
On the Security Properties of e-Voting
Bulletin Boards

Aggelos Kiayias1,3, Annabell Kuldmaa2, Helger Lipmaa2,4, Janno Siim2,5(B),
and Thomas Zacharias1

1 University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk
2 University of Tartu, Tartu, Estonia

annabell.kuldmaa@gmail.com, helger.lipmaa@gmail.com, janno.siim@gmail.com
3 IOHK, Edinburgh, UK

4 Cybernetica-Smartmatic CEIV, Tartu, Estonia
5 STACC, Tartu, Estonia

Abstract. In state-of-the-art e-voting systems, a bulletin board (BB)
is a critical component for preserving election integrity and availability.
We introduce a framework for the formal security analysis of the BB
functionality modeled as a distributed system. Our framework treats a
secure BB as a robust public transaction ledger, defined by Garay et al.
[Eurocrypt 2015], that additionally supports the generation of receipts
for successful posting. Namely, in our model, a secure BB system achieves
Persistence and Liveness that can be confirmable, in the sense that any
malicious behavior can be detected via a verification mechanism.

As a case study for our framework, we analyze security guarantees
and weaknesses of the BB system of [CSF 2014]. We demonstrate an
attack revealing that the said system does not achieve Confirmable Live-
ness in our framework, even against covert adversaries. In addition, we
show that special care should be taken for the choice of the underlying
cryptographic primitives, so that the claimed fault tolerance threshold
of N/3 out-of N corrupted IC peers is preserved.

Next, based on our analysis, we introduce a new BB protocol that
upgrades the [CSF 2014] protocol. We prove that it tolerates any num-
ber less than N/3 out-of N corrupted IC peers both for Persistence
and Confirmable Liveness, against a computationally bounded general
Byzantine adversary. Furthermore, Persistence can also be Confirmable,
if we distribute the AB (originally a centralized entity in [CSF 2014]) as
a replicated service with honest majority.

Keywords: Bulletin board · E-voting · Liveness · Persistence

This work was supported by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreements No. 653497 (project PANORAMIX) and
No. 780477 (project PRIViLEDGE). Lipmaa and Siim were also supported by the
Estonian Research Council grant (PRG49). Siim has been supported by European
Regional Development Fund under the grant no. EU48684.

c© Springer Nature Switzerland AG 2018
D. Catalano and R. De Prisco (Eds.): SCN 2018, LNCS 11035, pp. 505–523, 2018.
https://doi.org/10.1007/978-3-319-98113-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98113-0_27&domain=pdf

506 A. Kiayias et al.

1 Introduction

An electronic voting (e-voting) system is a salient instance of a network protocol
where verifying the correctness of the execution is of critical importance. One
can argue that if the concerned parties can not agree on the election transcript,
then the voting process itself is meaningless. Besides e-voting, verifiability of the
execution is desired in applications such as auctions and blockchain transactions.

It becomes apparent that in any protocol where consensus on the outcome
is essential, the protocol infrastructure must guarantee a consistent view to all
involved parties as far as auditing is concerned. Consistency here informally
suggests that any two auditors engaging in the verification process on the same
input but from possibly different network locations, should agree on their verdict,
i.e. they both accept or reject the execution outcome. If this guarantee cannot
be provided, then an adversary controlling the network could easily partition the
parties into small “islands”, such that each island has access to a partial, and
possibly (partially) fake, view of the execution. By doing this, the adversary can
undermine the auditors’ consensus on the outcome.

Consistency in voting may be realized in various ways depending on the elec-
tion setting. In small-scale elections (e.g. board elections) a consistent view can
be achieved by executing a consensus protocol by the voters themselves, even
without encrypting the votes if privacy is not a concern. However, when consider-
ing the large scale setting (e.g., national elections) where complete connectivity
among the participants is unrealistic, a publicly accessible and reliable method
is required for posting and reading all necessary election information. This is
provided by an electronic bulletin board (BB) which, abstractly, encompasses
two types of operations: (1) a posting operation involving users who make post
requests for items of their choice, potentially subject to some access policy, and
a subsystem of item collectors (ICs) that receive and store the submitted items.
(2) A publishing operation, where the IC subsystem publishes the stored items
on an audit board (AB) from where any party can read. The IC and the AB could
be distributed or centralized, or even managed by the same entity. Nonetheless,
the above description typifies the way BB’s are treated in the e-voting literature.

It is of high importance that the BB functionality implemented by the IC and
AB should function as an immutable database, so that submitted items cannot be
erased or changed. The desired features of such a database include: (a) the ability
to authenticate item contributors, (b) distributed operations to protect against
attacks on availability, (c) a predetermined time-span where item submission is
enabled, (d) resilience to modification so as to facilitate verifiability.

The necessity of a consistent BB has been stressed many times in e-voting
literature. In his PhD thesis, Benaloh [3] assumes BBs with append-only write
operations for auditing, also stressing that “implementing such bulletin boards
may be a problem unto itself.” Subsequently, most verifiable e-voting systems
proposed (e.g. [1,4,5,7–9,11,17,23,25]) refer to the notion of BB as a fundamen-
tal component of their infrastructure without explicitly realizing it.

Despite the widely accepted critical importance of building reliable BBs for
e-voting, the literature on proposals of secure and efficient BB constructions

On the Security Properties of e-Voting Bulletin Boards 507

is scarce. Outside a limited number of early works [15,21,26,28,29], the most
concrete examples include the BB applied in the vVote e-voting system [14]
(cf. [6,12]) and the BB of the D-DEMOS Internet-voting (i-voting) system [10].
In all these cases, the introduced BB was either an integral part of a specific e-
voting system [10,15], or, even though modular, lacked formal treatment under
a comprehensive security model [14,21,26,28,29].

In this work, we focus on the functionality of the BB as used in e-voting
systems, yet we note that our approach can be extended to other applications
where a public reliable auditing system is needed. We aim to establish a com-
plete formal treatment of a BB and propose an efficient and provably secure
construction that can be deployed in a wide class of e-voting designs.

Initially, we are motivated by the security requirements proposed by Culnane
and Schneider [14], suggesting that a secure BB should prevent data injection
and removal, while allowing only the publishing of non-clashing items. On top of
these properties, [14] prescribes a liveness guarantee of the eventual publishing
of all submitted items for which got a receipt for correct recording. Taking a step
further, we introduce a framework for the formal study of the BB concept and its
security. Our framework is inspired by the notion of a robust public transaction
ledger (RPTL) defined by Garay et al. [18] and the security model presented
by Chondros et al. [10], thereby utilizing the connection between blockchain
and BB systems, which, albeit being folklore, was never formalized. We define
a secure BB system in a way that it can be seen as an RPTL that additionally
supports the generation of receipts for successful posting. Expanding the security
model for blockchain protocols of [18], we divide security into properties named
Persistence and Confirmable Liveness. Confirmability in liveness captures the
receipt generation capability. Persistence can also be Confirmable, meaning that
dishonest AB behavior is detectable via verification of published data.

