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Abstract. Secure multiparty computation (MPC) protocols enable n
distrusting parties to perform computations on their private inputs while
guaranteeing confidentiality of inputs (and outputs, if desired) and cor-
rectness of the computation, as long as no adversary corrupts more than
a threshold t of the n parties. Existing MPC protocols assure perfect
security for t ≤ �n/2� − 1 active corruptions with termination (i.e.,
robustness), or up to t = n − 1 under cryptographic assumptions (with
detection of misbehaving parties). However, when computations involve
secrets that have to remain confidential for a long time such as cryp-
tographic keys, or when dealing with strong and persistent adversaries,
such security guarantees are not enough. In these situations, all parties
may be corrupted over the lifetime of the secrets used in the computa-
tion, and the threshold t may be violated over time (even as portions of
the network are being repaired or cleaned up). Proactive MPC (PMPC)
addresses this stronger threat model: it guarantees correctness and input
privacy in the presence of a mobile adversary that controls a changing
set of parties over the course of a protocol, and could corrupt all par-
ties over the lifetime of the computation, as long as no more than t are
corrupted in each time window (called a refresh period). The threshold t
in PMPC represents a tradeoff between the adversary’s penetration rate
and the cleaning speed of the defense tools (or rebooting of nodes from a
clean image), rather than being an absolute bound on corruptions. Prior
PMPC protocols only guarantee correctness and confidentiality in the
presence of an honest majority of parties, an adversary that corrupts
even a single additional party beyond the n/2− 1 threshold, even if only
passively and temporarily, can learn all the inputs and outputs; and if
the corruption is active rather than passive, then the adversary can even
compromise the correctness of the computation.

In this paper, we present the first feasibility result for constructing
a PMPC protocol secure against a dishonest majority. To this end, we
develop a new PMPC protocol, robust and secure against t < n − 2 pas-
sive corruptions when there are no active corruptions, and secure but
non-robust (but with identifiable aborts) against t < n/2 − 1 active cor-
ruptions when there are no passive corruptions. Moreover, our protocol
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is secure (with identifiable aborts) against mixed adversaries controlling,
both, passively and actively corrupted parties, provided that if there are
k active corruptions, there are less than n − k − 1 total corruptions.

1 Introduction

Secure multiparty computation (MPC) protocols allow a set of distrusting par-
ties, each holding private inputs, to jointly and distributedly compute a func-
tion of the inputs while guaranteeing correctness of its evaluation, and privacy of
inputs (and outputs, if desired) for honest parties. The study of secure computa-
tion has been combining distributed computing paradigms and security method-
ologies. It was initiated by [Yao82] for two parties and [GMW87] for many par-
ties, and both of these works relied on cryptographic primitives. The information-
theoretic setting was introduced by [BGW88,CCD88] which, assuming private
channels, constructed information-theoretically secure MPC protocols tolerating
up to n/3 malicious parties. Assuming a broadcast channel, [RB89] constructs
a protocol that can tolerate up to n/2 malicious parties. These thresholds, n/3
and n/2, are optimal in the information-theoretic setting, in their respective
communication models. In the context of public key cryptography, schemes for
enhancing distributed trust, e.g., threshold encryption and threshold signatures,
are a special case of MPC, e.g., [FGMY97a,FGMY97b,Rab98,CGJ+99,FMY01,
Bol03,JS05,JO08,ADN06]. Also, when the computation to be performed via
MPC involves private keys, e.g., for threshold decryption or signature generation,
it is of utmost importance for trustworthy operation to guarantee the highest
possible level of corruption tolerance, since confidentiality of cryptographic keys
should be ensured for a long time (e.g., years).

Constructing MPC protocols that guarantee security against stronger adver-
saries and at the same time satisfy low communication and computation com-
plexity bounds has seen significant progress, e.g., [IKOS08,DIK+08,DIK10,
BFO12,OY91,BELO14,BELO15]. While enforcing an honest majority bound
on the adversary’s corruption limit renders the problem (efficiently) solvable, it
is often criticized, from a distributed systems point of view, as unrealistic for pro-
tocols that require long-term security of shared secrets used in the computation,
or for very long computations (i.e., reactive operation, typical in systems mainte-
nance), or may be targeted by nation-state adversaries (often called “Advanced
Persistent Threats”). With advancements of cloud hosting of security services,
and online exchanges for cryptocurrencies which require trustworthy services
protected by their distributed nature, the above criticism makes sense. This con-
cern is especially relevant when considering so-called “reactive” functionalities
that never stop executing, e.g., continuously running control loops that perform
threshold decryption or signature generation via a secret shared key. Such long-
running reactive functionalities will become increasingly important for security
in always-on cloud applications: example settings could include the use of MPC
to compute digital signatures in online financial transactions between large insti-
tutions, or to generate securely co-signed cryptocurrency transactions via secret-
shared (or otherwise distributed) keys [GGN16]. In both these cases, one should
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expect persistent strong adversaries to continuously attack the parties involved
in the MPC protocol, and given enough time vulnerabilities in underlying soft-
ware (or even some hardware) will eventually be found, and the cryptographic
keys may be compromised.

