
Secure Two-Party Computation
over Unreliable Channels

Ran Gelles1(B), Anat Paskin-Cherniavsky2, and Vassilis Zikas3

1 Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
ran.gelles@biu.ac.il

2 Department of Computer Science, Ariel University, Ariel, Israel
anatpc@ariel.ac.il

3 School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
vzikas@inf.ed.ac.uk

Abstract. We consider information-theoretic secure two-party compu-
tation in the plain model where no reliable channels are assumed, and all
communication is performed over the binary symmetric channel (BSC)
that flips each bit with fixed probability. In this reality-driven setting
we investigate feasibility of communication-optimal noise-resilient semi-
honest two-party computation i.e., efficient computation which is both
private and correct despite channel noise.

We devise an information-theoretic technique that converts any cor-
rect, but not necessarily private, two-party protocol that assumes reliable
channels, into a protocol which is both correct and private against semi-
honest adversaries, assuming BSC channels alone. Our results also apply
to other types of noisy-channels such as the elastic-channel.

Our construction combines tools from the cryptographic literature
with tools from the literature on interactive coding, and achieves, to our
knowledge, the best known communication overhead. Specifically, if f is
given as a circuit of size s, our scheme communicates O(s + κ) bits for
κ a security parameter. This improves the state of the art (Ishai et al.,
CRYPTO’ 11) where the communication is O(s) + poly(κ · depth(s)).

1 Introduction

Secure two-party computation (2PC) allows two parties, Alice and Bob, to
securely evaluate any given function on their private inputs. Informally, security
corresponds to satisfying two properties: (correctness) every party should com-
pute its correct output of the function; (privacy) any adversary corrupting a party
should learn nothing more than the input and output of the party it corrupts.

The problem of secure 2PC in its full generality, as well as first solutions,
were introduced by Yao [39] and has since received a lot of attention in the cryp-
tographic literature. Typically, one considers either a malicious adversary, who
has full control over the corrupted parties, or a semi-honest one, who allows the

The full version of this paper can be found at the Cryptology ePrint Archive [19].
R. Gelles—Supported in part by the Israel Science Foundation (grant No. 1078/17).

c© Springer Nature Switzerland AG 2018
D. Catalano and R. De Prisco (Eds.): SCN 2018, LNCS 11035, pp. 445–463, 2018.
https://doi.org/10.1007/978-3-319-98113-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98113-0_24&domain=pdf

446 R. Gelles et al.

parties to faithfully execute their protocol on their actual inputs but might try to
extract information from their protocol view. Another distinction considers com-
putationally bounded adversaries—that are limited to efficient computation—vs.
computationally unbounded adversaries. The security in the former case is usu-
ally referred to as computational or cryptographic, while the latter is known as
the unconditional or statistical or information-theoretic.1 In this work we focus
on semi-honest, information-theoretic security.

Despite the massive attention that 2PC has attracted, most of the exist-
ing literature assumes that the parties communicate using reliable (noiseless)
channels: when Alice sends a message m to Bob, he receives exactly the infor-
mation m. However, since modern communication networks might be affected by
environmental (or even adversarial) interference, a more realistic case is that Bob
actually receives a message m′ �= m, subject to some bounded type of noise. A
natural question then is what happens when we execute 2PC protocols assuming
such unreliable (noisy) communication channels.

Clearly, given a protocol π0 designed to work (and proven secure) over reliable
channels, the execution of π0 over noisy channels may no longer be private, nor
correct (see, e.g. [8,14]). One may näıvly believe that if π0 is secure against a
malicious adversary over reliable channels, then it would be at least semi-honest
secure over (simple) noisy channels, because the “noise” in the latter setting
can be reduced to the malicious activity of the adversary in the first setting.
However, not even this is the case. Intuitively, the reason is that security against
a malicious adversary does not guarantee that the protocol outputs the correct
f(x, y) to a deviating corrupted party. In contrast, when the party is just semi-
honest, then it should receive the correct output even when the channel is noisy.

In this work we put forth the question of devising secure two-party com-
putation protocols over unreliable communication channels, while keeping the
communication complexity (in short, CC) of such protocols to a minimum. We
note that a natural approach to cope with the channels’ interference is to wrap
every message in π0 with a good error-correcting code (ECC) [37]. This has
the effect of reducing the noisy channel into a channel that is essentially noise-
less (i.e., it delivers the correct m with overwhelming probability per channel’s
instance), thus the execution of π0 should preserve its security guarantees. Unfor-
tunately, as simple and elegant as the above solution might be, it typically incurs
a heavy overhead on the communication-complexity. In the worst case, every
message m is very small compared to the length of the protocol (i.e., to its
round-complexity), and the blowup the ECC imposes would be at least poly-
logarithmic in the protocol’s length.2 Our goal is to devise secure protocols with
only a constant multiplicative overhead, independent of the protocol’s length.

1 Statistical security allows for some small (negligible) error probability; when this
error is 0 we speak of perfect security.

2 While cryptography typically allows negligible error (in a security parameter larger
than the protocol length), here we follow the coding community’s approach and
insist on obtaining exponentially small error probability; hence, the overhead implied
by the näıve approach is in fact linear in the protocol’s length, rather than
polylogarithmic.

Secure Two-Party Computation over Unreliable Channels 447

The “overhead” discussed in the above paragraph compares the communi-
cation of the secure protocol π0 that assumes reliable channels with the com-
munication of π that assumes a binary symmetric channel (BSCε) where each
bit is flipped with independent probability ε, yet it ignores a fundamental issue:
without additional cryptographic assumptions, most functions f don’t have any
secure protocol π0 that evaluates them [2,30]. On the other hand, the BSCε chan-
nel can be used as a cryptographic resource/setup [10], implying any function f
could have a secure protocol π evaluating it [28]. In that case, it is not even clear
how to define the “overhead” of π with respect to π0, as for many functions f ,
no secure π0 even exists.

Our main result is a compiler that takes any boolean circuit C for some
function f(x, y) and outputs a semi-honest secure two-party protocol π for f that
assumes that all the communication is sent over BSCε channels.3 The protocol π
has a “small” communication overhead, namely, linear in the size of the circuit C.

Theorem 1 (main, informal). Let ε ∈ (0, 1/2) be a given constant and let κ
be a security parameter. For any circuit C : {0, 1}n1 × {0, 1}n2 → {0, 1}m

there exists a two-party semi-honest statistically secure protocol πC that eval-
uates C(x, y) over BSCε. Furthermore, it holds that CC(πC) = Oε(|C| + κ).

