumptions are often closely related to the schemes which use
them. For example, the size of the assumption often scales with the number of
oracle queries that can be made in the security reduction. Furthermore, q-type
assumptions become stronger as q grows, with the time needed to recover the
discrete logarithm and break the assumption scaling inversely with q [Che06].
As a result, it is desirable to design systems that can be proven secure under
static assumptions, like the decisional k-Linear Assumption in prime-order
bilinear groups (k-Lin).

These limitations were fixed individually by the works of [GW09,Wee16,
CMM16a] respectively (the latter in composite-order groups), but improving
[BGW05] to achieve security that is both adaptive and based on a static assump-
tion has remained out of reach.

1.1 Our Results

In this paper we present the first broadcast encryption scheme with constant
key and ciphertext overhead size that simultaneously overcomes both of the lim-
itations above. Namely, we achieve adaptive security under a static assumption
(k-Lin) in prime-order bilinear groups. Our improvements come at the cost of a
larger public key that is quadratic instead of linear in the total number of users.
We stress that prior to this work, it was not known how to achieve broadcast
encryption with any size public parameters, constant-sized keys and ciphertext
overhead, and even just selective security under a static assumption in prime-
order groups.

As with the BGW cryptosystem and the follow-up works in [Wee16,
CMM16a], the decryption algorithm in our scheme needs to know the public
key in addition to the secret key. Considering the complications that come with
managing user secret keys, which have to be distributed individually and stored
securely, we achieve a desirable public/private key size tradeoff that makes sense
particularly in applications where decryptors have access to large shared public
storage.



Tight Adaptively Secure Broadcast Encryption 125

We give an additional broadcast encryption scheme with constant key and
ciphertext overhead size which is adaptively-secure in the multi-challenge setting
under static assumptions with a tight security reduction (where the security loss
is independent of the number of challenge ciphertexts). Tight security reductions,
which have been studied previously in the context of encryption [BBM00,HJ12]
and signatures [Cor00], are desirable when fixing concrete security parameters,
since the security loss directly impacts the size of scheme elements. In the con-
text of advanced encryption schemes, tight constructions were only known for
identity-based encryption [CW13]. In this work, we give the first tightly secure
broadcast encryption scheme. Note that while our security loss is independent
of the number of challenge ciphertexts, it remains proportional to n: the number
of users in the system. In this work, we view n as being not too large since our
public key contains O(n2) group elements, which would be impractical for very
large n anyway. Thus, a security loss of a small constant times n is much more
desirable than one that is proportional to the number of challenge ciphertexts,
which could be much larger for largely deployed systems.

1.2 Related Work

Previous broadcast encryption schemes for n users that are secure in the standard
model either carry the baggage of a (n/t, t)-tradeoff in key/ciphertext size, use a
non-static assumption (i.e., q-type assumption), or are only secure in the weaker,
selective security setting (see Fig. 1). In fact, all known broadcast encryption
schemes that are adaptively secure under a static assumption and that use the
Dual System Encryption methodology [Att14,Wee14,CGW15,AC16,LL15] fall
in the scope of the lower bound of (n/t, t) for the (ciphertext overhead, secret
key) size proved in [GKW15]. We note that we are able to bypass this lower
bound by using the modified definition of broadcast encryption proposed by
[BGW05], where decryption is allowed to take public parameters as input in
addition to the secret key, as explained above.

Reference |ct| |sk| |pk| assumption security Dec
BGW05 [BGW05] O(1) O(1) O(n) q-type selective pk
GW09 [GW09] O(1) O(1) O(n) q-type adaptive pk
Wee16[Wee16], CMM16[CMM16b] O(1) O(1) O(n) composite selective pk
BW06 [BW06] O(

√
n) O(

√
n) O(

√
n) composite adaptive −

GKSW10 [GKSW10] O(
√

n) O(
√

n) O(n) 2-Lin adaptive −
Waters09 [Wat09] O(1) O(n) O(n) 2-Lin adaptive −
GKW15 [GKW15] O(n/t) O(t) O(n) k-Lin adaptive −
this work O(1) O(1) O(n2) composite adaptive pk
this work O(1) O(1) O(n2) k-Lin adaptive pk

Fig. 1. Comparison amongst broadcast encryption schemes in the standard model,
where n denotes the number of users, |ct|, |sk| and |pk| respectively denote the cipher-
text, secret key and public key size (i.e., the number of group elements or exponents
of group elements). The last column refers to whether or not the decryption algorithm
Dec requires the public key pk as input.



