
Combining Private Set-Intersection
with Secure Two-Party Computation

Michele Ciampi1(B) and Claudio Orlandi2

1 The University of Edinburgh, Edinburgh, UK
mciampi@ed.ac.uk

2 Aarhus University, Aarhus, Denmark
orlandi@cs.au.dk

Abstract. Private Set-Intersection (PSI) is one of the most popular and
practically relevant secure two-party computation (2PC) tasks. There-
fore, designing special-purpose PSI protocols (which are more efficient
than generic 2PC solutions) is a very active line of research. In particular,
a recent line of work has proposed PSI protocols based on oblivious trans-
fer (OT) which, thanks to recent advances in OT-extension techniques,
is nowadays a very cheap cryptographic building block. Unfortunately,
these protocols cannot be plugged into larger 2PC applications since in
these protocols one party (by design) learns the output of the intersec-
tion. Therefore, it is not possible to perform secure post-processing of
the output of the PSI protocol. In this paper we propose a novel and
efficient OT-based PSI protocol that produces an “encrypted” output
that can therefore be later used as an input to other 2PC protocols. In
particular, the protocol can be used in combination with all common
approaches to 2PC including garbled circuits, secret sharing and homo-
morphic encryption. Thus, our protocol can be combined with the right
2PC techniques to achieve more efficient protocols for computations of
the form z = f(X ∩ Y) for arbitrary functions f .

1 Introduction

Private Set-Intersection (PSI) is one of the most practically relevant secure two-
party computation (2PC) tasks. In PSI two parties hold two sets of strings X
and Y , respectively. At the end of the protocol one (or both) party should learn
the intersection of the two sets Z = X ∩ Y and nothing else about the input of
the other party. There are many real-world applications in which PSI is required.
As an example, when mobile users install messaging apps, they need to discover
whom among their contacts (from their address book) is also using the app, in

This research received funding from: COST Action IC1306; the Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC); the European Union’s
Horizon 2020 research and innovation programme under grant agreements No 731583
(SODA) and No 780477 (PRIViLEDGE); “GNCS - INdAM”. The work of 1st author
has been done in part while visiting Aarhus University, Denmark.

c© Springer Nature Switzerland AG 2018
D. Catalano and R. De Prisco (Eds.): SCN 2018, LNCS 11035, pp. 464–482, 2018.
https://doi.org/10.1007/978-3-319-98113-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98113-0_25&domain=pdf
http://orcid.org/0000-0001-5062-0388
http://orcid.org/0000-0003-4992-0249

Combining Private Set-Intersection with Secure Two-Party Computation 465

order to be able to start communicating seamlessly with them. Doing so requires
users to learn the intersection of their contact list with the list of registered users
of the service which is stored at the server side. This is typically done by having
users send their contact list to the server that can then compute the intersection
and return the result to the user. Unfortunately this solution is very problematic
not only for the privacy of the user, but for the privacy of the users’ contacts as
well! In particular, some of the people in the contact list might not want their
phone number being transferred and potentially stored by the server, but they
have no control over this.1 Note that this is not just a theoretically interesting
problem and that Signal (one of the most popular end-to-end encrypted messag-
ing app) has recently recognized this as being a real problem and offered partial
solutions to it.2 PSI has many other applications, including computing intersec-
tions of suspect lists, private matchmaking (comparing interests), testing human
genome [3], privacy-preserving ride-sharing [16], botnet detection [32], adver-
tisment conversion rate [20] and many more. From a feasibility point of view,
PSI is just a special case of 2PC and therefore any generic 2PC protocol (such
as [15,43]) could be used to securely evaluate PSI instances as well. However,
since PSI is a natural functionality that can be applied in numerous real-world
applications, many efficient protocols for this specific functionality have been
proposed, with early results dating back to the 80s [30,40]. The problem was
formally defined in [13] and follow up work increased the efficiency of PSI pro-
tocols to have complexity only linear in the inputs of the parties [8,23]. A very
recent work shows how to obtain a protocol where communication complexity is
linear in the size of the smaller set and logarithmic in the larger set [5]. How-
ever, these protocols still require performing expensive public-key operations
(e.g., exponentiations) for every element in the input sets. As public-key opera-
tions are orders of magnitudes more expensive than symmetric key operations,
these protocols are not practically efficient for large input sets. In the mean-
while, generic techniques for 2PC had improved by several orders of magnitude
and the question of whether special purpose protocols or generic protocols were
most efficient has been debated in [9,19]. Due to its practical relevance, PSI pro-
tocols in the server-aided model have been proposed as well [24]. Independent
and concurrent works [11,35] (which were not publicly available at time we first
posted our paper on ePrint) consider the problem of using a PSI protocol to
construct more complex functionality in an efficient way. More specifically, [35]
provides a way to securely compute many variants of the set intersection func-
tionality using a clever combination of Cuckoo hashing and garbled circuit. The
work of Falk et al. [11] focuses on obtaining a PSI protocol that is efficient in

1 Some apps do not transfer the contact list in cleartext, but a hashed version instead.
However, since the domain space of phone numbers is small enough to allow for
brute forcing of the hashes, this does not guarantee any real privacy guarantee.

2 Unfortunately, the Signal team has concluded that current PSI protocols are too
inefficient for their application scenario and relied on trusted-hardware instead, in the
style of [41]. See https://signal.org/blog/private-contact-discovery/ for more details
on this.

https://signal.org/blog/private-contact-discovery/

466 M. Ciampi and C. Orlandi

terms of communication. In addition, the authors of [11] propose a PSI protocol
where the output can be secret shared that has communication complexity of
O(mλ log log m), where λ is the bit-length of the elements and m is the set-size.
The techniques used in our paper significantly differ from the techniques used
in [11,35]. Our solution avoids the use of garbled circuits and rely on the security
and the efficiency of OT and symmetric key encryption schemes.