Next, we apply our framework for the security analysis of the BB system
of [14], which we refer to as the CS BB, that utilizes standard signature and
threshold signature schemes (TSS) as cryptographic building blocks. In the
threat model of [14], an adversary may corrupt less than Nc/3 out-of the total
Nc IC peers, hence we also assume this fault-tolerance threshold.

We find that CS is not secure in our framework for the < Nc/3 threshold.
Specifically, we demonstrate an attack showing that CS with Nc IC peers does
not achieve Confirmable Liveness. Our attack falls outside the threat model
of [14] but raises a discussion about its plausibility. In particular, the threat
model of [14] relies on a “fear of detection” (cf. the full version of [14], [13,
Sect. 8]), to exclude certain adversarial protocol deviations in the IC subsys-
tem. Nevertheless, such covert security reasoning (cf. [2]) is not formalized or
implemented in [13] and as our attack demonstrates, the detection of protocol
deviation is impossible by IC peers themselves given their local protocol view.

A second, though less crucial, finding for the security of CS concerns its Con-
firmable Persistence. Namely, we show that for CS to achieve Confirmable Per-
sistence under the <Nc/3 fault tolerance threshold, the underlying TSS should
not be applied as ‘black-box’ and care should be taken for the choice of the

508 A. Kiayias et al.

TSS construction. We briefly describe the issue in Sect. 4.3, but leave a more
thorough treatment for the full version of this paper [24].

Based on our analysis, we modify CS by designing a new Publishing protocol
that achieves consensus among the honest IC peers on the posted items that
should be published. Combined with the CS Posting protocol, we obtain a new
BB system that achieves Persistence and Confirmable Liveness for <Nc/3 cor-
rupted IC peers. Persistence can also be Confirmable, if we distribute the AB,
such that data posting is done by broadcasting to all AB peers and data reading
is done by honest majority. The new BB system is secure against (i) any compu-
tationally bounded Byzantine adversary, (ii) in a partially synchronous setting
(cf. [16]), where the message delivery delay and the synchronization loss among
the entities’ clocks are bounded, and the bounds themselves can be unknown
within a given wide range of protocol parameters.

Summary of Contributions. Our contributions are as follows:

– The first complete framework for the study of e-voting BBs captured by the
properties of Confirmable Liveness and (Confirmable) Persistence.

– Analysis of the CS BB system [14] in our security framework that reveals
two vulnerabilities. In particular, one of the vulnerabilities challenges the
reasoning of liveness in the threat model provided in [13, Sect. 8].

– A modified variant of the CS protocol that restores Confirmable Liveness. We
prove security in our framework with an Nc/3 threshold for the IC subsystem
against computationally bounded Byzantine adversaries. In particular, (i)
Persistence holds in the asynchronous model and can be also Confirmable
given honest majority of AB peers, while (ii) Confirmable Liveness holds in
the partially synchronous model.

Related Work. In a wide range of state-of-the-art e-voting systems, such
as [1,5,8,9,23,25], the BB is a centralized single point of failure for security
analysis. Dini [15] proposed a distributed e-voting service based on [17], focusing
on the service in general rather on the BB system. Several works on distributed
e-voting BB solutions lacked formal security analysis, providing only construc-
tions without proof [21,26,28,30], a study of requirements [20] or being appli-
cable only to the kiosk-voting based setting [4]. D-DEMOS [10] is a distributed
internet-voting system which adopts [25] to the distributed setting. The security
in [10] is studied in a model that is a stepping stone for our framework, yet secu-
rity argumentation targets specifically the D-DEMOS requirements. The CS BB
system [14] is a reference point for our work, and will be analyzed in Sect. 4.

2 Preliminaries

We use κ as the security parameter. We write f(κ) = negl(κ) if function f is
negligible in κ. We denote [N] := {1, 2, . . . , N} for any N ∈ N.

On the Security Properties of e-Voting Bulletin Boards 509

Signature Schemes. A signature scheme DS = (KGen,Sig,Vf) consists of: (i)
the key generation algorithm (pk, sk) ← KGen(1κ) that generates a signing key
sk and a verification key pk; (ii) the signing algorithm Sig that for message m
returns σ ← Sigsk(m); (iii) the verification algorithm Vfpk(m,σ) that returns 0 or
1. DS is correct if Vfpk(m,Sigsk(m)) = 1. The security of DS is formalized via the
notion of existential unforgeability against chosen message attacks (EUFCMA).

Threshold Signature Schemes. Let ts < N be two positive integers and
P1, . . . , PN be a set of peers. A (non-interactive) threshold signature scheme
(TSS) TSS = (DistKeygen,ShareSig,ShareVerify,Combine,TVf) consists of: (i)
the distributed key generation algorithm DistKeygen(1κ, ts, N) that generates a
keypair (tski, pki) for each peer Pi and a public key pk; (ii) the signing algorithm
ShareSigtski(m) that returns a signature share σi of the message m; (iii) the share
verification algorithm ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi)) that returns 0 or 1;
(iv) the share combining algorithm Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S) that
if |S| ≥ ts + 1, outputs a full signature σ ← TSign(tsk,m) on m; (v) the verifi-
cation algorithm TVfpk(m,σ) that returns 0 or 1.

The correctness of TSS requires that for (tsk, pk, tsk1, . . . , tskN , pk1, . . . , pkN)
output by DistKeygen(1κ, ts, N), if S ⊆ [N] s.t. |S| = ts + 1, it holds that (i)
σi = ShareSigtski(m), and (ii) if σ = Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S),
then ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi)) = 1 for i ∈ S and TVfpk(m,σ) = 1.

TSS is (ts, N)-EUFCMA-secure if every PPT adversary A has negl(κ) advan-
tage in performing a successful EUFCMA forgery for a message m∗, even when
the sum of (i) the number of the parties A corrupts, and (ii) the number of
parties for which A made a signing query for m∗, is no more than ts.

TSS is said to be (ts, N)-robust, if A controlling ts peers, can not prevent
honest peers from creating a valid signature. Robustness can only be achieved
for ts < N/2 (cf., Gennaro et al. [19]).

3 Framework

We introduce a formal framework for secure e-voting BB systems. First, we
provide an abstract description of the consisting entities and protocols. Then,
building upon the requirements stated in [14] and the modeling approach of [10,
18], we formalize BB security via the notions of (Confirmable) Persistence and
Confirmable Liveness.

