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Abstract. Hash functions are one of the most important cryptographic
primitives, but their desired security properties have proven to be
remarkably hard to formalize. To prove the security of a protocol using a
hash function, nowadays often the random oracle model (ROM) is used
due to its simplicity and its strong security guarantees. Moreover, hash
function constructions are commonly proven to be secure by showing
them to be indifferentiable from a random oracle when using an ideal
compression function. However, it is well known that no hash function
realizes a random oracle and no real compression function realizes an
ideal one.

As an alternative to the ROM, Bellare et al. recently proposed the
notion of universal computational extractors (UCE). This notion for-
malizes that a family of functions “behaves like a random oracle” for
“real-world” protocols while avoiding the general impossibility results.
However, in contrast to the indifferentiability framework, UCE is for-
malized as a multi-stage game without clear composition guarantees.

As a first contribution, we introduce context-restricted indifferentia-
bility (CRI), a generalization of indifferentiability that allows us to model
that the random oracle does not compose generally but can only be used
within a well-specified set of protocols run by the honest parties, thereby
making the provided composition guarantees explicit. We then show that
UCE and its variants can be phrased as a special case of CRI. More-
over, we show how our notion of CRI leads to generalizations of UCE.
As a second contribution, we prove that the hash function constructed
by Merkle-Damg̊ad satisfies one of the well-known UCE variants, if we
assume that the compression function satisfies one of our generalizations
of UCE, basing the overall security on a plausible assumption. This result
further validates the Merkle-Damg̊ard construction and shows that UCE-
like assumptions can serve both as a valid reference point for modular
protocol analyses, as well as for the design of hash functions, linking
those two aspects in a framework with explicit composition guarantees.

1 Introduction

1.1 Motivation and Background

The random oracle model (ROM) [3] is an important tool towards establish-
ing confidence in the security of real-world cryptographic constructions. The
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paradigm can be described in two steps: first, to design a protocol and prove
it secure in the ROM, thus using a random oracle instead of a hash function;
second, to instantiate the random oracle with a cryptographic hash function.
However, it is well known [10] that no hash function realizes a random oracle;
hence, once the random oracle is instantiated the security proof degenerates to
a heuristic security argument.

The ROM is not only used as a model to prove protocols in, but it also
serves as a reference point for the designers of hash functions. The indifferentia-
bility framework [16], while being a general framework, is most famously used to
phrase the security obligation of a hash function construction: the hash function
is proven indifferentiable from a random oracle when using an ideal compression
function (e.g. a fixed input-length random oracle), thereby excluding attacks
exploiting the construction. Since indifferentiability is equipped with a composi-
tion theorem, this guarantee holds moreover irrespective of the context the hash
function is used in. However, just as no hash function can instantiate a ran-
dom oracle, no real compression function can instantiate the idealized version
assumed in the proof.

More recently, Bellare et al. [2] proposed the notion of universal computa-
tional extractors (UCE). This notion is based on the observation that for most
“real-world” protocols proven secure in the random oracle model, instantiating
the random oracle with a concrete hash function is not known to be insecure. The
UCE framework revisits the question of what it means for a hash functions to
“behave like a random oracle” and formalizes families of security notions aimed
at bridging the gap between the general impossibility result and the apparent
security of concrete protocols. So far, the research on the UCE framework has
mainly been focused on two aspects: first, studying in which applications the
ROM can be safely replaced by one of the UCE assumptions and, second, study-
ing which ones of the UCE assumptions are generally uninstantiable and which
one might actually be. Little attention, however, has been paid analyzing com-
mon hash function constructions within the UCE framework. Moreover, UCE is
formalized as a multi-stage game without clear composition guarantees, which
makes it therefore hard to directly apply as a modular step in an analysis of a
complex protocol.

1.2 Contributions

Our contributions are three-fold. First, we introduce a generalization of indiffer-
entiability called context-restricted indifferentiability (CRI). This generalization
allows us to model that a resource cannot be instantiated in every context but
only within a well-specified set of contexts. We then mainly apply the gen-
eral context-restricted indifferentiability framework to the random oracle, called
random-oracle context-restricted indifferentiability (RO-CRI) security.

Secondly, we show that every UCE-class, i.e., every variant of the original
UCE framework introduced by Bellare et al., can be expressed as a set of non-
interactive contexts in which the random oracle can be instantiated. Hence,
we prove that the UCE framework can be translated to RO-CRI and, thus, is
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essentially a special case of it. Thereby we propose an alternative interpretation
of the UCE framework in a traditional single-stage adversary model with well-
defined composition guarantees and provide a direct relation between the UCE
and the indifferentiability frameworks. In the full version [14] we furthermore
show how two of the generalizations of UCE can be expressed within RO-CRI
as well. Viewing UCE as a special case of CRI then allows us to generalize the
split-source UCE-class to non-interactive contexts and we propose in particular
a generalization that we call strong-split security.