1.1 OT-Based PSI

The most efficient PSI protocols today are those following the approach of
PSZ [34,36]. These protocols make extensive use of a cryptographic primitive
known as oblivious transfer (OT). While OT provably requires expensive public-
key operation, OT can be “extended” as shown by [1,21,26] i.e., the few neces-
sary expensive public-key operations can be amortized over a very large number
of OT instances, and the marginal cost of OT is only a few (faster) symmetric
key operations instead. In particular, improvements in OT-extension techniques
directly imply improvements to PSI protocols as shown by e.g., [27,33]. In a
nutshell, the PSZ protocol introduced two important novel ideas to the state of
the art of PSI. First, they give an efficient instantiation of the private set mem-
bership protocol (PSM) introduced in [12] based on OT. Second, they show how
to efficiently implement PSI from PSM using hashing techniques. (An overview
of their techniques is given below).

1.2 Our Contribution

The main contribution of this paper is to give an efficient instantiation of PSM
that provides output in encrypted format and can therefore be combined with
further 2PC protocols. Our PSM protocol can be naturally combined with the
hashing approach of PSZ to give a PSI protocol with encrypted output achieving
the same favourable complexity in the input sizes. This enables the combination
the efficiency of modern PSI techniques with the potentials of general 2PC.
Combining our protocols with the right 2PC post-processing allows more effi-
cient evaluation of functionalities of the form Z = f(X ∩ Y) for any function
f . Like in PSZ we only focus on semi-honest security. Instantiating our PSM
protocol together with an actively secure OT-extension protocol such as [2,25]
would result in a protocol with privacy but not correctness (i.e., the view of
the protocol without the output can be efficiently simulated), which is a mean-
ingful notion of security in some settings. PSI protocols with security against
malicious adversaries have been proposed in e.g., [17,38,39]. It is an interesting
open problem to design efficient protocols which are both secure against active
(or covert) adversaries and that produce encrypted output. Also, like in PSZ,
we only focus on the two-party setting. The recent result of [18] has shown that
multiparty set-intersection can be computed efficiently. Extending our result to
the multiparty case is an interesting future research direction. We also compare
the computation complexity of our scheme for PSM with all the circuit-based
PSI approaches (which can be combined with further postprocessing) proposed

Combining Private Set-Intersection with Secure Two-Party Computation 467

in [37]. More precisely, in Table 1 we compare our protocol with the protocols
of [37] in terms of number of symmetric key operations, and bits exchanged
between the parties. The result of this comparison is that our protocol has bet-
ter performance, in terms of computational complexity, than all the circuit-based
PSI approaches considered for our comparison3. We refer the reader to the full
version for more details about this comparison.

1.3 Improving the Efficiency of Smart Contract Protocols

Most of the cryptocurrency systems are built on top of blockchain technologies
where miners run distributed consensus whose security is ensured as long as the
adversary controls only a minority of the miners. Some cryptocurrency systems
allow to run complex programs and decentralized applications on the blockchain.
In Ethereum4 those programs are called smart contracts. Roughly speaking, the
aim of a smart contract is to run a protocol and start a transaction to pay a user
of the cryptocurrency systems according to the output of the protocol execution.
Unfortunately, this interesting feature of the smart contracts does not come for
free. Indeed, in order to execute a smart contract, it is required to pay a gas fee
that depends on the number of instructions of the protocol to be executed. So,
higher is the complexity of protocol, higher is the price to pay. In this context
a cryptographic protocol that outputs intermediate values in a secret shared
way is particularly useful. Suppose that two parties want to securely compute
f(X ∩ Y) for arbitrary functions f , and reward another party depending on the
output of this computation. Instead of writing on a smart contract the entire
protocol to compute f(X ∩ Y), the two parties could run a sub-protocol Π
to obtain a secret share of χ = X ∩ Y without using a smart contract, and
then run another sub-protocol Π ′ to compute f(χ), this time using a smart
contract to enforce the reward policy. Following this approach it is possible to
move part of the computation off-chain, thus increasing the performance and,
at the same time, decreasing the costs required to execute the smart contract.
Moreover, we observe that χ can be reused to compute different functions f ′.
The scenario described above is particularly interesting if one of the party can
be fully malicious, but in this work we will focus on semi-honest security leaving
the above as an open question.

2 Technical Overview

Why PSZ and 2PC Do Not Mix. We start with a quick overview of the PSM
protocol in PSZ [34,36], to explain why their protocol inherently reveals the
3 The complexity of the protocols proposed in [37] depends upon parameters that are

also related to the used hash function. In order to make our comparison fair, we
have set these parameters as showed in the first column in Table 10 of [37]. More
precisely, the authors of [37] show in that table which parameters are adopted for
their empirical efficiency comparison for the case where one set is much greater than
the other set (which is exactly the case of PSM).

4 http://www.ethereum.org.

http://www.ethereum.org

468 M. Ciampi and C. Orlandi

Table 1. Computation and communication complexity comparison for the PSM case.
M represents the size of the set, s is the security parameter and λ is the bit-length of
each element.

of sym. key operations Communication [bits]

Yao SCS [19] 12λM log M + 3λM 2λMs(1 + 3 log M)

GMW SCS [19] 12λM log M 6λM(s + 2) log M

Yao PWC [37] 4λM + 6393λ λ(M3s + 3198s + 15, 6)

GMW PWC [37] 6λM + 9594λ λ(M4 + 6396 + 2sM + 6396s)