3.1 Syntax of a Bulletin Board System

Entities. A BB system involves the following entities: (1) a setup authority SA
that generates the setup information and initializes all other entities with their
private inputs; (2) the users that submit post requests for items of their choice.
An item can be any data the user intends to be published, e.g., the voters’
ballots, the election results or any necessary audit information; (3) a subsystem
of item collection (IC) peers P1, . . . , PNc

that are responsible for (i) interacting

510 A. Kiayias et al.

with the users for posting all submitted items, and (ii) interacting with the AB
(see below) to publish the recorded items; (4) a subsystem of audit board (AB)
peers AB1, . . . , ABNw

where all the posted items are published.

Setup. During setup, SA specifies a posting policy P = (Accept,Select(·)), where

(1) Accept = {(U, x)} is a binary relation over pairs of user IDs and items.
For a user U that wants to post item x, (U, x) ∈ Accept is a check the IC
peers execute to initiate interaction with U for posting x. E.g., a user that
is authenticated as a voter may be accepted to post a vote, but nothing else.

(2) Select(·) is a selection function over sets of items defined as follows: let XU

be the set of published items associated with posts from user U . Then,
Select(XU) ⊆ XU contains all valid published items posted by U , resolv-
ing any conflict among clashing items. E.g., in Estonian e-voting [22], only
voter’s last vote must count. Thus, if the votes were submitted in time
ascending order as x1, x2, . . . , xm, then we set XU = {x1, x2, . . . , xm} and
Select(XU) = {xm}.

The SA initializes other entities with the description of P. Next, all entities
engage in a setup interaction such that when finalized, each entity has a pri-
vate input (e.g., a signing key or an authentication password) and some public
parameters params.

BB Protocols. The BB functionality comprises the Posting and Publishing
protocols, accompanied by two verification algorithms: (i) VerifyRec, run by the
users to verify the successful posting of their items, and (ii) VerifyPub, run by
any party for auditing the validity of the data on the AB.

The Posting protocol is initiated by a user U that on private input sU

submits a post request for item x. Namely, U uses sU to generate a credential
crU

1. Then, the user and the IC peers engage in an interaction that results in U
obtaining a receipt rec[x] for the successful posting of x. Upon receiving rec[x],
and using public election parameters params, U may run the algorithm VerifyRec
on input (rec[x], x, sU , params), that either accepts or rejects.

In the Publishing protocol, the IC peers upload their local records of posted
items to the AB subsystem. The protocol may encompass a consensus protocol
among the AB peers to agree whether a local record is admissible. In addition,
any auditor may run VerifyPub on input params and (a subset of the) published
data to check consistency of AB.

3.2 Introducing Our Security Framework

Culnane and Schneider [14] propose 4 properties that a secure BB must satisfy:

1 E.g., if sU is a signing key, then crU could be a valid signature under sU ; if sU is a
password, then crU can be the pair (U, sU).

On the Security Properties of e-Voting Bulletin Boards 511

(bb.1). Only items that have been posted may appear on the AB. This property
expresses safety against illegitimate data injection.

(bb.2). Any item that has a valid receipt must appear on the AB.
(bb.3). No clashing items must both appear on the AB.
(bb.4). Once published, no items can be removed from the AB. According to this

property, the AB subsystem is an append-only posting site.

In this section, we integrate the above 4 properties into a security framework.
At a high level, our framework conflates the formal approach in distributed e-
voting security of Chondros et al. [10] with the notion of a robust public trans-
action ledger (RPTL) proposed by Garay et al. [18]. Namely, we view a secure
BB as an RPTL that additionally provides receipts of successful posting for hon-
estly submitted items. The security properties of an RPTL stated in [18] are
informally expressed as follows:

• Persistence: once an honest peer reports an item x as posted, then all honest
peers either (i) agree on the position of x on AB, or (i) not report x.

• θ-Liveness: honest peers report honestly submitted items in a delay bound θ.

Persistence and Liveness in the e-Voting Scenario. In the e-voting setting,
honest users should get a valid receipt when engaging at the Posting protocol
(within some time θ) that confirms the eventual publishing of the respective
item. An important observation is that this property that we call θ-Confirmable
Liveness and (bb.3) can not be satisfied concurrently if we assume that honest
users may submit post requests for clashing items (e.g., multiple voting in Esto-
nia [22]). To resolve this conflict, we do not require that (bb.3) holds and the
subset of valid published items is specified via the selection function Select(·).
Given the above, we require that Persistence encompasses (bb.1) and (bb.4),
and conflict resolution is achieved by applying Select(·) on the AB view. Fur-
thermore, we extend Persistence by taking into account an AB subsystem that is
fully controlled by the adversary. This is formalized by the Confirmable Persis-
tence property, where we require that any malicious AB behavior will be detected
via the VerifyPub algorithm.

System Clocks. Like in [10], we assume that there exists a global clock variable
Clock ∈ N, and that every system entity X is equipped with an internal clock
variable Clock[X] ∈ N. We define the following two events:

• The event Init(X): Clock[X] ← Clock, that initializes X by synchronizing its
internal clock with the global clock.

• The event Inc(Clock[X]): Clock[X] ← Clock[X] + 1, that causes a clock
Clock[X] to advance by one time unit.

Synchronicity and Message Delay. We parameterize our threat model by (i)
an upper bound δ on the delay of message delivery, and (ii) an upper bound Δ on

512 A. Kiayias et al.

the synchronization loss of the nodes’ internal clocks w.r.t. the global clock. By
convention, we set Δ = ∞ to denote the fully asynchronous setting and δ = ∞,
to denote that the adversary may drop messages. Values δ,Δ ∈ [0,∞) refer to
partially synchronous model, if δ,Δ are unknown.

Notation. We denote by Nc, Nw the number of IC and AB peers, respectively,
and by n (an upper bound) on the number of users. In our security analysis,
the parameters Nc, Nw, n are assumed polynomial in security parameter κ. Let
E := {SA} ∪ {U�}�∈[n] ∪ {Pi}i∈[Nc] ∪ {ABj}j∈[Nw] be the set of all involved BB
system entities. We denote by tc (resp. tw) the number of IC (resp. AB) peers
that the adversary may statically corrupt out of the total Nc (resp. Nw) peers.
We denote the local record of IC peer Pi at global time Clock = T as the set
of accepted and confirmed items Lpost,i,T := {x1, . . . , xKi,T

}, where Ki,T ∈ N.
Similarly, the AB view of peer ABj at global time Clock = T is denoted as the
set of items Lpub,j,T := {x1, . . . , xMj,T

}, where Mj,T ∈ N.