Finally, we propose to consider CRI to analyze the security of common hash-
function constructions. In contrast to indifferentiability, CRI allows us to con-
sider more fine-grained versions of both the assumption on the compression func-
tion as well as the guarantee of the constructed hash function. As an example, we
investigate the split-security of the Merkle-Damg̊ard scheme using RO-CRI and
we prove that the constructed hash function is split-secure if the underlying com-
pression function is strong-split secure (as opposed to the usual much stronger
assumption of the compression function being a random function) if the hashed
message has a sufficient min-entropy density from the distinguisher’s point of
view. We thereby generalize a lemma on min-entropy splitting by Damg̊ard et
al., which we believe might be of independent interest.

1.3 Related Work

We discuss the relation between context-restricted indifferentiability and some
related notions, including variants of indifferentiability and UCE.

Variants of Indifferentiability. Several variants of indifferentiability have
been proposed in the past. The reset indifferentiability notion has been intro-
duced by Ristenpart, Shacham, and Shrimpton in [20] as a workaround to the
composition problems in multi-stage settings they highlighted. In [12], Demay
et al. gave an alternative interpretation of those shortcomings. They prove that
reset indifferentiability is equivalent to indifferentiability with stateless simula-
tors. Moreover, they introduce the notion of resource-restricted indifferentiabil-
ity, which makes the memory used in the simulator explicit in contrast to the
original definition which only requires this memory to be polynomially bounded.
In contrast to our CRI notion that weakens indifferentiability, those two vari-
ants are a strengthening, i.e., any statement in those frameworks implies the
traditional indifferentiability statement, but not vice-versa.

In [19], Mittelbach presents a condition called unsplittability on multi-stage
games, that allows to show that the composition theorem of indifferentiability
can be salvaged for iterative hash function constructions. They formalize a con-
dition that specifies certain multi-stage games, in which the random oracle can
be safely instantiated by an iterated hash function based on an idealized com-
pression function. In contrast, CRI formalizes in which single-stage settings a
hash function might be instantiable by an actual hash function, without hav-
ing to assume an unrealistically ideal compression function. Moreover, CRI is a
general paradigm that not only applies to iterative hash function constructions.
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Universal Computation Extractors and Variants Thereof. The UCE
framework was introduced by Bellare et al. [1] as a tool to provide a family of
notions of security for keyed hash functions, refining the predominant random
oracle methodology. Since then, the impossibility of various UCE-classes has
been shown by Brzuska et al. [6,8] and Bellare et al. [4], and the possibility
of a specific UCE-class in the standard model has been shown by Brzuska and
Mittelbach [7]. Bellare et al. [2] have also suggested to use the UCE framework
to study the domain extension of a finite input-length random oracle to a UCE
secure variable input-length random oracle. Their motivation is based on finding
more efficient constructions if they only require the UCE-security of the variable
input-length random oracle. In contrast, we consider the domain extension in a
setting where we also assume the compression function to be only UCE secure.

In [13], Farshim and Mittelbach introduced a generalization of UCE called
interactive computational extractors (ICE). Generalizing UCE to interactive sce-
narios is also one of our contributions. The generalization they propose and the
one we propose, however, differ on a very fundamental level and pursue different
directions. ICE makes the two stages of the original UCE definition symmetri-
cal where the two stages jointly form the queries, requiring that neither one of
them can predict the query. In contrast, we exactly use the asymmetry of UCE
to embed it in the traditional indifferentiability setting with one dishonest and
one honest party, where naturally the honest party knows the position where it
queries the hash function.

In [21], Soni and Tessaro introduce the notion of public-seed pseudoran-
dom permutations (psPRP) that are inspired by UCE. In fact, they introduce
a generalization of UCE, called public-seed pseudorandomness, of which both
psPRP and UCE are instantiations. For their psPRP notion they introduce the
unpredictability and reset-security notions analogous to UCE, and moreover they
study the relations between psPRP and UCE. In contrast to CRI, their defini-
tion is still purely game-based. In the full version [14], we show that CRI is a
strict generalization of their notion as well.

2 Preliminaries

2.1 The (Traditional) UCE Framework

To circumvent the well-known impossibility result that no hash function fam-
ily is indifferentiable from a random oracle, Bellare, Hoang, and Keelveedhi [2]
introduced the UCE framework to formalize a weaker version of what it means
for a family of keyed hash functions to behave like a random oracle. The UCE
framework defines a two-stage adversary, where only the first stage—the source
S—has access to the oracle (either the hash function or the random oracle)
and only the second stage—the distinguisher D—has access to the hash key hk.
The source provides some leakage L to the distinguisher that then decides with
which system the source interacted. The definition of the security game is pre-
sented in Algorithm 1. Here, H.Kg denotes the key-generation algorithm, H.Ev
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the deterministic evaluation algorithm, and l the output length associated with
the family of hash functions H.

Algorithm 1. The UCE game

function Main UCES,D
H (λ)

b
$← {0, 1}; hk

$← H.Kg(1λ)

L
$← SHash(1λ)

b′ $← D(1λ, hk, L)
return (b′ = b)

function Hash(x, 1l)
if T [x, l] = ⊥ then

if b = 1 then
T [x, l] ← H.Ev(1λ, hk, x, 1l)

else T [x, l]
$← {0, 1}l

return T [x, l]

Without any further restriction, this game is trivial to win: the source queries
some point x, obtains the result y, and then provides the tuple (x, y) as leakage
to the distinguisher which then decides whether y matches with the hash of
x. Therefore, in order for this definition to be meaningful, the leakage has to
be restricted in some sense, which gives rise to various UCE-classes depending
on the kind of restriction. The basic restriction proposed was that the queries
of the source S must be unpredictable given the leakage L. Both statistical
unpredictability as well as computational unpredictability have been proposed;
however, the latter has been shown to be impossible assuming iO exists [6].

