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Abstract. Multi-Key Homomorphic Signatures (MK-HS) enable clients
in a system to sign and upload messages to an untrusted server. At any
later point in time, the server can perform a computation C on data pro-
vided by t different clients, and return the output y and a short signature
σC,y vouching for the correctness of y as the output of the function C
on the signed data. Interestingly, MK-HS enable verifiers to check the
validity of the signature using solely the public keys of the signers whose
messages were used in the computation. Moreover, the signatures σC,y

are succinct, namely their size depends at most linearly in the num-
ber of clients, and only logarithmically in the total number of inputs of
C. Existing MK-HS are constructed based either on standard assump-
tions over lattices (Fiore et al. ASIACRYPT’16), or on non-falsifiable
assumptions (SNARKs) (Lai et al., ePrint’16). In this paper, we investi-
gate connections between single-key and multi-key homomorphic signa-
tures. We propose a generic compiler, called Matrioska, which turns any
(sufficiently expressive) single-key homomorphic signature scheme into
a multi-key scheme. Matrioska establishes a formal connection between
these two primitives and is the first alternative to the only known con-
struction under standard falsifiable assumptions. Our result relies on a
novel technique that exploits the homomorphic property of a single-key
HS scheme to compress an arbitrary number of signatures from t different
users into only t signatures.

1 Introduction

Consider a scenario where a user Alice uploads a collection of data items
x1, ... , xn to an untrusted server. Later on, the server executes a computation P

on this data and sends the result y = P(x1, ... , xn) to another user Bob. How can
Bob be sure that y is the correct result obtained by running P on Alice’s data?

A trivial solution to this problem could be obtained by employing digital sig-
natures: Alice could sign each data item xi and send to the server the signatures
σ1, ... , σn. Next, to convince Bob, a server can send along with y the original
inputs with their signatures, and Bob should check that y = P(x1, ... , xn) and
that each σi is a valid signature for xi. While this solution solves the above
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security concern, it has a clear efficiency drawback: it requires communication
between the server and the verifier Bob that is linear in the input size of P.
This cost is undesirable and can even be unacceptable if Bob is cannot store the
x1, ... , xn.

Homomorphic Signatures. A solution to the above problem that achieves
both security and efficiency can be obtained by using homomorphic signatures
(HS). With this primitive, Alice can use her secret key to sign x1, ... , xn and sends
the signed data items to the server. The server can use a special procedure Eval
that, on input a program P and a collection of signatures σ1, ... , σn, outputs a
signature σP,y. Given Alice’s public key and a triple (P, y, σP,y), Bob (or anyone
else) can get convinced that y is the correct output of P on inputs (x1, ... , xn)
signed by Alice. Very informally, homomorphic signatures are secure in the sense
that an untrusted server (without knowing Alice’s secret key) must not be able
to convince the verifier of a false result. An additional property that makes this
cryptographic primitive interesting and non-trivial is that signatures must be
succinct. This means that the size of σP,y must be significantly smaller than P’s
input size, e.g., size(σP,y) = O(log n).

The notion of homomorphic signatures was proposed by Desdmedt [16] and
first formalized by Johnson et al. [24]. Boneh et al. [4] proposed the first scheme
for computing linear functions over signed vectors and showed an application to
preventing pollution attacks in linear network coding. Following [4], a long series
of works (e.g., [1,2,6,8,9,11–13,15,19,20,26]) addressed the problem of con-
structing linearly-homomorphic signatures obtaining new schemes that improved
on multiple fronts, such as efficiency, security, and privacy. A few more works
addressed the problem of constructing schemes for more expressive functionali-
ties [5,7,14,23]. Boneh and Freeman [5] proposed the first scheme for polynomial
functions based on lattices, which was later improved by Catalano, Fiore and
Warinschi [14] based on multilinear maps. In 2015, Gorbunov, Vaikuntanathan
and Wichs [23] constructed the first HS scheme for arbitrary circuits of bounded
depth from standard lattices.

Multi-key Homomorphic Signatures. In a recent work, Fiore et al. [17]
initiated the study of multi-key homomorphic signatures (MK-HS). In a nut-
shell, MK-HS are homomorphic signatures that allow for computing on data
signed using different secret keys. This capability extends that one of previously
known homomorphic signatures, and is useful in all those applications where one
wants to compute on data provided (and signed) by multiple users. In addition
to formally defining the notion of multi-key homomorphic signatures, Fiore et
al. proposed a construction of MK-HS based on lattices that supports bounded
depth circuits. Their scheme is obtained by extending the techniques of the
single-key scheme of Gorbunov et al. [23]. Another recent work by Lai et al. [25]
shows how to build an MK-HS using SNARKs and digital signatures. However,
since SNARKs are likely to be based on non-falsifiable assumptions [22], the
resulting MK-HS also relies on non standard assumptions.
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1.1 Our Contribution

In this work, we continue the study of multi-key homomorphic signatures. Our
main interest is to identify connections between multi-key homomorphic sig-
natures and their single-key counterpart. In particular, we provide the first
generic method to construct multi-key homomorphic signatures from (sufficiently
expressive) single-key HS schemes. Our main contribution is a compiler, called
Matrioska, that yields the following result:

Theorem 1 (Informal). Let HS be a homomorphic signature scheme for
circuits of polynomial size. Then, for a constant t representing the number of
distinct keys involved in a computation, there exists a multi-key homomorphic
signature scheme MKHS(HS, t) for circuits of polynomial size. Furthermore, if
HS has signatures bounded by a fixed polynomial p(λ), MKHS(HS, t) has signa-
tures bounded by t · p(λ).

Our result essentially shows that for a sufficiently expressive class of functions
multi-key and single-key homomorphic signatures are equivalent. Our construc-
tion is the first to establish a formal connection between these two primitives
without resorting to powerful primitives such as SNARKs which only yield con-
structions from non-falsifiable assumptions. Also, we propose a new methodology
to construct MK-HS, which is the first alternative to the only known construc-
tion from standard assumptions [17]. In particular, while the techniques in [17]
are specific to an algebraic lattice setting, our construction works in a generic
fashion and as such it will allow to immediately obtain new MK-HS schemes
from any future proposal of single-key HS.

Our MK-HS construction is quite involved and its efficiency is, admittedly,
theoretical. In particular, in order to support circuits of (polynomial) size s,
we need to start from a single-key HS scheme that supports circuits of size
scs

t−1
, where t is the number of distinct keys involved in the computation and

cs is some constant that depends on the single-key HS scheme. Therefore our
generic construction generates multi-key homomorphic signature schemes that
can support computations among a constant number of keys (i.e., users) only.