This work 4λM + 3λ 2λMs + Ms

intersection to one of the parties. From a high-level point of view, the protocol is
conceptually similar to the PSM protocol from oblivious pseudorandom function
(OPRF) of [12], except that the OPRF is replaced with a similar functionality
efficiently implemented using OT. For simplicity, here we will use the OPRF
abstraction. The goal of a PSM protocol is the following: the receiver R has input
x, and the sender S has input a set Y ; at the end of the protocol the receiver
learns whether x ∈ Y or not while the sender learns nothing. The protocol starts
by using the OPRF subprotocol, so that R learns x∗ = Fk(x) (where k is known
to S), whereas S learns nothing about x. Now S evaluates the PRF on her own
set and sends the set Y ∗ = {y∗ = Fk(y)|y ∈ Y } to R, who checks if x∗ ∈ Y ∗

and concludes that x ∈ Y if this is the case. In other words, we map all inputs
into pseudorandom strings and then let one of the parties test for membership
“in the clear”. Since the party performing the test doesn’t have access to the
mapping (e.g., the PRF key), this party can only check for the membership
of x and no other points (i.e., all elements in Y ∗ \ {x∗} are indistinguishable
from random in R’s view). From the above description, it should be clear that
the PSZ PSM inherently reveals the output to one of the parties. Turning this
into a protocol which provides encrypted output is a challenging task. Here is
an attempt at a “strawman” solution: we change the protocol such that R still
learns the pseudorandom string x∗ = Fk(x) corresponding to x, but now S sends
a value for every element in the universe. Namely, for each i (in the domain of
Y) S sends an encryption of whether i ∈ Y “masked” using Fk(i) e.g., S sends
ci = Fk(i) ⊕ E(i ∈ Y)5. Now R can compute cx ⊕ x∗ = E(x ∈ Y) i.e., an
encrypted version of whether x ∈ Y , which can be then used as input to the
next protocol. While this protocol produces the correct result, its complexity is
exponential in the bit-length of |x|, which is clearly not acceptable. Intuitively,
we know that only a polynomial number of ci’s will contain encryptions of 1, and
therefore we need to find a way to “compress” all the ci corresponding to i �∈ Y
into a single one, to bring the complexity of the protocol back to O(|Y |). In the
following, after defining some useful notation, we give an intuitive explanation
on how to do that.
5 The exact format of the “encryption” E(·) would depend on the subsequent 2PC

protocol and is irrelevant for this high-level description.

Combining Private Set-Intersection with Secure Two-Party Computation 469

2.1 Our Protocol

We introduce some useful (and informal) notation in order to make easier to
understand the ideas behind our construction. We let Y = {y1, . . . , yM} be the
input set of the sender S, and we assume w.l.o.g., that |Y | = M = 2m.6 All
strings have the same length e.g., |x| = |yi| = λ.7 We will use a special symbol
⊥ such that x �= ⊥ ∀x. We use a function Prefix(x, i) that outputs the i most
significant bits of x (Prefix(x, i) �= Prefix(x, j) when i �= j independently of the
value of x) and for simplicity we define Prefix(Y, i) to be the set constructed
by taking the i most significant bits of every element in Y . The protocol uses
a symmetric key encryption scheme Sym = (Gen,Enc,Dec) with the additional
property that given a key k ← Gen(1s) it is possible to efficiently verify if a given
ciphertext is in the range of k (see Sect. 3 for a formal definition). Finally, the
output of the protocol will be one of two strings γ0, γ1 chosen by S, respectively
denoting x �∈ Y and x ∈ Y . The exact format of the two strings depends on the
protocol used for post-processing. For instance if the post-processing protocol
is based on: (1) garbled circuits, then γ0, γ1 will be the labels corresponding to
some input wire; (2) homomorphic encryption, then γb = Enc(pk, b) for some
homomorphic encryption scheme Enc; (3) secret-sharing, then γb = s2 ⊕ b where
s2 is a uniformly random share chosen by S, so that if R defines its own share
as s1 = γb then it holds that s1 ⊕ s2 = b.8 In order to “compress” the elements
of Y we start by considering an undirected graph with a level structure of λ + 1
levels. The vertices in the last level of this graph will correspond to the elements
of Y . More precisely, we associate the secret key kbλbλ−1...b1 of a symmetric key
encryption scheme Sym to each element y = bλbλ−1 . . . b1 ∈ Y . The main idea
is to allow the receiver to obliviously navigate this graph in order to get the
key kbλbλ−1...b1 if x = y, for some y = bλbλ−1 . . . b1 ∈ Y , or a special key k�

otherwise. Moreover we allow the receiver to navigate the graph efficiently, that
is, every level of the graph is visited only once. Once a key k is obtained by
the receiver, the sender sends O(|Y |) ciphertexts in a such a way that the key
obtained by the receiver can decrypt only one ciphertext. Moreover the plaintext
of this ciphertext will correspond to γ0 or γ1 depending on whether x ∈ Y or
not.

First Step: Construct the Graph G. Each graph level i ∈ {0, . . . , λ} has
size at most |Prefix(Y, i)| + 1. More precisely, for every t = bλbλ−1 . . . bλ−i ∈
Prefix(Y, i) there is a node in the level i of G that contains a key kbλbλ−1...bλ−i

.
In addition, in the level i there is a special node, called sink node that contains
6 Sets can always be padded with dummy elements, but the complexity of the protocol

can match M that in practice can be M ≈ 2m−1.
7 We can assume λ to be smaller than the (statistical) security parameter s and we

will denote the bit decomposition of x by x = xλ . . . x1. Otherwise before running
the protocol the parties can hash their input down and run the protocol with inputs
h(x) and h(Y) = {h(y1), . . . , h(yM)}. Clearly if x = yi then h(x) = h(yi), and for
correctness we need that Pr[h(x) ∈ h(Y) ∧ x �∈ Y] < 2−s.

8 Here we use ⊕-secret sharing without loss of generality. Any 2-out-2 secret sharing
would work here.

470 M. Ciampi and C. Orlandi

a key k�
i (which we refer to as sink key). The aim of k�

i is to represent all the
values that do not belong to Prefix(i, Y). Let us now describe how the graph G
is constructed. First, for i = 1, . . . , λ the key (for a symmetric key encryption
scheme) k�

i is generated using the generation algorithm Gen(·). As discussed
earlier the aim of these keys is to represent the elements that do not belong to
Y . More precisely, the sink key k�

i , with i ∈ {1, . . . , λ} represents all the values
that do not belong to Prefix(Y, i) and the key k�

λ (the last sink key) will be used
to encrypt the output γ0 corresponding to non-membership in the last step of our
protocol. Note that if Prefix(x, i) �∈ Prefix(Y, i) then Prefix(x, j) �∈ Prefix(Y, j) for
all j > i. Therefore, once entered in a sink node, the sink path is never abandoned
and thus the final sink key k�

λ, will be retrieved (which allows recovery of γ0).
Let us now give a more formal idea of how G is constructed.