2.2 Resources and Converters

The indifferentiability framework by Maurer, Renner, and Holenstein [16] is a
widely adopted framework to analyze and prove the security of hash function
constructions. The indifferentiability framework is a simulation-based framework
that uses the so-called “real world – ideal world” paradigm and formalizes secu-
rity guarantees as resources (analogous to functionalities in the Universal Com-
posability framework [9]). A resource S captures the idea of a module which
provides some well-defined functionality to the different parties–both the hon-
est and the dishonest ones–which can then be used in a higher level protocol.
A resource can either be something physically available, such as an insecure
communication network, or can be constructed from another resource R using
a cryptographic protocol π. In fact, the goal of the protocol π can be seen as
constructing the ideal resource S from the real one R assumed to be available.
The protocol is modeled as a converter that connects to the system R.

The indifferentiability framework formalizes this concept in a setting with
a single honest and a single dishonest party. In the following we give a brief
description of the system algebra used in this work. We basically follow the
contemporary notation of indifferentiability presented in [18], while sticking to
the original reducibility notion.

Formal Definitions. A resource is a system with two interfaces via which the
resource interacts with its environment. The (private) interface A and the (public)
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interface E can be thought as being assigned to an honest and a dishonest party,
respectively. Let Φ denote the set of resources. All resources in Φ are outbound
(as in the original version of indifferentiability) meaning that interaction at one
interface does not influence the other interface. If two resources V and W are used
in parallel, this is again a resource, denoted [V,W], where each of the interfaces
allows to access the corresponding interfaces of both subsystems. Moreover, we
assume the existence of a resource � ∈ Φ such that [R,�] = R for any R.

Converters are systems that can be connected to an interface of a resource
to translate the inputs and outputs. A converter has two interfaces: the outer
interface out that becomes the new interface of the resource, and the inner
interface in that is connected to the interface of the existing resource. Attaching
a converter π to a specific interface of a resource R yields another resource. We
understand the left and the right side of the symbol R as the interface A and E,
respectively; thus, attaching π at interface A is denoted πR and attaching it at
interface E is denoted Rπ. Let Σ denote the set of converters. Two converters φ
and ψ can be composed sequentially and in parallel: sequential composition is
denoted as φ ◦ ψ such that (φ ◦ ψ)R = φ(ψR) and parallel composition as [φ, ψ],
where [φ, ψ][R,S] = [φR, ψS]. Moreover, we assume the existence of an identity
converter id such that idR = R id = R.

Conventions for Describing Systems and Algorithms. We describe our systems
using pseudocode. The following conventions are used: We write x ← y for
assigning the value y to the variable x. For a finite set X , x

$← X denotes
assigning x uniformly at random a value in X . Furthermore, x

PX← X denotes
sampling x according to the indicated probability distribution PX over X .

Queries (also called inputs) to systems consist of a list of arguments, of which
the first one is a suggestive keyword. If the input consists only of the keyword
we omit the parenthesis, i.e., we write retrieve or (hash, x). When specifying
the domain of the inputs, we ignore the keyword and write (hash, x) ∈ X to
indicate x ∈ X . If a system outputs a value x at the interface named int, we
denote this “output x at int”. We generally assume that all resources reply
at the same interfaces they have been queried before processing any additional
queries. Therefore, if a converter outputs a query at its inside interface, we write
“let var denote the result” meaning that we wait for the value returned from
the connected system and then store it in the variable var.

2.3 Indifferentiability

In contrast to game-based security definitions, indifferentiability gives compos-
able security guarantees, i.e., the security guarantees obtained are not only with
respect to specific attack scenarios but with respect to all possible attacks. The
fundamental idea of composition is then to prove the construction of S from R in
isolation and be assured that in any higher level protocol φ making use of S, the
resource S can be replaced with R with the protocol applied, without degrading
the security of φ. The system S, while not existing in the real world, there-
fore serves as an abstraction boundary for the design of cryptographic schemes
(Fig. 1).
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π R S σ

Fig. 1. The real (left) and the ideal (right) setting considered in indifferentiability.
We depict resources using rectangular boxes and converters using rounded boxes. The
honest party’s interface is depicted on the left, and the dishonest’s on the right side.

Indifferentiability formalizes this by demanding that there exists an efficient
simulator σ, such that the real setting πR and the ideal setting Sσ are indistin-
guishable according to the following definitions.

Definition 1. The advantage of D in distinguishing R and S is defined as

ΔD(R,S) := Pr[DS = 1] − Pr[DR = 1],

where DS denotes the output of the distinguisher D when connected to the
resource S. The distinguisher thereby gets access to both interfaces of the resource
S. Moreover, let R ≈ S denote that ΔD(R,S) is negligible for every efficient D.