An approach to deal with an adversary’s ability to eventually corrupt all
parties is the proactive security model [OY91]. This model introduces the notion
of a mobile adversary, motivated by the persistent corruption of participating
parties in a distributed computation and the continuous race between parties’
corruption and recovery. A mobile adversary is one that can corrupt all parties
in a distributed protocol over the course of a protocol execution but with the
following limitations: (1) only a constant fraction of parties can be corrupted
during any round, and (2) parties periodically get rebooted to a clean initial
state—in a fashion designed to mitigate the total adversarial corruption at any
given time—guaranteeing that some fraction of honest parties will be maintained
as long as the corruption rate is not more than the reboot rate1. The [OY91]
model also assumes that an adversary does not have the ability to predict or
reconstruct the randomness used by parties in any uncorrupted period of time,
as demarcated by rebooting; in other words, a reboot entails erasing all previous
state.

This paper’s main goal is to answer the following basic question: Is it feasible
to construct a proactive MPC protocol for the dishonest majority setting?

1.1 Contributions

We answer this question in the affirmative by developing the first proactive secure
multiparty computation (PMPC) protocol that is secure in the presence of a
dishonest majority. Our new protocol is, first, secure and robust against t < n−2
passive adversaries (parties which follow the protocol but leak what they know)
when there are no active corruptions (arbitrarily misbehaving parties), and when
parties are serially rebooted. Secondly, the same protocol preserves secrecy but
is unfair (with identifiable aborts) against t < n/2 − 1 active adversaries when
there are no additional passive corruptions. Thirdly, the protocol is also secure
(but non-robust with identifiable aborts) against mixed adversaries that control
a combination of passively and actively corrupted parties such that if there are
k active corruptions there are less than n − k − 1 total corruptions2. We note
that the number of parties we start from is n − 1 and not n because we assume
that parties may be serially rebooted and need recovery from the rest of the
n − 1 parties. The threshold t is n − 3 and not n − 2 because in the refresh
protocol, the secret being shared in the randomizing polynomial is always 0, so
the free coefficient in those polynomials is always an additional point that the
adversary knows, hence we can tolerate one less corruption than in the non-
proactive gradual secret sharing case.
1 We model rebooting to a clean initial state to include required global information,

e.g., circuit representation of the function to be computed, identities of parties, access
to secure point-to-point and broadcast channels.

2 The threshold in this case is actually the minimum of n − 3 and n − k − 1.
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Our design and analysis require new ideas, since the security guarantees of all
existing PMPC protocols do not apply in the case of a dishonest passive major-
ity, or in the case of mixed adversaries that may form a majority as described
above. Our PMPC protocol can be based on any one-way function and oblivious
transfer (the same assumptions as the classic [GMW87] protocol, and formally
requires only oblivious transfer which implies the existence of one-way functions).
The secret sharing scheme underlying our PMPC protocol is an adaptation of
[DEL+16], which recently constructed the first stand-alone proactive secret shar-
ing scheme secure against a dishonest majority. The [DEL+16] scheme makes
use of discrete-logarithm-based verification of secret shares (similar to [Fel87]);
for our PMPC protocol (being a portion of a more general protocol), we replace
this component with another technique (described below as “mini MPC”) to
overcome problematic proactive simulation issues in the security proof. Com-
puting on secret-shared data (with security against mobile dishonest-majority
adversaries) is a topic unaddressed by prior work. Our addition and multipli-
cation sub-protocols are the building blocks that enable the parties to jointly
compute a secret sharing of the desired output value. Addition of two secret-
shared values can be performed by local addition of shares (as in many common
secret sharing schemes), but multiplication requires more work. Our multipli-
cation sub-protocol makes use of the [GMW87] protocol for standard MPC to
perform a “mini MPC” on the proactive secret shares held by the parties, in
order to obtain a proactive secret sharing of the multiplication of two secrets.
(More generally, the multiplication sub-protocol can be instantiated based on
any standard MPC protocol Φ secure against a dishonest majority, and inherits
the efficiency properties from Φ.)

