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Abstract. We propose new constructions for identity-based broadcast
encryption (IBBE) and fuzzy identity-based encryption (FIBE) in bilin-
ear groups of composite order. Our starting point is the IBBE scheme
of Delerablée (Asiacrypt 2007) and the FIBE scheme of Herranz et
al. (PKC 2010) proven secure under parameterised assumptions called
generalised decisional bilinear Diffie-Hellman (GDDHE) and augmented
multi-sequence of exponents Diffie-Hellman (aMSE-DDH) respectively.
The two schemes are described in the prime-order pairing group. We
transform the schemes into the setting of (symmetric) composite-order
groups and prove security from two static assumptions (subgroup deci-
sion).

The Déjà Q framework of Chase et al. (Asiacrypt 2016) is known to
cover a large class of parameterised assumptions (dubbed über assump-
tion), that is, these assumptions, when defined in asymmetric composite-
order groups, are implied by subgroup decision assumptions in the under-
lying composite-order groups. We argue that the GDDHE and aMSE-
DDH assumptions are not covered by the Déjà Q über assumption
framework. We therefore work out direct security reductions for the
two schemes based on subgroup decision assumptions. Furthermore, our
proofs involve novel extensions of Déjà Q techniques of Wee (TCC 2016-
A) and Chase et al.

Our constructions have constant-size ciphertexts. The IBBE has
constant-size keys as well and guarantees stronger security as compared
to Delerablée’s IBBE, thus making it the first compact IBBE known to
be selectively secure without random oracles under simple assumptions.
The fuzzy IBE scheme is the first to simultaneously feature constant-size
ciphertexts and security under standard assumptions.
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1 Introduction

Identity-based encryption (IBE) [55] is a public-key paradigm where users’ pri-
vate keys are generated by trusted authorities and derived from some easy-to-
remember string (like an email address) that serves as a public key so as to
simplify key management. Attribute-based encryption (ABE) [36,54] is a pow-
erful extension of IBE where ciphertexts are labeled with a set of descriptive
attributes (e.g., “hiring committee”, “admin”, . . . ) in such a way that decryp-
tion works whenever these attributes satisfy an access policy which is hard-coded
in the decryption key.

Functional encryption (FE) [15,54] is an extreme generalization of IBE, where
a master private key SK allows deriving sub-keys SKF associated with functions
F . Given an encryption C of a message X, a sub-key SKF allows computing
F (X) while revealing nothing else about X. The message X = (ind,M) usually
consists of an index ind, which is essentially a set of attributes, and a message M ,
which is sometimes called “payload”. While the latter is always computationally
hidden, the index ind of a ciphertext may be public or private. Not surprisingly,
schemes in the public index setting tend to be significantly more efficient in
terms of ciphertext and key sizes.

In the private-index setting, anonymous IBE [10,17] is an example of func-
tional encryption for the equality testing functionality. In the public [36,54] and
private-index [39] cases, ABE can be cast as another particular flavour of FE,
where private keys are associated with expressive access policies. These primi-
tives provide fine-grained access control [54] or privacy-preserving searches over
encrypted data [1,10]. In its key-policy (KP-ABE) flavour, ABE involves private
keys associated with a possibly complex Boolean expression F and, if the cipher-
text encrypts the message X = (ind,M), the private key SKF reveals M if and
only if F (ind) = 1. Ciphertext-policy ABE (CP-ABE) schemes proceed the other
way around: ciphertexts are labeled with a policy F ; private keys are associated
with an attribute set ind and decryption succeeds whenever F (ind) = 1.

The usual “collusion-resistance” requirement captures the intuition that no
collection of private keys should make it possible to decrypt a ciphertext that
none of these keys can individually decrypt. While properly defining the security
of FE turns out to be non-trivial [15], the literature usually distinguishes selective
adversaries [18] – that have to declare the index of the challenge ciphertext ind�

upfront (even before seeing the master public key) – from adaptive adversaries,
which can choose ind� after having made a number of private key queries for
functions of their choice.

In terms of expressiveness, a major challenge is certainly to efficiently eval-
uate any polynomial-time-computable function F over encrypted data. While
theoretical solutions achieve this goal using the obfuscation machinery [32], prac-
tical instantiations of functional encryption are only known for very restricted
classes of functions (such as IBE [11,58] or ABE [39]) for the time being.

Even for particular functionalities and selective adversaries, proving security
is challenging when we seek to optimise the size of ciphertexts and keys. For
example, squeezing many attributes in the same ciphertext component often



Compact IBBE and Fuzzy IBE from Simple Assumptions 565

comes at the price of larger private keys [4,6] or security proofs under fancy
q-type assumptions [9,13] (or both). Likewise, short private keys and public
parameters [40,51] often entail strong, variable-size assumptions. Eventually,
constant-size ciphertexts or keys (“constant” meaning that it only depends on
the security parameter and not on the number of adversarial queries or features
of the system) often translate into non-constant-size assumptions. In some sit-
uations, information theoretic arguments [31] even rule out the possibility of
simultaneously achieving constant-size ciphertexts and keys, no matter which
assumption is considered.

Here, we restrict ourselves to specific functionalities for which we are inter-
ested in proving the security of compact schemes under well-studied, constant-
size assumptions. By “compact”, we mean that ciphertexts can be comprised of
a constant number of group elements – no matter how many attributes or users
are associated with them – without inflating the private key size. In particular,
private keys should be no longer than in realisations of the same functionality
without short ciphertexts. Finally, we aim at avoiding the caveat of relying on
variable-size, q-type assumptions, which should notoriously be used with cau-
tion [24].