Definition 2 (Indifferentiability). Let R and S be 2-interface resources. S is
reducible to R by π ∈ Σ in the sense of indifferentiability (denoted R

π
==⇒ S),

if
R

π
==⇒ S :⇐⇒ ∃σ ∈ Σ : πR ≈ Sσ,

where we refer to π and σ as the protocol and the simulator, respectively.

The formalism of indifferentiability composes in the natural way under some
standard closure assumptions1 on the sets Σ and D of converters and distin-
guishers considered. First, if T is reducible to S and S is reducible to R, then T
is reducible to R by the composed protocol. Secondly, if S is reducible to R, then
for any resource U, [S,U] is reducible to [R,U]. More formally, for any resources
R, S, T, and U we have the following two conditions:

R
π1

==⇒ S ∧ S
π2

==⇒ T =⇒ R
π2◦π1
==⇒ T

R
π

==⇒ S =⇒ [R,U]
[π,id]
==⇒ [S,U].

3 Context-Restricted Indifferentiability

In this section we first revisit the motivation behind composable frameworks
such as the indifferentiability framework. To handle cases where fully compos-
able security is unachievable, we then introduce the notion of context-restricted
1 The set of distinguishers D needs to be closed under emulation of a resource and

converter. The set of converters needs to be closed under sequential composition and
parallel composition with the identity converter.
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indifferentiability, a single-stage security definition inspired by the original moti-
vation behind the UCE-framework. In fact, in the next section we then prove
that UCE can be seen as a special case of context-restricted indifferentiability.

3.1 The Limitations of General Composability

At the heart of every composable cryptographic framework, such as indifferentia-
bility, lies the concept of a resource (called functionality in the UC framework).
A resource S captures the idea of a module which provides some well-defined
functionality to the different parties–both the honest and the dishonest ones–
which can then be used in a higher level protocol. The goal of a protocol π is
then phrased as constructing the resource S from an assumed resource R and
the fundamental idea of composition is to prove the construction of S from R in
isolation and be assured that in any environment, the resource S can be replaced
with πR, without degrading the security. This allows for a modular approach,
since the construction of the resource S can be considered entirely independent
of its use.

The modular approach of indifferentiability, however, fails if we use a resource
S which cannot be reduced to any R available in the physical world, such as the
random oracle. Let PO denote a public random oracle resource, and HK a public
hash key resource. Then, the famous impossibility result [10] implies, that there
exists no deterministic and stateless protocol h, implementing a hash function,

such that HK
h

==⇒ PO, i.e., such that the hash function reduces the random
oracle to the public hash key.

Traditionally, such an impossibility result is circumvented by weakening the
guarantees S, and instead consider a restricted variant S′. However, for the ran-
dom oracle, and many other examples, no such natural weakened version exists.
As a second approach, one can restrict the class of distinguishers allowed. The
UCE framework is such an approach. Unless there is an application scenario
where one can justify such a restricted attacker, this approach leads, however,
to security definitions without evident semantics. The original motivation of the
UCE framework, though, has not been to consider restricted adversaries but to
phrase that, in contrast to the impossibility results, real-world protocols use the
random oracle in “sensible” ways. In the following, we turn this motivation into
a third approach: We restrict composition in a well-defined way. If there is a
resource S that cannot be reduced to a resource R in all contexts, we propose to
make explicit in which contexts one can do it.

3.2 Context-Restriction

In this section we formally define the idea of restricting composition. In order to
do so, we define a context in which we allow the resource S to be used. A context
consists of an auxiliary parallel resource P and some converter f applied by the
honest party. We usually call this converter f a filter to indicate that its goal is to
restrict the access to the resource S. To obtain general statements, we consider
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a set of contexts instead of a single one. This set should be general enough to
capture many application scenarios but avoid those for which the impossibility
is known.

Definition 3. A context set C is a subset of Σ × Φ, where Σ denotes the set of
all converters and Φ denotes the set of all resources.

Recall that our goal is to make a modular statement: reducing S to another
resource R in each of these contexts in C, i.e., finding a single resource R and pro-
tocol π such that πR can instantiate S in each of these contexts in C. Therefore,
the same context appears in both the real and the ideal setting. See Fig. 2 for an
illustration of the distinction problem when fixing a specific context. Quantifying
over all contexts of a set leads to the following definition of context-restricted
indifferentiability.

f

π R

P

f

S

P

σ

Fig. 2. The real (left) and the ideal (right) setting considered in context-restricted
indifferentiability for a specific context (f,P) consisting of the filter f and the auxiliary
parallel resource P.

Definition 4. Let C ⊆ Σ × Φ be a given set of contexts, and let R and S be
2-interface resources. We define S to be C-restricted reducible to R by π ∈ Σ in

the sense of indifferentiability (denoted R
π,C

==⇒
cr

S), as

R
π,C

==⇒
cr

S :⇐⇒ ∀(f,P) ∈ C ∃σ ∈ Σ : f[πR,P] ≈ f[S,P]σ

and refer to the converters π and σ as the protocol and the simulator, respectively.