126 R. Gay et al.

Short keys and ciphertext overhead have been accomplished in other schemes
by moving outside the standard model: [GW09] gives a construction (different
from the one depicted in Fig. 1 which uses q-type assumptions) with adaptive
security and constant key and ciphertext overhead size, but in the random oracle
model; [BWZ14] achieves adaptive security with polylogarithmic (in the num-
ber of users) size public parameters, keys, and ciphertext overhead, but is only
proven secure in the multilinear generic group model; and [BZ14] achieves adap-
tive security with linear size public parameters, constant size keys and cipher-
text overhead, but relies on strong assumptions, namely, indistinguishability
obfuscation [BGI+01]. Lastly, we note that while our constructions harness the
power of computational assumptions to achieve their efficiency, the problem of
broadcast encryption has been studied in the information-theoretic realm as well
[Sv98,SSW00,GSW00,GSY99].

1.3 Our Techniques

We give a construction in the composite-order setting which is secure under
standard static decision assumptions to illustrate the main techniques, as well
as a construction using prime-order bilinear groups which is secure under k-Lin.

Dual System Proof Methodology. We employ the dual system proof method-
ology [Wat09] to achieve the adaptive security of our schemes. A dual system
encryption scheme is constructed so that an adversary cannot distinguish the
distribution of normal keys (or ciphertexts) from special “semi-functional” keys
(or ciphertexts). Semi-functional keys are capable of decrypting normal cipher-
texts, but semi-functional keys cannot decrypt a semi-functional ciphertext. A
typical dual system proof consists of a hybrid where the first step is construct-
ing the challenge ciphertext as a semi-functional ciphertext. The hybrid then
runs over each key requested by the adversary, replacing each requested key
with a semi-functional key. At the end, only semi-functional keys are given to
an adversary whose job is to break the security of a semi-functional ciphertext.
Due to the way semi-functional ciphertexts and secret keys are constructed, it is
typically easy to argue the game’s security at this point (semi-functional secret
keys cannot be used to decrypt any semi-functional ciphertexts, including the
semi-functional challenge ciphertext).

Overview of the Construction. Our constructions can be understood by starting
with the Boneh-Gentry-Waters construction for broadcast encryption [BGW05],
which is selectively-secure under a (non-static) q-type assumption. BGW’s public
parameters look like:

pk := (gγ , gα, gα2
, . . . , gαn

, hα, hα2
, . . . , hαn

, hαn+2
, . . . , hα2n

, e(g, h)αn+1
)

where γ, α are random exponents in Zp, and g, h respectively generate prime
order groups G,H, where |G| = |H| = p, and e : G × H → GT .



Tight Adaptively Secure Broadcast Encryption 127

The ciphertext for a subset Γ ⊆ [n] and the key for a user i ∈ [n] are given by:

ctΓ := (gs, g(γ+
∑

j∈Γ αj)s, e(g, h)sαn+1 · M), ski := hαn−i+1γ

Decryption works as follows. Note that a message M in a ciphertext is hidden
by an encapsulation key e(g, h)sαn+1

. First, an authorized user of index i pairs
hαn−i+1

from the public parameters with g(γ+
∑

j∈Γ αj)s from the ciphertext to
get the encapsulation key hidden by a product of e(g, h)s(n+1−i+j) for j �= i ∈ Γ

and e(g, h)sαn−i+1γ . The former can be removed by performing judicious pairings
with elements from pk and gs from the ciphertext, and the latter can only by
removed by computing the pairing of gs with the (authorized) user’s secret key
ski. The encapsulation key can therefore be computed and used to obtain the
message M .