To build in security against mobile adversaries, we intersperse the execu-
tion of the addition and multiplication sub-protocols with a refresh sub-protocol
that “refreshes” the shares held by all parties: informally, each time shares are
refreshed, any knowledge of shares from previous “pre-refresh” sharings becomes
useless to the adversary. This effectively prevents the adversary from learning
sensitive information by putting together shares obtained from corruptions that
occur far apart in time. Whenever a party is de-corrupted (rebooted), its mem-
ory contents are erased, so it needs to “recover” the necessary share information,
this is achieved using our recovery sub-protocol which is triggered dynamically
each time a memory loss occurs. The number of parties that can simultaneously
lose memory is a parameter of our protocol, which trades off with the number
of corruptions allowed per phase. This sensitive trade-off is inherent, if n − τ
parties can restore the shares of τ parties who lost memory, then they could also
collude to learn the shares of those τ parties.

As an additional contribution we provide the first (formal) definition of secure
PMPC in the presence of a dishonest majority consisting of passively and actively
corrupted parties in the full version [EOPY]. Prior security definitions for PMPC
only addressed the honest majority setting, so they did not have to address
potential failures of robustness and fairness. Moreover, no existing definitions
considered PMPC security with mixed adversaries. Our ideal functionality for
the dishonest majority setting models robustness and fairness as a fine-grained
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function of the passive and active corruptions that actually occur during a proto-
col execution (rather than a coarser-grained guarantee depending on adherence
to a corruption threshold that is fixed as a protocol parameter), by adapting
for the proactive setting the multi-thresholds paradigm that was introduced by
[HLM13] in the context of standard (not proactive) MPC.

1.2 Related Work

To the best of our knowledge there are currently only two generic PMPC proto-
cols, [OY91] (requires O(Cn3) communication, where C is the size of the circuit
to be computed via MPC) and [BELO14] (requiring O(C log2(C)polylog(n) +
Dpoly(n) log2(C)), where C is the size of the circuit to be computed via MPC
and D its depth). These PMPC protocols are inherently designed for an honest
majority and it seems difficult to redesign them for a dishonest majority; the
reason is that the underlying secret sharing scheme stores secrets as points on
polynomials of degree less than n/2, so the only adversary structure that can
be described is one in terms of a fraction of the degree of the polynomial and
once the adversary compromises enough parties (even if only passively), it can
reconstruct the polynomial and recover the secret.

1.3 Outline

The rest of the paper is organized as follows. Section 2 outlines the terminol-
ogy of proactively secure computation, communication and adversary models;
corresponding formal definitions are in Appendix A in the full version [EOPY].
Section 3 presents details of our PMPC protocol. The security proofs are pro-
vided in Appendix B in the full version [EOPY].

2 Model and Definitions

We consider n parties (pi where i ∈ [n]) connected by a synchronous network
and an authenticated broadcast channel. Protocol communication proceeds in
discrete rounds which are grouped into consecutive blocks called stages. We
consider a mobile adversary with polynomially bounded computing power, which
“moves around” and chooses a (new) set of parties to corrupt per stage, subject
to a maximum threshold of corruptions for any stage. Note that parties once
corrupted do not necessarily remain so for the remainder of the protocol, which
means that over the course of protocol execution, the adversary can corrupt all
the parties, although not all at the same time.

2.1 Phases and Stages of a Proactive Protocol

We adopt terminology from previous formalizations of proactive protocols
[ADN06,BELO14].
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Phases. The rounds of a proactive protocol are grouped into phases ϕ1, ϕ2, . . . .
A phase ϕ consists of a sequence of consecutive rounds, and every round belongs
to exactly one phase. There are two types of phases, refresh phases and operation
phases. The protocol phases alternate between refresh and operation phases; the
first and last phase of the protocol are both operation phases. Each refresh phase
is furthermore subdivided into a closing period consisting of the first k rounds
of the phase, followed by an opening period consisting of the final � − k rounds
of the phase, where � is the total number of rounds in the phase.