3.3 Composition

Composability generally refers to the property of a framework that from one, or
multiple, given statements, new ones can be automatically deduced in a sound
way without having to reprove them. More concretely, in CRI we are interested
in deducing new reducibility statements from given ones. Using the abstract alge-
braic approach of constructive cryptography [15,17], such composition properties
are usually consequences of composition-order invariance, a natural associativity
property stating that the order in which we connect systems is irrelevant.

Before stating the composition theorem, we first observe that when a resource
S is reduced to R in a context (f,P), the overall environment of S actually consists
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of both (f,P) and the distinguisher. Especially, if S can be reduced to R within
(f,P), so can it within (f′ ◦ f, [P,P′]), as f′ and P′ can be absorbed into the
distinguisher. This leads to the following closure operation on context sets.

Definition 5. Let C ⊆ Σ×Φ be a given set of contexts. We denote by C ⊆ Σ×Φ
the following set of contexts:

C := {(f,P) ∈ Σ × Φ | ∃(g,Q) ∈ C ∃h ∈ Σ ∃U ∈ Φ : h ◦ g = f ∧ [Q,U] = P}.

The following proposition is proven in the full version of this work [14].

Proposition 1. Let R,S ∈ Φ denote resources, π ∈ Σ denote a converter, and

let C denote a set of contexts. We then have R
π,C

==⇒
cr

S ⇐⇒ R
π,C

==⇒
cr

S.

Finally, the composition theorem of CRI can be stated.

Theorem 1. Let R, S, T, and U denote resources, let π1 and π2 denote protocols,
and C1 and C2 contexts sets. We have

R
π1 ,C1
==⇒
cr

S ∧ S
π2 ,C2
==⇒
cr

T =⇒ R
π2◦π1,C2
==⇒
cr

T,

iff for all (f,P) ∈ C2 it holds that (f ◦ [π2, id],P) ∈ C1. Moreover, we have

R
π1,C1
==⇒
cr

S =⇒ [R,U]
π1,C2
==⇒
cr

[S,U],

iff for all (f,P) ∈ C2 it holds that (f, [U,P]) ∈ C1.

The proof can be found in the full version [14]. Note that the additional
conditions compared to the composition theorem of classical indifferentiability
(cf. Sect. 2.3) are a direct consequence of the context restrictions. For instance,
if in the sequential case we reduce T to S in one of the given contexts, we have
to ensure that now we are again in a valid context for reducing S to R. This
highlights that in order for context-restricted indifferentiability to be useful, the
context sets have to be defined in a form that containment can be easily verified.

3.4 Relation to Indifferentiability

Let id denote the identity converter, such that idR = R and � the neutral
resource, such that [R,�] = R, for any resource R. It is then easy to see that
regular indifferentiability, which guarantees full composition, is a special case of
context-restricted indifferentiability with the context set Cid := {(id,�)}, since
Cid = Σ × Φ, i.e., the closure equals to the set of all resources and converters.
One can, however, also take the opposite point of view and consider context-
restricted indifferentiability to be a special case of plain indifferentiability. From
this perspective, CRI reducibility is just a set of normal reducibility statements
where the context is part of the considered resources and protocols, respectively.
This can be summarized in the following proposition.
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Proposition 2. Let Cid := {(id,�)}. For all resources R, S, protocol π, and
context sets C ⊆ Σ × Φ, we have

R
π

==⇒ S ⇐⇒ R
π,Cid
==⇒
cr

S,

R
π,C

==⇒
cr

S ⇐⇒ ∀(f,P) ∈ C : [R,P]
f◦[π,id]
==⇒ f [S,P].

Using Cid = Σ × Φ, it is also easy to see that the composition theorem of
regular indifferentiability is just a special case of Theorem1.

4 Generalizing UCE Using CRI

In the following section we consider the ROM in context-restricted indifferen-
tiability, i.e., consider the special case of CRI where the ideal-world resource S
that we reduce is a random oracle. In the first subsection we prove that the UCE
framework is actually a special case of CRI with a random oracle, and in the
second subsection we propose a generalization of the split-security UCE-class
based on CRI.

4.1 Modeling UCE in CRI

In the following, let H : H.K × H.X → H.Y denote a keyed hash function, let
HKH denote the public hash-key resource that chooses a key for H and outputs it
at both interfaces, let hashH denote the converter that implements an oracle for
H at the outside interface when connected to HKH at the inside interface, and
let H := hashHHKH as a shorthand. Finally, let ROH denote the private random
oracle resource with the same input and output domains as H, where by private
we mean that this resource only accepts queries at interface A.2

We now present an alternative formalization of UCE based on context-
restricted indifferentiability, more concretely that every possible UCE-class Sx,
where x ∈ {sup, cup, srs, crs, splt, . . .}, can be mapped to a set of contexts Cx

for which the UCE statement implies the context-restricted indifferentiability

statement HKH

hashH,C
==⇒
cr

RO, and moreover, if the CRI statement were restricted
to a specific simulator, the reverse direction would hold as well.