The q-type assumption underlying BGW’s security is enabled by the pow-
ers of α. These powers prevent a straightforward dual-system proof of adap-
tive security from static assumptions. To obtain a construction based on static
assumptions, we need to remove the powers of α in the scheme. Towards this
goal, consider the substitutions:

gαj �→ gwj , hαn−j+1 �→ hrj , j ∈ [n]

where w1, . . . , wn, r1, . . . , rn are chosen uniformly at random. Correctness of
BGW scheme relies on the fact that

{e(gαjs, hαn−i+1
)}i,j∈[n],j �=i

lies in a set of linear size, namely

{e(gs, hα), . . . , e(gs, hαn

), e(gs, hαn+2
), . . . , e(gs, hα2n

)}.

With our substitutions, the corresponding collection lies in a set

{e(gs, hwjri)}i,j∈[n],j �=i

of size O(n2), and hence the corresponding blow-up in the size of the public key,
which needs to additionally contain {hwjri}i,j∈[n],i �=j .

Finally, replacing the prime-order pairing group by an composite-order asym-
metric bilinear group (G,H,GT ) where |G| = |H| = N = pq, so as to use a
subgroup membership assumption instead of the q-DBDH assumption used in
BGW, and replacing g �→ gp, h �→ hp, where gp, hp respectively generate Gp,Hp:
prime order subgroups of groups G,H, we obtain our composite-order scheme.

Alternative Viewpoint. As seen above, we can view our construction as a modifi-
cation of the broadcast encryption scheme from [BGW05] where we improve the
secret key/public key size trade-off. An alternative way to view our construc-
tion is to start from the broadcast encryption scheme of Waters [Wat09], which
can be proven adaptively secure from static assumptions (using the dual system
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proof methodology) and features constant size ciphertext overhead, but linear
size secret keys. We describe the construction using composite-order asymmetric
bilinear groups for simplicity:

pk :=
({gwj

p }j∈[n], e(gp, hp)α
)

ctΓ :=
(
gs

p, g
s(u+

∑
j /∈Γ wj)

p , e(gp, hp)sα · M
)

ski :=
(
hri

p , {hwjri
p } j∈[n],

j �=i
, hα+uri

p

)

where s, u, α,wj , ri for i, j ∈ [n] are random exponents in ZN , and gp, hp

respectively generate Gp,Hp: prime order subgroups of groups G,H, where
|G| = |H| = N = pq, and e : G × H → GT .

Decryption works as follows. Note that a message M in a ciphertext is
again hidden by an encapsulation key e(gp, hp)sα. To get the encapsulation
key e(gp, hp)sα, decryption pairs gs

p with hα+uri
p . To get rid of the extra term

e(gp, hp)suri , it pairs g
s(u+

∑
j /∈Γ wj)

p from the ciphertext together with hri
p . Doing

so, decryption also gets many cross terms of the form e(gp, hp)s
∑

j /∈Γ wjri which
can be stripped away, pairing gs

p with the appropriate h
wjri
p from the secret key.

Note that these secret key elements are all available only when i ∈ Γ and the
key is therefore authorized.

To improve this construction’s linear-sized secret keys to constant-size, we
pre-compute the values {hri

p , h
wjri
p }j∈[n],j �=i and include them in the public

parameters instead of the secret key. Therefore, the secret key is reduced to
the part that contains the encapsulation key α. Note that this crucially takes
advantage of our modified model of broadcast encryption where decryption is
allowed to use elements from the public key as well as the secret key.

Indeed, the main technical challenge in proving our schemes secure is to
carry on the dual-system proof when the values {hri

p , h
wjri
p }j∈[n],j �=i are public

for every i ∈ [n], and only a single group element remains private. This is in
contrast to the security proof of previous dual system schemes, such as [Wat09],
where the values hri

p , {h
wjri
p }j∈[n],j �=i are known to the adversary only for queried

keys ski. We solve it by carefully switching the hri
p , {h

wjri
p }j∈[n],j �=i for each

i ∈ [n] one by one to semi-functional, thereby changing the distribution of the
public parameters over the hybrid through the keys. Similar techniques are also
found in the selectively secure broadcast encryption of [Wee16,CMM16a], which
removed the use of q-type assumptions in [BGW05], using the Déjà Q paradigm
introduced by [CM14].

