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Abstract. We show that the simple and appealing unconditionally
sound mix-net due to Abe (Asiacrypt’99) can be augmented to further
guarantee anonymity against malicious verifiers.

As our main contribution, we demonstrate how anonymity can be
attained, even if most sub-protocols of a mix-net are merely witness
indistinguishable (WI). We instantiate our framework with two variants
of Abe’s mix-net. In the first variant, ElGamal ciphertexts are replaced
by an alternative, yet comparably efficient, “lossy” encryption scheme.
In the second variant, new “dummy” vote ciphertexts are injected prior
to the mixing process, and then removed.

Our techniques center on new methods to introduce additional wit-
nesses to the sub-protocols within the proof of security. This, in turn,
enables us to leverage the WI guarantees against malicious verifiers. In
our first instantiation, these witnesses follow somewhat naturally from
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the lossiness of the encryption scheme, whereas in our second instantia-
tion they follow from leveraging combinatorial properties of the Beneš-
network. These approaches may be of independent interest.

Finally, we demonstrate cases in Abe’s original mix-net (without mod-
ification) where only one witness exists, such that if the WI proof leaks
information on the (single) witness in these cases, then the system will
not be anonymous against malicious verifiers.

1 Introduction

A mix-net, introduced by Chaum [Cha81], is a means to provide anonymity
for a set of users. It has become a central tool for electronic voting, in which
each voter submits an encrypted vote and the mix-net outputs the same set of
votes in randomized order. Mix-nets have also found applications in other areas,
including anonymous web browsing [GGMM97], payment systems [JM98], and
as a building block for secure multi-party computation [JJ00].

In some cases, for instance for electronic voting, the mix-net is required to
be verifiable. That is, the mixing process should be accompanied by a proof that
does not violate anonymity (traditionally, zero-knowledge), and at the same time
convinces that the set of votes (alternatively, the vote tally) was preserved fol-
lowing the mixing process (soundness). Much work has been devoted to opti-
mizing the running times of protocols, resulting in highly efficient solutions
(e.g., [Nef01,GI08,Wik09,TW10,BG12]). At the same time, the strive for effi-
ciency has almost always required assuming that verifying parties act honestly.

While there exist relatively simple methods for enforcing honest verifier
behavior, very often the verifier ends up being replaced with some concrete
“challenge-generating” hash function that is modeled as a random oracle. This
transformation (known as the Fiat-Shamir transform [FS86]) only provides
heuristic guarantees for anonymity, as any concrete instantiation of a hash func-
tion is far from behaving randomly (and consequently is far from emulating the
behavior of an honest verifier). Moreover, there is indication that when applied
to computationally sound protocols (which include all known mix-nets with sub-
linear verification) it may result in loss of soundness [GK03].

The primary reason known efficient solutions require assuming honest ver-
ifiers is that they achieve anonymity by requiring underlying protocols to be
zero-knowledge (ZK). In some sense this is an overkill, since it may be possible
to guarantee anonymity of the overall system even if some of its building blocks
do not satisfy such a strong security notion. One prime example is given by Feige
and Shamir, who demonstrated how to construct 4-round ZK arguments for NP
by invoking sub-protocols that satisfy the notion of witness indistinguishability
(WI) [FS90]. In contrast to ZK, WI protocols are only required to hide which
of the (possibly many) NP-witnesses is used in the protocol execution. This
weaker notion gives rise to very simple and consequently efficient constructions,
secure even against malicious verifiers and sound even against computationally
unbounded provers.
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1.1 This Work

The goal of this work is to explore the possibility of constructing a simple mix-net
that is secure against malicious verifiers and in addition is unconditionally sound.
This would in particular mean that when applying the Fiat-Shamir transform
to the proofs in the mix-net, anonymity would provably be guaranteed for any
choice of a hash function. While soundness would still be heuristic, unconditional
soundness of the protocols makes them less susceptible to theoretical doubts
cast on the Fiat-Shamir transform in the case of certain computationally sound
protocols [GK03].

Towards this end, we aim for a relaxed indistinguishability-based notion of
anonymity, which is weaker than zero-knowledge and yet guarantees the pri-
vacy of voters in the system. We demonstrate how indistinguishability-based
anonymity of an entire mix-net system can be attained, even if most of the
underlying sub-protocols are merely WI. At the core of our analysis are new
techniques for guaranteeing the existence of multiple witnesses in NP-verification
relations upon which the soundness of mix-nets is based.

We instantiate our ideas with a very simple and appealing Beneš-network
based construction due to Abe [Abe99,AH01]. While this construction does
not match the sublinear verification efficiency of later mix-nets in the literature
(verification time is quasi-linear in the number of voters), it does enjoy a num-
ber of desirable features, most notably high parallelizability. In addition, proving
and verifying consists of invoking standard and widely used proofs of knowledge,
making the mix-net easy to understand and implement.

Abe’s mix-net was originally shown to be anonymous assuming honest veri-
fiers, and specifically based on the honest-verifier ZK property of the underlying
proofs of knowledge. In the case of a malicious verifier, these sub-protocols are
known only to be witness indistinguishable; alas, this guarantees nothing in cases
where there is a single witness. Moreover, (as we show) in Abe’s mix-net, cases
in which only one witness exists cannot be ruled out, and if indeed leakage on
the single witness occurs in these situations we demonstrate that the system is
not anonymous.