In order to map every UCE-class to an equivalent set of contexts, we first
introduce the set of non-interactive contexts, i.e., the communication between the
source and the distinguisher being unidirectional. This restricted set of contexts
faithfully encodes the structural restrictions of the traditional UCE game (cf.
p. 5), where the communication between the source and the distinguisher is
unidirectional. Recall that we are in the same general setting as the classical
indifferentiability framework, where one only considers out-bound resources for
which communication at one interface does not affect the other interface.
2 The choice to consider a private random oracle stems from the fact that in the UCE

framework the hash key is just chosen uniformly at random instead of allowing an
arbitrary efficient simulator with access to the random oracle to generate this key.
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H

f

hashH HKH

P

f

ROH

P

σ

Fig. 3. The real (left) and the ideal (right) setting of context-restricted indifferentia-
bility when applied to UCE.

Definition 6. A non-interactive resource P is a resource that at the interface
E accepts at most a single trigger query (usually called retrieve), and a non-
interactive filter is a converter that at the outer interface just accepts a sin-
gle trigger query (usually called retrieve). Let Φni denote the set of all non-
interactive resources, and Σni denote the set of all non-interactive filters, respec-
tively.

Each UCE-source naturally corresponds to a set of non-interactive contexts.
This is formally stated in the following lemma by providing a surjective mapping
from the set of non-interactive contexts to the set of UCE sources S.

Lemma 1. The function φ : Σni ×Φni → S that maps every context (f,P) to the
following UCE source S, that internally emulates f and P, is surjective.

1. S queries the interface E of P to obtain z.
2. S queries the outside interface of the filter f to obtain y. The queries at the

inside interface of f are forwarded to the resource P or output as queries to
the hash oracle, respectively.

3. S outputs L = (y, z).

We now show, that for the specific simulator σH that chooses the hash key
uniformly at random, the distinguishing problem of context-restricted indiffer-
entiability for a fixed context (f,P) is as hard as the UCE game with the source
φ(f,P). In order to relate more directly to the traditional UCE definition, we
first introduce the RO-CRI advantage, which is depicted in Fig. 3 for a specific
context (f,P) ∈ C.

Definition 7. We define the random-oracle context-restricted indifferentiabil-
ity (RO-CRI) advantage of a distinguisher D on a hash function H in a context
(f,P) as

AdvRO-CRI
H,f,P,σ (D) := ΔD(f[H,P], f[ROH,P]σ),

for a simulator σ. If there exists a simulator σ such that for all efficient distin-
guishers and all contexts (f,P) ∈ C, the RO-CRI advantage is negligible, we say
that H is C random-oracle context-restricted indifferentiable.

The following lemma implies that for non-interactive contexts this definition
is equivalent to the game-based definition of UCE-security, if we fix the simulator
to σH. The proof can be found in the full version of this work [14].



Combining UCE and Indifferentiability 95

Lemma 2. Let S denote the set of all UCE-sources and φ : Σni × Φni → S the
surjective function from Lemma1. For every distinguisher D, there is a distin-
guisher D′ (with essentially the same efficiency) with

∀(f,P) ∈ Σni × Φni : AdvRO-CRI
H,f,P,σH

(D) = Advuce
H,φ(f,P),D′ ,

where Advuce
H,S,D denotes the uce-advantage of (S,D) on H. Conversely, for

every distinguisher D′ there is an equally efficient distinguisher D such that for
all (f,P) ∈ Σni × Φni we have Advuce

H,φ(f,P),D′ = AdvRO-CRI
H,f,P,σH

(D).

We now state the main result of this section, relating the UCE game to
context-restricted indifferentiability. It implies that instead of viewing the source
as the first stage of an adversary, one can view it as the set of contexts in which
the hash function can safely be used.

Theorem 2. Let D denote the set of all efficient distinguishers. For every class
Sx of UCE sources, there exists a set of contexts Cx such that AdvRO-CRI

H,f,P,σH
(D)

is negligible for every D ∈ D and every context (f,P) ∈ Cx if and only if
Advuce

H,S,D(·) is negligible for all (S,D) ∈ Sx × D.

Proof. Using the surjectivity of φ (Lemma 1), we have that for any UCE-class
Sx we can define Cx := φ−1(Sx) such that φ(Cx) = Sx. Hence, by Lemma 2 we
have that AdvRO-CRI

H,f,P,σH
(D) is negligible for all efficient distinguishers D ∈ D and

all contexts (f,P) ∈ Cx iff Advuce
H,S,D(·) is negligible for all (S,D) ∈ Sx × D.

The following corollary establishes the unidirectional implication from UCE-
security to context-restricted indifferentiability. The reverse direction does not
necessarily hold, since the context-restricted indifferentiability notion allows for
different simulators than the natural one σH.

Corollary 1. Let D denote the set of all efficient distinguishers. For every class
Sx of UCE sources, there exists a set of contexts Cx such that if Advuce

H,S,D(·) is

negligible for all (S,D) ∈ Sx × D, then HKH

hashH,Cx

==⇒
cr

ROH.

Proof. This follows directly from Definitions 4 and 7 and Theorem 2.

4.2 Generalizing Split Security

In this section, we present a generalization of the split-source UCE-class, that
cannot be formalized in plain UCE, based on CRI. The split-source UCE-class
has been proposed by Bellare et al. after it has been shown that computational-
unpredictable UCE-security and computational-reset-secure UCE-security is
infeasible if indistinguishability obfuscation exists. Note that split-security is
not a stand-alone UCE-class in the sense that it is designed to be combined with
either computational unpredictability or reset-security, respectively.

