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Abstract. In private set intersection (PSI), a set of parties, each hold-
ing a private data set, wish to compute the intersection over all data sets
in a manner that guarantees both correctness and privacy. This secure
computation task is of great importance and usability in many different
real-life scenarios. Much research was dedicated to the construction of
PSI-tailored concretely efficient protocols for the case of two-party PSI.
The case of many parties has been given much less attention, despite
probably being a more realistic setting for most applications.

In this work, we propose a new concretely efficient, highly scalable,
secure computation protocol for multiparty PSI. Our protocol is an
extension of the two-party PSI protocol of Dong et al. [ACM CCS’13]
and uses the garbled Bloom filter primitive introduced therein. There are
two main variants to our protocol. The first construction provides semi-
honest security. The second construction provides (the slightly weaker)
augmented semi-honest security, and is substantially more efficient. Fur-
thermore, in the augmented semi-honest protocol all heavy computations
can be performed ahead of time, in an offline phase, before the parties
ever learn their inputs. This results in an online phase that requires only
short interaction. Moreover, in the online phase, interactions are per-
formed over a star topology network. All our constructions tolerate any
number of corruptions.

We implemented our protocols and incorporated several optimization
techniques. These techniques allow the running time of the protocol to
be comparable to that of the two party protocol of Dong et al. and scale
linearly with the number of parties. We ran extensive experiments to
compare our protocol with the two-party protocol and to demonstrate
the effect of the different optimizations.
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1 Introduction

Powerful feasibility results for secure multiparty computation were given three
decades ago [1,10,23] demonstrating that any polynomial time computable func-
tion can also be securely computed. Furthermore, in the last decade, there
has been tremendous progress in the construction of concretely efficient generic
secure two-party protocols, and for extent also for the multiparty setting.

Most of the above progress in concretely efficient secure computation was
made in the design of generic protocols via the circuit evaluation paradigm,
which allows parties to jointly and efficiently compute a logical or arithmetic
circuit for computing the functionality at hand. The generic approach, however,
becomes much less applicable for functionalities that require the evaluation of
large circuits. One such example is private set intersection (PSI), which is the
focus of this work.

In the PSI problem a set of parties, each holding a large private data set,
wish to compute the intersection over all data sets. PSI is of great relevance to
many different real-life scenarios, motivated, for example by the need to perform
joint computational tasks over several sensitive databases. Much research was
dedicated to the construction of PSI-tailored highly efficient protocols for the
case of two parties. A survey of the abundance of works on efficient two-party PSI
protocols is given in [20], including a classification of the underlying techniques.
Some results on this topic can be found in, e.g., [5–8,13,16,17,19,20], where
many of the recent results include optimized implementations. To our discussion,
most relevant is the work of [6], which we describe in detail below.

The case of more than two parties was given much less attention. To the best
of our knowledge the only implementation of a concretely efficient multiparty
PSI protocol to date was recently given in [18]. Nevertheless, multiparty private
set intersection remains a very relevant and important question and the case
of many parties is the right setting in many scenarios. As a running example,
we take the scenario that motivated this work to begin with. Consider a set of
governmental or commercial agencies wishing to collaborate to detect a possible
intrusion attack to a common network. Each agency must protect the privacy of
its information and of its costumers. However, as part of the collaborative effort
to detect an intrusion, the agencies are interested in finding the intersection over
the sets of suspicious IP addresses held by each agency.

In light of the above, the main question that this work deals with is:

Construct concretely efficient secure multiparty protocols for computing
private set intersection that scale well with the number of parties and with
data set size.
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1.1 The Protocol of Dong et al. [6]

The starting point of our work is the two-party PSI protocol of [6]. They intro-
duced garbled Bloom filters – a cryptographic variant of the Bloom filter data
structure, introduced by Bloom [3]. Recall that a Bloom filter, BFS , encodes a
set S of elements as an m-bit vector with respect to k randomly selected hash
functions h1, . . . , hk. To insert an element x into the Bloom filter, the indices
h1(x), . . . , hk(x) are all set to 1 (all indices are initialized to 0). A search query
is never answered by a false negative, and is answered by a false positive with
overwhelmingly low probability for the right choice of k and m (depending on
the bound on the size of the set).