When considering previous work for secure 2PC protocols over noisy channels,
the state of the art is a compiler by Ishai et al. [25] that converts a circuit of
size |C| into a two-party protocol that communicates only O(|C|) + poly(κ ·
depth(|C|)) bits assuming all communication is performed over BSC channels,
where κ is the security parameter. Their protocol works in the malicious setting
(with abort) and achieves statistical security by utilizing the strong machinery
of the IPS compiler [26]. In contrast, our result takes a completely different
approach (namely, using techniques from interactive coding, which are fairly
more simple), and achieves a reduced communication overhead, namely, O(|C|+
κ). On the other hand, our result applies only to the semi-honest setting, however
contrast to [25], we do not allow the parties to abort—they must complete the
protocol while maintaining its security.

Converting (Noiseless, Non-private) Protocols into Noise-Resilient
Secure Protocols. At times, the computation to be conducted is given as an
interactive protocol, rather than an optimal circuit that implements the same
functionality. Via relatively standard techniques we can extend our results so
that they apply to any protocol π0 which is correct over reliable channels (but
not necessarily secure!), and convert it into a semi-honest statistically-secure
protocol π over BSCε.

Specifically, assume π0 is given as a branching program BP0 (see Definition 6
for discussion on branching program representations of protocols), then we get

3 Using a recent result by Khurana et al. [27] we are able to extend our result also to
other types of noisy channels, such as the elastic channel (cf. [19]).

448 R. Gelles et al.

Theorem 2 (informal). Let π0 be a protocol that is not necessarily private
over noiseless channels, and let BP0 denote a branching program representa-
tion of π0. There exists a compiler mapping π0 into a semi-honest statistically
secure protocol π over BSCε channels. The communication complexity of the
obtained protocol is CC(π) = Õ(width(BP0))·CC(π0)+O(κ), where κ is a security
parameter.

While it is unknown whether such a overhead of Õ(width(BP0)) is optimal or
even required, to our knowledge, the above factor is present in the state-of-the-
art work and may be an inherent property of the conversion from protocols to
circuits. Indeed, the trivial conversion (GMW [20], see also Sect. 1) converts BP0

into a boolean circuit (e.g., by Proposition 8) with |BP0|polylog(width(BP0))
gates. A different approach which directly (securely) evaluates each step of BP0

without converting it first into a boolean circuit [32], yields an overhead of

Õ(width(BP0)) · len(BP0) ≈ Õ(width(BP0)) · CC(π0),

which is similar to the overhead we obtain in Theorem2.
Notably, our result is asymptotically optimal when the protocol has an effi-

cient, i.e., constant-width, branching program representation.

Extensions to Other Unreliable Channels. We furthermore extend our
results (Theorems 1 and 2) to other types of unreliable channels, namely, elastic
channels (see, e.g., [12,27,38]). The (α, β)-elastic channel resemble to the binary
symmetric channel in the sense that every bit is flipped with some independent
probability α. However, one of the parties, either the receiver or the sender, but
not both, can increase their knowledge of the other party’s inputs and outputs
to the channel. This is modelled by reducing the flipping probability of each bit
received by that party to β < α.

The work of Khurana et al. [27] fully parametrize the conditions for which
an (α, β)-elastic channel can be used in order to perform secure computations.
Combining their result into our coding scheme allows secure computation over
(α, β)-elastic channel with linear overhead, extending our results to this setting
as well.

Theorem 3 (informal). Let κ be a security parameter, and 0 < β < α < 1/2
such that α <

(
1 + (4β(1 − β))−1/2

)−1
. Let π0 be a deterministic correct pro-

tocol over noiseless channels, and let BP0 denote a branching program rep-
resentation of π0. Then, there’s a semi-honest statistically secure protocol π
over an (α, β)-elastic channel that computes π0 with simulation error 2−κc

for some constant c. The communication complexity of the obtained protocol
is CC(π) = Õ(width(BP0)) · CC(π0) + O(κ).

Most of the proofs of our theorems are deferred to the full version [19].

Overview of Our Techniques. As mentioned above, our result is two-folded:
(i) secure simulation of circuits over noisy channels; (ii) secure simulation of
(insecure, non-resilient) protocols over noisy channels.

Secure Two-Party Computation over Unreliable Channels 449

The second result consists of converting the input protocol (specified
as a branching program, BP) into a boolean circuit of size |C| = |BP0|
polylog(width(BP0)) that contains NAND gates and computes the same func-
tion as the protocol. The conversion is quite straightforward: every node of the
branching program can be implemented as a multiplexer where one party’s input
selects the next node to transition to. Additionally, some preprocessing of the
inputs and the outputs is required, however these can be done locally and requires
no communication. See Sect. 3.1 for further details. Once we obtain a circuit, we
simply apply the simulation for circuits described below.

The more technically involved part is a secure simulation of boolean circuits
over BSC channels (Sect. 3.2). Here, we are given a circuit C(x, y) and the goal is
to construct a two-party protocol π that evaluates C on the parties inputs (x, y)
in a semi-honest, information-theoretic secure way, assuming only BSC channels
and no other cryptographic assumption.

The immediate approach is to perform GMW—i.e., compute the circuit gate-
by-gate where each gate is securely evaluated via a query to an OT oracle—yet
replacing each OT oracle call with an OT implementation from noisy channel,
e.g. [10–12,27,38]. However, this still falls short of reaching our goal, as the above
works treat the noisy channel as a resource rather than as the main communica-
tion channel; in particular, all the above works assume the parties share a reliable
channel in addition to the noisy channel. Again we stress that simulating a reli-
able channel over a BSCε by wrapping each message with a standard ECC incurs
a high communication overhead. A possible remedy would be to “group” many
instances of OT together and encode their communication as a single message.
For instance, group together each layer in the evaluated circuit. This approach
potentially allows a constant blowup, however the blowup is higher for various
circuit families, e.g., when the width of each layer in the circuit is smaller than
the security parameter.

Our solution to this conundrum is to employ a technique of precomputed OT,
first suggested by Beaver [3]. This method allows the parties to “perform” OT
before its inputs are known: in a pre-computation step the parties perform OT
on random bits and end up with correlated randomness which later allows them
to simulate an OT functionality on their real inputs by exchanging messages.
Following this idea our protocol begins by performing many OT instances on
random inputs, generating a large string of correlated randomness, where all
these instances are grouped and encoded together using standard ECC. We keep
the communication of this step low (i.e., with a constant blowup): � OT instances
can be computed with communication O(�) using a result by Harnik et al. [23].
Then, our protocol “consumes” parts of the correlated randomness for each OT
simulation used by the GMW procedure.

