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Abstract. Evolving secret-sharing schemes, introduced by Komargod-
ski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which
the dealer does not know the number of parties that will participate.
The parties arrive one by one and when a party arrives the dealer gives
it a share; the dealer cannot update this share when other parties arrive.
Komargodski and Paskin-Cherniavsky (TCC 2017) constructed evolving
a·i-threshold secret-sharing schemes (for every 0 < a < 1), where any set
of parties whose maximum party is the i-th party and contains at least
ai parties can reconstruct the secret; any set such that all its prefixes
are not an a-fraction of the parties should not get any information on
the secret. The length of the share of the i-th party in their scheme is
O(i4 log i). As the number of parties is unbounded, this share size can
be quite large.

In this work we suggest studying a relaxation of evolving threshold
secret-sharing schemes; we consider evolving (a, b)-ramp secret-sharing
schemes for 0 < b < a < 1. Again, we require that any set of parties
whose maximum party is the i-th party and contains at least ai parties
can reconstruct the secret; however, we only require that any set such
that all its prefixes are not a b-fraction of the parties should not get any
information on the secret. For all constants 0 < b < a < 1, we con-
struct an evolving (a, b)-ramp secret-sharing scheme where the length of
the share of the i-th party is O(1). Thus, we show that evolving ramp
secret-sharing schemes offer a big improvement compared to the known
constructions of evolving a · i-threshold secret-sharing schemes.

1 Introduction

Evolving secret-sharing schemes, introduced by Komargodski, Naor, and Yogev
[11], are a secret-sharing scheme in which the dealer does not know the number
of parties that will participate and has no upper bound on their number. The
parties arrive one after the other and when a party arrives the dealer gives it
a share; the dealer cannot update this share when other parties arrive. The
motivation for studying such schemes is that updates can be the very costly
(e.g., the Y2K problem). On the other hand, if the system designer would take
cautious upper bound on the number of parties, then the scheme will not be
efficient (specifically, if a small number of parties participate).
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Komargodski, Naor and Yogev [11] constructed evolving k-threshold secret-
sharing schemes for any constant k (where any k parties can reconstruct the
secret). The size of the share of the i-th party in their scheme is O(k log i).
Komargodski and Paskin-Cherniavsky [12] constructed evolving dynamic a-
threshold secret-sharing schemes (for every 0 < a < 1), where any set of parties
whose maximum party is the i-th party and contains at least ai parties (i.e., the
set contains an a-fraction of the firtst i parties) can reconstruct the secret; any
set such that all its prefixes are not an a-fraction of the parties should not get
any information on the secret. The length of the share of the i-th party in their
scheme is O(i4 log i). As the number of parties is unbounded, this share size can
be quite large.

We consider a relaxation of evolving a-threshold secret-sharing schemes moti-
vated by ramp secret-sharing schemes. Ramp secret-sharing schemes were first
presented by Blakley and Meadows [2], and were used to construct efficient
secure multiparty computation (MPC) protocols, starting in the work of Franklin
and Yung [8]. We consider evolving (a, b)-ramp secret-sharing schemes (where
0 < b < a < 1), in which any set of parties whose maximum party is the i-th
party and contains at least ai parties can reconstruct the secret, however we only
require that any set such that all its prefixes are not a b-fraction of the parties
should not get any information on the secret. For all constants 0 < b < a < 1,
we construct an evolving (a, b)-ramp secret-sharing scheme where the length of
the share of the i-th party is O(1). Thus, we show that evolving ramp secret-
sharing schemes offer a big improvement compared to the known constructions
of evolving a · i-threshold secret-sharing schemes. We note that all our schemes
are linear.

Our Technique. We demonstrate the basic idea of our schemes by describing a
simple construction of an evolving (1/2,1/8)-ramp secret-sharing scheme. Fol-
lowing [11], we partition the parties to sets, called generations, according to the
order they arrive. The first generation contains the first two parties, the second
generation contains the next 22 parties, and so on, where the g-th generation
contains 2g parties. When the first party of the g-th generation arrives, the
dealer prepares shares of a 2g/4-out-of-2g threshold secret-sharing scheme (e.g.,
Shamir’s scheme [14]); when a party in generation g arrives the dealer gives it
a share of this scheme. On one hand, if a set whose maximum party is the i-th
party contains at least i/2 parties, then in some generation it contains at least
1/4 of the parties (even if it ends at the beginning of a generation), thus it can
reconstruct the secret. On the other hand, if a set can reconstruct the secret
from the shares of some generation g, then it contains at least 1/4 of the parties
in that generation, hence it contains at least 1/8 of the parties that have arrived
until the end of the generation.

Using a more complicated analysis, we show how to construct evolving
(1/2,b)-ramp secret-sharing schemes with small share size for every b < 1/6 by
sharing the secret using one threshold secret-sharing scheme in each generation
(with an appropriate threshold). To construct evolving (a, b)-ramp secret-sharing
schemes for every constants 0 < b < a < 1, we need to share the secret more
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than once in each generation. However, we share the secret only O(1) times in
each generation, resulting in a scheme in which the share size of the i-th party is
O(log i) (where O(log i) is the share size in the threshold secret-sharing scheme).
To reduce the share size to O(1), we use (non-evolving) ramp secret-sharing
schemes of Chen et al. [6] instead of the threshold secret-sharing schemes. As
Chen et al. only provide an existential proof of their ramp schemes with share size
O(1), we only obtain that there exist evolving (a, b)-ramp secret-sharing schemes
with share size O(1). In contrast, our evolving (a, b)-ramp secret-sharing schemes
with share size O(log i) for party pi are explicit.

1.1 Previous Works

Secret-sharing schemes were introduced by Shamir [14] and Blakley [1] for thresh-
old access structures, and by Ito, Saito, and Nishizeki for the general case [9].
Shamir’s [14] and Blakley’s [1] constructions are efficient both in the size of the
shares and in the computation required for sharing and reconstruction. The size
of the share in Shamir’s scheme for sharing an �-bits secret among n parties
is max{�, log n}. Blakley’s scheme requires larger share size, but it can be opti-
mized by using finite fields to get a scheme that is equivalent to Shamir’s scheme.
Kilian and Nisan [10] proved a log(n − k + 2) lower bound on the share size for
sharing a 1-bit secret for the k-out-of-n threshold access structure. This lower
bound implies that Ω(log n) bits are necessary when k is not too close to n.
Bogdanov, Guo, and Komargodski [3] proved that the lower bound of Ω(log n)
bits applies to any secret-sharing scheme realizing k-out-of-n threshold access
structures for every 1 < k < n. When k = 1 or k = n, schemes with share size
of 1 are known.