Dong et al. [6] introduced a garbled version of the Bloom filter (GBF),
obtained by expanding each bit in the original Bloom filter to a λ-long bit string
(where λ depends on the security parameter). The strings are chosen such that
for every x, if x ∈ S, then the XOR of the strings in indices h1(x), . . . , hk(x) is
the all-zero string1, and is a uniformly chosen string otherwise (i.e., if x /∈ S).
The false negative probability of GBF searches is inherited from the false positive
probability of the original Bloom filter. The false positive probability is 2−λ.

A property of garbled Bloom filters which is very useful for computing the
intersection, is that for two sets S1,S2 the bit-wise XOR on GBFS1 and GBFS2

yields GBFS1∩S2 . In addition, seeing the strings in the GBF for any proper
subset the indices h1(x), . . . , hk(x) leaks nothing on whether x ∈ S or not.

The construction of [6] considered a client C and a server S and worked in
the semi-honest model (which we also consider here). In a preliminary phase, the
parties agree on a sequence of hash functions (modeled as random functions). The
client, holding a set SC, is instructed to construct a local GBFSC

and the server
S, holding a set SS, is instructed to construct a local BFSS

(both, with respect
to the predetermined set of hash functions). Then, using oblivious transfer, for
each i ∈ [k] (where k is the size of the filters), S learns a string si from C, where
if BFSS

[i] = 1 it holds that si = GBFSC
[i] and si is a randomly selected string

otherwise. The security of the oblivious transfer ensures that the clients learn
nothing about the choices of the server, and the server learns nothing about the
value of GBFSC

[i] whenever BFSS
[i] = 0. By the properties of garbled Bloom

filters, the server ends up with the garbled Bloom filter of the intersection.
Recently, Rindal and Rosulek [21] extended the construction of [6] to the

malicious setting, using cut-and-choose techniques. We believe that similar tech-
niques may be applied to our constructions to obtain a maliciously secure
multiparty PSI protocol. We leave this as future work.

1.2 Efficient Secure PSI for Many Parties

Freedman et al. [7] suggested a multiparty PSI protocol, based on oblivious poly-
nomial evaluation (OPE) which is implemented using additively homomorphic
1 In the original work of [6], this value was x itself, rather than the all-zero string.

This change is of no real importance, however, it makes the presentation of our
construction simpler.
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encryption, such as Paillier encryption scheme. Recently, Hazay and Venkita-
subramaniam [11] presented a reduction from the multiparty (semi-honest and
malicious) case to the two-party case. Specifically, they run a version of the
protocol of [7] between pairs of parties. Their construction runs over a star
network topology and is asymptotically efficient. However, it requires a linear
number of encryptions and decryptions of an additively homomorphic public-key
encryption scheme.

The only work, we are aware of, that offered an implementation of a con-
cretely efficient secure multiparty PSI protocol is the very recent work of
Kolesnikov et al. [18]. They propose a highly efficient construction, based on
a new primitive that they call oblivious programmable pseudorandom function.

1.3 Our Contribution

In this work we extend the construction of [6] to obtain protocols for securely
computing the PSI functionality with many parties. We describe three proto-
cols for three different settings, differing on the assumed adversarial model. All
our protocols are highly efficient and scale well as the number of parties and
the size of each data set grow. We implemented all three constructions and ran
extensive experiments to evaluate the different components of our protocols and
the multiple improvements that were incorporated. The experiments also nicely
demonstrate the scalability of our construction. We next describe the three vari-
ant of the protocol and motivate each of them.

An Information Theoretic Construction – When the Server Is External and Does
Not Collude with Other Parties. Consider our running example of collaborative
intrusion detection, and consider the case where a regulator (server), which is
assumed to never collude with any of the clients, wishes to learn the intersection
over all the data sets of local agencies (clients). For this case, we construct a
protocol that uses no cryptographic hardness assumptions for securely comput-
ing the intersection over the data sets of t − 1 clients P1, . . . ,Pt−1. Indeed, this
protocol is the basis of all our constructions.

The protocol is initialized by the server randomly choosing a sequence of
k hash functions h1, . . . , hk and sending their description to the clients. Each
client Pi first locally computes a garbled Bloom filter GBFi encoding its private
data set (with respect to h1, . . . , hk). The client then selects t random strings
si
1, . . . , s

i
t−1, each as long as the GBF, under the constraint that the XOR of these

t strings equals GBFi (i.e., it is a t-out-of-t XOR secret sharing of GBFi). Finally,
each client XORs all the shares it received (i.e., client j computes the XOR of
s1j , . . . , s

t−1
j ) to obtain a share s∗

j of the garbled Bloom filter of the intersection.
The client then sends the result to the server P0. The server computes the XOR
of all the shares it received to obtain the resulting garbled Bloom filter.