We achieve this goal for two natural extensions of IBE, which are known
as identity-based broadcast encryption (IBBE) [2,52] and fuzzy identity-based
encryption (FIBE) [54]. In the former, ciphertexts are encrypted for a list of
identities. The latter is an ABE for policies consisting of a single threshold gate:
i.e., ciphertexts and private keys both correspond to a set of attributes and
decryption succeeds whenever the two sets have a sufficiently large intersection.
In fact, IBBE and FIBE can both be seen as special cases of CP-ABE for policies
consisting of a single gate: an IBBE is nothing but a CP-ABE for one OR gate,
which is implied by FIBE for 1-out-of-n gates. However, considering the two
primitives separately allows obtaining shorter private keys in the IBBE case.

1.1 Our Contribution

We describe the first IBBE system with a security proof under constant-size
assumptions and that simultaneously features constant-size ciphertexts and pri-
vate keys. In our scheme, only the size of public parameters depends on the
maximal number n of receivers per ciphertext. Users’ private keys only consist
of a single(!) group element while ciphertexts are only longer than plaintexts by 2
elements of a composite-order group. We prove selective security in the standard
model under subgroup assumptions [42] in bilinear groups of order N = p1p2p3.
In comparison, all earlier IBBE realisations with short ciphertexts either incur
O(n)-size private keys [2,5,14,47] or combine the random oracle model [8] with
very ad hoc assumptions [26,52] tailored to the result to be proved.

As a second contribution, we extend our IBBE scheme into a fuzzy IBE
system with O(1)-size ciphertexts and private keys made of O(�) group elements,
where � is the maximal number of attributes per identity. Our FIBE scheme
thus asymptotically achieves the same private key size as [54] with the benefit of
constant-size ciphertexts, regardless of the number of ciphertext attributes. In
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contrast, except [37], previously known KP-ABE systems with short ciphertexts
either inflate private keys by a factor O(�) [6,7,47,49] or are restricted to small
attribute universes [38].

While our constructions rely on composite order groups where pairings are
rather expensive to compute [30], they only require two pairing evaluations on
behalf of the receiver (and no pairing on the sender’s side). Our schemes are
proved selectively secure using the Déjà Q technique of Chase and Meiklejohn
[22], which was re-used by Wee [62] and refined by Chase et al. [23]. A detailed
comparison is shown in Table 1. See the full paper [33] for more discussion.

Table 1. Comparison among compact IBBE and FIBE. For IBBE, n is the maximum
number of recipients; for FIBE, n is the maximum size of attribute set and τ is the
threshold. We use notations—CT: ciphertext; SK: secret key; #dec: cost of decryption;
GN : symmetric pairing group with composite order N ; G1, G2: source groups of an
asymmetric pairing group of prime order p; [P]: a pairing operation; [M]: scalar multi-
plication on source groups; aID: adaptive/full security; sID: selective security; na-sID:
selective security with non-adaptive key extraction queries; saID: semi-adaptive secu-
rity; Static: static assumption in GN ; GGM: generic group model; RO: random oracle
model.

|CT| |SK| #dec Security Assumption

IBBE [26]-1 |G1| + |G2| |G1| 2[P] + O(n)[M] sID GDDHE,RO

[26]-2 |G1| + |G2| |G1| + |Zp| 2[P] + O(n)[M] na-sID O-GDDHE

[52] 2|G1| |G2| 2[P] + O(n)[M] aID GGM,RO

Ours 2|GN | |GN | 2[P] + O(n)[M] sID Static

FIBE [37] 2|G1| n|G1| + n|G2| 2[P] + O(τ2 + n)[M] sID aMSE-DDH

[4,6] 2|G1| (n2 + n)|G2| 2[P] + O(nτ)[M] sID DBDHE

[21] 2|GN | (n2 + n)|GN | 2[P] + O(nτ)[M] saID Static

[56] 17|G1| (6n2 + 5)|G2| 17[P] + O(nτ)[M] saID DLIN

[7] 6|GN | (n2 + 2n + 3)|GN | 6[P] + O(nτ)[M] aID Static

Ours 2|GN | 2n|GN | 2[P] + O(τ2 + n)[M] sID Static

1.2 Overview of Our Techniques

Our identity-based broadcast encryption scheme is obtained by instantiating (a
variant of) Delerablée’s IBBE [26] in composite order groups and providing a
direct security proof, analogously to Wee’s IBE [62]. In prime order groups, Del-
erablée’s construction [26] is proved selectively secure in the random oracle model
under a highly non-standard q-type assumption, where q simultaneously depends
on the number of private key queries and the maximal number of receivers per
ciphertext. While this assumption is a special case of the Uber assumption of
Boneh, Boyen and Goh [9], it seems to escape the family of assumptions that
reduce the constant-size subgroup assumptions via the framework of Chase,
Maller and Meiklejohn [23]: in Sect. 3.1, we indeed explain why the results of
[23] alone do not immediately guarantee the security of Delerablée’s IBBE in
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composite order groups.1 Moreover, even if they did, a direct instantiation of
[26] in composite order groups would only be guaranteed to be secure in the
random oracle model.2 In contrast, we give a direct proof of selective security in
the standard model.