1.2 Our Results

We propose two different methods for modifying Abe’s original proposal that
result in a verifiable mix-net anonymous against malicious verifiers and sound
against computationally unbounded provers. Both methods require only minor
changes to Abe’s original protocol:

Lossy Abe mix-net: This encryption is identical to Abe’s original proposal,
with the only difference being that plain ElGamal encryption is replaced with
an alternative, yet comparably efficient, encryption scheme with the property
that public-keys can be sampled using a “lossy” mode (this mode is only
invoked in the analysis). When sampled with lossy public-keys, encrypted
ciphertexts do not carry any information about the plaintext. (The same
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property can also be satisfied by the Goldwasser-Micali QR-based, Paillier’s
DCR-based and Regev’s LWE-based, encryption schemes.)

Injected Abe mix-net: This method consists of running the original Abe mix-
net with additional dummy ciphertexts that are injected to the system for the
purpose of proving D-WI without having to modify and/or assume anything
about the encryption scheme in use (beyond it being re-randomizable). The
analysis of this construction relies on combinatorial properties of the Beneš-
network, and may turn out to be relevant elsewhere.

These modifications correspond to two approaches for introducing additional
witnesses to the sub-protocols of the mix-net verification: In the first, the extra
witnesses follow from the lossiness of the encryption scheme, and in the second
they follow by leveraging combinatorial properties of the Beneš-network.

In both cases, we show that the entire transcript of the mix-net system
satisfies the following natural anonymity property (in the style of [NSK04]): for
any choice of votes and any two permutations on the votes, the corresponding
views of an adversary are computationally indistinguishable.

We allow the adversary to control all but one of the mix-servers, an arbitrary
subset of the voters, subset of the decryption servers, and the verifier. If the
adversary controls a subset of the voters, then our definition quantifies over any
two permutations that are consistent on the votes that it controls. Note that
this anonymity notion completely hides information about which honest voter
placed which vote from the collective set of honest votes (which is necessarily
revealed by the shuffled output).

Theorem. The Lossy and Injected Abe mix-nets are anonymous against mali-
cious verifiers.

Our result assumes the availability of a non-malleable (more precisely, plain-
text aware) encryption scheme, under which the ciphertexts are encrypted, and
an efficient secure (simulatable) multi-party protocol for threshold decryption
of the ciphertexts. The latter building blocks can be constructed in an efficient
manner, even if participating parties are malicious, and moreover are routinely
assumed available in the cryptographic voting literature.

In a precise strong sense, the modifications introduced in the lossy and
injected versions of Abe’s mix-net are necessary for achieving anonymity in the
case of a malicious verifier.

1.3 Technical Overview

In what follows, we provide further background on verifiable mix-nets and Abe’s
mix-net construction, and then describe the main technical ideas behind our
results.

Verifiable Mix-Nets. Ideally, a mix-net is a protocol that completely breaks
the link between a user and the vote she has submitted. This remains true even
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if a subset of users share their votes with each other with the purpose of “de-
anonymizing” votes of users outside their coalition.

In principle, if one is only interested in the tally, then a simple way to protect
anonymity of individual voters would be to output the tally

∑
i vi. However,

specifically designing a protocol to meet this functionality limits its applicability
in case one is interested in alternative tallying mechanisms. Further, such tallying
solutions relying on homomorphic encryption either limit the message size or
require the use of relatively complicated zero-knowledge procedures for proving
the submitted vote encryptions are well formatted.

Mix-Net Phases. The operating assumption underlying most known mix-net
constructions is that some vote-encryption mechanism is in place, resulting in
a list c1, . . . , cn of ciphertexts where ci = Encpk(vi; ri) is an encryption of vi

with randomness ri, under a public key pk that corresponds to a certain polling
station. The output of the mix-net is a shuffled list of plaintexts vσ(1), . . . , vσ(n),
and we want a mix-net that hides σ even if malicious entities were involved in
the mixing phase, the input phase, and the verification phase.

The public key pk is jointly generated and certified in a distributed man-
ner by a set of trustees, so that no individual entity (or even any sufficiently
small coalition of entities) is able to decrypt its corresponding ciphertexts. The
assumption is that a large subset of the trustees acts as prescribed by the set-up
protocol. We note that such an assumption is standard in the literature, and it
does not necessitate the generation of a common reference string, at least not in
its most general form.

Given such a setup, most known verifiable mix-net constructions can be con-
ceptually decomposed to the following three stages:

Submit Ciphertexts: Each of the n users publishes their own ciphertext ci

on an authenticated bulletin board. For simplicity it is convenient to assume
that the encryption is “non-malleable” (in fact, plaintext aware), which guar-
antees that voters cannot make their own vote depend on others’.
Verifiably Mix: Ciphertexts c1, . . . , cn are:

– re-randomized (i.e. Encpk(vi; ri) is mapped to Encpk(vi; si) for random and
independent si) and then

– randomly shuffled to obtain ciphertexts c′
π(i) = Encpk(vi; si), where π is

randomly sampled from Sn.
In addition, the mixing party provides a proof that the set of plaintexts under-
lying the output ciphertexts c′

1, . . . , c
′
n equals the original set of submitted

votes underlying c1, . . . , cn.
Decrypt: The ciphertexts c′

1, . . . , c
′
n are collectively decrypted by means of

a secure distributed protocol.

In terms of complexity, the Submit Ciphertexts and Decrypt stages can be imple-
mented in time O(n). Moreover, by using lightweight protocols for threshold
decryption, the Decrypt phase can be implemented in a zero-knowledge fashion
without paying much penalty in terms of efficiency. In light of this, much of the
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literature (including the present work) focuses on optimizing the efficiency of the
Verifiably Mix stage.