3.3 (Confirmable) Persistence Definition

We define Persistence via a security game GA,δ,Δ,tc,tw
Prst

(
1κ,E

)
between the chal-

lenger C and an adversary A. The game is also parameterized by the eventual
message delivery and synchronization loss upper bounds δ and Δ. The adversary
A may statically corrupt up to tc out-of the Nc total IC peers and tw out-of the
Nw total AB peers, and may also choose to corrupt users. C initializes the BB
system on behalf of the SA. Then, C and A engage in the Setup phase and
the Posting and Publishing protocols, where C acts on behalf of the honest
entities. Intuitively, the goal of A is to successfully attack the (bb.1) property
(condition (P.1) in Fig. 1) or the (bb.4) property (condition (P.2) in Fig. 1).

We extend the Persistence notion by defining Confirmable Persistence. Now,
the entire AB may be malicious and deviate from the Publishing protocol, yet
the adversary fails if its attack is detected via the VerifyPub algorithm, on the
input view of any AB peer. Formally, Confirmable Persistence is defined via the
game GA,δ,Δ,tc

C.Prst (1κ,E) that follows the same steps as GA,δ,Δ,tc,tw
Prst (1κ,E), for the

special case tw = Nw, except the following differences in the winning conditions
for A: (i) for every k ∈ [Nw], the published data on ABk should always verify
successfully, and (ii) the inconsistent ABj referred in the winning conditions
may be any (malicious) AB peer. Detailed description of both games is given in
Fig. 1. We define Persistence and Confirmable Persistence as follows.

Definition 1 ((Confirmable) Persistence). Let κ be the security parameter,
Nc, Nw, tc, tw ∈ N, δ,Δ ∈ [0,+∞], and BB be a BB system with Nc IC peers and
Nw AB peers. We say that BB achieves Persistence for fault-tolerance thresholds
(tc, tw), delay message bound δ and synchronization loss bound Δ, if for every
PPT adversary A it holds that Pr

[GA,δ,Δ,tc,tw
Prst (1κ,E) = 1

]
= negl(κ).

We say that BB achieves Confirmable Persistence for fault tolerance thresh-
old tc, delay message bound δ and synchronization loss bound Δ, if for every
PPT adversary A, it holds that Pr

[GA,δ,Δ,tc
C.Prst (1κ,E) = 1

]
= negl(κ).

On the Security Properties of e-Voting Bulletin Boards 513

Fig. 1. Security games for (Confirmable) Persistence, and θ-Confirmable Liveness.

514 A. Kiayias et al.

3.4 θ-Confirmable Liveness Definition

We define θ-Confirmable Liveness via a security game GA,δ,Δ,tc,tw
θ−C.Live (1κ,E) between

the challenger C and an adversary A, where A statically corrupts up to tc (resp.
tw) out-of the Nc (resp. Nw) total IC (resp. AB) peers, while C plays the role
of SA and all peers and users that A does not corrupt. The adversary wins
if it prevents the generation of a valid receipt for an item x or the eventual
publishing of x, given that x has been submitted at least θ time prior to the
nearest Publishing protocol execution. The game is described in detail in Fig. 1.

Definition 2 (θ-Confirmable Liveness). Let κ be the security parameter,
Nc, Nw, tc, tw, θ ∈ N, δ,Δ ∈ [0,+∞] and let BB be a BB system with Nc IC and
Nw AB peers. We say that BB has θ-Confirmable Liveness for fault-tolerance
thresholds (tc, tw), delay message bound δ, and synchronization loss bound Δ, if
for every PPT adversary A, it holds that Pr

[GA,δ,Δ,tc,tw
θ−C.Live (1κ,E) = 1

]
= negl(κ).

4 The Culnane-Schneider (CS) BB system

In this section, we outline the CS BB system as presented in [14] adopted in
our terminology, and analyze its security guarantees and weaknesses under the
framework introduced in Sect. 3. The CS BB system comprises the setup author-
ity SA, the users, the IC peers P1, . . . , PNc

and a single trusted AB (called WBB
in [14]), i.e., Nw = 1. The fault-tolerance threshold on the number of corrupted
IC peers, tc, that CS requires is tc < Nc/3 and ts + 1 = Nc − tc.

4.1 Overview of the CS BB System

Setup. Upon specifying the posting policy P =
(
Accept,Select(·)), the SA pro-

vides all entities with the description of an EUFCMA-secure signature scheme
DS = (KGen,Sig,Vf) and a (ts, Nc)-EUFCMA-secure TSS TSS = (DistKeygen,
ShareSig, ShareVerify, TVf, Combine). Then, each IC peer Pi runs KGen(1κ) to
get a signing key ski and a verification key vki, while IC peers jointly execute
DistKeygen(1κ, ts, Nc) to produce secret keys {tski}i, implicitly defining tsk, and
the corresponding public output pk, {pki}i. Finally, the IC peers broadcast all
public keys and every user U interacts with SA to obtain her private input crU .

The CS BB system runs in consecutive periods. Each period p is a time
interval [Tbegin,p, Tend,p] between two fixed global time values Tbegin,p and Tend,p,
and the end of a period matches the beginning of the next one. For each IC peer
Pi, we denote by Bi,p the local record of Pi including all items x recorded as
posted and by Di,p the database of received items x together with other peers’
signatures on them, for the period p. In the beginning of p, Pi sets Bi,p,Di,p ← ∅.

Posting. If a user U wants to post item x during period p, then she broadcasts
x to all IC peers, along with her credential crU . Upon receiving and verifying the
validity of (x, crU), each peer Pi broadcasts a signature on (p, x, crU) under its

On the Security Properties of e-Voting Bulletin Boards 515

singing key ski. When Pi receives Nc−tc valid signatures on (p, x, crU) (including
its own) from Nc − tc different peers, it threshold signs (p, x) and sends it to U .
Finally, when U receives Nc − tc ≥ ts +1 valid TSS shares from Nc − tc different
peers, it combines them to obtain a threshold signature on (p, x), as her receipt.
We define VerifyRec(rec[x], x, crU , params) := TVfpk((p, x),TSign(tsk, (p, x))).

Publishing. Given a period p = [Tbegin,p, Tend,p], all IC peers stop item recording
and begin publishing their local records at a fixed time Tbarrier,p ∈ (Tbegin,p, Tend,p).
The Publishing protocol includes two subprotocols: initially, the IC peers run
an Optimistic protocol that results in the publishing of a BB record, if at least
Nc − tc local BB records agree. We note that the Optimistic protocol always
terminates successfully if all peers are honest. If the Optimistic protocol check
fails, then IC peers engage in the Fallback protocol, where they exchange their
databases of collected signatures for posted items. The Fallback protocol is essen-
tially one round of the Floodset agreement algorithm [27, Sect. 6.2] with the fol-
lowing characteristic: if all users posted their items honestly, then Fallback need
to run only once. Otherwise, as in standard Floodset, it needs to be executed
up to Nc − tc + 1 times in the synchronous setting.