Nevertheless, our MK-HS scheme has succinct signatures that have size
t · p(λ), which is non-trivial as it is independent of the total number of inputs
involved in the computation. Indeed, even in the multi-key setting a trivial solu-
tion to build MK-HS from digital signatures (and even from HS) would require
communication linear in the total number of inputs of a computation, i.e., O(n·t),
assuming each user provides n inputs.

An Overview of Our Techniques. The main challenge in constructing an
MK-HS scheme generically from a single-key one is to obtain a construction with
succinct signatures. In particular, obtaining succinctness requires some mecha-
nism to “compress” n · t signatures into some information that can at most
depend linearly on log n and t. While single-key HS allow for compressing sig-
natures pertaining to the same key, this property seems of no utility when one
needs to compute on signatures pertaining to different keys, if nothing about
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their structure can be assumed.1 To overcome this challenge, we devise a novel
technique that allows us to compress n · t signatures from t different users into t
signatures; for this we show how to use the homomorphic property of the single-
key HS scheme in order to inductively “prove” that the signatures of the first i
users verify correctly on the corresponding inputs.

In what follows we illustrate the core idea of our technique considering, for
simplicity, the two-client case t = 2, and assuming each users contributes to the
computation with n inputs.

Let C : {0, 1}2·n → {0, 1} be the circuit we wish to evaluate. Given the mes-
sages m1, ...mn by user id1 and mn+1, ...m2·n by user id2, we wish to authenticate
the output of y = C(m1, ... ,m2·n). Let σi be the signature for the message mi;
in particular the first n signatures and the last n signatures are associated to
different secret keys.

The initial step is to construct a (2 · n)-input circuit E0 such that E0(x1, ... ,
x2n) = 1 iff C(x1, ... , x2n) = y. Second, define a new circuit E1 : {0, 1}n → {0, 1}
that is E0 with the last n inputs hardwired: E1(x1, ... , xn) = E0(x1, ... , xn,mn+1,
... ,m2n). Now E1 is a circuit that has inputs by a single client only, thus we
can run σ̂1 ← HS.Eval(E1, pk1, σ1, ... , σn). By the correctness of the single-key
homomorphic signature scheme it must hold HS.Verify(E1, pk1, σ̂1, 1) = 1. At this
point, we already compressed the signatures σ1, ... , σn into a single signature σ̂1.
This is however not yet sufficient for succinctness because verifying σ̂1 requires
the circuit E1, which in turn requires to transmit to the verifier n messages
(mn+1, ... ,m2n) to let him reconstruct E1.

This is where the inductive reasoning, and our new technique, begins. Very
intuitively, we use the signatures of the second user to “prove” that HS.Verify(E1,
pk1, σ̂1, 1) = 1, without letting the verifier run this verification explicitly. Let
us see H = HS.Verify((E1, (τ1, ... , τn)), pk1, σ̂1, 1) as a binary string with the
description of a (no input) circuit. Look for the bits of H where the values
mn+1, ... ,m2n are embedded. We can define a new circuit description E2 that
is the same as H except that the hardwired values mn+1, ... ,m2n are replaced
with input gates. Thus E2 is an n-input circuit satisfying E2(mn+1, ... ,m2n) =
HS.Verify(E1, pk1, σ̂1, 1), which returns 1 by correctness of HS.

Now, the crucial observation is that E2 is a circuit on inputs by the sec-
ond client only. Thus, we can run σ̂2 ← HS.Eval(E2, pk2, σn+1, ... , σ2n). By the
correctness of the HS scheme, HS.Verify(E2, pk2, σ̂2, 1) = 1. Note that E2 does
not contain any of the messages m1, ... ,m2·n hardwired; in particular E2 is com-
pletely determined by C, y, pk1, σ̂1 and a description of HS.Verify. Hence, given
(σ̂1, σ̂2) the verifier can reconstruct E2 and check if HS.Verify(E2, pk2, σ̂2, 1) = 1.
Intuitively, this proves that for some messages signed by the second user
E2(mn+1, ... ,m2n) = 1. By the correctness of HS, this in turn implies E1(m1, ... ,
mn) = 1 for some messages signed by the first user; and by construction of E1

the latter implies C(m1, ... ,m2n) = y.

1 This is the case if one aims for a generic single-key to multi-key construction. In
contrast, knowing for example the algebraic structure of signatures can be of help,
as exploited in [17].
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Our compiler, extends the above idea to multiple users, showing that at each
step i the problem consists in proving correctness of a computation Ei−1 that
depends only on the inputs of user i, while inputs of users > i are hardwired
into it. This means that a progressive application of this idea lets the hardwired
inputs progressively disappear up to the point of obtaining a circuit Et which
has no input hardwired and thus can be reconstructed by the verifier. This is
the only computation explicitly checked by the verifier. By construction, Et

encodes the nested execution of several single-key HS verifications (from which
our compiler’s name “Matrioska”), and validity of Et implicitly implies that each
Ei returns 1 (even if the verifier does not know Ei itself). In this description we
favor intuition to precision. A detailed presentation can be found in Sect. 3.

2 Preliminaries

Notation. The security parameter of our schemes is denoted by λ. For any n ∈ N,
we use [n] to denote the set [n] := {1, ... , n}. The symbol lg denotes the logarithm
in base 2; || denotes the string concatenation, e.g., (00)||(10) = (0010); bold font
letters, e.g., σ = (σ1, ... , σn), denote vectors. A function ε(λ) is said negligible in
λ (denoted as ε(λ) = negl(λ)) if ε(λ) = O(λ−c) for every constant c > 0. Also, we
often write poly(·) to denote a function that can be expressed as a polynomial.