Ramp secret-sharing schemes are a generalization of threshold secret-sharing
schemes that allow for a gap between the privacy and reconstruction thresh-
olds. Ramp secret-sharing schemes were first presented by Blakley and Meadows
[2], and were used to construct efficient secure multiparty computation (MPC)
protocols, starting in the work of Franklin and Yung [8]. Ramp schemes have
found numerous other applications in cryptography, including broadcast encryp-
tion [15] and error decodable secret sharing [13]. Cascudo, Cramer, and Xing [5]
proved lower bounds on the share size in ramp secret-sharing schemes: If every
set of size at least an can reconstruct the secret while every set of size at most
bn cannot learn any information on the secret, then the length of the shares is at
least log((1 − b)/(a − b)). Bogdanov et al. [3] showed that for all 0 < b < a < 1,
in any ramp secret sharing the length of the shares is at least log(a/(a − b)).
On the positive side, Chen et al. [6] proved that for every ε > 0 there is a ramp
secret-sharing scheme with share size O(1) in which every set of size at least
(1/2 + ε)n can reconstruct the secret while every set of size at most (1/2 − ε)n
cannot learn any information on the secret.

Evolving Secret-Sharing Schemes. Evolving secret-sharing schemes were intro-
duced by Komargodski, Naor, and Yogev [11]. They showed that for every evolv-
ing access structure there is a secret-sharing scheme that realizes it in which the
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share size of party i is 2i−1 (even if the dealer does not know the access struc-
ture in advance). The main result of their work is providing schemes for evolving
threshold access structures. They showed a scheme for the evolving 2-threshold
access structure where the share size of party i is log i + O(log log i). Further-
more, they proved a matching lower bound on the share size in any evolving
secret-sharing scheme realizing the evolving 2-threshold access structure, that
is, their scheme is almost optimal. They generalized the scheme for the evolv-
ing 2-threshold access structure to a scheme for the evolving k-threshold access
structure for any constant k ∈ N. In their scheme, the size of the share of the
i-th party is (k − 1) log i + O(log log i).

Komargodski and Paskin-Cherniavsky [12] considered evolving α(i)-
threshold access structures, where a set A is authorized if for some pi ∈ A
the set A contains at least α(i) parties from the set {p1, . . . , pi}. For example,
for the function α(i) = i/2 this is the evolving 1/2 · i-threshold access structure.
For every monotone function α : N → N, they constructed an evolving secret-
sharing scheme realizing the evolving α(i)-threshold access structure in which
the share size of the i-th party is O(i4 log i). Furthermore, they showed how to
transform any evolving secret-sharing scheme to a robust schme, where a shared
secret can be recovered even if some parties hand-in incorrect shares.

Cachin [4] and Csirmaz and Tardos [7] considered online secret sharing,
which is similar to evolving secret-sharing schemes. As in evolving secret-sharing
scheme, in on-line secret-sharing, parties can enroll in any time after the initial-
ization, and the number of parties is unbounded. However, in the works on online
secret-sharing, the number of authorized sets a party can join is bounded.

2 Preliminaries

In this section we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. We denote the logarithmic function with base 2 by log. We use the
notation [n] to denote the set {1, 2, . . . , n}. When we refer to a set of parties
A = {pi1 , pi2 , . . . , pit

}, we assume that i1 < i2 < · · · < it.

2.1 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes.

Definition 2.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ = (ΓYES, ΓNO) is a pair of collections of sets such that
ΓYES, ΓNO ⊆ 2{p1,...,pn}, the collections ΓYES and 2{p1,...,pn}\ΓNO are monotone,
and ΓYES ∩ ΓNO = ∅. Sets in ΓYES are called authorized, and sets in ΓNO are
called unauthorized. The access structure is called an incomplete access structure
if there is a subset of parties A ⊆ P such that A �∈ ΓYES ∪ ΓNO. Otherwise, it is
called a complete access structure.
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Definition 2.2 (Secret-sharing schemes). A secret-sharing Σ = 〈Π,μ〉
over a set of parties P = {p1, . . . , pn} with domain of secrets K is a pair, where μ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 × K2 × · · · × Kn (the
set Kj is called the domain of shares of pj). A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to μ, com-
puting a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(k, r) as
the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).
The size of the secret is defined as log |K| and the size of the share of party pj

is defined as log |Kj |.
A secret-sharing scheme 〈Π,μ〉 with domain of secrets K realizes an access

structure Γ = (ΓYES, ΓNO) if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ ΓYES, there exists a reconstruc-
tion function ReconB : Ki1 × · · · × Ki|B| → K such that for every secret k ∈ K

and every random string r ∈ R, ReconB

(
ΠB(k, r)

)
= k.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T ∈ ΓNO, every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉pj∈T , Pr[ ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ ΠT (b, r) =
〈sj〉pj∈T ], where the probability is over the choice of r from R at random accord-
ing to μ.

Remark 2.3. For sets of parties A ∈ 2P such that A �∈ ΓYES ∪ ΓNO there are no
requirements, i.e., they might be able to reconstruct the secret, they may have
some partial information on the secret, or they may have no information on the
secret.

Definition 2.4 (Threshold access structures). Let 1 ≤ k ≤ n. A k-out-
of-n threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the
complete access structure accepting all subsets of size at least k, that is, ΓYES =
{A ⊆ P : |A| ≥ k} and ΓNO = {A ⊆ P : |A| < k}.
The well known scheme of Shamir [14] for the k-out-of-n threshold access struc-
ture (based on polynomial interpolation) satisfies the following.