– The root of G is empty, and in the second level there are two vertices k0 and
k1 where9, for b = 0, 1

kb =

{
k ← Gen(1s), if b ∈ Prefix(Y, 1)
k�
1 , otherwise

– For each vertex kt in the level i ∈ {1, . . . , λ} and for b = 0, 1 create the node
kt||b as follows (if it does not exists) and connect kt to it.

kt||b =

⎧⎪⎨
⎪⎩

k ← Gen(1s), if t||b ∈ Prefix(Y, i + 1)
k�

i+1, if t||b /∈ Prefix(Y, i + 1)
k�

i+1, if kt = k�
i

We observe that a new node kt||b is generated only when t||b ∈ Prefix(Y, i).
In the other cases the sink node k�

i+1 is used.

In Fig. 1 we show an example of what the graph G looks like for the set Y =
{010, 011, 110}. In this example it is possible to see how, in the 2nd level, all
the elements that do not belong to Prefix(Y, 2) are represented by the sink node
k�
2 . Using this technique we have that in the last level of G one node (k�

3 in
this example) is sufficient to represent all the elements that do not belong to Y .
Therefore, we have that the last level of G contains at most |Y | + 1 elements.
We also observe that every level of G cannot contain more than |Y | + 1 nodes.

Second Step: Oblivious Navigation of G. Let x = xλxλ−1 . . . x1 be the
receiver’s (R’s) private input and Y be the sender’s (S’s) private input. After S
constructs the graph G we need a way to allow R to obtain kxλxλ−1...x1 if x ∈ Y
and the sink key k�

λ otherwise. All the computation has to be done in such a way
that no other information about the set Y is leaked to the receiver, and as well
that no information about x is leaked to the sender. In order to do so we use
λ executions of 1-out-of-2 OT. The main idea is to allow the receiver to select

9 In abuse of notation we refer to a vertex using the key represented by the vertex
itself.

Combining Private Set-Intersection with Secure Two-Party Computation 471

Fig. 1. Example of how the graph G appears when the sender holds the set Y .

which branch to explore in G depending on the bits of x. More precisely, in the
first execution of OT, R will receive the key kxλ

iff there exists an element in
Y with the most significant bit equal to xλ, the sink key k�

1 otherwise. In the
second execution of OT, R uses xλ−1 as input and S uses (c0, c1) where c0 is
computed as follows:

– For each key in the second level of G that has the form kt||0, the key kt||0 is
encrypted using the key kt.

– For every node v in the first level that is connected to a sink node k�
2 in the

second level, compute an encryption of k�
2 using the key contained in v.

– Pad the input with random ciphertexts up to the upper bound for the size of
this layer (more details about this step are provided later).

– Randomly permute these ciphertexts.

The procedure to compute the input c1 is essentially the same (the only dif-
ference is that in this case we consider every key with form kt||1 and encrypt
it using kt). Roughly speaking, in this step every key contained in a vertex
u of the second level is encrypted using the keys contained in the vertex v
of the previous level that is connected to u. For example, following the graph
provided in Fig. 1, c0 would be equal to {Enc(k0, k�

2),Enc(k1, k
�
2)} and c1 to

{Enc(k0, k01),Enc(k1, k11)}. Thus, after the second execution of OT R receives
cxλ−1 that contains the ciphertexts described above where only one of these can
be decrypted using the key k obtained in the first execution of OT. The obtained
plaintext corresponds to the key kxλxλ−1 if Prefix(x, 2) ∈ Prefix(Y, 2), to the sink
key k�

2 otherwise. The same process is iterated for all the levels of G. More gen-
erally, if Prefix(x, j) ∈ Prefix(Y, j) then after the j−th execution of OT R can
compute the key kxλxλ−1...xλ−j

using the key obtained in the previous phase.
Conversely if Prefix(x, j) /∈ Prefix(Y, j) then the sink key k�

j is obtained by R.
We observe that after every execution of OT R does not know which ciphertext
can be decrypted using the key obtained in the previous phase, therefore he will
try to decrypt all the ciphertext until the decryption procedure is successful.
To avoid adding yet more indexes to the (already heavy) notation of our pro-
tocol we deal with this using a private-key encryption scheme with efficiently
verifiable range. We note that this is not necessary and that when implementing

472 M. Ciampi and C. Orlandi

the protocol one can instead use the point-and-permute technique [4]. This, and
other optimisations and extensions of our protocol, are described in Sect. 5.

Third Step: Obtain the Correct Share. In this step S encrypts the output
string γ0 using the key k�

λ and uses all the other keys in the last level of G to
encrypt the output string γ1.10 At this point the receiver can only decrypt either
the ciphertext that contains γ0 if x /∈ Y or one (and only one) of the ciphertexts
that contain γ1 if x ∈ Y . In the protocol that we have described so far R does
not know which ciphertext can be decrypted using the key that he has obtained.
Also in this case we can use a point-and-permute technique to allow R to identify
the only ciphertext that can be decrypted using his key.

