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Abstract. Lower bounds for structure-preserving signature (SPS)
schemes based on non-interactive assumptions have only been established
in the case of unilateral messages, i.e. schemes signing tuples of group ele-
ments all from the same source group. In this paper, we consider the case
of bilateral messages, consisting of elements from both source groups. We
show that, for Type-III bilinear groups, SPS’s must consist of at least
6 group elements: many more than the 4 elements needed in the uni-
lateral case, and optimal, as it matches a known upper bound from the
literature. We also obtain the first non-trivial lower bounds for SPS’s in
Type-II groups: a minimum of 4 group elements, whereas constructions
with 3 group elements are known from interactive assumptions.
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1 Introduction

Background. A structure-preserving signature (SPS) scheme is a useful building
block for cryptographic protocol design over bilinear groups. In SPS, signatures,
messages and public-keys consist exclusively of source group elements of bilinear
groups and their sizes are measured by the number of them. Since the signature
size greatly impacts the efficiency of the accompanied proofs and the result-
ing protocol, it is of a great interest to investigate possible lower bounds for
the signature size and to construct schemes that achieve these bounds. Table 1
summarizes known lower and upper bounds for the size of structure-preserving
signatures over different settings.

Research on lower bounds for structure preserving signatures was initiated in
[4], where the authors investigate the case of asymmetric bilinear groups (Type-
III groups [16]) where no efficient morphisms are known between the source
groups, G1 and G2. For schemes defined for unilateral messages (that belong to
only one of the source groups), matching lower and upper bounds are known
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Table 1. Bounds on the signature size of structure-preserving signature schemes. See
discussion in Sect. 5 for entries with †,‡,§.

Lower bounds Upper bounds (constructions)

Setting Messages Interactive Non-interactive Interactive Non-interactive

q-type Static

Type-III Unilateral 3 [4] 4 [5] 3 [4] 4 [4] 6 [22]

Bilateral 3 [4] 6 (this work) 3 [4] 6 [4] 10 [23]

Type-II M ∈ G1 3 [6] 4 (this work) 3 [8] 7 [3]‡ 9 [22]§
M ∈ G2 2 [6] 2 [6] 3 [6] 9 [22]§
Bilateral 3 [8] 4 (this work) 7 [3]† 7 [3]‡ 9 [22]§

Type-I N/A 3 [8] 3 [8] 7 [3] 9 [22]

(w.r.t. both interactive and non-interactive assumptions). In the case of bilat-
eral messages (that contain elements from both source groups), a construction is
shown in [4] based on non-interactive assumption, but no lower bounds are pro-
vided to argue its optimality. In [8], the authors investigate the case of symmetric
bilinear groups (Type-I groups) where G1 = G2, and present matching lower and
upper bounds w.r.t. interactive assumptions. Their results are valid as well for
asymmetric bilinear groups with an efficient morphism from G2 to G1 (Type-II
groups) for some message types. The analysis over Type-II groups considering
interactive assumptions is continued by [6] where the authors present matching
bounds for unilateral messages with an ‘unexpected’ gap between messages in
G1 and G2. Nothing was known w.r.t. non-interactive assumptions in Type-II.

In summary, all known lower bounds are about schemes with unilateral
messages or being secure under interactive assumptions. To the best of our
knowledge, nothing has been shown for the case of bilateral messages and non-
interactive assumptions, though this is the most general and preferred case in the
context of structure-preserving signatures. Efficient and trustworthy construc-
tions (based on weak assumptions) in this more general setting are desired, as
they play an important role in the modular design of cryptographic primitives.

Our Results. We present lower bounds on the signature size of structure-
preserving signature schemes over asymmetric bilinear groups signing bilateral
messages and being secure based on non-interactive assumptions.

– A tight lower bound for bilateral messages in Type-III groups. As
illustrated in Table 1, this constitutes the last missing piece for structure
preserving signatures over Type-III groups. We show that secure signatures
for bilateral messages must contain at least 6 group elements as long as the
underlying assumption is non-interactive (see Sect. 3). More concretely, we
show that a signature scheme signing bilateral messages cannot be proved
to be EUF-CMA by a black-box algebraic reduction to any non-interactive
assumption if the signatures contain less than 3 group elements in one of the
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source groups and 3 in the other. Our lower bound matches an existing upper
bound from [4]. Our result allows us to claim the optimality of that scheme.

– Lower bounds for unilateral messages in G1 and bilateral messages
in Type-II groups. These are the first non-trivial lower bounds for Type-
II groups involving non-interactive assumptions. We first show that when
signing unilateral messages in G1, signatures must contain at least 4 group
elements (see Sect. 4). Note that the lower bound for unilateral messages
in G1 implies the same lower bound for bilateral messages That is because
there exists a reduction from bilateral to unilateral messages in G1. However,
this reduction is valid only if messages belong to G

k1
1 × G

k2
2 for some fixed

k1, k2 ∈ N and the underlying scheme supports messages in G
k1+k2
1 . For our

purpose, it is sufficient to show a lower bound for schemes that sign messages
consisting of only one group element in G1 since such a result would also
apply to those with larger message spaces. The result is unfortunately not
known to be optimal as corresponding upper bounds are missing. We further
discuss this point in Sect. 5.

Our approach follows the framework of [5], i.e., we show the existence of a cru-
cial relation (see Sect. 2.3) in the algebraic model [10,14]. It is known that if such
a relation exists, a meta-reduction [12] can be constructed and the considered
scheme cannot be proven under non-interactive assumptions. Having messages
in both source groups or having a morphism from one group to the other makes
the analysis more complex. We elaborate this point as follows. We first recap the
argument used in [5]. Consider a SPS scheme over Type-III groups that yields
3-element signatures, (R,S, T ), for unilateral single-element message M in G1.
For the scheme to be secure, at most two elements in the signature, say R and
S, must be in the same group as M . Thus, every pairing product equation can
be written as

e(R,U1T
a) e(S,U2T

b) e(M,U3T
c) e(V, T ) = Z (1)

with parameters a, b, c, and public-key elements Ui, V and Z that may be
different in every equation. A reduction algorithm R is given an instance of a
non-interactive assumption and simulates signatures for certain messages. Let
G and H be generators for G1 and G2, respectively. When R is algebraic, the
signature (R,S, T ) for message M must be computed as

R = GϕrMαr , S = GϕsMαs , T = Hϕt (2)

for some variables αr, αs, ϕr, ϕs, and ϕt taking values in Zp. Actually, Gϕr ,
Gϕs and Hϕt are linear combinations of group elements in the given problem
instance. Therefore ϕr, ϕs, ϕt may not be known by R. By substituting (R,S, T )
in every verification equation of the form of (1) and taking logarithm for base
e(G,H), we get a system of equations in the above variables. Roughly, to show
that R will never be successful in breaking the assumption, it is necessary to
show that (αr, αs), called the crucial information, is uniquely identified. If this is
done, (αr, αs) can be extracted and used to simulate a valid forgery. The overall



6 M. Abe et al.

argument is not extremely intricate as the obtained equations are linear in the
crucial information (αr, αs). The difficulty significantly increases when applying
the above procedure to show that at least 6 elements are necessary for signing
bilateral messages (M,N) in G1 × G2 of Type-III groups.