When consensus is reached, the IC peers provide the AB with their records
along with corresponding TSS shares. The AB sets the agreed record as its
view for period p along with the reconstructed TSS signature from the collected
shares. The total view of AB at some moment T , denoted by Lpub,T , is the union
of the agreed and published BB records for all periods preceding moment T .

4.2 Attacking the Liveness of the CS BB System

As informally argued in [13, Sect. 8] (the full version of [14]), the liveness in
CS can be achieved if one of the following conditions hold: (1) all the peers are
following the protocol honestly and are online, (2) a threshold of tc < Nc/3 peers
is malicious, but all users are honest, or (3) the more general condition that not
all users are honest and the malicious peers may choose any database in their
capability, but do not change their database once it has been fixed, and will not
send different databases to different peers. The argument is that one can easily
detect in practice if malicious peers send different databases to different peers.

We demonstrate an attack against the Confirmable Liveness of CS in our
framework. Although our attack falls outside the threat model of [14], it reveals
that the presumed “fear of detection” that justifies the said threat model, and
especially the more general condition (3) described above, is not rigorously
addressed. In particular, we show that the liveness adversary may choose to
split the honest peers into two groups, and yet not be detected by being con-
sistent w.r.t. to the peers in the same group. This way, the adversary manages
a liveness breach, while the honest IC peers cannot detect the attack relying
on the protocol guidelines and their local views. As a result, our attack shows
that the original description of CS must be enhanced with an explicit detection
mechanism against any deviation from the IC consensus protocol specifications,

516 A. Kiayias et al.

in order for the threat model in [14] to be properly justified. On the other hand,
as we describe in Sect. 5 and prove in Sect. 6, enhancing CS with our novel Pub-
lishing protocol completely overcomes such issues, by achieving Confirmable
Liveness even against a general Byzantine adversary.

Description of the Liveness Attack. Our attack works under fault tolerance
threshold Nc > 3tc, as required in [14], and consists of the steps below.

Step 1: Let p be a period where the set of honestly posted items is non-
empty. For simplicity, we assume that there is a single honest user Uh who
broadcasts xh to all IC peers Pi, i ∈ [Nc], and obtains a valid receipt rec[xh].

Step 2: A malicious user Uc deviates from broadcasting and sends xc to
all tc corrupted peers and Nc − 2tc honest peers. Denote the latter set of honest
Nc − 2tc peers by Hin. The malicious peers engage in the Posting protocol by
interacting only with the peers in Hin. Observe that even if tc honest peers do not
participate in the post request of xc, the collaboration of tc+(Nc−2tc) = Nc−tc
peers is enough so that Uc obtains a valid receipt rec[xc], yet (p, xc) ∈ Bi,p only
for honest peers Pi ∈ Hin. Denote by Hout the tc honest peers s.t. xc 	∈ Bi,p.

Step 3: Another malicious user Ûc deviates from broadcasting and, like Uc,
sends item x̂c to all tc corrupted peers and the Nc − 2tc honest peers in Hin.
However, now the malicious peers do not engage in the Posting protocol, so the
peers in Hin do not suffice for a receipt for x̂c.

Step 4: When Publishing protocol starts, the honest peers in Hin and
Hout engage in the Optimistic protocol by sending their signed local records
Rc

h := {(p, xh), (p, xc)} and Rh := {(p, xh)} respectively. From their side, the
malicious peers sign their records as Rc,ĉ

h := {(p, xh), (p, xc), (p, x̂c)}. As a result,
none of the three records Rh, Rc

h and Rc,ĉ
h is signed by at least Nc − tc peers

(recall that |Hin| = Nc − 2tc and |Hout| = tc). Therefore, the malicious peers
force all honest peers to engage in the Fallback protocol.

Step 5: During Fallback, all honest peers exchange their collection of signa-
tures. At this step, each peer in Hin sends to each peer in Hout (i) its signature on
(p, xc), (p, xh) and (p, x̂c) and (ii) the tc signatures on (p, xc) that it received from
the malicious peers. This way, each peer in Hout receives (Nc −2tc)+tc = Nc −tc
signatures on (p, xc) but only Nc−2tc signatures on (p, x̂c), so it updates its local
record to Rc

h. Malicious peers send their signatures on (p, xc), (p, xh) and (p, x̂c)
only to the peers in Hin. Therefore, each peer collects (Nc − 2tc) + tc = Nc − tc
signatures on (p, x̂c) and updates its local record to Rc,ĉ

h .
Step 6: When the Fallback round above is completed, all peers restart

the Optimistic protocol. However, now the peers in Hin and Hout send their
signed local records Rc,ĉ

h and Rc
h respectively. The malicious peers resend their

records Rc,ĉ
h only to the peers in Hin, which now have Nc − tc signatures on Rc,ĉ

h .
Thus, they finalize their engagement in the Publishing protocol for period p
by sending their TSS shares for Rc,ĉ

h to the AB.
Step 7: After forcing the peers in Hin to termination, the malicious peers

become inert. This causes the peers in Hout to remain pending for a new Fallback

On the Security Properties of e-Voting Bulletin Boards 517

round that no other peer will follow. Moreover, the AB can not obtain Nc − tc
TSS shares on some agreed record, and thus it can not publish anything. This
violates the property (bb.2) in [14] (expressed via condition (L.3) in Fig. 1),
which dictates that since xh is an honestly posted item that has a receipt, it
must be published to the AB. Thus, liveness is breached.

4.3 TSS Fault-Tolerance Requirements for Confirmable Persistence

In [14] no concrete recommendations are given for which TSS to use. For liveness
to be achieved, TSS should be robust, i.e., malicious peers cannot block signature
creation. However, robustness is feasible only if ts < Nc/2 [19], which contradicts
the CS requirement tc < Nc/3 and ts + 1 = Nc − tc > 2Nc/3. Given that ts <
Nc/2, we can still prove the CS BB system to achieve Confirmable Persistence,
but for a smaller bound of tc < Nc/4. This bound is tight, in the sense that
if tc ≥ Nc/4, then there exists an attack. Thorough treatment of this issue is
provided in the full version [24].