2.1 Circuits

We use a modeling of circuits similar to the one in [3]. We define circuits as
6-tuples C = (n, u, q, L,R,G). The value n ≥ 1 denotes the number of inputs to
the circuit, u ≥ 1 is the number of outputs and q ≥ 1 is the number of gates. Let
w denote the total number of wires in the circuit. For the circuits considered in
this work w = n+q. The functions L and R define respectively the left and right
input wire to any given gate g ∈ [q], formally, L,R : [q] → [w] ∪ {0}. Finally,
G : [q] → {0, 1} encodes the gates by mapping each gate g ∈ [q] into a single
bit Gg. In our construction we treat circuit descriptions C as binary strings.
Similarly to [3], the size of our circuit description is quasi-linear in the number
of wires: |C| ∈ O(w lg(w)). Differently from [3], we number gates from 1 to q
(instead of from n+ 1 to n+ q) and label the outgoing wire of a gate g as g + n.
Moreover, we introduce the 0 wire to denote constant output gates, e.g., no-input
gates or gates that have the same output independently of the input values, and
allow for a gate to have the same left and right input, i.e., L(g) ≤ R(g) < g + n.
The largest component in the string C is the descriptions of the function L (and
R), that is a sequence of q values in [w] ∪ {0}, therefore |L| = |R| = q lg(w + 1).
Hence, for a fixed and reasonable encoding it holds |C| ∈ O(w lg(w)).

As an example of a circuit consider the following EQy circuit (that will be
used in our generic compiler) EQy =

(
1, 1, 5, (01134), (02325), (y, 1, 1, 1, 1)

)
.

We explain the procedure to evaluate a 1-output, n-input circuit and refer the
reader to [18] for the general case. Given (x1, ... , xn) and the circuit description
C = (n, 1, q, L,R,G), compute y = C(x1, ... , xn) as follows. Retrieve the label of
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the left and right input wires to gate g = i, for i = 1, 2, ... , q. Let l ← L(i) and
r ← L(i). Create a new variable xn+i ∈ {0, 1}. If l = 0 = r, g is a constant gate,
assign xn+i ← G(i). Otherwise, by definition l �= 0 �= r, retrieve the values xl

and xr, and return xn+i ← xl if G(i) = 0, or xn+i ← NAND(xl, xr) if G(i) = 1.
The output is xn+q = y = C(x1, ... , xn).

Another interesting operation on circuits is circuit composition. Given two
circuits, C1 and C2, we say that C1 is composable with C2 if u1 = n2. Intuitively,
composition connects each output wire of C1 with one input wire of C2. We
denote the circuit composition as C3 = C1 � C2. The resulting circuit C3 =
(n3, u3, q3, L3,R3,G3) is defined as: n3 = n1, u3 = u2, q3 = q1 + q2. Let wi be the
number of wires in Ci, then

L3 =

⎧
⎨

⎩

L1(i) for i ∈ [w1]
0 for i ∈ [w1 + w2] \ [w1] and L2(i − w1) = 0

L2(i − w1) + w1 − u1 for i ∈ [w1 + w2] \ [w1] and L2(i − w1) �= 0

Note that the entries of L3 that are set to 0 preserve constant output gates. The
right-input function R3 is defined analogously. The right-input function R3 is
defined analogously. Finally, G3 = G1||G2.

2.2 Multi-key Homomorphic Signatures

We start by recalling the notion of labeled programs of Gennaro and Wichs [21].

Labeled Programs [21]. A labeled program P is a tuple (C, �1, ... , �t), such that
C : Mt → M is a function of t variables (e.g., a circuit) and �i ∈ {0, 1}∗ is
a label for the i-th input of C. Labeled programs can be composed as follows:
given P1, ... ,Pn and a function G : Mn → M, the composed program P∗ is the
one obtained by evaluating G on the outputs of P1, ... ,Pn, and it is denoted
as P∗ = G(P1, ... ,Pn). The labeled inputs of P∗ are all the distinct labeled
inputs of P1, ... ,Pn (all the inputs with the same label are grouped together
and considered as a unique input of P∗).

We recall the definitions of Fiore et al. [17] for multi-key homomorphic
authenticators, adapted to the case of signature schemes only. Following [17],
we consider labels where � = (id, τ), such that id is a given client identity and τ
is a tag which refers to the client’s input data. To ease the reading, we use the
compact and improper notation id ∈ P meaning that there exists at least one
index label � in the description of P = (C, (�1, ... , �n)) such that � = (id, τ) for
some string τ .

Definition 1 (Multi-key Homomorphic Signature [17] ). A multi-key
homomorphic signature scheme MKHS is a tuple of five PPT algorithms
MKHS = (MKHS.Setup,MKHS.KeyGen,MKHS.Sign,MKHS.Eval,MKHS.Verify)
that satisfies the properties of authentication correctness, evaluation correctness,
succinctness and security. The algorithms are defined as follows:
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MKHS.Setup(1λ). The setup algorithm takes as input the security parameter λ
and outputs some public parameters pp including a description of an identity
space ID, a tag space T (these implicitly define the label space L= ID × T),
a message space M and a set of admissible functions F. The pp are input to
all the following algorithms, even when not specified.

MKHS.KeyGen(pp). The key generation algorithm takes as input the public
parameters and outputs a pair of keys (sk, pk), where sk is a secret signing
key, while pk is the public evaluation and verification key.

MKHS.Sign(sk,Δ, �,m). The sign algorithm takes as input a secret key sk, a
dataset identifier Δ, a label � = (id, τ) for the message m, and it outputs a
signature σ.

MKHS.Eval(P,Δ, {(σi, pkidi
)}i∈[n]). The evaluation algorithm takes as input a

labeled program P = (C, (�1, ... , �n)), where C is an n-input circuit C :
Mn −→ M, a dataset identifier Δ and a set of signature and public-key pairs
{(σi, pkidi

)}i∈[n]. The output is an homomorphic signature σ.
MKHS.Verify(P,Δ, {pkid}id∈P,m, σ). The verification algorithm takes as input a

labeled program P = (C, (�1, ... , �n)), a dataset identifier Δ, the set of public
keys {pkid}id∈P corresponding to those identities id involved in P, a message
m and an homomorphic signature σ. It outputs 0 (reject) or 1 (accept).

Remark 1 (Single/Multi-Hop Evaluation). Similarly to fully homomorphic
encryption, we call a (multi-key) homomorphic signature i-Hop if the Eval algo-
rithm can be executed on its own outputs up to i times. We call single-hop a
scheme where Eval can be executed only on fresh signatures, i.e., generated by
Sign, whereas a multi-hop scheme is a scheme that is i-Hop for all i.

Authentication Correctness. A multi-key homomorphic signature satisfies
authentication correctness if for all public parameters pp ← MKHS.Setup(1λ),
any key pair (skid, pkid) ← MKHS.KeyGen(pp), any dataset identifier Δ, any
label � = (id, τ) ∈ L, any message m ∈ M and any signature σ ←
MKHS.Sign(sk,Δ, �,m), it holds that Pr [MKHS.Verify(I�,Δ, pk,m, σ) = 1] ≥
1 − negl.

