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Preface

The 11th Conference on Security and Cryptography for Networks (SCN 2018) was
held in Amalfi, Italy, during September 5–7, 2018. The conference has traditionally
been held in Amalfi, with the exception of the fifth edition, held in the nearby Maiori.
After the editions of 1996, 1999 and 2002, it has been organized biannually thereafter.

In the digital era, communications crucially rely on computer networks. These allow
both easy and fast access to information. At the same time, guaranteeing the security of
modern communications is a delicate and challenging task. The SCN conference is an
international meeting whose focus is on the cryptographic and information security
methodologies needed to address such challenges. SCN allows researchers, practi-
tioners, developers, and users interested in the security of communication networks to
meet and exchange ideas in the wonderful scenario of the Amalfi Coast.

These proceedings contain the 30 papers that were selected by the Program Com-
mittee (PC). The conference received 66 submissions. Each submission was assigned to
at least three reviewers, while submissions co-authored by PC members received, at
least, four reviews. After an initial individual review phase, the submissions were
discussed for a period of three additional weeks. During the discussion phase the PC
used rather intensively a, recently introduced, feature of the review system, which
allows PC members to anonymously ask questions directly to authors. The reviewing
and selection procedure was a challenging and difficult task. We are deeply grateful to
the PC members and external reviewers for the hard and careful work they did. Special
thanks to Tancrède Lepoint, Giuseppe Persiano, and Antigoni Polychroniadou for their
extra work as shepherds. Many thanks also to Michel Abdalla for his constant avail-
ability and for sharing with us his experience as former SCN Program Chair.

The conference program also included invited talks by Huijia Lin (University of
California Santa Barbara, USA) and Eike Kiltz (Ruhr-University Bochum, Germany).
We would like to thank both of them as well as all the other speakers for their
contribution to the conference.

SCN 2018 was organized in cooperation with the International Association for
Cryptologic Research (IACR). The paper submission, review, and discussion processes
were effectively and efficiently made possible by the IACR Web-Submission-and-
Review software, written by Shai Halevi. Many thanks to Shai for setting up the system
for us and for his assistance and constant availability.

We thank all the authors who submitted papers to this conference, the Organizing
Committee members, colleagues, and student helpers for their valuable time and effort,
and all the conference attendees who made this event truly intellectually stimulating
through their active participation.

September 2018 Dario Catalano
Roberto De Prisco
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Lower Bounds on Structure-Preserving
Signatures for Bilateral Messages

Masayuki Abe1(B), Miguel Ambrona2, Miyako Ohkubo3, and Mehdi Tibouchi1

1 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
{abe.masayuki,tibouchi.mehdi}@lab.ntt.co.jp

2 IMDEA Software Institute & Universidad Politécnica de Madrid, Madrid, Spain
miguel.ambrona@imdea.org

3 Security Fundamentals Lab, CSRI, NICT, Tokyo, Japan
m.ohkubo@nict.go.jp

Abstract. Lower bounds for structure-preserving signature (SPS)
schemes based on non-interactive assumptions have only been established
in the case of unilateral messages, i.e. schemes signing tuples of group ele-
ments all from the same source group. In this paper, we consider the case
of bilateral messages, consisting of elements from both source groups. We
show that, for Type-III bilinear groups, SPS’s must consist of at least
6 group elements: many more than the 4 elements needed in the uni-
lateral case, and optimal, as it matches a known upper bound from the
literature. We also obtain the first non-trivial lower bounds for SPS’s in
Type-II groups: a minimum of 4 group elements, whereas constructions
with 3 group elements are known from interactive assumptions.

Keywords: Structure-preserving signatures · Bilateral messages
Crucial relation

1 Introduction

Background. A structure-preserving signature (SPS) scheme is a useful building
block for cryptographic protocol design over bilinear groups. In SPS, signatures,
messages and public-keys consist exclusively of source group elements of bilinear
groups and their sizes are measured by the number of them. Since the signature
size greatly impacts the efficiency of the accompanied proofs and the result-
ing protocol, it is of a great interest to investigate possible lower bounds for
the signature size and to construct schemes that achieve these bounds. Table 1
summarizes known lower and upper bounds for the size of structure-preserving
signatures over different settings.

Research on lower bounds for structure preserving signatures was initiated in
[4], where the authors investigate the case of asymmetric bilinear groups (Type-
III groups [16]) where no efficient morphisms are known between the source
groups, G1 and G2. For schemes defined for unilateral messages (that belong to
only one of the source groups), matching lower and upper bounds are known
c© Springer Nature Switzerland AG 2018
D. Catalano and R. De Prisco (Eds.): SCN 2018, LNCS 11035, pp. 3–22, 2018.
https://doi.org/10.1007/978-3-319-98113-0_1
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4 M. Abe et al.

Table 1. Bounds on the signature size of structure-preserving signature schemes. See
discussion in Sect. 5 for entries with †,‡,§.

Lower bounds Upper bounds (constructions)

Setting Messages Interactive Non-interactive Interactive Non-interactive

q-type Static

Type-III Unilateral 3 [4] 4 [5] 3 [4] 4 [4] 6 [22]

Bilateral 3 [4] 6 (this work) 3 [4] 6 [4] 10 [23]

Type-II M ∈ G1 3 [6] 4 (this work) 3 [8] 7 [3]‡ 9 [22]§
M ∈ G2 2 [6] 2 [6] 3 [6] 9 [22]§
Bilateral 3 [8] 4 (this work) 7 [3]† 7 [3]‡ 9 [22]§

Type-I N/A 3 [8] 3 [8] 7 [3] 9 [22]

(w.r.t. both interactive and non-interactive assumptions). In the case of bilat-
eral messages (that contain elements from both source groups), a construction is
shown in [4] based on non-interactive assumption, but no lower bounds are pro-
vided to argue its optimality. In [8], the authors investigate the case of symmetric
bilinear groups (Type-I groups) where G1 = G2, and present matching lower and
upper bounds w.r.t. interactive assumptions. Their results are valid as well for
asymmetric bilinear groups with an efficient morphism from G2 to G1 (Type-II
groups) for some message types. The analysis over Type-II groups considering
interactive assumptions is continued by [6] where the authors present matching
bounds for unilateral messages with an ‘unexpected’ gap between messages in
G1 and G2. Nothing was known w.r.t. non-interactive assumptions in Type-II.

In summary, all known lower bounds are about schemes with unilateral
messages or being secure under interactive assumptions. To the best of our
knowledge, nothing has been shown for the case of bilateral messages and non-
interactive assumptions, though this is the most general and preferred case in the
context of structure-preserving signatures. Efficient and trustworthy construc-
tions (based on weak assumptions) in this more general setting are desired, as
they play an important role in the modular design of cryptographic primitives.

Our Results. We present lower bounds on the signature size of structure-
preserving signature schemes over asymmetric bilinear groups signing bilateral
messages and being secure based on non-interactive assumptions.

– A tight lower bound for bilateral messages in Type-III groups. As
illustrated in Table 1, this constitutes the last missing piece for structure
preserving signatures over Type-III groups. We show that secure signatures
for bilateral messages must contain at least 6 group elements as long as the
underlying assumption is non-interactive (see Sect. 3). More concretely, we
show that a signature scheme signing bilateral messages cannot be proved
to be EUF-CMA by a black-box algebraic reduction to any non-interactive
assumption if the signatures contain less than 3 group elements in one of the
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source groups and 3 in the other. Our lower bound matches an existing upper
bound from [4]. Our result allows us to claim the optimality of that scheme.

– Lower bounds for unilateral messages in G1 and bilateral messages
in Type-II groups. These are the first non-trivial lower bounds for Type-
II groups involving non-interactive assumptions. We first show that when
signing unilateral messages in G1, signatures must contain at least 4 group
elements (see Sect. 4). Note that the lower bound for unilateral messages
in G1 implies the same lower bound for bilateral messages That is because
there exists a reduction from bilateral to unilateral messages in G1. However,
this reduction is valid only if messages belong to G

k1
1 × G

k2
2 for some fixed

k1, k2 ∈ N and the underlying scheme supports messages in G
k1+k2
1 . For our

purpose, it is sufficient to show a lower bound for schemes that sign messages
consisting of only one group element in G1 since such a result would also
apply to those with larger message spaces. The result is unfortunately not
known to be optimal as corresponding upper bounds are missing. We further
discuss this point in Sect. 5.

Our approach follows the framework of [5], i.e., we show the existence of a cru-
cial relation (see Sect. 2.3) in the algebraic model [10,14]. It is known that if such
a relation exists, a meta-reduction [12] can be constructed and the considered
scheme cannot be proven under non-interactive assumptions. Having messages
in both source groups or having a morphism from one group to the other makes
the analysis more complex. We elaborate this point as follows. We first recap the
argument used in [5]. Consider a SPS scheme over Type-III groups that yields
3-element signatures, (R,S, T ), for unilateral single-element message M in G1.
For the scheme to be secure, at most two elements in the signature, say R and
S, must be in the same group as M . Thus, every pairing product equation can
be written as

e(R,U1T
a) e(S,U2T

b) e(M,U3T
c) e(V, T ) = Z (1)

with parameters a, b, c, and public-key elements Ui, V and Z that may be
different in every equation. A reduction algorithm R is given an instance of a
non-interactive assumption and simulates signatures for certain messages. Let
G and H be generators for G1 and G2, respectively. When R is algebraic, the
signature (R,S, T ) for message M must be computed as

R = GϕrMαr , S = GϕsMαs , T = Hϕt (2)

for some variables αr, αs, ϕr, ϕs, and ϕt taking values in Zp. Actually, Gϕr ,
Gϕs and Hϕt are linear combinations of group elements in the given problem
instance. Therefore ϕr, ϕs, ϕt may not be known by R. By substituting (R,S, T )
in every verification equation of the form of (1) and taking logarithm for base
e(G,H), we get a system of equations in the above variables. Roughly, to show
that R will never be successful in breaking the assumption, it is necessary to
show that (αr, αs), called the crucial information, is uniquely identified. If this is
done, (αr, αs) can be extracted and used to simulate a valid forgery. The overall
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argument is not extremely intricate as the obtained equations are linear in the
crucial information (αr, αs). The difficulty significantly increases when applying
the above procedure to show that at least 6 elements are necessary for signing
bilateral messages (M,N) in G1 × G2 of Type-III groups.

In the case of Type-II groups with unilateral messages in G1, the difficulty
comes from the presence of an efficient morphism φ : G1 → G2. Observe that
verification equations for 3-element signatures (R,S, T ) on message M ∈ G1 will
be of the form e(R,U1T

a) e(S,U2T
b) e(M,U3T

c) e(φ(T ), U4T
d) e(U5, T ) = Z for

(R,S, T ) ∈ G
2
1 ×G2. When representing (R,S, T ) as in (2), the resulting system

of equations w.r.t. the crucial information (αr, αs) is linear, although it includes
the quadratic term ϕ2

t , coming from e(φ(T ), T ), and this makes the analysis
slightly more involved than the one from [5]. In our actual proof in Sect. 4, we
address a more general case where the signature element T (in the opposite
group to M) consists of an arbitrary number of elements T1, . . . , T�. In this way,
we handle all cases where signatures include less than three elements, at once.

Other Related Works. There exist variations and extensions of SPS for which the
lower bounds appearing in Table 1 do not hold. For example, for one-time SPS
schemes, there are constructions, e.g., [3,7], whose signature consists of one or
two group elements and their security is based on static assumptions. In [19,20],
the authors circumvent these bounds by considering messages in a special form
(messages are bound by the Diffie-Hellman relation) and construct a SPS scheme
over Type-III groups with two group elements in each signature.

Upper bounds are frequently being improved in the literature [2,22–24]. The
state of the art for static assumptions and Type-III groups is a scheme from [22]
with six-elements signatures for unilateral messages. For bilateral messages, a
scheme presented in [23] yields 10-elements signatures. However, we point out
that combining the scheme from [22] for messages in G1 with a partially one-
time SPS from [2] for messages in G2, results in a scheme for bilateral messages
with 9 signature elements. A randomizable SPS scheme in [18] can be seen as an
alternative scheme whose signature size matches the lower bound of three group
elements in Type-III groups based on an interactive assumption. For Type-I
groups, the generic construction from [22] yields a scheme with the smallest
signature size of 9 when the underlying MDDH assumption [13] is instantiated
with the DLIN assumption [9] adjusted to Type-I groups [2].

Structure-preserving signatures over Type-II groups received less attention,
even though GS-proofs had been extended to Type-II groups [21]. This may be
due to [6] that shows how the one-way morphism between source groups can be
exploited in cryptographic designs. Note that significant gaps in signature size
exist between Type-II and Type-III settings. However, as pointed out in [11],
a smaller signature size does not necessarily imply that a scheme in Type-II is
computationally more advantageous than its analogues scheme in Type-III when
the cost of membership testing is taken into account. That is why, comparisons
should be performed within the same group setting of bilinear groups.
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2 Preliminaries

2.1 Signature Schemes, Bilinear Groups, and Algebraic Algorithm

In this section we briefly review notations and standard notions used throughout
the paper. Due to the page restriction, we refer to [5], which our work is based
on, for more formal definitions.

Let G be a generator of bilinear groups that takes security parameter 1λ

as input and outputs Λ := (p,G1,G2,GT , e), where p is a λ-bit prime and
G1,G2,GT are groups of order p with efficiently computable group operations,
membership tests, and bilinear mapping e : G1 × G2 → GT . An equation of the
form

∏
i

∏
j e(Ai, Bj)aij = Z for constants aij ∈ Zp, Z ∈ GT , and constants or

variables Ai ∈ G1, Bj ∈ G2 is called a pairing product equation (PPE). Sym-
metric bilinear groups refer the case where G1 = G2 and they are called Type-I
groups. The case where G1 �= G2 is known as are asymmetric groups. When
no efficient morphism is provided for either direction between G1 and G2, the
groups are called Type-III. If there is an efficient morphism from G2 to G1, they
are said to be in Type-II setting. See [16] for their properties.