The correctness of the protocol follows from the fact that the XOR of two
garbled Bloom filters is a garbled Bloom filter of the intersection. The security
of the protocol stems from the fact that all that clients see are random shares,
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and the server learns nothing but the XOR of all local GBFs. See the full version
of our paper for the formal description of the protocol.

A Semi-honest Construction. Before demonstrating how to extend the previous
construction to provide semi-honest security, let us point out the changes in the
settings and the shortcomings of the information theoretic construction. The
first change is that the server should not learn anything about the intersection
of the data sets of P1, . . . ,Pt−1 (other than what is implied by the intersection
of all parties). This could be overcome by a similar manner to what is done
in the two-party protocol of [6]. That is, the server locally computes a Bloom
filter BF0 and for every coordinate �, if BF0[�] = 1 then P0 asks from each
client Pi the �’th block of the share s∗

j , and if BF0[�] = 0, then P0 asks from
each client Pi a random string instead. Let s∗ = GBFIS be the secret filter
reconstructed by the server P0. Using the oblivious transfer functionality, the
interaction is done such that Pi learns nothing about the choice of the server,
and the server learns nothing about the string it has not chosen to learn. We
denote the communication pattern of this interaction as the star protocol.

The second change is in the adversarial model. Before, we assumed that if
the adversary corrupts the server P0, then it does not corrupt any of the clients.
Now, we put no such restriction on the adversary. Consider the case that an
element x is an element in the set of P0 but not in the set of P1. In this case, the
adversary corrupting P0 and P1, must not learn whether x is in the intersection
of the sets of all honest parties P2, . . . ,Pt−1 or not. In the star protocol, however,
an adversary controlling P1 can XOR GBF1 with the final output of P0 to obtain
the intersection of all honest parties together with P0. The server therefore learns
whether x is in this intersection, which occurs if and only if x is in the intersection
of the sets of all honest parties.

To solve this problem, we instruct each pair of parties to exchange shares by
engaging in an oblivious transfer interaction, where each party Pi asks Pj for a
random string as the �’th block, whenever BFi[�] = 0 and s∗

j [�] otherwise. This
ensures that if x is not in the intersection (and specifically BFi′ [�] = 0 for some
i′), then all parties contribute ‘noise’ to GBFIS [�].

An Augmented-Semi-honest Construction. An augmented semi-honest adversary
is the same as a semi-honest one, with the only difference that it can choose
any probable input. It should be noticed that in our settings, this strengthens
the simulator more than it does the real-world adversary. Thus, this security
definition is actually easier to obtain (than semi-honest). In this paper, we show
that our star protocol already guarantees augmented semi-honest security. The
intuition for that is that we can simulate the protocol by selecting (in the ideal
model) the input of all corrupted parties to be the same as the input of the P0.

1.4 Optimizations to the Augmented Semi-honest Protocol

Computation. All the heavy computations of the augmented semi-honest proto-
col can be performed ahead of time, before the parties learn their inputs. This
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is done using two main ideas. The first is the OT-extension paradigm of [12],
allowing the computation intensive part of the oblivious transfer interactions to
be performed ahead of time. Second, we observe that the secret sharing of the
local GBFs can also be done ahead of time, by having each party simply send
random shares to all other parties in the offline phase, and then adjusting its
local share to be the XOR of all the other shares and the GBF (constructed upon
receiving the input data set). In this manner, the online phase only consists of
a short interaction between the server and each of the other parties.

Communication. The goal of this optimization is to load balance the interactions
between pairs of parties. Instead of having all parties send messages directly to
the server, it is possible for them to route the messages through their peers, over
a hypercube network structure. Each party which receives messages, aggregates
them (namely, computes the XOR of the received GBFs) before forwarding the
result in the direction of the server. It turns out that using this method, we
were able to decrease the linear number of OT interactions of the server, to a
logarithmic number of interactions for any party, and this improve the overall
latency of the protocol. We elaborate on this optimization in Sect. 4.1.2

1.5 Implementations and Experimental Results

We implemented all of our protocols. Our code is based on the open source code
of [6]. Nevertheless, we incorporated several improvements and techniques that
allow the protocol in the multiparty setting to be linearly dependent on the
number of parties and the data sets size (as one would expect from a theoretical
analysis). In Sect. 4, we describe our implementation and optimizations, and
detail the experiments that we ran.