Evaluation Correctness. A multi-key homomorphic signature satisfies evalu-
ation correctness if Pr [MKHS.Verify(P′,Δ, {pkid}id∈P′ ,m′, σ′) = 1] ≥ 1 − negl
where the equality holds for a fixed description of the public parameters pp ←
MKHS.Setup(1λ), an arbitrary set of honestly generated keys {(skid, pkid)}id∈ĨD

for some ˜ID ⊆ ID, with | ˜ID| = t, a dataset identifier Δ, a function C :
Mn → M, and any set of program/message/signature triples {(Pi,mi, σi)}i∈[n]

such that MKHS.Verify(Pi,Δ, {pkid}id∈Pi
,mi, σi) = 1 for all i ∈ [n], and

m′ = g(m1, ... ,mn), P′ = g(P1, ... ,Pn), and σ′ = Eval(C, {(σi, PKi)}i∈[n]) where
PKi = {pkid}id∈Pi

.

Succinctness. Succinctness is one of the crucial properties that make multi-key
homomorphic signatures an interesting primitive. Intuitively, a MKHS scheme is
succinct if the size of every signature depends only logarithmically on the size
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of a dataset. More formally, let pp ← MKHS.Setup(1λ), P = (C, (�1, ... , �n))
with �i = (idi, τi), (skid, pkid) ← MKHS.KeyGen(pp) for all id ∈ [n]. and σi ←
MKHS.Sign(skidi

,Δ, �i,mi), for all i ∈ [n], then MKHS has succinct signatures if
there exists a fixed polynomial poly(·) such that size(σ) = poly(λ, t, log n) where
σ = MKHS.Eval(P, {(σi, pkidi

)}i∈[n]).

Security. We adopt Fiore et al.’s security model [17]. Very intuitively, a multi-
key homomorphic signature scheme is secure if the adversary, who can request
to multiple users signatures on messages of its choice, can produce only signa-
tures that are either the ones it received, or ones that are obtained by correctly
executing the Eval algorithm. In addition, in the multi-key setting the adversary
is also allowed to corrupt users but this shall not affect the integrity of compu-
tations performed on data signed by other (un-corrupted) users of the system.
Formally, we define the security experiment below.

Setup. The challenger C runs MKHS.Setup(1λ) and sends the public parameters
pp to the adversary A.

Sign Queries. The adversary can adaptively submit queries of the form
(Δ, �,m), where Δ is a dataset identifier, � = (id, τ) is a label in ID × T and
m ∈ M is a message. The challenger answers performing all the 1–4 checks
below:

1. If (�,m) is the first query for the dataset Δ, the challenger initializes an empty
list LΔ = ∅.

2. If (Δ, �,m) is the first query with identity id, the challenger generates the
keys for that identity: (skid, pkid) ← KeyGen(pp). and proceeds to step 3.

3. If (Δ, �,m) is such that (�,m) /∈ LΔ, the challenger computes σ ←
MKHS.Sign(skid,Δ, �,m) (this is possible since C has already generated the
keys for the identity id). Then the challenger updates the list LΔ ← LΔ∪(�,m)
and returns (σ, pkid) to A.

4. If (Δ, �,m) is such that (�, ·) /∈ LΔ, that is, the adversary had already made a
query (Δ, �,m′) for some message m′, the challenger ignores the query. Note
that for a given (Δ, �) pair only one message can be obtained.

Corruption Queries. At the beginning of the game, the challenger initialises
an empty list Lcorr = ∅ of corrupted identities. During the game, the adversary
can adaptively perform corruption queries by sending id ∈ ID to the challenger.
If id /∈ Lcorr the challenger updates the list Lcorr ← Lcorr ∪ id and answers the
query with the pair (skid, pkid) generated using KeyGen (if not done before). If
id ∈ Lcorr the challenger replies with keys (skid, pkid) assigned to id before.

Forgery. At the end of the game, A outputs a tuple (P∗,Δ∗, {pk∗
id}id∈P∗ , y∗,

σ∗). The experiment outputs 1 if the tuple returned by A is a forgery (defined
below), and 0 otherwise.

A MK-HS scheme MKHS is unforgeable if for every PPT adversary A, its
advantage AdvAMKHS(λ) = Pr[MK-HomUF-CMAA,MKHS(λ) = 1] is negl(λ).
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Definition 2 (Forgery). We consider an execution of MK-HomUF-CMA where
(P∗,Δ∗, {pk∗

id}id∈P∗ , y∗, σ∗) is the tuple returned by A at the end of the
experiment. Let P∗ = (C∗, �∗

1, ... , �
∗
n). The adversary’s output is said to be

a successful forgery against the multi-key homomorphic signature scheme if:
MKHS.Verify(P∗,Δ∗, {pk∗

id}id∈P∗ , y∗, σ∗) = 1 and at least one of the following
conditions hold:

Type-1 forgery: the dataset Δ∗ was never initialised.
Type-2 forgery: for all id ∈ P∗, id /∈ Lcorr and (�∗

i ,mi) ∈ LΔ∗ for all i ∈ [n],
but y∗ �= C∗(m1, ... ,mn).

Type-3 forgery: there exists (at least) one index i ∈ [n] such that �∗
i was

never queried, i.e., (�∗
i , ·) /∈ LΔ∗ and idi /∈ Lcorr is a non-corrupted identity.

Non-adaptive Corruption Queries. We also recall a proposition given in [17],
which shows that it is sufficient to prove security for non-adaptive corruption
queries. This is a setting where the adversary A can perform corruption queries
only on identities for which no signature query had already been performed. This
proposition can be used to simplify security proofs.

Proposition 1 ([17]). MKHS is secure against adversaries that do not make
corruption queries if and only if MKHS is secure against adversaries that make
non-adaptive corruption queries.

2.3 Homomorphic Signatures

Despite some minor syntactic modifications, homomorphic signatures can be seen
as a special case of multi-key homomorphic signatures for algorithms that run
on inputs by a single user only. For the purpose of this work, single-key homo-
morphic signature schemes are defined by five PPT algorithms HS = (HS.Setup,
HS.KeyGen,HS.Sign,HS.Eval,HS.Verify) that have the same input-output behav-
ior as the corresponding algorithms in MKHS except:

– There is no identity space ID and the labels are simply � = τ .
– The evaluation algorithm HS.Eval takes as input a circuit C, a single public

key pk and a set of signatures σ1, ... , σn. In particular HS.Eval runs without
labels or dataset identifier.