Just like [26,62], our scheme uses the private key generation technique of the
Sakai-Kasahara IBE [53], which computes inversions in the exponent. Letting G

be a cyclic group of order N = p1p2p3 with subgroups Gpi
of order pi for each

i ∈ {1, 2, 3}, if gγ ∈ Gp1 and Gi = g(α
i) ∈ Gp1 are part of the public param-

eters, a private key for the identity id consists of SKid = uγ/(α+id) · Xp3 , where
u ∈ Gp1 belongs to the master secret key and Xp3 ∈R Gp3 . If S = {id1, . . . , id�}
denotes the set of authorised receivers, one of the ciphertext components packs
their identities into one group element gs·∏id∈S(α+id), which can be seen as a
randomised version of Nguyen’s accumulator [45]. As shown in [26], by intro-
ducing gγ·s in the ciphertext and blinding the message as M ⊕H(e(g, u)γ·s), we
can enable decryption by exploiting the divisibility properties of the polynomial
pS(α) =

∏
id∈S(α + id), analogously to [45]. Like the security proof of Wee’s

IBE [62], our proof proceeds by first introducing Gp2 components in ciphertexts.
Then, following the technique of [22], it uses the entropy of α, γ mod p2 – which
are information theoretically hidden by gγ and Gi = g(α

i) – to gradually intro-

duce Gp2 components of the form g
∑k

j=1 γ̃·rj ·pS(αj)/(αj+id)

2 , where {rj}k
j=1 are

shared by all private keys. At each step, we can increase the number of terms
in the exponent so that, when k is sufficiently large, all keys SKid have indepen-
dent random components of order p2. At this point, an information theoretic
argument shows that the ciphertext statistically hides the plaintext.

The crucial step of the proof consists of arguing that the newly introduced
term in the sum

∑k
j=1 rj · pS(αj)/(αj + id) is statistically independent of the

public parameters. At this step, our information theoretic argument differs
from Wee’s [62] because, in our IBBE system, public parameters contain addi-
tional group elements of the form Ui = uαi · R3,i, which inherit Gp2 compo-
nents that depend on

∑k
j=1 rj · αi

j mod p2, for the same coefficients rj ∈ Zp2

as those showing up in private keys. Since private keys and public key compo-
nents {Ui}n

i=1 have correlated semi-functional components3 that share the same
{rj mod p2}k

j=1, we have to consistently maintain this correlation at all steps of
the sequence of game and argue that, when we reach the final game, the Gp2

components of SKid1 , . . . ,SKidq
and {Ui}n

i=1 are uncorrelated in the adversary’s

1 We believe our arguments showing that the assumptions under question are not
covered by the Déjà Q framework are sufficient. Also, we do not know if there exist
other parameterised assumptions in this class that could possibly be used to prove
security of the IBBE and FIBE schemes.

2 Alternatively, the scheme of [26] can be proved secure in the standard model if the
adversary also announces all its private keys queries (in addition to the target set of
identities) before seeing the public parameters.

3 The proof of Wee’s broadcast encryption [62, Sect. 4] has a similar correlation
between the Gp2 components of private keys and public parameters but, in the final
step, the statistical argument involved simpler-to-analyse Vandermonde matrices.
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view. In Wee’s constructions [62], this is done by arguing that matrices of the
form (αi

j)i,j∈[q] or
(
1/(αj + idi)

)
i,j

are invertible. Here, we are presented with
more complex square matrices that involve the two kinds of entries and also
depend on the polynomial pS�(α) =

∏
id∈S�(α + id), where S� is the set of the

target identities. More precisely, these matrices contain sub-matrices of the form(
pS�(αi)/(αi + idj)

)
i,j

, where idj denotes the j-th private key query. We use
the property that the overall square matrices are invertible over Zp2 as long as
none of the first-degree (α + idj) divides pS�(α) (i.e., idj �∈ S� for all private key
queries idj). When this is the case, we are guaranteed that the Gp2 components
of ciphertexts, private keys and public parameters are i.i.d. in the adversary’s
view.

Our fuzzy IBE construction is an adaptation of the system described by
Herranz, Laguillaumie and Ràfols [4,37] in prime order groups, which is itself
inspired by the dynamic threshold encryption primitive of Delerablée and
Pointcheval [27] and relies on a similarly strong assumption. The FIBE system
of [37] modifies [26,27] by randomizing the generation of private keys. In our
construction, private keys for an attribute set {id1, . . . , id�} similarly consist of

(
Ki = u

γ
α+idi · X3,i

)�

i=1
,

(
K ′

i = uαi · X ′
3,i

)n−1

i=1
, K0 = u · u0 · X3,0,

where u ∈R Gp1 and X3,i ∈R Gp3 are freshly chosen for each key and u0 ∈ Gp1

is a master secret key component which is committed via e(g, u0)γ in the master
public key. Intuitively, the public parameters uαi

0 · R3,i of Delerablée’s IBBE
are now replaced by similar-looking private key components K ′

i = uαi · X ′
3,i for

random u ∈R G1 that are used in K0 to blind the master secret key u0 (collusion-
resistance is ensured by the fact that distinct keys involve fresh randomizers u).

Due to the strong structural similarity, the proof for the selective security
of our fuzzy IBE can be viewed as an extension of that for our IBBE system.
From the viewpoint of reduction, the fresh u ∈ Gp1 in each secret key allows us
to correspond each secret key to a fresh IBBE instance and analyse them in an
independent fashion. In particular, by considering Ki as SKidi

and K ′
i as Ui, we

can apply the proof method of our IBBE to introduce independent random Gp2

components in all these components and K0 (with u0 ·X3,0). As discussed earlier,
the core step is again to argue the invertibility of a matrix of some special form
for each secret key. Although the matrices we are considering now look like those
for the IBBE system, the situation is actually more complex. More specifically,
the matrices contain sub-matrices of the form (pS�,τ�(αi)/(αi + idj))i,j where
pS�,τ�(α) =

∏
id∈S�(α+ id) ·∏i∈[δ](α+di) where S� is the set for the target fuzzy

identity, (di)i is a set of dummy identities and δ depends on the target threshold
τ∗. Unlike the IBBE case, there can be an idj ∈ {id1, . . . , id�} such that idj ∈ S�

so that (α+idj) divides pS�,τ�(α) in the FIBE case. This prevents us from directly
applying our previous result on the matrices. Instead, we will prove the property
that these matrices are still invertible as long as the number of such idj do not
exceed the target threshold τ∗. Inspired by the recent proof for IBE in the multi-
instance setting [19], we can in fact change the distributions of all secret keys
independently but simultaneously using the random self-reducibility of decisional
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subgroup assumptions. Once we have independent random Gp2 component in K0

in each secret key, we then introduce semi-functional component (in Gp2) for the
master secret key component u0 and show that it will be hidden by the random
Gp2 component in K0. This means the semi-functional component of u0 will only
appear in the challenge ciphertext which is adequate for proving the selective
security of our fuzzy IBE system.