In the case of Type-II groups with unilateral messages in G1, the difficulty
comes from the presence of an efficient morphism φ : G1 → G2. Observe that
verification equations for 3-element signatures (R,S, T ) on message M ∈ G1 will
be of the form e(R,U1T

a) e(S,U2T
b) e(M,U3T

c) e(φ(T ), U4T
d) e(U5, T ) = Z for

(R,S, T ) ∈ G
2
1 ×G2. When representing (R,S, T ) as in (2), the resulting system

of equations w.r.t. the crucial information (αr, αs) is linear, although it includes
the quadratic term ϕ2

t , coming from e(φ(T ), T ), and this makes the analysis
slightly more involved than the one from [5]. In our actual proof in Sect. 4, we
address a more general case where the signature element T (in the opposite
group to M) consists of an arbitrary number of elements T1, . . . , T�. In this way,
we handle all cases where signatures include less than three elements, at once.

Other Related Works. There exist variations and extensions of SPS for which the
lower bounds appearing in Table 1 do not hold. For example, for one-time SPS
schemes, there are constructions, e.g., [3,7], whose signature consists of one or
two group elements and their security is based on static assumptions. In [19,20],
the authors circumvent these bounds by considering messages in a special form
(messages are bound by the Diffie-Hellman relation) and construct a SPS scheme
over Type-III groups with two group elements in each signature.

Upper bounds are frequently being improved in the literature [2,22–24]. The
state of the art for static assumptions and Type-III groups is a scheme from [22]
with six-elements signatures for unilateral messages. For bilateral messages, a
scheme presented in [23] yields 10-elements signatures. However, we point out
that combining the scheme from [22] for messages in G1 with a partially one-
time SPS from [2] for messages in G2, results in a scheme for bilateral messages
with 9 signature elements. A randomizable SPS scheme in [18] can be seen as an
alternative scheme whose signature size matches the lower bound of three group
elements in Type-III groups based on an interactive assumption. For Type-I
groups, the generic construction from [22] yields a scheme with the smallest
signature size of 9 when the underlying MDDH assumption [13] is instantiated
with the DLIN assumption [9] adjusted to Type-I groups [2].

Structure-preserving signatures over Type-II groups received less attention,
even though GS-proofs had been extended to Type-II groups [21]. This may be
due to [6] that shows how the one-way morphism between source groups can be
exploited in cryptographic designs. Note that significant gaps in signature size
exist between Type-II and Type-III settings. However, as pointed out in [11],
a smaller signature size does not necessarily imply that a scheme in Type-II is
computationally more advantageous than its analogues scheme in Type-III when
the cost of membership testing is taken into account. That is why, comparisons
should be performed within the same group setting of bilinear groups.
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2 Preliminaries

2.1 Signature Schemes, Bilinear Groups, and Algebraic Algorithm

In this section we briefly review notations and standard notions used throughout
the paper. Due to the page restriction, we refer to [5], which our work is based
on, for more formal definitions.

Let G be a generator of bilinear groups that takes security parameter 1λ

as input and outputs Λ := (p,G1,G2,GT , e), where p is a λ-bit prime and
G1,G2,GT are groups of order p with efficiently computable group operations,
membership tests, and bilinear mapping e : G1 × G2 → GT . An equation of the
form

∏
i

∏
j e(Ai, Bj)aij = Z for constants aij ∈ Zp, Z ∈ GT , and constants or

variables Ai ∈ G1, Bj ∈ G2 is called a pairing product equation (PPE). Sym-
metric bilinear groups refer the case where G1 = G2 and they are called Type-I
groups. The case where G1 �= G2 is known as are asymmetric groups. When
no efficient morphism is provided for either direction between G1 and G2, the
groups are called Type-III. If there is an efficient morphism from G2 to G1, they
are said to be in Type-II setting. See [16] for their properties.

A signature scheme consists of polynomial-time algorithms (C,K,S,V) where
C generates common parameters GK , K generates a pair of public and private
keys, S is a signing algorithm and V is the verification algorithm. It is called
structure preserving w.r.t. bilinear group generator G if the common parameter
GK consists of a group description Λ and some constants aij in Zp, and public
keys, messages, and signatures consist of group elements in G1 and G2, and
verification algorithm V evaluates membership in G1 and G2 and PPEs. A SPS
scheme is considered secure if it is existentially unforgeable against adaptive
chosen message attacks (EUF-CMA). It is assumed that there exists an efficiently
computable key verification algorithm TstVk that takes λ and VK as input and
checks the validity of VK s.t. if 0 ← TstVk(1λ,VK ), then V(VK , ∗, ∗) always
returns 0, and if 1 ← TstVk(1λ,VK ) then the message space Msp is well defined
and it is efficiently and uniformly sampleable. A signature Σ is considered valid
(w.r.t. VK and M), if 1 = V(VK ,M,Σ). Otherwise, it is said to be invalid.

An algorithm is called algebraic w.r.t. a group if it takes a vector of elements
X in the group and outputs a group element Y and there is a corresponding
algorithm called an extractor that can output the representation of Y w.r.t. X.
For instance, if the algebraic algorithm R takes source group elements A,B as
input and outputs element C in the same group, then R’s extractor E outputs
(a, b) such that C = AaBb. It does not matter how R has computed a and b.
For instance, a can be a bit-slice of some group elements like Waters’ Hash [26].
The notion can also be extended naturally to oracle algorithms. Thus, it covers
a wide range of algorithms and frequently used [17,25]. For a formal definition,
we refer to [5], which also argues the differences from the knowledge of exponent
assumption. By Clsalg we denote the set of all algebraic algorithms with respect
to G. With respect to source groups in asymmetric bilinear groups, group ele-
ments are separated if no efficient morphism exist. Suppose that G1 and G2 are
source groups of Type-III and an algorithm takes A from G1 and B from G2
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as input. If the algorithm outputs Y ∈ G1, there is an extractor that outputs
a representation of Y w.r.t. A, i.e. Y is independent of B. Also, if G1 and G2

are Type-II groups, the extractor outputs representation w.r.t. A and also B
mapped to G1.

2.2 Non-interactive Hardness Assumptions

Typically an assumption is defined in such a way that there is no efficient algo-
rithm A that returns a correct answer with better probability than random
guessing. The following definition follows this intuition.

Definition 1 (Algebraic Non-interactive Hardness Assumption). A
non-interactive problem consists of a triple of algorithms P = (I,V,U) where
I ∈ PPT is an instance generator, which takes 1λ and outputs a pair of an
instance and a witness, (ins,wit), and V is a verification algorithm that takes
ins,wit and an answer ans, and outputs 1 or 0 that represents acceptance or
rejection, respectively. A non-interactive hardness assumption for problem P is
to assume that, for any A ∈ PPT, the following advantage function Adv is negli-
gible in λ.