A näıve implementation would require work proportional to O(n2) (by prov-
ing consistency of individual input-output ciphertext pairs). Remarkably, it has
been shown how to achieve perfect ZK with verification time as little as o(n)
(see [Nef01,GI08,Wik09,Gro10,TW10,BG12] to name a few). As we mentioned
above, in many cases this comes at the price of the assumption that the prover
is computationally bounded and that verification is performed as prescribed.

Abe’s Mix-Net. Abe presented [Abe99,AH01] a simple mix-net construction
which performs the Verifiably Mix stage on user ciphertexts via a sequence of
pairwise ciphertext rerandomize-and-swap operations, as dictated by a Beneš
permutation network. A d-dimensional Beneš network is a “butterfly” switching
network on n = 2d inputs, consisting of (2d − 1) levels of n

2 switch gates. Given
any permutation π ∈ Sn, this permutation can be implemented via some (effi-
ciently determined) choice of the control bits for each of the switch gates, where
0 at a gate indicates its input are output in order and 1 indicates its inputs are
swapped.

In Abe’s mix-net construction, the mixing entity samples a random permuta-
tion π ← Sn, and identifies a corresponding choice of Beneš control bits. Then,
implementing and proving the validity of the overall n-input mix reduces to
the same task on each of the O(n log n) individual switch gates in its Beneš
representation. Namely, the overall proof is simply a collection of independent
proofs that an individual rerandomize-and-switch gate operation preserved the
plaintext values underlying its input ciphertexts.

For many common encryption schemes, this simple statement structure yields
lightweight proofs of knowledge. For example, for ElGamal encryption (as con-
sidered by Abe), such a proof can be attained with 3 rounds by combining
the Chaum-Pedersen protocol [CP92], which proves the equality of two discrete
logarithms, with the protocol used in [CDS94], which proves two statements con-
nected by OR, overall costing about four times as much computation as a single
Chaum-Pedersen protocol execution.

However, lightweight protocols of this kind (inherently) provide only witness
indistinguishability guarantees and/or honest verifier zero knowledge. Because
of this, the mix-net of Abe was only proved to possess these properties as well.

Techniques and Ideas. To prove anonymity of our constructions, we must
prove for any vector of votes v = (v1, . . . , vn), and any permutation π of the
honest parties, that the view of a (possibly malicious) verifier in the mix-net
proof of correctness executed on votes (v1, . . . , vn) is indistinguishable from the
analogous view on initial votes (vπ(1), . . . , vπ(n)). That is, intuitively, the verifier
cannot distinguish which of the honest votes came from which honest party.

The semantic security of the encryption scheme directly allows us to “swap
out” the starting honest-party vote encryptions themselves. So the core task is
showing that interaction with an honest mix-server proving proper execution of
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random permutation σ on encryptions of (v1, . . . , vn) is indistinguishable from
an analogous proof executing σ ◦ π−1 on encryptions of (vπ(1), . . . , vπ(n)). The
main difficulty in doing so arises for adversaries who have partial control of the
votes: specifically, when the adversary controls a subset {vi}i∈A of votes for some
arbitrary A ⊆ [n] of his choice.

Recall that Abe’s construction is composed of a collection of underlying
proofs of knowledge, where each individual sub-protocol is WI. Consider the
proof for a single switch gate. To leverage the WI property, we must arrive to
a state where the corresponding gate-validity statement ((c1, c2), (c′

1, c
′
2)) has at

least two witnesses. This aligns precisely with the case in which the two input
ciphertexts (c1, c2) of the gate have the same underlying plaintext. In such case,
one could have reached the output ciphertexts (c′

1, c
′
2) either by simply reran-

domizing directly, or by swapping first and then rerandomizing (with different
randomness); conversely, if the input plaintexts differ then by the correctness of
the encryption scheme there is a unique witness.

Now, suppose we are in the case of a gate where both input ciphertexts c1, c2
correspond to encrypted votes of honest users. Then although the underlying
votes of the two users may disagree, by relying on the semantic security of the
encryption scheme, we can argue that the adversary cannot distinguish this state
from the one in which the votes do agree. Once in this modified version of the
world, we can invoke the WI guarantee to argue that the proof hides the identity
of the swap bit. A similar approach can further take care of the situation where
a single input ciphertext to a gate is controlled by the adversary (by changing
the honest ciphertext to agree with the adversary’s fixed vote).

What poses an issue is when both input ciphertexts to a gate are under adver-
sarial control. The adversary can then force the gate to have a single witness,
by choosing different plaintext votes. (Note we cannot hope to invoke semantic
security arguments as above, as the adversary generates the ciphertexts him-
self). In such a case, for all that is known, the underlying protocol may very
well leak the control bit of this gate. Interestingly, we demonstrate that such
leakage, while directly regarding only corrupt-party ciphertexts, would be fatal
to anonymity of honest parties in Abe’s mix-net (see full version on eprint1).

We address this issue via two alternative proposed modifications to Abe’s
protocol.