A signature scheme consists of polynomial-time algorithms (C,K,S,V) where
C generates common parameters GK , K generates a pair of public and private
keys, S is a signing algorithm and V is the verification algorithm. It is called
structure preserving w.r.t. bilinear group generator G if the common parameter
GK consists of a group description Λ and some constants aij in Zp, and public
keys, messages, and signatures consist of group elements in G1 and G2, and
verification algorithm V evaluates membership in G1 and G2 and PPEs. A SPS
scheme is considered secure if it is existentially unforgeable against adaptive
chosen message attacks (EUF-CMA). It is assumed that there exists an efficiently
computable key verification algorithm TstVk that takes λ and VK as input and
checks the validity of VK s.t. if 0 ← TstVk(1λ,VK ), then V(VK , ∗, ∗) always
returns 0, and if 1 ← TstVk(1λ,VK ) then the message space Msp is well defined
and it is efficiently and uniformly sampleable. A signature Σ is considered valid
(w.r.t. VK and M), if 1 = V(VK ,M,Σ). Otherwise, it is said to be invalid.

An algorithm is called algebraic w.r.t. a group if it takes a vector of elements
X in the group and outputs a group element Y and there is a corresponding
algorithm called an extractor that can output the representation of Y w.r.t. X.
For instance, if the algebraic algorithm R takes source group elements A,B as
input and outputs element C in the same group, then R’s extractor E outputs
(a, b) such that C = AaBb. It does not matter how R has computed a and b.
For instance, a can be a bit-slice of some group elements like Waters’ Hash [26].
The notion can also be extended naturally to oracle algorithms. Thus, it covers
a wide range of algorithms and frequently used [17,25]. For a formal definition,
we refer to [5], which also argues the differences from the knowledge of exponent
assumption. By Clsalg we denote the set of all algebraic algorithms with respect
to G. With respect to source groups in asymmetric bilinear groups, group ele-
ments are separated if no efficient morphism exist. Suppose that G1 and G2 are
source groups of Type-III and an algorithm takes A from G1 and B from G2
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as input. If the algorithm outputs Y ∈ G1, there is an extractor that outputs
a representation of Y w.r.t. A, i.e. Y is independent of B. Also, if G1 and G2

are Type-II groups, the extractor outputs representation w.r.t. A and also B
mapped to G1.

2.2 Non-interactive Hardness Assumptions

Typically an assumption is defined in such a way that there is no efficient algo-
rithm A that returns a correct answer with better probability than random
guessing. The following definition follows this intuition.

Definition 1 (Algebraic Non-interactive Hardness Assumption). A
non-interactive problem consists of a triple of algorithms P = (I,V,U) where
I ∈ PPT is an instance generator, which takes 1λ and outputs a pair of an
instance and a witness, (ins,wit), and V is a verification algorithm that takes
ins,wit and an answer ans, and outputs 1 or 0 that represents acceptance or
rejection, respectively. A non-interactive hardness assumption for problem P is
to assume that, for any A ∈ PPT, the following advantage function Adv is negli-
gible in λ.

AdvA(1λ) = Pr[(ins,wit) ← I(1λ), ans ← A(ins) : 1 = V(ins, ans,wit)]

− Pr[(ins,wit) ← I(1λ), ans ← U(ins) : 1 = V(ins, ans,wit)]

P is called algebraic if I also takes Λ generated by group generator G(1λ) with
uniformly chosen default generators G ∈ G1 and H ∈ G2 as a part of input, and
there exists an efficient extractor EI that, given the same input as given to I, out-
puts a representation of the element w.r.t. generator G or H with overwhelming
probability.

In search problems, U is usually set to be an algorithm that returns constant
⊥ (or a random answer ans when the domain is uniformly sampleable). In deci-
sion problems, U typically returns 1 or 0 randomly winning only with probability
1/2.

2.3 Crucial Relation

We briefly recap the framework of [5] and restate the impossibility theorem in
slightly refined and specific form. Let Cls be a class of algorithms (we actually
consider class of algebraic algorithm in this paper) and R ∈ Cls be a reduction
algorithm that, given an instance ins of a non-interactive hardness problem P,
outputs VK and a poly-size internal state ϕ. Given ϕ and messages M :=
(M1, . . . ,Mn) for some n > 0, R outputs signatures Σ := (Σ1, . . . , Σn). Let θ
be a transcript defined as θ := (VK ,M ,Σ). A transcript θ is valid and witness
as 1 = V(θ) if 1 = V(VK ,Mi, Σi) for all i = 1, . . . , n. (V is supposed to reject if
TstVk(VK ) �= 1).

In security proofs by reduction, it is often the case that the algorithm does
not actually hold the secret key but has some crucial information to simulate
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signatures. We model such information as a witness of a binary relation Ψ(θ,
)
that we call a crucial relation and define as follows.

Definition 2 (Crucial Relation). Let Sig = (C,K,S,V) be a signature scheme
and TstVk be a key verification algorithm for Sig. A binary relation Ψ : {0, 1}∗ ×
{0, 1}∗ → {0, 1} is a crucial relation for Sig w.r.t. a class of algorithms Cls and
n > 0 if the following properties are provided.
Uniqueness: For every θ := (VK ,M ,Σ) s.t. 1 = V(θ), there exists exactly one
(polynomial size) 
 fulfilling 1 = Ψ(θ,
).
Extractability: For any R ∈ Cls, there exists E ∈ PPT s.t., for any VK ∈ {0, 1}∗

s.t. 1 ← TstVk(1λ,VK ), and any arbitrary string ϕ in 1λ||{0, 1}∗, probability

Pr

⎡

⎢
⎢
⎣

M←Mspn

Σ ← R(ϕ,M ; γ)

 ← E(ϕ,M ; γ)
θ := (VK ,M ,Σ)

:
1 = V(θ)∧
1 �= Ψ(θ,
)

⎤

⎥
⎥
⎦ (3)

is negligible in λ. The probability is taken over the choice of M and random coin
γ given to R and E.
Usefulness: There exists an algorithm B ∈ PPT s.t., for any θ := (VK ,M ,Σ)
and 
 that satisfies Ψ(θ,
) = 1, the following probability is not negligible in λ.

Pr
[

(M,Σ) ← B(θ,
) :
M �∈ M ∧
1 = V(VK ,M,Σ)

]

(4)

The intuition behind extractability is that whenever ϕ is helpful for R to
compute valid signatures, the extractor E should be successful in extracting 

from ϕ. This must hold even for a non-legitimate VK as long as it is functional
with respect to the verification. For an R which is successful in producing a valid
θ only with negligible probability, E can be an empty algorithm.
Theorem 8 of [5]. If a crucial relation for a signature scheme exists w.r.t. alge-
braic algorithms, then there exists no algebraic black-box reduction from the EUF-
CMA security of the signature scheme to any non-interactive algebraic problems
over groups where the discrete logarithm problem is hard.

3 Tight Lower Bound for Bilateral Messages in Type-III

Theorem 1. Any structure preserving signature scheme over asymmetric bilin-
ear groups that yields signatures consisting of 2 or less group elements in either of
the source groups and � group elements in the other (for every � ≤ 3), cannot have
an algebraic black-box reduction for the EUF-CMA security to non-interactive
hardness assumptions if pseudo-random functions exist and the discrete loga-
rithm problem is hard in both source groups.
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Let SIGτ,� be the set of all structure preserving signature schemes in Type-III
whose signature consists of at most τ group elements from one source group and
at most � elements from the other source group. We prove Theorem 1 by proving
the following lemma and applying Theorem 8 of [5]. Note that the absence of
morphisms between source groups is used in the proof via the algebraic model
where the source group elements returned by any algebraic algorithm depend
only on the elements from the same source group that were given to the algorithm
as input.

Lemma 1. For every � ≤ 3 and every scheme in SIG2,�, there exists a crucial
relation.

The proof of Lemma 1 will be given by explicitly presenting a crucial relation
(Definition 3) and showing that it satisfies the three required properties: unique-
ness, extractability and usefulness (Lemma 2). Our proof is valid for arbitrary
values of � except for arguing extractability in one sub-case, when the condition
� ≤ 3 is required. When analyzing Lemma 1 we will consider, without loss of
generality, the case where our scheme has signatures in G

2
1 × G

�
2.

Before starting, we establish some useful notation for expressing signatures
schemes in SIG2,�. These notation will be used throughout the proofs.

Observe that in every structure preserving signature scheme with signature
space G

2
1 × G

�
2, the j-th verification equation can be written in the following

form:

e(R, U
(j)
1 Nd

(j)
1

∏�

i=1
T

a
(j)
i

i ) e(S, U
(j)
2 Nd

(j)
2

∏�

i=1
T

b
(j)
i

i )

e(M, U
(j)
3 Nd

(j)
3

∏�

i=1
T

c
(j)
i

i ) e(V
(j)
0 , N)

∏�

i=1
e(V

(j)
i , Ti) = Z(j) (5)

where (M,N) ∈ G1 × G2 is a message, V
(j)
0 ∈ G1, for every i ∈ {1, 2, 3},

V
(j)
i ∈ G1, U

(j)
i ∈ G2, and Z(j) ∈ GT are elements in the verification

key, and (R,S, T1, . . . , T�) ∈ G
2
1 × G

�
2 is a signature. Note that exponents

d
(j)
k , a

(j)
i , b

(j)
i , c

(j)
i for k ∈ {1, 2, 3}, i ∈ {1, . . . , �} are determined by the descrip-

tion of the scheme.
Note that, to show the impossibility, it is sufficient to consider messages

in G1 × G2 rather than its vector form. Also, observe that we allow arbitrary
Z(j) ∈ GT in every verification equation j, for more generality. These are usually
set to 1GT

in the strict definition of structure preserving signatures.
We denote the discrete-log of a group element w.r.t. the default generator

by its small-case letter. For instance, M = Gm and N = Hn. For elements
R and S in a signature, we consider a special representation of the form R =
GϕrMαr , S = GϕsMαs for some ϕr, αr, ϕs, αs in Zp. Now, by expressing the
j-th verification Eq. (5) in the exponent, we have:

(ϕr + αr m)(u
(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n) + (ϕs + αs m)(u

(j)
2 +

∑�
i=1b

(j)
i ti + d

(j)
2 n)

+m (u
(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n) + v

(j)
0 n +

∑�
i=1v

(j)
i ti = z (6)
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By thinking of the j-th verification Eq. (6) as a polynomial in m, we have the
following equation:

m
{
(u(j)

1 +
∑�

i=1a
(j)
i ti + d

(j)
1 n)αr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)αs

+ (u(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n)

}

+
{
(u(j)

1 +
∑�

i=1a
(j)
i ti + d

(j)
1 n)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)ϕs

+ (v(j)
0 n +

∑�
i=1v

(j)
i ti − z(j))

}
= 0 (7)

Claim 1. If the discrete-logarithm problem over G1 is hard, for all equations j,
every coefficient of (7) as polynomial in m must be zero.

Proof. We refer to the full version of this paper for a proof [1]. 
�
Accordingly, for every verification equation j, the following two equations are

fulfilled.

(u(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n)αr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)αs

+ (u(j)
3 +

∑�
i=1c

(j)
i ti + d

(j)
3 n) = 0 (8)

(u(j)
1 +

∑�
i=1a

(j)
i ti + d

(j)
1 n)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i ti + d

(j)
2 n)ϕs

+ (v(j)
0 n +

∑�
i=1v

(j)
i ti − z(j)) = 0 (9)

Now, we focus on message N . Let Ti = HγiNβi , i.e., ti = γi + βin. Note
that, for each verification equation j, we can rewrite the relations (8) and (9) as
polynomials in n by collecting the corresponding terms:

{
(d(j)1 +

∑�
i=1a

(j)
i βi)αr + (d(j)2 +

∑�
i=1b

(j)
i βi)αs + (d(j)3 +

∑�
i=1c

(j)
i βi)

}
n

+
{
(u(j)

1 +
∑�

i=1a
(j)
i γi)αr + (u(j)

2 +
∑�

i=1b
(j)
i γi)αs + (u(j)

3 +
∑�

i=1c
(j)
i γi)

}
= 0

(10)

{
(d(j)1 +

∑�
i=1a

(j)
i βi)ϕr + (d(j)2 +

∑�
i=1b

(j)
i βi)ϕs + (v(j)

0 +
∑�

i=1v
(j)
i βi)

}
n

+
{
(u(j)

1 +
∑�

i=1a
(j)
i γi)ϕr + (u(j)

2 +
∑�

i=1b
(j)
i γi)ϕs + (−z(j) +

∑�
i=1v

(j)
i γi)

}
= 0
(11)

Now, for verification equation j we introduce the following more compact
notation:

