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Abstract. Password-Authenticated Key Exchange (PAKE) establishes
a shared key between two parties who hold the same password, assur-
ing security against offline password-guessing attacks. The asymmetric
PAKE (a.k.a. augmented or verifier-based PAKE) strengthens this notion
by allowing one party, typically a server, to hold a one-way hash of the
password, with the property that a compromise of the server allows the
adversary to recover the password only via the offline dictionary attack
against this hashed password. Today’s client-to-server Internet authen-
tication is asymmetric, with the server holding only a (salted) password
hash, but it relies on client’s trust in the server’s public key certificate.
By contrast, cryptographic PAKE literature addresses the password-only
setting, without assuming certified public keys, but it commonly does
not address the asymmetric PAKE setting which is required for client-
to-server authentication.

The asymmetric PAKE (aPAKE) was defined in the Universally Com-
posable (UC) framework by the work of Gentry et al. [15], who also
provided a generic method of converting a UC PAKE to UC aPAKE, at
the cost of two additional communication rounds. Motivated by practical
applications of aPAKEs, in this paper we propose alternative methods
for converting a UC PAKE to UC aPAKE, which use only one addi-
tional round. Moreover, since this extra message is sent from client
to server, it does not add any round overhead in applications which
require explicit client-to-server authentication. Importantly, this round-
complexity reduction in the compiler comes at virtually no cost, since
with respect to local computation and security assumptions our con-
structions are comparable to that of Gentry et al. [15].
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1 Introduction

Symmetric PAKE and Its Limitations. In the cryptographic literature pass-
word authentication is modeled as a Password-Authenticated Key Exchange
(PAKE) [4,5,9], a protocol which allows two parties who share only a password
to establish a shared cryptographic session key. The main challenge in designing
a secure PAKE is the fact that passwords have low entropy and are therefore
subject to so-called dictionary attacks, a.k.a. password guessing attacks, where
the adversary searches a moderate-sized dictionary from which the user’s pass-
word is typically chosen. Every password-authentication protocol is subject to
on-line guessing attacks, where the adversary runs the prescribed PAKE proto-
col on a password guess with either the client or the server, and succeeds if its
guess was correct. While such attack is unavoidable, its effect can be reduced by
limiting the number of unsuccessful authentication session each party is willing
to run. However, a PAKE protocol must be secure against an off-line dictio-
nary attack, i.e. no efficient adversary can verify any password guess without the
on-line interaction described above. Informally, a PAKE protocol is secure if a
successful on-line guessing attack is the only way to learn information about the
established session keys.

The PAKE security model was introduced by Bellovin and Merritt [5] and
was formalized by Bellare et al. [4] and Boyko et al. [9] via a game-based defini-
tion, and then by Canetti et al. [12], who formalized PAKE in the Universally
Composable (UC) framework [11]. The UC definition of PAKE has become a de
facto standard in the cryptographic literature on PAKEs because it is widely rec-
ognized as capturing several security issues pertinent to PAKEs which the game-
based PAKE notions of [4,9] do not cover. Specifically, apart of standard UC
guarantee of security under arbitrary protocol composition, UC PAKE implies
forward-security, i.e. security of past protocol sessions in case of password com-
promise, and security for arbitrary password distribution, which implies security
for password mistyping and for related passwords.

Most of cryptographic PAKE literature focuses on the symmetric PAKE
setting, where both parties hold the password. However, if the client-to-server
password authentication was implemented with a symmetric PAKE, a com-
promise of the server would leak the passwords of all the users who authen-
ticate to that server. By contrast, the standard Internet password authentica-
tion, password-over-TLS, works in an asymmetric setting, where the server holds
only a (randomized) one-way hash of the password, and if an adversary compro-
mises the server, the only way it can recover any user’s password is by mounting
an exhaustive off-line dictionary attack using an exhaustive search over some
implicit password dictionary, and the attack succeeds only on the passwords
which this dictionary included. While this level of protection is far from per-
fect, as many users choose passwords with too low entropy, it still raises the bar
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for the attacker, and protects at least those users whose passwords are hard to
guess. This security advantage of an asymmetric password authentication essen-
tially makes symmetric PAKEs not applicable to the client-server setting. On the
other hand, the password-over-TLS authentication has weaknesses as well. First,
TLS relies on integrity of PKI, and breaks down under various PKI attacks, e.g.
human-engineering phishing attacks where the user is tricked to authenticate to
a malicious site. Secondly, while the server does not permanently store the user’s
password in the clear, it does hold it in the clear during an authentication ses-
sion, which makes the password vulnerable to server-side insider attacks, virus
attacks, and insecure memory and storage management.