Our implementations may be compared with those of [18]. We use the mea-
surements reports from their paper to compare. Evidently, for small numbers of
parties their implementation outperforms ours. It is our understanding that the
reason for that is twofold. First, we think that our code can be improved and in
particular rewritten in C++, rather than Java (which is currently the case). We
believe that this change alone would result in an improvement by a factor of 2.
Second, the GBF based construction comes with an inherent cost in communica-
tion complexity. When the number of parties grows, however, our protocols seem
to gain on that of [18]. The protocol of [18] contains a phase in which a quadratic
number of comparisons are made. Indeed, while we report on experiments with
up to 56 parties for our augmented semi-honest construction, [18] only report on
experiments with at most 15 parties. Our experimental results show a very slow
growth in running time as the number of parties grow (sub-linear), see Table 4.

We summarize the theoretical overhead of our three constructions in Table 1.
Therein m is the BF size, λ is the GBF bit-string length (i.e., the GBF Size

2 Originally, the hypercube method [2] was used to speed up message propagation
replacing a star like propagation scheme with a tree like scheme. We use it in order
to aggregate messages sent by all parties to the server.
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is λm), t is the number of parties. The table is split into P0 (the server that
learns the output) and Pi, playing the role of a client with no output. “Hashes
Used” counts the number of HashRange accesses; “Memory Complexity” refers
to the worst case memory require to store GBFs; “Communication Complexity”
count the number of bits that will sent or received; “OT Extensions” counts the
number of OT Protocol invocations; “Create Shares” counts PRG accesses. A
comparison with the theoretical overhead in the work of [18] is given in Table 2.

Table 1. Theoretical complexity analysis.

MPSI MPSI -Aug MPSI -NoOT

Operation P0 Pi P0 Pi P0 Pi

Hashes used 2(k · n) 2(k · n) 2(k · n) (k · n) (k · n) (k · n)

Memory

complexity

t(λ + 1)m t(λ + 1)m t(λ + 1)m (λ + 1)m t(λ + 1)m (λ + 1)m

Communication

complexity

λ · m · t λ · m · t λ · m · t λ · m λ · m · t λ · m

OT extensions m · t m · t m · t m − −
Create shares 2λmt 2λmt − 2λm(t − 1) − 2λm(t − 1)

With hyper cube communication

Hashes used − − 2(k · n) 2(k · n)

Memory

complexity

− − log(t)(λ + 1)m log(t)(λ + 1)m log(t)(λ + 1)m log(t)(λ + 1)m

Communication

complexity

− − λ · m · log(t) λ · m · log(t) λ · m · log(t) λ · m · log(t)

OT extensions − − m · log(t) m · log(t) − −
Create shares − − − 2λm(t − 1) − 2λm(t − 1)

Table 2. Theoretical complexity analysis – in comparison to state of the art.

Protocol Communication Computation Security model

Leader Client Leader Client

KMPRT17 [18] O(tnλ) O(tnλ) O(tκ) O(tκ) Semi-honest

Here O(tnλk) O(tnλk) O(λntk) O(λntk) Semi-honest

KMPRT17 [18] O(tnλ) O(nλ) O(tκ) O(κ) Augmented semi-honest

Here O(tnλk) O(nλk) O(λntk) O(λntk) Augmented semi-honest

Here (hypercube) O(log(t)nλk) O(log(t)nλk) O(λntk) O(λntk) Augmented semi-honest

1.6 More Related Work

Much research was dedicated to the construction of PSI-tailored highly effi-
cient protocols for the case of two-party set intersection. A survey on efficient
two-party PSI protocols is given in Pinkas et al. [20], including a classification
of the underlying techniques. Public-key based PSI protocols were presented
in, e.g., [5,7,8] and the oblivious-transfer based and oblivious-pseudo-random-
function based PSI protocols (see, e.g., [6,16,19]).
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2 Preliminaries

For space considerations we only describe here some less standard definitions.
For n ∈ N, let [n] = {1, . . . , n}. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. We use the
abbreviation PPT to denote probabilistic polynomial-time. All polynomials that
we will consider will be with respect to the security parameter, unless explicitly
stated otherwise; specifically, all polynomial time machines will be polynomial
in the security parameter.