In non-reactive MPC, the number of operation phases can be thought to
correspond to the depth of the circuit to be computed. Intuitively, each operation
phase serves to compute a layer of the circuit, and each refresh phase serves to
re-randomize the data held by parties such that combining the data of corrupt
parties across different phases will not be helpful to an adversary.

Stages. A stage σ of the protocol consists of an opening period of a refresh
phase, followed by the subsequent operation phase, followed by the closing period
of the subsequent refresh phase. Thus, a stage spans (but does not cover) three
consecutive phases, and the number of stages in a protocol is equal to its number
of operation phases. In the case of the first and last stages of a protocol, there
is an exception to the alternating “refresh-operation-refresh” format, the first
stage starts with the first operation phase, and the last stage ends with the last
operation phase.

Corruptions. If a party pi is corrupted by the adversary (A) during an oper-
ation phase of a stage σj , then A learns the view of pi starting from its state
at the beginning of stage σj . If the corruption is made during a refresh phase
between consecutive stages σj and σj+1, then A learns pi’s view starting from
the beginning of stage σj . Moreover, in the case of a corruption during a refresh
phase, pi is considered to be corrupt in both stages σj and σj+1. Finally, a party
pi that is corrupt during the closing period of a refresh phase in stage σj may
become decorrupted. In this case, pi is considered to be no longer corrupt in stage
σj+1 (unless A corrupts him again before the end of the next closing period).
A decorrupted party immediately rejoins the protocol as an honest party, if it
was passively corrupted, then it rejoins with the correct state according to the
protocol up to this point; or if it was actively corrupted, then it is restored to
a clean default state (which may be a function of the current round). Note that
in restoring a party to the default state, its randomness tapes are overwritten
with fresh randomness: this is important since otherwise, any once-corrupted
party would be deterministic to the adversary. In terms of modeling, parties to
be decorrupted are chosen arbitrarily from the corrupt set by the environment.

Erasing State. In our model, parties erase their internal state (i.e., the content
of their tapes) between phases. The capability of erasing state is necessary in the
proactive model, if an adversary could learn all previous states of a party upon
corruption, then achieving security would be impossible, since over the course of
a protocol execution a mobile adversary would eventually learn the state of all
parties in certain rounds.
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2.2 Mixed Corruption Model

We consider mixed adversaries [HLM13] which can perform two distinct types
of corruptions. The adversary can passively corrupt a set of parties (P) and only
read their internal state; the adversary may also actively corrupt some of these
parties (A) and make them deviate arbitrarily from the protocol. We assume
that A ⊆ P. In traditional MPC, a common notation is to denote the num-
ber of parties by n, and the maximum threshold of corrupt parties by t. For
mixed adversaries, there are distinct thresholds for active and passive corrup-
tions. We write ta and tp to denote the thresholds of active and passive corrup-
tions, respectively, i.e., |A| ≤ ta and |P| ≤ tp. Note that since we have defined
each active corruption to be also a passive corruption, each active corruption
counts towards both ta and tp. Following the notation of [HLM13,DEL+16], in
order to model security guarantees against incomparable maximal adversaries,
we consider multi-thresholds T =

{
(t1a, t1p), . . . , (t

k
a, tkp)

}
which are sets of pairs

of thresholds (ta, tp). Security properties are guaranteed if (A,P) ≤ (ta, tp) for
some (ta, tp) ∈ T , where (A,P) ≤ (ta, tp) is a shorthand for |A| ≤ ta and |P| ≤ tp.
If this condition is satisfied, we write that (A,P) ≤ T .

We define our MPC protocols in terms of four security properties: correctness,
secrecy, robustness, and fairness.3 The security properties which are guaranteed
in any given protocol execution is a function of the number of actually corrupted
parties. Accordingly, we consider four multi-thresholds Tc, Ts, Tr, Tf . Correctness
(with agreement on abort) is guaranteed if (A,P) ≤ Tc, secrecy is guaranteed if
(A,P) ≤ Ts, robustness is guaranteed if (A,P) ≤ Tr, and fairness is guaranteed
if (A,P) ≤ Tf . Note that Tr ≤ Tc and Tf ≤ Ts ≤ Tc, since secrecy and robust-
ness are not well-defined without correctness, and secrecy is a precondition of
fairness.4

2.3 New PMPC and Security Definitions

Formal definitions for a proactive MPC protocol and the corresponding ideal
functionality, and security for mixed mobile adversaries and dishonest majorities
can be found in Appendix A in the full version [EOPY] due to space constraints.
These definitions are new to this work; they do not exist in prior proactive
MPC literature since the dishonest majority setting is unaddressed. One notable