State of Knowledge on Asymmetric PAKE. Cryptographic PAKE liter-
ature recognized the need to bridge between the password-authentication the-
ory, i.e. the symmetric but PKI-independent PAKE model, and the password-
authentication practice, i.e., the security requirements of client-to-server authen-
tication. The first formalization of asymmetric PAKE (aPAKE), a.k.a. aug-
mented or verifier-based PAKE, was introduced by Bellovin and Merritt [6] and
formalized in the game-based approach by Boyko et al. [9]. Subsequently, Gen-
try et al. [15] extended the UC PAKE model of [12] to the case of an adaptive
server compromise, and forcing the adversary to stage an off-line dictionary
attack to recover the password after such compromise. While several aPAKE
protocols were proven in game-based models, some argued only informally, e.g.
[2,7,9,10,22–24], the UC aPAKE notion is stronger than game-based aPAKE for
the same reasons that UC PAKE notion is stronger than game-based PAKE, thus
ideally we would like to know protocols which realize the UC asymmetric PAKE
notion of [9] and are comparable in efficiency and cryptographic assumptions to
standard authenticated key agreement protocols used in TLS.

However, there is not much known about provably secure UC aPAKEs. One
construction is the Ω-method due to Gentry et al. [15], shown in Fig. 1, which
transforms any UC PAKE protocol into a UC aPAKE secure in the Random
Oracle Model (ROM). The Ω-method compiler adds (up to) two communica-
tion rounds to the underlying PAKE, and its computation overhead is domi-
nated by a signature generation for the client and signature verification for the
server. Instantiated with ECDSA signatures, both these costs are only 1 (multi-
)exponentiation per party.

However, since the Ω-method is a compiler, the exact costs of UC aPAKE
it produces depend on the costs of the UC PAKE with which it is instanti-
ated. While there is very active research on standard-model UC PAKEs, includ-
ing round-minimal PAKEs [14,17,20,21], these constructions are typically more
expensive and require stronger assumptions than protocols satisfying game-based
PAKE notions [4,9] in ROM. Since any UC aPAKE construction requires non-
black-box assumptions, it makes sense to instantiate the Ω-method with a UC
PAKE secure in ROM. However, while there are many 2-round game-based
PAKEs whose cost is close to (intuitively minimal) 2 exponentiations/party of
Diffie-Hellman Key Exchange (see e.g. [3] and references therein), we know of
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only one UC PAKE with comparable efficiency, by Abdala et al. [1], which relies
on the DDH assumption in ROM and Ideal Cipher (IC) models, and uses 3 pro-
tocol rounds and 2 exponentiations per party. Combined with the Ω-method of
Gentry et al. the UC symmetric PAKE of [1] implies a UC asymmetric PAKE
with 5 rounds, 3 exponentiations per party, secure under the DDH assumption
in ROM+IC model.

Fig. 1. The Ω-method by Gentry-MacKenzie-Ramzan [15]: H is a hash function, and
(E, D) and (E′, D′) are symmetric encryption schemes (see [15] for their specification).
The server-held password file created for password π is (r, pk, c) where r = H(π),
c = E′

π(sk), and (sk, pk) is a private, public key pair in a signature scheme.

We know of only two further UC aPAKE constructions in addition to the Ω-
method of [15]. First, Jutla and Roy [19] proposed a round-minimal UC aPAKE
in ROM, i.e. client and server send a single message and they can do so simul-
taneously, but their scheme requires groups with bilinear maps, uses signifi-
cantly more exponentiations (and bilinear maps) per party. Secondly, Jarecki et
al. [16] proposed a strong UC aPAKE protocol called OPAQUE, where hashed
passwords are privately salted (see Sect. 2 for further discussion), which requires
only 2 rounds of communication, and only 3 or 4 exponentiations per each party,
but it relies on the somewhat non-standard and interactive assumption of One-
More Diffie-Hellman. This leaves open the possibility of similarly low-round UC
aPAKE relying on static assumptions.

Note on Verifier-Based PAKEs. We note that Benhamouda and Pointcheval
[7] upgraded the game-based definition of aPAKE, called verifier-based PAKE
therein, by strengthening the game-based aPAKE model of [9] to arbitrary pass-
word distributions and related passwords. One point of strengthening game-
based aPAKE notion given that a UC aPAKE notion exists is a potential for
better efficiency, but the other is that the UC aPAKE model of Gentry et al. [15]
seems not to be realizable without some non-black-box assumption on the adver-
sary’s local computation, like ROM, IC, or a generic group model. Indeed, the
UC aPAKE model [15] requires the simulator to extract off-line password tests
from adversary’s local computation of the hash function applied to password
guesses. However, [7] relies on the tight one-wayness requirement on the hash
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function applied to passwords when creating the hashed password on the server,
namely that given hash of a password chosen with δ min-entropy, the adversary
has to compute 2δ hash function instances to find it. Unfortunately, this notion
also seems impossible to realize without similar non-black-box assumptions on
the adversary, and [7] also rely on ROM to argue that this property is satisfied.
Regarding computational costs, by avoiding random oracles on the protocol level
(but not on the level of the underlying hash function), the aPAKE’s of [9] are
significantly more expensive than either the UC aPAKE resulting from [1,15] or
the UC aPAKE of [16]. Their 2-round scheme uses significantly more exponen-
tiations per party, and the 1-round scheme requires groups with bilinear maps
and has a still higher local computation cost.