Prime-Order Groups. The scheme we just described in two ways is based on
composite-order asymmetric bilinear groups. We give the scheme in detail in
Sect. 3 and its proof in [GKW18, Sect. 3]. For efficiency reasons [Gui13], schemes
based on prime-order groups are preferable in practice. As such, we additionally
provide a translation of our composite-order scheme to the prime-order setting
in Sect. 4.

Our construction uses a proof paradigm that can be seen as an optimization
of known composite to prime-order translation frameworks, such as [Fre10,OT08,
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OT09,Lew12,CGW15,Att15,AC16]. Roughly speaking, in these frameworks, a
random group element gs

p of a composite order bilinear group G is emulated

by a vector of group elements [As]1, where s ∈ Z
k
p, A ∈ Z

(k+1)×k
p is a k-Lin

matrix, and we use the bracket notation [a]i to denote the element ga
i for i ∈

{1, 2, T} (for a prime order bilinear group G1 × G2 → GT ). Here, k depends on
the k-Lin assumption used, i.e.: k = 1 corresponds to the Symmetric External
Diffie-Hellman Assumption, or SXDH. The decision assumption used to argue
that gs

p ≈ gs
pg

s
q in composite order groups is replaced by the k-Lin assumption:

[As]1 ≈ [u]1, where A ∈ Z
(k+1)×k
p is a k-Lin matrix, s ←R Z

k
p, and u ←R Z

k+1
p

is a uniformly random vector over Z
k+1
p . Finally, each group element gwi of the

public parameters is mapped to a (k + 1) × (k + 1) matrix of group elements.
Our constructions employ an optimization that uses public parameter matri-

ces of size only (k + 1) × k, thereby reducing the public parameters and the
ciphertext size by a factor of k+1 (see Fig. 2). This is done by replacing the infor-
mation theoretic argument at the heart of the dual system encryption method-
ology (used to switch secret keys to semi-functional secret keys) with a compu-
tational argument. Similar techniques are used in [CW14,BKP14,AC16].

In [CGW15]:
wj → Wj ∈ Z

(k+1)×(k+1)
p

s → s ∈ Z
k
p, ri → ri ∈ Z

k
p

gs
p → [s�A�]1, hri

p → [Bri]2
g

wjs
p → [s�A�Wj ]1, h

wjri
p → [WjBri]2

In our work:
wj → Wj ∈ Z

(k+1)×k
p

s → s ∈ Z
k
p, ri → ri ∈ Z

k
p

gs
p → [s�A�]1, hri

p → [Bri]2
g

wjs
p → [s�A�Wj ]1, h

wjri
p → [WjBri]2

Fig. 2. A,B ∈ Z
(k+1)×k
p are k-Lin matrices, B ∈ Z

k×k
p denotes the k upper rows of B.

Tight Security Proof in the Multi-challenge Setting. The security definition of
public key encryption schemes typically involves a game where there is only
one challenge ciphertext, since this implies security of the scheme when mul-
tiple challenge ciphertexts are allowed to be requested via a standard hybrid
argument. However, using such an argument incurs a security loss that is pro-
portional to the number of challenge ciphertexts. This can be problematic since
real-life attacks might be performed on many challenge ciphertexts. In particu-
lar, for widely deployed schemes, the number of challenge ciphertexts can be as
large as 220, or even 230. A standard hybrid over the ciphertexts in the latter case
results in an increase in the size of the security parameter by 30 compared to the
setting where the adversary receives only one challenge ciphertext. For elliptic
curve groups eligible to instantiate our scheme in which the SXDH assumption
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is believed to hold, such an increase would translate to a 2 · 30 = 60 bit increase
in the size of each group element description. Thus, a tight security reduction
allows for shorter group element descriptions and increased efficiency. Finally,
note that the number of challenge ciphertexts can be unknown during the setup
phase, which means that a conservative estimate could assume it to be high dur-
ing security parameter calculation, thereby resulting in needlessly large group
elements used in the scheme. Tight security reductions avoid this problem by
allowing the security parameter to be set in a way that is independent of the
number of challenge ciphertexts.