AdvA(1λ) = Pr[(ins,wit) ← I(1λ), ans ← A(ins) : 1 = V(ins, ans,wit)]

− Pr[(ins,wit) ← I(1λ), ans ← U(ins) : 1 = V(ins, ans,wit)]

P is called algebraic if I also takes Λ generated by group generator G(1λ) with
uniformly chosen default generators G ∈ G1 and H ∈ G2 as a part of input, and
there exists an efficient extractor EI that, given the same input as given to I, out-
puts a representation of the element w.r.t. generator G or H with overwhelming
probability.

In search problems, U is usually set to be an algorithm that returns constant
⊥ (or a random answer ans when the domain is uniformly sampleable). In deci-
sion problems, U typically returns 1 or 0 randomly winning only with probability
1/2.

2.3 Crucial Relation

We briefly recap the framework of [5] and restate the impossibility theorem in
slightly refined and specific form. Let Cls be a class of algorithms (we actually
consider class of algebraic algorithm in this paper) and R ∈ Cls be a reduction
algorithm that, given an instance ins of a non-interactive hardness problem P,
outputs VK and a poly-size internal state ϕ. Given ϕ and messages M :=
(M1, . . . ,Mn) for some n > 0, R outputs signatures Σ := (Σ1, . . . , Σn). Let θ
be a transcript defined as θ := (VK ,M ,Σ). A transcript θ is valid and witness
as 1 = V(θ) if 1 = V(VK ,Mi, Σi) for all i = 1, . . . , n. (V is supposed to reject if
TstVk(VK ) �= 1).

In security proofs by reduction, it is often the case that the algorithm does
not actually hold the secret key but has some crucial information to simulate
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signatures. We model such information as a witness of a binary relation Ψ(θ,
)
that we call a crucial relation and define as follows.

Definition 2 (Crucial Relation). Let Sig = (C,K,S,V) be a signature scheme
and TstVk be a key verification algorithm for Sig. A binary relation Ψ : {0, 1}∗ ×
{0, 1}∗ → {0, 1} is a crucial relation for Sig w.r.t. a class of algorithms Cls and
n > 0 if the following properties are provided.
Uniqueness: For every θ := (VK ,M ,Σ) s.t. 1 = V(θ), there exists exactly one
(polynomial size) 
 fulfilling 1 = Ψ(θ,
).
Extractability: For any R ∈ Cls, there exists E ∈ PPT s.t., for any VK ∈ {0, 1}∗

s.t. 1 ← TstVk(1λ,VK ), and any arbitrary string ϕ in 1λ||{0, 1}∗, probability

Pr

⎡

⎢
⎢
⎣

M←Mspn

Σ ← R(ϕ,M ; γ)

 ← E(ϕ,M ; γ)
θ := (VK ,M ,Σ)

:
1 = V(θ)∧
1 �= Ψ(θ,
)

⎤

⎥
⎥
⎦ (3)

is negligible in λ. The probability is taken over the choice of M and random coin
γ given to R and E.
Usefulness: There exists an algorithm B ∈ PPT s.t., for any θ := (VK ,M ,Σ)
and 
 that satisfies Ψ(θ,
) = 1, the following probability is not negligible in λ.

Pr
[

(M,Σ) ← B(θ,
) :
M �∈ M ∧
1 = V(VK ,M,Σ)

]

(4)

The intuition behind extractability is that whenever ϕ is helpful for R to
compute valid signatures, the extractor E should be successful in extracting 

from ϕ. This must hold even for a non-legitimate VK as long as it is functional
with respect to the verification. For an R which is successful in producing a valid
θ only with negligible probability, E can be an empty algorithm.
Theorem 8 of [5]. If a crucial relation for a signature scheme exists w.r.t. alge-
braic algorithms, then there exists no algebraic black-box reduction from the EUF-
CMA security of the signature scheme to any non-interactive algebraic problems
over groups where the discrete logarithm problem is hard.

3 Tight Lower Bound for Bilateral Messages in Type-III

Theorem 1. Any structure preserving signature scheme over asymmetric bilin-
ear groups that yields signatures consisting of 2 or less group elements in either of
the source groups and � group elements in the other (for every � ≤ 3), cannot have
an algebraic black-box reduction for the EUF-CMA security to non-interactive
hardness assumptions if pseudo-random functions exist and the discrete loga-
rithm problem is hard in both source groups.
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Let SIGτ,� be the set of all structure preserving signature schemes in Type-III
whose signature consists of at most τ group elements from one source group and
at most � elements from the other source group. We prove Theorem 1 by proving
the following lemma and applying Theorem 8 of [5]. Note that the absence of
morphisms between source groups is used in the proof via the algebraic model
where the source group elements returned by any algebraic algorithm depend
only on the elements from the same source group that were given to the algorithm
as input.

Lemma 1. For every � ≤ 3 and every scheme in SIG2,�, there exists a crucial
relation.

The proof of Lemma 1 will be given by explicitly presenting a crucial relation
(Definition 3) and showing that it satisfies the three required properties: unique-
ness, extractability and usefulness (Lemma 2). Our proof is valid for arbitrary
values of � except for arguing extractability in one sub-case, when the condition
� ≤ 3 is required. When analyzing Lemma 1 we will consider, without loss of
generality, the case where our scheme has signatures in G

2
1 × G

�
2.

Before starting, we establish some useful notation for expressing signatures
schemes in SIG2,�. These notation will be used throughout the proofs.

Observe that in every structure preserving signature scheme with signature
space G

2
1 × G

�
2, the j-th verification equation can be written in the following

form:

e(R, U
(j)
1 Nd

(j)
1

∏�

i=1
T

a
(j)
i

i ) e(S, U
(j)
2 Nd

(j)
2

∏�

i=1
T

b
(j)
i

i )

e(M, U
(j)
3 Nd

(j)
3

∏�

i=1
T

c
(j)
i

i ) e(V
(j)
0 , N)

∏�

i=1
e(V

(j)
i , Ti) = Z(j) (5)

where (M,N) ∈ G1 × G2 is a message, V
(j)
0 ∈ G1, for every i ∈ {1, 2, 3},

V
(j)
i ∈ G1, U

(j)
i ∈ G2, and Z(j) ∈ GT are elements in the verification

key, and (R,S, T1, . . . , T�) ∈ G
2
1 × G

�
2 is a signature. Note that exponents

d
(j)
k , a

(j)
i , b

(j)
i , c

(j)
i for k ∈ {1, 2, 3}, i ∈ {1, . . . , �} are determined by the descrip-

tion of the scheme.
Note that, to show the impossibility, it is sufficient to consider messages

in G1 × G2 rather than its vector form. Also, observe that we allow arbitrary
Z(j) ∈ GT in every verification equation j, for more generality. These are usually
set to 1GT

in the strict definition of structure preserving signatures.
We denote the discrete-log of a group element w.r.t. the default generator

by its small-case letter. For instance, M = Gm and N = Hn. For elements
R and S in a signature, we consider a special representation of the form R =
GϕrMαr , S = GϕsMαs for some ϕr, αr, ϕs, αs in Zp. Now, by expressing the
j-th verification Eq. (5) in the exponent, we have:

(ϕr + αr m)(u
(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n) + (ϕs + αs m)(u

(j)
2 +

∑�
i=1b

(j)
i ti + d

(j)
2 n)

+m (u
(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n) + v

(j)
0 n +

∑�
i=1v

(j)
i ti = z (6)
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By thinking of the j-th verification Eq. (6) as a polynomial in m, we have the
following equation:

m
{
(u(j)

1 +
∑�

i=1a
(j)
i ti + d

(j)
1 n)αr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)αs

+ (u(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n)

}

+
{
(u(j)

1 +
∑�

i=1a
(j)
i ti + d

(j)
1 n)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)ϕs

+ (v(j)
0 n +

∑�
i=1v

(j)
i ti − z(j))

}
= 0 (7)

Claim 1. If the discrete-logarithm problem over G1 is hard, for all equations j,
every coefficient of (7) as polynomial in m must be zero.

Proof. We refer to the full version of this paper for a proof [1]. 
�
Accordingly, for every verification equation j, the following two equations are

fulfilled.

(u(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n)αr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)αs

+ (u(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n) = 0 (8)

(u(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)ϕs

+ (v(j)
0 n +

∑�
i=1v

(j)
i ti − z(j)) = 0 (9)

Now, we focus on message N . Let Ti = HγiNβi , i.e., ti = γi + βin. Note
that, for each verification equation j, we can rewrite the relations (8) and (9) as
polynomials in n by collecting the corresponding terms:

{
(d(j)1 +

∑�
i=1a

(j)
i βi)αr + (d(j)2 +

∑�
i=1b

(j)
i βi)αs + (d(j)3 +

∑�
i=1c

(j)
i βi)

}
n

+
{
(u(j)

1 +
∑�

i=1a
(j)
i γi)αr + (u(j)

2 +
∑�

i=1b
(j)
i γi)αs + (u(j)

3 +
∑�

i=1c
(j)
i γi)

}
= 0

(10)

{
(d(j)1 +

∑�
i=1a

(j)
i βi)ϕr + (d(j)2 +

∑�
i=1b

(j)
i βi)ϕs + (v(j)

0 +
∑�

i=1v
(j)
i βi)

}
n

+
{
(u(j)

1 +
∑�

i=1a
(j)
i γi)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i γi)ϕs + (−z(j) +

∑�
i=1v

(j)
i γi)

}
= 0
(11)

Now, for verification equation j we introduce the following more compact
notation:

Aβ
j = d

(j)
1 +

∑�
i=1a

(j)
i βi Aγ

j = u
(j)
1 +

∑�
i=1a

(j)
i γi At

j = u
(j)
1 + d

(j)
1 n +

∑�
i=1a

(j)
i ti

Bβ
j = d

(j)
2 +

∑�
i=1b

(j)
i βi Bγ

j = u
(j)
2 +

∑�
i=1b

(j)
i γi Bt

j = u
(j)
2 + d

(j)
2 n +

∑�
i=1b

(j)
i ti

Cβ
j = d

(j)
3 +

∑�
i=1c

(j)
i βi Cγ

j = u
(j)
3 +

∑�
i=1c

(j)
i γi Ct

j = u
(j)
3 + d

(j)
3 n +

∑�
i=1c

(j)
i ti

V β
j = v

(j)
0 +

∑�
i=1v

(j)
i βi V γ

j = −z(j) +
∑�

i=1v
(j)
i γi V t

j = −z(j) + v
(j)
0 n +

∑�
i=1v

(j)
i ti
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With a similar argument as the one used in Claim 1, we can argue that if Eqs. (10)
and (11) hold, then they must hold as polynomials in n if the discrete logarithm
problem is hard. Therefore, if the above equations hold, we must have:

Aβ
j αr + Bβ

j αs + Cβ
j = 0 (12)

Aγ
j αr + Bγ

j αs + Cγ
j = 0 (13)

Aβ
j ϕr + Bβ

j ϕs + V β
j = 0 (14)

Aγ
j ϕr + Bγ

j ϕs + V γ
j = 0 (15)

We say a verification equation j is degenerate if At
j = Bt

j = Ct
j = V t

j = 0.
Note that, At

j = Aγ
j + nAβ

j and the same occurs for B, C and V . In general, if
an equation j is degenerate, it must hold

Aγ
j = Aβ

j = Bγ
j = Bβ

j = Cγ
j = Cβ

j = V γ
j = V β

j = 0

if dlog is hard (this can be shown by a similar analysis as in Claim 1).
Finally, for every pair of verification equations, say j and k, we define the

determinant Dtj,k(n, t1, . . . , t�) as:

Dtj,k(n, t1, . . . , t�) := At
jB

t
k − At

kBt
j

= (Aγ
j + nAβ

j )(Bγ
k + nBβ

k ) − (Aγ
k + nAβ

k)(Bγ
j + nBβ

j )

Hereafter we use the same conventions for matrix-representations of linear
maps on finite-dimensional spaces. The rank of a matrix is defined to be the
dimension of the vector space generated by its columns/rows. Given two vectors
v,w over Z

n
p , we say they are linearly dependent or proportional, denoted by

v ≡ w if and only if there exist scalars ρ, δ ∈ Zp (not both null), s.t. ρv = δw.
We prepared the notation to define a crucial relation for Sig ∈ SIG2,�. We

first provide some intuition about how it is defined and why.

Intuition About the Crucial Relation. The algebraic extractor associated to the
reduction provides coefficients of a linear combination, linking the group elements
returned by the reduction and the group elements that it received. It turns out,
that if the discrete logarithm problem is hard, these coefficients must satisfy
certain additional properties. When developing the crucial relation, one thinks
of how to embed these coefficients in the witness, since they result extremely
useful for creating a forgery. For example, knowing the pair (αr, αs) that was
used by the reduction to create R = GϕrMαr and S = GϕsMαs , a new signature
can be created on a different message (see the full version of this paper for
details). However, these coefficients cannot just be included in the witness. It is
required that they are unique in some sense. Otherwise, using them to build a
signature could potentially give extra information to the reduction. The biggest
challenge when defining the crucial relation is finding cases in which we can
argue usefulness and uniqueness at the same time.
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Definition 3 (Crucial Relation for Sig ∈ SIG2,� for � ≤ 3). For signature
scheme Sig = (C,K,S,V) in SIGτ,�, and its transcript θ, let (R,S, T1, . . . , T�)
be the first signature in θ for message (M,N). For witness 
 ∈ (Zp ∪⊥)�+2, the
relation Ψ(θ,
) is defined by the following algorithm:

1. If θ is invalid, return 0.
2. If there exist j, k s.t. Dtj,k(n, t1, . . . , t�) �= 0. Let αr, αs ∈ Zp satisfy Eq. (8)

for such j, k. If 
 = (αr, αs,⊥, . . . ,⊥) then return 1, else return 0.
3. If there exists a verification equation, j, s.t. one and only one of the following

the expressions At
j and Bt

j is zero. Let j be the index of the first equation that
satisfies the previous condition. If At

j = 0 and 
 = (0, αs,⊥, . . . ,⊥) where
Bt

jαs + Ct
j = 0 then return 1, else if Bt

j = 0 and 
 = (αr, 0,⊥, . . . ,⊥) where
At

jαr + Ct
j = 0 then return 1, else return 0.