Our Results. We show two new compilers which convert any UC-secure sym-
metric PAKE protocol into a UC-secure asymmetric PAKE. Our constructions
rely on ROM, as do all UC asymmetric PAKE schemes proposed so far [15,16,19],
and either the Computational Diffie-Hellman (CDH) or the Discrete Logarithm
(DL) assumption. The main point of both compilers is that they add only a
single additional message to the underlying PAKE, in contrast to the Ω-method
of Gentry et al. [15] which adds two messages. Moreover, this single extra mes-
sage is sent from client to server, and therefore in an application where the
aPAKE instance, which establishes a secure session key for both parties, is fol-
lowed by an explicit client-to-server entity authentication, e.g. the client uses
the session key output by PAKE to send a MAC on the aPAKE transcript to
the server, this additional message can be piggybacked with the client’s explicit
entity authentication flow. Likewise, if the last message of the symmetric UC
PAKE is client-to-server, our compilers also add no additional communication
flow to the protocol. By contrast, the Ω-method would add 2 message flows in
the latter case.

We note that if the last round in the symmetric UC PAKE was server-to-
client, then our compilers would offer no advantage over the Ω-method: Our
compilers would add one client-to-server round, and so would the Ω-method
because its first message c′ (see Fig. 1) would be piggybacked on the last server-
to-client flow of the underlying UC PAKE. Moreover, note that the symmetric
UC PAKE, by its very nature has no fixed roles, therefore every UC PAKE
protocol can be executed so that the last message flow is server-to-client. Indeed,
if the underlying n-round UC PAKE is executed in this way then the UC aPAKE
resulting from both our compilers and the Ω-method would have n + 1 rounds,
with the last flow being client-to-server. However, the optimal way to arrange
the n-round UC PAKE for the purpose of our compiler is so that its last flow is
client-to-server, in which case our compilers output n-round UC aPAKE, while
the Ω-method outputs an (n+2)-round UC aPAKE. Finally, note that sometimes
one will not have the flexibility of arranging the underlying PAKE in a way
that optimizes the resulting aPAKE, because sometimes the choice of party who
starts the interaction, i.e. whether it is the client or the server, will be fixed by
an application.
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We show two compilers, one utilizing a parallel round of a Diffie-Hellman
Key Exchange, shown in Sect. 3, and one utilizing a NIZK of discrete logarithm
knowledge, shown in Sect. 4. We refer to these constructions as respectively CDH-
based and DL-based because these are the assumptions they require for security.
The computational costs of the first compiler is 1 exponentiation per client and 2
per server, while for the second compiler it is 1 (multi-)exponentiation per both
parties, which matches the computational costs of the Ω-method instantiated
with ECDSA signature. Looking a little closer, the costs of each option can be
affected by the fact that in our DL-based compiler, exactly as in the Ω-method
instantiated with ECDSA signature, the client’s exponentiation is fixed-base, and
therefore can be sped-up by pre-computation, while the server’s exponentiation
is variable-base, while in the CDH-based compiler the client’s exponentiation is
variable-base and the two server’s exponentiations are fixed-base, with one base
fixed globally and the second base fixed per each user account. We summarize
this discussion in Table 1 below.

Table 1. Comparison of PAKE-to-aPAKE compiler costs

Exponentiation cost Number of added rounds

Client Server

Our CDH-based compiler 1 var. base 2 fixed base 0 or 1

Our DL-based compiler 1 fixed base 1 var. base 0 or 1

Ω method + ECDSA [15] 1 fixed base 1 var. base 1 or 2

Since just like [15] our UC aPAKE constructions are compilers from any UC
PAKE, the efficiency and security assumptions of the resulting aPAKE depend
also on the underlying UC PAKE. Since our compilers require ROM it makes
sense to instantiate them with a low-cost UC PAKE secure in ROM. However,
as mentioned above, we know only one UC PAKE constructed along these lines,
namely the protocol of Abdalla et al. [1]. Because the last message of this PAKE
is a client-to-server flow, the UC aPAKE’s which result from our compilers
applied to UC PAKE of [1] will take 3 rounds and use 3 exponentiations per
client and either 3 or 4 exponentiations per server. We include a specification of
the UC aPAKE resulting from applying our CDH-based compiler to UC PAKE
of [1] in Sect. 5.

We note that theoretically our compiler can also be instantiated with any
minimum-round UC PAKE, e.g. [18], but it would result in a 2-round UC
aPAKE, and the computation cost of the resulting protocol would be close to
(and thus probably not competitive with) the 1-round UC aPAKE of [19].

2 Security Model

Our protocols convert any UC-secure symmetric PAKE into a UC-secure asym-
metric PAKE, exactly like the protocol of [15], and we assume the same
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models of universally composable symmetric PAKE and asymmetric PAKE as
in [15], denoted respectively FrpwKE and FapwKE. For completeness we include the
full description of both functionalities in AppendixA, in Figs. 5 and 6. Below
we sketch the most important points in which these functionalities differ from
the standard UC PAKE functionality of [11], and we refer to [15] for their full
exposition.