To obtain a tightly secure construction, we slightly modify the prime-order
scheme mentioned above, so as to allow a different proof strategy. The modifi-
cation does not incur any increase in the ciphertext size for the most efficient
version of the scheme: when k = 1 and security holds under 1-Lin a.k.a. the SXDH
assumption. In general, the ciphertext size in the tightly secure scheme increases
by k − 1 group elements when security is based on k-Lin. In the tight-security
proof, we simultaneously switch all of the challenge ciphertexts to semi-functional
mode using the random self reducibility of the k-Lin assumption. Then, the high-
level proof structure is similar to that of previous scheme: we perform a hybrid
argument that switches each secret key one by one to a semi-functional version
(note that the number of secret keys is upper bounded by n, so this hybrid argu-
ment only incurs a security loss that is proportional to n, the number of users).
To switch the key sk� to semi-functional mode, we use entropy from the compo-
nent [W0r�]2 in the key sk� to obtain a new random semi-functional component
(the component γ�a⊥). Doing so requires analysis of the entropy of W0 leaked by
the public key and the challenge ciphertext(s). When there is only one challenge
ciphertext for some set of users Γ , the (non-tight) proof crucially relies on the
fact that � /∈ Γ for the challenge Γ , as required by the security game definition
and the fact that the adversary queried sk�. For the tight reduction, we have
many challenges Γi, so we must deal with potentially more information about
W0 leaked. In fact, this is not the case: the challenge ciphertexts for all sets Γi

queried to EncO do not leak more information about W0 than a single ciphertext
for the set

⋃
i Γi, which would be an allowed challenge query given the same set

of user keys. This allows us to reduce to the argument for the single-ciphertext
case.

1.4 Discussion

Prior to this work, it wasn’t clear what the bottleneck was in improving a broad-
cast encryption scheme with constant size secret keys and ciphertext overhead
based on q-type assumptions to being based only on static assumptions. More
specifically, one might ask: “What exactly is the use of q-type assumptions in
[BGW05] buying us?” Our work clarifies that the main bottleneck is to get to
linear-size public keys (and not constant-size secret keys or ciphertext overhead).
Indeed, as noted earlier, if we replace the ri, wi in the composite-order scheme
of Sect. 3 with powers of α (ri = αi, wi = αn−i+1), we can compress the public
parameters to linear size, and essentially recover the construction of [BGW05].
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That is, the role of the q-type assumption is to compress a quadratic number of
terms to linear. This is very different from the use of q-type assumptions in the
HIBE of [BBG05], for example, which were replaced with static assumptions by
[LW10] without a loss in asymptotic parameters.

2 Preliminaries

2.1 Notation

We denote by x ←R X the fact that x is picked uniformly at random from a
finite set X. By “PPT”, we denote a probabilistic polynomial-time algorithm.

2.2 Bilinear Groups

We instantiate both broadcast encryption schemes using asymmetric bilinear
groups. Let G be a probabilistic polynomial time (PPT) algorithm that on input
a security parameter 1λ returns an asymmetric bilinear group description G :=
(N,G1, G2, GT , e), where G1, G2 and GT are cyclic groups of order N , and
e : G1 × G2 → GT is a non-degenerate bilinear map. We require that the group
operations in G1, G2 and GT as well as the bilinear map e are computable in
deterministic polynomial time.

Composite-Order Groups. For the composite-order construction in Sect. 3, we
consider groups of order N = pq, where p, q are distinct primes of Θ(λ) bits, and
G1 = G,G2 = H are asymmetric groups. In this setting, we can write G = GpGq

and H = HpHq, where Gp, Gq,Hp,Hq are subgroups of the subscripted order.
In addition, we use G∗

s,H
∗
s to denote Gs \ {1},Hs \ {1}, where s ∈ {p, q}. We

will often use write gp, gq, hp, hq to denote random generators for the subgroup
Gp, Gq,Hp,Hq.