The last step takes care of channel-errors that may happen at the second part
of each precomputed OT instantiation, i.e., when the parties exchange messages
in order to simulate OT on the real input. Luckily, we prove that each such noise
causes a very specific leakage. When simulating OT(b, x0, x1) the receiver might
learn the incorrect input, x1−b, but if that happens, the receiver learns nothing

450 R. Gelles et al.

about xb. Intuitively, this may compromise the correctness of the computation,
but not its privacy (recall that all computations in GMW are performed on inputs
that are secretly shared by the parties. The above error in the OT translates to
learning one share of a (wrong) gate output).

Then, in order to solve this breach in the correctness, we employ techniques
from the literature of interactive coding [4,5,18,35,36] (see [15] for a survey).
In particular, we use an interactive coding schemes by Haeupler [22] with linear
overhead and exponentially small error probability, assuming BSC channels. In a
nutshell, the scheme of [22] works by executing a constant number of rounds from
of the input protocol π0 without any coding, after which the parties exchange
information that allows them to reveal inconsistencies, specifically, the parties
exchange hash values of their observed transcripts. Based on these exchanges,
the parties decide whether to continue with running π0 (if everything seems cor-
rect), or delete a certain amount of rounds (if some error is observed), hopefully,
reverting the protocol into a state where both the observed transcripts are con-
sistent. Repeating the above enough times guarantees that both parties end up
with a correct transcript of π0 with overwhelming probability while communi-
cating only Oε(CC(π0)) bits over a BSCε.

Finally, we show how to tweak the above coding so it doesn’t compromise the
privacy of the computation. The main issue here is back-tracking: the noise may
cause the coding scheme to progress in one way, then back-track to a previous
round and progress in a different way—this is usually a source for privacy leakage.
We avoid such leakage and make the scheme secure via the common technique of
re-sharing intermediate values with fresh randomness every time the simulation
reverts to a previous point.

Related Literature. In his seminal paper, Yao [39] provided a semi-honest
computationally secure protocol, which can efficiently evaluate any given boolean
circuit in a constant number of rounds. Yao’s protocol assumes that the parties
can access an Oblivious-Transfer (OT) functionality [33]. This result was later
extended to the information-theoretic (IT) setting by Goldreich, Micali, and
Wigderson [20]. Their so called GMW protocol for the semi-honest case also
assumes that parties have ideal access to an OT functionality (cf. Sect. 2.3).4

Kilian [28] proved that OT is in-fact a complete primitive even against mali-
cious adversaries, a result made more efficient by Ishai et al. [26]. Crépeau and
Kilian [10] proved that OT can be implemented by an information-theoretic pro-
tocol using different types of channels, including the BSCε. Beaver [3] showed
how OT can be precomputed, i.e., how parties can, in an offline phase, com-
pute correlated randomness that allows, during the online phase, to implement
OT by simply communicating two messages (cf. Sect. 3.2.1). A fair amount of
work has been devoted to so-called OT combiners namely protocols that can
access several OT protocols out of which � might be insecure, and combine them
into a secure OT protocol, e.g., [23–25,31]. Furthermore, [23] showed how to

4 In fact, the original GMW paper claims only computational security, even for the
semi-honest case, as it uses a computational instantiation of OT; however, it is proved
to achieve IT security when given ideal access to an OT functionality [21].

Secure Two-Party Computation over Unreliable Channels 451

semi-honestly evaluate �-parallel OT’s from noisy channels with linear commu-
nication complexity O(�) and exponentially small error in �.

Closer in spirit to our work, Naor and Nissim [32] considered the task of con-
verting a (correct) protocol π0 into a secure (both correct and private) protocol π
(over noiseless channels), with minimal overhead. Similar to our work, their com-
piler takes as an input a branching-program BP0 for π0, rather than an arith-
metic circuit for f . Their obtained overhead is dominated by Õ(width(BP0));
for the computational setting their obtained overhead is polylogarithmic in
width(BP0). On the other hand, while our protocol assumes noisy channels,
the machinery of [32] assumes reliable channels and the existence of OT.

Secure Computation Over Noisy Channels. Some functions f can be
securely computed without any of the above cryptographic tools (assuming
reliable channels). Indeed, Kushilevitz [30] (also, Beaver [2]) gave a complete
specification of the class G of two-party functions that can be unconditionally
securely computed by a semi-honest 2PC protocol over reliable channels. More
recently, the question of secure 2PC over noisy channels was addressed, for
noisy all-powerful adversarial channels. In this case, a strong impossibility was
shown [8,14]. Specifically, it was shown that for any μ > 0, there exists f ∈ G,
for which there exists an adversarial channel that corrupts up to μ fraction of the
transmissions, over which f does not have a statistically secure protocol (despite
the fact that f ∈ G, so it can be privately computed over noiseless channels).

2 Model and Preliminaries

Throughout this paper we use (standard) asymptotical notations, in particular,
for functions f, g : R → R

+, we say that f = Õ(g) if f = O(g · logc(g)) for
some constant c > 0. We say that a function is negligible if it is sub-inverse-
polynomial, i.e., negl(x) = o(1/poly(x)). We denote x ∼ Ber(ε) for a random
variable x that satisfies Pr(x = 0) = 1 − ε and Pr(x = 1) = ε. Addition and
multiplication of bits are always to be interpreted as addition and multiplication
over GF (2).

2.1 Protocols, Correctness and Security

We consider interactive computations between two parties, Alice and Bob with
inputs xA ∈ {0, 1}n and xB ∈ {0, 1}n, respectively. The parties wish to compute
a given (deterministic) function f : {0, 1}n × {0, 1}n → {0, 1}ν .5 For simplic-
ity, we assume |xA| = |xB | throughout this work; however our results trivially
apply to |xA| �= |xB | as well. To compute the function f , the parties execute a
(potentially randomized) protocol π = (πA, πB) which defines, for each party,

5 As usual in the MPC literature, we restrict our handling to deterministic functions;
the more general case of randomized functions can be easily treated by standard
techniques (each of Alice and Bob inputs, in addition to their input xA and xB , a
random string and their sum is used as the random coins).