Using a lossy encryption scheme. In the first variant, we instantiate the
encryption scheme within Abe’s mix-net with a DDH-based lossy encryption
scheme that admits a similar underlying WI gate-consistency proof. A lossy
encryption scheme has the property that standard key generation is indistin-
guishable from a “lossy” version, such that encryption under a lossy key pk
completely loses all information about the message. In particular, for a lossy
pk, for any pair of ciphertexts c, c′ (not necessarily formed by encrypting the
same message), there exists a choice of re-randomization that takes c to c′.
This means for a lossy key that for any switch gate tuple (c1, c2, c′

1, c
′
2), there

1 https://eprint.iacr.org/2017/544.

https://eprint.iacr.org/2017/544
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necessarily exist two witnesses.
The proof of anonymity then follows from four simple steps. First, the public
key is replaced by a lossy version. Then, once we are under a lossy pk, we can
directly use the WI of the underlying gate protocols to switch (gate by gate)
from a Beneš representation of a starting permutation π to the representation
of any other permutation σ. Additionally, by the guaranteed hiding, we can
switch the plaintexts of honest users’ votes to an arbitrary shuffle amongst
themselves. Once we attain the desired permutation and plaintext settings,
we simply return back to a standard (non-lossy) pk.

Injecting and removing “dummy” votes. In the second variant, we con-
sider an arbitrary rerandomizable public-key encryption scheme (e.g., stan-
dard ElGamal), and instead modify the Abe mix protocol at a higher level.
Interestingly, the design approach leverages the combinatorial structure of
the Beneš network, without modifying the underlying building block proofs
of knowledge (for which it is not known how to prove an analogous property).
The new mixing procedure begins by generating and injecting n “dummy”
votes (i.e., encryptions of a fixed non-vote message ⊥) into the list of n real
encrypted votes. Abe’s mix phase is performed (without modification) on
the combined list of 2n ciphertexts (injecting the ⊥ ciphertexts into the
even-indexed positions). Then, Abe’s Decrypt protocol is performed on all
2n resulting ciphertexts, and the ⊥ plaintexts are identified and removed.
Verification consists of Abe’s standard verification, plus a process for verify-
ing that ⊥ ciphertexts were properly injected and removed in each mix step.
We remark that this modification of injecting non-adversarial ciphertexts into
the even-indexed positions does not directly preclude gates within the Beneš
execution whose input ciphertexts are both under adversarial control; indeed,
this remains quite likely to occur in many locations within later levels of the
Beneš network. However, leveraging the combinatorial Beneš structure, we
prove that the power we gain by ensuring the first-level gates do not have
this problem, is sufficient to hide all control bits used within the Beneš net-
work.
Our proof takes an inductive approach, on the dimension d (i.e., number of
users n = 2d) of the Beneš network. Ultimately, we design a carefully ordered
sequence of hybrids which enables us to step from honest input votes uhonest

and permutation π ∈ Sn to an arbitrary other choice u ′
honest, σ. In essence, for

each gate g in the Beneš network whose control bit we would like to flip, we:
(1) switch the control bits of relevant first-level gates to ensure at least one
non-adversarial ciphertext ci becomes directed to gate g; (2) rely on semantic
security to change the plaintext underlying ci to agree with its neighboring
ciphertext cj into g; and then (3) use the WI to flip the control bit of gate
g, now that we have forced the existence of 2 witnesses. This procedure is
performed on gates in a particular order to ensure progress is made in each
step, while leaving sufficient flexibility to enable that the step (1) redirection
can be performed.
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2 Indistinguishability-Based Anonymity of Mix-Nets

In this section we discuss the property of anonymity of a mix-net sys-
tem, which is our main focus. Due to space limitations, in the full
version (see footnote 1) we provide a complete definition of the stan-
dard syntax, correctness, and verifiability properties of a mix-net sys-
tem (Setup,SubmitCipher,VrfblyMix,Decrypt, (P,V)) (as discussed informally in
Sect. 1.3).

A wide range of anonymity notions have been considered within the mix-net
literature, ranging from addressing specific anonymity attacks, to very strong
notions of universally composable (UC) simulation.

In particular, the mix-net of Abe was proved in [Abe99,AH01,AI06] to satisfy
the following anonymity notion: An efficient adversary who corrupts a subset of
users, mix-servers, and decryption servers cannot gain noticeable advantage in
predicting any single input-output pair (i, j) ∈ [n]2 for which honest user i’s
encrypted plaintext is permuted to position j in the output. Note that this
definition protects the anonymity of each user, but is weaker than more general
indistinguishability and simulation definitions, in that it could potentially reveal
correlations between users (e.g., that users 2 and 3 voted in the same fashion).

We consider a stronger indistinguishability-based notion of anonymity, in
the flavor of [NSK04]. Intuitively, our definition requires that for any permuta-
tion on the honest users’ votes, the resulting views of the mix-net protocol and
verification—including the view of a possibly corrupt verifier—are indistinguish-
able.2 Note that this implies the anonymity definition of Abe [Abe99,AH01,
AI06], as a successful (i, j)-predicting adversary would serve as a successful dis-
tinguisher between views for permutations σ, σ′ which disagree on user i.

We formalize this notion via a notion of distributional WI (D-WI), a strength-
ening of WI we introduce that is related to strong-WI [Gol01], but parametrized
by specific pairs of distributions.

Distributional Witness Indistinguishabilty. For ease of reading, we will make
use of the following shorthand notation for the distribution over the view of a
(potentially malicious) verifier V within an interactive proof (P,V) for a given
distribution over statements (and witnesses).

Notation 1 (ViewV∗ [Dλ]). Let (P,V) be an interactive proof for a relation R.
For a given ensemble of distributions Dλ over statements, witnesses, and auxil-
iary input {(Xλ,Wλ, Zλ)}λ∈N for which (Xλ,Wλ) ∈ R and |Xλ| ≥ λ, and PPT
interactive machine V∗, we define the distribution

ViewV∗ [Dλ] := {〈P(Wλ),V∗(Zλ)〉 (Xλ) : (Xλ,Wλ, Zλ) ← Dλ}λ∈N
.