On the Need for Padding. As describe earlier, we might need to add some
padding to the OT sender’s inputs. To see why we need this we make the follow-
ing observation. We recall that in the i-th OT execution the sender computes an
encryption of the keys in the level i of the artificial graph G using the keys of
the previous level (i − 1).11 As a result of this computation the sender obtains
the pair (ci

0, c
i
1), that will be used as input of the i-th OT execution, where ci

0

(as well as ci
1) contains a number of encryptions that depends upon the number

of vertices on level (i − 1) of G. We observe that this leaks information about
the structure of G to the receiver, and therefore leaks information about the
elements that belong to Y . Considering the example in Fig. 1, if we allow the
receiver to learn that the 2nd level only contains 3 nodes, then the receiver would
learn that all the elements of Y have the two most significant bits equal to either
t or t′ for some t, t′ ∈ {0, 1}2 (in Fig. 1 for example we have t = 01 and t′ = 11;
note however that the receiver would not learn the actual values of t and t′).

We note that the technique described in this section can be seen as a special
(and simpler) example of securely evaluating a branching program. Secure eval-
uation of branching programs has previously been considered in [22,31]: unfortu-
nately these protocols cannot be instantiated using OT-extension and therefore
will not lead to practically efficient protocols (the security of these protocols is
based on strong OT which, in a nutshell, requires the extra property that when
executing several OTs in parallel, the receiver should not be able to correlate
the answers with the queries beyond correlations which follow from the output).

Finally, we note that the work of Chor et al. [6] uses a data structure similar
to the one described here to achieve private information retrieval (PIR) based on
keywords. The main difference between keyword based PIR and PSM is that in
PSM the receiver should not learn any other information about the data stored
by the sender, so their techniques cannot be directly applied to our setting.

3 Definitions and Tools

We denote the security parameter by s and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of
10 The key k�

λ could not exists; e.g. if Y contains all the strings of λ bits.
11 The only exception is the first OT execution where just two keys are used as input.

Combining Private Set-Intersection with Secure Two-Party Computation 473

a and b). For a finite set Q, x ← Q denotes a sampling of x from Q with
uniform distribution. We use the abbreviation ppt that stands for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function. We
assume the reader to be familiar with standard notions such as computational
indistinguishability and the real world/ideal world security definition for secure
two-party computation (see the full version [7] for the actual definitions).

3.1 Special Private-Key Encryption

In our construction we use a private-key encryption scheme with two additional
properties. The first is that given the key k, it is possible to efficiently verify
if a given ciphertext is in the range of k. With the second property we require
that an encryption under one key will fall in the range of an encryption under
another key with negligible probability As discussed in [28], it is easy to obtain
a private-key encryption scheme with the properties that we require. According
to [28, Definition 2] we give the following definition.

Definition 1. Let Sym = (Gen,Enc,Dec) be a private-key encryption scheme
and denote the range of a key in the scheme by Ranges(k) = {Enc(k, x)}x∈{0,1}s .

1. We say that Sym has an efficiently verifiable range if there exists a ppt algo-
rithm M such that M(1s, k, c) = 1 if and only if c ∈ Ranges(k). By conven-
tion, for every c /∈ Ranges(k), we have that Dec(k, c) = ⊥.

2. We say that Sym has an elusive range if for every probabilistic
polynomial-time machine A, there exists a negligible function ν(·) such that
Probk←Gen(1s)[A(1s) ∈ Ranges(k)] < ν(s).

Most of the well known techniques used to construct a private-key encryption
scheme (e.g. using a PRF) can be used to obtain a special private-key encryption
scheme as well. The major difference is that a special encryption scheme has (in
general) ciphertexts longer than a standard encryption scheme.

4 Our Protocol Π∈

In this section we provide the formal description of our protocol Π∈ = (S,R) for
the set-membership functionality F∈ = (F∈

S ,F∈
R) where

F∈
S :

({{0, 1}λ}M × (γ0, γ1)
) × {0, 1}λ −→ ⊥ and

F∈
R :

({{0, 1}λ}M × (γ0, γ1)
) × {0, 1}λ −→ {γ0, γ1}

(
Y, (γ0, γ1), x

)
−→
{

γ1 if x ∈ Y

γ0 otherwise

where γ0 and γ1 are arbitrary strings and are part of the sender’s input. There-
fore our scheme protects both Y and γ1−b, when γb is received by R.

For the formal description of Π∈, we collapse the first and the second step
showed in the information description of Sect. 2 into a single one. That is, instead

474 M. Ciampi and C. Orlandi

of constructing the graph G, the sender only computes the keys at level i in order
to feed the i-th OT execution with the correct inputs. The way in which the keys
are computed is the same as the vertices for G are computed, we just do not
need to physically construct G to allow S to efficiently compute the keys. In our
construction we make use of the following tools.

1. A protocol ΠOT = (SOT ,ROT) that securely computes the following func-
tionality

FOT : ({0, 1}� × {0, 1}�) × {0, 1} −→ {⊥} × {0, 1}�

((c0, c1), b)
−→ (⊥, cb).

2. A symmetric key encryption scheme Sym = (Gen,Enc,Dec) with efficiently
verifiable and elusive range.

3. In our construction we make use of the following function: δ : i
−→
min{2i, |Y |}.

This function computes the maximum number of vertices that can appear in the
level i of the graph G. As discussed before, the structure of G leaks information
about Y . In order to avoid this information leakage about Y , it is sufficient to
add some padding to the OT sender’s input so that the input size become |Y |.
Indeed, as observed above, every level contains at most |Y | vertices. Actually, it
is easy to see that min{|Y |, 2i} represents a better upper bound on the number
of vertices that the i-th level can contain. Therefore, in order to compute the
size of the padding for the sender’s input we use the function δ.

4.1 Formal Description

Common input: security parameter s and λ.
S’s input: a set Y of size M , γ0 ∈ {0, 1}s and γ1 ∈ {0, 1}s.
R’s input: an element x ∈ {0, 1}λ.

First stage
1. For i = 1, . . . , λ, S computes the sink key k�

i ← Gen(1s).
2. S computes k0 ← Gen(1s), k1 ← Gen(1s). For b = 0, 1, if b /∈ Prefix(Y, 1)

then set kb = k�
1
12. Set (c10, c

1
1) = (k0, k1).