3 These terms are standard in the MPC literature. Correctness means that all parties
that output a value must output the correct output value with respect to the set
of all parties’ inputs and the function being computed by the MPC. Secrecy means
that the adversary cannot learn anything more about honest inputs and outputs
than can already be inferred from the corrupt parties’ inputs and outputs (more
formally, secrecy requires that the adversary’s view during protocol execution can
be simulated given only the corrupt parties’ input and output values). Robustness
means that the adversary must not be able to prevent honest parties from learning
their outputs. Finally, fairness requires that either all honest parties learn their own
output values, or no party learns its own output value.

4 We write T ≤ T ′ if ∀(ta, tp) ∈ T, ∃(t′
a, t′

p) ∈ T ′ such that ta ≤ t′
a and tp ≤ t′

p.
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difference of the proactive dishonest majority definition we develop compared to
the dishonest majority model for standard MPC is that in the standard model,
it is acceptable to exclude parties found to be corrupt and simply restart the
protocol with the remaining parties, whereas in the proactive setting this could
result in the exclusion of all parties even though the adversary cannot actually
corrupt all parties simultaneously. Thus, exclusion of misbehaving parties in
our proactive model is only temporary, and the protocol is guaranteed to make
progress in any phase when the adversary does not cause a majority of parties
to deviate from the protocol (otherwise, the phase is restarted). An adversary
could cause multiple restarts of a phase and delay protocol execution—which
seems unavoidable in a dishonest majority model with a mobile adversary—but
cannot cause a phase to have an incorrect output. Due to the definitions’ length
and notational complexity, we have opted for a less formal protocol description
in the limited space in the body.

3 Construction of a PMPC Protocol for Dishonest
Majorities

3.1 Intuition and Overview of Operation

Our PMPC protocol consists of six sub-protocols. GradualShare allows a dealer
to share a secret s among n parties. Reconstruct allows parties to reconstruct
the underlying secret s based on shares that they hold. Refresh is executed
between two consecutive phases, w and w + 1, and generates new shares for
phase w + 1 that encode the same secret as the shares in phase w. Recover
allows parties that lost their shares to obtain new shares encoding the same
secret s, with the help of other honest parties. Add allows parties holding shares
of two secrets s and s′ to obtain shares that encode the sum s + s′. Mult allows
parties holding shares of two secrets s and s′ to obtain shares that encode the
product s × s′.

The overall operation of the PMPC protocol is as follows. First, each party
uses GradualShare to distribute its private input among the n parties (including
itself). The circuit to be computed via PMPC is public, and consists of multiple
layers each comprised of a set of Add or Mult gates which are executed via the
corresponding sub-protocols (layer by layer). Between circuit layers, the shares
of all parties are refreshed via Refresh. Decorrupted parties obtain new shares
encoding the same shared secrets corresponding to the current state of the MPC
computation, i.e., the output of the current circuit layer and any shard values
that will be needed in future layers, by triggering the Recover sub-protocol as
soon as they find themselves rebooted. When the (secret-shared) output of the
final layer of the circuit is computed, parties use Reconstruct to reconstruct
the final output.

In order to tolerate a dishonest majority, it is not enough to directly store
the inputs of the parties (the secrets to be computed on, and which will at the
end be transformed into the outputs) in the free term, or as other points on a
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polynomial. What is needed is to encode the secrets, and compute using them,
in a different form resistant to a dishonest majority of say up to n − 1 parties.
At a high level, this can be achieved by first additively sharing the secret into
d = n − 1 random additive summands (this provides security against t = n − 3
passive corruptions), then sharing each summand using polynomial-based secret
sharing for a range of different reconstruction thresholds: this is the key insight
of the “gradual secret sharing” scheme of [DEL+16].

We develop protocols to add and multiply shares to perform computation on
the secret shares. Addition can be performed locally, but to multiply we utilize a
standard MPC protocol for a dishonest majority. A simple version of our protocol
yields security against passive corruptions; to furthermore achieve active security,
we leverage constant round non-malleable homomorphic commitments and zero-
knowledge proofs based on one-way functions and oblivious-transfer.

The protocol description thus far makes the following two simplifying
assumptions: (1) the function f to be computed is deterministic, and (2) all
output wire values are learned by all parties. The next two paragraphs discuss
how to generalize our protocols, eliminating these assumptions.