2 We remark, however, that [Abe99,AH01,AI06] directly consider non-malleability
concerns, which we factor out and address separately; see Remark on Non-
Malleability below. Note that Abe and Imai considered notions of anonymity against
both static and adaptive adversaries [AI06]; however, anonymity of Abe’s mix-net
construction was proven only in the static setting [Abe99,AH01], and thus this is
the notion we compare against.
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Definition 1 (D-WI). Let (P,V) be an interactive proof for a relation R, and
let Dλ and D′

λ be two probability ensembles over statements, witnesses, and
auxiliary inputs, as in Notation 1. We say that (P,V) is distributional witness-
indistinguishable (D-WI) with respect to Dλ,D′

λ for relation R if for every PPT
interactive machine V∗, the following holds: ViewV∗ [Dλ]

c≈ ViewV∗ [D′
λ].

Mix-Net Anonymity. For a given mix-net protocol MixNet, adversarial entity A,
and vector of honest user votes (ui)i∈UĀ

, the distribution DMixNet,A
λ ((ui)i∈UĀ

) as
given in Definition 2 denotes the induced distribution over statements, witnesses,
and auxiliary input of correctness of the mix-net. Our notion of anonymity (Def-
inition 3) requires the interactive proof system for correctness of the mix-net
to be distributional witness indistinguishable (D-WI) with respect to any pair
DMixNet,A

λ ((ui)i∈UĀ
) and DMixNet,A

λ ((uσ(i))i∈UĀ
), for any permutation σ on the

ordering of the honest users.

Definition 2 (DMixNet,A
λ distribution). Let MixNet = (Setup,SubmitCipher,

VrfblyMix,Decrypt) be a verifiable n-user m-server mix-net system with respect
to a re-randomizable encryption scheme E over message space M

Let A = (UA,SA,A) be given, where UA ⊆ [n], SA ⊂ [m] are corrupted subsets
of users and mix-servers, respectively, and A is an adversarial non-uniform PPT
algorithm which has four modes setup, submit votes,mix, and decrypt with the
syntax as below. We define the distribution DMixNet,A

λ as follows (we denote UĀ =
[n] \ UA and SĀ = [m] \ SA):

DMixNet,A
λ ((ui)i∈UĀ

):

Input: For each honest user i ∈ UĀ, a vote ui ∈ {0, 1}.
– Let state := ∅
– Sample (pk, (sk1, . . . , skm), state) ← SetupA(“setup”,1λ,state)(1λ),

i.e., simulate Setup protocol execution on honest party input 1λ and (ora-
cle access to) adversarial next-message function A(“setup”, 1λ, state), in each
round with updated state. Output the induced values pk, (sk1, . . . , skm), and
updated state.

– For each i = 1, . . . , n: // Submit votes (n users)
if i ∈ UA

then Sample (c0i , zi) ← A(“submit votes”, pk, i, state)
Update state := {zi} ∪ state

else Sample c0i ← SubmitCipher(pk, ui)
– For j = 1, . . . , m do: // Mix phase (m mix servers)

if j ∈ SA

then Sample (cj , wπ
j , zπ

j ) ← A(“mix”, pk, j, cj−1, state)
Update state := {zπ

j } ∪ state

else Sample rndj ← $, and set cj = Mixj(pk, cj−1; rndj)
– Run (v , (wsk

j )j∈SA
, state) ← DecryptA(“decrypt”,state)(cm, (skj)j∈SĀ

),
i.e., simulate Decrypt protocol execution on input (cm, skj) for each hon-
est mix-server j, and oracle access to adversarial next-message function
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A(“decrypt”, state), in each round with updated state. Output the induced
plaintext vector v , adversarial witness information (wsk

j )j∈SA
for decryption,

and updated state.
Output: (Xλ,Wλ, Zλ) where
– Xλ = (pk, c0, v)
– Wλ = ((rndj)j∈SĀ

, (wπ
j )j∈SA

, (skj)j∈SĀ
, (wsk

j )j∈SA
)

– Zλ = (state)

Definition 3 (Anonymous Mix-Net System). We say that a verifiable n-
user m-server mix-net system MixNet is anonymous if for every A (as in Defini-
tion 2), every choice of honest user votes ui ∈ {0, 1} for i ∈ UĀ, and every permu-
tation σ over the honest users UĀ (i.e. σ : UĀ ↪→ UĀ) the interactive proof system
(P,V) for correctness of MixNet is D-WI with respect to the following two prob-
ability ensembles Dλ = DMixNet,A

λ ((ui)i∈UĀ
) and D′

λ = DMixNet,A
λ ((uσ(i))i∈UĀ

)
where DMixNet,A

λ is as in Definition 2.

3 Abe’s Mix-Net with Lossy Encryption

For our first mix-net construction, we consider an implementation of Abe with a
modified lossy ElGamal encryption scheme. In Sect. 3.1 we present the additional
necessary building blocks, and in Sect. 3.2 we provide our construction.

3.1 Building Blocks for Lossy Abe

A lossy encryption scheme [PVW07] (KeyGen,KeyGenloss,Enc,Dec) is a PKE
scheme which possesses an alternative “lossy mode” key generation algorithm
KeyGenloss, whose output pk is computationally indistinguishable from an hon-
estly generated pk, but for which the encryption of a message m information
theoretically hides m.