4. If all verification equations are degenerate, i.e. for all j, At
j = Bt

j = Ct
j =

V t
j = 0, if 
 = (⊥, . . . ,⊥) return 1, else return 0.

5. If there exists β = (β1, . . . , β�) ∈ Z
�
p s.t. for γi = ti − nβi for i ∈ {1, . . . , �}

and every pair of verification equations j, k the following vectors in Z
8
p are

proportional:
(

Aβ
j Bβ

j Cβ
j V β

j Aγ
j Bγ

j Cγ
j V γ

j

)
≡ (

Aβ
k Bβ

k Cβ
k V β

k Aγ
k Bγ

k Cγ
k V γ

k

)

where, for non-degenerate equations j it holds, Aβ
j Bγ

j − Aγ
j Bβ

j �= 0.
If 
 = (αr, αs,⊥, . . . ,⊥) satisfying Aβ

j αr + Bβ
j αs + Cβ

j = 0 and Aγ
j αr +

Bγ
j αs +Cγ

j = 0 for every verification equation j, then return 1, else return 0.
6. If there exists a non-degenerate equation j s.t. there exist coefficients

μ1, μ2, μ3 ∈ Zp, which are publicly computable and verify
(
u
(j)
1 d

(j)
1 a

(j)
1 . . . a

(j)
�

)
μ1 +

(
u
(j)
2 d

(j)
2 b

(j)
1 . . . b

(j)
�

)
μ2 +

(
u
(j)
3 d

(j)
3 c

(j)
1 . . . c

(j)
�

)
μ3 = 0

if it can be found μ3 �= 0 then
• if 
 = (⊥, . . . ,⊥) then return 1 • otherwise, return 0
else (when μ3 must be 0), go to clause 8.

7. If there exists β = (β1, . . . , β�) ∈ Z
�
p s.t. for every j, Aβ

j = 0 ∧ Bβ
j = 0 ∧ Cβ

j =
0 ∧ V β

j = 0, if 
 = (β1, . . . , β�) then return 1, else return 0.
8. In any other case, if 
 = (αr, 0,⊥, . . . ,⊥) s.t., if we set αs = 0, for every

equation j, it holds At
jαr + Bt

jαs + Ct
j = 0 then return 1, else return 0.

Lemma 2. For every � ≤ 3, Ψ is a crucial relation for every Sig ∈ SIG2,� w.r.t.
algebraic algorithms and a message sampler choosing messages uniformly.

Proof. We show that Ψ has uniqueness as defined for a crucial relation. Proofs
for usefulness and extractability are also technically interesting but due to the
space restriction, we refer to [1] for more details.

Let k be the total number of verification equations. When analyzing scheme
Sig ∈ SIG2,�, we will assume without loss of generality that Sig is s.t.

rank

⎛

⎜
⎝

a
(1)
1 b

(1)
1 c

(1)
1 v

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1 v

(k)
1

...

a
(1)
� b

(1)
� c

(1)
� v

(1)
� . . . a

(k)
� b

(k)
� c

(k)
� v

(k)
�

⎞

⎟
⎠ = � (16)
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First note that the assumption is reasonable for � = 1. Otherwise the scheme
would be completely trivial. For other values of �, the scheme admits a transfor-
mation that makes one of the T ′s disappear (because one of the rows of the above
matrix could be expressed as a linear combination of the others) and thus, Sig
would belong to SIG2,�−1 which is captured by the same crucial relation instan-
tiated for � − 1. The proof is presented for a generic � and we will only use the
restriction � ≤ 3 to argue extractability for clause 7.

Uniqueness. To argue uniqueness we show that every valid transcript θ admits
one and only one witness 
 s.t. 1 = Ψ(θ,
). First, note that every valid θ falls
in one of the clauses 2–8 (clause 8 accepts every θ that did not fall in an earlier
clause). We analyze clause by clause the uniqueness of 
 in case θ fall in it.

Assume that θ falls into clause 2, i.e., for some (j, k), Dtj,k(n, t1, . . . , t�) �= 0.
Note that, there can only exist a unique pair (αr, αs) satisfying Eq. (8) for both
j and k, because Dtj,k(n, t1, . . . , t�) �= 0. That makes the witness unique.

When θ falls in clause 3, let j be the first verification equation for which one
and only one of At

j , Bt
j is zero. Uniqueness holds because if At

j = 0 then Bt
j �= 0

and there exists exactly one αs s.t. Bt
jαs +Ct

j = 0. On the other hand, if At
j �= 0,

there exists exactly one αr satisfying At
jαr + Ct

j = 0.
In case of clauses 4 or 6, uniqueness holds immediately.
For clause 5, it is clear that in case of existing a valid witness, it must be

unique. That is because, due to Aβ
j Bγ

j −Aγ
j Bβ

j �= 0, there exists exactly one pair
(αr, αs) satisfying Aβ

j αr + Bβ
j αs + Cβ

j = 0 and Aγ
j αr + Bγ

j αs + Cγ
j = 0 as clause

5 requires. However, we need to show that this (αr, αs) exists, independently
of the β that has been chosen (as long as the β satisfies the conditions of the
clause). To do so, we consider a different vector of β, defined by β′

i = βi + δi (we
denote γ′

i = t′i − nβ′
i) for i ∈ {1, . . . , �} and we prove that the value of (αr, αs)

must be the same. Because Aβ
j Bγ

j − Aγ
j Bβ

j �= 0, the equations we can give a
explicit formula for (αr, αs) satisfying the equations Aβ

j αr +Bβ
j αs +Cβ

j = 0 and
Aγ

j αr + Bγ
j αs + Cγ

j = 0 for some j. That is,

αr =
Bγ

j Cβ
j − Bβ

j Cγ
j

Aγ
j Bβ

j − Aβ
j Bγ

j

αs =
Aβ

j Cγ
j − Aγ

j Cβ
j

Aγ
j Bβ

j − Aβ
j Bγ

j

Now, assume that αr and αs are derived from the same equations induced by a
different β, i.e., β′ = β + δ. Expanding the equations and rearranging terms, we
can express the above equation as (we omit indices j for simplicity)