2.1 Secure Multiparty Computation and the MPSI Functionality

We follow the standard definitions of secure multiparty computation for semi-
honest adversaries according to the ideal versus real paradigm (cf. [9]). All parties
run in probabilistically polynomial time, and adversaries are non-uniform. We
consider semi-honest adversaries who follow the prescribed protocol faithfully,
but may try to infer additional information about the honest parties as the pro-
tocol terminates. We also consider augmented semi-honest adversaries, which are
similar to semi-honest ones, with the only difference being that such adversaries
are allowed to change their input to any other (valid) input. We next give the
definition of the MPSI functionality.

Definition 1 (multiparty private set intersection).
Functionality FMPSI:
Inputs: All parties hold the number of parties t, an upper bound M on the number
of elements in any data set, and the security parameter κ. In addition, each party
Pi has a data set DBi as its private input.
Computation: Compute the intersection of all data sets, i.e., IS =

⋂t
i=0 DBi.

Outputs: Party P0 receives IS from the functionality, and all other parties receive
no output.

Bloom Filters. Bloom filters were introduced by Bloom [3] as a compact data
structure for probabilistic set membership testing. A Bloom filter encodes a
subset S of elements in some domain D into an array of m bits, where each
element in the domain is attributed with a subset of the indices in the bit array.
Specifically, a Bloom filter is parametrized by a sequence of k hash functions H =
(h1, . . . , hk), and an element x is attributed with the indices (h1(x), . . . , hk(x)).
To encode a set of elements S, all the bits in the array with index that is
attributed to some x ∈ S are set to 1 and all other bits are set to 0.

It is easy to verify that for two sets S1,S2 that were encoded (with the
same H) into BF1 ,BF2 it holds that BF1 ⊗ BF2 encodes S1 ∩ S2, where ⊗
is the bit-wise AND operator. This feature will play an important role in the
constructions introduced in this work, and a variant thereof (where the bitwise
AND is replaced with a bitwise XOR) will apply to the garbled variant of Bloom
filters that will be used here.
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Garbled Bloom Filters. A garbled variant of Bloom filters (GBF) was intro-
duced by Dong et al. [6]. The garbled version of a Bloom filter is obtained by
expanding each bit in the original Bloom filter to a long bit string (whose length
depends on the security parameter). The compactness of the original Bloom fil-
ter is somewhat compromised here for the sake of obtaining an obliviousness
property. Intuitively, this obliviousness property means that for a given element
x, it is impossible to learn anything on whether x is in the data set without
querying the GBF on all indices attributed to x.

GBF is an array of m ∈ N bit strings, each of length λ ∈ N. Similarly
to a Bloom filter, a GBF is parametrized by a sequence of k hash functions
H = (h1, . . . , hk). To insert an item x, where j1, . . . , jk are the k indices
attributed to x, first choose a vacant index finalInd (namely, finalInd is not
attributed to any element x′ previously inserted to the GBF). Second, treat all
other indices ji. If ji is also vacant, then set it to a randomly chosen λ long bit
string. Otherwise, do noting (the appropriate string was previously determined).
Finally, set the string at index finalInd to the bit-wise XOR of all other k − 1
strings.

3 Multiparty PSI Protocols

3.1 A Protocol with Semi-honest Security

We describe our construction of a semi-honest secure multiparty set intersection
protocol. As in all our constructions, the key idea is to let the parties jointly
compute the garbled Bloom filter for the intersection of all data sets. Recall that
for two sets S1,S2 that were encoded (with the same H) into GBF1 ,GBF2 it
holds that GBF1 ⊕GBF2 encodes S1∩S2, where ⊕ is the bit-wise XOR operator.
The formal description of the protocol appears in Fig. 1.

We prove the security of the protocol, formally given in the following theorem,
in the full version of the paper.

Theorem 1. Protocol MPSI (appearing in Fig. 1) computes FMPSI with statis-
tical security in the FOT-hybrid model,3 in the semi-honest model, for the right
choice of parameters m and k as functions of the security parameter κ and the
bound M on the size of each individual data set.