452 R. Gelles et al.

the next message to send as a function of the party’s input, the party’s private
randomness, and all the messages received so far. The protocol, also determines
the output of each party (again, as a function of the party’s input and received
messages), denoted by outA, and outB for Alice and Bob, respectively. We will
denote by rA and rB the random coins of Alice and Bob, respectively, in π. The
view of Alice, viewA = (xA, rA, TA) consists of her input xA, randomness, rA,
and transcript TA; similarly, the view of Bob is viewB = (yB , rB , TB).

The communication complexity of π, denoted CC(π), is maximal number of
bits exchanges throughout the protocol. The length of π, denoted |π|, is the
number of rounds in the longest instance. For simplicity, we assume a single bit
is sent at each round, hence, |π| = CC(π).

We consider two types of protocols. Protocols that are only correct, i.e., com-
pute the correct input (but not necessarily private), and protocols that are secure
against a semi-honest adversary (i.e., both correct and private). The correctness
definition is rather straightforward:

Definition 4 (Correctness). A (randomized) protocol π for evaluating
f(x, y) : {0, 1}n × {0, 1}n → {0, 1}ν is δ-correct if at the end of π both par-
ties output f(x, y) with probability ≥ 1 − δ. The protocol is statistically correct
(in a given security parameter κ) if is negl(κ)-correct for some negligible func-
tion negl(·).

Correctness without privacy is easy to achieve over reliable networks: send
all inputs to Alice who conducts the computation. With unreliable communica-
tion this is no longer a straightforward task. Standard error-correction technique
would produce a correct protocol despite the noise, however, the cost in com-
munication complexity will be substantial. Achieving a correct protocol while
keeping its total communication complexity low is typically a challenging task.

Semi-honest Security. Our protocols are proven secure via the standard
simulation-based security notion against semi-honest adversaries. We will use
the formulation of [6] which follows the real-world/ideal-world paradigm, but,
as we are only considering semi-honest security, our results can be adapted to
work in the universal composition framework of Canetti [7].

Definition 5 (statistical, semi-honest security). Let π = (πA, πB) denote
a protocol for evaluating a function f(x, y) = (fA(x, y), fB(x, y)). For a given
x, y let V IEWA, V IEWB, OUTA, OUTB be the distribution of viewA, viewB,
outA, outB in π given those inputs (over the randomness of the parties and the
noise), when running over Ch. We say that π is a statistically secure protocol for
computing f(x, y) over Ch against semi-honest adversaries if there exist (possibly
inefficient) simulators SimA, SimB for Alice and Bob, respectively, such that
for all x, y, and κ a security parameter

(SimA(1κ, x, fA(x, y)), fB(x, y)) ≈exp(−κ) (V IEWA, OUTB), and
(SimB(1κ, y, fB(x, y)), fA(x, y)) ≈exp(−κ) (V IEWB, OUTA).

Secure Two-Party Computation over Unreliable Channels 453

Observe that the definition above captures both privacy and correctness,
since the ideal functionality’s output to the honest party in the ideal world is
indeed f(x, y). We require a simulation error of exp(−κ) (as opposed to the tra-
ditional negl(κ) for some negligible function negl(·)). This is because lowering
the error (even if it remains negligible) may affect the rate, so we want to care-
fully control this parameter (setting it to exp(−κ) is sufficiently low for most
applications). As common in the setting of coding for interactive communica-
tion, κ will typically equal �, the number of rounds in the protocol, but can be
set higher, if needed. Another difference between our definition and the MPC
definition is that the simulator, as well as π0 and the encoding scheme, do not
need to be efficient.

2.2 Noisy Networks and Coding Schemes

Protocols over Noisy Channels. We assume the communication channel con-
necting the parties is private—i.e., the adversary might only read messages trans-
ferred through the channel by corrupting the sender or the receiver and observing
the corrupted party’s channel interface—but is not reliable and might modify
arbitrary many of the transmitted bits but without reordering. Concretely, the
channel we assume stochastically flips each transmitted bit with a given con-
stant probability ε, independent of other bits. This corresponds to the multi-use
extension of the well-known, binary symmetric channel BSCε (see, e.g., [9,34]).

The notion of a protocol needs to be augmented to the above noisy-
communication model, keeping in mind that in this case Alice and Bob might
have inconsistent views of the transmitted messages, which depend on the noise.
For instance, if Alice inputs to the channel a sequence m

(A)
A,1, . . . , m

(A)
A,� of mes-

sages to send to Bob, then the sequence m
(B)
A,1, . . . , m

(B)
A,� which Bob receives might

be different than the original sequence, and vice versa for messages sent from
Bob to Alice. Hence, Alice’s view of the transcript corresponds to a sequence
TA = (m(A)

pid1,1, . . . , m
(A)
pid�,�), where each pidi is A or B depending on whether

the i-th bit mpidi,i was sent from Alice or Bob, respectively; Bob’s (view of the)
transcript TB = (m(B)

pid1,1, . . . , m
(B)
pid�,�) is defined analogously and may be differ-

ent. The (noisy) joint transcript of a given instance of the protocol consists of all
messages sent and received during that given instance T = (TA, TB). (For nota-
tional simplicity we will refer to the joint transcript simply as the transcript.)
We denote a prefix of Alice’s transcript of length � by TA[1, �] (resp., Bob’s by
TB [1, �]). Throughout this work we assume wlog that the length of the protocol
and the order of speaking is fixed, and in particular that Alice and Bob sends
messages in alternating rounds, where Alice is the first to speak (in Round 1).

Coding Schemes for Interactive Protocols. An interactive coding scheme C
[15] for a given unreliable channel Ch, e.g., over BSCε, transforms any correct
protocol π0 over noiseless channels, into a correct protocol π = C(π0) over the
channel Ch, that computes the same functionality as π0 with high probability
(usually, 1 − 2−Ω(|π0|)).

454 R. Gelles et al.

2.3 Primitives, Boolean Circuits, and Branching Programs

Oblivious Transfer. Oblivious Transfer (OT) [33] is a two-party functionality
FOT (b, (x0, x1)) taking a pair of bits x0, x1 from Bob, and a bit b ∈ {0, 1} from
Alice. It outputs xb to Alice and nothing to Bob. A String-OT with string length
s (shortly s-OT), is a functionality similar to OT , with the difference that x0, x1

are s-bit strings rather than bits. OT � is a functionality evaluating � instances
of OT on independent inputs. We say that a protocol π operates in the OT-
hybrid model, and denote πFOT if it is augmented to have (fixed) rounds where
both parties query an ideal OT functionality FOT and receive the corresponding
outputs at the end of the same round.