αr =
Bγ

j Cβ
j − Bβ

j Cγ
j − nΔ1 + Δ2

Aγ
j Bβ

j − Aβ
j Bγ

j − nΔ3 + Δ4

where

Δ1 = (
∑�

i=1biδi)(d3 +
∑�

i=1ciβi) − (
∑�

i=1ciδi)(d2 +
∑�

i=1biβi)

Δ2 = (
∑�

i=1ciδi)(u2 +
∑�

i=1biγi) − (
∑�

i=1biδi)(u3 +
∑�

i=1ciγi)

Δ3 = (
∑�

i=1aiδi)(d2 +
∑�

i=1biβi) − (
∑�

i=1biδi)(d1 +
∑�

i=1aiβi)

Δ4 = (
∑�

i=1biδi)(u1 +
∑�

i=1aiγi) − (
∑�

i=1aiδi)(u2 +
∑�

i=1biγi)



Lower Bounds on Structure-Preserving Signatures for Bilateral Messages 15

Our goal is to show that αr is unique and therefore, increments −nΔ1 +Δ2 and
−nΔ3 + Δ4 are zero. Observe that, the new β′ must also satisfy the equation

(d1 +
∑�

i=1aiβi +
∑�

i=1aiδi)αr + (d2 +
∑�

i=1biβi +
∑�

i=1biδi)αs

+ (d3 +
∑�

i=1ciβi +
∑�

i=1ciδi) = 0

which also satisfies (d1 +
∑�

i=1aiβi)αr +(d2 +
∑�

i=1biβi)αs +(d3 +
∑�

i=1ciβi) = 0.
Assume that αr, αs is not unique, in that case, it must be

(d1 +
∑�

i=1aiβi)(d2 +
∑�

i=1biβi +
∑�

i=1biδi)

− (d2 +
∑�

i=1biβi)(d1 +
∑�

i=1aiβi +
∑�

i=1aiδi) = 0

which leads to (
∑�

i=1aiδi)(d2 +
∑�

i=1biβi) − (
∑�

i=1biδi)(d1 +
∑�

i=1aiβi) = 0 and
observe that the previous expression corresponds to Δ3. A similar analysis, using
the following equations (from the requirements of clause 5):

(u1 +
∑�

i=1aiγi)αr + (u2 +
∑�

i=1biγi)αs + (u3 +
∑�

i=1ciγi) = 0

(u1 +
∑�

i=1aiγi +
∑�

i=1aiγi)αr + (u2 +
∑�

i=1biγi +
∑�

i=1biγi)αs

+ (u3 +
∑�

i=1ciγi +
∑�

i=1ciγi) = 0

leads to (
∑�

i=1biδi)(u1 +
∑�

i=1aiγi) − (
∑�

i=1aiδi)(u2 +
∑�

i=1biγi) = 0 and observe
that the previous expression corresponds to Δ4. By a similar analysis, it can be
shown that the increments in the numerator of αr are zero and eventually, that
the same thing occurs for αs.

If θ falls into clause 7, and the witness 
 satisfies Ψ , it must be 
 =
(β1, . . . , β�), with Aβ

j = 0 ∧ Bβ
j = 0 ∧ Cβ

j = 0 ∧ V β
j = 0. Or equivalently,

(β1, . . . , β�) is a solution of the following linear system
(
β1 . . . β�

)
M =

(
−d

(1)
1 −d

(1)
2 −d

(1)
3 −v

(1)
0 −d

(2)
1 . . . −d

(k)
1 −d

(k)
2 −d

(k)
3 −v

(k)
0

)

where M is the matrix from Eq. (16). Because the rank of M is �, there exists at
most one solution to the system and therefore, the witness is unique.

For arguing about the missing clause, 8, we prove the following Claim.

Claim 2. Any transcript θ that did not fall in clause 5 or before is s.t. all
Eq. (12)(∗) are be proportional between them and to all Eq. (13)(∗) (when con-
sidering them as linear equations in αr, αs).

Proof. Assume that the groups of Eqs. (12)(∗) and (13)(∗) are not proportional.
We show that θ should have fallen into clause 5 or earlier.

Note that at this point (and because we did not enter in clause 3), for every
pair of verification equations j, k the determinant Dtj,k(n, t1, . . . , t�) is zero. Also
note that, if we consider as before, ti = γi + nβi for every i ∈ {1, . . . , �}, such a
determinant can be seen as a degree-2 polynomial in n,

n2(Aβ
j Bβ

k − Aβ
kBβ

j ) + n (Aβ
j Bγ

k − Aγ
kBβ

j + Aγ
j Bβ

k − Aβ
kBγ

j ) + (Aγ
j Bγ

k − Aγ
kBγ

j )
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which is zero for every pair j, k. In a similar way as done in the proof of Claim 1,
we can prove that Dtj,k(n, t1, . . . , t�) = 0 happens only if every coefficient of the
above polynomial in n is zero (otherwise, R can be used to solve the discrete-
logarithm problem in G2). We therefore have

Aβ
j Bβ

k − Aβ
kBβ

j = 0 (17)
Aγ

j Bγ
k − Aγ

kBγ
j = 0 (18)

Aβ
j Bγ

k − Aγ
kBβ

j + Aγ
j Bβ

k − Aβ
kBγ

j = 0 (19)

Let (x)(j) denote equation (x) w.r.t. j-th verification equation. Equation (17)
implies that, when considering the relations (12)(j) for all j as equations in
αr, αs, they are all proportional. The same happens with Eq. (13)(j) due to (18).

First, note that if all verification equations are degenerate, we would have
entered in clause 4. On the other hand, if there is just one non-degenerate ver-
ification equation the condition on clause 5 holds and we would have fallen
in there. Now, pick two non-degenerate equations, say (j, k). Note that, since
Aβ

j Bβ
k = Aβ

kBβ
j and they are non-degenerate, there must exist a constant ρ ∈ Zp

s.t. Aβ
j = ρAβ

k and Bβ
j = ρBβ

k . Analogously, since Aγ
j Bγ

k = Aγ
kBγ

j and they are
non-degenerate, there exists a constant δ ∈ Zp s.t. Aγ

j = δAγ
k and Bγ

j = δBγ
k .

Now, substituting in Eq. (19) we have

ρAβ
kBγ

k − Aγ
kρBβ

k + δAγ
kBβ

k − Aβ
kδBγ

k = (ρ − δ)(Aβ
kBγ

k − Aγ
kBβ

k ) = 0 (20)

Because the groups of Eqs. (12)(∗) and (13)(∗) are not proportional between
them, it must be (Aβ

kBγ
k − Aγ

kBβ
k ) �= 0 for any pair of non-degenerate equations

j, k, and thus, it must be ρ−δ = 0. Therefore, the linear factor between Eq. (12)(j)

and (12)(k) is the same as the linear factor between Eq. (13)(j) and (13)(k). With
similar techniques, it can be shown that in this situation happens between A
and C and so on. In fact, it must hold

(
Aβ

j Bβ
j Cβ

j V β
j At

j Bt
j Ct

j V t
j

)
≡ (

Aβ
k Bβ

k Cβ
k V β

k At
k Bt

k Ct
k V t

k

)

for any pair of non-degenerate verification equations j, k. If j or k are degenerate,
the above equations hold and the transcript θ would have entered in clause 5.