Claim 2.5 (Shamir [14]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret-
sharing scheme for secrets of length m realizing the k-out-of-n threshold access
structure in which the share size is �, where � = max{m, log(n + 1)�}.
Definition 2.6 (Ramp secret-sharing schemes [2]). Let 0 ≤ b ≤ a ≤ 1.
An (a, b)-ramp access structure over a set of parties P = {p1, . . . , pn} is the
incomplete access structure Γn

a,b = (ΓYES, ΓNO), where ΓYES = {A ⊆ P : |A| ≥
an} and ΓNO = {A ⊆ P : |A| < bn}. An (a, b)-ramp scheme with n parties is a
secret-sharing scheme realizing Γn

a,b.
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Chen et al. [6] showed the existence of ramp secret-sharing schemes with
share size O(1).

Claim 2.7 (Chen et al. [6]). For every constant 0 < ε < 1/2 there are integers
� and n0 such that for every n ≥ n0 there is a (1/2 + ε, 1/2 − ε)-ramp secret-
sharing scheme with n parties and share size �.

2.2 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure, introduced in
[11].

Definition 2.8 (Evolving access structures). Let P = {pi}i∈N be an infi-
nite set of parties. An evolving access structure Γ = (ΓYES, ΓNO) is a pair of
collections of sets ΓYES, ΓNO ⊂ 2P , where each set in ΓYES ∪ ΓNO is finite and
for every t ∈ N the collections Γ t � (ΓYES ∩ 2{p1,...,pt}, ΓNO ∩ 2{p1,...,pt}) is an
access structure as defined in Definition 2.1.

Definition 2.9 (Evolving secret-sharing schemes). Let Γ be an evolving
access structure, K be a domain of secrets, where |K| ≥ 2, and {Rt}t∈N, {Kt}t∈N

be two sequences of finite sets. An evolving secret-sharing scheme with domain
of secrets K is a pair Σ = 〈{Πt}t∈N, {μt}t∈N〉, where, for every t ∈ N, μt is a
probability distribution on Rt and Πt is a mapping Πt : K ×R1 ×· · ·×Rt → Kt

(this mapping returns the share of pj).
An evolving secret-sharing scheme Σ = 〈{Πt}t∈N, {μt}t∈N〉 realizes Γ

if for every t ∈ N the secret-sharing scheme 〈μ1 × · · · × μt,Πt〉, where
Πt(k, (r1, . . . , rk)) = 〈Π1(k, r1), . . . , Πt(k, r1, . . . , rt)〉, is a secret-sharing
scheme realizing Γ t according to Definition 2.2.

Definition 2.10 (Evolving threshold access structures [11]). For every
k ∈ N, the evolving k-threshold access structure is the evolving access structure
Γ , where Γ t is the k-out-of-t threshold access structure.

Definition 2.11 (α(t)-threshold access structures [12]). Let α : N → N be
a monotone function. The α(t)-threshold access structure is the evolving access
structure Γ , where Γ t is the α(t)-out-of-t threshold access structure.

Similar to the above definition of the α(t)-threshold access structure, we define
the evolving ramp access structure as follows.

Definition 2.12 (Evolving ramp access structures). For every 0 ≤ b <
a ≤ 1, the evolving (a, b)-ramp incomplete access structure is the evolving incom-
plete access structure Γa,b, where Γ t

a,b is the (a, b)-ramp access structure.

Let A = {pi1 , pi2 , . . . , pit
}. Notice that the set A is authorized in Γa,b if

a · ij < j for some 1 ≤ j ≤ t. Furthermore, the set A is unauthorized in Γa,b if
b · ij ≥ j for every 1 ≤ j ≤ t. There are no requirements on sets where j < a · ij
for every j and b · ij < j for at least one j.

We next prove two lemmas that are used to prove the security and correctness
of the schemes we construct in this paper.
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Lemma 2.13. Assume that we share a secret s using a k-out-of-n secret-sharing
scheme among the parties p�+1, . . . , p�+t and

k ≥ b (� + t) . (1)

If a set A = {pi1 , pi2 , . . . , pit
}, where it ≤ �+ t, can learn information on the

secret then |A| ≥ b · it, i.e., A is not unauthorized in Γa,b.

Proof. If A can learn information on the secret, by the security of the thresh-
old secret-sharing scheme, it must contain at least k parties from the parties
p�+1, p�+2, . . . , p�+n. Since it ≤ � + t parties, by (1), |A| ≥ k ≥ b(� + t) ≥ b · it.
This implies that A contains at least a fraction b of the parties p1, p�+2, . . . , pit

,
i.e., A is not unauthorized in Γa,b. ��

The above lemma remains true if we replace the k-out-of-n secret-sharing
scheme with any secret-sharing scheme in which each set of size k − 1 has no
information on the secret.

Lemma 2.14. Let A = {pi1 , pi2 , . . . , pit
} be a minimal authorized set in Γa,b

for a < 1. If for some j < it there are at most D parties in A ∩ {p1, . . . , pj},
then it · a ≥ a

1−a (j − D).

Proof. We first give an upper bound on the size of A, |A| = |A ∩ {p1, . . . , pj}| +
|A∩{pj+1, . . . , pit

}| ≤ D+it−j. Since A is a minimal authorized set, the number
of parties in A is at least it · a, hence, D + it − j ≥ it · a, and the lemma follows.

��

3 Two Warmup Evolving Ramp Schemes

3.1 A Simple Scheme Realizing Γ1/2,1/8

As a warm up, we start with a secret-sharing scheme realizing Γ1/2,1/8. We
partition the parties into sets, called generations; the size of generation g is
2g, that is, generation g contains the parties p2g−1, . . . , p2g+1−2. We define the
scheme Π0 as follows.

Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a 2g

4 -out-of-2g threshold secret-sharing scheme.

Remark 3.1. In the above scheme and in the rest of the paper, when we instruct
the dealer to share the secret among the parties in generation g, we mean that
when the first party of generation g arrives, the dealer shares the secret using
Shamir’s threshold scheme; when the i-th party in generation g arrives, the
dealer gives it the i-th share of the scheme. Since we use Shamir’s scheme, the
dealer does not need to prepare all shares of Shamir’s scheme in advance; instead
it samples the appropriate polynomial Q; when the i-th party in generation g
arrives, the dealer gives it the share Q(i).
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In order to prove the correctness of Π0, it suffices to prove that a minimal
authorized set of parties A, that is, a set that contains the majority of the
parties that have arrived, can reconstruct the secret. Let A = {pi1 , pi2 , . . . , pit

}
be a minimal authorized set; in particular t ≥ it/2. Let g be the generation of
party pit

. Then, it ≥ 2g − 1 and

|A| ≥
⌈

it
2

⌉
≥

⌈
2g − 1

2

⌉
= 2g−1. (2)

There are two cases:

1. For some j < g the number of parties in A from generation j is at least 1
4 ·2j .

In this case A can reconstruct the secret using the shares of generation j.
2. For each j < g, there are less than 1

4 · 2j parties from generation j. Thus, the
number of parties in A from generations 1, . . . , g−1 is less than

∑g−1
j=1

1
4 ·2j =

(2g − 2)/4. Thus, by (2), the number of parties in A from generation g is at
least |A| − (2g − 2)/4 ≥ 2g−1 − (2g − 2)/4 > 2g/4, so the parties in A from
generation g can reconstruct the secret using the shares of generation g.