Branching Programs. We use a variant of Branching Programs (BPs) that is
convenient for representing 2-party protocols, defined as follows.

Definition 6. A (layered) BP on inputs (x, y) with depth t and width w is
represented as a directed acyclic graph in which the vertices are partitioned into
t disjoint sets V1, V2, . . . , Vt and edges go only from Vi to Vi+1. For any i, it
holds that wi = |Vi| ≤ w, and for the initial layer, V1 = {start}.

Every node v ∈ Vi in i < t is assigned to either Alice or Bob, and has a
transition function fv : {0, 1}n → Vi+1. The nodes of the last layer Vt are labeled
using some alphabet Σ. Without loss of generality, we assume |Vt| = |Σ|.

The output, BP (x, y), is evaluated by starting at v = start and following the
path induced by applying fv(·)’s on either x or y according to the party that owns
the current node, until reaching the last layer. The output is the label of the node
in Vt reached by the above process.

Using standard notation, we denote by |BP | the size of the BP, i.e., the
number of nodes in the BP graph. We also refer to w = maxiwi as the width of the
BP, and denote it as width(BP). It is also easy to verify that the communication
of π is connected to the branching program by CC(π) =

∑
1<i≤t	log wi
, hence,

depth(BP) ≤ CC(π) ≤ depth(BP) · 	log(width(BP))
 (1)

Boolean Circuits. We use standard Boolean circuits consisting only of NAND
gates6 with fan-in 2 and unbounded fan-out [1]. We assume all literals depend
on the input, i.e., we don’t allow constant inputs.7 We denote by |C| the size
of C, i.e, the number of its nodes/gates, and by depth(C) its depth.

3 Deterministic 2PC over BSCε with Linear Rate

In this section we prove our main results, Theorems 1 and 2, and show how to
simulate any (possibly non-private) protocol that assumes reliable communica-
tion over a BSCε.
6 Recall that NAND gates are universal logic gates, i.e., functionally complete.
7 This is wlog since we only consider semi-honest security (any of the two parties can

be requested to contribute any needed constants as part of its input).

Secure Two-Party Computation over Unreliable Channels 455

Theorem 7. Let f : {0, 1}n × {0, 1}n → {0, 1}ν , κ be a security parameter,
and ε ∈ (0, 1/2). Let π0 be a deterministic correct protocol for evaluating f over
noiseless channels, and let BP0 denote a branching program representation of π0.
Then, there exists a compiler mapping π0 into a (semi-honest) statistically secure
protocol π over BSCε channels. The communication complexity of the obtained
protocol is CC(π) = Õ(width(BP0)) · CC(π0) + O(κ).
Note that the above theorem considers only deterministic protocols. In [19] we
show how to extend our compiler to randomized protocols. The theorem is proved
in two steps. First, in Sect. 3.1 we argue one can convert a protocol π0 for which
we know a branching-program representation BP0, into a Boolean circuit C0 of
size |BP0| · polylog(width(BP0)). From Eq. (1), we conclude that

|C0| ≤ width(BP0)depth(BP0)polylog(width(BP0))
≤ width(BP0)CC(π0)polylog(width(BP0))

= CC(π0)Õ(width(BP0)).

Second, in Sect. 3.2 we show how to securely evaluate C0 over (only) a BSCε

channel. Our circuit-evaluation method has communication O(|C0|) + O(κ).

3.1 Reducing Protocols to Circuit Evaluation

Our first step is converting a protocol π0 given as the branching program BP0,
into a boolean circuit C0 of size |C0| = |BP0|polylog(width(BP0)), that imple-
ments the same functionality.

Proposition 8. Let f(x, y) : {0, 1}n × {0, 1}n → {0, 1}ν be a function, and
let π0 be a deterministic protocol for f over noiseless channels. The protocol
π0 is assumed to have perfect correctness (i.e., π0(x, y) = f(x, y) for all x, y ∈
{0, 1}n) but no privacy guarantees. Furthermore, let BP0 be a branching program
representation of π0.

Then, for some nA, nB , νAB there exists a circuit C0 : {0, 1}nA+nB →
{0, 1}νAB of size |C0| = |BP0|polylog(width(BP0)), and “translation” functions
τA : {0, 1}n → {0, 1}nA , τB : {0, 1}n → {0, 1}nB , and τout : {0, 1}νAB → {0, 1}ν ,
such that for all x, y ∈ {0, 1}n it holds that τout (C0 (τA(x), τB(y))) = f(x, y).

3.2 Secure Evaluation of Circuits over a BSCε

We proceed to the second part of the proof of Theorem7 and describe a protocol
for secure evaluation of circuits over a BSCε with communication complexity
O(|C| + κ). Formally,

Proposition 9. Let ε ∈ (0, 1/2) be a given constant and let κ be a security
parameter. For any circuit C : {0, 1}n1 × {0, 1}n2 → {0, 1}ν there exists a two-
party (semi-honest) statistically secure protocol πC that evaluates C(x, y) over
BSCε. Furthermore, it holds that CC(πC) = Oε(|C| + κ).

The above is the formal version of our main theorem (Theorem 1 from the
introduction). Note that Theorem7 follows as a corollary of Propositions 8 and 9.
The remainder of the section is dedicated to proving Proposition 9.

456 R. Gelles et al.

3.2.1 Building Blocks
Towards proving Proposition 9, we start with a description of the tools that we
will combine into our final construction. Some of these tools come from the MPC
literature, while other come from the field of coding for interactive communica-
tion.

OT � over BSCε with Linear Communication Overhead. To facilitate the
privacy of our construction we rely on the following implementation of � parallel
OT’s over BSCε with communication linear in �.

Theorem 10 ([23, Theorem 9]). For any constant ε ∈ (0, 1/2), and any �,
there exists a two-party protocol πOT �

that assumes the parties are connected
(only) by an BSCε channel, which implements OT �. The protocol is statistically
secure against semi-honest parties with error 2−Ω(�), and has a communication
complexity of Oε(�) bits.

OT over a BSC with Limited Leakage, Provided Precomputed OT.
Another tool we will need, is a way to implement a specific type of “buggy OT”
over a BSC. In this “buggy” version of the OT protocol on input (b, x0, x1), with
constant probability p it may happen that the Alice (the receiver) learns the
wrong input x1−b instead of the correct value xb. Otherwise, the protocol works
as a standard OT, i.e., Alice learns xb. In both cases Bob (the sender) learns
nothing. The key property here is that in either case Alice learns exactly one of
the values x0, x1, and can never learn both.