– The verification algorithm HS.Verify accepts inputs from a single user only,
i.e., the labeled program P is of the form P = (C, (τ1, ... , τn)) and only one
public key pk is provided.

The properties of authentication and evaluation correctness are analogous to the
ones for MKHS in the case of computations on inputs by a single client. Regarding
succinctness, a homomorphic signature scheme HS has succinct signatures if the
size of any signature σ output by HS.Eval depends only logarithmic in the number
n inputs to the labelled program, i.e., size(σ) = poly(λ, log(n)).

Finally, we observe that the specialization to the single-key setting of the
above security definition corresponds to the strong-adaptive security definition
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of HS that is formalized in [10]. In particular, the definitions in [10] allow for a
simple treatment of Type-3 forgeries. In [10] it is also shown that HS construc-
tions for circuits that are secure in this stronger model can be generically built,
e.g., from [23].

3 The Matrioska Compiler

In this section, we present Matrioska: a generic compiler from a single-key
homomorphic signature scheme HS = (HS.KeyGen, HS.Sign, HS.Eval, HS.Verify)
to a (single-hop) multi-key scheme MKHS = (MKHS.KeyGen, MKHS.Sign,
MKHS.Eval, MKHS.Verify). The result is summarized in the following theorem:

Theorem 2. Let HS be a homomorphic signature scheme that is correct and
unforgeable. Then, for any given integer number T ≥ 1 there exists a multi-
key homomorphic signature scheme MKHS(HS,T) that supports computations on
signatures generated using at most T distinct keys, it is correct and unforgeable.
Furthermore, if HS supports circuits of maximum size s and maximum depth d
and it has succinctness l, then MKHS(HS,T) on T distinct users has succinctness
T · l, and can support circuits of size s′ and depth d′ provided that s > (s′)cs

T−1

and d > max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a
non-negative constant that depend from the single-key scheme HS.

More precisely, dHSV expresses the depth of the circuit for the verification algo-
rithm HS.Verify as a function of its input length (which includes the description
of the labeled program P); cs is a constant such that the size of HS.Verify on
input a circuit C is size(C)cs . Notice that by efficiency of HS such cs exists, and
dHSV can, in the worst case, be written as size(C)cd for some other constant cd.

Theorem 2 can be instantiated in two ways. If HS is a fully-homomorphic
signature (whose existence is not yet known), then for any s′ = poly(λ) and for
any constant number T, we are guaranteed that HS is executed on poly-sized
circuits. Otherwise, if HS is an HS for circuits of bounded polynomial depth
(and of any, or bounded, polynomial size), as e.g., [23], then for any s′ = poly(λ)
and for any fixed number of keys T, we can derive a polynomial bound d on
the depth. The proof of Theorem 2 is constructive. First we show a method to
define MKHS given a HS scheme and a value T. Next, in a sequence of lemmas,
we prove all the properties stated in the theorem.

Our construction is rather involved. Therefore, in the next section we first
illustrate our ideas for a simple case of a computation that takes inputs from
three different users, and then, in Sect. 3.2, we describe the full compiler.

3.1 An Intuition: The Three-Client Case

We provide here a simplified example to explain the core idea of our Matrioska
compiler. To ease the exposition we consider the case t = 3 (three clients with
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identities id1, id2 and id3) and deliberately remove dataset identifiers. A detailed
description for t = n = 3 can be found in the full version of this paper [18].

Let P = (C, (�1, ... , �n)) be a labelled program, where C a (n)-input circuit
(with n = n1 + n2 + n3) and the labels �i = (idi, τi) are ordered, i.e., first n1
inputs belong to client id1, the subsequent n2 to id2 and the last n3 inputs to
id3. Let σi be the signature on message mi for the label �i. For simplicity assume
that C(m1, ... ,mn) = y = 1.

Step 1. We want extract from C a circuit that contains only inputs by clients
id2 and id3. To this end, we define E1 as the partial evaluation of C on the
messages mn1+1, ... ,mn. Thus, E1 is an n1-input circuit with hardwired in it the
inputs by clients id2 and id3. In our framework E1 is obtained with two basic
operations on the bit string C: (1) setting any gate g with left or right input
wire in [n] \ [n1] to be a constant gate (i.e., setting the bits L(g) and R(g) to
0), and (2) initializing the now constant gate to the value mi for i ∈ [n] \ [n1].
At this point we obtained a circuit with inputs of a single client only, and we
can run σ̂1 ← HS.Eval(E1, pkid1 , σ1, ... , σn1). By construction E1(m1, ... ,mn1) =
C(m1, ... ,mn) = 1, therefore HS.Verify((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1.

Step 2. The actual inductive procedure begins now. We wish to verify the cor-
rectness of σ̂1 using the messages input by client id2 as variables. Consider the
input to the (single-client) verification as the string S1 = ((E1, (τ1, ... , τn1)), pkid1 ,
σ̂1, 1). Recall that to construct the circuit E1 we used the messages mn1+1, ...mn

(hard-wired in its gate description). To free the inputs by client id2 we mod-
ify S1 in the following way: (1) identify the gates that contain the messages
mn1+1, ... ,mn1+n2 , (2) turn these gates into input gates by setting the left/right
wires to the opportune values w (using P). Let us consider HS.Verify on the
modified string S1, this is a proper circuit E2 such that E2(mn1+1, ... ,mn1+n2)=
HS.Verify((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1. Being E2 a single-client circuit we
can run σ̂2 ← HS.Eval(E2, pkid2 , σn1+1, ... , σn1+n2).

Step 3. This is analogous to Step 2: we wish to verify the correctness of
σ̂2 using the messages input by client id3 as variables and define a circuit
that is completely determined by public values, no hard-wired message value.
Let S2 = ((E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1), we free the inputs by client
id3 as in Step 2. We define E3 as the formal evaluation of HS.Verify on
the modified string S2. By construction it holds that E3(mn1+n2+1, ... ,mn) =
HS.Verify((E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1) = 1, and we can run σ̂3 ←
HS.Eval(E3, pkid3 , σn1+n2+1, ... , σn).