5 A New Publishing Protocol for the CS BB System

We present a new Publishing protocol that, when combined with the CS Post-
ing protocol, results in a BB system that achieves Confirmable Liveness in par-
tially synchronous and Persistence in asynchronous model, against a general
Byzantine adversary, assuming a threshold of tc < Nc/3 corrupted IC peers.
Persistence can also be Confirmable, if we distribute the AB subsystem such
that no more than tw < Nw/2 out of the Nw AB peers are corrupted, as in [10].
Namely, the distributed AB runs as a replication service; data posting is done
by broadcasting to all AB peers, while data reading is done by honest majority.

The public parameters params include the identities of the IC and AB
peers, the description of DS,TSS (cf. Sect. 2), a collision resistant hash function
(CRHF) Hκ(·), and all public and verification keys. All peers know consecu-
tive periods p = [Tbegin,p, Tend,p], as well as the following moments per period
p: (a) a moment Tbarrier,p ∈ (Tbegin,p, Tend,p), when item collection stops and the
Publishing protocol is initiated; (b) a moment Tpublish,p ∈ (Tbarrier,p, Tend,p),
where the AB peers publish their records for period p, and (c) a moment
Trequest,p ∈ (Tbarrier,p, Tpublish,p), where IC peers force exchange of information to
finalize their records. For each period p, the phases of the Publishing protocol
are as follows:
� Initialization phase: each IC peer Pi initializes the following vectors:

(i) Its direct view of local records, denoted by Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉:
namely, it sets B̃i,j,p ← ⊥, for j 	= i, and B̃i,i,p ← Bi,p.

(ii) For every j ∈ [Nc] \ {i}, its indirect view of local records as provided by
Pj , denoted by Viewi,j,p := 〈B̃i

j,1,p, . . . , B̃
i
j,Nc,p〉, by setting Viewi,j,p ←

〈⊥, . . . ,⊥〉.

518 A. Kiayias et al.

(iii) A variable vector 〈bi,1, . . . , bi,Nc
〉, where bi,j is a value in {?, 0, 1} that

expresses the opinion of Pi on the validity of P ′
js behavior. Initially, bi,i

is fixed to 1, while for j 	= i, bi,j is set to the “pending” value ‘?’. When
Pi fixes bi,j to 1/0 for all j ∈ [Nc], it engages in the Finalization phase
described shortly.

(iv) A vector 〈di,1, . . . , di,Nc
〉, where di,j is the number of P ′

is (direct or indi-
rect) views that agree on P ′

js record. Initially, di,j = 0, for j 	= i, and
di,i = 1.

� Collection phase: upon initialization, Pi signs its local record Bi,p, followed
by a tag record, and broadcasts

(
(record, Bi,p),Sigski(record, Bi,p)

)
to all

IC peers. Then, Pi updates its direct and indirect views of other IC peers’ records
and fixes its opinion bit for their behavior, depending on the number of consistent
signed messages it receives on each peer’s record. In particular,

– When Pi receives a message
(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
signed

by peer Pj that was never received before, then it acts as follows: if Ri,j,p is
formatted as a non-⊥ record and the “opinion” bit bi,j is not fixed (i.e. bi,j =
‘?’), then it checks if Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 1. If

the latter holds, then Pi operates according to either of the following two
cases:

1. If B̃i,j,p 	= ⊥, then it marks Pj as malicious, that is, it sets B̃i,j,p ← ⊥ and
fixes bi,j to 0. Observe that since Pj is authenticated (except from some negl(κ)
error), it is safe for Pi to mark Pj as malicious, as an honest peer would never
send two different versions of its local records.
2. If B̃i,j,p = ⊥, then Pi updates Viewi,p as B̃i,j,p ← Ri,j,p, and Viewi,j,p as
B̃i

j,j,p ← Ri,j,p and increases the di,j by 1. Next, it signs and re-broadcasts to
all IC peers the received message in the format

(
Vi,j ,Sigski(Vi,j)

)
, where Vi,j :=(

(view, j), ((record, B̃i,j,p),Sigskj (record, B̃i,j,p))
)

. Upon fixing bi,j to 1/0,
Pi ignores any further message for the record of Pj .

– When Pi receives a message
(
Vk,j ,Sigskk(Vk,j)

)
signed by peer Pk for some

peer Pj different than Pi and Pk, where Vk,j =
(
(view, j), ((record, Rk,j,p),

Sigskj (record, Rk,j,p))
)
, and the message was never received before, then it

acts as follows: if Rk,j,p is formatted as a non-⊥ record and bi,j = ‘?’, then it
executes verification Vfpkk(Vk,j ,Sigskk(Vk,j)). If Vfpkk(Vk,j ,Sigskk(Vk,j)) = 1,
then Pi operates according to either of the following two cases:

1. If Vfpkj
(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 0 or B̃i

k,j,p 	= ⊥, then Pi

sets B̃i,k,p ← ⊥, fixes the bit bi,k to 02.
2. If Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 1 and B̃i

k,j,p = ⊥, then
Pi updates Viewi,k,p by setting B̃i

k,j,p ← Rk,j,p. and Viewi,p as shown below:

2 Observe that it is safe for Pi to mark Pk as a malicious, since an honest Pk would
neither send two non-⊥ views for Pj , nor accept an invalid signature from Pj .

On the Security Properties of e-Voting Bulletin Boards 519

(C.1). If for every k′ ∈ [Nc] \ {i} such that B̃i
k′,j,p �= ⊥, it holds that B̃i

k′,j,p =

B̃i
k,j,p := B̃i

j,p (i.e. all non-⊥ records for j agree on some record B̃i
j,p), then it

increases the value of di,j by 1. Moreover, if di,j = tc + 1, (i.e., there are tc + 1
matching non-⊥ records) and B̃i,j,p = ⊥, then it updates as B̃i,j,p ← B̃i

j,p and
fixes the bit bi,j to 1.

(C.2). If there is a k′ ∈ [Nc] such that B̃i
k′,j,p �= ⊥ and B̃i

k,j,p �= B̃i
k′,j,p, then it

updates as B̃i,j,p ← ⊥ and fixes the bit bi,j to 0.

In either case, upon fixing bi,j , Pi ignores any further message for Pj ’s record3.

– When its local clock Clock[Pi] reaches Trequest,p, Pi broadcasts a request mes-
sage

(
(request view, j),Sigski(request view, j)

)
, for every Pj that it has

not yet fixed the opinion bit bi,j . This step is executed to ensure that Pi will
eventually fix its opinion bits for all IC peers. Upon receiving Pi’s request, Pk

replies with a signature for a response message
(
Wk,j ,Sigskk(Wk,j)

)
, where

Wk,j :=
(
(response view, j), ((record, Rk,j,p),Sigskj (record, Rk,j,p))

)
.