Aβ
j = d

(j)
1 +

∑�
i=1a

(j)
i βi Aγ

j = u
(j)
1 +

∑�
i=1a

(j)
i γi At

j = u
(j)
1 + d

(j)
1 n +

∑�
i=1a

(j)
i ti

Bβ
j = d

(j)
2 +

∑�
i=1b

(j)
i βi Bγ

j = u
(j)
2 +

∑�
i=1b

(j)
i γi Bt

j = u
(j)
2 + d

(j)
2 n +

∑�
i=1b

(j)
i ti

Cβ
j = d

(j)
3 +

∑�
i=1c

(j)
i βi Cγ

j = u
(j)
3 +

∑�
i=1c

(j)
i γi Ct

j = u
(j)
3 + d

(j)
3 n +

∑�
i=1c

(j)
i ti

V β
j = v

(j)
0 +

∑�
i=1v

(j)
i βi V γ

j = −z(j) +
∑�

i=1v
(j)
i γi V t

j = −z(j) + v
(j)
0 n +

∑�
i=1v

(j)
i ti
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With a similar argument as the one used in Claim 1, we can argue that if Eqs. (10)
and (11) hold, then they must hold as polynomials in n if the discrete logarithm
problem is hard. Therefore, if the above equations hold, we must have:

Aβ
j αr + Bβ

j αs + Cβ
j = 0 (12)

Aγ
j αr + Bγ

j αs + Cγ
j = 0 (13)

Aβ
j ϕr + Bβ

j ϕs + V β
j = 0 (14)

Aγ
j ϕr + Bγ

j ϕs + V γ
j = 0 (15)

We say a verification equation j is degenerate if At
j = Bt

j = Ct
j = V t

j = 0.
Note that, At

j = Aγ
j + nAβ

j and the same occurs for B, C and V . In general, if
an equation j is degenerate, it must hold

Aγ
j = Aβ

j = Bγ
j = Bβ

j = Cγ
j = Cβ

j = V γ
j = V β

j = 0

if dlog is hard (this can be shown by a similar analysis as in Claim 1).
Finally, for every pair of verification equations, say j and k, we define the

determinant Dtj,k(n, t1, . . . , t�) as:

Dtj,k(n, t1, . . . , t�) := At
jB

t
k − At

kBt
j

= (Aγ
j + nAβ

j )(Bγ
k + nBβ

k ) − (Aγ
k + nAβ

k)(Bγ
j + nBβ

j )

Hereafter we use the same conventions for matrix-representations of linear
maps on finite-dimensional spaces. The rank of a matrix is defined to be the
dimension of the vector space generated by its columns/rows. Given two vectors
v,w over Z

n
p , we say they are linearly dependent or proportional, denoted by

v ≡ w if and only if there exist scalars ρ, δ ∈ Zp (not both null), s.t. ρv = δw.
We prepared the notation to define a crucial relation for Sig ∈ SIG2,�. We

first provide some intuition about how it is defined and why.

Intuition About the Crucial Relation. The algebraic extractor associated to the
reduction provides coefficients of a linear combination, linking the group elements
returned by the reduction and the group elements that it received. It turns out,
that if the discrete logarithm problem is hard, these coefficients must satisfy
certain additional properties. When developing the crucial relation, one thinks
of how to embed these coefficients in the witness, since they result extremely
useful for creating a forgery. For example, knowing the pair (αr, αs) that was
used by the reduction to create R = GϕrMαr and S = GϕsMαs , a new signature
can be created on a different message (see the full version of this paper for
details). However, these coefficients cannot just be included in the witness. It is
required that they are unique in some sense. Otherwise, using them to build a
signature could potentially give extra information to the reduction. The biggest
challenge when defining the crucial relation is finding cases in which we can
argue usefulness and uniqueness at the same time.
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Definition 3 (Crucial Relation for Sig ∈ SIG2,� for � ≤ 3). For signature
scheme Sig = (C,K,S,V) in SIGτ,�, and its transcript θ, let (R,S, T1, . . . , T�)
be the first signature in θ for message (M,N). For witness 
 ∈ (Zp ∪⊥)�+2, the
relation Ψ(θ,
) is defined by the following algorithm:

1. If θ is invalid, return 0.
2. If there exist j, k s.t. Dtj,k(n, t1, . . . , t�) �= 0. Let αr, αs ∈ Zp satisfy Eq. (8)

for such j, k. If 
 = (αr, αs,⊥, . . . ,⊥) then return 1, else return 0.
3. If there exists a verification equation, j, s.t. one and only one of the following

the expressions At
j and Bt

j is zero. Let j be the index of the first equation that
satisfies the previous condition. If At

j = 0 and 
 = (0, αs,⊥, . . . ,⊥) where
Bt

jαs + Ct
j = 0 then return 1, else if Bt

j = 0 and 
 = (αr, 0,⊥, . . . ,⊥) where
At

jαr + Ct
j = 0 then return 1, else return 0.

4. If all verification equations are degenerate, i.e. for all j, At
j = Bt

j = Ct
j =

V t
j = 0, if 
 = (⊥, . . . ,⊥) return 1, else return 0.

5. If there exists β = (β1, . . . , β�) ∈ Z
�
p s.t. for γi = ti − nβi for i ∈ {1, . . . , �}

and every pair of verification equations j, k the following vectors in Z
8
p are

proportional:
(

Aβ
j Bβ

j Cβ
j V β

j Aγ
j Bγ

j Cγ
j V γ

j

)
≡ (

Aβ
k Bβ

k Cβ
k V β

k Aγ
k Bγ

k Cγ
k V γ

k

)

where, for non-degenerate equations j it holds, Aβ
j Bγ

j − Aγ
j Bβ

j �= 0.
If 
 = (αr, αs,⊥, . . . ,⊥) satisfying Aβ

j αr + Bβ
j αs + Cβ

j = 0 and Aγ
j αr +

Bγ
j αs +Cγ

j = 0 for every verification equation j, then return 1, else return 0.
6. If there exists a non-degenerate equation j s.t. there exist coefficients

μ1, μ2, μ3 ∈ Zp, which are publicly computable and verify
(
u
(j)
1 d

(j)
1 a

(j)
1 . . . a

(j)
�

)
μ1 +

(
u
(j)
2 d

(j)
2 b

(j)
1 . . . b

(j)
�

)
μ2 +

(
u
(j)
3 d

(j)
3 c

(j)
1 . . . c

(j)
�

)
μ3 = 0

if it can be found μ3 �= 0 then
• if 
 = (⊥, . . . ,⊥) then return 1 • otherwise, return 0
else (when μ3 must be 0), go to clause 8.

7. If there exists β = (β1, . . . , β�) ∈ Z
�
p s.t. for every j, Aβ

j = 0 ∧ Bβ
j = 0 ∧ Cβ

j =
0 ∧ V β

j = 0, if 
 = (β1, . . . , β�) then return 1, else return 0.
8. In any other case, if 
 = (αr, 0,⊥, . . . ,⊥) s.t., if we set αs = 0, for every

equation j, it holds At
jαr + Bt

jαs + Ct
j = 0 then return 1, else return 0.

Lemma 2. For every � ≤ 3, Ψ is a crucial relation for every Sig ∈ SIG2,� w.r.t.
algebraic algorithms and a message sampler choosing messages uniformly.

Proof. We show that Ψ has uniqueness as defined for a crucial relation. Proofs
for usefulness and extractability are also technically interesting but due to the
space restriction, we refer to [1] for more details.

Let k be the total number of verification equations. When analyzing scheme
Sig ∈ SIG2,�, we will assume without loss of generality that Sig is s.t.

rank

⎛

⎜
⎝

a
(1)
1 b

(1)
1 c

(1)
1 v

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1 v

(k)
1

...

a
(1)
� b

(1)
� c

(1)
� v

(1)
� . . . a

(k)
� b

(k)
� c

(k)
� v

(k)
�

⎞

⎟
⎠ = � (16)
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First note that the assumption is reasonable for � = 1. Otherwise the scheme
would be completely trivial. For other values of �, the scheme admits a transfor-
mation that makes one of the T ′s disappear (because one of the rows of the above
matrix could be expressed as a linear combination of the others) and thus, Sig
would belong to SIG2,�−1 which is captured by the same crucial relation instan-
tiated for � − 1. The proof is presented for a generic � and we will only use the
restriction � ≤ 3 to argue extractability for clause 7.

Uniqueness. To argue uniqueness we show that every valid transcript θ admits
one and only one witness 
 s.t. 1 = Ψ(θ,
). First, note that every valid θ falls
in one of the clauses 2–8 (clause 8 accepts every θ that did not fall in an earlier
clause). We analyze clause by clause the uniqueness of 
 in case θ fall in it.

Assume that θ falls into clause 2, i.e., for some (j, k), Dtj,k(n, t1, . . . , t�) �= 0.
Note that, there can only exist a unique pair (αr, αs) satisfying Eq. (8) for both
j and k, because Dtj,k(n, t1, . . . , t�) �= 0. That makes the witness unique.

When θ falls in clause 3, let j be the first verification equation for which one
and only one of At

j , Bt
j is zero. Uniqueness holds because if At

j = 0 then Bt
j �= 0

and there exists exactly one αs s.t. Bt
jαs +Ct

j = 0. On the other hand, if At
j �= 0,

there exists exactly one αr satisfying At
jαr + Ct

j = 0.
In case of clauses 4 or 6, uniqueness holds immediately.
For clause 5, it is clear that in case of existing a valid witness, it must be

unique. That is because, due to Aβ
j Bγ

j −Aγ
j Bβ

j �= 0, there exists exactly one pair
(αr, αs) satisfying Aβ

j αr + Bβ
j αs + Cβ

j = 0 and Aγ
j αr + Bγ

j αs + Cγ
j = 0 as clause

5 requires. However, we need to show that this (αr, αs) exists, independently
of the β that has been chosen (as long as the β satisfies the conditions of the
clause). To do so, we consider a different vector of β, defined by β′

i = βi + δi (we
denote γ′

i = t′i − nβ′
i) for i ∈ {1, . . . , �} and we prove that the value of (αr, αs)

must be the same. Because Aβ
j Bγ

j − Aγ
j Bβ

j �= 0, the equations we can give a
explicit formula for (αr, αs) satisfying the equations Aβ

j αr +Bβ
j αs +Cβ

j = 0 and
Aγ

j αr + Bγ
j αs + Cγ

j = 0 for some j. That is,

αr =
Bγ

j Cβ
j − Bβ

j Cγ
j

Aγ
j Bβ

j − Aβ
j Bγ

j

αs =
Aβ

j Cγ
j − Aγ

j Cβ
j

Aγ
j Bβ

j − Aβ
j Bγ

j

Now, assume that αr and αs are derived from the same equations induced by a
different β, i.e., β′ = β + δ. Expanding the equations and rearranging terms, we
can express the above equation as (we omit indices j for simplicity)

αr =
Bγ

j Cβ
j − Bβ

j Cγ
j − nΔ1 + Δ2

Aγ
j Bβ

j − Aβ
j Bγ

j − nΔ3 + Δ4

where

Δ1 = (
∑�

i=1biδi)(d3 +
∑�

i=1ciβi) − (
∑�

i=1ciδi)(d2 +
∑�

i=1biβi)

Δ2 = (
∑�

i=1ciδi)(u2 +
∑�

i=1biγi) − (
∑�

i=1biδi)(u3 +
∑�

i=1ciγi)

Δ3 = (
∑�

i=1aiδi)(d2 +
∑�

i=1biβi) − (
∑�

i=1biδi)(d1 +
∑�

i=1aiβi)

Δ4 = (
∑�

i=1biδi)(u1 +
∑�

i=1aiγi) − (
∑�

i=1aiδi)(u2 +
∑�

i=1biγi)
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Our goal is to show that αr is unique and therefore, increments −nΔ1 +Δ2 and
−nΔ3 + Δ4 are zero. Observe that, the new β′ must also satisfy the equation

(d1 +
∑�

i=1aiβi +
∑�

i=1aiδi)αr + (d2 +
∑�

i=1biβi +
∑�

i=1biδi)αs

+ (d3 +
∑�

i=1ciβi +
∑�

i=1ciδi) = 0

which also satisfies (d1 +
∑�

i=1aiβi)αr +(d2 +
∑�

i=1biβi)αs +(d3 +
∑�

i=1ciβi) = 0.
Assume that αr, αs is not unique, in that case, it must be

(d1 +
∑�

i=1aiβi)(d2 +
∑�

i=1biβi +
∑�

i=1biδi)

− (d2 +
∑�

i=1biβi)(d1 +
∑�

i=1aiβi +
∑�

i=1aiδi) = 0

which leads to (
∑�

i=1aiδi)(d2 +
∑�

i=1biβi) − (
∑�

i=1biδi)(d1 +
∑�

i=1aiβi) = 0 and
observe that the previous expression corresponds to Δ3. A similar analysis, using
the following equations (from the requirements of clause 5):

(u1 +
∑�

i=1aiγi)αr + (u2 +
∑�

i=1biγi)αs + (u3 +
∑�

i=1ciγi) = 0

(u1 +
∑�

i=1aiγi +
∑�

i=1aiγi)αr + (u2 +
∑�

i=1biγi +
∑�

i=1biγi)αs

+ (u3 +
∑�

i=1ciγi +
∑�

i=1ciγi) = 0

leads to (
∑�

i=1biδi)(u1 +
∑�

i=1aiγi) − (
∑�

i=1aiδi)(u2 +
∑�

i=1biγi) = 0 and observe
that the previous expression corresponds to Δ4. By a similar analysis, it can be
shown that the increments in the numerator of αr are zero and eventually, that
the same thing occurs for αs.

If θ falls into clause 7, and the witness 
 satisfies Ψ , it must be 
 =
(β1, . . . , β�), with Aβ

j = 0 ∧ Bβ
j = 0 ∧ Cβ

j = 0 ∧ V β
j = 0. Or equivalently,

(β1, . . . , β�) is a solution of the following linear system
(
β1 . . . β�

)
M =

(
−d

(1)
1 −d

(1)
2 −d

(1)
3 −v

(1)
0 −d

(2)
1 . . . −d

(k)
1 −d

(k)
2 −d

(k)
3 −v

(k)
0

)

where M is the matrix from Eq. (16). Because the rank of M is �, there exists at
most one solution to the system and therefore, the witness is unique.