Next we prove the security of the scheme. We show that if the parties in
A can learn some information on the secret, then there is a prefix of A that
contains at least a 1/8 fraction of the parties, i.e., the set A is not unauthorized.
As the dealer shares the secret independently in each generation, if a set A can
learn some information on the secret, then it can learn information on the secret
from the shares of some generation g. In generation g, the secret is shared by
a 2g

4 -out-of-2g secret-sharing scheme among the parties p2g−1, . . . , p2g+1−2. It
holds that 2g/4 ≥ (

2g+1 − 2
)
/8. Therefore, by Lemma 2.13, the set of parties

in A from generations 1, . . . , g is not unauthorized in Γ1/2,1/8, hence, A is not
unauthorized.

3.2 A Scheme Realizing Γ1/2,b for b < 1
6

We next generalize the scheme Π0 to a scheme realizing Γ1/2,b provided that
b < 1

6 . We denote the scheme by Π1. We partition the parties to generations,
where the size of generation g is mg for some integer m that will be fixed later.
That is, generation g contains the parties pmg−m

m−1 +1, . . . , pmg+1−m
m−1

. We define the

scheme Π1 below; in this scheme, c < 1 and g0 are constants that will be chosen
such that correctness and security hold.

Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a c · mg�-out-of-mg secret-sharing scheme.

2. For all the parties in the first g0 − 1 generations, share the secret
using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.
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For security, we require that

c ≥ bm

m − 1
. (3)

Thus, c · mg� ≥ c · mg ≥ bmg+1

m−1 > b · mg+1−m
m−1 , and, by Lemma 2.13, every set

that can learn information on the secret is not unauthorized, thus, the scheme
is secure.

For correctness, let A = {pi1 , pi2 , . . . , pit
} be a minimal authorized set in

Γ1/2,b; in particular, t ≥ it/2. Let g be the generation of party pit
. There are

two cases.

First Case. For some j < g, the number of parties in A from generation j is
at least

⌈
c · mj

⌉
. In this case A can reconstruct the secret using the shares of

generation j.

Second Case. For every j < g, the number of parties in A from generation j is
less than

⌈
c · mj

⌉
, thus is less than c · mj . In this case, we show a condition on

the parameters m and c that implies that the number of parties from generation
g in A must be at least c · mg�, and therefore they can reconstruct the secret.

We first show that, since the first case does not hold, the index it cannot be
in the beginning of generation g. Since for 1 ≤ j ≤ g − 1 the number of parties
from generation j is less than c · mj ,

The number of parties in A from the first g − 1 generations is less than

g−1∑
j=1

c · mj = c · mg − m

m − 1
. (4)

Thus, since the first party in generation g is pmg−m
m−1 +1, by Lemma 2.14 it holds

that it

2 ≥ mg−m
m−1 (1 − c).

Since t = |A| ≥ it

2 , by (4), the number of parties from generation g is at
least

it
2

− c · mg − m

m − 1
≥ (mg − m) (1 − 2c)

m − 1
. (5)

For correctness, we want that the parties in generation g can reconstruct the
secret. Therefore, it suffices to require (mg−m)(1−2c)

m−1 ≥ c · mg + 1. That is,

mg
(

1−2c
m−1 − c

)
≥ 1 + m(1−2c)

m−1 . If 1−2c
m−1 − c > 0, then there is a g0 such that

for every g ≥ g0 the condition holds. For the parties in the first g0 − 1 genera-
tions we share the secret using a (non-evolving) secret-sharing scheme realizing
the (a, b)-ramp access structure restricted to the parties in the first g0 − 1 gen-
erations. Therefore, it suffices to require 1−2c

m−1 − c > 0. That is,

c <
1

m + 1
. (6)



322 A. Beimel and H. Othman

By (3) and (6),

b ≤ c(m − 1)
m

≤ m − 1
m

· 1
m + 1

=
m − 1

m2 + m
. (7)

The maximum value of the right hand side of (7) is maximized when m = 3
(recall that m is an integer); in this case (7) holds when b < 1

6 . In this case, we
take c = bm

m−1 = 1.5b < 1/4 and (3) and (6) hold.

Lemma 3.2. For every b < 1
6 , there exists an integer g0 such that the scheme

Π1 realizes Γ1/2,b.

Proof. The correctness and security of the Π1 for parties in generations g ≥ g0
follows from the discussion above. A traditional secret-sharing scheme is used in
Step 3.2 of Π1 to share the secret for parties in the first g0 − 1 generations is
correct and secure. Since the shares given to parties in generations g ≥ g0 are
independent of the shares given to the parties in the first g0 − 1 generations, the
combination of both secret-sharing schemes is correct and secure as well. ��
Example 3.3. If we take m = 3 and b = 1/7. Then, c = 3/14 and 1−2c

m−1 − c =
(1 − 3/7)/2 − 3/14 = 1/14. Thus, for (5) to hold, we can take g0 = 3, therefore
we need to share the secret among the parties in the first 2 generations using a
(non-evolving) secret-sharing scheme.

4 Evolving Ramp Schemes Realizing Γa,b for Every a < 1
and b < a

In the scheme Π1, in each generation we shared the secret using one threshold
secret-sharing scheme; Π1 can realize Γ1/2,b only when b < 1/6. To realize Γa,b

for every a < 1 and b < a, we generalize the previous method and in each
generation we share the secret using r threshold secret-sharing schemes, for a
constant r.

As in our previous schemes, we partition the parties into generations, where
the size of generation g is mg. That is, generation g contains the parties

pmg−m
m−1 +1, . . . , pmg+1−m

m−1
.