3. S and R execute ΠOT , where S acts as the sender SOT using (c10, c
1
1)

as input and R acts as the receiver ROT using xλ as input. When the
execution of ΠOT ends R obtains κ1 := c1xλ

.
Second stage. For i = 2, . . . , λ:
1. S executes the following steps.

1.1 Define the empty list ci
0 and for all t ∈ Prefix(Y, i − 1) execute the

following steps.

12 We observe that if Y is not empty (like in our case) then there exists at most one
bit b s.t. b ∈ Prefix(Y, 1).

Combining Private Set-Intersection with Secure Two-Party Computation 475

– If t||0 ∈ Prefix(Y, i) then compute kt||0 ← Gen(1s) and add
Enc(kt, kt||0) to the list ci

0. Otherwise, if t||0 /∈ Prefix(Y, i) then
compute and add Enc(kt, k

�
i) to the list ci

0.
1.2 If |ci

0| < δ(i − 1) then execute the following steps.
– Compute and add Enc(k�

i−1, k
�
i) to the list ci

0.
– For j = 1, . . . , δ(i − 1) − |ci

0| compute and add Enc(Gen(1s), 0) to
ci
0.

13

1.3 Permute the elements inside ci
0.

1.4 Define the empty14 list ci
1 and for all t ∈ Prefix(Y, i − 1) execute the

following step.
– If t||1 ∈ Prefix(Y, i) then compute kt||1 ← Gen(1s) and add

Enc(kt, kt||1) to the list ci
1. Otherwise, if t||1 /∈ Prefix(Y, i) compute

and add Enc(kt, k
�
i) to the list ci

1.
1.5 If |ci

1| < δ(i − 1) then execute the following steps.
– Compute and add Enc(k�

i−1, k
�
i) to the list ci

1.
– For j = 1, . . . , δ(i − 1) − |ci

1| compute and add Enc(Gen(1s), 0) to
ci
1.

1.6 Permute the elements inside ci
1.

2. S and R execute ΠOT , where S acts as the sender SOT using (ci
0, c

i
1) as

input and R acts as the receiver ROT using xλ−i+1 as input. When the
execution of ΠOT ends, R obtains ci

xλ−i+1
.

Third stage
1. S executes the following steps.

1.1 Define the empty list l.
1.2 For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ

1) to l.
1.3 If |l| < 2λ then compute and add Enc(k�

λ, γ0) to l.
1.4 Permute the elements inside l and send l to R.

2. R, upon receiving l acts as follows.
2.1 For i = 2, . . . , λ execute the following steps.

– For every element t in the list ci
xλ−i+1

compute κ ← Dec(κi−1, t).
If κ �= ⊥ then set κi = κ.

2.2 For all e ∈ l compute out ← Dec(κλ, e) and output out if and only if
out �= ⊥.

Theorem 1. Suppose ΠOT securely computes the functionality FOT and Sym
is a special private-key encryption scheme, then Π∈ securely computes F∈.

We refer the reader to the full version of this work [7] for the formal proof.

13 In this step, as well as in the step 1.5 of this stage, the function δ is used to compute
the right amount of fake encryption to be added to the list that will we used as input
of ROT .

14 The following three steps are equal to the previous three steps (1.1, 1.2 and 1.3), the
only difference is that t||1 is considered instead of t||0.

476 M. Ciampi and C. Orlandi

Round Complexity: Parallelizability of Our Scheme. In the description of our
protocol in Sect. 4.1 we have the sender and the receiver engaging λ sequential
OT executions. We now show that this is not necessary since the OT executions
can be easily parallelized, given that each execution is independent from the
other. That is, the output of a former OT execution is not used in a latter
execution. For simplicity, we assume that ΠOT consists of just two rounds, where
the first round goes from the receiver to the sender, and the second goes in the
opposite direction. We modify the description of the protocol of Sect. 4.1 as
follows. The Step 3 of the first stage and step 2 of the second stage are moved to
the beginning of the third stage. When S sends the last round of ΠOT , he also
performs the step 1 of the third stage. Therefore the list l is sent together with
the last rounds of the λ ΠOT executions. Roughly speaking, in this new protocol
S first computes all the inputs (k0, k1, c10, c11, . . . , c

λ
0 , cλ

1) for the OTs. Then, upon
receiving the λ first rounds of ΠOT computed by R using as input the bits of x,
S sends λ second round of ΠOT together with the list l. We observe that in this
case the S’s inputs to the λ executions of ΠOT can be pre-computed before any
interaction with R begins.

5 Optimisations and Extensions

Point and Permute. In our protocol the receiver must decrypt every ciphertext
at every layer to identify the correct one. This is suboptimal both because of
the number of decryptions and because encryptions that have efficiently verifi-
able range necessarily have longer ciphertexts. This overhead can be removed
using the standard point-and-permute technique [4] which was introduced in the
context of garbled circuits. Using this technique we can add to each key in each
layer a pointer to the ciphertext in the next layer which can be decrypted using
this key. This has no impact on security.

One-Time Pad. It is possible to reduce the communication complexity of our
protocol by using one-time pad encryption in the last log s layers of the graph,
in the setting where the output values γ0, γ1 are such that |γb| < s. For instance,
if the output values are bits (in case we combine our PSM with a GMW-style
protocol), then the keys (and therefore the ciphertexts) used in the last layer of
the graph only need to be 1 bit long. Unfortunately, since the keys in the second
to last layer are used to mask up to two keys in the last layer, the keys in the
second to last layer must be of length 2 and so on, which is why this optimisation
only gives benefits in the last log s layer of the graph.

PSM with Secret Shared Input. Our PSM protocol produces an output which
can be post-processed using other 2PC protocols. It is natural to ask whether
it is possible to design efficient PSM protocols that also work on encrypted or
secret-shared inputs. We note here that our protocol can also be used in the
setting in which the input string x is bit-wise secret-shared between the sender
and the receiver i.e., the receiver knows a share r and the sender knows a share

Combining Private Set-Intersection with Secure Two-Party Computation 477

s s.t., r ⊕ s = x. The protocol does not change for the receiver, who now inputs
the bits of r = rλ, . . . , r1 to the λ one-out-of-two OTs (instead of the bits of x
as in the original protocol). The sender, at each layer i, will follow the protocol
as described above if si = 0 and instead swap the inputs to the OT if si = 1. It
can be easily verified that the protocol still produces the correct result and does
not leak any extra information.