For arguing about the missing clause, 8, we prove the following Claim.

Claim 2. Any transcript θ that did not fall in clause 5 or before is s.t. all
Eq. (12)(∗) are be proportional between them and to all Eq. (13)(∗) (when con-
sidering them as linear equations in αr, αs).

Proof. Assume that the groups of Eqs. (12)(∗) and (13)(∗) are not proportional.
We show that θ should have fallen into clause 5 or earlier.

Note that at this point (and because we did not enter in clause 3), for every
pair of verification equations j, k the determinant Dtj,k(n, t1, . . . , t�) is zero. Also
note that, if we consider as before, ti = γi + nβi for every i ∈ {1, . . . , �}, such a
determinant can be seen as a degree-2 polynomial in n,

n2(Aβ
j Bβ

k − Aβ
kBβ

j ) + n (Aβ
j Bγ

k − Aγ
kBβ

j + Aγ
j Bβ

k − Aβ
kBγ

j ) + (Aγ
j Bγ

k − Aγ
kBγ

j )
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which is zero for every pair j, k. In a similar way as done in the proof of Claim 1,
we can prove that Dtj,k(n, t1, . . . , t�) = 0 happens only if every coefficient of the
above polynomial in n is zero (otherwise, R can be used to solve the discrete-
logarithm problem in G2). We therefore have

Aβ
j Bβ

k − Aβ
kBβ

j = 0 (17)
Aγ

j Bγ
k − Aγ

kBγ
j = 0 (18)

Aβ
j Bγ

k − Aγ
kBβ

j + Aγ
j Bβ

k − Aβ
kBγ

j = 0 (19)

Let (x)(j) denote equation (x) w.r.t. j-th verification equation. Equation (17)
implies that, when considering the relations (12)(j) for all j as equations in
αr, αs, they are all proportional. The same happens with Eq. (13)(j) due to (18).

First, note that if all verification equations are degenerate, we would have
entered in clause 4. On the other hand, if there is just one non-degenerate ver-
ification equation the condition on clause 5 holds and we would have fallen
in there. Now, pick two non-degenerate equations, say (j, k). Note that, since
Aβ

j Bβ
k = Aβ

kBβ
j and they are non-degenerate, there must exist a constant ρ ∈ Zp

s.t. Aβ
j = ρAβ

k and Bβ
j = ρBβ

k . Analogously, since Aγ
j Bγ

k = Aγ
kBγ

j and they are
non-degenerate, there exists a constant δ ∈ Zp s.t. Aγ

j = δAγ
k and Bγ

j = δBγ
k .

Now, substituting in Eq. (19) we have

ρAβ
kBγ

k − Aγ
kρBβ

k + δAγ
kBβ

k − Aβ
kδBγ

k = (ρ − δ)(Aβ
kBγ

k − Aγ
kBβ

k ) = 0 (20)

Because the groups of Eqs. (12)(∗) and (13)(∗) are not proportional between
them, it must be (Aβ

kBγ
k − Aγ

kBβ
k ) �= 0 for any pair of non-degenerate equations

j, k, and thus, it must be ρ−δ = 0. Therefore, the linear factor between Eq. (12)(j)

and (12)(k) is the same as the linear factor between Eq. (13)(j) and (13)(k). With
similar techniques, it can be shown that in this situation happens between A
and C and so on. In fact, it must hold

(
Aβ

j Bβ
j Cβ

j V β
j At

j Bt
j Ct

j V t
j

)
≡ (

Aβ
k Bβ

k Cβ
k V β

k At
k Bt

k Ct
k V t

k

)

for any pair of non-degenerate verification equations j, k. If j or k are degenerate,
the above equations hold and the transcript θ would have entered in clause 5.

Therefore, if clause 8 is reached, all equations in (12)(∗) must be proportional
to all Eq. (13)(∗). 
�

At this point, we know that all equations of the form Aβ
j αr +Bβ

j αs +Cβ
j = 0

are proportional between them for all j (looking at them as linear equations in
αr, αs) and they are all proportional to Aγ

j αr + Bγ
j αs + Cγ

j = 0 for all j. This
implies that they are also all proportional to At

jαr + Bt
jαs + Ct

j = 0 for every j.
Pick a non-degenerate equation, say j∗. If αr, αs satisfy this equation, they

satisfy them all. On the other hand, because it is non-degenerate, At
j∗ �= 0 and

therefore, there exists a unique value αr ∈ Zp s.t. At
j∗αr + Bt

j∗ · 0 + Ct
j∗ = 0.

Therefore, the witness is unique in this branch. 
�
From Theorem 1, the following corollary is immediate. It implies that at least

six group elements are necessary as claimed in Table 1.
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Corollary 1. If there exists a structure preserving signature scheme that signs
bilateral messages over Type-III bilinear groups and its EUF-CMA security is
proved by algebraic black-box reductions to a non-interactive problem, then its
signature must include at least 6 group elements.

It is worth to point out that the above result brings new insights to the case of
unilateral messages in Type-III under non-interactive assumptions. Recall that
the 4-element construction in [5] outputs signatures in G

3
1 × G2 for messages

in G1. It was unknown whether other structures such as G
2
1 × G

2
2 are possible.

Corollary 1 states that G
3
1 × G2 is the only possible choice and it justifies the

optimality of the construction from [5].
The following corollary restricts the number of schemes for bilateral messages

with signatures in G
2
1 × G

�
2 for arbitrary �, by imposing a condition without

which it would be easy to argue extractability for clause 7.

Corollary 2. If Sig is a signature scheme for messages (M,N) ∈ G1 ×G2 with
signature elements (R,S, T1, . . . , T�) ∈ G

2
1 × G

�
2 is proven EUF-CMA under a

non-interactive assumption, it must be s.t. all the k verification equations satisfy:

rank

⎛

⎜⎜⎜⎜⎝

d
(1)
1 d

(1)
2 d

(1)
3 . . . d

(k)
1 d

(k)
2 d

(k)
3

a
(1)
1 b

(1)
1 c

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1

...

a
(1)
� b

(1)
� c

(1)
� . . . a

(k)
� b

(k)
� c

(k)
�

⎞

⎟⎟⎟⎟⎠
< �

4 Lower Bounds in Type-II

In Type-II, there are three cases, i.e., (1) messages exist only in G1, (2) messages
exist only in G2, and (3) messages exist in both G1 and G2. Below, we give a
bound for the first case. Note that it directly implies a lower bound for bilateral
messages (case 3) as well.

Theorem 2. Any structure preserving signature scheme over Type-II groups
with message space M ⊂ G1 that yields signatures consisting of 3 group elements
cannot have an algebraic black-box reduction from the EUF-CMA security to
non-interactive hardness assumptions if pseudo-random functions exist and the
discrete logarithm problem is hard in G1.

Let M ∈ G1 be a message and (R,S, T1, . . . , T�) be a signature. We first
consider two extreme cases where signatures include elements from one group. If
(R,S, T1, . . . , T�) ∈ G

2+�
1 , the verification equations are in the form of e(R,U1)

e(S,U2) e(M,U3)
∏�

j=1 e(Tj , U3+j) = Z where Ui and Z are public-keys. Thus,
given two signatures on two messages, one can easily obtain a valid signature on
a new message by linearly combining two messages and signatures. Therefore,
such signatures are vulnerable to random message attacks.

We now consider the case where the number of signature elements in G1 is at
most 2. Say, (R,S) ∈ G

2
1, T1, . . . , T� ∈ G

�
2. Let SIG� be the set of all structure
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preserving signature schemes whose signature consists of 2 group elements from
G1 and other � elements from G2. We denote by Ã the group element in G1 that
was mapped from A ∈ G2.

Theorem 2 is shown by combining our Lemma 3 with Theorem 8 from [5].

Lemma 3. For every scheme in SIG�, there exists a crucial relation.

Proof. According to [6], at least 2 verification equations are required in Type-II
for secure signature with (R,S) ∈ G

2
1, T1, . . . , T� ∈ G

�
2 ∈ SIG�. Observe that in

every structure preserving signature scheme with signature space G
2
1 × G

�
2, the

j-th verification equation can be written in the following form, where M ∈ G1 is
a message, U

(j)
i , V

(j)
i are elements in VK , a

(j)
i , b

(j)
i , c

(j)
i , d

(j)
i ∈ Zp for i = 1, . . . , �

are public parameters, and (R,S, T1, . . . , T�) ∈ G
2
1 × G

�
2 are signatures,

e(R,U
(j)
1

∏�

i=1
T

a
(j)
i

i ) e(S,U
(j)
2

∏�

i=1
T

b
(j)
i

i ) e(M,U
(j)
3

∏�

i=1
T

c
(j)
i

i )
∏�

j=1

∏�

i=1
e(T̃j , T

d
(j)
i

i )
∏�

i=1
e(V (j)

i , Ti) = Z(j). (21)

Note that, to show the impossibility, it is sufficient to consider a single-element
message in G1 rather than its vector form.

For elements R,S, Ti (i = 1, . . . , �) in a signature, we consider a special
representation of the form R = GϕrMαr , S = GϕsMαs , Ti = Hϕti for some
ϕr, αr, ϕs, αs, ϕti in Zp. Now, consider Eq. (21) in the exponent:

(ϕr + αr m) (
∑�

i=1a
(j)
i ϕti + u

(j)
1 ) + (ϕs + αs m) (

∑�
i=1b

(j)
i ϕti + u

(j)
2 )

+ m (
∑�

i=1c
(j)
i ϕti + u

(j)
3 ) +

∑�
j=1ϕtj

∑�
i=1d

(j)
i ϕti +

∑�
j=1 v

(j)
i ϕti = z (22)

By considering (22) as a polynomial in m, it can be shown that

(
∑�

i=1a
(j)
i ϕti + u

(j)
1 )αr + (

∑�
i=1b

(j)
i ϕti + u

(j)
2 )αs + (

∑�
i=1c

(j)
i ϕti + u

(j)
3 ) = 0

(23)

if the discrete logarithm problem is hard in G1. We denote by Dtj,k(t1, . . . , t�) the
determinant of Eq. (23) for j and k �= j, when considered as polynomials in (αr,
αs). There exists a unique solution (αr, αs) if and only if Dtj,k(t1, . . . , t�) �= 0.
Let θ denote a transcript θ := (VK , (M (1), R(1), S(1), T

(1)
1 , . . . , T

(1)
� ), . . . , (M (n),

R(n), S(n), T
(n)
1 , . . . , T

(n)
� )). We construct a crucial relation for Sig ∈ SIG�.

Definition 4 (Crucial Relation for Sig ∈ SIG�). Let 
 := (ω1, ω2) and
given θ, let (R,S, T1, . . . , T�) be the first signature in θ, for message M . The
relation Ψ(θ,
) is decided as follows.

1. If θ is invalid, return 0.
2. Else if there exist verification equations j and k s.t. Dtj,k(t1, . . . , t�) �= 0,

– if 
 = (αr, αs) where αr and αs satisfy (23) for both verification equations
j and k, return 1,
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– else return 0.
3. Else if 
 = (⊥,⊥) then return 1, else return 0.

Lemma 4. The relation Ψ in Definition 4 is a crucial relation for any Sig ∈
SIG� w.r.t. algebraic algorithms and a message sampler choosing M uniformly.

We show that the relation Ψ in Definition 4 satisfies usefulness, omitting
proofs for uniqueness and extractability (see [1] for further details).
Usefulness. Given 
 = (αr, αs) ∈ Z

2
p, we forge a signature on arbitrary fresh

message as follows:
Choose M̂ ∈ G1 randomly. Compute (M	, R	, S	, T 	

1 , . . . , T 	
� ) = (M · M̂,

R · M̂−αr , S · M̂−αs , T1, . . . , T�) and output (R	, S	, T 	
1 , . . . , T 	

� ) as a forgery
for M	. Since it uses the actual αr and αs that were used by the reduction,
it constitutes a valid signature because it satisfies (21) for every verification
equation.

On the other hand, if 
 = (⊥,⊥), it means that Eq. (23) is proportional (as
an equation in αr and αs) for every verification equation j. We say a verification
equation is degenerate if

∑�
i=1a

(j)
i ϕti + u

(j)
1 = 0 and

∑�
i=1b

(j)
i ϕti + u

(j)
2 = 0.

Otherwise, it is called non-degenerate. Note that, if T1, . . . , T� are reused, if a
non-degenerate verification equation holds for certain M,R, S, all verification
equations will also hold (because they are all proportional). This observation
allows us to define the following forgery:

Pick a non-degenerate verification equation j s.t.
∑�

i=1a
(j)
i ϕti + u

(j)
1 �= 0.

Compute M	 = M ·(U (j)
1

∏�
i=1 T̃

a
(j)
i

i

)−1 and R	 = R ·(U (j)
3

∏�
i=1 T̃

c
(j)
i

i

)
. Observe

that (R	, S, T1, . . . , T�) is a valid signature for M	: it satisfies the non-degenerate
equation j and, because it reuses T1, . . . , T�, it must satisfy all the others too.

If no non-degenerate verification equation satisfies the previous condition,
pick one, say j, s.t.