The Revised Symmetric PAKE Functionality [15]. The symmetric PAKE
functionality FrpwKE defined by [15] is a revision of the original PAKE functional-
ity defined by Canetti et al. [12]. Namely, it allows the functionality to produce
a bitstring representing a transcript of the real-world execution of the PAKE
protocol. Clearly, every real-world protocol has a transcript, but a typical UC
functionality is concerned only with its “functional” input/output behavior and
often omits the fact that various “objects” involved in protocol operation, e.g.
private keys, public keys, transcripts, have physical encodings as bitstrings. This
is unfortunate (and it is often not easy to do) because in protocol composition
it can be very useful to process such objects through other cryptographic mech-
anisms, e.g. to sign them, encrypt them, secret-share them, etc. The idea of
the PAKE-to-aPAKE compiler of Gentry et al. [15] was for the client to sign the
PAKE transcript using a key encrypted by the server using the session key output
by the symmetric PAKE. This signature acts in the Gentry et al. construction
as a proof of possession of the password. However, for this modular construc-
tion to work, the UC symmetric PAKE functionality must expose some bitstring
as the transcript to the environment. This is the sole point of the revised UC
PAKE functionality FrpwKE compared to the one defined in [12], and we adopt
this revision because our compilers will likewise use the transcript of the symmet-
ric PAKE to bind the proof-of-password-possession to the underlying symmetric
PAKE instance, although we will implement this proof-of-password-possession
using different cryptographic mechanisms than the encrypted-key/signature-on-
transcript protocol of Gentry et al.

The Asymmetric PAKE Functionality. The asymmetric functionality
FapwKE is a more fundamental modification of the symmetric PAKE function-
ality [12], which models password authentication in the setting where only one
party, the client, authenticates using a password, while the other, the server,
uses a bitstring called a password file, which without loss of generality is an out-
put of some (randomized) one-way function applied to the password during the
initialization procedure. For example, in the standard password-over-TLS imple-
mentation the password file is a pair consisting of a random nonce known as salt
and a hash of the password concatenated with this salt value. In the FapwKE

functionality, Fig. 6, creation of the password file on the server is modeled by
command StorePWfile, and note that the server-side invocation of the authenti-
cation protocol instance, via command SvrSession, does not take the password
as an input because its implicit input is the stored password file corresponding
to session ID sid of this aPAKE instance. (It is assumed that a unique sid would
be assigned to each user account held by a given server.)
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The other fundamental difference between the asymmetric PAKE function-
ality FapwKE and a symmetric PAKE is that an adversary may adaptively com-
promise the server and learn the stored password file, which is modeled by
query StealPWfile. Such adaptive server compromise allows the adversary to
then impersonate the server to the client, modeled via the Impersonate com-
mand, because a real-world adversary could use the stolen password file to emu-
late the server in the authentication protocol. Finally, since the password file is
w.l.o.g. an output of some one-way function applied to the password, an adaptive
server compromise allows the adversary to stage an off-line dictionary attack:
The adversary can compute the same one-way function, a.k.a. password hash,
on any password guess, which is modeled by the OfflineTestPwd query: If the
password file is stolen, this computation allows the adversary to test if its pass-
word guess is correct, because then the password hash would match the one
in the password file. If the password file is not stolen yet, the adversary can
store these pre-computed hashes, which FapwKE models by storing the password
guesses made by the adversary via the OfflineTestPwd command, and learn if any
of these guesses were correct at the moment of server corruption. This is modeled
by functionality FapwKE checking after the StealPWFile command whether any of
the password guesses made via OfflineTestPwd queries is equal to the password
used in to create the password file.

Deterministic vs. Salted Hash in Asymmetric PAKE. We note that the
above processing of off-line computation of password hashes models asymmetric
PAKE protocols where the one-way function used in computation of the pass-
word file, a.k.a. password hash, is either deterministic or its randomness, a.k.a.
password salt, is revealed in the protocol. Recently Jarecki et al. [16] proposed a
strengthening of the UC aPAKE notion of [15] to a privately salted UC aPAKE,
where the password hash is a randomized function of the password and the ran-
domness stays private until server compromise. This strengthening is modeled
by a modified UC aPAKE functionality which allows the adversary to compute
relevant password hashes only after server compromise. We note that [16] shows
a generic compiler from unsalted or “publicly salted” UC aPAKE, satisfying
functionality FapwKE which is the target of aPAKE constructions of this paper,
to a privately salted UC aPAKE, using an Oblivious Pseudorandom Function
(OPRF) scheme. Since the latter can be realized e.g. under the One-More Diffie
Hellman assumption using 2 exponentiations for the client and 1 for the server,
in ROM, every aPAKE construction satisfying the weaker aPAKE notion of
[15], e.g. the aPAKE protocols presented in this paper, implies privately-salted
aPAKE satisfying the stronger aPAKE notion of [16], at this modest increase in
computational cost.1

1 The compiler of [16] also adds up to 2 extra rounds to the aPAKE protocol, but for
example in the case of any of our aPAKE constructions instantiated with the PAKE
of Abdalla et al. [1] (see Fig. 4), the OPRF instance in the compiler of [16] would be
piggybacked with the first two protocol flows, so the resulting privately salted UC
aPAKE would have the same 3 rounds.
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3 Asymmetric PAKE Construction Based on CDH

Our first construction converts a symmetric UC PAKE protocol Π to an asym-
metric UC PAKE, just as the compiler of Gentry et al. [15], but using a different
method.