The general idea of split-security is, that the source must not be able to
compute Obfs(H( · , x) = y). To achieve this, the source must be dividable into
two parts (S0, S1), where S0 chooses a vector (x1, . . . , xn) of query points, with-
out having access to the hash oracle, and S1 then just gets the evaluations
yi := Hash(xi), without having access to the hash oracle either.
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Strong-Split Security. Split sources have several limitations. First, the dis-
tinguisher cannot influence the queries at all and, thus, all queries must be
solely determined by the honest parties. This prevents, for example, queries like
H(hk, x ‖ a) where a is a value which can be chosen by the distinguisher (e.g.
a is transmitted over an insecure channel) even if x is unpredictable. In the
following section, we introduce a generalization of split-security, called strong-
split security, to address this limitation. Second, split-security does not allow
nested queries like H(hk,H(hk, x)). In the full version [14] we present a further
generalization to address this issue as well.

Remark 1. Note that the first limitation is not specific to split-security, but is
inherent to the traditional UCE-game. In their work [13] on Interactive Compu-
tational Extractors (ICEs), Farshim and Mittelbach have proposed an alternative
relaxation of this issue. In the full version [14], we show that ICE security implies
strong-split context-restricted indifferentiability for statistical unpredictability.

In order to allow the distinguisher to influence the queries while ensuring that
the overall query is still unpredictable from the viewpoint of the distinguisher, we
allow him to apply any injective function on the preliminary inputs x specified by
the first part of the source S0, which will then be evaluated and passed on to S1.
That is, we use the simple fact that for any injective function f guessing f(xi) is
at least as hard as guessing xi. To formally model this as a context set for RO-
CRI, we use a specific filter fs−splt

p . This filter expects the resource P to output
a sequence of pairs (xi, ai), where xi is intended to be unpredictable. We will
call such a resource P seed in the following. For each of them the distinguisher
can then input p functions f1

i , . . . , fp
i that are injective in the first arguments,

upon which the filter will output (f1
i (xi, ai), . . . , f

p
i (xi, ai)) to the hash oracle

and forwards the results to the distinguisher. A formal definition of is depicted in
Fig. 4. The filter fs−splt

p can then be combined with an arbitrary non-interactive
resource to obtain a strong-split RO-CRI context.

Definition 8. The strong-split RO-CRI context set is the set of filters and non-
interactive resource pairs of which the filter can be factorized into fs−splt

p followed
by an arbitrary filter. Formally,

Cs−splt
p := {f ◦ fs−splt

p | f ∈ Σ} × Φni.

Analogous to split-security, strong-split security is not a sufficient restric-
tion to avoid trivial impossibility results. Rather, these notions are meant to
be combined with a notion of unpredictability or reset-security. However, for
strong-split security, requiring the seed to output distinct unpredictable values
is still insufficient to guarantee the security: for instance, if the resource P out-
puts (x, a1) and (x + 1, a2), then the distinguisher can easily choose f and g
such that f(x, a1) = g(x + 1, a2). Therefore, we introduce suitable notion of
unpredictability in the next subsection, which when combined with strong-split
security presents a plausible assumption for a hash function family.
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Fig. 4. The strong-split filter fs−splt
p for RO-CRI, where IX×A→H.X denotes the set of

all efficiently computable functions from X × A to H.X that are injective in the first
argument. Note that it was pointed out in [7] that the queries of a split-source must
be distinct; otherwise arbitrary information can be communicated to the second stage.

Strict Min-Entropy Seeds. We now define an information-theoretic restric-
tion on the seed called strict min-entropy seeds. Similar to Farshim and Mit-
telbach [13] we choose to focus on statistical rather than computational unpre-
dictability to ensure that our notion excludes interactive version of the attack
highlighted in [6].3 More concretely, we consider seeds whose outputs at inter-
face A consist of pairs (Xi, Ai), with Ai being an auxiliary value, such that Xi

has high average conditional min-entropy given the leakage Z and all previous
queries.

Definition 9. A strict min-entropy k-bit seed with n outputs is a resource that
initially draws random values X1, . . . , Xn, A1, . . . , An, and Z according to some
joint distribution, such that

∀i ≤ n : H̃∞
(
Xi

∣
∣{Xj}j<i, {Aj}j≤i, Z

) ≥ k.

Then, it accepts at the interface E a single trigger query (usually called retrieve)
that is answered with Z, and at the interface A n trigger queries answered with
(X1, A1) to (Xn, An). Let Φs−me

n,k ⊂ Φni denote the set of all strict min-entropy
k-bit seed with n outputs. Moreover, let Cs−me

n,k := Σ ×Φs−me
n,k denote the set of all

strict min-entropy k-bit contexts.

When combining stong-split security with strict min-entropy seeds, the secu-
rity of strong-split sources does not depend on the maximal number n of values
3 We would like to stress that while split-security was originally introduced for the

computational setting, it is still a natural class to consider even when combined
with a statistical unpredictability notion.
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produced by the seed. The following lemma is proven in the full version [14],
using a simple hybrid-argument.