∑�
i=1b

(j)
i ϕti + u

(j)
2 �= 0. Analogously, compute M	 = M ·

(
U

(j)
2

∏�
i=1 T̃

b
(j)
i

i

)−1 and S	 = S · (
U

(j)
3

∏�
i=1 T̃

c
(j)
i

i

)
and observe that (R,S	, T1,

. . . , T�) is a valid signature for M	.
Finally, if the above is not possible, all verification equations are degenerate

for such T1, . . . , T�. In that case, (∗, ∗, T1, . . . , T�) is a valid signature for every
message in G1, where placeholders ∗ can be filled with arbitrary G1 elements. 
�

The above implies that constructions with signature elements R ∈ G1 and
S, T1, . . . , T�−1 ∈ G2 are impossible. Additionally, we can say that no secure SPS
based on non-interactive assumption with all signature elements in G2 can exist.

5 Discussion and Open Problems

On the Tightness of Our Bound for Type-III. We have shown that 6 elements
are necessary and the construction from [5] shows that 6 elements are also suffi-
cient. This construction requires 3 signature elements in every source group. A
small remaining question would be whether a construction is possible with 2 ele-
ments on one side and 4 elements on the other. Our Corollary 2 gives necessary
conditions on the shape of the verification equations of such a scheme.
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On Constructions Over Type-II Groups. We next discuss the current status of
constructions in the setting marked as †, ‡, § in Table 1 and (non-)optimality of
the lower bounds obtained in this paper.

– († Bilateral messages, interactive assumptions). The optimal scheme for uni-
lateral messages in G1 (and the scheme in Type-I) from [8] cannot be straight-
forwardly used for signing bilateral messages since the scheme can sign only a
single group element. The best existing scheme for this setting is the 7-element
scheme in [3] originally designed for Type-I groups. It can be securely used
for bilateral messages in Type-II groups since the construction and security
proofs do not use the symmetry of the pairing, and the underlying q-type
assumption is justified in the Type-I generic group model where an efficient
morphism from G2 to G1 does exist. To close the gap between lower and
upper bounds in this setting, finding a 3-element scheme that signs messages
consisting of two group elements in G1 is desired.

– (‡ Unilateral messages in G1 and bilateral messages, q-type assumptions).
The 7-element scheme from [3] is not known to be optimal, since the current
lower bound is 4. We want to note that some straightforward approaches to
get closer to the lower bound fail: First, observe that the 4-element scheme [4]
based on a q-type assumption cannot be used, because it is defined over Type-
III bilinear groups and the assumption does not hold in the Type-II setting.
Second, the technique of converting a SPS scheme from an interactive to a
non-interactive assumption by using the first group element in a message as
a random element in a signature (as used in [4,6,15]) does not work because
the existing 3-element scheme [8] based on an interactive assumption has a
limited message space consisting only of one group element. Closing the gap
in this case remains as an open problem.

– (§ All message types, static assumptions). The construction in [22] instanti-
ated with the DLIN assumption can be adapted to Type-II groups. It yields
in signatures with 9 group elements for messages consisting of an arbitrary
(but preliminary fixed) number of group elements in G1, and hence can be
used to sign unilateral messages in G2 or bilateral messages as well. To the
best of our knowledge, that is currently the smallest scheme (according to the
signature size) and it is still far from our lower bound of 4 signature elements.

On the Possibility of Showing a Lower Bound for Unilateral Messages in G2 in
Type-II Groups. The authors of [6] have constructed a SPS scheme over Type-
II groups for messages in G2 based on a non-interactive assumption, with 3
signature elements. This gives an upper bound of 3, while there is a lower bound
of 2. Extrapolating from known lower bounds in different settings, it is natural to
conjecture that 3-element construction is indeed optimal in this case. However,
the fact that secure constructions with a single verification equation exist in
Type-II, makes our techniques inapplicable for this case. Finding a scheme with
2 signature elements in this setting or proving that 3 group elements are needed
remains as an open problem. We conjecture that a 2-element construction based
on non-interactive assumptions does not exist and lean towards the optimality
of 3 signature elements.
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Abstract. Group signature with verifier-local revocation (VLR-GS) is
a special type of revocable group signature which enables a user to
sign messages without referring to information regarding revoked users.
Although there have been several proposals of VLR-GS schemes since the
first scheme proposed by Boneh and Shacham [CCS 2004], all of these
schemes only achieve a security notion called selfless anonymity, which is
strictly weaker than the de facto standard security notion, full anonymity
where an adversary is allowed to corrupt all users. Thus, for more than a
decade, it has been an open problem whether a fully anonymous VLR-GS
scheme can be constructed. In this paper, we give an affirmative answer to
this problem. Concretely, we show the construction of a fully anonymous
VLR-GS scheme from a digital signature scheme, a key-private public key
encryption scheme, and a non-interactive zero-knowledge proof system.
Moreover, we give a fully anonymous VLR-GS scheme with backward
unlinkability, which ensures that even after a user is revoked, signatures
produced by the user before the revocation remain anonymous.

Keywords: Group signature · Verifier-local revocation
Full anonymity · Backward unlinkability

1 Introduction

1.1 Background

Group Signature and Revocation. The notion of group signature was intro-
duced by Chaum and van Heyst [12]. In a group signature scheme, a group
manager called an issuer generates user signing keys by using the issuing key,
and users can anonymously sign messages on behalf of the group with their own
signing keys. However, in the case of disputes, a group manager called an opener
can identify the signer from a signature.
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Membership revocation is one of the most important research topics in group
signatures, and has been widely investigated so far. Currently, there are two main
approaches for realizing a group signature scheme with revocation functionality.
The first approach is to periodically publish information related to the revoked
users, and require both users and verifiers to use this when generating or verify-
ing signatures [6,9,14,18,25,26,29,32]. A scheme obtained by such an approach
is sometimes inconvenient since users need to download the up-to-date informa-
tion whenever signing. The second approach, group signature with verifier-local
revocation [8] on which we focus in this paper, is free from this concern.

Group Signature with Verifier-Local Revocation. The notion of group
signature with verifier-local revocation (VLR-GS) was proposed by Boneh and
Shacham [8]. After that, Nakanishi and Funabiki [30] extended the security
notion for this type of schemes by considering backward unlinkability. The first
scheme secure in the standard model was proposed by Libert and Vergnaud [28],
and recently, a lattice-based scheme was introduced by Langlois, Ling, Nguyen,
and Wang [23].

In a VLR-GS scheme, verifiers need to download the up-to-date information
of the revoked users to verify signatures but signers are not required to do
so. That is, signers can generate signatures without any additional information
of the revoked users. More precisely, a VLR-GS scheme operates as follows: a
token (called a revocation token) is defined for each user, and the authority
reveals this in a public list (called a revocation list) if the corresponding user is
revoked. Namely, the revocation list contains the revocation tokens of the revoked
users. A revocation token can be used to detect the signatures generated by the
corresponding user. Thus, a verifier can check whether the signer is revoked by
using the revocation list. In contrast, a signer can generate signatures using only
his/her signing key, that is, he/she does not need to refer to the revocation list.
Such a functionality is very attractive when it is difficult for users to periodically
obtaining up-to-date information.

However, there is one drawback on VLR-GS schemes: all existing schemes
have only been proved to satisfy a weak security notion called selfless anonymity,
whereas several standard revocable group signature schemes (e.g., the schemes
proposed by Libert, Peters, and Yung [25,26]) satisfy a strong security notion
called full anonymity.1 Specifically, there are trivial attacks against the full
anonymity of almost all existing VLR-GS schemes. We provide more details
of these two security notions in the next paragraph.

Full Anonymity vs. Selfless Anonymity. Full anonymity ensures that the
signer’s information cannot be extracted from a signature by an adversary with

1 Very recently, Perera and Koshiba [35] proposed a VLR-GS scheme which is claimed
to be fully anonymous. However, in fact, it does not satisfy full anonymity. We
explain this in detail in the full-version of this paper.
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all user signing keys.2 Selfless anonymity is a weaker security notion than full
anonymity, and ensures the anonymity of a signature only against an adversary
who does not possess the user signing key which was used in the generation of
the corresponding signature.

From a practical point of view, a selfless-anonymous group signature scheme
has two drawbacks: it is not resistant to the leakage of user signing keys and it
might allow the issuer to identify the signer. More precisely, selfless anonymity
does not ensure that the signer’s information cannot be extracted from a signa-
ture by an adversary who has the signing key used to generate the signature.
Therefore, once a signing key is exposed, the anonymity of the signatures gener-
ated by the underlying signing key can no longer be guaranteed. Also, anonymity
against the issuer cannot be ensured since he/she knows all user signing keys.
Thus, selfless anonymity does not provide the security level strong enough for
practical use, and full anonymity is recognized as one of the de facto standard
security requirements of group signature (e.g., [5,6,15,18,20,22,24,27,33]).

Although it is more desirable that group signatures satisfy full anonymity
than selfless anonymity, it is more challenging to construct a fully anonymous
group signature scheme than a selfless-anonymous one since there is a big the-
oretical gap between selfless-anonymous group signature and fully anonymous
group signature. In particular, Camenisch and Groth [10] showed that a selfless-
anonymous group signature scheme can be constructed from a one-way func-
tion (OWF) and a non-interactive zero-knowledge (NIZK) proof system. This
result implies that a selfless-anonymous group signature scheme can be con-
structed solely from a OWF in the random oracle model. In contrast, several
results [2,17,34] suggest that a public key encryption (PKE) scheme is an essen-
tial building block for constructing a fully anonymous group signature scheme.
Moreover, a PKE scheme cannot be constructed from a OWF in a black-box
manner even in the random oracle model [21]. Thus, these facts strongly sug-
gest that there is a large gap between selfless-anonymous group signature and
fully anonymous group signature. Therefore, it is an open problem whether a
fully anonymous VLR-GS scheme can be achieved whereas selfless-anonymous
VLR-GS schemes have already been proposed so far.

1.2 Our Contribution

In this paper, we give an affirmative answer to the above problem. Concretely,
we show the construction of a fully anonymous VLR-GS scheme from a digi-
tal signature scheme, a PKE scheme, and an NIZK proof system. Although the
building blocks are essentially the same as those of a standard group signature
scheme [4], we additionally require the underlying PKE scheme to satisfy key

2 Here, we adopt the notion of full anonymity in the CPA-setting [6]. We remark
that it is considered to be easy to upgrade to full anonymity in the CCA-setting
where an adversary is allowed to access the open oracle, by using standard tech-
niques for acquiring CCA-security in a public key encryption scheme (for details, see
Remark 1 in Sect. 3.2).
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privacy [3], which is essential to ensure that the VLR-GS scheme is fully anony-
mous. Also, we give the construction of a fully anonymous VLR-GS scheme with
backward unlinkability [30], which ensures that even after a user is revoked, sig-
natures produced by the user before the revocation remain anonymous. In the
construction of the scheme with backward unlinkability, we employ a key-private
identity-based encryption scheme as an additional building block.3

1.3 Technical Overview

We will now give a technical overview of our construction. Since we can obtain the
scheme with backward unlinkability by extending one without backward unlink-
ability, we only explain our construction of a VLR-GS scheme without backward
unlinkability. See Sect. 4 for details of the scheme with backward unlinkability.

Previous Approach. As mentioned above, all existing VLR-GS schemes sat-
isfy only selfless anonymity. Specifically, there are trivial attacks against the full
anonymity for most of the schemes [8,11,23,30,31,36] due to their structures
allowing the revocation token to be computed from the corresponding user’s
signing key (the Libert-Vergnaud scheme [28] is the only exception, but this
scheme has still only been proved to be selfless-anonymous). Recall that the
revocation token can be used to detect signatures generated by the correspond-
ing user. Thus, if the revocation token can be constructed from the corresponding
signing key, an adversary holding all user signing keys can identify the signer
from any signature by computing all users’ revocation tokens. That is, a VLR-
GS scheme with such a structure can never satisfy full anonymity. Therefore, if
we attempt to achieve a fully anonymous VLR-GS scheme, we have to construct
it from scratch.

Our Approach. Our construction mainly follows the construction of a group
signature scheme proposed by Bellare, Micciancio, and Warinschi [4]. For the
Bellare-Micciancio-Warinschi (BMW) construction, we add revocation function-
ality by employing additional key pairs of a key-private PKE scheme [13,16] for
each user. Intuitively, a decryption key of the PKE scheme is used as a revo-
cation token, and a signer computes a certain ciphertext using his encryption
key of the PKE scheme as a part of a signature. A verifier can check whether
a signature is generated by a revoked user by decrypting the ciphertext in the
signature using all revocation tokens in the revocation list.

A more detailed explanation of our scheme is given in the following. In the
BMW construction [4], each user possesses a certified key pair (vki, ski) of a
digital signature scheme. When signing a message m, the user i generates a

3 Also, we can construct a VLR-GS scheme which satisfies backward unlinkability
from the same building blocks as the scheme without backward unlinkability at the
expense of the public key size which depends on the number of users. We discuss it
in the full-version of this paper.
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signature σ on the message m using his/her signing key ski, and encrypts σ
using the group manager’s encryption key ekPKE of a PKE scheme to achieve
anonymity. Let ct be this ciphertext. Moreover, the user produces an NIZK proof
which proves that the series of procedures is honestly done and the signing key is
certified. Thus, the signature in the BMW construction consists of a ciphertext
ct and a proof.

We employ additional key pairs of a PKE scheme to achieve verifier-local
revocation functionality. More precisely, the group manager generates its key
pair (eki, dki) for each user i and certifies it, and sends only the encryption
key eki as a part of the signing key to the user. Moreover, the manager sets
the decryption key dki as the revocation token of the user i. When signing a
message m, the user i also computes a ciphertext ˜ct of the signature σ under the
encryption key eki in addition to a ciphertext ct under ekPKE. Then, the user
produces an NIZK proof which proves that the series of procedures is honestly
done, and the signing key and the encryption key are certified. The signature in
our scheme is a tuple of two ciphertexts ct and ˜ct and a proof. A verifier can
check whether the signer is revoked by decrypting the underlying ciphertext ˜ct
using all revocation tokens in the revocation list and checking that it can be
decrypted to the valid plaintext by some revocation token.