1.3 Related Work

Broadcast encryption was introduced by Fiat and Naor [29] and comes either in
combinatorial [43] or algebraic flavors [13,34,40,44,59]. One of the most appeal-
ing tradeoffs was given in the scheme of Boneh, Gentry and Waters [13], which
features short ciphertexts and private keys but linear-size public keys in the total
number of users. While its security was initially proved under a parameterised
assumption, recent extensions [23,62] of the Déjà Q framework [22] showed how
to prove the security (against static adversaries) of its composite-order-group
instantiations under constant-size subgroup assumptions. Boneh et al. suggested
a variant [16] of the BGW scheme [13] with polylogarithmic complexity in all
metrics using multi-linear maps. Unfortunately, the current status of multi-linear
maps does not enable secure instantiations of [16] for now (see, e.g., [25]).

Identity-based broadcast encryption was formally defined by Abdalla, Kiltz
and Neven [2] and independently considered by Sakai and Furukawa [52]. One
of the salient advantages of IBBE over traditional public-key broadcast encryp-
tion is the possibility of accommodating an exponential number of users with
polynomial-size public parameters. IBBE was recently used [28] in the design
of efficient 0-RTT key exchange protocols with forward secrecy. Abdalla et al.
[2] gave a generic construction with short ciphertexts and private keys of size
O(n2), where n is the maximal number of receivers. Sakai and Furukawa [52] sug-
gested a similar construction to [26] with security proofs in the generic group and
random oracle model. Boneh and Hamburg [14] obtained a system with O(1)-
size ciphertexts and O(n)-size keys. Using the Déjà Q technique, Chen et al.
[20] described an identity-based revocation mechanism [40] with short cipher-
texts and private keys under constant-size assumptions. The aforementioned
constructions were all only proven secure against selective adversaries. Gentry
and Waters [34] put forth an adaptively secure construction based on q-type
assumptions while Attrapadung and Libert [5] showed a fully secure variant of
[14] under simple assumptions. To our knowledge, the only IBBE realisations
that simultaneously feature constant-size ciphertexts and private keys are those
of [26,52], which require highly non-standard assumptions and the random ora-
cle model. As mentioned by Derler et al. [28], the short ciphertexts and private
keys of Delerablée’s scheme [26] make it interesting to instantiate their generic
construction of Bloom Filter Encryption, which in turn implies efficient 0-RTT
key exchange protocols. Until this work, even for selective adversaries, it has
been an open problem to simultaneously achieve short ciphertext and private
keys without resorting to variable-size assumptions.



570 J. Gong et al.

Attribute-based encryption was first considered in the seminal paper by Sahai
and Waters [54]. Their fuzzy IBE primitive was later extended by Goyal et al.
[36] into more expressive forms of ABE, where decryption is possible when the
attribute set of the ciphertext satisfies a more complex Boolean formula encoded
in the private key. After 2006, a large body of work was devoted to the design
of adaptively secure [7,41,46–49,57] and more expressive ABE systems [12,35,
40,50,60,61]. In contrast, little progress has been made in the design of ABE
schemes with short ciphertexts. The first reasonably expressive ABE systems
with constant-size ciphertexts were given in [4,6,37] under q-type assumptions.
The solution of Herranz et al. [37] is a fuzzy IBE (i.e., a CP-ABE system for one
threshold gate) with private keys of size O(n) where n is the maximal number of
attributes per ciphertext. The more expressive KP-ABE systems of [4,6] support
arbitrary Boolean formulas, but enlarge the private keys of [36] by a factor n.
The construction of [38, Sect. 3.4] eliminates the upper bound on the number
of ciphertext attributes, but lengthens private keys by a factor |U |, where U is
the universe of attributes. Several follow-up works improved upon [6] by proving
security under simple assumptions [21,56] or achieving full security [7]. However,
all known KP-ABE schemes with short ciphertexts under simple assumptions
suffer from similarly large private keys. While our scheme only supports one
threshold gate, it turns out to be the first solution with short ciphertexts under
simple assumptions that avoids blowing up private keys by a factor O(n).

2 Preliminaries

Notation. We write x1, . . . , xk
R←− X to indicate that x1, . . . , xk are sampled

independently and uniformly from the set X . For a PPT algorithm A, y
R←− A(x)

means that y is chosen according to the output distribution of A on input x. For
integers a < b, [a, b] denotes the set {x ∈ Z : a ≤ x ≤ b} and we let [b] = [1, b].
If G is a cyclic group, G× denotes the set of generators of G.