We make use of the following lossy variant of ElGamal.

Definition 4 (Lossy ElGamal [BHY09]). The lossy ElGamal encryption
scheme for message space M = {0, 1} is given by:

– KeyGen(1λ): Generate the description of a cyclic group G of prime order q
(with log2 q ≥ λ) and generators g0, g1. Sample a random secret key s ← [q−1]
and compute h0 = gs

0, h1 = gs
1. Output pk = (G, q, g0, g1, h0, h1) and sk = s.

– KeyGenloss(1λ): Generate the description of G and g0, g1 as above. Sample
two random elements s0, s1 ← [q − 1], compute h0 = gs0

0 , h1 = gs1
1 . Output

pk = (G, q, g0, g1, h0, h1).
– Encpk(m): Sample r0, r1 ← [q − 1]. Output (gr0

0 gr1
1 , hr0

0 hr1
1 · gm).

– Decsk(c = (a, b)): Compute u := b · a−s, and output m ∈ {0, 1} for which
u = gm.

– ReRandpk(c = (a, b)): Choose random r0, r1 ← [q − 1], and output cout =
(a · gr0

0 gr1
1 , b · hr0

0 hr1
1 ).
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Theorem 1 ([BHY09]). Based on the Decisional Diffie-Hellman assumption,
the Lossy ElGamal scheme (Definition 4) is a rerandomizable lossy PKE scheme.

Note that ciphertexts are composed of two group elements, and conversely
any pair of elements of G can be interpreted as a “valid” ciphertext under a
given public key pk.

Proving correctness of the new switch gate can be achieved with WI via
a similar approach as to standard ElGamal: Here, combining the protocol of
Cramer et al. for proving OR [CDS94] instead with Okamoto’s protocol [Oka93]
for proving knowledge of Pedersen commitments (in the place of the Chaum-
Pederson protocol [CP92] for proving equality of discrete logarithms). Further
details of the resulting 3-round proof are given in the full version (see footnote 1).

3.2 Lossy Abe Mix-Net

Construction 1 (Lossy Abe Mix-Net). We define the n = 2d-user lossy Abe
mix-net system MixNetloss to be identical to Abe’s mix-net, with two exceptions:

– All mix-net procedures Setup,SubmitCipher,VrfblyMix,Decrypt make use of the
Lossy ElGamal algorithms KeyGen,Enc, and ReRand (Definition 4), in the
place of ElGamal.

– Each gate-consistency proof execution (PGate,VGate) (which was specific to
ElGamal) within Abe’s (PAbe

Mix ,VAbe
Mix ) is replaced by a corresponding gate-

consistency proof execution (P loss
Gate,V loss

Gate) for Lossy ElGamal, (this proof is
formed as an OR (via Cramer et al. [CDS94]) of ANDs of Okamoto [Oka93]).

Note that while we use Lossy ElGamal for concreteness, a similar approach
could be taken using amenable lossy encryption schemes based on, e.g., quadratic
residosity, Paillier, or LWE (see e.g., [BHY09,PW11,FGK+13]).

Theorem 2 (Lossy Abe is Anonymous). The Lossy Abe Mix-Net, as
described in Construction 1, is anonymous, as per Definition 3.

Proof. Let A = (UA,SA,A) be as in Definition 2, ui ∈ {0, 1} for i ∈ UĀ a
choice of honest user votes, and σ a permutation over the honest users UĀ. We
show that for any PPT interactive machine V∗: ViewV∗ [DMixNet,A

λ ((ui)i∈UĀ
)]

c≈
ViewV∗ [DMixNet,A

λ ((uσ(i))i∈UĀ
)], where DMixNet,A

λ is as in Definition 2), by a
sequence of the hybrids which use also the following claim:

Claim (Multiple Witnesses). With overwhelming probability over the choice of
a lossy key pkloss ← KeyGenloss(1λ), the following holds. For any ciphertexts
x0, x1, y0, y1 in the support of Encpkloss(·), there exists (r̂0, r̂1), (r̃0, r̃1) for which
yb = ReRandpkloss(xb; r̂b) and yb = ReRandpkloss(x1−b; r̃1−b) for b ∈ {0, 1}.

Proof. Follows by the equivalence of distributions Encpkloss(m0) ≡ Encpkloss(m1)
for all messages m0,m1 ∈ M under a lossy key.
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Recall the view of V∗ consists of: honest user votes (ui)i∈UĀ
(chosen by A),

the view during the key setup phase viewSetup, the public key pk, secret shares
(skj)j∈SA

of sk, vote ciphertexts of corrupt parties (c0i )i∈UĀ
, the view of V∗

within the mix phase
(
viewMixj

)

j∈[m]
, the view of V∗ during the Decrypt joint

decryption viewDec, and the shuffled plaintext votes v .
At a high level, the proof of Theorem2 moves from

ViewV∗ [DMixNet,A
λ ((ui)i∈UĀ

)] to ViewV∗ [DMixNet,A
λ ((uσ(i))i∈UĀ

)]

via the following sequence of hybrids. (1) First, viewSetup and viewDec are replaced
by simulated views, relying on zero knowledge simulation of the setup and joint
decryption protocols. (2) The honest setup functionality is replaced by a modified
one which samples a lossy system public key and outputs random secret key
shares skj to the corrupt servers. (3) Using semantic security, the encryptions
of honest user votes (ui)i∈UĀ

are replaced by encryptions of the σ-permuted
values (uσ(i))i∈UĀ

(but the mix and decryption phases are still with respect to
(ui)i∈UĀ

). (4) One uncorrupted mix-server modifies his permutation to “undo”
the σ shuffle of honest votes. This step relies on the special-soundness property
of the mix phase (in order to extract the permutations used by corrupt mix-
servers), the WI of the gate-consistency proofs, and the existence of multiple
witnesses for any ReRand-switch gate with respect to a lossy public key. (5) The
setup procedure is returned to the honest (non-lossy) version. (6) Finally, the
simulated viewSetup, viewDec are returned to the honestly generated versions.