Intuitively, our scheme satisfies full anonymity since the revocation token
(i.e., the decryption key dki) cannot be computed from the corresponding sign-
ing key (i.e., the key which contains the encryption key eki) due to the security
of the underlying PKE scheme. To implement this idea, the PKE scheme is also
required to be key-private since the encryption key eki contained in the cipher-
text ˜ct is associated with the signer i and may leak the identity of the signer.

2 Preliminaries

In this section, we define some notations and cryptographic primitives which we
use in this paper. Here, we omit the definitions of standard primitives due to the
page limitation.

Notations. x
$←− X denotes choosing an element from a finite set X uniformly

at random. If A is a probabilistic algorithm, y ← A(x; r) denotes the operation
of running A on an input x and a randomness r, and letting y be the output.
When it is not necessary to specify the randomness, we omit it and simply write
y ← A(x). If we describe the statement that the output of A(x) is y, then we
denote A(x) = y. If O is a function or an algorithm, AO denotes that A has
oracle access to O. λ denotes a security parameter. PPT stands for probabilistic
polynomial time. A function f(λ) is called negligible and denoted as negl(λ) if
for any c > 0, there exists an integer Λ such that f(λ) < 1

λc for all λ > Λ.

2.1 Cryptographic Primitives

Digital Signature. A signature scheme SIG consists of three algorithms
(SIG.Gen,SIG.Sign,SIG.Verify). The SIG.Gen algorithm takes 1λ as input and



28 A. Ishida et al.

outputs a verification/signing key pair (vk, sk). The SIG.Sign algorithm takes
sk and a message m as input, and outputs a signature σ. The SIG.Verify algo-
rithm takes vk, m, and σ as input, and outputs either 1 or 0. We say that a
signature scheme is correct if for all (vk, sk) ← SIG.Gen(1λ) and all messages m,
it holds that Pr[SIG.Verify(vk, (m,σ)) = 1 | σ ← SIG.Sign(sk,m)] = 1. In our
construction, we use a signature scheme which satisfies existential unforgeability
against chosen message attacks (EUF-CMA security) [19].

Public Key Encryption. A public key encryption (PKE) scheme PKE con-
sists of three algorithms (PKE.Gen,PKE.Enc,PKE.Dec). The PKE.Gen algorithm
takes 1λ as input and outputs an encryption/decryption key pair (ek, dk). The
PKE.Enc algorithm takes ek and a plaintext m as input, and outputs a ciphertext
ct. In this paper, if necessary, we explicitly mention a randomness r ∈ RPKE

used in the encryption and write ct ← PKE.Enc(ek,m; r) where RPKE is the
randomness space of PKE . The PKE.Dec algorithm takes dk and ct as input,
and outputs m. We say that a PKE scheme is correct if for all plaintexts m
and all randomness r, it holds that Pr[m = m̃ | (ek, dk) ← PKE.Gen(1λ); m̃ ←
PKE.Dec(dk,PKE.Enc(ek,m; r))] = 1. In this paper, we use a PKE scheme which
is not only indistinguishable against chosen plaintext attacks (IND-CPA secure)
but also key-private [3]. Intuitively, key privacy ensures that an adversary cannot
learn any information about the key.

Identity-Based Encryption. An identity-based encryption (IBE) scheme IBE
consists of four algorithms (IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec). The IBE.Gen
algorithm takes 1λ as input and outputs system parameters params and a mas-
ter secret key msk. The IBE.Ext algorithm takes params, msk, and an arbi-
trary string ID ∈ {0, 1}∗ as input, and outputs a decryption key dk that is
the corresponding decryption key with the public key ID. The IBE.Enc algo-
rithm takes params, ID, and a plaintext m as input, and outputs a ciphertext ct.
As the case of PKE schemes, if necessary, we explicitly mention a random-
ness r ∈ RIBE used in the encryption and write ct ← IBE.Enc(params, ID,m; r)
where RIBE is the randomness space of IBE . The IBE.Dec algorithm takes
params, dk, and ct as input, and outputs m. We say that an IBE scheme is
correct if for all strings ID, all plaintexts m, and all randomness r, it holds that
Pr[m = m̃ | (params,msk) ← IBE.Gen(1λ); dk ← IBE.Ext(params,msk, ID); m̃ ←
IBE.Dec(dk, IBE.Enc(params, ID,m; r))] = 1. As the case of PKE, we use a IBE
scheme which is indistinguishable against chosen plaintext attacks (IND-ID-CPA
secure) [7] and key-private [3]. Intuitively, an IBE scheme is key-private if a
ciphertext does not reveal the identity of the recipient.

Non-interactive Zero-Knowledge (NIZK) Proof. Let RL be an effi-
ciently computable binary relation. For a pair (x,w) ∈ RL, we call x a state-
ment and w a witness. Let L be the language consisting of statements in
RL. An NIZK proof system PL for a language L consists of three algorithms
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(ZK.Gen,ZK.Prove,ZK.Verify). The ZK.Gen algorithm takes 1λ as input and
returns a common reference string crs. The ZK.Prove algorithm takes crs, a state-
ment x, and a witness w as input, and outputs a proof π. The ZK.Verify algorithm
takes crs, x, and π as input, and outputs either 1 or 0. An NIZK proof system
is required the following two conditions:

Completeness: For all (x,w) ∈ RL and all crs ← ZK.Gen(1λ),
Pr[ZK.Verify(crs, x, π) = 1 | π ← ZK.Prove(crs, x, w)] = 1 holds.

(Adaptive) Soundness: For any PPT adversary A, the advantage
Advsound

PL,A (λ) = Pr[x∗ �∈ L ∧ ZK.Verify(crs, x∗, π∗) = 1 | crs ← ZK.Gen(1λ);
(x∗, π∗) ← A(crs)] is negligible.

Moreover, we say that PL is zero-knowledge if for any PPT adversary A
there exists a simulator S = (Sim1, Sim2) such that the advantage Advzk

PL,A(λ) =
∣

∣Pr[Expproof
PL,A(λ) = 1 ] − Pr[ Expsim-proof

PL,A (λ) = 1]
∣

∣ is negligible where the experi-
ments Expproof

PL,A(λ) and Expsim-proof
PL,A (λ) are defined in Fig. 1.

Expproof
PL,A(λ) : crs ← ZK.Gen(1λ) Expsim-proof

PL,A (λ) : (crs, td) ← Sim1(1λ)
Expproof

PL,A(λ) : b ← AProve(·,·)(crs) Expsim-proof
PL,A (λ) : b ← ASimProve(·,·)(crs)

Expproof
PL,A(λ) : Return b Expsim-proof

PL,A (λ) : Return b

Fig. 1. These are the experiments used to define zero-knowledgeness for an NIZK proof
system PL. Here, the oracle Prove takes (x, w), computes π ← ZK.Prove(crs, x, w),
and returns π. The oracle SimProve takes (x, w), computes π ← Sim2(crs, td, x), and
returns π. If (x, w) �∈ RL, then SimProve returns ⊥.

2.2 Group Signature with Verifier-Local Revocation

In this section, we review the syntax and the security requirements of group
signature with verifier-local revocation (VLR-GS). We give the model of VLR-
GS with backward unlinkability [30], which is extended from that of VLR-GS
without backward unlinkability [8]. A VLR-GS scheme without backward unlink-
ability is a special case of that with backward unlinkability where the number of
time periods is only one. A VLR-GS scheme GS consists of the following three
algorithms (GS.Gen,GS.Sign,GS.Verify).

GS.Gen: The group key generation algorithm takes a security parameter 1λ (λ ∈
N), the number of users n, and the number of time periods T as input, and
outputs a group public key gpk, a set of user signing keys gsk = {gsk[i]}i,
and a set of revocation tokens grt = {grt[i][j]}ij . Here, gsk[i] and grt[i][j]
denote the user i’s signing key and revocation token at the time period j,
respectively.

GS.Sign: The signing algorithm takes gpk, time period j, gsk[i], and a message m
as input, and outputs a signature Σ.
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GS.Verify: The verification algorithm takes gpk, j, a revocation list RLj , m, and
Σ as input, and outputs either 1 or 0. The list RLj is defined as the set of
the revocation tokens RLj = {grt[i][j] | i ∈ RUj} where RUj is the set of the
revoked users’ identities at the time period j.

In a VLR-GS scheme, the opening procedure can be done by using a set of
revocation tokens grt. More precisely, the implicit opening algorithm GS.Open
can be defined as follows.

GS.Open: The opening algorithm takes gpk, j, a set of revocation tokens grt, m,
and Σ as input, and executes the following procedures:
[Step 1] For 1 ≤ i ≤ n, set the revocation list RLj = {grt[i][j]}, and run

GS.Verify(gpk, j,RLj ,m,Σ).
[Step 2] Let i be the index that the GS.Verify algorithm outputs 0 for the

first time in Step 1. Then, output i. If there does not exist such an index,
output ⊥.

In the following, we define the security requirements, correctness, full anonymity,
and traceability. Full anonymity is an extended notion of selfless anonymity [30]

Definition 1 (Correctness). Let A be an adversary for the correctness. We
define the experiment Expcorr

GS,A(λ, n, T ) as follows.

Expcorr
GS,A(λ, n, T ) :

(gpk,gsk,grt) ← GS.Gen(1λ, n, T ); (i∗, j∗,m∗,RU∗) ← A(gpk)
If i ∈ RU∗, return 0
RLj∗ := {grt[i][j∗] | i ∈ RU∗}; Σ∗ ← GS.Sign(gpk, j∗, gsk[i∗],m∗)
Return 1 if GS.Verify(gpk, j∗,RLj∗ ,m∗, Σ∗) = 0, else return 0

We say that GS is correct if the advantage Advcorr
GS,A(λ, n, T ) = Pr[Expcorr

GS,A
(λ, n, T ) = 1] is negligible for any PPT adversary A.

Definition 2 (Full Anonymity). Let A = (A1,A2) be an adversary for full
anonymity. We define the experiment Expanon

GS,A(λ, n, T ) as follows.

Expanon
GS,A(λ, n, T ) :

RUj ← ∅; (gpk,gsk,grt) ← GS.Gen(1λ, n)

(st, i0, i1, j∗,m∗) ← ARevoke(·,·)
1 (gpk,gsk)

b
$←− {0, 1}; Σ∗ ← GS.Sign(gpk, j∗, gsk[ib],m∗); β ← ARevoke(·,·)

2 (st, Σ∗)

Set ˜b = β if i0 /∈ RUj∗ ∧ i1 /∈ RUj∗ , otherwise set ˜b = 0

Return 1 if b = ˜b, else return 0

Here, the oracle Revoke takes i ∈ [1, n] and j ∈ [1, T ], adds i to the list RUj, and
returns grt[i][j]. We note that it is not allowed to query (i0, j∗) and (i1, j∗) to the
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Revoke oracle, but the users i0 and i1 can be revoked after the time period j∗.
We say that GS satisfies full anonymity if the advantage Advanon

GS,A(λ, n, T ) =
∣

∣Pr[Expanon
GS,A(λ, n, T ) = 1] − 1/2

∣

∣ is negligible for any polynomial n = n(λ) and
T = T (λ), and any PPT adversary A.

Definition 3 (Traceability). Let A be an adversary for the traceability. We
define the experiment Exptrace

GS,A(λ, n, T ) as follows.

Exptrace
GS,A(λ, n, T )

CU ← ∅; QL ← ∅; (gpk,gsk,grt) ← GS.Gen(1λ, n, T )

(j∗,m∗, Σ∗,RU∗) ← AGS.Sign(·,·,·),Corrupt(·)(gpk,grt)
RL∗ := {grt[i][j∗] | i ∈ RU∗}; i∗ ← GS.Open(gpk, j∗,grt,m∗, Σ∗)
Return 1 if

GS.Verify(gpk, j∗,RL∗,m∗, Σ∗) = 1

∨ (

i∗ = ⊥ ∨ i∗ /∈ CU ∨ i∗ ∈ RU∗) ∨ (·, ·,m∗, Σ∗) /∈ QL

else return 0

Here, the oracle GS.Sign takes (i, j,m), computes Σ ← GS.Sign(gpk, j, gsk[i],m),
adds (i, j,m,Σ) to the list QL, and returns Σ. The oracle Corrupt takes i ∈ [1, n],
adds i to the list CU, and returns gsk[i]. We say that GS satisfies traceability if
the advantage Advtrace

GS,A(λ, n, T ) = Pr[Exptrace
GS,A(λ, n, T ) = 1] is negligible for any

polynomial n = n(λ) and T = T (λ), and any PPT adversary A.

3 The Proposed Scheme

In this section, we give a construction of a fully anonymous VLR-GS scheme
(for T = 1). Concretely, we construct a VLR-GS scheme from a digital signature
scheme, a key-private PKE scheme, and an NIZK proof system. Here, there is
only one time period j = 1, thus, we do not specify the time period and omit it.

As mentioned, all existing schemes [8,23,28,30,31,36] only provide selfless
anonymity regardless of whether or not the scheme has backward unlinkabil-
ity. Specifically, there is an attack against the full anonymity for most of the
schemes [8,23,30,31,36] due to their structure allowing the revocation token
to be constructed from the user’s signing key. Therefore, in order to achieve
full anonymity, a VLR-GS scheme must not have such a structure provided the
revocation token and signing key of the same user have some relation.