The composition theorem of [4], immediately yields the following corollary.

Corollary 1. Assume trap-door permutations exist. Then, protocol MPSI
(appearing in Fig. 1) securely computes FMPSI in the semi-honest model, for
the right choice of parameters m and k as functions of the security parameter κ
and the bound M on the size of each individual data set.

3 We stress that as we run many instantiations of FOT in parallel, we need to use an
OT protocol that is secure under parallel composition.
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Fig. 1. Protocol MPSI – multiparty private set intersection with semi-honest security

3.2 A Protocol with Augmented Semi-honest Security

We describe the protocol GBF-MPSI-aug that is secure against augmented semi-
honest adversaries. Recall that an augmented semi-honest adversary must follow
the protocol honestly, but is also allowed to select a different input (from the
correct domain) upon engaging in a protocol execution. On the face of it, this may
seem as a stronger definition of security, since the real model adversary is more
powerful than a semi-honest one. However, it turns out that it is actually easier
to obtain in the case of multiparty set intersection (with a single output). The
intuition for this is that the definition also empowers the ideal model adversary
by allowing it to select different inputs, which it is unable to do in the ideal
semi-honest setting.
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Indeed, the protocol we describe in this section is a (faster) variant of the
protocol that was introduced in Sect. 3.1. The main change here is that all OT
interactions are performed in a star-like communication graph (rather than a
complete network communication graph), with the server P0 taking the role of
the receiver.

The key idea of the construction is to first let parties P1, . . . ,Pt−1 jointly
compute the garbled Bloom filter for the intersection of their data sets (without
the data set of P0). Then, each party Pi interacts with the server P0 via an
oblivious transfer for each entry in Pi’s (share of the) GBF, such that P0 receives
the real share part only for those entries that are attributed to elements that
P0 holds (and random strings otherwise). The formal description of the protocol
appears in Fig. 2.

Theorem 2. Protocol MPSI-Aug (appearing in Fig. 2) computes FMPSI with
statistical security in the FOT-hybrid model,5 in the augmented semi-honest
model, for the right choice of parameters m and k as functions of the security
parameter κ and the bound M on the size of each individual data set.

The composition theorem of [4], immediately yields the following corollary.

Corollary 2. Assume trap-door permutations exist. Then, protocol MPSI-Aug
securely computes FMPSI in the augmented semi-honest model, for the right
choice of parameters m and k as functions of the security parameter κ and the
bound M on the size of each individual data set.

4 Implementations and Experimental Results

We implemented all three versions of our protocol with an emphasis on the aug-
mented semi-honest construction, as we find it more comparable to previous
implementations of [6] and of [18]. Our implementations are based on the open
source code of [6]. Nevertheless, we incorporated several changes and optimiza-
tions, and generalized the implementation from the two-party setting.

We ran our experiments on a cluster with a very low latency network called
CREATE [22] (which is part of the DETER project). The cluster is comprised of
Intel XEON 2.20 GHz machines (E5-2420) with 6 cores running Linux (Ubuntu
16.04 x86-64), and the ping time between computers is approximately 0.1ms and
1Gb of symmetric bandwidth. We survey the results of each of the variants in a
separate table, surveying the effect of the main optimizations incorporated.

See Table 4 for the experimental results of the implementation of the aug-
mented semi-honest protocol – ran in a high latency network, and Table 3 for
the experimental results of that protocol ran over a low latency network.

Code. Our code is written in Java, using OpenJDK Runtime Environment
(version 1.8.0). We view this choice as a first step, which was easier given the
implementation of [6]. We believe that translating our code into a C++ imple-
mentation would result in a factor of two improvement to its running time. We
leave this as future work.
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Fig. 2. Protocol MPSI -Aug – multiparty private set intersection with augmented semi-
honest security

4.1 Optimizing Communication via Hypercube Routing

The most significant optimization we have incorporated is in the communication
scheme of the protocol, which is now performed over a hypercube spanning tree.
Recall that in the star protocol the server P0 engages in an OT interaction with
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all other parties. In order to reduce the overall latency, we wish to load balance
the interactions between pairs of parties. Hypercube routing was originally used
to speed up message propagation by replacing a star-like propagation scheme
with a tree like scheme [2]. In each step, all parties that have already received
the message forward it to its destination via their neighbors. To transmit the
shares to the servers, we use the reverse order of communication. In addition,
rather than just sending a message, the full OT interaction takes place.