2.1 Composite-Order Pairings and Hardness Assumptions

A (symmetric) composite-order pairing ensemble generator GroupGen() is an
algorithm that inputs a security parameter η and an integer m and returns an
(m + 3)-tuple G = (p1, . . . , pm,G,GT , e) where G and GT are cyclic groups of
order N = p1 · · · pm (a square-free, hard-to-factor integer) and e : G×G → GT is
a non-degenerate and efficiently computable bilinear map. The primes are chosen
so that pi > 2η for i ∈ {1, 2, . . . ,m}. We will use hardness assumptions which
require the factorisation of N to remain hidden. Given G = (p1, . . . , pm,G,GT , e),
let Gpub = (N,G,GT , e) denote the public description of G where N = p1 · · · pm

and we assume that G,GT contain respective generators (of the full groups).
Letting Gpi

be the subgroup of order pi of G, we denote elements of Gpi
with

subscript i for i ∈ [m]. We now describe decisional subgroup (DS) assumptions
w.r.t. (G = (p1, p2, p3,G,GT , e)) ←− GroupGen(η, 3), which is stated in terms of
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two distributions: D, T1 and D, T2. We define AdvBG,DS(η) = |Pr[B(D, T1) =
1] − Pr[B(D, T2) = 1]| to be the advantage of a distinguisher B against DS. We
now describe D, T1, T2 for the assumptions we use.

Assumption DS1. Pick generators g1
R←− G

×
p1

and g3
R←− G

×
p3

. Define D =
(Gpub, g1, g3), T1

R←− Gp1 and T2
R←− Gp1p2 . DS1 holds if for all PPT B,

AdvBG,DS1(η) is negligible in η.

Assumption DS2. Pick g1
R←− G

×
p1

, g3
R←− G

×
p3

, h12
R←− Gp1p2 and h23

R←−
Gp2p3 . Define D = (Gpub, g1, g3, h12, h23), T1

R←− Gp1p3 and T2
R←− Gp1p2p3 . The

DS2 assumption holds if for all PPT B, AdvBG,DS2(η) is negligible in η.

2.2 Identity-Based Broadcast Encryption (IBBE)

Definition 1 (IBBE). An IBBE scheme is defined by probabilistic algorithms
Setup, KeyGen, Encrypt and Decrypt. The identity space is denoted by I and the
message space is denoted by M.

Setup(1λ, 1n): Takes as input a security parameter λ, the maximum number
n (= poly(λ)) of recipient identities in a broadcast and generates the pub-
lic parameters PP and the master secret MSK. The algorithm also defines the
identity space I and message space M.

KeyGen(MSK, id): Inputs an identity id and MSK; outputs a key SKid for id.
Encrypt(PP, S ⊆ I,m ∈ M): Takes as input the public parameters and a set

of identities S intended to receive the message m. If |S| ≤ n, the algorithm
outputs the ciphertext CT.

Decrypt(PP, S,CT, id,SKid): Inputs PP, a set S = {id1, . . . , id�}, an identity id,
a secret key SKid for id, a ciphertext CT and outputs a message m′ ∈ M if
id ∈ S and otherwise outputs ⊥.

Correctness. The IBBE scheme satisfies correctness if, for all sets S ⊆ I
with |S| ≤ n, for all identities idi ∈ S, for all messages m ∈ M, if
(PP,MSK) R←− Setup(1λ, 1n), SKidi

R←− KeyGen(MSK, idi) and CT
R←− Encrypt

(PP, S,m), then we have Pr[m = Decrypt(PP, S,CT, idi,SKidi
)] = 1.

Definition 2 (IBBE Security). An IBBE system IBBE = (Setup,KeyGen,
Encrypt,Decrypt) provides selective security if no PPT adversary A has non-
negligible advantage in the following game.

Initialise: A commits to a target set of identities S∗ = {id∗
1, . . . , id

∗
�∗}.

Setup: The challenger runs the Setup algorithm of IBBE and gives PP to A .

Key Extraction Phase 1: A makes key extraction queries. For a query on an
identity vector id such that id /∈ S∗, the challenger runs IBBE .KeyGen algorithm
and responds with a key SKid.
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Challenge: A provides two messages m0,m1. The challenger chooses a bit β

uniformly at random from {0, 1}, computes CT∗ R←− IBBE .Encrypt(PP, S∗,mβ)
and returns CT∗ to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any identity in S∗.

Guess: A outputs a bit β′. If β = β′, then A wins the game. The adversary
A ’s advantage is given by the distance AdvAIBBE,sid-cpa(λ) = |Pr[β = β′] − 1/2|.

2.3 Fuzzy Identity-Based Encryption (FIBE)

Definition 3 (FIBE). A fuzzy IBE scheme is defined by probabilistic algo-
rithms – Setup, KeyGen, Encrypt and Decrypt. The identity space is denoted
by I and the message space is denoted by M.

Setup(1λ, 1n): Takes as input a security parameter λ, the maximum size n (=
poly(λ)) of sets associated with ciphertexts and generates the public parame-
ters PP and the master secret MSK. The algorithm also defines the identity
space I and message space M.

KeyGen(MSK, S ⊆ I): Inputs a set S and MSK; outputs a secret key SKS for S.
Encrypt(PP, S ⊆ I, τ,m ∈ M): Takes as input the public parameters PP, a set

of identities S along with a threshold τ and a message m. If τ ≤ |S| ≤ n, the
algorithm outputs the ciphertext CTS,τ .

Decrypt(PP, S, τ,CTS,τ , S′,SKS′): This algorithm inputs the public parameters
PP, a set S ⊆ I with a threshold τ and a ciphertext CTS,τ associated with
them, another set S′ ⊆ I and its corresponding secret key SKS′ , outputs a
message m′ ∈ M if |S ∩ S′| ≥ τ and ⊥ otherwise.

Correctness. The FIBE scheme is correct if, for all sets S ⊆ I, all
thresholds τ ≤ |S| ≤ n, all S′ ∈ I satisfying |S ∩ S′| ≥ τ ,
all m ∈ M, when (PP,MSK) R←− Setup(1λ, 1n), SKS′

R←− KeyGen(MSK, S′)
and CTS,τ

R←− Encrypt(PP, S, τ,m), then Pr[m = Decrypt(PP, S, τ,CTS,τ ,
S′,SKS′)] = 1.