We define the scheme Π2 below; in this scheme, kr = m − 1 and the other
parameters will be chosen later such that the security and correctness hold.
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Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a c0mg�-out-of-mg secret-sharing scheme (denote this scheme
by Πc0).

2. For every 1 ≤ � ≤ r and for every g ≥ 2, share the secret s among the
parties in generation g − 1 and the first

⌈
k�

m−1 · mg
⌉

parties in gen-

eration g using a
(⌈

c� · mg−1
⌉)

-out-of-
(
mg−1 +

⌈
k�

m−1 · mg
⌉)

secret-
sharing scheme (denote this scheme by Πc�

).
3. For all the parties in the first g0 − 1 generations, share the secret

s using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.

We will choose our parameters such that c0 ≤ 1 and
⌈
c� · mg−1

⌉ ≤ mg−1 +⌈
k�

m−1 · mg
⌉

for 1 ≤ � ≤ r, thus, all threshold schemes used in Π2 are properly
defined. For security of Πc0 , by Lemma 2.13, it suffices to require

c0 ≥ b · m

m − 1
. (8)

For security of Πc�
for each 1 ≤ � ≤ r, we require

c� ≥ b · m

m − 1
· (1 + k�) . (9)

Thus,
⌈
c� · mg−1

⌉ ≥ c� ·mg−1 ≥ b·m
m−1 ·(1 + k�)·mg−1 ≥ b·

(
mg

m−1 + k�

m−1mg
)

> b·(
mg−m
m−1 + k�

m−1mg + 1
)
, and by Lemma 2.13 (observing that the maximal index

of a party that gets a share in Πc�
is mg−m

m−1 +
⌈

k�

m−1 · mg
⌉
), the scheme is secure.

Next we consider the correctness. Let A = {pi1 , pi2 , . . . , pit
} be a minimal

authorized set in Γa,b; in particular, t ≥ it · a. Let g be the generation of party
pit

. There are a few cases, for which we define r − 1 segments for every g ≥ 2.

– Segment 1 contains the parties with indexes
{

mg − m

m − 1
+ 1, . . . ,

mg − m

m − 1
+

⌈
k1

m − 1
· mg

⌉}
.

– Segment � where 2 ≤ � ≤ r − 1 contains the parties with indexes
{

mg − m

m − 1
+

⌈
k�−1

m − 1
· mg

⌉
+ 1, . . . ,

mg − m

m − 1
+

⌈
k�

m − 1
· mg

⌉}
.

We defined kr = m−1; thus, these r−1 segments are a partition of generation g.
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First Case. For some j < g, the number of parties in A from generation j is at
least

⌈
c0 · mj

⌉
. In this case A can reconstruct the secret from the scheme Πc0

for generation j.

Observation 4.1. If case 1 does not hold, then for every j < g the number of
parties in A from generations 1, . . . , j is less than

∑j
i=1 c0 · mj = c0 · mj+1−m

m−1 .

Second Case. Case 1 does not hold and party pit
is in the first segment in

generation g, that is mg−m
m−1 + 1 ≤ it ≤ mg−m

m−1 +
⌈

k1
m−1 · mg

⌉
. In this case we

show a condition on the parameters implying that the number of parties in A
from generations g − 1 and the first segment of generation g must be at least
c1 · mg−1, therefore they can reconstruct the secret.

We start with a lower bound on it. By Observation 4.1 and Lemma 2.14
(with j = mg−m

m−1 – the index of last party in generation g − 1)

it · a ≥ a

1 − a

(
mg − m

m − 1
(1 − c0)

)
. (10)

The shares of Πc1 are given to the parties in generation g − 1 and the parties in
the first segment in generation g. As the number of parties in A from generations
1, . . . , g − 2 is less than c0 · mg−1−m

m−1 (by Observation 4.1), the number of parties
in A from generation g − 1 and the parties in the first segment in generation g
is at least

it · a − c0 · mg−1 − m

m − 1
. (11)

In order to reconstruct the secret from the scheme Πc1 of generation g, the
number of parties from generation g − 1 and the parties in Segment 1 in gener-
ation g must be at least

⌈
c1 · mg−1

⌉
. Therefore, by (11), it suffices to require

it · a − c0 · mg−1−m
m−1 ≥ c1 · mg−1 + 1. Thus, by (10), it suffices to require

a
1−a

(
mg−m
m−1 (1 − c0)

)
− c0 · mg−1−m

m−1 ≥ c1 · mg−1 + 1, that is,

mg−1

( am
1−a (1 − c0) − c0

m − 1
− c1

)
≥

am
1−a (1 − c0) − c0 · m

m − 1
+ 1. (12)

If
( am

1−a (1−c0)−c0

m−1 − c1

)
> 0, then there exists g1 such that for every g ≥ g1

inequality (12) holds. Therefore, it suffices to require that

a
1−am − c1 · (m − 1)

a
1−am + 1

> c0. (13)

Third Case. For each 2 ≤ � ≤ r we define Case 3.� as:
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The number of parties in A from generation g−1 and the first
⌈

k�·mg

m−1

⌉
parties

from generation g is at least c� · mg�. In this case A can reconstruct the secret
from the scheme Πc�

for generation g.

Fourth Case. For each 2 ≤ � ≤ r we define the Case 4.� as:
Cases 1 and Case 3.� − 1 do not hold and pit

is in the �-th segment in gen-
eration g, that is mg−m

m−1 +
⌈

k�−1
m−1 · mg

⌉
+ 1 ≤ it ≤ mg−m

m−1 +
⌈

k�

m−1 · mg
⌉
. In this

case we show a condition on the parameters implying that the number of parties
in A from generation g − 1 and the first � segments of generation g must be at
least c� · mg−1, therefore they can reconstruct the secret.