Therefore, if clause 8 is reached, all equations in (12)(∗) must be proportional
to all Eq. (13)(∗). 
�

At this point, we know that all equations of the form Aβ
j αr +Bβ

j αs +Cβ
j = 0

are proportional between them for all j (looking at them as linear equations in
αr, αs) and they are all proportional to Aγ

j αr + Bγ
j αs + Cγ

j = 0 for all j. This
implies that they are also all proportional to At

jαr + Bt
jαs + Ct

j = 0 for every j.
Pick a non-degenerate equation, say j∗. If αr, αs satisfy this equation, they

satisfy them all. On the other hand, because it is non-degenerate, At
j∗ �= 0 and

therefore, there exists a unique value αr ∈ Zp s.t. At
j∗αr + Bt

j∗ · 0 + Ct
j∗ = 0.

Therefore, the witness is unique in this branch. 
�
From Theorem 1, the following corollary is immediate. It implies that at least

six group elements are necessary as claimed in Table 1.
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Corollary 1. If there exists a structure preserving signature scheme that signs
bilateral messages over Type-III bilinear groups and its EUF-CMA security is
proved by algebraic black-box reductions to a non-interactive problem, then its
signature must include at least 6 group elements.

It is worth to point out that the above result brings new insights to the case of
unilateral messages in Type-III under non-interactive assumptions. Recall that
the 4-element construction in [5] outputs signatures in G

3
1 × G2 for messages

in G1. It was unknown whether other structures such as G
2
1 × G

2
2 are possible.

Corollary 1 states that G
3
1 × G2 is the only possible choice and it justifies the

optimality of the construction from [5].
The following corollary restricts the number of schemes for bilateral messages

with signatures in G
2
1 × G

�
2 for arbitrary �, by imposing a condition without

which it would be easy to argue extractability for clause 7.

Corollary 2. If Sig is a signature scheme for messages (M,N) ∈ G1 ×G2 with
signature elements (R,S, T1, . . . , T�) ∈ G

2
1 × G

�
2 is proven EUF-CMA under a

non-interactive assumption, it must be s.t. all the k verification equations satisfy:

rank

⎛

⎜⎜⎜⎜⎝

d
(1)
1 d

(1)
2 d

(1)
3 . . . d

(k)
1 d

(k)
2 d

(k)
3

a
(1)
1 b

(1)
1 c

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1

...

a
(1)
� b

(1)
� c

(1)
� . . . a

(k)
� b

(k)
� c

(k)
�

⎞

⎟⎟⎟⎟⎠
< �

4 Lower Bounds in Type-II

In Type-II, there are three cases, i.e., (1) messages exist only in G1, (2) messages
exist only in G2, and (3) messages exist in both G1 and G2. Below, we give a
bound for the first case. Note that it directly implies a lower bound for bilateral
messages (case 3) as well.

Theorem 2. Any structure preserving signature scheme over Type-II groups
with message space M ⊂ G1 that yields signatures consisting of 3 group elements
cannot have an algebraic black-box reduction from the EUF-CMA security to
non-interactive hardness assumptions if pseudo-random functions exist and the
discrete logarithm problem is hard in G1.

Let M ∈ G1 be a message and (R,S, T1, . . . , T�) be a signature. We first
consider two extreme cases where signatures include elements from one group. If
(R,S, T1, . . . , T�) ∈ G

2+�
1 , the verification equations are in the form of e(R,U1)

e(S,U2) e(M,U3)
∏�

j=1 e(Tj , U3+j) = Z where Ui and Z are public-keys. Thus,
given two signatures on two messages, one can easily obtain a valid signature on
a new message by linearly combining two messages and signatures. Therefore,
such signatures are vulnerable to random message attacks.

We now consider the case where the number of signature elements in G1 is at
most 2. Say, (R,S) ∈ G

2
1, T1, . . . , T� ∈ G

�
2. Let SIG� be the set of all structure
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preserving signature schemes whose signature consists of 2 group elements from
G1 and other � elements from G2. We denote by Ã the group element in G1 that
was mapped from A ∈ G2.

Theorem 2 is shown by combining our Lemma 3 with Theorem 8 from [5].

Lemma 3. For every scheme in SIG�, there exists a crucial relation.

Proof. According to [6], at least 2 verification equations are required in Type-II
for secure signature with (R,S) ∈ G

2
1, T1, . . . , T� ∈ G

�
2 ∈ SIG�. Observe that in

every structure preserving signature scheme with signature space G
2
1 × G

�
2, the

j-th verification equation can be written in the following form, where M ∈ G1 is
a message, U

(j)
i , V

(j)
i are elements in VK , a

(j)
i , b

(j)
i , c

(j)
i , d

(j)
i ∈ Zp for i = 1, . . . , �

are public parameters, and (R,S, T1, . . . , T�) ∈ G
2
1 × G

�
2 are signatures,

e(R,U
(j)
1

∏�

i=1
T

a
(j)
i

i ) e(S,U
(j)
2

∏�

i=1
T

b
(j)
i

i ) e(M,U
(j)
3

∏�

i=1
T

c
(j)
i

i )
∏�

j=1

∏�

i=1
e(T̃j , T

d
(j)
i

i )
∏�

i=1
e(V (j)

i , Ti) = Z(j). (21)

Note that, to show the impossibility, it is sufficient to consider a single-element
message in G1 rather than its vector form.

For elements R,S, Ti (i = 1, . . . , �) in a signature, we consider a special
representation of the form R = GϕrMαr , S = GϕsMαs , Ti = Hϕti for some
ϕr, αr, ϕs, αs, ϕti in Zp. Now, consider Eq. (21) in the exponent:

(ϕr + αr m) (
∑�

i=1a
(j)
i ϕti + u

(j)
1 ) + (ϕs + αs m) (

∑�
i=1b

(j)
i ϕti + u

(j)
2 )

+ m (
∑�

i=1c
(j)
i ϕti + u

(j)
3 ) +

∑�
j=1ϕtj

∑�
i=1d

(j)
i ϕti +

∑�
j=1 v

(j)
i ϕti = z (22)

By considering (22) as a polynomial in m, it can be shown that

(
∑�

i=1a
(j)
i ϕti + u

(j)
1 )αr + (

∑�
i=1b

(j)
i ϕti + u

(j)
2 )αs + (

∑�
i=1c

(j)
i ϕti + u

(j)
3 ) = 0

(23)

if the discrete logarithm problem is hard in G1. We denote by Dtj,k(t1, . . . , t�) the
determinant of Eq. (23) for j and k �= j, when considered as polynomials in (αr,
αs). There exists a unique solution (αr, αs) if and only if Dtj,k(t1, . . . , t�) �= 0.
Let θ denote a transcript θ := (VK , (M (1), R(1), S(1), T

(1)
1 , . . . , T

(1)
� ), . . . , (M (n),

R(n), S(n), T
(n)
1 , . . . , T

(n)
� )). We construct a crucial relation for Sig ∈ SIG�.