Definition 4 (FIBE Security). A FIBE system FIBE = (Setup,KeyGen,
Encrypt,Decrypt) provides selective security if no PPT adversary A has non-
negligible advantage in the following game.

Initialise: A commits to a target set S∗ ⊆ I and threshold τ∗ satisfying τ∗ ≤
|S∗| ≤ n.

Setup: The challenger runs the Setup algorithm of FIBE and gives PP to A .

Key Extraction Phase 1: A makes a number of key extraction queries. For a
query on S ⊆ I such that |S∗∩S| < τ∗, the challenger runs SKS ← FIBE .KeyGen
and outputs SKS.
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Challenge: A provides two messages m0,m1. The challenger chooses
β

R←− {0, 1}, computes CT∗ R←− FIBE .Encrypt(PP, S∗, τ∗,mβ) and returns CT∗

to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any set S such that |S∗ ∩ S| ≥ τ∗.

Guess: A outputs a bit β′. We say A wins the game if β = β′. The advantage
of A in winning the sid-cpa game is defined to be AdvAFIBE,sid-cpa(λ) = |Pr[β =
β′] − 1/2|.

3 Compact IBBE from Subgroup Decision Assumptions

This section describes our IBBE scheme with short ciphertexts and keys. The
structure is similar to Delerablée’s IBBE [26] in asymmetric prime-order groups.

3.1 Déjà Q Framework and Its Implications on Delerablée’s IBBE

The scheme proposed by Delerablée in [26] is based on prime-order asymmet-
ric pairings and offers constant-size ciphertexts and keys. However, its proof of
security relies on random oracles and a parameterised assumption called gener-
alised decisional Diffie-Hellman exponent (GDDHE) with instances containing
O(q + n) group elements. A scheme/proof without random oracles is also sug-
gested but at the cost of an interactive GDDHE-like assumption and a more
restrictive security definition (called IND-na-sID-CPA) in which the adversary
has to commit to the identities for key extract queries during the initialisation
phase (in addition to the challenge identity set).

It is natural to ask whether the scheme can be lifted to the composite-order
setting and proved secure based on subgroup decision assumptions via the Déjà Q
framework [22,23]. That is, we ask whether the Uber assumption in asymmetric
composite-order bilinear groups defined in [23] covers the GDDHE assumption
or not? The answer is negative. To see why, let us take a closer look at the Uber
assumption of [23] and the (asymmetric) GDDHE-assumption. For clarity, we
avoid formal descriptions of assumptions and other details.

Uber Assumption [23]. Assume G = (N, p1, p2, p3,G1,G2,GT , e) be an asym-
metric composite-order pairing group. Let R(x), S(x), V (x) denote sets of poly-
nomials in n variables x = (x1, . . . , xn) and let z(x) be a polynomial in x. Let
g be a generator of G1 and h, ĥ be two independent generators of G2. The uber
assumption states that given

g, ĥ, gR(x), hS(x), e(g, h)V (x), T

it is hard to decide if T = e(g, ĥ)z(x) or T ∈R GT . It is known [23] that the
uber assumption is implied by constant-size subgroup decision assumptions in
G1 and G2 if R(x), z(x) are linearly independent along other requirements (see
[23, Proposition 3.9] for a formal statement).
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In order to simplify our analysis, we may let ĥδ = h for an independent
exponent δ

R←− ZN and re-state the uber assumption as: given

g, ĥ, gR(x), ĥδ·S(x), e(g, ĥ)δ·V (x), T

it is hard to decide if T = e(g, ĥ)z(x) or T ∈R GT . Here, δ · S(x) = {δ · s(x) :
s ∈ S(x)} and δ · V (x) = {δ · v(x) : v ∈ V (x)}. We highlight that the Déjà Q
framework in [23] requires the polynomials in the exponents of ĥ to be in the
form of δ · poly(x) with an independent δ.

Déjà Q Framework Does Not Cover GDDHE Assumption [26]. Let an
asymmetric prime-order pairing configuration G = (p,G1,G2,GT , e). Let g0, h0

be the respective generators of G1,G2. Pick k, γ
R←− Zp and let f, g be two co-

prime polynomials with pairwise distinct roots of respective orders q, n. The
GDDHE assumption states that given

g0, g
γ
0 , gγ2

0 , . . . , gγq−1

0 , g
γf(γ)
0 , g

kγf(γ)
0 , h0, h

γ
0 , hγ2

0 , . . . , hγ2n

0 , h
kg(γ)
0 ,

along with T ∈ GT , it is hard to determine whether T = e(g0, h0)kf(γ) or
T ∈R GT .

As a direct attempt to put GDDHE into the Déjà Q framework, we can let
g = g0 and ĥ = h0. This means we are considering x = (γ, k) and

z(γ, k) = kf(γ), V = ∅, R(γ, k) = {1, γ, γ2, . . . , γq−1, γf(γ), kγf(γ)}.

In this case, polynomials in the exponents of ĥ include {1, γ, γ2, . . . , γ2n, kg(γ)}.
Since both γ and k has appeared in z(x) and R(x), there’s no means to write
these polynomials in the form of δ · poly(x) with an independent variable δ.

With our current choice of g, all polynomials in the exponents of g fit the Déjà
Q framework quite well. To get around this problem, we try another definition
of ĥ. The best choice can be setting ĥ = hk

0 , x = γ and z(γ) = f(γ). The basic
idea is to set δ = k−1. However, the polynomials in the exponents of ĥ become

k−1, k−1 · γ, k−1 · γ2, . . . , k−1 · γ2n, g(γ)

where the last polynomial is still in the wrong form and we can not publish
ĥ itself this time. Even worse, δ will also appear in the exponent of g = g0
since the input to the adversary contains gkγf(γ) (in the original assumption)
which will become gδ−1γf(γ) in the current setting. We can make this argument
more general. If we want to borrow δ from kf(γ), which seems to be the unique
random source we can use in the challenge, it will finally appear (in some form)
in the term gkγf(γ). Therefore, the Déjà Q transform fails.