Our OT implementation builds on a scheme by Beaver [3], and requires the
parties to already share correlated bits of special form: their correlation cor-
responds to outputs of OT on random inputs. In hindsight, those correlations
will be obtained by performing OT � (by Theorem 10) on random inputs in a
precomputation step. This precomputation step is instrumental to keep commu-
nication low assuming BSC channels. Indeed, it is more efficient to encode over
a noisy channel a large amount of OT instances, rather than encode them one
by one. On the other hand, most MPC protocols make sequential call to OT,
one-by-one, as the protocol progresses. Performing OT based on precomputed
bits allows us to benefit both worlds: the precomputation step creates a bulk of
correlated bits in a communication efficient way; then, each instantiation of OT
consumes bits from that bulk, without having large communication overhead,
and while keeping the privacy guarantees.

The protocol Π-OTε, described in Fig. 1, is such a “buggy-OT” where all
communication is done over BSCε. Our above buggy-OT discussion provides the
high level intuition for the usefulness of protocol Π-OTε as a building block
for our protocol. The formal statement (Lemma 11) and its proof use somewhat
different properties. Namely, we use the notion of weak security and of channel-
transparent security. The meaning of these new notions is roughy as follows:

Weak security against semi-honest adversaries relaxes standard semi-honest
security by requiring that the views of the parties are consistent with an

Secure Two-Party Computation over Unreliable Channels 457

Protocol Π-OTε

Inputs: Alice’s input is a bit b; Bob’s input is a pair of bits (x0, x1).
Pre-computation step: The parties are assumed to have (trusted) preshared bits sampled
as follows: Let (b′, x′

0, x′
1) be random independent bits. Bob gets x′

0, x′
1, while Alice gets

b′ and x′
b′ , that is, she either gets x′

0 or x′
1 according to the value of b′.

Alice and Bob perform as follows
1. Alice sends c = b + b′; Assume Bob receives c′

2. Bob sends (x0 + x′
c′ , x1 + x′

1−c′).
3. Let (y0, y1) denote the bits received by Alice in the second round. Alice outputs

yb + x′
b′ as her output.

Fig. 1. The Π-OTε protocol

execution where the corrupted party’s input z is replaced by some z′ (depend-
ing only on z), rather than with the original input z.

Channel-transparent security strengthens the standard notion of security,
by requiring that even if the adversary could see the messages received by the
honest party, it would not learn anything it was not supposed to learn.

Lemma 11. For any ε < 1/2, the protocol Π-OTε over BSCε is weakly,
channel-transparently, statistically secure in the semi-honest setting over BSCε

channels.

Computing NAND Gates via OT. Assume we wish to compute a NAND
gate over the inputs (a, b) where the parties secret-share the inputs, i.e., Alice
holds a1, b1 and Bob holds a2, b2 where a1, b2 are uniform independent random
bits and a = a1 +a2, b = b1 +b2. We wish to compute the bit c = NAND(a, b) so
that at the end of the computation the parties will hold a secret-sharing of c, i.e.,
Alice will hold a random bit c1, and Bob will hold c2 so that c = c1 + c2. This
task can easily be done assuming we can utilize two instances of an ideal OT
functionality. [The complete protocol in the OT-hybrid setting is given in Fig. 2.]
However, in our implementation we will not have an ideal OT, but instead we
utilize the protocol Π-OTε assuming pre-comupted correlated randomness. The
following lemma provides the security of the NAND computation protocol when
each OT is realized via the above Π-OTε.

Protocol NAND OT

Inputs: Alice holds a1, b1 ∈ {0, 1}, Bob holds a2, b2 ∈ {0, 1}.
Outputs: Alice gets c1 and Bob gets c2 so that c1 + c2 = 1 − (a1 + a2)(b1 + b2). I.e., if
a = a1 + a2, b = b1 + b2, and c = c1 + c2 then c = NAND(a, b).
Protocol’s Description:

1. Bob picks random bits r1, r2, and sets c2 = r1 + r2.
2. The parties query the OT oracle: OT (a1, (r1, b2 + r1)). Denote Alice’s OT output

by o1.
3. The parties query the OT oracle: OT (b1, (a2b2+r2, a2b2+a2+r2)). Denote Alice’s

OT output by o2.
4. Alice sets her output to c1 = 1 + a1b1 + o1 + o2.

Fig. 2. Shared-input shared-output NAND computation in the OT-hybrid setting

458 R. Gelles et al.

Lemma 12. For any ε < 1/2, the protocol NANDΠ-OTε is weakly, channel-
transparently, statistically secure in the semi-honest setting, assuming all com-
munication is done over a BSCε.

A Coding Scheme for Interactive Communication with Linear Rate.
The last tool we need is taken from the literature of coding for interactive com-
munication and provides a way to fortify a given protocol π0 (that assumes
noiseless channels), resulting in a noise-resilient protocol π so that the output π
equals that of π0 with probability 1 − expε(−|π0|) assuming BSCε channels.

The general idea, often referred to as the rewind-if-error paradigm (see [15]),
is to run π0 as-is for several rounds, after which the coding scheme communicates
some consistency information to verify that both parties agree on the transcript.
In case the parties detect that they agree, they continue in running π0 for another
several rounds; Otherwise, they backtrack to some point in the past were they
are (hopefully) in agreement. Several coding schemes follow this paradigm and
achieve efficient schemes with good communication rate, e.g., [4,13,16,17,22,29,
35]. We will use one by Haeupler:

Theorem 13 ([22, Algorithm 3]). Given any ε < 1/2, any deterministic pro-
tocol π0 can be efficiently transformed into a randomized protocol π that com-
municates over BSCε, with CC(π) = Oε(CC(π0)). For any (x, y), it holds that
π(x, y) = π0(x, y) with probability at least 1 − expε(−|π0|).

Interactive Coding Scheme for BSC [22]

1. Let π0 be a deterministic �-round protocol, and ε < 1/2 the BSC error probability. Let
v = Ωε(1), �′ = Oε(�).

2. Run an initialization step (independent of π0), setting up a shared randomness re-
source sr.

3. Initialize the transcript (prefix) TA ← φ of the execution of π0 seen so far, and ini-
tialize some additional variables tracking statistics VA. The state of the protocol is
SA = (TA, VA).