Note that here Rk,j,p may be ⊥, reflecting the Pk’s lack of direct view
for Pj ’s record. For every Pj that Pi has broadcast

(
(request view, j),

Sigski(request view, j)
)
, Pi waits until it collects Nc − tc − 1 distinct valid

signed responses. During this wait, it ignores any message in a format other
than

(
Wk,j ,Sigskk(Wk,j)

)
or

(
(request view, j),Sigskk(request view, j)

)
.

When Nc − tc −1 distinct valid responses are received, it parses the collection
of the Nc − tc − 1 responses and its current direct view of Pj ’s record, B̃i,j,p,
to update B̃i,j,p and fix bi,j as follows:

(R.1). If B̃i,j,p �= ⊥, and all responses for non-⊥ records are at least tc and all
match B̃i,j,p, then Pi fixes bi,j to 1.
(R.2). If B̃i,j,p = ⊥, and all responses for non-⊥ records are at least tc + 1 and
all refer to the same record denoted as B̃i

j,p, then Pi sets B̃i,j,p ← B̃i
j,p and fixes

bi,j to 1.

(R.3). Otherwise, Pi sets B̃i,j,p ← ⊥ and fixes bi,j to 0.

In any case, upon fixing bi,j , Pi ignores any further message for Pj ’s record4. At
the end of the Collection phase, Pi will have fixed bi,j for all j ∈ [Nc].
� Finalization phase: having fixed bi,1 . . . , bi,Nc

and updated its direct view
Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉, peer Pi proceeds as follows: for every pair (p, x) ∈⋃

j:B̃i,j,p �=⊥ B̃i,j,p, Pi defines the set Ni,p(x) that denotes the number of IC peers
that, according to its view, have included (p, x) in their records. Formally, we

3 The security of DS ascertains Pi that with 1 − negl(κ) probability, only if Pj is
malicious, two non-equal records can be valid under Pj ’s verification key. Thus, in
case (C.2), Pi can safely fix the bit bi,j to 0.

4 Since there are Nc−tc ≥ tc+1 honest peers, Pi will obtain at least tc+1 all matching
non-⊥ views for every honest’ peers record (including its own). Thus, in case (R.3),
Pi can safely fix bi,j to 0 if it receives inconsistent non-⊥ views or less than tc + 1
matching non-⊥ views for Pj .

520 A. Kiayias et al.

write Ni,p(x) := #{j ∈ [Nc] : (p, x) ∈ B̃i,j,p}. Then, Pi updates its original
record Bi,p as follows:

(F.1). If (p, x) /∈ Bi,p, but Ni,p(x) ≥ tc + 1, then it adds (p, x) in Bi,p.

(F.2). If (p, x) ∈ Bi,p, but Ni,p(x) < tc + 1, then it removes (p, x) from Bi,p.

In any other case, Bi,p becomes unchanged5. As shown in Theorem 2, at the end
of the Finalization phase, all honest peers have included all honestly posted
items for which a receipt has been generated in their local records. Then, they
advance to the Publication phase described below.
� Publication phase: each peer Pi threshold signs its record Bi,p, as it
has been updated during the Finalization phase, by threshold signing each
item in Bi,p individually. Formally, ShareSig(tski, (p,Bi,p)) :=

⋃
(p,x)∈Bi,p

ShareSig(tski, (p, x)). Then, Pi broadcasts the message
(
(p,Bi,p),ShareSig

(tski, (p,Bi,p))
)

to all peers AB1, . . . , ABNw
of the AB subsystem.

In turn, each peer ABj , j ∈ [Nw] receives and records threshold signature
shares for posted items. For every item (p, x) that ABj receives Nc − tc valid
signatures shares (k, σk)k∈S , where S is a subset of Nc − tc IC peers, it adds
(p, x) to its record Bp[j], initialized as empty, and computes a TSS signature on
(p, x) as TSign(tsk, (p, x)) ← Combine

(
pk, pk1, . . . , pkNc

, (p, x), (k, σk)k∈S

)
. Upon

finalizing Bp[j], ABj executes the following steps:

1. It sets TSign(tsk, (p,Bp[j])) :=
⋃

(p,x)∈Bp[j]
TSign(tsk, (p, x)) and when its

local clock Clock[ABj] reaches Tpublish,p, it publishes the signed record

ABreceipt[p,Bp[j]] :=
(
(p,Bp[j]),TSign(tsk, (p,Bp[j]))

)
.

2. By the time that the period p ends (i.e., Clock[ABj] = Tend,p), for k ∈
[Nw] \ {j}, it performs a read operation on ABk and reads its record for
period p denoted by Bp[j, k] (possibly empty). Then, it publishes the hash
Hκ

(
Bp[j, k]

)
of the read record.

The VerifyPub Algorithm. Let Prec[p] be the set of all periods preceding p.
The total view of ABj at some moment T during period p, denoted by Lpub,j,T ,
is the union of the published BB records Bp̃[j] for all periods p̃ ∈ Prec[p].

On input
(〈Lpub,j,T 〉j∈[Nw], params

)
, the algorithm VerifyPub outputs accept

iff for every j ∈ [Nw] and every p̃ ∈ Prec[p] the following hold:

(a) More than Nw/2 AB peers that agree on the consistency of the data that
ABj publishes (including ABj). Formally, there is a subset Ij ⊆ [Nw] such
that |Ij | > Nw/2 and ∀k ∈ Ij \ {j} : Hκ

(
Bp̃[k, j]

)
= Hκ

(
Bp̃[j]

)
.

(b) For every (p̃, x) ∈ Bp̃[j], it holds that TVf
(
pk,

(
p̃, x),TSign(tsk, (p̃, x)

))
= 1.

5 In case (F.2), removal is a safe action for Pi, as every honestly posted item for which
a receipt has been generated, is stored in the records of at least Nc − 2tc ≥ tc + 1
honest peers during the Posting protocol. Thus, Ni,p(x) < tc +1 implies that either
(i) (p, x) was maliciously posted, or (ii) a receipt for (p, x) was not generated.

On the Security Properties of e-Voting Bulletin Boards 521

An item belongs in the published data of the whole AB system by moment
T , denoted by Lpub,T , if it appears on more than half of the AB peers. Formally,

Lpub,T :=
⋃

p̃∈Prec[p]

{
(p̃, x)

∣
∣
∣#

{
j ∈ [Nw] : (p̃, x) ∈ Bp̃[j]

}
> Nw/2

}
.