Prime-Order Groups. For the prime-order construction in Sect. 4, we consider
groups of order N = p for some prime p of Θ(λ) bits, where G1 and G2 are
possibly different groups (type 1, 2 or 3 pairing). We write g1, g2 to denote
random generators of G1 and G2 respectively, and gT := e(g1, g2), which is a
generator of GT . We use implicit representation of group elements: for a ∈ Zp,
define [a]s = ags ∈ Gs as the implicit representation of a in Gs, for s ∈ {1, 2, T}.
Given [a]1 and [b]2, one can efficiently compute [ab]T using the pairing e. For
two matrices A ∈ Z

�×m
p , B ∈ Z

m×n
p , define e([A]1, [B]2) := [AB]T ∈ G�×m

T .

2.3 Static Composite-Order Assumptions

The security of the composite-order scheme in Sect. 3 is proven under three
static assumptions in composite-order asymmetric bilinear groups. We define
the advantage functions referred to in the assumptions in Fig. 3.

Definition 1 (Composite-Order Static Decision Assumptions). We say
that the Static Decision Assumptions hold relative to G if for all PPT adversaries
A, the advantages AdvSD1

G,A (λ), AdvSD2
G,A (λ), and AdvSD3

G,A (λ) are negligible func-
tions in λ.
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AdvSD1
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp), gp ←R G∗
p, hp ←R H∗

p

and T0 := gs
p ←R Gp, T1 = gs

pgs′
q ←R GpGq

AdvSD2
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp, gs
pgs′

q , hα′
q ),

gp ←R G∗
p, hp ←R H∗

p , gs
pgs′

q ←R GpGq, hα′
q ←R Hq

and T0 := hz
p ←R Hp, T1 = hz

phz′
q ←R HpHq

AdvSD3
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp, gs
pgs′

q , hα
p hα′

q ),
gp ←R G∗

p, hp ←R H∗
p , gs

pgs′
q ←R GpGq, hα

p hα′
q ←R HpHq

and T0 := e(gp, hp)sα, T1 = X ←R GT

Fig. 3. Advantage functions

2.4 Matrix Diffie-Hellman Assumptions

The security of the prime-order scheme in Sect. 4 is proven under the Matrix
Decision Diffie-Hellman (MDDH) Assumption [EHK+13], whose definition we
recall here.

Definition 2 (Matrix Distribution). Let k, � ∈ N, with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem in Gs for s ∈ {1, 2, T}
is to distinguish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A ←R

D�,k, w ←R Z
k
p and u ←R Z

�
p.

Definition 3 (D�,k-Matrix Diffie-Hellman Assumption D�,k-MDDH). Let
D�,k be a matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-
MDDH) Assumption holds relative to G in Gs for s ∈ {1, 2, T} if for all PPT
adversaries A,

AdvMDDH
G,D�,k,A(λ) := |Pr[A(, [A]s, [Aw]s) = 1] − Pr[A(, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over ←R G(1λ), A ←R Dk,w ←R Z
k
p,u ←R Z

�
p.

For each k ≥ 1, [EHK+13] specifies distributions Lk, SCk, Ck (and others)
over Z

(k+1)×k
p such that the corresponding Dk-MDDH assumptions are gener-

ically secure in bilinear groups and form a hierarchy of increasingly weaker
assumptions. Lk-MDDH is the well known k-Linear Assumption k-Lin with 1-Lin
= DDH.
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Definition 4 (Uniform distribution). Let �, k ∈ N, with � > k. We denote
by U�,k the uniform distribution over all full-rank � × k matrices over Zp. Let
Uk := Uk+1,k.

Among all possible matrix distributions D�,k, the uniform matrix distribution
Uk is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH.
Lemma 1 (D�,k-MDDH ⇒ Uk-MDDH, [EHK+13]). Let D�,k be a matrix dis-
tribution. For any PPT adversary A, there exists an adversary B such that
T(B) ≈ T(A) and AdvMDDH

G,D�,k,A(λ) = AdvMDDH
G,Uk,B(λ).