In this forthcoming sections, instead of trying to reduce subgroup decision
to the GDDHE, we give direct security reductions (via Déjà Q techniques) for
constructions in composite-order groups (similar to [26]) from subgroup decision
assumptions. Our construction has constant-size ciphertexts and keys and is
selectively secure under the static subgroup decision assumptions, thus achieving
a stronger security guarantee as compared to [26].
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3.2 Construction

We now describe the construction IBBE = (Setup,KeyGen,Encrypt,Decrypt).

Setup(1λ, 1n): Let M = {0, 1}ρ where ρ ∈ poly(λ). Generate a composite-
order pairing ensemble (G = (p1, p2, p3,G,GT , e)) ←− GroupGen(ρ + 2λ, 3).
Set N = p1p2p3 and I = ZN . Pick generators g, u

R←− G
×
p1

and g3
R←− G

×
p3

.
Sample R3,i

R←− Gp3 for i ∈ [n] using g3. Also, choose α, γ
R←− ZN . Let H :

GT → {0, 1}ρ be a universal hash function with output length ρ. Define the
master secret as MSK = (u, α, γ, g3) while the public parameters consist of

PP =
(Gpub, g, gγ , (Gi = gαi

, Ui = uαi · R3,i)n
i=1, e(g, u)γ , H

)
.

KeyGen(MSK, id): Pick X3
R←− Gp3 (using generator g3) and generate the key

for identity id as

SKid = u
γ

α+id · X3.

Encrypt(PP, S = {id1, . . . , id�},M): To encrypt M ∈ {0, 1}ρ for the set S, expand
the polynomial pS(x) =

∏�
i=1(x+ idi) =

∑�
j=0 cjx

j ∈ ZN [x]. Choose s R← ZN

and output

CT =
(
C0 = M ⊕ H(e(g, u)sγ), C1 = gsγ , C2 =

(
gc0 · ∏�

j=1 G
cj

j

)s

= gs·pS(α)
)
.

Decrypt(PP, S,CT, id,SKid): If id �∈ S, return ⊥. Otherwise, pS(x)/(x + id) =
pS\{id}(x) =

∑�−1
i=0 zix

i is a polynomial, where z0 =
∏

idi∈S\{id} idi. Output
M = C0 ⊕ H

(
(A2/A1)1/z0

)
, where

A1 = e(C1,

�−1∏

j=1

U
zj

j ) = e(gsγ , upS\{id}(α)−z0) = e(g, u)sγ(pS\{id}(α)−z0),

A2 = e(C2,SKid) = e(gspS(α), u
γ

α+id · X3) = e(g, u)sγpS\{id}(α).

The correctness of the scheme follows from the divisibility properties of pS(x)
and is easy to verify.

3.3 Proof of Security

We give the following theorem and refer to the full version [33] for the proof.

Theorem 1. For any adversary A attacking IBBE in the sid-cpa model making
at most q key extraction queries, there exist algorithms B1,B2 such that

AdvAIBBE,sid-cpa(λ) ≤ 2 · AdvB 1
G,DS1(λ) + (q + n + 2) · AdvB 2

G,DS2(λ) +
(q + n + 1)2

p2
+

1

p2
+

1

2λ
.
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4 Fuzzy IBE with Short Ciphertexts

We now present a fuzzy IBE scheme obtained by transposing the prime-order
construction of Herranz et al. [4,37] to composite order groups. The security
of their scheme relies on the augmented multi-sequence of exponents decisional
Diffie-Hellman (aMSE-DDH) assumption. As in Sect. 3, we start with an expla-
nation of why this assumption is not covered by the Uber assumption of [23].

Déjà Q Framework Does Not Cover aMSE-DDH Assumption [4,37].
Let an asymmetric prime-order pairing configuration G = (p,G1,G2,GT , e). We
describe an asymmetric version of the (�,m, t)-aMSE-DDH assumption.4 With a
length-(� + m) vector y = (y1, . . . , yl+m), define functions f(Y ) =

∏�
i=1(Y + yi)

and g(Y ) =
∏�+m

i=�+1(Y + yi). Let g0, h0 be generators of G1 and G2 and pick
k, γ, α, β

R←− Zp. The (�,m, t)-aMSE-DDH assumption states that given

g0, g
γ
0 , . . . , gγ�+t−2

0 , g
kγf(γ)
0 , h0, h

γ
0 , . . . , hγm−2

0 , h
kg(γ)
0 ,

gβγ
0 , . . . , gβγ�+t−2

0 , hβ
0 , hβγ

0 , . . . , hβγm−1

0 ,

gα
0 , gαγ

0 , . . . , gαγ�+t

0 , hα
0 , hαγ

0 , . . . , hαγ2(m−t)+3

0 ,

and T ∈ GT , it is hard to determine whether T = e(g0, h0)kf(γ) or T ∈R GT .
We observe that the first line of the input is quite similar to the input of

the GDDHE assumption [26] (cf. Sect. 3.1). We can transpose the discussion in
Sect. 3.1 to the aMSE-DDH assumption. As we have shown, the gap between the
uber assumption [23] and the aMSE-DDH assumption is due to the structures
of polynomials in the exponents of h0 and the entry g

kγf(γ)
0 which shares kf(γ)

with the challenge. We therefore conclude that the Déjà Q framework [23] does
not subsume the (�,m, t)-aMSE-DDH assumption.