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).
The Matrioska verification procedure needs only reconstruct the final cir-

cuit E3, as this is fully determined by the public values (P, pkid1 , pkid2 , σ̂1, σ̂2,
HS.Verify, 1). Let E3 = (E3, (τn1+n2+1, ... , τn)), the verification concludes by run-
ning the single-key verification algorithm: HS.Verify(E3, pk3, σ̂3, 1).
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3.2 The Matrioska Compiler

In this section we describe our compiler in the general case of computing on
signatures generated by t different keys.

Definition 3 (Matrioska). Let HS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,
HS.Verify) be a single-key homomorphic signature scheme, we define a multi-key
homomorphic signature scheme MKHS as follows:

MKHS.Setup(1λ,T, s′, d′) → pp. The set-up algorithm takes as input the secu-
rity parameter λ, a positive integer T that represents a bound for the maximal
number of distinct identities involved in the same homomorphic computation,
and bounds s′, d′ = poly(λ) on the size and depth respectively of the circuits used
in the MKHS.Eval and MKHS.Verify algorithms. Setup first uses T, s′, d′ to derive
two integers s and d such that s > (s′)cs

T−1
and d > max{d′, dHSV((s′)cs

T−1
, λ)}.

Next, it runs HS.Setup(1λ, s, d) to obtain a tag space T (which corresponds to
the label space of HS), a message space M and a set of admissible circuits F.2

Labels of the multi-key scheme are defined as pairs � = (id, τ) ∈ ID × T, where
the first entry is a client-identity identifier. Labeled programs are of the form
P= (C, (�1, ..., �t)) with labels as above.

MKHS.KeyGen(pp) → (pk, sk). The multi-key key-generation algorithm runs
HS.KeyGen to obtain a public-secret key pair. This key-pair will be associated to
an identity id ∈ ID. When we need to distinguish among clients we make the
dependency on the identity explicit, e.g., (pkid, skid).

MKHS.Sign(sk,Δ, �,m) → σ. This algorithm takes as input a secret key sk,
a data set identifier Δ (e.g., a string), a label � = (id, τ) for the message m. It
outputs

σ ← HS.Sign(skid,Δ, τ,m). (1)

Without loss of generality we assume that σ includes m.
MKHS.Eval(P,Δ, {(σi, pkidi

)}i∈[t]) → σ̂. Let P = (C, (�1, ... , �n)), where
C = (n, 1, q, L,R,G) and the n ≥ t labels are of the form �j = (idi, τj) for some
i ∈ [t] and τj ∈ T, where t ≤ T.

The case t = 1 In this case all the n signatures belong to the same user, that
is to say, there exists an identity id ∈ ID such that for all j ∈ [n] the labels are
of the form � = (id, τj) for some τj ∈ T. Thus, it is possible to run the classical
evaluation algorithm of HS and the output of the multi-key evaluation algorithm
for t = 1 is:

σ̂ = σ̂id ← HS.Eval
(
E0, pkid, (σ

id
1 , ... , σid

n )
)
. (2)

The case t ≥ 2 In this case the inputs to the labeled program belong to t
distinct users. Without loss of generality, we assume that the labels are ordered
per client identity, i.e., all the labels between �tj and �tj+1−1 are of the form
(idj , ∗). For each i ∈ [t] the signature vector σi is σi = (σi

1, ... , σ
i
ni

) for opportune
values ni ∈ [n − t + 1] satisfying

∑t
i=1 ni = n. Let ti = (

∑i−1
j=0 nj) + 1, where

2 If HS works without these a-priori bounds, it is enough to run HS.Setup(1λ).
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we set n0 = 0, then ti corresponds to the index of first input of identity idi. The
multi-key homomorphic evaluation performs the following t + 1 steps.

Step 0. Given P = (C, (�1, ... , �n)) retrieve the messages corresponding to the
labels �1, ... , �n. For notation sake let mj be the message corresponding to label
�j. Compute the value y = C(m1, ... ,mn). Define a single-input single-output
circuit EQy(x) that outputs 1 if and only if x = y. Construct E0 = C � EQy =
(n, 1, q0, L0,R0,G0). The properties of EQy imply that:

E0(x1, ... , xn) = 1 iff C(x1, ... , xn) = y . (3)

Note that E0 can be constructed directly from C and y, moreover

E0(m1, ... ,mn) = 1. (4)

Step 1. We build a n1-input circuit E1 that corresponds to a partial evaluation

of E0 on the inputs of identities idj with j > 1. Given E0 = (E0, (�1, ... , �n)), the
signatures σ1 = (σ1

1 , ... , σ
1
n1) and the messages mn1+1, ... ,mn do:

• Define the mask circuit M1 = (n1, n, n, L′
1,R

′
1,G

′
1) where

L′
1(j) = R′

1(j) =
{

1 for j ∈ [n1]
0 for j ∈ [n] \ [n1]

andG′
1 =

{
0 for j ∈ [n1]
mj for j ∈ [n] \ [n1]

.

By construction M1(b1, ... , , bn1) = (b1, ... bn1 ,mn1+1, ... ,mn).
• Compose M1 with E0 to obtain E1 = M1 � E0 = (n1, 1, q1, L1,R1,G1) where:
q1 = q0+n; G1 = (G′

1||G0); L1(g) = L′
1(g) for g ∈ [n], L1(g) = (L0(g−n+1)+1)

for g ∈ [n + 1, n + q0] if L0(g − n + 1) �= 0 and 0 whenever L0(g − n + 1) = 0.
The function R1(g) is defined analogously. Equation (4) implies

E1(m1, ... ,mn1) = 1. (5)

• Compute σ̂1 ← HS.Eval(E1, pkid1 ,σ1). This is possible since E1 is a circuit
involving only inputs of client id1.

Remark 2. Let E1 = (E1, (τ1, ... , τn1)). Equation (5) and the correctness of the
HS scheme imply HS.Verify(E1,Δ, pkid1 , σ̂1, 1) = 1.

Step i for i ∈ [2, t]. The goal is to construct an ni-input circuit Ei using
Ei−1 = (Ei−1, (τti , ... , τti+1−1)), Δ, pkidi

and σi = (σi
1, ... σ

i
ni

). This will be possi-
ble using the circuits HSVi = (nHSVi, 1, qHSVi

, LHSVi
,RHSVi

,GHSVi
) for the (single-

key) homomorphic signature verification against the value 1.3

Let Si−1 = (Ei−1,Δ, pkidi−1
,σi−1) be a string of nHSVi = size(Si−1) bits. Set

g1 = 1. The gates of Ei−1 that embed the ni values input by identity idi are located
in the interval Ii = [gi, gi+ni], where gi = 3 lg(Ni−1)+2qi−1 lg(wi−1)+gi−1+ni−1

(see [18] for an explanation).