Our construction, shown in Fig. 2, runs the symmetric PAKE protocol Π
on hashed password r = H1(π), but in parallel it also runs a Diffie-Hellman
Key Exchange (DH-KE) where the client’s contribution is fixed as V = gz for
z = H0(π), i.e. an independent password hash. The server’s contribution is
Y = gy for random y is the only message transferred in this DH-KE instance,
because the client’s contribution V = gH0(π) is part of the password file stored
on the server. The key K0 = V y = Y z = gH0(π)·y resulting from this DH-KE
could be computed in an off-line dictionary attack given the DH-KE transcript
Y , so we hash it together with key K1 output by symmetric PAKE Π to derive
an authenticator t = H2(K0||K1||[. . .]) which is sent from the client to the server
before another hash of key K1 is used as the session key. Note that security of
PAKE Π implies that key K1 is pseudorandom except if the adversary learns
r = H1(π) and succeeds in an on-line dictionary attack on Π, hence t is safe
from off-line dictionary attacks.

The role key K0 plays in the derivation of authenticator t is to force the
adversary to perform an off-line attack against password π after compromise
of the server. Note that protocol Π plays no security role after server compro-
mise because the adversary can then execute the symmetric PAKE Π on the
correct input r = H1(π). However, the DH-KE key K0 = Y H0(π) is pseudoran-
dom unless the adversary queries H0 on π, an event which the UC simulator
(assuming ROM) can catch and identify as an off-line password test. Note that
the adversary who learns the server-stored values r = H1(π) and V = gH0(π)

can also perform an off-line test by hashing its password guesses via H0 and H1,
but the point is that our DH-KE instance key K1 does not offer any easier way
for the adversary to find a password than an off-line dictionary attack, which is
unavoidable in the asymmetric PAKE setting after server compromise.

Detailed Description of CDH-Based aPAKE Construction. The result-
ing protocol is shown in Fig. 2, and here we go over this construction in more
details. Let Π be an arbitrary secure symmetric PAKE protocol, G be a finite
cyclic group of order q, and g ∈ G be its generator, and triple (G, g, q) is a
public parameter of the scheme. Let H0 be a hash function with range Zq, and
let H1,H2,H3 be three independent hash functions with range {0, 1}� where �
is the security parameter.

Password Enrollment. The user’s password file stored on the server is a pair (r, V )
which is formed given the user’s password π as r = H1(π) and V = gH0(π).
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Fig. 2. Construction I: CDH-based compiler from symmetric PAKE to asymmetric
PAKE

Protocol Description.

• Client Part 1: The client runs the client-side protocol in the symmetric PAKE
Π on input H0(π).

• Server Part 1: The server runs the server-side protocol in the symmetric PAKE
Π on input r. In parallel, the server picks a random exponent y in Zq and
sends Y = gy to the client along with the last message MSGPAKE

L,Server of Π. Let
K1 be the server’s session key output by protocol Π.

• Client Part 2: Upon receiving message (Y , MSGPAKE
L,Server) from the server, the

client aborts if Y = 1G or Y /∈ G. If the check passes, the client completes
its Π instance, and let K1 be the client’s session key output by Π. The client
computes K0 = Y H0(π) and t = H2(K1||K0||Y ||tr) where tr is the client’s
transcript of the symmetric PAKE instance Π, sends t to the server, and
outputs ssk = H3(K1) as its session key.

• Server Part 2: Upon receiving message t from the client, the server computes
K0 = V y and aborts if t �= H2(K1||K0||Y ||tr) where tr is the server’s tran-
script of the symmetric PAKE instance Π. If the check verifies, the server
outputs ssk = H3(K1) as its session key.

Cost Discussion. The key import of our compiler construction shown in Fig. 2
is that it adds only one message to the underlying symmetric PAKE Π. Moreover,
if the last message of Π is from the client to the server, which happens whenever
Π provides explicit entity authentication, then this additional message t can be
piggy-backed with the last flow of Π. An example of the latter UC PAKE is
the construction of Abdalla et al. [1], and as can be seen in Fig. 4 in Sect. 5,
our PAKE-to-aPAKE compiler applied to this UC PAKE does not increase its
message complexity. By contrast, the same cannot be done in the Ω-method of
Gentry et al. [15], because it adds two messages, server-to-client and client-to-
server to the symmetric PAKE (see Fig. 1), and the server-to-client message can
be sent only after the server finalizes the PAKE instance Π because it requires
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server’s session key output by Π. Therefore, if the final flow of Π is client-to-
server the Ω-method would add two messages to the underlying symmetric PAKE
protocol Π.