In this section as well, we are not going to start from the aMSE-DDH assump-
tion. Instead, we will try to adapt Herranz et al.’s prime-order construction [37]
into composite-order groups and analyse its selective security directly. Our fuzzy
IBE scheme preserves the advantages of Herranz et al.’s [37] such as constant-size
ciphertexts and can now be proved secure under static assumptions.

4.1 Construction

Before presenting the construction, we describe algorithm Aggregate of [4,27].

Aggregate Algorithm. The Aggregate algorithm of [27] was given for elements
in GT , but it carries over to any prime order group [4]. Our construction requires
it to work in composite order groups. Let a cyclic group G of composite order

4 The assumption is originally given in symmetric groups. In order to work with the
Déjà Q framework, one must transform it into asymmetric groups (using Abe et al.’s
method [3] as suggested in [23]) which depends on the scheme and the reduction.
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N . Given a set of pairs {u
1

α+xi , xi}n
i=1, where u ∈ G and α ∈ ZN are unknown

and x1, . . . , xn ∈ ZN are pairwise distinct elements such that

gcd(xi − xj , N) = 1 for all i �= j, (1)

the algorithm computes the value Aggregate({u
1

α+xi , xi}n
i=1) = u

1∏n
i=1(α+xi) using

O(n2) exponentiations. (See the full version [33] for details.) It is unlikely to
encounter a pair (xi, xj) violating restriction (1) since it exposes a non-trivial
factorisation of N and violates the decisional subgroup assumption.

Our Fuzzy IBE Construction. In the description hereunder, we denote by
n an upper bound on the number � of attributes per identity. The construction
goes as follows.

Setup(1λ, 1n): Choose ρ ∈ poly(λ) and define M = {0, 1}ρ. Gener-
ate a composite-order pairing ensemble (G = (p1, p2, p3,G,GT , e)) ←−
GroupGen(ρ+2λ, 3) and set N = p1p2p3. Then, arbitrarily select n−1 distinct
dummy identities d1, . . . , dn−1 ∈ ZN . Define the set I = ZN \ {d1, . . . , dn−1}.
Pick g, u0

R←− G
×
p1

and g3
R←− G

×
p3

and choose α, γ
R←− ZN . Let H : GT →

{0, 1}ρ be a universal hash function. Define MSK = (u0, α, γ, g3) while the
public parameters consist of

PP =
(Gpub, g, gγ ,

(
Gi = gαi)2n−1

i=1
, e(g, u0)γ , (di)n−1

i=1 , H
)
.

KeyGen(MSK, S = {id1, . . . , id�}): Pick u R← Gp1 ,X3,1, . . . , X3,�,X
′
3,1, . . . ,

X ′
3,n−1, X3,0

R← Gp3 (using generator g3) and output the secret key

SKS =
( (

Ki = u
γ

α+idi · X3,i

)�

i=1
,

(
K′

i = uαi · X ′
3,i

)n−1

i=1
, K0 = u · u0 · X3,0

)
.

Encrypt(PP, S = {id1, . . . , id�}, τ ≤ �,M): To encrypt M ∈ {0, 1}ρ for the set S
with threshold τ , compute coefficients {cj}j∈[0,n+τ−1] for the polynomial

pS,τ (x) =
∏�

i=1(x + idi) · ∏n+τ−1−�
i=1 (x + di) =

∑n+τ−1
i=0 cix

i ∈ ZN [x].

Choose s
R←− ZN and output the ciphertext CTS,τ consisting of

C0 = M ⊕ H(e(g, u0)sγ), C1 = gsγ , C2 =
(
gc0 ·

n+τ−1∏

i=1

Gci
i

)s = gs·pS,τ (α).

Decrypt(PP, S, τ,CT, S′,SKS′): If |S ∩ S′| < τ , return ⊥. Otherwise, we can find
a set S̄ ⊆ I satisfying S̄ ⊆ S ∩ S′ and |S̄| = τ . Note that the choice of S̄ is
arbitrary. By invoking algorithm Aggregate, we can compute

KAgg = u
γ∏

id∈S̄(α+id) · X3,Agg

for some X3,Agg ∈ Gp3 . Let

opS,S̄,τ (x) = pS,τ (x)/
∏

id∈S̄(x + id) =
∑n−1

i=0 zix
i
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where z0 =
∏

id∈S\S̄ id · ∏n+τ−1−|S|
i=1 di. We can compute

A1 = e(C1,
∏n−1

i=1 (K ′
i)

zi) = e(gsγ , upS,S̄,τ (α)−z0) = e(g, u)sγ(pS,S̄,τ (α)−z0),

A2 = e(C2,KAgg) = e(gs·pS,τ (α), u
γ∏

id∈S̄(α+id) · X3,Agg) = e(g, u)sγpS,S̄,τ (α),

A3 = e(C1,K0) = e(gsγ , u · u0 · X3,0) = e(g, u)sγ · e(g, u0)sγ ,

and recover the message as M = C0 ⊕ H
(
A3/(A2/A1)1/z0

)
.

The scheme is easily seen to be correct. We note that Decrypt can be opti-
mized to consume only 2 pairing operations by recovering e(g, u)sγ = e(C1,K0 ·
(
∏n−1

i=1 (K ′
i)

zi)1/z0)/e(C2,K
1/z0
Agg ).

4.2 Proof of Security

We give the following theorem and refer to the full version [33] for the proof.

Theorem 2. For any adversary A attacking FIBE in the sid-cpa model making
at most q key extraction queries, there exist algorithms B1,B2 such that

AdvAFIBE,sid-cpa(λ) ≤ 2 · AdvB 1
G,DS1(λ) + (� + n + 2) · AdvB 2

G,DS2(λ) +
q · (� + 2n)2

p2
+

1

p2
+

1

2λ
.

where � is maximum size of attribute sets.
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