We address randomized functions using a standard technique, each party pi

initially chooses a random value ζi. We treat (xi, ζi) as the input of party pi

(instead of just xi as above), and compute the deterministic function f ′ defined
by f ′((x1, ζ1), . . . , (xn, ζn)) = f(x1, . . . , xn; ζ1 + · · · + ζn). As this is a standard
transformation, we omit further details, and for simplicity of exposition, the rest
of the paper deals only with deterministic functions.

We now describe an adaptation for the case when each party pi is to receive
its own private output yi, as follows. This is a slight variation of the stan-
dard technique of “masking” output values using a random mask known only to
the intended recipient—but we highlight that the standard technique requires
a tweak for the proactive setting.5 Before the reconstruction step, the parties
possess a gradual secret sharing of the output values (y1, . . . , yn). At this point,
each party chooses a secret random value ρi (called a mask) and shares it among
the n parties using GradualShare. Then, the Add sub-protocol is run to obtain a
gradual secret sharing of (y1 + ρ1, . . . , yn + ρn) instead of (y1, . . . , yn). Next, the
Reconstruct sub-protocol is run so that every party learns (y1+ρ1, . . . , yn+ρn).
Finally, each party pi performs an additional local computation at the end of
the protocol, subtracting ρi from the value on his output wire to obtain his final
output yi.

3.2 Real-World Protocol Operation

We now give the formal definition of protocol operation based on the sub-
protocols. Definition 1 is the formalization of the description given in prose
in Sect. 3.1.

5 The standard trick is to consider the masks ρi to be part of the parties’ inputs. In
the proactive setting, it is important that the masks be chosen later on, as we shall
see in the security proof.
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The description of how each sub-protocol works will be given in Sect. 3.3.
Within Definition 1 below, the subprotocols are invoked in black-box manner.

Definition 1 (PMPC Protocol Operation). Given an arithmetic circuit C
(of depth dC) that is to be computed by an MPC protocol on inputs x1, . . . , xn,
the proactive MPC protocol is defined as follows. For simplicity, we assume that
refresh phases occur between layers of the circuit, and let R ⊆ [dC ] be the set of
circuit layers after which a refresh phase is to be triggered.6

1. Each party pi acts as the dealer in GradualShare to share its own input xi

among all n parties. (Note that at the conclusion of this step, the parties hold
secret sharings of all the values on the input wires of C, i.e., all the inputs to
gates at layer 1 of C.)

2. Run the Refresh sub-protocol. The duration of a single Refresh sub-protocol
execution is considered to be a refresh phase.

3. For each layer of the circuit, � = 1, . . . , dC :
– For each addition or multiplication gate μ in layer �:7

Compute a sharing of the value on the output wire of μ by using the Add
or Mult sub-protocol respectively. The parties’ inputs to the Add or Mult
protocol will be the sharings of the values on the input wires of μ, which
the parties already possess (the input sharings are computed by step 1 for
� = 1, and subsequently, the input sharings for layer � + 1 are computed
during step �).

– If � ∈ R, run the Refresh sub-protocol.
4. At the conclusion of step 3, the parties possess a gradual sharing of the value

(y1, . . . , yn) on the output wire(s) of the circuit C, where each yi is the output
intended for party pi. The period from this step until the end of the protocol
is a single operation phase. Each party now samples a random value ρi and
acts as the dealer in GradualShare to share ρi among all n parties. Then, the
Add sub-protocol is run to obtain a gradual sharing of the value (z1, . . . , zn)
where zi = yi + ρi.

5. The Reconstruct sub-protocol is then run to reconstruct the shared value
(z1, . . . , zn).

6. Each party pi obtains its output yi by subtraction: yi = zi − ρi.

Moreover, the adversary may decorrupt a party at any point, during operation
or refresh phases, upon which the decorrupted party is restored to a default state
which we shall call ⊥.

– Whenever a party finds itself with internal state ⊥, it broadcasts a message
Help!.

6 In general, more complex refresh patterns are possible, e.g., at the level of gates
rather than circuit layers.

7 If the Add and Mult sub-protocols are secure under parallel composition, the itera-
tions of this for-loop can be executed in parallel for all gates in layer �.