The number of parties in A from generations 1, . . . , g − 1 and the parties in
the first � − 1 segments in generation g is less than c0 · mg−1−m

m−1 + c�−1 · mg−1,
by Observation 4.1 and since there are less than c�−1 · mg−1 parties in A from
generation g −1 and the parties in the first �−1 segments in generation g (since
Case 3.� − 1 does not hold). By Lemma 2.14 (with j = mg−m

m−1 +
⌈

k�−1
m−1 · mg

⌉
–

the index of last party in segment � − 1)

it · a ≥ a

1 − a

(
mg − m

m − 1
+

k�−1

m − 1
· mg − c0 · mg−1 − m

m − 1
− c�−1 · mg−1

)
. (14)

The shares of the scheme Πc�
of generation g are given to the parties in gen-

eration g − 1 and the parties in the first � segments in generation g. As the
number of parties in A from generations 1, . . . , g − 2 is less than c0 · mg−1−m

m−1
(by Observation 4.1), the number of parties in A from generation g − 1 and the
parties in the first � segments in generation g is at least

it · a − c0 · mg−1 − m

m − 1
. (15)

For correctness, we require that the parties in A from generation g − 1 and the
parties in the first � segments in generation g can reconstruct the secret from
the scheme Πc�

of generation g − 1. Therefore, by (15), it suffices to require
it · a − c0 · mg−1−m

m−1 ≥ c� · mg−1 + 1 >
⌈
c� · mg−1

⌉
. Thus, by (14), it suffices to

require

a

1 − a

(
mg − m

m − 1
+

k�−1

m − 1
· mg − c0 · mg−1 − m

m − 1
− c�−1 · mg−1

)

−c0 · mg−1 − m

m − 1
≥ c� · mg−1 + 1. (16)

That is,

mg−1

( am
1−a (1 + k�−1) − c0(1 + a

1−a )
m − 1

− a

1 − a
c�−1 − c�

)

≥ 1 +
m( a

1−a − c0
a

1−a − c0)
m − 1

. (17)
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If
am
1−a (1+k�−1)−c0(1+

a
1−a )

m−1 − a
1−ac�−1 − c� > 0, then there exist g� such that for

every g ≥ g� inequality (17) holds. Therefore, it suffices to require that

a

1 − a
m +

a

1 − a
k�−1 · m − a

1 − a
c�−1(m − 1) − c�(m − 1) >

c0
1 − a

. (18)

4.1 Finding the Values of the Parameters for Realizing Γa,b for
Every b < a

In order to build a scheme for Γa,b for 0 < b < a < 1, we have to find constants
m, r, k1, . . . , kr−2, and c0, c1, . . . , cr that satisfy (8), (9), (13), and (18). In The-
orem 4.7 we prove that such constants exist for every b < a. To find the values
of the parameters, we first prove that we can choose the values of c0, . . . , cr as
the minimal values required by the security requirements (i.e., (8) and (9)). We
then prove that for large enough m there is a value of k1 that satisfies inequality
(13). Then, we prove that there exists a constant β < 1 such that for every k� if
we can take k�−1 = βk�, then we satisfy inequality (18). Thus, if we start with
kr = m − 1 and with a large enough r and apply the last step iteratively, then
k1 is small enough to satisfy (13).

Example 4.2. As an example, for the scheme Γ1/2,0.25 we take r = 2 and m = 5.
We start with k2 = m−1 = 4 and take β = 1/3, thus, k1 = βk2 = 4/3. We choose
the values of c0, c1, and c2 as the minimal values required by (8) and (9), that
is, c0 = mb

m−1 = 5/16, c1 = mb
m−1 (1+k1) = 35/48, and c2 = mb

m−1 (1+k2) = 25/16.
Note that for a = 1/2 and m = 5, inequality (13) requires that c1 < (5 − 6c0)/4
and c0, c1 satisfy this inequality (if this inequality would not hold, we would have
taken a larger r). It can be checked that (18) also holds.

Lemma 4.3. Let 0 < b < a < 1. If Π2 realizes the access structure Γa,b

with the parameters r,m, k1, . . . , kr and c0, c1, . . . , cr, then Π2 realizes it with
r,m, k1, . . . , kr, c0 = m·b

m−1 , and c� = (1+k�)b·m
m−1 for every 1 ≤ � ≤ r.

Proof. By (13), if we decrease c1 then the left side of the inequality increases,
and thus the inequality still holds. By (18), if we decrease c�−1 and c�, the left
side increases and, thus, the inequality still holds. In all the inequalities, if we
decrease c0, they still hold. Therefore, we can decrease each c� to its minimum
value which is c� = (1+k�)b·m

m−1 and keep the inequalities. ��
In all our proofs in this section, we take the minimum value of c0, c1, . . . , cr,

that is, c0 = m·b
m−1 , and c� = (1+k�)b·m

m−1 for every 1 ≤ � ≤ r.

Lemma 4.4. Let b < a. Every m ≥ 2b
a−b and every k1 ≤ a−b

2b(1−a) satisfy (13).
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Proof. We set c0 = m
m−1b and c1 = (1+k1) m

m−1b in (13). Next we prove that for
any b < a for every 0 < k1 < a−b

2b(1−a) inequality (13) holds. By substituting the

above c0, c1 in (13) we obtain the inequality
a

1−a m−(1+k1)
m

m−1 b·(m−1)
a

1−a m+1 > m
m−1b.

That is,

k1 <

a
1−a − b − b

m−1 − ba
(1−a)(m−1)

b
=

a−b
1−a − b

(m−1)(1−a)

b
. (19)

Thus, every m > 2b
a−b + 1 and k1 ≤ a−b

(1−a)2b satisfy inequality (19). ��

Lemma 4.5. For every b < a, every m > a
a−b , and every k� inequality (18) is

satisfied when k�−1 = (1−a)b
a(1−b)k�.

Proof. We substitute c0 = mb
m−1 , c�−1 = (1 + k�−1) mb

m−1 , and c� = (1 + k�) mb
m−1

in (18) and obtain the following requirement.

a

1 − a
m +

a

1 − a
k�−1m − a

1 − a
(1 + k�−1)

mb

m − 1
(m − 1) − (1 + k�)

mb

m − 1
(m − 1)

>

(
1 +

a

1 − a

)
mb

m − 1
.

That is,

a − b

1 − a
+

a

1 − a
(1 − b)k�−1 − bk� >

b

(1 − a)(m − 1)
. (20)

Taking k�−1 = (1−a)b
a(1−b)k�, we conclude that (20) holds if and only if m > b

a−b +1 =
a

a−b . ��
Next we show that the schemes Πc0 , . . . ,Πcr

are all legal threshold secret-sharing
schemes, that is, the number of parties needed to reconstruct the secret is at most
the number of parties in the scheme.