Complexity of the New Publishing Protocol. Our protocol has a constant
number of rounds per period, where the size of transmitted messages is equal to
the signature on records of items posted on the said period. In particular, the
Collection phase has cubic (∼(Nc)3) communication complexity (the IC peers
exchange their views), while the Publication phase has quadratic (∼Nc · Nw)
communication complexity (the IC peers broadcast their updated records to the
AB peers). Overall, the complexity of the new Publishing protocol matches
the one of the original CS system (cf. Sect. 4.1), as in general, the Floodset
algorithm must run in Nc − tc + 1 rounds, where in each round a full quadratic
communication for mutual information exchange is required.

6 Properties of the New BB System

In this section, we analyze the security of the BB system that comprises the
Setup and the Posting protocol of CS combined with our novel Publish-
ing protocol described in Sect. 5. For simplicity, we will refer to this BB sys-
tem as the system described in Sect. 5. We write TB to denote the running
time of algorithm B, omitting parameterization by the security parameter κ
for brevity. The parameters Nc, tc are considered polynomial in κ. In our set-
ting, we assume that the message delivery delay δ and the synchronization loss
bound Δ are small enough with respect to the protocol steps and the intervals
[Tbegin,p, Tbarrier,p], [Tbarrier,p, Trequest,p], [Trequest,p, Tpublish,p], [Tpublish,p, Tend,p] that
determine phase switching in each period p. We consider that this restriction
does not effectively violate partial synchrony, as the actual δ,Δ need not to be
known to the IC peers for executing the protocol. Due to space limitations, we
only provide the theorem statement and leave proofs for the full version [24]. In
Table 1, we provide a brief comparison between the original CS BB system and
its improved variant over the new Publishing protocol. For better comparison,
we also consider CS BB in the setting where the AB is distributed.

Theorem 1 (Confirmable Persistence). Let Nc, Nw, tc, tw, ts ∈ N, such that
(a) tc < Nc/3, (b) tw < Nw/2 and (c) ts ≥ Nc − tc − 1, and let δ = Δ = ∞.
Let TSS be a (ts, Nc)-EUFCMA-secure TSS and Hκ be a CRHF. Then, the BB
system described in Sect. 5 with Nc IC peers and Nw AB peers over TSS and Hκ

achieves (i) Persistence for tolerance thresholds (tc, Nw), and (ii) Confirmable
Persistence for tolerance thresholds (tc, tw).

Theorem 2 (Confirmable Liveness). Let Nc, Nw, tc, tw, ts ∈ N such that (a)
tc < Nc/3, (b) tw < Nw, and (c) tc ≤ ts < Nc−tc, and δ,Δ ∈ R≥0. Let DS be an

522 A. Kiayias et al.

EUFCMA-secure signature scheme and TSS be a robust and (ts, Nc)-EUFCMA-
secure TSS. Then, the BB system described in Sect. 5 with Nc IC peers and Nw

AB peers over DS and TSS achieves θ-Confirmable Liveness for fault tolerance
thresholds (tc, tw), delay message bound δ and synchronization loss bound Δ, and
for every θ ≥ Δ + 3δ + 2Nc · TVf + TSig + TShareSig + TCombine.

Table 1. Comparison of CS BB and the new BB with Nc IC peers and Nw AB peers.

BB Complexity Persistence Con. Persistence Con. Liveness

[14] ∼(Nc)
3 Asynchronous Asynchronous Synchronous

tc < Nc
3

, tw ≤ Nw tc < Nc
3

, tw ≤ Nw tc = 0, tw < Nw
2

This work ∼(Nc)
3 Asynchronous Asynchronous Part. Synchronous

tc < Nc
3

, tw ≤ Nw tc < Nc
3

, tw < Nw
2

tc < Nc
3

, tw < Nw
2

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX (2008)
2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for

realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)
3. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis. Yale University (1987)
4. Benaloh, J., et al.: STAR-Vote: a secure, transparent, auditable, and reliable voting

system. In: EVT/WOTE 2013 (2013)
5. Burton, C., et al.: Using Prêt à voter in Victoria state elections. In: EVT/WOTE

(2012)
6. Burton, C., Culnane, C., Schneider, S.: vVote: verifiable electronic voting in prac-

tice. IEEE Secur. Priv. 14(4), 64–73 (2016)
7. Chaum, D.: SureVote: technical overview. In: WOTE (2001)
8. Chaum, D., et al.: Scantegrity: end-to-end voter-verifiable optical-scan voting.

IEEE Secur. Priv. 6(3), 40–46 (2008)
9. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election

scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

10. Chondros, N., et al.: D-DEMOS: a distributed, end-to-end verifiable, internet vot-
ing system. In: ICDCS (2016)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: EUROCRYPT, pp. 103–118 (1997)

12. Culnane, C., Ryan, P.Y.A., Schneider, S.A., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

13. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. CoRR abs/1401.4151 (2014)

14. Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable
voting systems. In: CSF (2014)

https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8

On the Security Properties of e-Voting Bulletin Boards 523

15. Dini, G.: A secure and available electronic voting service for a large-scale dis-
tributed system. Future Gener. Comput. Syst. 19(1), 69–85 (2003)

16. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

17. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of
RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 13

20. Hauser, S., Haenni, R.: A generic interface for the public bulletin board used in
UniVote. In: CeDEM (2016)

21. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01465-9 16

22. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: EVOTE (2014)
23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:

WPES (2005)
24. Kiayias, A., Kuldmaa, A., Lipmaa, H., Siim, J., Zacharias, T.: On the security

properties of e-voting bulletin boards. Cryptology ePrint Archive, Report 2018/567
(2018)

25. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

26. Krummenacher, R.: Implementation of a web bulletin board for e-voting applica-
tions. Institute for Internet Technologies and Applications (2010)

27. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
28. Peters, R.A.: A secure bulletin board. Master’s thesis. Eindhoven UT (2005)
29. Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: Birman,

K.P., Mattern, F., Schiper, A. (eds.) Theory and Practice in Distributed Systems.
LNCS, vol. 938, pp. 99–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60042-6 7

30. Sandler, D., Wallach, D.S.: Casting votes in the auditorium. In: EVT (2007)

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/978-3-642-01465-9_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/3-540-60042-6_7
https://doi.org/10.1007/3-540-60042-6_7

	On the Security Properties of e-Voting Bulletin Boards
	1 Introduction
	2 Preliminaries
	3 Framework
	3.1 Syntax of a Bulletin Board System
	3.2 Introducing Our Security Framework
	3.3 (Confirmable) Persistence Definition
	3.4 -Confirmable Liveness Definition

	4 The Culnane-Schneider (CS) BB system
	4.1 Overview of the CS BB System
	4.2 Attacking the Liveness of the CS BB System
	4.3 TSS Fault-Tolerance Requirements for Confirmable Persistence

	5 A New Publishing Protocol for the CS BB System
	6 Properties of the New BB System
	References