210 K. Eldefrawy et al.

– Upon receiving message Help! from a party pi, all parties immediately execute
the Recover sub-protocol so that pi ends up with the secret shares: of all values
on circuit wires that will be used for later computation, or in steps 4–6, of the
masks ρ1, . . . , ρn and the shared output (z1, . . . , zn). In addition, from step
4 onwards, pi is assisted to recover his own mask ρi, by the other parties
sending to pi their shares thereof. Then, the interrupted operation phase or
refresh phase is resumed, starting with the next round after the last completed
operation-phase or refresh-phase round.

3.3 Sub-protocol Specifications

In the following, field operations occur over a finite field F (of prime characteris-
tic). The sub-protocols make use of a polynomial-based secret sharing schemes,
e.g., [Sha79], and are implicitly parametrized by (F, n, d) where n is the number
of parties and n−d−1 is the number of parties that can simultaneously undergo
a reboot (thus losing their shares, and requiring recovery). The multiplication
sub-protocol is additionally parametrized by Φ (which, in turn, is parametrized
by a security parameter κ), which can be any general MPC protocol secure
against up to n− 1 active corruptions (such as [GMW87]). For simplicity, secret
values are assumed to be field elements; multi-element secrets can be handled
by running the sub-protocols on each element separately.

The proactive MPC protocol resulting from instantiating Definition 1 with
the sub-protocols defined in this subsection is denoted by ProactiveMPCF,n,d,Φ.

GradualShare is used by parties to share their inputs, i.e., each party
acts as a dealer when sharing its own inputs. Parties holding sharings (from
GradualShare) of secrets s may use subprotocol Reconstruct to reconstruct
s, or use subprotocol Refresh to refresh (re-randomize) their shares. Parties
holding sharings of secrets s, s′ can compute a sharing of s + s′ using Add, or a
sharing of s × s′ using Mult.

Subprotocol 1 (GradualShare). We denote by pD the dealer who starts in
possession of the secret value s to be shared. At the conclusion of this protocol,
each party (including the dealer) will possess a share of the secret s.

1. pD chooses d random summands s1, . . . , sd which add up to s, Σd
δ=1sδ = s.

2. For δ = 1, . . . , d, the dealer pD does the following:
(a) pD samples a random degree-δ polynomial fδ over finite field F, subject to

fδ(0) = sδ. pD stores the evaluations fδ(1), . . . , fδ(n) and deletes fδ from
memory.

(b) For i ∈ [n], the dealer pD sends shδ,i = fδ(i) to pi, then deletes fδ(i) from
memory.

3. Each party pi stores its d shares shi = (sh1,i, . . . , shd,i).

Subprotocol 2 (Reconstruct). After a sharing of a secret s using
GradualShare, the n parties can reconstruct s as follows.

1. For δ = d, . . . , 1:
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(a) Each party pi broadcasts its share shδ,i.
(b) Each party locally interpolates to determine the polynomial fδ, then com-

putes sδ = fδ(0).
2. Each party outputs the secret s computed as s = s1 + s2 + · · · + sd.

Subprotocol 3 (Refresh). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) and ends this protocol in possession
of new “refreshed” shares sh′

i = (sh′
1,i, . . . , sh

′
d,i).

1. Each party pi generates an additive sharing of 0 (i.e., d randomization sum-
mands which add up to 0). Let the additive shares of pi be denoted by rδ,i:
note that Σd

δ=1rδ,i = 0.
2. For δ = 1, . . . , d do:

(a) For i = 1, . . . , n: Party pi shares rδ,i by running GradualShare and acting
as the dealer.

(b) Each party pi adds up the shares it received: sh′′
i =

∑n
j=1 shj

δ,i and sets
sh′

δ,i = shδ,i + sh′′
i .

3. Each honest party pi deletes the old shares shi and stores instead: sh′
i =

(sh′
1,i, . . . , sh

′
d,i).

The following sub-protocol is used by parties to recover shares for a rebooted
party.

Subprotocol 4 (Recover). Let parties {pr}r∈R be the ones that need recovery,
where R ⊂ [n]. We refer to the other parties, {pi}i/∈R, as “non-recovering par-
ties.” Below, we describe the procedure to recover the shares of a single party pr.
To recover the shares of all parties, the below procedure should be run ∀r ∈ R.