Assume that the number of parties is t = 2�. Let ej be a binary vector of
length �, in which the bit in location j is set to 1 and all other bits are set to
0. In the hypercube scheme, at time 0 ≤ j ≤ � − 1, each party i whose identity
has 0 in all bits 0, . . . , j, runs the OT protocol with party i ⊕ ej , where party
i is the receiver. It is straightforward to see that P0 (the server) is the receiver
in all rounds, and that at the end of the protocol it learns information that it is
indistinguishable from the information it learns in the star protocol.

The number of interactions run by P0 is reduced from being equal to the num-
ber of parties t to being � = log t. In the CREATE environment that we used, the
original protocol, without the hypercube optimization, could not exceed 524288
items per data set and 12 parties, or otherwise it would crash (see Table 3).
However, we may expect to be able to run the hypercube based protocol with
as many as 212 = 4096 parties with the same dataset size.

Nevertheless, our experiments demonstrated that if the flow of information is
done round by round by all parties (as specified by the hypercube method), the
running time is much slower than one would expect. We observe that allowing the
parties to start interacting with parties for ‘future’ rounds, before completing the
interaction for the current round (with another party) proves highly beneficial.
In this manner, the order of communication is no longer predefined, however,
this flexibility turns out to give the protocol’s running time a great boost. The
effect of this additional optimization, referred to as the no-blocking hypercube
is illustrated in Table 3. It should be noted that this optimization balances the
load not only in terms of RAM resources, but also in bandwidth and CPU
load.

Remark 1 (proving the security of the hypercube communication optimization).
We stress that the proof of the augmented semi-honest protocol with the hyper-
cube optimization goes through, similarly to the original semi-honest protocol.
One change that is required in the protocol is to have the server participate in
the creation and sharing of the intersection GBF (with all other parties) – before
the OT phase starts. Intuitively, this deals with the case that the server is not
corrupted, and all honest parties engage in OT interaction with a subset of the
corrupted parties.

4.2 Optimizing the Computation

Using Murmur3 [14]/xxHash [15] in the Bloom Filter. The implementation of the
garbled Bloom filter in [6] uses SHA-1 to map values to locations in the filter. Since
there is no need to use a cryptographic hash function for this purpose, we replaced
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SHA-1 with the non-cryptographic hash functions Murmur3 and xxHash (which
are commonly used in algorithms). This turned out to substantially improve the
run time of the GBF creation.

Cached Memory Misses Optimization. The implementation of [6] used a two
dimensional array to hold the GBFs. In our implementation, which requires
many XOR operations, this resulted in many cache misses. We changed the
implementation to store the GBFs in a cache-aware manner. The effect of this
optimization was more evident as the data set size (and, hence, share size) grew.
For example, for 524288-bit long shares, this optimization shaved off up to 60%
of the time it took to construct share in the two dimensional array of [6].

Local Share Reconstruction – Parallel Computation. The local computations of
the XOR operations can be improved by running them in parallel by multiple
threads. However, this requires a substantial part of the RAM to be occupied at
all time. to reduce RAM usage we break the bit-strings into blocks and compute
the XOR block-wise and in parallel. In some more detail, we create two PRG
threads for each party Pi, one for handling the shares (seeds) Pi sends to other
parties, and the other for the shares it receives. Both threads run in parallel and
divide the shares into blocks of a predefined length. After creating the blocks,
the XOR is applied block-wise to all shares in parallel, independently of each
other. Because the XOR operation is faster than the PRG operation, blocks of
the shares are removed shortly after their creation, leaving enough memory free
and usable for upcoming block XOR computations. The improvements of this
optimization, as well as the previous one, are illustrated in Table 5.

Sending Short Seeds Instead of Full Payload. The parties share their local GBF
with each other. To improve the communication complexity, rather than send-
ing the full random sharing to each other, parties send a short seed such that
the receiving party can expand this seed and calculate its final share. payload
locally. We stress that, since all parties hold the same key, in order to claim
security of our implementations, we need to model the PRG or the PRF as a We
further stress that secret sharing only takes place during offline preprocessing,
and hence, not incorporating this optimization does not affect the online time
of our constructions.
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Table 3. Time measurements (in seconds) – augmented semi-honest protocol – low
latency. Rows indicate number of parties. Colomns indicate data set size. Results appear
for (i) basic star topology (no hypercube optimization), (ii) basic hypercube optimiza-
tion (allows blocking), and (iii) hypercube optimization without blocking.