Keyword Search. Our PSM protocol outputs an encryption of a bit indicating
whether x ∈ Y or not. The protocol can be easily modified to output a value
dependent on x itself and therefore implement “encrypted keyword search”. That
is, instead of having only two output strings γ1, γ0 representing membership and
non-membership respectively, we can have |Y |+1 different output strings (one for
each element y ∈ Y and one for non-membership). This can be used for instance
in the context where Y is a database containing id’s y and corresponding values
v(y), and the output of the protocol should be an encryption of the value v(x)
if x ∈ Y or a standard value v(⊥) if x �∈ Y . The modification is straightforward:
instead of using all the keys in the last layer of the graph to encrypt the same
value γ1, use each key ky to encrypt the corresponding value v(y) and the sink
key (which is used to encrypt γ0 in our protocol) to encrypt the value v(⊥).

PSI from PSM. We can follow the same approach of PSZ [34,36] to turn our PSM
protocol into a protocol for PSI. Given a receiver with input X and a sender with
input Y the trivial way to construct PSI from PSM is to run |X| copies of PSM,
where in each execution the receiver inputs a different x from X and where the
sender always inputs her entire set Y . As described above, the complexity of our
protocol (as the complexity of the PSM protocol of PSZ) is proportional in the
size of |Y |, so this näıve approach leads to quadratic complexity O(|X|·|Y |). PSZ
deals with this using hashing i.e., by letting the sender and the receiver locally
preprocess their inputs X,Y before engaging in the PSM protocols. The different
hashing techniques are explained and analysed in [37, Sect. 3]. We present the
intuitive idea and refer to their paper for details: in PSZ the receiver uses Cuckoo
hashing to map X into a vector X ′ of size 	 = O(|X|) such that all elements
of X are present in X ′ and such that every x′

i ∈ X ′ is either an element of X
or a special ⊥ symbol. The sender instead maps her set Y into 	 = |X ′| small
buckets Y ′

1 , . . . , Y
′
� such that every element y ∈ Y is mapped into the “right

bucket” i.e., the hashing has the property that if y = x′
i for some i then y will

end up in bucket Y ′
i (and potentially in a few other buckets). Now PSZ uses

the underlying PSM protocol to check whether x′
i is a member of Y ′

i (for all
i’s), thus producing the desired result. The overall protocol complexity is now
O(

∑l
i=1 |X ′| · |Y ′

i |) which (by careful choice of the hashing parameters) can be
made sub-quadratic. In particular, if one is willing to accept a small (but not
negligible) failure probability, the overall complexity becomes only linear in the
input size. Since this technique is agnostic of the underlying PSM protocol, we
can apply the same technique to our PSM protocol to achieve a PSI protocol
that produces encrypted output.

478 M. Ciampi and C. Orlandi

6 Applications

The major advantage provided by Π∈ is that the output of the receiver can be an
arbitrary value chosen by the sender as a function of x for each value x ∈ Y ∪{⊥}.
This is in contrast with most of the approaches for set membership, where the
value obtained by the receiver is a fixed value (e.g. 0) when x ∈ Y , or some
random value otherwise. We now provide two examples of how our protocol can
be used to implement more complex secure set operations. The examples show
some guiding principles that can be used to design other applications based on
our protocol. Without loss of generality in the following applications only the
receiver will learn the output of the computation. Moreover we assume that
the size of X and Y is equal to the same value M .15 Also for simplicity we
will describe our application using the näıve PSI from PSM construction with
quadratic complexity, but using the PSZ approach, as described in Sect. 5, it is
possible to achieve linear complexity using hashing techniques. Finally, in both
our applications we exploit the fact that additions can be performed locally
(and for free) using secret-sharing based 2PC. In applications in which round
complexity is critical, the protocols can be redesigned using garbled circuits
computing the same functionality, since the garbled circuit can be sent from the
sender to the other messages of the protocol. However in this case additions have
to be performed inside the garbled circuit.

Computing Statistics of the Private Intersection. Here we want to construct a
protocol where sender and receiver have as input two sets, X and Y respec-
tively, and want to compute some statistics on the intersections of their sets. For
instance the receiver has a list of id’s X and that the sender has a list of id’s
Y and some corresponding values v(Y) (thus we use the variant of our protocol
for keyword search described in Sect. 5). At the end of the protocol the receiver
should learn the average of v(X ∩ Y) (and not |X ∩ Y |). The main idea is the
following: the sender and the receiver run M executions of our protocol where
the receiver inputs a different xi from X in each execution. The sender always
inputs the same set Y , and chooses the |Y | + 1 outputs γy

i for all y ∈ Y ∪ {⊥}
for all i = 1, . . . , M in the following way: γy

i is going to contain two parts,
namely an arithmetic secret sharing of the bit indicating whether xi ∈ Y and an
arithmetic secret sharing of the value v(y). The arithmetic secret sharing will be
performed using a modulo N large enough such that N > M and N > M · V
where V is some upper bound on v(y) so to be sure that no modular reduction
will happen when performing the addition of the resulting shares. Concretely
the sender sets γy

i = (−u2
i + 1 mod N,−v2

i + v(y) mod N) for all y ∈ Y and
γ⊥

i = (−u2
i mod N,−v2

i mod N). After the protocol the receiver defines her
shares u1

i , v
1
i to be the shares contained in her output of the PSM protocol, and

then both parties add their shares locally to obtain secret sharing of the size
of the intersection and of the sum of the values i.e., U1 =

∑
i u1

i , V 1 =
∑

i v1
i ,

15 We assume this only to simplify the protocol description, indeed our protocol can
be easily instantiated when the two sets have different size.