Let Q ≥ 1. For W ←R Z
k×Q
p ,U ←R Z

�×Q
p , we consider the Q-fold D�,k-

MDDH Assumption in Gs for s ∈ {1, 2, T} which consists in distinguishing the
distributions ([A]s, [AW]s) from ([A]s, [U]s). That is, a challenge for the Q-fold
D�,k-MDDH Assumption consists of Q independent challenges of the D�,k-MDDH
Assumption (with the same A but different randomness w). In [EHK+13] it is
shown that the two problems are equivalent, where (for Q ≥ �−k) the reduction
loses a factor � − k.
Lemma 2 (Random self-reducibility of D�,k-MDDH, [EHK+13]). Let �, k,
Q ∈ N with � > k. For any PPT adversary A, there exists an adversary B such
that T(B) ≈ T(A) + Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-MDDH
G,D�,k,A(λ) ≤ (� − k) · AdvMDDH

G,D�,k,B(λ) +
1

p − 1

where AdvQ-MDDH
G,D�,k,A(λ) := |Pr[A(G, [A]s, [AW]s) = 1] − Pr[B(G, [A]s, [U]s) = 1]|

and the probability is over G ←R G(1λ), A ←R D�,k,W ←R Z
k×Q
p ,U ←R Z

�×Q
p .

2.5 Broadcast Encryption

A broadcast encryption scheme consists of three randomized algorithms
(Setup,Enc,Dec), along with a fourth deterministic procedure: KeyGen.
– Setup(1λ, 1n) → (pk,msk). The setup algorithm gets as input the security

parameter 1λ and the number of users 1n. It outputs the public parameters
pk and master secret key msk.

– KeyGen(msk, i) → ski. The key generation algorithm gets as input the master
secret key msk and an index i ∈ [n]. It (deterministically) outputs the secret
key for user i: ski.

– Enc(pk, Γ,M) → ctΓ . The encryption algorithm gets as input pk and a subset
Γ ⊆ [n]. It outputs a ciphertext ctΓ . Here, Γ is public given ctΓ .

– Dec(pk, ski, ctΓ ) → M . The decryption algorithm gets as input pk, ski, and
ctΓ . It outputs a message M .

Correctness. We require that for all Γ ⊆ [n], messages M , and i ∈ [n] for
which i ∈ Γ ,

Pr[ctΓ ← Enc(pk, Γ,M), ski ← KeyGen(msk, i);Dec(pk, ski, ctΓ ) = M ] = 1

where the probability is taken over (pk,msk) ← Setup(1λ, 1n) and the coins of
Enc.
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Security. For an adversary A, we define the advantage function

AdvBE
A (λ) :=

∣
∣
∣
∣ Pr
(b,pk,msk)←SetupO

[
b′ = b

∣
∣
∣ b′ ← AKeyGenO(·),EncO(·,·)(1λ)

]
− 1/2

∣
∣
∣
∣

where:

– SetupO samples (pk,msk) ←R Setup(1λ, 1n) and b ←R {0, 1}, and returns pk.
SetupO is called once at the beginning of the game.

– KeyGenO(i ∈ [n]) returns KeyGen(msk, i).
– If M0 and M1 are two messages of equal length, and Γ ⊂ [n], EncO(Γ,M0,M1)

returns Enc(pk, Γ,Mb).

with the restriction that for all queries i ∈ [n] that A makes to KeyGenO(·) and
all queries Γ ⊂ [n] to EncO satisfy i /∈ Γ (that is, ski does not decrypt ctΓ ).

Note that this definition allows the adversary to query EncO multiple times.
We call this the multi-challenge setting and say that a broadcast encryption

Setup(1λ, 1n):

G ←R G(1λ);gp ←R G∗
p, hp ←R H∗

p ; α, u ←R ZN ; {wi, ri ←R ZN}i∈[n]

Output pk = gp, gu
p , {gwi

p }i∈[n], {hri
p }i∈[n], {h

wirj
p }i�=j , e(gp, hp)α

)
and

msk = hp, α, u, {ri}∈[n]

)
.

KeyGen(msk, i ∈ [n])):
Output ski = hα+uri

p ∈ Hp.