3 The readers can consider the circuit HSVi to be the representation of
HS.Verify(Ei−1, ·, ·, 1) where Ei−1 is a labelled program for a circuit of size at most
O((nHSVi−1 + qHSVi−1) lg(wHSVi−1)).
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• Define the mask circuit Mi = (ni, nHSVi, nHSVi, L
′
i,R

′
i,G

′
i) where

L′
i(g) = R′

i(g) =

{
0 if g ∈ [nHSVi] \ Ii

1 if g ∈ Ii
and G′

i(g) =

{
Si−1(g) if g ∈ [nHSV3] \ Ii

0 if g ∈ Ii

Note that for gates g in the interval Ii, L′
i(g) = 1 and G′

i(g) = 0 which means
that Mi outputs its ni input bits exactly the interval Ii, while outside Ii the
output of Mi is constant. In particular: Mi(mti , ... ,mti+ni

) = Si−1.
• Compose Mi with HSVi to obtain Ei = Mi�HSVi = (ni, 1, qi, Li,Ri,Gi) where:
qi = nHSVi + qHSVi ; Gi = (G′

i||GHSVi); Li(g) = L′
i(g) for g ∈ [nHSVi], Li(g) =

LHSVi
(g − nHSVi + 1) + ni for g ∈ [nHSVi + 1, qi] if LHSVi

(g − nHSVi + 1) �= 0,
and 0 otherwise; and Ri is defined analogously. . Circuit composition ensures
that4 Ei(mti , ... ,mti+ni

) = HS.Verify(Ei−1,Δ, pkidi−1
, σ̂i−1, 1). In particular,

applying Remark 2 inductively we get:

Ei(mti , ... ,mti+ni
) = 1 (6)

Note that Ei can be constructed directly from E0 given the values mti , ... ,mn

and the public data Δ, pkidj
, σ̂j for j ∈ [i − 1]. In more details, for

i ∈ [2, t] consider the set of bit strings: headi = (ni, 1, qi, Li,Ri) and taili =
(τti , ... , τti+ni

,Δ, pkidi−1
, σ̂i−1,GHSVi

). For every i ∈ [2, t] headi and taili are
completely determined by the tags for identity idi−1, the public key pkidi−1

and
the evaluated signature σ̂i−1. It is immediate to see that headi and taili are
respectively the head and the tail of the circuit description of Ei. The heart
of the string Ei is where “all the magic” happens:

bodyi = (headi−1, ... , head2, 0, ... , 0︸ ︷︷ ︸
(ti+1−1)=

∑i
j=1 nj

mti , ... ,mn,G0, tail2, ... , taili) (7)

In particular, for i = t we have:

Et =
(
headt bodyt tailt

)

=
(
headt, (headt−1, ... , head2, 0, ... , 0

︸ ︷︷ ︸
n

,G0, tail2, ... , tailt−1), tailt
)

(8)

Equation (8) shows that the circuit Et is completely determined by the labeled
program E0 (to get the tags and the gate description G0), the dataset identifier
Δ, the public keys pkidi

and the signatures σ̂i for i ∈ [t].
• Compute σ̂i ← HS.Eval(Ei, pkidi

,σi).

Remark 3. This is possible since Ei is a ni-input circuit with inputs from the
user idi only. Equation (6) and the correctness of the HS scheme imply that

HS.Verify(Ei,Δ, pki, 1, σ̂i) = 1. (9)
4 With abuse of notation one can think that Ei(mti , ... ,mti+ni) = Mi(mti , ... ,mti+ni)�
HSVi = HSVi(Mi(mti , ... ,mti+ni)). Since Mi(mti , ... ,mti+ni) = Si−1 the claim fol-
lows by the definition of HSVi.
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The output of the multi-key evaluation algorithm is the vector of t signatures:
σ̂ = (σ̂1, ... , σ̂t).

MKHS.Verify(P,Δ, {pkid}id∈P, y, σ̂) → {0, 1}. The verification algorithm
parses the labeled program as P = (C, (�1 ... , �n)) and checks the number
1 ≤ t ≤ T of distinct identities present among the n labels.

The case t = 1 In this case all the inputs to the labeled program P come
from the same user and σ̂ = σ̂id. In other words, all the labels are of the form
�j = (id, τj) for an id ∈ ID and some τj ∈ T. Set E0 = (C, (τ1, ... , τn)), notice
that we removed the identity from the labels. The multi-key verification algorithm
returns the output of

HS.Verify(E0,Δ, pkid, 1, σ̂id). (10)

The case t ≥ 2 In this case the labeled program P contains labels with t ≥ 2
distinct identities and σ̂ = (σ̂1, ... , σ̂t). Without loss of generality, we assume
that the labels are ordered per client identity and ni ∈ [n − t + 1] is the number
of labels with identity idi.

Define E0 = (n, 1, q0, L0R0,G0) as the circuit E0 = C � EQy, where EQy(x)
is the a single-input single-output circuit that outputs 1 if and only if x = y.
Thus, E0(x1, ... , xn) = 1 whenever C(x1, ... , xn) = y. As noted in the Step 0 of
the evaluation algorithm, E0 is completely determined by P and y.

To verify the signature σ̂, the multi-key verification algorithm inductively
creates the following strings for i ∈ [2, t]:

headi = (ni, 1, qi = nHSVi + qHSVi , Li = (0, ... , 0,
︸ ︷︷ ︸

(
∑i−1

j=1 nj)−bits

ni−bits
︷ ︸︸ ︷
1, ... , 1, 0, ... , 0

︸ ︷︷ ︸
(n−∑i

j=1 nj)−bits

),Ri = Li)

taili = (τti−1 , ... , τti−1+ni−1 ,Δ, pkidi−1
, σ̂i−1,GHSVi

)

where, the circuit HSVi is the same as the one explained in MKHS.Eval, i.e., the
HSVi is the (single-key) homomorphic signature verification against the value 1.
At this point the verifier can combine all the pieces to (re)-construct the descrip-
tion of the circuit Et:

Et = (headt, ... , head2, 0, ... , 0
︸ ︷︷ ︸

n

,G0, tail2, ... , tailt). (11)

Let Et = (Et, (τtt , ... , τn)), where we removed idt from the labels. The verification
returns:

HS.Verify(Et,Δ, pkidt
, σ̂t, 1). (12)

Remark 4. Note that the Et constructed by the verifier via Eq. (11) coincides
with the one created by the evaluator via Eq. (8).