Definition 4 (Crucial Relation for Sig ∈ SIG�). Let 
 := (ω1, ω2) and
given θ, let (R,S, T1, . . . , T�) be the first signature in θ, for message M . The
relation Ψ(θ,
) is decided as follows.

1. If θ is invalid, return 0.
2. Else if there exist verification equations j and k s.t. Dtj,k(t1, . . . , t�) �= 0,

– if 
 = (αr, αs) where αr and αs satisfy (23) for both verification equations
j and k, return 1,
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– else return 0.
3. Else if 
 = (⊥,⊥) then return 1, else return 0.

Lemma 4. The relation Ψ in Definition 4 is a crucial relation for any Sig ∈
SIG� w.r.t. algebraic algorithms and a message sampler choosing M uniformly.

We show that the relation Ψ in Definition 4 satisfies usefulness, omitting
proofs for uniqueness and extractability (see [1] for further details).
Usefulness. Given 
 = (αr, αs) ∈ Z

2
p, we forge a signature on arbitrary fresh

message as follows:
Choose M̂ ∈ G1 randomly. Compute (M	, R	, S	, T 	

1 , . . . , T 	
� ) = (M · M̂,

R · M̂−αr , S · M̂−αs , T1, . . . , T�) and output (R	, S	, T 	
1 , . . . , T 	

� ) as a forgery
for M	. Since it uses the actual αr and αs that were used by the reduction,
it constitutes a valid signature because it satisfies (21) for every verification
equation.

On the other hand, if 
 = (⊥,⊥), it means that Eq. (23) is proportional (as
an equation in αr and αs) for every verification equation j. We say a verification
equation is degenerate if

∑�
i=1a

(j)
i ϕti + u

(j)
1 = 0 and

∑�
i=1b

(j)
i ϕti + u

(j)
2 = 0.

Otherwise, it is called non-degenerate. Note that, if T1, . . . , T� are reused, if a
non-degenerate verification equation holds for certain M,R, S, all verification
equations will also hold (because they are all proportional). This observation
allows us to define the following forgery:

Pick a non-degenerate verification equation j s.t.
∑�

i=1a
(j)
i ϕti + u

(j)
1 �= 0.

Compute M	 = M ·(U (j)
1

∏�
i=1 T̃

a
(j)
i

i

)−1 and R	 = R ·(U (j)
3

∏�
i=1 T̃

c
(j)
i

i

)
. Observe

that (R	, S, T1, . . . , T�) is a valid signature for M	: it satisfies the non-degenerate
equation j and, because it reuses T1, . . . , T�, it must satisfy all the others too.

If no non-degenerate verification equation satisfies the previous condition,
pick one, say j, s.t.

∑�
i=1b

(j)
i ϕti + u

(j)
2 �= 0. Analogously, compute M	 = M ·

(
U

(j)
2

∏�
i=1 T̃

b
(j)
i

i

)−1 and S	 = S · (
U

(j)
3

∏�
i=1 T̃

c
(j)
i

i

)
and observe that (R,S	, T1,

. . . , T�) is a valid signature for M	.
Finally, if the above is not possible, all verification equations are degenerate

for such T1, . . . , T�. In that case, (∗, ∗, T1, . . . , T�) is a valid signature for every
message in G1, where placeholders ∗ can be filled with arbitrary G1 elements. 
�

The above implies that constructions with signature elements R ∈ G1 and
S, T1, . . . , T�−1 ∈ G2 are impossible. Additionally, we can say that no secure SPS
based on non-interactive assumption with all signature elements in G2 can exist.

5 Discussion and Open Problems

On the Tightness of Our Bound for Type-III. We have shown that 6 elements
are necessary and the construction from [5] shows that 6 elements are also suffi-
cient. This construction requires 3 signature elements in every source group. A
small remaining question would be whether a construction is possible with 2 ele-
ments on one side and 4 elements on the other. Our Corollary 2 gives necessary
conditions on the shape of the verification equations of such a scheme.
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On Constructions Over Type-II Groups. We next discuss the current status of
constructions in the setting marked as †, ‡, § in Table 1 and (non-)optimality of
the lower bounds obtained in this paper.

– († Bilateral messages, interactive assumptions). The optimal scheme for uni-
lateral messages in G1 (and the scheme in Type-I) from [8] cannot be straight-
forwardly used for signing bilateral messages since the scheme can sign only a
single group element. The best existing scheme for this setting is the 7-element
scheme in [3] originally designed for Type-I groups. It can be securely used
for bilateral messages in Type-II groups since the construction and security
proofs do not use the symmetry of the pairing, and the underlying q-type
assumption is justified in the Type-I generic group model where an efficient
morphism from G2 to G1 does exist. To close the gap between lower and
upper bounds in this setting, finding a 3-element scheme that signs messages
consisting of two group elements in G1 is desired.

– (‡ Unilateral messages in G1 and bilateral messages, q-type assumptions).
The 7-element scheme from [3] is not known to be optimal, since the current
lower bound is 4. We want to note that some straightforward approaches to
get closer to the lower bound fail: First, observe that the 4-element scheme [4]
based on a q-type assumption cannot be used, because it is defined over Type-
III bilinear groups and the assumption does not hold in the Type-II setting.
Second, the technique of converting a SPS scheme from an interactive to a
non-interactive assumption by using the first group element in a message as
a random element in a signature (as used in [4,6,15]) does not work because
the existing 3-element scheme [8] based on an interactive assumption has a
limited message space consisting only of one group element. Closing the gap
in this case remains as an open problem.

– (§ All message types, static assumptions). The construction in [22] instanti-
ated with the DLIN assumption can be adapted to Type-II groups. It yields
in signatures with 9 group elements for messages consisting of an arbitrary
(but preliminary fixed) number of group elements in G1, and hence can be
used to sign unilateral messages in G2 or bilateral messages as well. To the
best of our knowledge, that is currently the smallest scheme (according to the
signature size) and it is still far from our lower bound of 4 signature elements.

On the Possibility of Showing a Lower Bound for Unilateral Messages in G2 in
Type-II Groups. The authors of [6] have constructed a SPS scheme over Type-
II groups for messages in G2 based on a non-interactive assumption, with 3
signature elements. This gives an upper bound of 3, while there is a lower bound
of 2. Extrapolating from known lower bounds in different settings, it is natural to
conjecture that 3-element construction is indeed optimal in this case. However,
the fact that secure constructions with a single verification equation exist in
Type-II, makes our techniques inapplicable for this case. Finding a scheme with
2 signature elements in this setting or proving that 3 group elements are needed
remains as an open problem. We conjecture that a 2-element construction based
on non-interactive assumptions does not exist and lean towards the optimality
of 3 signature elements.
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