Enc(pk, Γ ⊂ [n], M ∈ GT ):
s ←R ZN

C0 := gs
p; C1 := g

s

(
u+

∑
j �∈Γ

wj

)
p ; C2 := e(gp, hp)αs · M

Output ctΓ := (C0, C1, C2) ∈ G2
p × GT

Dec(ctΓ , ski):
Compute D0 = e((gs

p)
−1

︸ ︷︷ ︸
=C−1

0

, hα+uri
p︸ ︷︷ ︸
=ski

) = e(gp, hp)−sα−suri

Compute D1 = e(g
s

(
u+

∑
j �∈Γ

wj

)
p︸ ︷︷ ︸

=C1

, hri
p︸︷︷︸

from pk

) = e(gp, hp)
suri+s

∑
j �∈Γ

wjri

Compute D2 = e((gs
p)

−1

︸ ︷︷ ︸
=C−1

0

,
∏
j �∈Γ

h
wjri
p

︸ ︷︷ ︸
from pk

) = e(gp, hp)
−s

∑
j �∈Γ

wjri

Compute and output M = C2 · D0 · D1 · D2.

Fig. 4. BEcomposite, an adaptively secure broadcast encryption scheme based on
composite-order bilinear groups.
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scheme is adaptively secure in the multi-challenge setting if for all PPT adver-
saries A, AdvBE

A (λ) is a negligible function in λ.
If we only consider adversaries that query EncO once, we have the standard

notion of adaptive security. Namely, we say that a broadcast encryption scheme
is adaptively secure if for all PPT adversaries A that issue only one query to
Enc, AdvBE

A (λ) is a negligible function in λ.
Note that a scheme being adaptively secure implies that it is also adaptively

secure in the multi-challenge setting via a hybrid argument over the challenge
ciphertexts. However, this incurs a security loss proportional to the number of
challenge ciphertexts, In Sect. 5, we present a scheme with a tight reduction in
the multi-challenge security proof that avoids this loss.

3 Composite-Order Construction

Figure 4 shows our composite order construction. The security proof is given in
the full version of this paper [GKW18, Sect. 4].

Setup(1λ, 1n):

G ←R G(1λ);A ←R Dk; k ←R Z
k+1
p ; {Wi ←R Z

(k+1)×k
p , ri ←R Z

k
p}i∈[n]

Output pk :=
(
[A]1, [A�W0]1{[A�Wi]1, [ri]2}i∈[n], [A�k]T , {[Wjri]2}i,j∈[n],i�=j

)
and

msk := [k]2, {[W0ri]2}i∈[n]

)
.

KeyGen(msk, i ∈ [n])):

Output ski := [k+W0ri]2 ∈ G
(k+1)
2 .

Enc(pk, Γ ⊂ [n], M ∈ GT ):

s ←R Z
k
p

C0 := [s�A�]1; C1 := [s�A�(W0 +
∑

j /∈Γ �

Wj)]1; C2 := [s�A�k]T · M

Output ctΓ := (C0, C1, C2) ∈ G2k+1
1 × GT

Dec(ctΓ , ski): // ctΓ and ski implictly contain a description of Γ and i

Compute D0 = e([s�A�]1︸ ︷︷ ︸
=C0

, [k+W0ri]2︸ ︷︷ ︸
=ski

) = [s�A�k+ s�A�W0ri]T .

Compute D1 = e([s�A�(W0 +
∑
j /∈Γ

Wj)]1

︸ ︷︷ ︸
=C1

, [ri]2︸︷︷︸
∈pk

) = [s�A�W0ri + s�A�
∑
j /∈Γ

Wjri]T .

Compute D2 = e([s�A�]1︸ ︷︷ ︸
=C0

, [
∑
j /∈Γ

Wjri]2

︸ ︷︷ ︸
∈pk for i∈Γ

) = [s�A�
∑
j /∈Γ

Wjri]T .

Compute and output M = C2 · D0 · D−1
1 · D2

Fig. 5. BEprime, an adaptively secure broadcast encryption scheme based on prime-order
bilinear groups.
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4 Prime Order Construction

Our prime-order construction is detailed in Fig. 5. The security proof is given in
the full version of this paper [GKW18, Sect. 6].

5 Tightly Secure, Prime Order Construction

We give the description of our construction and its security proof in the full
version of this paper [GKW18, Sects. 7 and 8].
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broader reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 22

[CMM16b] Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter
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