In terms of computational costs, as discussed in the introduction
the Ω-method instantiated with ECDSA [25] signatures requires one
(multi)exponentiation per party for resp. signature creation and verification,
where client’s exponentiation is fixed-base and server’s (multi)exponentiation
is variable-base, while our compiler requires one variable-base exponentiation
for the client and two fixed-base exponentiations for the server, for computing
Y = gy and K0 = V y, although base V is not fixed globally but only per user
account.

3.1 Security Argument for Our CDH-Based aPAKE Construction

We state the security of our asymmetric PAKE protocol in Theorem1 below.
In the security argument we model hash functions H0,H1,H2,H3 used by this
protocol as random oracles. For lack of space, we only include an informal sketch
of the simulator, and the full formal proof of this theorem is deferred to the full
version.

Theorem 1. If (G, g, q) is a cyclic group in which CDH assumption holds and
if protocol Π realizes the revised symmetric UC PAKE functionality FrpwKE then
the protocol in Fig. 2 securely realizes the UC aPAKE functionality FapwKE in the
random oracle model for hash functions H0,H1,H2,H3.

Simulator Construction. Let A be an adversary that interacts with the par-
ties running the protocol. In the proof we will assume that the execution of
the symmetric PAKE protocol Π and calls to hash functions H0,H1,H2,H3 are
replaced by an interaction with, respectively, an ideal functionality FrpwKE and
ideal functionality FRO modeling (four instances of) a random oracle. We con-
struct a simulator S interacting with the ideal functionality FapwKE such that no
probabilistic polynomial time environment Z can distinguish an interaction with
A in the (FrpwKE,FRO)-hybrid real world (henceforth real world) from an interac-
tion with S in the simulated ideal world (henceforth ideal world). Without loss
of generality, we assume that A is a “dummy” adversary that merely passes all
messages from and to Z, and all computations to Z.

In the following argument, we will use π to denote the original password input
to Pj while the password file was stored, i.e. that Z sends (StorePWfile, sid, Pi, π)
to Pj , we will use π′ to denote the password which Pi uses on its authentication
session, i.e. that Z sends (CltSession, sid, ssid, Pj , π

′) to Pi, and we will use w to
denote any other password candidate, e.g. in adversary’s off-line password test
queries.

S’s essential tasks are as follows:

– Dealing with server compromise and offline attacks: When A compromises
(sid, Pj), S must come up with r which is supposed to be H1(π), and V which



496 J. Y. Hwang et al.

is supposed to be gH0(π), yet S may not know π. In this case, S chooses r
and v (supposed to be H0(π) = logg V ) at random, and whenever S learns π
(this occurs when A queries H1(π) or H0(π) and S sends an OfflineTestPwd
message on π to FapwKE), S “programs” the random oracle results. (If S knows
π, it is trivial to compute r and V .)

– Pi’s message and output: When Pi’s PAKE session is completed and A sends
Y ′, S must come up with t which is supposed to be H2(K1||K0||Y ′||tr) and
let Pi output its session key which is supposed to be H3(K1). t is random
to Z unless it knows both K1 and K0; Pi’s output is random to Z unless it
knows K1. The only way for Z to learn K1 is via compromising Pi’s PAKE
session using the correct r′ = H1(π′), which in turn can be learned via (a)
compromising (sid, Pj) to get r = H1(π) and then setting π′ = π, or (b)
querying H1(π′). In case (a), Z also gets V = gH0(π), thus it can compute
K0 as V y′

(where y′ = log Y ′ and can be chosen by Z). In case (b), Z must
explicitly query H0(π′) in order to learn K0. In sum, there are four subcases:

• Case (a) above: S sets t as H2(K1||K0||Y ′||tr), and compromises Pi’s
session in FapwKE via an Impersonate message. Then S is able to set Pi’s
output, so it sets ssk as H3(K1).

• Case (b) above, and Z queries H0(π): Same as above, except that S com-
promises Pi’s session in FapwKE via a TestPwd message on π′, which can
be extracted by observing all H1(w) queries and checking which one was
used by A to compromise Pi’s PAKE session.

• Case (b) above, and Z does not query H0(π): Then Z learns K1, but K0 is
random to it. So S chooses t at random, but still compromises Pi’s FapwKE

session and sets ssk as H3(K1).
• Neither case (a) nor case (b) above holds: Then both K1 and K0 are

random to Z. So S chooses t at random and does not compromise Pi’s
session in FapwKE (so Pi’s output is a random string chosen by FapwKE).

– Pj ’s output: When Pj ’s PAKE session is completed and A sends t′, S must
let Pj abort, or output its session key which is supposed to be H3(K1). As
discussed in Sect. 3, Pj aborts unless (a) A merely passes all messages between
the client and the server, or (b) A knows both K1 and K0, which in turn
renders S’s ability to extract Pj ’s password π and use it to compromise Pj ’s
session in FapwKE. So there are three subcases:

• Case (a) above: If Pj ’s PAKE session is compromised, Z knows K1, so
S compromises Pj ’s session in FapwKE and sets ssk as H3(K1); otherwise
Pj ’s output is random to Z, so S does not compromise Pj ’s session in
FapwKE (so Pj ’s output is a random string chosen by FapwKE).