Lemma 4.6. Assume that m ≥ 2
1−b . The thresholds in the schemes Πc�

for
0 ≤ � ≤ r are at most the number of parties in the schemes for every g ≥ 2, that
is, c0 · mg� ≤ mg and

⌈
c� · mg−1

⌉ ≤ mg−1 +
⌈

k�

m−1 · mg
⌉
for 1 ≤ � ≤ r.

Proof. For Πc0 , note that c0 = mb
m−1 = b + b

m−1 . Thus, if m ≥ b
1−b + 1, then

c0 ≤ 1 and c0 · mg� ≤ mg� = mg as required.
For Πc�

(where 1 ≤ � ≤ r), the threshold is
⌈
c� · mg−1

⌉
< c� · mg−1 + 1 and

the number of parties is mg−1+
⌈

k�

m−1 · mg
⌉

≥ mg−1+ k�

m−1 ·mg. Recall that c� =
(1+k�)b·m

m−1 . Thus, it suffices to show that (1+k�)bm
m−1 ·mg−1 +1 ≤ mg−1 + k�

m−1 ·mg.
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As b < 1 and g ≥ 2, it suffices to choose m such that
(

1 − bm

m − 1

)
m ≥ 1. (21)

Taking m ≥ 2
1−b satisfies (21). ��

Theorem 4.7. For every b < a there is a choice of the parameters such that
Π2 realizes Γa,b with share size of O(log i) for party pi.

Proof. In order to prove the theorem, we need to show that for every b < a
there is a choice of the parameters that satisfies (8), (9), (13), and (18). We take
c0 = mb

m−1 and c� = (1 + k�) mb
m−1 for 1 ≤ � ≤ r, thus, inequalities (8) and (9) are

satisfied and the scheme is secure.
We take m =

⌈
2

a−b

⌉
≥ max{ 2b

a−b ,
a

a−b ,
2

1−b}, thus, we can apply Lemmas 4.4
to 4.6. We still need to find r. In order to find it, we apply Lemma 4.5 iteratively

starting from kr = m − 1 and taking k�−1 = (1−a)bk�

a(1−b) =
(

(1−a)b
a(1−b)

)r−�

(m − 1)
for 2 ≤ � ≤ r. By Lemma 4.5, inequality (18) is satisfied for every �. Note
that (1−a)b

a(1−b) < 1 (as b < a), thus, k1 < k2 < · · · < kr. We take r =⌈
2 + log a(1−b)

(1−a)b

2(1−a)b·m
a−b

⌉
. Thus, we get k1 ≤

(
(1−a)b
a(1−b)

)log a(1−b)
(1−a)b

2(1−a)b·m
a−b

(m−1) =

a−b
2(1−a)b·m (m − 1) < a−b

2(1−a)b ; by Lemma 4.4, inequality (13) is satisfied.
If we take g0 = max{2, g1, . . . , gr} (where g1, . . . , gr are the constants required
for (13) and (18)), then the scheme is correct.

We next analyze the length of the share of pi in Π2. Let g be the generation
of pi. It suffices to consider only parties in generations g ≥ g0. Recall that
the generation g of pi is the maximal g such that (mg − m)/(m − 1) < i; in
particular, mg ≤ (m − 1)i. Every party pi gets O(r) shares in Shamir’s scheme
with O(mg) = O(mi) parties. The length of the share in Shamir’s scheme with
n parties and a one bit secret is O(log n). Thus, the size of the share of each
party pi is O(log i) (since m and r are constants as b < a are constants). ��

4.2 An Optimized Scheme with Share Size O(1)

Next we show an optimization of the previous scheme such that each party’s
share size is O(1). In the optimized scheme we use ramp secret-sharing schemes
instead of threshold secret sharing schemes. We next describe the optimized
scheme, denoted as Π3, in which the share size is O(1).
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Input: a secret s ∈ {0, 1}.

1. For every g, share s among the mg parties in generation g using a
(c0, c0 − ε)-ramp secret-sharing scheme for some constant ε > 0 to
be fixed later (denote this scheme by Π

′
c0).

2. For every 1 ≤ � ≤ r and for every g ≥ 2, share the secret s among
the parties in generation g − 1 and the first

⌈
k�

m−1 · mg
⌉

parties in

generation g using a (c� · mg−1 · 1
n , (c� − ε) · mg−1 · 1

n )-ramp secret-
sharing scheme for some constant ε > 0 to be fixed later, where
n = mg−1+

⌈
k�

m−1 · mg
⌉

is the number of parties (denote this scheme

by Π
′
c�

).
3. For all the parties in the first g0 − 1 generations, share the secret

s using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.

Chen et al. [6] showed that there exist (1/2 + ε, 1/2 − ε)-ramp secret-sharing
schemes with share size O(1) for every constant ε > 0 (see Claim 2.7). In
Appendix A, we prove the following claim that shows that Chen et al.’s result
implies the existence of (a, b)-ramp secret-sharing schemes with share size O(1)
for every constants b < a.

Claim 4.8. For every constants 0 < b < a < 1 there are integers � and n0 such
that for every n ≥ n0 there is an (a, b)-ramp secret-sharing scheme with n parties
and share size �.

Theorem 4.9. For every b < a there is a choice of the parameters such that
Π3 realizes Γa,b with share size O(1).

Proof. We modify the proof of Π2 to prove the security and correctness of Π3.
For the security of Π

′
c0 , we now have the following requirement.

c0 ≥ bm

m − 1
+ ε. (22)

For security of Π
′
c�

for each 1 ≤ � ≤ r, we require

c� ≥ b · m

m − 1
· (1 + k�) + ε. (23)

Thus, it holds that
⌈
(c� − ε)mg−1

⌉ ≥ (c� − ε)mg−1 ≥ b·m
m−1 · (1 + k�) · mg−1 ≥

b·
(

mg

m−1 + k�

m−1mg
)

> b·
(

mg−m
m−1 + k�

m−1mg + 1
)
, and by Lemma 2.13 (observing

that the party with the maximal index which gets a share for Πc�
is mg−m

m−1 +⌈
k�

m−1 · mg
⌉
), the scheme is secure.
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The correctness conditions remain the same. Therefore, we need to prove
that inequalities (13) and (18) hold under the new security conditions. Let
m, r, c0, c1, . . . , cr, k1, . . . , kr be the parameters used to construct Π2 for some a
and b. We show that there exists ε such that the parameters m, r, c′

0 = c0+ε, c′
1 =

c1 + ε, . . . , c′
r = cr + ε, k1, . . . , kr satisfy the security and correctness conditions

for Π3. It is easy to see that the security conditions hold, since c0 ≥ b m
m−1 and

increasing it by ε > 0 will satisfy the security condition (22) for Π3 (the same
for the other conditions).