Parties 1024 65536 131072 262144 524288

Augmented semi-honest star
communication

2 2.25 12.99 28.23 54.81 149.21

3 1.97 32.01 64.83 85.80 229.80

4 2.08 25.03 47.56 91.48 268.56

6 2.36 23.84 63.89 110.08 238.69

12 2.29 39.22 67.87 195.51 493.21

18 4.17 45.49 108.11 276.14 -

24 5.48 59.97 132.48 339.10 -

32 6.10 83.21 190.47 - -

36 6.62 102.82 244.15 - -

Augmented semi-honest
hyper cube communication

2 2.00 11.46 28.82 63.67 152.99

3 3.49 27.91 43.34 136.57 324.12

4 3.00 30.21 56.09 205.00 437.25

6 4.52 34.15 72.90 184.00 376.14

12 5.31 45.42 87.05 206.00 430.98

18 6.38 46.00 98.80 219.36 507.29

24 6.43 52.00 101.07 215.38 565.17

32 5.66 58.67 114.57 234.11 581.36

36 7.30 63.46 125.34 237.53 652.46

Augmented semi-honest
hyper cube communication,
no blocking

2 1.98 11.97 31.09 79.28 172.00

3 1.95 32.11 62.85 108.82 224.21

4 2.49 33.54 88.18 142.65 341.40

6 2.58 30.10 78.40 149.23 267.56

12 3.07 38.53 71.69 239.00 384.04

18 3.44 43.00 90.56 204.94 486.11

24 3.57 46.04 101.64 203.03 499.00

32 3.82 51.85 112.21 218.69 418.00

36 3.87 61.93 107.57 252.06 557.42

56 4.06 62.92 136.58 294.37 744.29



250 R. Inbar et al.

Table 4. Time measurements – MPSI -Aug protocol – 50ms latency, 100Mb band-
width. Time in seconds.

Parties Items

1024 65536 131072 262144 524288

2 3.91 32.78 66.85 142.08 307.52

3 3.93 70.066 139.2 243.44 512.91

4 6.64 75.09 142.48 311.46 612.76

6 6.88 90.39 174.41 360.32 825.24

12 9.07 117.67 227.19 467.78 1045.63

18 11.46 140.55 266.23 536.11 1181.91

24 12.01 142.9 295.96 594.37 1250.43

32 13.76 160.15 310.02 628.95 1342.29

36 13.8 167.34 326.73 666.91 1469.35

Table 5. Time measurement (in seconds) of share creation (κ = 80).

Items

Shares 1024 65536 131072 262144 524288

Two-dimensional array GBF of [6] 1 0.08 7.33 15.71 29.02 76.31

2 0.17 12.53 26.17 52.58 142.26

4 0.32 21.81 50.44 92.00 256.45

8 0.66 37.47 76.71 169.87 407.49

12 0.86 53.72 111.32 229.89 672.39

24 1.69 101.17 207.84 446.05 1261.62

36 2.45 151.35 310.74 641.65 1813.56

64 4.23 268.46 534.31 1111.70 3092.48

One-dimensional array 1 0.07 3.81 7.17 14.49 28.80

2 0.13 7.42 14.40 28.91 57.27

4 0.29 14.74 29.02 57.97 116.68

8 0.58 29.26 58.08 115.46 248.23

12 0.85 43.40 88.11 181.43 368.56

24 1.47 87.52 172.45 350.52 685.31

36 2.15 128.71 255.90 519.93 1059.23

64 3.81 229.66 459.14 906.53 1852.85

One-dimensional array with

parallel computation of XOR

operations

1 0.11 5.97 9.70 30.79 63.95

2 0.10 5.65 12.15 34.38 64.52

4 0.13 4.36 8.62 43.92 51.45

8 0.16 7.32 15.89 39.92 37.47

12 0.20 10.05 14.55 31.74 113.77

24 0.35 17.85 46.70 92.09 181.84

36 0.37 23.95 38.66 100.75 208.85

64 0.58 24.05 62.84 85.88 199.61
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