Combining Private Set-Intersection with Secure Two-Party Computation 479

U2 =
∑

i u2
i , and V 2 =

∑
i v2

i . Now the parties check if (U1, U2) is a sharing
of 0 and, if not, they compute and reveal the result of the computation V 1+V 2

U1+U2 .
Both these operations can be performed using efficient two-party protocols for
comparison and division such as the one in [10,42].

Threshold PSI. In this example we design a protocol Πt = (P t
1 , P

t
2) that securely

computes the functionality F t = (F t
P t

1
,F t

P t
2
) where

F t
P t

1
: {{0, 1}λ}M × {{0, 1}λ}M −→ ⊥ and

F t
P t

2
: {{0, 1}λ}M × {{0, 1}λ}M −→ {{0, 1}λ}�

(S1, S2)
−→
{

S1 ∩ S2 if |S1 ∩ S2| ≥ t

⊥ otherwise

That is, the sender and the receiver have on input two sets, S1 and S2 respec-
tively, and the receiver should only learn the intersection between these two sets
if the size of the intersection is greater or equal than a fixed (public) threshold
value t. In the case that the size of the intersection is smaller that t, then no
information about S1 is leaked to P t

2 and no information about S2 is leaked to P t
1 .

(This notion was recently considered in [16] in the context of privacy-preserving
ride-sharing). As in the previous example, the sender and the receiver run M
executions of our protocol where the receiver inputs a different xi from S2 in
each execution. The sender always inputs the same set S1, and chooses the two
outputs γ0

i , γ1
i in the following way: γb

i is going to contain two parts, namely an
arithmetic secret sharing of 1 if xi ∈ Y or 0 otherwise, as well as encryption
of the same bit using a key k. The arithmetic secret sharing will be performed
using a modulus larger than M , so that the arithmetic secret sharings can be
added to compute a secret-sharing of the value |S1 ∩S2| with the guarantee that
no overflow will occur. Then, the sender and the receiver engage in a secure-two
party computation of a function that outputs the key k to the receiver if and
only if |S1 ∩ S2| > t. Therefore, if the intersection is larger than the threshold
now the receiver can decrypt the ciphertext part of the γ values and learn which
elements belong to the intersection. The required 2PC is a simple comparison
with a known value (the threshold is public) which can be efficiently performed
using protocols such as [14,29].

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer and extensions for faster secure computation. In: 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8
November 2013, pp. 535–548 (2013)

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 26

https://doi.org/10.1007/978-3-662-46800-5_26

480 M. Ciampi and C. Orlandi

3. Baldi, P., Baronio, R., Cristofaro, E.D., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: Proceed-
ings of the 18th ACM Conference on Computer and Communications Security, CCS
2011, Chicago, Illinois, USA, 17–21 October 2011, pp. 691–702 (2011)

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 503–513
(1990)

5. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1243–
1255. ACM (2017)

6. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR
Cryptology ePrint Archive 1998, 3 (1998). Appeared in the Theory of Cryptography
Library

7. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. Cryptology ePrint Archive, Report 2018/105 (2018). https://eprint.
iacr.org/2018/105

8. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

9. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30921-2 4

10. Dahl, M., Ning, C., Toft, T.: On secure two-party integer division. In: Keromytis,
A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 164–178. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32946-3 13

11. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions. IACR Cryptology ePrint Archive 2018, 238
(2018)

12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious
Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

14. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-
8 22

15. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game or a
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, New York, USA, pp.
218–229 (1987)

16. Hallgren, P., Orlandi, C., Sabelfeld, A.: Privatepool: privacy-preserving rideshar-
ing. In: IEEE 30th Computer Security Foundations Symposium, CSF 2017, Santa
Barbara, CA, USA, 21–25 August 2017, pp. 276–291 (2017)

https://eprint.iacr.org/2018/105
https://eprint.iacr.org/2018/105
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-642-32946-3_13
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-540-71677-8_22

Combining Private Set-Intersection with Secure Two-Party Computation 481

17. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

18. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

19. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, 5–8 February 2012 (2012)

20. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017)

21. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

22. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

23. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

24. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

25. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 35

26. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

27. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016, pp. 818–829 (2016)

28. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

29. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 56

30. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In: Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, 7–9 April
1986, pp. 134–137 (1986)

31. Mohassel, P., Niksefat, S.: Oblivious decision programs from oblivious transfer:
efficient reductions. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 269–
284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 20

https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-32946-3_20

482 M. Ciampi and C. Orlandi

32. Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGrep: finding P2P
bots with structured graph analysis. In: Proceedings of the 19th USENIX Security
Symposium, Washington, DC, USA, 11–13 August 2010, pp. 95–110 (2010)

33. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 22

34. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, 12–14 August 2015, pp. 515–530 (2015)

35. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

36. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, 20–22 2014, pp. 797–812 (2014)

37. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. Cryptology ePrint Archive, Report 2016/930 (2016)

38. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

39. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1229–1242. ACM
(2017)

40. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

41. Tamrakar, S., Liu, J., Paverd, A., Ekberg, J., Pinkas, B., Asokan, N.: The circle
game: scalable private membership test using trusted hardware. In: Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security,
AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2–6 April 2017, pp. 31–44
(2017)

42. Toft, T., et al.: Primitives and applications for multi-party computation. Ph.D.
thesis, University of Aarhus, Denmark (2007)

43. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/3-540-10003-2_100

	Combining Private Set-Intersection with Secure Two-Party Computation
	1 Introduction
	1.1 OT-Based PSI
	1.2 Our Contribution
	1.3 Improving the Efficiency of Smart Contract Protocols

	2 Technical Overview
	2.1 Our Protocol

	3 Definitions and Tools
	3.1 Special Private-Key Encryption

	4 Our Protocol
	4.1 Formal Description

	5 Optimisations and Extensions
	6 Applications
	References