3.3 Correctness and Succinctness of Matrioska

In what follows we show that the Matrioska scheme satisfies the properties stated
in Theorem 2.



58 D. Fiore and E. Pagnin

Succinctness. By construction, for a computation involving messages from
t users, our signatures consist of t signatures of the single-input scheme. It is
straightforward to see that if HS signatures have length bounded by some poly-
nomial l, the size of Matrioska’s signatures is ≤ t · l, which is, asymptotically, the
same level of succinctness as the MK-HS construction by Fiore et al. [17].

Correctness. The following two lemmas reduce the authentication and evalu-
ation correctness of Matrioska multi-key homomorphic signatures to the authen-
tication and evaluation correctness, respectively, of the underlying single-key HS
scheme.

Lemma 1. Let HS be a single-key homomorphic signature scheme with
authentication correctness, then the multi-key homomorphic signature scheme
MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 achieves
authentication correctness.

The proof is quite straightforward and uses the labeled identity program I� =
(Cid, �). For details check [18].

Lemma 2. Let HS be a single-key homomorphic signature scheme with
evaluation correctness, then the multi-key homomorphic signature scheme
MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 achieves eval-
uation correctness.

The evaluation correctness of Matrioska essentially follows from the evaluation
correctness of HS and the way we (inductively) define the circuits Ei. Moreover,
notice that our MK-HS scheme is single-hop, therefore we have to prove eval-
uation correctness with respect to computing on freshly generated signatures
(given that authentication correctness is granted by the previous lemma). For a
detailed proof check [18].

Circuit Growth. In what follows we analyze the size growth of the circuits
Ei computed by the Matrioska compiler, and use this to prove the bounds in
Theorem 2.

Lemma 3. Let HS be a correct single-key homomorphic signature scheme
that supports computations on circuits of (maximum) depth d and size s;
then the multi-key homomorphic signature scheme MKHS(HS,T) obtained from
the Matrioska compiler of Definition 3 supports homomorphic computations
on circuits of size s′ and depth d′ provided that s > (s′)cs

T−1
and d >

max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a non-negative
constant that depend on the single-key scheme HS.

Intuitively, for t = 1, MKHS is running the plain algorithms of HS. and thus
MKHS supports circuits of size s′ < s and depth d′ < max{d, dHSV(s)}. For
t > 1 the Matrioska compiler runs HS.Eval and HS.Verify on every Ei including
Et. Since {Ei}i∈[t] is a sequence of circuits of increasing size and depth we need
to make sure that the circuit given as input to MKHS will grow into an Et that
is supported by HS. The details can be found in [18].
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3.4 Security of Matrioska

In this section we argue that Matrioska MKHS schemes are unforgeable provided
that so is the underlying HS scheme. For the proof we rely on Proposition 1
from [17], which allows for a simpler treating of corruption queries. Due to space
limit, the detailed proof appears in the full version of this paper [18] while below
we give a proof sketch with the main intuition.

Lemma 4. Let HS be a secure single-key homomorphic signature scheme. Then
the multi-key homomorphic signature scheme MKHS(HS,T) obtained from the
Matrioska compiler of Definition 3 is secure. In particular, for any PPT adver-
sary Amaking signing queries on at most Qid = poly(λ) distinct identities, there
is a PPT algorithm B such that: AdvAMKHS ≤ Qid · AdvBHS .

Proof Sketch. The idea is that a forger against our MKHS scheme must create a
forgery for the HS scheme for at least one of the users, say idi� , involved in the
computation. Thus the reduction B, on input a public key pk, makes a guess for
j∗ = i�, programs pkidj∗ = pk and generates all the other keys. This allows B to
perfectly simulate all the signing queries (perfectly hiding j∗ to A).

When A returns (P∗,Δ∗, {pk∗
id}id∈P∗ , y∗, σ∗), with σ∗ = (σ̂∗

1 , ... , σ̂
∗
t ), the cru-

cial part of the proof is showing the existence of an index i� such that σ̂∗
i� is a

forgery for HS. Specifically:

– σ∗is of type-1 (Δ∗ is new). Then i� = t and σ̂∗
t is a type-1 forgery against

HS.
– σ∗is of type-2. This means: E0(m1, ... ,mn) = 0

while HS.Verify(Et, pkidt
, 1, σ̂∗

t ) = 1. Then we show that there must exist
a “forking index” i� ∈ [t] such that Ei−1(mti−1 , ... ,mti−1+ni−1) = 0 but
HS.Verify(Ei, pkidi

, σ̂∗
i , 1) = 1, that is, σ̂∗

i� is a type-2 forgery against HS for
the labeled program Ei.

– σ∗is of type-3. If t = 1, then i� = 1 and σ̂∗
1 is a type-3 forgery against HS. If

t > 1, let i ∈ [t] be the first index such that ∃ j ∈ [n] : �j = (idi, τj) /∈ LΔ∗ ,
i.e., the first identity for which a type-3 forgery condition holds. Then, either
σ̂∗

i is a type-3 forgery for HS for identity idi (and thus i� = i); or there is
i� > i such that σ̂∗

i� is a type-2 forgery against identity idi� . The latter can
be argued by showing the existence of a “forking index” as in the previous
case. In a nutshell, a type-3 forgery against MKHS comes either from a type-3
forgery at some index i, or, the i-th signature is incorrect and thus there must
be a type-2 forgery at a later index to cheat on the fact that verification at
index i is correct.

Therefore, if j∗ = i� (which happens with non-negligible probability 1/Qid), B
can convert A’s forgery into one for its challenger.

4 Conclusions and Future Work

In this paper, we presented Matrioska the first generic compiler based on falsifi-
able assumptions that establishes a formal connection between single-key HS and
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multi-key HS schemes. Matrioska introduces an original mechanism to gain multi-
key features by levering the homomorphic property of a single-key HS scheme.
The resulting signatures are succinct in the sense that their length depends solely
on the number of signers involved in the homomorphic computation, and not
on the total number of signatures input. Unfortunately, constructions obtained
with Matrioska are of limited efficiency, as they require the single-key HS scheme
to support circuits of size exponentially large in the maximum number of dis-
tinct signers involved in the computation. Achieving full signature succinctness
remains an interesting goal for further developments, as well as investigating if
Matrioska’s approach could be used to enhance other cryptographic primitives
with multi-key features.
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