1. For δ = 1, . . . , d do:
(a) Each non-recovering party pi chooses a random degree-δ polynomial gδ,i

subject to the constraint that gδ,i(r) = 0.
(b) Each non-recovering party pi shares its polynomial with the other n −

|R| − 1 non-recovering parties as follows: pi computes and sends to each
receiving party pj the value shi

δ,j = gδ,i(j).
(c) Each non-recovering party pj adds all the shares it received from the other

n−|R|−1 parties for the recovery polynomials gδ,i to its share of fδ, i.e.,
zj
δ = fδ(j) + Σn

i=1sh
i
δ,j = fδ(j) + Σn

i=1gδ,i(j).
(d) Each non-recovering party pj sends zj

δ to pr. Using this information, pr

interpolates the recovery polynomial gδ = fδ + Σn
i=1gδ,i and computes

shδ,r = gδ(r) = fδ(r).

Subprotocol 5 (Add). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) corresponding to a secret s and
sh′

i = (sh′
1,i, . . . , sh

′
d,i) corresponding to a secret s′, and ends this protocol in

possession of shares sh+
i = (sh+

1,i, . . . , sh
+
d,i) corresponding to the secret s + s′.

1. For each δ ∈ {1, . . . , d} and each i ∈ [n], party pi sets sh+
δ,i = shδ,i + sh′

δ,i.
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Subprotocol 6 (Mult). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) corresponding to a secret s and
sh′

i = (sh′
1,i, . . . , sh

′
d,i) corresponding to a secret s′, and ends this protocol in

possession of shares sh×
i = (sh×

1,i, . . . , sh
×
d,i) corresponding to the secret s × s′.

1. Each party pi adds up its local shares of s and s′ respectively: θi =
∑

δ∈[d] shδ,i

and θ′
i =

∑
δ∈[d] sh

′
δ,i. By construction of the gradual secret sharing scheme,

these sums can be expressed as θi = f̂(i) and θ′
i = f̂ ′(i) for some degree-d

polynomials f̂ , f̂ ′ such that f̂(0) = s and f̂ ′(0) = s′.
2. Run the MPC protocol of [GMW87] as follows:

– The input of party pi to the MPC is (θi, θ
′
i).

– The function to be computed by the MPC on the
collective input

(
(θ1, θ′

1), . . . , (θn, θ′
n)

)
is:

(a) Interpolate (θi)i∈[n] and (θ′
i)i∈[n] to recover the secrets s and s′ as the

free terms of the respective polynomials f̂ and f̂ ′.
(b) Compute the product s× = s × s′.
(c) Compute shares (sh×

δ,i)δ∈[d],i∈[n] as a dealer would when sharing secret
s× using GradualShare.

(d) For each i ∈ [n], output (sh×
δ,i)δ∈[d] to party pi.

3.4 Security Proofs

Security proofs of the full protocol with respect to the formal definitions in
Appendix A are given in Appendix B in the full version [EOPY] due to space
constraints.

4 Conclusion and Open Issues

This paper presents the first proactive secure multiparty computation (PMPC)
protocol for a dishonest majority. Our PMPC protocol is robust and secure
against t < n − 2 passive only corruptions, and secure but non-robust (but with
identifiable aborts) against t < n/2 − 1 active corruptions when there are no
additional passive corruptions. The protocol is also secure, and non-robust but
with identifiable aborts, against mixed adversaries that control a combination
of passively and actively corrupted parties such that with k active corruptions
there are less than n − k − 1 total corruptions.

In this paper we prove the feasibility of constructing PMPC protocols secure
against dishonest majorities. Optimizing computation and communication in
such protocols (and making them practical) is not the goal of this paper and
is an interesting open problem. Specifically, we highlight the following issues of
interest which remain open:

– There are currently no practical proactively secure protocols for dishonest
majorities for specific classes of computations of interest such as threshold
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decryption and signature generation; all existing practical proactively secure
threshold encryption and signature schemes such as [FGMY97a,FGMY97b,
Rab98,FMY01,Bol03,JS05,JO08,ADN06] require an honest majority.

– There are currently no PMPC protocols (or even only proactive secret sharing
schemes) for asynchronous networks and secure against dishonest majorities.
Our PMPC protocol assumes a synchronous network.

– It is unclear what the lowest bound for communication required for a PMPC
protocol secure against a dishonest majority is. We achieve O(n4) commu-
nication for the refresh and recover sub-protocols which are typically the
bottleneck; it remains open if this can be further reduced. PMPC protocols
[BELO14,BELO15] for an honest majority have constant (amortized) com-
munication overhead; it is unlikely that this can be matched in the dishonest
majority case, but it may be possible to achieve O(n3) or O(n2).
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