4. For each iteration i ∈ [�′/v]
(a) Exchange verification information hA = Hi(SA, sr)
(b) Receive Bob’s possibly noisy verification information h′

B .
(c) As a function of SA, hA, h′

B , decide whether to:
i. Continue running the protocol: starting from TA for v steps (both sending and

receiving messages, as prescribed by π0). Append them to the transcript TA

ii. Backtrack: run the protocol as in the previous item, but send random bits
instead of the real protocol messages, and do not advance TA.a

(d) If backtracking, additionally truncate the suffix of TA by g · v steps, where g is an
integer determined by SA, h′

B .
(e) Update the statistics VA based on the current TA and hA, h′

B .
5. Output the value output by π0, based on TA[1, �].

a The concrete dummy values are different in [H14], but are immaterial for its correctness,
and these values are slightly more convenient in our case. Also, for correctness to hold,
the original protocol is padded to length �′ by appending dummy moves, say, exchanging
random bits.

Fig. 3. A simplified outline of algorithm 3 in [22]

Secure Two-Party Computation over Unreliable Channels 459

The outline of Alice’s behaviour in the resulting protocol π is given in Fig. 3.
Bob’s program is symmetric. In a nutshell, the parties in the above scheme
execute π0 but occasionally compare (hashes of) prefixes of their observed tran-
scripts. A hash mismatch is an indication for a possible inconsistency in π0’s exe-
cution due to channel errors, and the party that observes such a mismatch may
decide to backtrack. A careful choice of the protocol’s parameters—including the
number of steps to retract and the hash range—yields a constant rate.

Observe that the local transcripts have different lengths (e.g., if one party
backtracks while the other party does not), or may contain different information
(due to noise). The simulation makes real progress when the local transcripts of
both parties, TA, TB have the same length and content, and the parties perform
Step 4(c) in the algorithm. All the effort in the construction (and its correctness
proof) goes into making sure that � = |π0| many such progress steps are made
(and not undone by backtracking) with overwhelming probability at the end of
the �′ = O(�) rounds of π’s execution.

3.2.2 Circuit Simulation over a BSC

Our starting point toward devising a secure protocol for evaluating circuits, is
the classical GMW protocol [20]. GMW performs a secure evaluation of a given
circuit C0 on the parties’ (private) inputs, assuming the parties are connected
through a noiseless channel in the OT-hybrid setting (i.e., assuming they have
access to a perfect OT functionality). Concretely, GMW evaluates the circuit
C0 gate by gate according to a predetermined topological ordering of the circuit
graph. The inputs for each gate are secret-shared between the parties, and the
evaluation of the gate yields a secret-sharing of it’s output value. More precisely,
the activity of GMW can be described using the following three phases.

– Initialization: Alice shares every bit xi of her input into a simple (2, 2)-
additive sharing of xi (si,1, si,2) = (r, xi + r) where r is a uniform bit. Alice
keeps si,1 as her share of xi, and sends Bob si,2 as his share. Bob does the
same thing on his input bits yi.

– Evaluation: The parties evaluate each NAND gate on the shared inputs,
obtaining a randomly shared output (giving each party a share). The evalu-
ation of NAND gates is implemented using two calls to the OT oracle, where
Bob always plays the sender and Alice plays the receiver.

– Output Delivery: At the end of the evaluation phase, the parties hold
random shares of each output bit. The parties then send their share vectors
to each other, thereby each party learns exactly the values of the outputs.

We now discuss how to augment each one of the above phases, when the com-
munication channels are assumed to be BSCε, and argue that this augmentation
is statistically close to the original GMW, thus, it is statistically secure.

Initialization and Output Delivery. The initialization part consists of two
“rounds” (where in one round Alice communicates many bits, and then in the
second round Bob communicates many bits). Thus we can use a standard error
correction code of length Θε(m+κ) that decode correctly over BSCε except with

460 R. Gelles et al.

Protocol Π2P C

Inputs: A public input circuit C0 and private inputs x and y held by Alice and Bob,
respectively.

Initialization:
Augment C0 by adding O(κ) dummy gates evaluating the length-κ vector 0. The output
of these added dummy gates is to be ignored by the parties. From here and on we assume
C is the augmented circuit.a

Alice sends her encoded shares of her inputs x for C using a standard error-correction
code of length O(|C|) with decoding error exp(−|C|). She also receives and decodes
the (encoded) shares of the y’s. Alice stores the resulting shares as the values of the
corresponding circuit wires.

Alice and Bob run πOT �′
(Theorem 10) on uniformly random inputs (we set �′ shortly).

The output is �′ pairs (b, x0, x1) where for each such pair Bob holds x0, x1 and Alice
holds b, xb. Denote these as precomputed correlations vectors vA, vB , respectively.

Evaluation:
Let π0 denote the protocol induced by running GMW on the augmented circuit C (recall
section 3.2.2). Namely, the parties evaluate each of the NAND gates on their input shares
(Figure 2) in a gate-by-gate fashion according to a predetermined topological ordering.
Each call for OT in the implementation of Figure 2 is replaced with an execution of
Π-OTε (Figure 1).
After evaluating the last gate, π0 is assumed to keep sending zeros indefinitely.
Apply the coding scheme of Theorem 13 onto the protocol π0 with the following aug-
mentations: each iteration of the coding scheme works in chunks that are aligned with
a complete evaluation of NAND gates; this way, backtracking is always aligned with a
beginning of evaluating a NAND gate.
Let π denote the resulting protocol. Let �′, v denote the parameters of π as defined in
Figure 3.
When evaluating the j-th NAND gate (1 ≤ j ≤ v) of the i-th iteration (1 ≤ i ≤ �′/v),
the following applies:
(1) First note that Alice does not use any randomness during the NAND evaluation.

Also recall that Bob’s randomness is rB and that vA, vB denote the pre-computed
OT pairs obtain in the initialization phase.

(2) Each NAND evaluation (Figure 2) requires 2 OT instantiation. The k’th OT in-
stantiation (k ∈ {1, 2}) uses the randomness rB [i][j][k] and the pre-comupted pairs
vA[i][j][k], vB [i][j][k].

(3) The inputs used by the parties to evaluate a given NAND gates are either those
stored at its input wires, or random values in case the coding scheme (Figure 3)
performs Step 4(c)ii and requires sending dummy value.