Lemma 3. Let n be polynomially bounded. If H is a Cs−splt
p ∩ Cs−me

1,k indifferen-
tiable hash function, then H is also Cs−splt

p ∩ Cs−me
n,k indifferentiable.

5 Split Security of the Merkle-Damg̊ard Construction

Indifferentiability is widely used to prove the security of hash function construc-
tions. Since CRI is essentially a refined version of indifferentiability, it is hence
natural to consider the RO-CRI security as well. It is easy to show that any
indifferentiable hash function construction is reset-UCE secure if the underlying
compression function is reset-UCE secure. On the other hand, for split security
no corresponding result has been proven so far. In the following we investigate
the split-security of the Merkle-Damg̊ard construction using the RO-CRI frame-
work. While ideally one could prove that the Merkle-Damg̊ard construction is
split secure if the compression function is so, or that the Merkle-Damg̊ard con-
struction is strong-split secure if the compression function is so, we will prove a
slightly weaker result:

Consider the Merkle-Damg̊ard construction that splits the message into blocks
of length m. We show that the Merkle-Damg̊ard construction is split-secure for
inputs having at least one block with k bits of min-entropy, if the compression
function is strong-split secure for inputs with min(k,m) bits of min-entropy.

In contrast to the definition of strict min-entropy seeds (c.f. Definition 9) we
require that at least one of the blocks has high min-entropy and not just the
overall message has. Moreover, in order for the proof to actually work, we require
that this block has k bits of min-entropy given all subsequent blocks. In Lemma4
we then show that having a high min-entropy density, i.e., the fraction between
the min-entropy and the message length, is a sufficient criteria for this. First,
however, let us formally introduce this CRI context set.

Definition 10. For a block length 	 ∈ N+, let Pad� denote the usual padding
scheme of the Merkle-Damg̊ard scheme, that is Pad� : {0, 1}∗ → ({0, 1}�)+ that
pads a message x by first appending zeros up to a multiple of the block length 	,
and then appending an encoding of the number of zeros appended as a last block.
Moreover, for X ∈ {0, 1}∗, we denote by Xi the i-th block of Pad�(X).

Definition 11. A non-interactive resource is said to be a k out of 	-bit strict
min-entropy block, denoted P ∈ Φme−blk

k,�,b,n , if P ∈ Φs−me
k,n with

⋃
i≤(b−1)�{0, 1}i × A

as the output domain of interface A, and there exist random variables C1, . . . , Cn

such that Ci ∈ {1, . . . , |Pad�(Xi)|
� } and

∀i ≤ n : H̃∞(XCi
i

∣
∣{Xj

i }j>Ci
, {Xj}j<i, {Cj}j≤i, {Aj}j≤i, Z) ≥ k.

Moreover, let Cme−blk
k,�,b,n := Σ × Φme−blk

k,�,b,n .
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Note, that contrary to the classical indifferentiability of the Merkle-Damg̊ard
construction, we do not require Pad to be prefix-free: when combined with the
strict min-entropy condition H(X) cannot be extended to H(Pad(X)||Y ), as
for Pad(X)||Y having high min-entropy given X, Y must have so, and thereby
the well-known length-extension attack is excluded. Whether a more advanced
construction with a finalization function, e.g. HMAC, could be proven secure for
a more relaxed context set remains an interesting open problem. We now phrase
our main result of this section; the proof can be found in the full version [14].

Theorem 3. Let h : {0, 1}m+� → {0, 1}m denote a fixed input-length compres-
sion function, H : {0, 1}∗ → {0, 1}m denote the hash function obtained by first
padding the message using Pad� and then applying the Merkle-Damg̊ard scheme
using h, and let k′ := min(k,m). Then, if h is Cs−splt

1 ∩ Cs−me
1,k′ RO-CRI secure,

then H is Csplt ∩ Cme−blk
k,�,b,n RO-CRI secure for any polynomial b and n.

To conclude this section, we now present a sufficient condition for a seed
to satisfy Definition 11 based on the length of the message and its overall min-
entropy. More concretely, we prove that if a message is split into b blocks of
size n, and has overall min-entropy of k bits, then there exists a block with
k
b − log2(b) bits of min-entropy, given all succeeding blocks. In order to more
closely resembles the chain rule of Shannon entropy, the proposition is stated
with conditioning on all preceding message X1 . . . XC−1 instead of all succeeding
ones. The converse result can easily be obtained by simply relabeling the blocks.
The proof can be found in the full version of this work [14].

Lemma 4. Let X1, . . . , Xb and Z be random variables (over possibly different
alphabets) with H̃∞(X1 . . . Xb | Z) ≥ k. Then, there exists a random variable C
over the set {1, . . . , b} such that H̃∞(XC | X1 . . . XC−1CZ) ≥ k/b − log2(b).

This lemma is a generalization of the randomized chain rule proven by the
authors of [11] (similar variants exists also in [5,22]) stating that there exists a
binary random variable C such that H∞(X1−CC) ≥ H∞(X0X1)/2. Note that
the main difference of our result is, that it conditions on all previous blocks,
i.e., it essentially represents the min-entropy equivalence of the strong chain rule
H(X0) + H(X1 | X0) = H(X0X1) instead of H(X0) + H(X1) ≥ H(X0X1).
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