4 Abe’s Mix-Net with Injected Dummy Votes

We demonstrate that an alternative simple tweak to the Abe mix-net system with
comparable efficiency preserves verifiability, and further guarantees anonymity
against a malicious verifier. At a high level, our construction is identical to
the Abe mix-net (without changing the encryption scheme) on 2n votes, where n
“dummy” ciphertexts of ⊥ are introduced and removed at the beginning and end
of each mix-server mix phase. To verify that this process was followed honestly,
the injected ciphertexts will be decrypted at the end along with the shuffled
votes (in a carefully chosen order).

Construction 2 (Injected Abe Mix-Net). The injected Abe n = 2d-user
m-servers mix-net system is identical to Abe’s mix-net with two exceptions: (1)
VrfblyMixinjectAbe (pk, c0) is a sequential algorithm with m iterations, where each iter-
ation j ∈ [m] is an execution of MixInject as given below (instead of MixAbe), and
(2) the verification proof system (P inject

Abe ,V inject
Abe ) has 4 steps as described below

(instead of (PAbe,VAbe)).
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MixInject(pk, cj−1): Let L = 2d − 1. Perform the following:
1. (Inject Fake Votes). Generate n encryptions of the message ⊥, and insert

them into the even positions of a new (N = 2n)-length vector Cj−1, with
the real input ciphertexts in the odd positions. That is, for every i ∈ [n],

Cj−1
2i−1 := cj−1

i , Cj−1
2i ← Encpk(⊥).

2. (Choose Permutation). Sample a random permutation πj ← Sn on n
elements, and let πnew

j ∈ SN be the permutation on N elements that acts
as π on the odd positions and as the identity on the evens. That is:

∀i ∈ [n] : πnew[2i − 1] = 2 · π[i] − 1, πnew[2i] = 2i.

3. (AbeMix on 2n Inputs): Execute AbeMix with input (pk,Cj−1, πnew
j ). Let

wj = (Cj , Bπnew
j

, R̂j
0, R̂

j
1) be the resulting output.

4. (Remove Fake Votes). Output the length-n vector cj corresponding to the
odd locations of Cj. That is, output

∀i ∈ [n] : cj
i := C ′

2i−1.

(P inject
Abe ,V inject

Abe ): The interactive proof system (P inject
Abe ,V inject

Abe ) with common
input (pk, c0, v) and witness (rndj , skj)j∈[m] is
1. Submission of intermediate ciphertext vectors: For every j ∈

[m]: P generates and sends V the input and output lists of ciphertexts
(Cj−1,Cj) where Cj−1 is generated as in step 1 above, and Cj is the
list of ciphertexts output from AbeMix in step 3 above. V verifies that the
output ciphertexts in odd locations for each mix-server j − 1 are identi-
cal to the corresponding input ciphertexts to mix-server j: i.e., for every
j ∈ [m − 1], i ∈ [n]: Cj

2i−1 = Cj+1
2i−1. Additionally, V verifies that the first

set of ciphertexts in odd locations agree with the submitted vote cipher-
texts: c0i = C0

2i−1, for every i ∈ [n].
2. Correctness Proof of VrfblyMix: For every j ∈ [m], execute

(PAbe
Mix ,VAbe

Mix ) with input (pk,Cj−1,Cj) and witness (πnew, Bπnew
j

, R̂j
0, R̂

j
1).

3. Correctness Proof of Injected Fake Votes: Let v⊥ = (⊥, . . . ,⊥)
be an n-dimension vector of the message ⊥, and cj−1,⊥ be the vector
of n ciphertexts such that cj−1,⊥

i = Cj−1
2i for every i ∈ [n]. Execute

(PAbe
Dec ,VAbe

Dec ) with input (pk, cj−1,⊥, v⊥), using witness (skj)j ∈ [m]. If
the prover is rejected in this step, the proof system terminates, and no
further steps take place.

4. Correctness Proof of Decrypt: Let cm be a list of n ciphertexts such
that cm

i = Cm
2i−1. Execute (PAbe

Dec ,VAbe
Dec ) with input (pk, cm, v) and witness

(skj)j ∈ [m]. If the prover is rejected in this step, or if for any i ∈ [n] it
holds that vi = ⊥, the proof system terminates, and no further steps take
place.
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5. Correctness Proof of Removed Fake Votes: Let v⊥ = (⊥, . . . ,⊥)
be an n-dimension vector of the message ⊥, and cj,⊥ be the vector of n
ciphertexts such that cj,⊥

i = Cj
2i for every i ∈ [n]. Execute (PAbe

Dec ,VAbe
Dec )

with input (pk, cj,⊥, v⊥), using witness (skj)j ∈ [m]. If the prover is
rejected in this step, the proof system terminates, and no further steps
take place.