Intuitively, we achieve this by employing an encryption/decryption key pair
of a PKE scheme as a part of the user signing key and the revocation token.
In the following, we explain the proposed VLR-GS scheme without backward
unlinkability in detail, which we call Scheme 1. Before describing the construc-
tion, we give the high-level idea of this scheme.
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3.1 High Level Idea

Scheme 1 mainly follows the BMW construction [4], which allows us to construct
a fully anonymous group signature scheme from a digital signature scheme, a
PKE scheme, and an NIZK proof system. Now, we review this construction.

In the BMW construction, the group manager generates a key pair
(vkSIG, skSIG) of a digital signature scheme and a key pair (ekPKE, dkPKE) of a
PKE scheme. Each user possesses a key pair (vki, ski) of a digital signature
scheme and its certificate certi given by the manager where certi is the signature
of the verification key vki under the signing key skSIG. When a user i signs a
message m, the user generates an internal signature σ on the message m using
his signing key ski, and encrypts σ using ekPKE along with the verification key
vki and the corresponding certificate certi. Let ct be this ciphertext. Moreover,
the user produces an NIZK proof π which proves that the whole procedure is
honestly done and the encrypted certificate certi is a valid signature on vki.
Thus, the signature Σ in the BMW construction consists of a ciphertext ct and
a proof π. The full anonymity is ensured by the confidentiality of the underlying
PKE scheme and the zero-knowledgeness of the underlying NIZK proof system.
The traceability is ensured by the EUF-CMA security of the underlying digital
scheme and the soundness of the underlying NIZK proof system.

We add revocation functionality by introducing additional key pairs of a
key-private PKE scheme to the BMW construction. In our construction, the
manager generates an encryption/decryption key pair (eki, dki) for each user i
and sends only the encryption key eki as a part of the signing key to the user.
In addition, the manager sets the decryption key dki as the revocation token of
the user i. To certify that the key eki is generated for a user i by the manager,
he also computes a signature certi on the message 〈eki, vki〉 under the signing
key skSIG as a certificate. As with the BMW construction, when signing a mes-
sage m, a user i generates an internal signature σ on the message m using the
signing key ski, and encrypts σ, 〈eki, vki〉, and certi under ekPKE. Moreover, in
our construction, the signer i generates a ciphertext ˜ct which is the encryption
of the same plaintext 〈σ, eki, vki, certi〉 as the ciphertext ct under the encryption
key eki.4 Then, the user produces an NIZK proof π which proves that the whole
procedure is honestly done and certi is a valid signature on 〈eki, vki〉, in the case
of the BMW construction. That is, the signature Σ in our construction consists
of ciphertexts ct and ˜ct, and a proof π.

Our scheme does not have a structure allowing the revocation token to be
computed from the corresponding signing key since it is hard to compute the

4 A reader might think that the ciphertext ct is redundant and it is enough that
the ciphertext ct is replaced with the ciphertext ˜ct. However, if so, it is difficult to
reduce its traceability to the EUF-CMA security of the underlying digital signature
scheme. More precisely, if an adversary uses an uncertified encryption key to generate
˜ct, the reduction algorithm cannot extract a forgery of the digital signature scheme.
Moreover, it is not necessary to encrypt the whole value 〈σ, eki, vki, certi〉 in both ct
and ˜ct. Therefore, part of the value is encrypted in the ciphertexts in our scheme
described in Sect. 3.2.
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decryption key dki even if knowing the corresponding encryption key eki because
of the security of the underlying PKE scheme. The decryption key dki works as
a revocation token as follows. If a user i is revoked, his/her revocation token
grt[i] = dki is listed in the revocation list RL. If a verifier check whether the
ciphertext ˜ct can be decrypted by each element in RL as the decryption key, the
verifier can check whether the signer is a revoked user.

Moreover, our scheme has an additional advantage of providing an explicit
opening algorithm. When the opener wants to explicitly open a signature, he/she
decrypts a ciphertext ct by using the decryption key dkPKE. Then, the opener
extracts the plaintext 〈σ, eki, vki, certi〉 and outputs the corresponding identity i.
The implicit opening algorithm (described in Sect. 2.2) requires linear time in
the number of users since the opener has to check the signature’s validity with
each case that a user is revoked. In contrast, the explicit opening algorithm takes
constant time.

The security of our scheme can be discussed in almost the same way as
the BMW construction. However, the underlying PKE scheme is required to
be key-private in our construction since the ciphertext ˜ct is computed by the
encryption key eki depending on the signer i. The full anonymity is ensured by
the IND-CPA security and the key privacy of the underlying PKE scheme, and
the zero-knowledgeness of the underlying NIZK proof system. The traceability
is ensured by the EUF-CMA security of the underlying digital scheme and the
soundness of the underlying NIZK proof system. Also, note that we can rule out
the possibility that the ciphertext ˜ct decrypts the same message σ under two
different decryption keys since the encryption key eki is bound by the verification
key vki with the certificate certi. Therefore, we do not require the underlying
PKE scheme to be robust [1].

3.2 Description

Scheme 1 is given in Fig. 2. We construct a VLR-GS scheme Π1 = (GS.Gen,
GS.Sign,GS.Verify) from a digital signature scheme SIG = (SIG.Gen,
SIG.Sign,SIG.Verify), a PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec),
and an NIZK proof system PL = (ZK.Gen,ZK.Prove,ZK.Verify). We
say that a statement x = 〈ekPKE, vkSIG, ˜ct, ct,m〉 and a witness w =
〈eki, vki, certi, σ, r1, r2〉 satisfy the relation RL if the following equations hold:
(a) ˜ct = PKE.Enc(eki, σ; r1), (b) ct = PKE.Enc(ekPKE, 〈eki, vki, certi〉; r2), (c)
SIG.Verify(vkSIG, 〈eki, vki〉, certi) = 1, and (d) SIG.Verify(vki,m, σ) = 1. More-
over, for a statement x = 〈ekPKE, vkSIG, ˜ct, ct,m〉, if there exists a witness that
satisfies the above equations, then we say that the statement x belongs to the
language L and denote it x ∈ L.

For the correctness of Scheme 1, the following theorem holds.

Theorem 1. Scheme 1 is correct if the underlying NIZK proof system PL sat-
isfies completeness and the underlying digital signature scheme SIG satisfies
EUF-CMA security.
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GS.Gen(1λ, n):
crs ← ZK.Gen(1λ); (vkSIG, skSIG) ← SIG.Gen(1λ)
(ekPKE, dkPKE) ← PKE.Gen(1λ)
For 1 ≤ i ≤ n:
(eki, dki) ← PKE.Gen(1λ); (vki, ski) ← SIG.Gen(1λ)
certi ← SIG.Sign(skSIG, 〈eki, vki〉); grt[i] ← (dki, vki)

gpk = (crs, vkSIG, ekPKE); gsk[i] = (eki, vki, ski, certi)
gsk = {gsk[i]}i; grt = {grt[i]}i

Return (gpk,gsk,grt)
GS.Sign(gpk, gsk[i], m):

σ ← SIG.Sign(ski, m); ˜ct ← PKE.Enc(eki, σ; r1)
ct ← PKE.Enc(ekPKE, 〈eki, vki, certi〉; r2)
π ← ZK.Prove(crs, 〈gpk, ˜ct, ct, m〉, 〈eki, vki, certi, σ, r1, r2〉)
Return Σ = (˜ct, ct, π)

GS.Verify(gpk,RL,m,Σ):
If ZK.Verify(crs, 〈gpk, ˜ct, ct, m〉, π) = 0, return 0
For (dk, vk) ∈ RL:
If SIG.Verify(vk, m,PKE.Dec(dk, ˜ct)) = 1, return 0

Return 1

Fig. 2. Scheme 1: a VLR-GS scheme without backward unlinkability

Proof. Let A be an adversary for the correctness of Π1 and the output of A in
the experiment Expcorr

Π1,A(λ, n) be (i∗, j∗,m∗,RU∗). We note that now the number
of time periods satisfies T = 1, then it holds that j∗ = 1. Therefore, we do not
specify the time period j∗ as in the description of Scheme 1. If the experiment
Expcorr

Π1,A(λ, n) outputs 1, GS.Verify(gpk,RL,m∗, Σ∗) = 0 and i∗ /∈ RU∗ hold
where RL = {grt[i] | i ∈ RU∗} and Σ∗ ← GS.Sign(gpk, gsk[i∗],m∗). Let Σ∗ =
(˜ct

∗
, ct∗, π∗). From the definition of the GS.Verify algorithm, either the event EA

or the event EB happens when GS.Verify(gpk,RL,m∗, Σ∗) = 0 holds.

EA: ZK.Verify(crs, 〈gpk, ˜ct
∗
, ct∗,m∗〉, π∗) = 0 holds.

EB: For some i ∈ RU∗, SIG.Verify(vki,m
∗,PKE.Dec(dki, ˜ct

∗
)) = 1 holds.

However, Pr[EA] = 0 holds if PL satisfies completeness. Therefore, it holds that
Pr[Expcorr

Π1,A(λ, n) = 1] = Pr[EA ∨ EB ] ≤ Pr[EA] + Pr[EB ] = Pr[EB ].
We evaluate Pr[EB ] by constructing an algorithm B that breaks the EUF-

CMA security of the digital signature scheme SIG. At the beginning of the
game, B randomly chooses ̂i ∈ [1, n], and sets vk̂i ← vk where vk is the key
given by the challenger of the EUF-CMA security game. B generates the rest of
instance for the scheme Π1 and sends gpk = (crs, vkSIG, ekPKE) to A. For the A’s
output (i∗,m∗,RU∗), B outputs ⊥ if ̂i = i∗. Otherwise, if ̂i �= i∗, B computes
Σ∗ ← GS.Sign(gpk, gsk[i∗],m∗). Then, B computes σ∗ ← PKE.Dec(dki∗ , ˜ct

∗
),

and outputs (m∗, σ∗) as a forged signature.
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When the event EB happens, there exists at least one pair (dki, vki) ∈ RL
such that SIG.Verify(vki,m

∗,PKE.Dec(dki, ˜ct)) = 1 holds. Let I be the set of
such indexes i and Good be the event that i∗ ∈ I holds where i∗ is the index
chosen by B at the beginning of the game. Since the guess of i∗ ∈ [1, n] and the
behavior of A are independent, we get Pr[EB ∧ Good] = Pr[EB ] · Pr[Good]. When
both events EB and Good happen, it holds that SIG.Verify(vki∗ ,m∗, σ∗) = 1
where σ∗ ← PKE.Dec(dki∗ , ˜ct). Therefore, (m∗, σ∗) is a forgery of the digital
signature scheme SIG, and Pr[EB∧Good] ≤ Advunforge

SIG,B (λ) holds. Moreover, since
i∗ ∈ [1, n] is randomly chosen, we get Pr[Good] = 1/n. Putting all together, we
have Advcorr

Π1,A(λ, n) = Pr[Expcorr
Π1,A(λ, n) = 1] ≤ Pr[EB ] = (1/Pr[Good])· Pr[EB ∧

Good] ≤ n · Advunforge
SIG,B (λ). Therefore, Π1 is correct if the NIZK proof system PL

satisfies completeness and the digital signature scheme SIG satisfies EUF-CMA
security. �
Remark 1. Our scheme seems to be relatively easy to extend to CCA security.
If a CCA-secure encryption scheme is deployed and a one-time signature scheme
is introduced for a signer to additionally generate a one-time signature on the
whole output of the signing algorithm (where the verification key is bounded
by generating its signature using the signing key ski contained in the user sign-
ing key gsk[i]), the group signature scheme becomes non-malleable, that is, it
satisfies CCA anonymity. Moreover, to achieve dynamic setting in the sense of
the Bellare-Shi-Zhang model [5], a user generates a verification/signing key pair
by himself/herself and submits the verification key to the issuer with a proof
of knowledge of the corresponding signing key. Each technique is standard and
widely used, for example, in the papers [24,26].

3.3 Security Analysis

Here, we discuss the security of Scheme 1. That is, we explain that Scheme 1
satisfies full anonymity and traceability defined in Sect. 2.2.

Full Anonymity. For a signature Σ = (˜ct, ct, π) of Scheme 1, the user’s infor-
mation is contained in the encryption key eki and the plaintext σ of the cipher-
text ˜ct, the plaintext 〈eki, vki, certi〉 of the ciphertext ct, and the witness of the
proof π. Intuitively, the information of the plaintexts σ and 〈eki, vki, certi〉 is not
revealed from the ciphertexts ˜ct and ct since the underlying PKE scheme is IND-
CPA secure. Also, the information of the encryption key eki is not revealed from
˜ct by the key privacy of the underlying PKE scheme. Moreover, the information
of the witness is not revealed from the proof π since the NIZK proof system
PL is zero-knowledge. Since these informations are hidden from the adversary
who has the corresponding signing key (eki, vki, ski, certi), Scheme 1 satisfies full
anonymity. Formally, the following theorem holds. Here, we give a proof sketch,
and the formal proof is given in the full-version of this paper.

Theorem 2. Scheme 1 satisfies full anonymity if the underlying NIZK proof
system PL satisfies zero-knowledgeness and the underlying PKE scheme PKE
satisfies IND-CPA security and key privacy.
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Proof Sketch. Let A be an adversary for full anonymity of Π1. We consider the
following sequence of games. Let Pr[Suc�] denote the event that A succeeds in
guessing the challenge bit in Game 	. Let b be the challenge bit, i0 and i1 be the
challenge users, and m∗ be the challenge message.