Output Delivery:
If |TA| < �, output ⊥.
Alice extracts her share vector soA of the output wires from her stored values. She sends
Bob ECC(soA) using a code with length O(soA + κ).
Alice receives (a noisy version of) Bob’s encoded share vector ECC(soB), and decodes it
to obtain so′

B . Alice outputs z = soA + so′
B .

a We add these gates because the correctness guarantee in Theorem 13 behaves like 1 −
exp(−|C0|), which is insufficient for small circuits. To improve this probability to a magni-
tude of exp(−|C|) = exp(−|C0| − κ) we increase the circuit size by adding κ dummy gates.
This is equivalent to running the coding scheme of Theorem 13 for O(κ) more rounds.

Fig. 4. Secure circuit evaluation protocol Π2PC

probability expε(−m − κ). The same holds for the output delivery phase. The
size of each such encoded message is Oε(|C0|+κ), so asymptotic communication
complexity does not change.

Secure Two-Party Computation over Unreliable Channels 461

The Evaluation Phase. Following the GMW approach, this phase computes
the NAND gates of C one by one. However, this approach hits two immediate
obstacles: (1) each NAND computation requires two OT instantiations, each
of which may take O(κ) communication leading to a global communication of
O(κ|C0|), rather than our aimed communication of O(|C0| + κ). (2) Due to
channel noise, some of the NAND gates (as well as the OT evaluations) will
be computed incorrectly. This may lead to information leak or to correctness
deficiency.

Our solution to the above hurdles is achieved by employing Beaver’s method
of precomputed OT in conjunction with Haeupler’s interactive coding scheme.
Since all the OTs are precomputed, constant overhead can be achieved. Correct-
ness is obtained due to the coding scheme and security is obtained by carfuly
analyzing the possible leakage in case a certain NAND gate evaluation fails due
to noise.

The complete construction, Π2pc, is depicted in Fig. 4.

Theorem 14. The protocol Π2PC satisfies Proposition 9.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, New York (2009)

2. Beaver, D.: Perfect privacy for two-party protocols. In: Proceedings of DIMACS
Workshop on Distributed Computing and Cryptography, vol. 2, pp. 65–77 (1991)

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

4. Brakerski, Z., Kalai, Y.T., Naor, M.: Fast interactive coding against adversarial
noise. J. ACM 61(6), 35:1–35:30 (2014)

5. Braverman, M., Rao, A.: Toward coding for maximum errors in interactive com-
munication. IEEE Trans. Inf. Theory 60(11), 7248–7255 (2014)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Chung, K.-M., Pass, R., Telang, S.: Knowledge-preserving interactive coding. In:
FOCS 2013, pp. 449–458 (2013)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

10. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions. In: FOCS 1988, pp. 42–52 (1988)

11. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 21

12. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 20

https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-69053-0_21
https://doi.org/10.1007/978-3-540-24638-1_20

462 R. Gelles et al.

13. Efremenko, K., Gelles, R., Haeupler, B.: Maximal noise in interactive communica-
tion over erasure channels and channels with feedback. IEEE Trans. Inf. Theory
62(8), 4575–4588 (2016)

14. Gelles, R., Sahai, A., Wadia, A.: Private interactive communication across an
adversarial channel. IEEE Trans. Inf. Theory 61(12), 6860–6875 (2015)

15. Gelles, R.: Coding for interactive communication: a survey. Found. Trends Theor.
Comput. Sci. 13(1–2), 1–157 (2017)

16. Gelles, R., Haeupler, B.: Capacity of interactive communication over erasure chan-
nels and channels with feedback. SIAM J. Comput. 46(4), 1449–1472 (2017)

17. Gelles, R., Haeupler, B., Kol, G., Ron-Zewi, N., Wigderson, A.: Towards optimal
deterministic coding for interactive communication. In: SODA 2016, pp. 1922–1936
(2016)

18. Gelles, R., Moitra, A., Sahai, A.: Efficient coding for interactive communication.
IEEE Trans. Inf. Theory 60(3), 1899–1913 (2014)

19. Gelles, R., Paskin-Cherniavsky, A., Zikas, V.: Secure two-party computation over
unreliable channels. Cryptology ePrint Archive, Report 2018/506 (2018). https://
eprint.iacr.org/2018/506

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987, pp. 218–229 (1987)

21. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York (2004)

22. Haeupler, B.: Interactive channel capacity revisited. In: FOCS 2014, pp. 226–235
(2014)

23. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 22

24. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger,
J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 38

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

27. Khurana, D., Maji, H.K., Sahai, A.: Secure computation from elastic noisy chan-
nels. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
184–212. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 7

28. Kilian, J.: Founding crytpography on oblivious transfer. In: STOC 1988, pp. 20–31.
ACM. New York (1988)

29. Kol, G., Raz, R.: Interactive channel capacity. In: STOC 2013, pp. 715–724 (2013)
30. Kushilevitz, E.: Privacy and communication complexity. In: FOCS 1989, pp. 416–

421. IEEE Computer Society (1989)
31. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-

fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 22

32. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: STOC 2001, pp. 590–599 (2001)

https://eprint.iacr.org/2018/506
https://eprint.iacr.org/2018/506
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-642-22792-9_38
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-49896-5_7
https://doi.org/10.1007/978-3-662-49896-5_7
https://doi.org/10.1007/978-3-540-70936-7_22

Secure Two-Party Computation over Unreliable Channels 463

33. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report
TR-81, Aiken Computation Lab, Harvard University (1981)

34. Roth, R.: Introduction to Coding Theory. Cambridge University Press, Cambridge
(2006)

35. Schulman, L.J.: Communication on noisy channels: a coding theorem for compu-
tation. In: FOCS 1992, pp. 724–733 (1992)

36. Schulman, L.J.: Coding for interactive communication. IEEE Trans. Inf. Theory
42(6), 1745–1756 (1996)

37. Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J.
27(379–423), 623–656 (1948)

38. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 20

39. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/978-3-642-00457-5_20
https://doi.org/10.1007/978-3-642-00457-5_20

	Secure Two-Party Computation over Unreliable Channels
	1 Introduction
	2 Model and Preliminaries
	2.1 Protocols, Correctness and Security
	2.2 Noisy Networks and Coding Schemes
	2.3 Primitives, Boolean Circuits, and Branching Programs

	3 Deterministic 2PC over BSC with Linear Rate
	3.1 Reducing Protocols to Circuit Evaluation
	3.2 Secure Evaluation of Circuits over a BSC

	References