• Case (b) above: S extracts π as described in Sect. 3 and compromises Pj ’s
session in FapwKE via a TestPwd message on π. Then S sets ssk as H3(K1).

• Neither case (a) nor case (b) above holds: Then S lets Pj abort.

4 Asymmetric PAKE Construction Based on NIZK

Our second aPAKE construction is based on a non-interactive zero-knowledge
proof of knowledge (NIZK-PK) of Discrete Logarithm (DL). The construction
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is shown in Fig. 3, and it runs an instance of a symmetric PAKE, just like our
construction in Sect. 3 and the construction of Gentry et al. [15], but here the
symmetric PAKE instance is followed by the client sending to the server a NIZK-
PK of the password hash v = H0(π), where the verification value V = gH0(π) is
held by the server. Transmitting such NIZK-PK in the clear would enable off-line
dictionary attacks, so the NIZK-PK should be encrypted under the session key
output by the underlying symmetric PAKE. However, a low-cost implementation
of this NIZK-PK in ROM via the Fiat-Shamir heuristic [13] can be effectively
encrypted if the session key K output by the symmetric PAKE is hashed to
derive the verifier’s challenge in this NIZK.

Recall that a Fiat-Shamir NIZK-PK of the DL v = DL(g, V ) in ROM is
implemented by a pair (X, z) s.t. X = gx for x randomly chosen in Zq and
z = x + v · c mod q, where the verifier’s challenge c is computed as a hash of
X and the DL instance V , i.e. c = H2(X||V ). However, here we modify this
challenge-derivation in several ways: First, as mentioned above we include in
the hash input key K output by the symmetric PAKE instance Π. This has an
effect of encrypting this NIZK proof because if c = H2(K||[. . .]) then (X, z) is
distributed uniformly in G × Zq to an adversary for whom K is pseudorandom.
Secondly, we omit the DL challenge V from the hash, to save one exponentiation
from the client who would otherwise have to compute it as V = gH0(π). This
removal endangers the proof-of-knowledge property of this NIZK, but we replace
V with the transcript tr of the symmetric PAKE instance Π. This inclusion has an
effect of binding the NIZK to the PAKE instance, including its input r = H1(π),
and it suffices to show that the adversary cannot create such NIZK unless it
queries H0 on π or computes the DL v = DL(g, V ).

In effect, similarly as in construction of Sect. 3, to generate a valid last mes-
sage an adversary must either merely pass all messages between the client and
the server, or it must know both v = H0(π) and K. To know K, the adversary
must learn H1(π) via compromising the server or querying it, and then inter-
fering with the symmetric PAKE using H1(π). If adversary compromises the
server and learns r = H1(π), then the NIZKs (X, z) is sees by interacting with
the client leak no information because they can be simulated from V = gH0(π).
Conversely, if the adversary actively engages the server on any session then it
must produce such NIZK-PK itself, and by the similar argument as use in the
standard implementation of this proof of knowledge, i.e. when c = H2(K||V ),
this is impossible unless adversary either queries H0 on π or computes the dis-
crete logarithm v = DL(g, V ). In each of these cases the simulator can observe
what the adversary queries and react respectively.

Detailed Description of NIZK-Based aPAKE Construction. The result-
ing protocol is shown in Fig. 3, and here we explain it in more details. The setting
is exactly the same as in the protocol of Sect. 3 in Fig. 2, except that here H2 is
a hash function onto range Zq.
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Password Enrollment. As in the DH-based construction of Fig. 2, the password
file is a pair (r, V ) where r = H1(π) and V = gH0(π), where π is the user’s
password.

Protocol Description.

• Client Part 1: As in the construction of Fig. 2, the client runs the client-side
protocol in the symmetric PAKE Π on input H0(π). Let K be the client’s
session key output by this instance of Π.

• Server Part 1: The server runs the server-side protocol in the symmetric PAKE
Π on input r. Let K be the server’s session key output by this instance of Π.

• Client Part 2: The client picks random x in Zq, computes v = H0(π), X = gx,
and z = x+v ·c mod q for c = H2(K||X||tr) where tr is the client’s transcript
of Π. The client sends (X, z) to the server, and outputs ssk = H3(K) as its
session key.

• Server Part 2: Upon receiving (X, z) from the client, the server verifies if
X = gz · V −H2(K||X||tr) where tr is the server’s transcript of Π. If the check
fails, the server aborts, and otherwise it outputs ssk = H3(K) as its session
key.

Fig. 3. Construction II: NIZK-based compiler from symmetric PAKE to asymmetric
PAKE

Cost Discussion. The added cost of the construction in Fig. 3 is the cost of
the NIZK prover and the NIZK verifier. Implemented as above, these require
one exponentiation with fixed-base for the client, and one variable-base (multi-
)exponentiation for the server. These computational costs are exactly the same
as in the Ω-method instantiated with the ECDSA signature, because ECDSA
signature is indeed a version of the same NIZK-PK of discrete logarithm as we use
here. However, the construction in Fig. 3 has the same communication pattern as
the construction in Fig. 2, and hence saves two communication rounds compared
to the Ω-method if the last message in the underlying symmetric PAKE goes
from the client to the server.
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4.1 Security Argument for aPAKE Construction Based on NIZK

As in the first compiler, we state the security of our second compiler as well as
a sketch of the simulator below, and defer the full proof to the full version.