For the correctness, in inequality (13) the right-hand side is increased by
ε, and the left-hand side is decreased by ε(m+1)(1−a)

am+1−a . In (13), it is required
that the left-hand side is strictly greater than the right-hand side. Thus, for
the constants defined in the proof of the correctness of Π2, there is a constant
δ1 > 0 (which is a function of a and b) such that the left side of inequality
(13) equals to c0 + δ1. Therefore, the left side in inequality (13) with c′

0, . . . , c
′
r

equals to c0 + δ1 − ε(m−1)(1−a)
am+1−a . For the inequality to hold, we require that

c0 + δ1 − ε(m−1)(1−a)
am+1−a > c0 + ε. Taking ε such that ε + ε(m−1)(1−a)

am+1−a < δ1 will

satisfy the inequality. Thus, we take ε < min{c0,
δ1(am+1−a)

m }.
In inequality (18), the right hand side is increased by ε

1−a , and the left hand

side is decreased by ε(m−1)
1−a . In (18), it is required that the left-hand side is

strictly greater than the right-hand side. Thus, for the constants defined in the
proof of the correctness of Π2, there is a constant δ2 > 0 (which is a function of
a and b) such that the left side of inequality (18) equals to c0

1−a + δ2, Therefore,

the left hand side in inequality (18) with c′
0, . . . , c

′
r equals to c0

1−a + δ2 − ε(m−1)
1−a .

For the inequality to hold, we require that c0
1−a + δ2 − ε(m−1)

1−a > c0+ε
1−a . Taking

ε < δ2(1−a)
m satisfies the inequality.

Taking ε < min{c0, . . . , cr,
δ1(am+1−a)

m , δ2(1−a)
m } satisfies both inequalities and

guarantees that all ramp secret-sharing schemes are properly defined.
The share size each party consists of r = O(1) shares of ramp secret-sharing

schemes, each is of size O(1). Therefore, the share size of each party is O(1). ��

A Proof of Claim 4.8

We next prove Claim 4.8, i.e., we prove that for every constants b < a there
exists a ramp secret-sharing scheme with share size O(1).

Proof. Chen et al. [6] proved the claim for the case when a = 1/2 + ε and
b = 1/2 − ε for every ε > 0, see Claim 2.7. We use two standard transformations
to prove it for every b < a. Let ΠN

1/2+ε,1/2−ε, for some ε < 1/2, be a ramp
secret-sharing scheme with share size � with N parties. If a > 1/2 and b < 1/2,
the scheme Πn

1/2+ε,1/2−ε, where ε = min{a − 1/2, 1/2 − b}, is an (a, b)-ramp
secret-sharing with share size O(1). Otherwise, there are two cases; in each case
we show the existence of an (a, b)-ramp secret-sharing scheme with n parties,
denoted Πn

a,b, with share size �.
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The case b ≥ 1/2. We use the scheme ΠN
1/2+ε,1/2−ε, where N = αn for some

constants α > 1 and ε < 1/2 to be fixed later. We only use the shares of the first
n parties of ΠN

1/2+ε,1/2−ε. In ΠN
1/2+ε,1/2−ε, a set of size N(1/2+ ε) = αn(1/2+ ε)

can reconstruct the secret. In Πn
a,b, we require that an parties can reconstruct the

secret, thus, we take α such that αn(1/2+ε) = an, i.e., α = 2a
1+2ε . By the security

of ΠN
1/2+ε,1/2−ε, any set of parties of size less than N(1/2 − ε) = αn(1/2 − ε) =

2a
1+2εn(1/2 − ε) cannot learn any information on the secret. In Πn

a,b, we require
that bn parties cannot learn any information on the secret, thus, we require that
2a

1+2ε (1/2 − ε) = b, i.e., ε = a−b
2(a+b) . Notice that α = 2a

1+2ε = 2a
1+ a−b

a+b

= a + b > 1

(since a > b ≥ 1/2), thus, we have enough shares in Παn
1/2+ε,1/2−ε to give to the

n parties. Furthermore, ε < 1/2 as required by Claim 2.7.

The case a ≤ 1/2. Again, we use the scheme ΠN
1/2+ε,1/2−ε, where N = αn for

some constants α > 1 and ε < 1/2 to be fixed later. We use the shares of the first
n parties of ΠN

1/2+ε,1/2−ε as the shares in Πn
a,b. However, in this case we publish

N −n = (α− 1)n shares on a public blackboard (we later explain how to get rid
of this public blackboard). In Πn

a,b, we require that an parties can reconstruct
the secret. As the number of shares of ΠN

1/2+ε,1/2−ε that an parties in Πn
a,b have

is an + (α − 1)n, we require that an + (α − 1)n = N(1/2 + ε) = αn(1/2 + ε),
i.e., α = (2 − 2a)/(1 − 2ε). In Πn

a,b, we require that bn parties cannot learn
any information on the secret. As the number of shares of ΠN

1/2+ε,1/2−ε that bn

parties in Πn
a,b have is bn+(α−1)n, we require that bn+(α−1)n = αn(1/2−ε),

i.e., α(1 + 2ε) = 2 − b. Solving the requirements on α, we get that ε = a−b
2(2−a−b)

and α = 2 − a − b. Note that α > 1 since b < a ≤ 1/2 and ε < 1/2.
To get rid of the shares published on the blackboard, we fix possible shares

sn+1, . . . , sαn of the last (α − 1)n parties in ΠN
1/2+ε,1/2−ε (e.g., in the scheme of

Chen et al. [6], we can fix sn+1 = · · · = sαn = 0). To share the secret, the dealer
chooses only vectors of shares of ΠN

1/2+ε,1/2−ε such that the shares of the last
(α − 1)n parties are the fixed shares sn+1, . . . , sαn. ��
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