Overall (P inject
Abe ,V inject

Abe ) proves that: (1) the submitted user ciphertexts are
properly copied into the odd positions of the first mix input vector, and for
every mix server j the ciphertexts in the odd locations of its input ciphertext
vector are the same as those in the output of server j − 1;3 (2) every mix server
permuted its input vector to its output vector; (3) the injected ciphertexts (in
even positions) of each mix server are encryptions of ⊥; (4) the final ciphertexts
in the odd locations indeed decrypt to v ; and (5) the final ciphertexts in the
even locations decrypt to ⊥. Altogether, this ensures that the final vector v is
indeed the permutation of the votes underlying c0. That is, soundness holds.

Theorem 3 (Injected Abe Mix-Net is Anonymous). The Injected Abe
Mix-Net, as described in Construction 2, is anonymous (as per Definition 3).

The proof uses the following core lemma, focusing on the proof of a single
mix-phase. It states that for an honest mix-server who indeed injects ciphertexts
of ⊥ in even positions, then the view of a malicious verifier during the proof of
correctness of the corresponding mix-phase is indistinguishable for any pair of
implemented permutations which fix the even-location positions (but operate
arbitrary π0, π ∈ Sn on the odd-location positions).

Lemma 1 (Replacing Permutation in Mix). For every (adversarial) non-
uniform PPT A, and every two permutations π0, π1 ∈ Sn, the interactive
proof system (PAbe

Mix ,VAbe
Mix ) (for correctness of Abe mixing) for the relation RMix

in Abe Mix-net satisfies distributional witness-indistinguishability (D-WI) with
respect to the following two distribution ensembles Dλ = DMix,A

λ (π0) and D′
λ =

DMix,A
λ (π1) where DMix,A

λ is as in Definition 5 described below.

Definition 5 (DMix,A
λ ). For any (adversarial) non-uniform PPT algorithm A,

and security parameter λ ∈ N, we define the following distribution DMix,A
λ as

follows:
DMix,A

λ (π):

Input: Permutation π ∈ Sn

– Sample (pk, (sk1, . . . , skm)) ← Setup(1λ)
– For every i ∈ [n]: Obtain ci, zi ← A(pk, i)
– For every i ∈ [n]: Set C2i−1 := ci and C2i ← Encpk(Encpk(⊥)
– Let πnew be such that ∀i ∈ [n]:

πnew[2i − 1] = 2 · π[i] − 1, πnew[2i] = 2i.
3 Note that any pair of group elements can be interpreted as a “valid” ElGamal cipher-

text under the public key pk.
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– Execute AbeMix (step 2 in Abe’s Mix, on 2n votes):
(C’, Bπnew , R̂0, R̂1) ← AbeMix(pk,C, πnew)

Output: (Xλ = (pk,C,C’),Wλ = (Bπnew , R̂0, R̂1), Zλ = (z1, . . . , zn))

Proof. We change from the Beneš switch gate settings of πnew
0 ∈ S2n to those of

πnew
1 one gate at a time, in a particular order. This is achieved by a sequence of

steps of the following two forms: (a) For any honest ciphertext (i.e., encrypting
⊥), we can change the plaintext, by semantic security. (b) For any gate whose
input ciphertexts encrypt the same plaintext (i.e., 2 witnesses to the switch gate),
we can flip the switch bit from b to 1 − b, by WI.

The order of gates is as follows.
We first target the last (output) level of the Beneš network, changing from

the corresponding last-level bits of πnew
0 to those of πnew

1 . Since the mix-server is
honest, in each even output position 2i in the last level is the (rerandomized) ⊥
ciphertext that originated in input position 2i. Using step type (a) (i.e., semantic
security), convert each ciphertext 2i to encrypt the same value as its output-gate
neighbor 2i−1. This can be done by rerandomizing the neighbor ciphertext and
using this as the original injected “⊥” 2ith ciphertext. Note that changing the
plaintext does not affect the permutation, meaning the same pairs of ciphertexts
will appear together in the last level gates. Then, given the plaintext switch,
we have that every gate in the final level has a pair of ciphertexts of the same
plaintext. Then using step type (b) (i.e., WI), we may change each gate to agree
with the Beneš settings for πnew

1 .
Next we target the gates in the upper sub-BenešȦgain we will use the power

of the honest mix-server controlled dummy “⊥” ciphertexts to change from the
corresponding permutation bits of πnew

0 to those of πnew
1 . First, we “direct” all the

⊥ ciphertexts up to enter this sub-network by (temporarily) changing the switch
settings of the first (input) level of the Beneš: Using (a) change all ⊥ ciphertexts
2i to encrypt the same value as their input-gate neighbor 2i−1, using (b) change
all first-level gates to switch value 1, so that all ciphertexts entering the upper
sub-Beneš are dummy, and then using (a) change them all back to encryptions
of ⊥. At this point, all gates in the upper sub-Beneš satisfy the conditions of
step (b) (namely, all ciphertexts encrypt the same plaintext ⊥), which means
they can be changed one by one to agree with the Beneš settings for πnew

1 .
Finally, the gates in the lower sub-Beneš and in the first-level (input) gates

are changed in an analogous fashion.
Given Lemma 1, the proof of anonymity follows essentially the same structure

as in the case of the Lossy Abe Mix-net (where previously an analogous statement
held by the multiple-witness guarantee of the lossy public key combined with
WI). We note that the order of the executions of (PAbe

Dec ,VAbe
Dec ) (i.e., first the

injected even-position ciphertexts, then the final shuffled user votes, then the
post-shuffle even-position ciphertexts) is important in order to ensure that we
can properly simulate the execution of these executions (i.e., Hybrid 1 in the
Lossy Abe proof) without information on users’ votes.
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