Theorem 2. If (G, g, q) is a cyclic group in which the DL assumption holds and
if protocol Π realizes the FrpwKE functionality, then the protocol in Fig. 3 securely
realizes the FapwKE functionality in the random oracle model for hash functions
H0, H1, H2, H3.

Simulator Construction. The simulator S is very similar to that in the proof
of Theorem 1. Indeed, since Pj ’s password file is identical to that in the previous
protocol, how S deals with server compromise and offline attacks is exactly the
same with the previous simulator.

When Pi’s PAKE session is completed, S must come up with X and z,
which are supposed to be gx for x random in Zq and x + H0(π′) · H2(K||X||tr),
respectively. Value X is a random group element, so S can simply choose it at
random; z is random to Z (independent of X) unless Z knows K. As analyzed
in Theorem 1, Z gets to know K via either of the following two approaches:
(a) compromising (sid, Pj) and then setting π′ = π, or (b) querying H1(π′). In
case (a), S chooses v = H0(π) when A compromises (sid, Pj), so it computes
z = x + v · H2(K||X||tr). In case (b), S computes z = x + H0(π′) · H2(K||X||tr),
where H0(π′) is chosen at random if undefined yet. Finally, if neither (a) nor (b)
holds, K is random to Z, so S chooses z at random.

When Pj ’s PAKE session is completed and A sends X ′ and z′, S must let
Pj abort, or output its session key which is supposed to be H3(K). Pj aborts
unless (a) A merely passes all messages between the client and the server, or

Fig. 4. A two-round UC asymmetric PAKE using compiler of Sect. 3 instantiated with
UC-Secure protocol of [1]. (E, D) is a symmetric encryption modeled as ideal cipher
over group G as the message space, g1 is another generator of the same group G, and
H ′ and H ′′ are hash functions with range {0, 1}�.
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(b) Z knows K and queries H0(π) (and thus can choose a random x′ in Zq and
set X ′ = gx′

and z = x′ + H0(π) · H2(K||X ′||tr′)). Case (a) is similar to the
corresponding case in the previous simulator. S can tell case (b) by checking
whether X = gz−H0(π)·H2(K||X′||tr′). If neither (a) nor (b) holds, S forces Pj to
abort.

5 An Efficient Instantiation of Our Method

To exemplify the practical implications of our reduced-round PAKE-to-aPAKE
compilers, we present a concrete instantiation of our aPAKE construction of
Sect. 3 where the PAKE subprotocol is instantiated with the UC PAKE of
Abdalla et al. [1] (henceforth referred to as the ACCP protocol), which is a
variant of the encrypted key exchange (EKE) of Bellovin and Merritt [5]. The
ACCP protocol is proven secure in the UC framework under the DDH assump-
tion in the Ideal Cipher (IC) model and ROM, where the Ideal Cipher assumption
is posited on a symmetric cipher with cyclic group G as a message space. The
ACCP protocol uses three rounds and 2 exponentiations per party. By combining
this protocol with our PAKE-to-aPAKE compiler in Fig. 2, we obtain a highly
efficient UC asymmetric PAKE, depicted in Fig. 4, with the same 3 rounds as
the underlying symmetric PAKE protocol, because in the ACCP protocol the
last message goes from the client to the server, and therefore our client-to-server
message t (see Fig. 2) can be piggybacked onto it. Note that the Ω-method of
[15] would instead result in a 5-round protocol, because its two-message inter-
action, server-to-client and client-to-server, can start only when the server in
the underlying symmetric PAKE outputs a session key, which is round 3 in the
ACCP protocol.

Cost Discussion. The computational cost of the asymmetric PAKE of Fig. 4 is
3 exponentiations per client (one fixed-base, two variable-base) and 4 per server
(three fixed-base, one variable-base), and the cost of the ideal-cipher encryption
and decryption. (See e.g. [8,26] on how an ideal cipher can be implemented over
an elliptic curve group.) Note that if we instantiate the PAKE-to-aPAKE con-
struction of Fig. 3 with the same ACCP symmetric PAKE protocol, the resulting
asymmetric PAKE would have the same communication pattern and 3 expo-
nentiations per client (two fixed-base, one variable-base) and 3 per server (one
fixed-base, two variable-base).
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A UC Password Authentication Functionalities

For reference we include the specification of functionalities FrpwKE and FapwKE

introduced by [15] for modeling resp. symmetric PAKE and asymmetric PAKE
protocols. We refer to Sect. 2 for an overview of these functionalities, and to [15]
for their full discussion.

Fig. 5. The revised symmetric PAKE functionality FrpwKE [15]
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Fig. 6. The asymmetric PAKE functionality FapwKE [15]
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