Game 0: This is the experiment Expanon
Π1,A(λ, n) itself. For simplicity, the challenge

bit b is chosen at the beginning of the game. This change does not have an effect
on the behavior of the adversary A.

Game 1: This game is the same as Game 0, except that the common reference
string crs in the group public key gpk, and a proof π∗ in the challenge signa-
ture Σ∗ are computed by using the simulator S = (Sim1, Sim2) of the NIZK
proof system. Due to the zero-knowledgeness of the NIZK proof system, this
modification does not change the success probability of A with more than a
negligible amount. Therefore, we have that

∣

∣Pr[Suc0] − Pr[Suc1]
∣

∣ is negligible.

Game 2: In this game, we change the plaintext of the ciphertext ct∗ in the
challenge signature Σ∗. Concretely, the plaintext 0|〈ekib ,vkib ,certib 〉| is encrypted to
the ciphertext ct∗ instead of 〈ekib , vkib , certib〉. Since the underlying PKE scheme
satisfies IND-CPA security, this modification does change the success probability
of A with only negligible amount. Thus,

∣

∣Pr[Suc0] − Pr[Suc1]
∣

∣ = negl holds.

Game 3: In this game, we change the plaintext of the ciphertext ˜ct
∗

in the chal-
lenge signature Σ∗. Concretely, the plaintext 0|σ∗| is encrypted to the cipher-
text ˜ct

∗
instead of σ∗ where σ∗ = SIG.Sign(skib ,m

∗). As in the case of the
modification in Game 2, it holds that

∣

∣Pr[Suc2] − Pr[Suc3]
∣

∣ = negl due to the
IND-CPA security of the underlying PKE scheme.

Game 4: In this game, we change the encryption key of the ciphertext ˜ct
∗
. Con-

cretely, we use a random key ek∗ to compute ˜ct
∗

instead of using the key ekib .
Due to the key privacy of the PKE scheme, the adversary A does not distinguish
Game 3 and Game 4. Therefore, we get

∣

∣Pr[Suc3] − Pr[Suc4]
∣

∣ is negligible.

In Game 4, the choice of the challenge bit b and the distribution of the
challenge signature Σ∗ = (˜ct

∗
, ct∗, π∗) are independent. Thus, Pr[Suc4] = 1/2

holds. Finally, we get that Advanon
Π1,A(λ, n) =

∣

∣Pr[Suc0] − 1
2

∣

∣ ≤ ∑3
i=0

∣

∣Pr[Suci] −
Pr[Suci+1]

∣

∣ +
∣

∣Pr[Suc4] − 1/2
∣

∣ is negligible. �

Traceability. Intuitively, due to the soundness of PL, the probability that a
valid proof π for a statement 〈ekPKE, vkSIG, ˜ct, ct,m〉 �∈ L can be constructed is
negligible where L is the language defined in Sect. 3.2. Therefore, if Σ = (˜ct, ct, π)
is a valid signature on m, it holds that 〈ekPKE, vkSIG, ˜ct, ct,m〉 ∈ L with high prob-
ability. Thus, there exists a witness 〈ek∗, vk∗, cert∗, σ∗, r∗

1 , r
∗
2〉 satisfying the equa-

tions (a) ˜ct = PKE.Enc(ek∗, σ∗; r∗
1), (b) ct = PKE.Enc(ekPKE, 〈ek∗, vk∗, cert∗〉; r∗

2),
(c) SIG.Verify(vkSIG, 〈ek∗, vk∗〉, cert∗) = 1, and (d) SIG.Verify(vk∗,m, σ∗) = 1.
From the EUF-CMA security of the scheme SIG, it is difficult to generate the
value cert∗ which satisfies Equation (c) for an uncertified key pair 〈ek∗, vk∗〉.
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Therefore, for some index i ∈ [1, n], (ek∗, vk∗) = (eki, vki) holds. Thus, the only
way to generate a forgery is to produce a signature σ∗ which satisfies Equation
(d). However, it is also difficult to produce such a signature due to the EUF-
CMA security of SIG. Therefore, Scheme 1 satisfies traceability. Formally, the
following theorem holds. Here, we give a proof sketch, and the formal proof is
given in the full-version of this paper.

Theorem 3. Scheme 1 satisfies traceability if the underlying NIZK proof sys-
tem PL satisfies soundness and the underlying digital signature scheme SIG
satisfies EUF-CMA security.

Proof Sketch. Let A be an adversary for traceability of Π1, and (m∗, Σ∗,RU∗)
be the output of A in the experiment Exptrace

Π1,A(λ, n) where Σ∗ = (˜ct
∗
, ct∗, π∗).

Let i∗ be the output of the GS.Open algorithm with an input (m∗, Σ∗). We
consider the following four cases:

I. 〈ekPKE, vkSIG, ˜ct
∗
, ct∗,m∗〉 �∈ L, II. i∗ = ⊥, III. i∗ /∈ CU, and IV. i∗ ∈ RU∗.

If the output of the experiment Exptrace
Π1,A(λ, n, T ) is 1 (i.e., A succeeds in pro-

ducing a forged signature), we can classify the type of the forgery as follows:
(1) I, (2) ¬I ∧ II, (3) ¬I ∧ III, and (4) ¬I ∧ IV.

In the following, we briefly explain that A outputs a forged signature in the
each type only with negligible probability.

(1) This forgery obviously breaks the soundness of the underlying NIZK proof
system PL. Thus, if PL is sound, this type of forgery happens with negligible
probability.

(2) When A’s output (m∗, Σ∗,RU∗) is in this type, 〈gpk, ˜ct
∗
, ct∗,m∗〉 ∈ L holds.

Thus, SIG.Verify(vkSIG, 〈ek∗, vk∗〉, cert∗) = 1 holds where 〈ek∗, vk∗, cert∗〉 is
the decryption result of ct∗ by the decryption key dkPKE. Also, since the open-
ing result is i∗ = ⊥, that is, the procedure is failure, (ek∗, vk∗) �= (eki, vki)
holds for all i ∈ [1, n]. Therefore, (〈ek∗, vk∗〉, cert∗) is a forged signature of the
digital signature scheme SIG. Thus, the probability that this type of forgery
happens is negligible from the unforgeability of the signature scheme SIG.

(3) When A’s output (m∗, Σ∗,RU∗) is in Type 3, and its opening result
is i∗ (i∗ is a valid identity but not a corrupted user), it holds
that SIG.Verify(vki∗ ,m∗,PKE.Dec(dki∗ , ˜ct

∗
)) = 1. Namely, (m∗, σ∗) is a

forged signature of the underlying signature scheme SIG where σ∗ =
PKE.Dec(dki∗ , ˜ct

∗
). Thus, this type of forgery also happens only with negli-

gible probability.
(4) If the opening result of the forgery (m∗, Σ∗,RU∗) is the idenitity i∗, it

holds that GS.Verify(gpk, grt[i∗],m∗, Σ∗) = 0. Especially, SIG.Verify(vki∗ ,m∗,
PKE.Dec(dki∗ , ˜ct

∗
)) = 1 holds. On the other hand, for grt[i∗] = (dki∗ , vki∗) ∈

RL∗, it holds that SIG.Verify(vki∗ ,m∗,PKE.Dec(dki∗ , ˜ct
∗
)) = 0 since (m∗, Σ∗,

RU∗) is accepted by the verification algorithm. Since the two conditions con-
tradict each other, this type of forgery never happens.

Therefore, A can generate a forged signature in all the types only with neg-
ligible probability. Thus, Scheme 1 satisfies traceability. �
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4 A Scheme with Backward Unlinkability

Here, we give a construction of a fully anonymous VLR-GS scheme which satisfies
backward unlinkability.

4.1 High Level Idea

We modify Scheme 1 to obtain a new scheme called Scheme 2. In Scheme 2,
key pairs of an IBE scheme (params(1),msk(1)), . . . , (params(T ),msk(T )) are intro-
duced. When a user i generates a signature at the time period j, he/she encrypts
the internal signature σ by using his/her verification key vki as an identity under
the system parameters params(j) with the corresponding index j. Then, by using
an NIZK proof system, the user proves that he/she used the appropriate sys-
tem parameters with the current time period and his/her certified verification
key as an encryption key. The manager considers a user i’s verification key vki

as an identity and generates the corresponding decryption keys dkij using each
master secret key msk(j). Then, the key dkij is set to be i’s revocation token for
the time period j. Since the decryption key dkij can be used to decrypt only
the ciphertext which is generated with the verification key vki and the system
parameters params(j), it works as the revocation token of the user i at the time
period j.

Since an IBE scheme is employed, a user does not need to possess an addi-
tional key of a PKE scheme. Thus, the user i’s signing key is a tuple of a sign-
ing/verification key pair (vki, ski) of a signature scheme and its certificate certi.
In particular, the signing key size of Scheme 2 is the same as that of the BMW
construction [4].

The security of Scheme 2 is discussed as with that of Scheme 1. Specifi-
cally, the underlying IBE scheme is required to be key-private as we require the
underlying PKE scheme in Scheme 1 to satisfy the security.

4.2 Description and Security

Scheme 2 is given in Fig. 3. Concretely, we construct a VLR-GS scheme Π2 =
(GS.Gen,GS.Sign,GS.Verify) from a digital signature scheme SIG = (SIG.Gen,
SIG.Sign,SIG.Verify), a PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec), an
IBE scheme IBE = (IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec), and an NIZK proof
system P

̂L = (ZK.Gen,ZK.Prove,ZK.Verify). We say that a statement x =
〈ekPKE, vkSIG, params(j), ˜ct, ct,m〉 and a witness w = 〈vki, certi, σ, r1, r2〉 satisfy
the relation R

̂L if the following equations hold: (a) ˜ct = IBE.Enc(params(j),
vki, σ; r1), (b) ct = PKE.Enc(ekPKE, 〈vki, certi〉; r2), (c) SIG.Verify(vkSIG, vki, certi)
= 1, and (d) SIG.Verify(vki,m, σ) = 1. Also, for a statement x = 〈ekPKE, vkSIG,
params(j), ˜ct, ct,m〉, if there exists a witness that satisfies the above equations,
then we say that the statement x belongs to the language ̂L and denote it x ∈ ̂L.

For the correctness, the following theorem holds. Basically, it can be shown
as the case of Scheme 1, and the proof is provided in the full-version.
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GS.Gen(1λ, n, T ):
crs ← ZK.Gen(1λ); (vkSIG, skSIG) ← SIG.Gen(1λ)
For 1 ≤ j ≤ T : (params(j),msk(j)) ← IBE.Gen(1λ)
(ekPKE, dkPKE) ← PKE.Gen(1λ)
For 1 ≤ i ≤ n and 1 ≤ j ≤ T :

(vki, ski) ← SIG.Gen(1λ); certi ← SIG.Sign(skSIG, vki)
dkij ← IBE.Ext(params(j),msk(j), vki); grt[i][j] ← (dkij , vki)

gpk = (crs, vkSIG, ekPKE, {params(j)}j); gsk[i] = (vki, ski, certi)
gsk = {gsk[i]}i; grt = {grt[i][j]}ij

Return (gpk,gsk,grt)
GS.Sign(gpk, j, gsk[i], m):

σ ← SIG.Sign(ski, m)
˜ct ← IBE.Enc(params(j), vki, σ; r1); ct ← PKE.Enc(ekPKE, 〈vki, certi〉; r2)
π ← ZK.Prove(crs, 〈ekPKE, vkSIG, params(j), ˜ct, ct, m〉, 〈vki, certi, σ, r1, r2〉)
Return Σ = (˜ct, ct, π)

GS.Verify(gpk, j,RLj ,m,Σ):
If ZK.Verify(crs, 〈ekPKE, vkSIG, params(j), ˜ct, ct, m〉, π) = 0, return 0
For (dk, vk) ∈ RLj :

If SIG.Verify(vk, m, IBE.Dec(dk, ˜ct)) = 1, return 0
Return 1

Fig. 3. Scheme 2: a VLR-GS scheme with backward unlinkability

Theorem 4. Scheme 2 is correct if the underlying NIZK proof system P
̂L sat-

isfies completeness and the underlying digital signature scheme SIG satisfies
EUF-CMA security.

Moreover, Scheme 2 satisfies full anonymity and traceability. Basically, it can
be shown as the case of Scheme 1. Due to the page limitation, we only give the
following theorems. For details, see the full-version.

Theorem 5. Scheme 2 satisfies full anonymity if the underlying NIZK proof
system P

̂L satisfies zero-knowledgeness, the underlying PKE scheme PKE satis-
fies IND-CPA security, and the underlying IBE scheme IBE satisfies IND-ID-
CPA security and key privacy.

Theorem 6. Scheme 2 satisfies traceability if the underlying NIZK proof sys-
tem P

̂L satisfies soundness and the underlying digital signature scheme SIG
satisfies EUF-CMA security.
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Abstract. Multi-Key Homomorphic Signatures (MK-HS) enable clients
in a system to sign and upload messages to an untrusted server. At any
later point in time, the server can perform a computation C on data pro-
vided by t different clients, and return the output y and a short signature
σC,y vouching for the correctness of y as the output of the function C
on the signed data. Interestingly, MK-HS enable verifiers to check the
validity of the signature using solely the public keys of the signers whose
messages were used in the computation. Moreover, the signatures σC,y

are succinct, namely their size depends at most linearly in the num-
ber of clients, and only logarithmically in the total number of inputs of
C. Existing MK-HS are constructed based either on standard assump-
tions over lattices (Fiore et al. ASIACRYPT’16), or on non-falsifiable
assumptions (SNARKs) (Lai et al., ePrint’16). In this paper, we investi-
gate connections between single-key and multi-key homomorphic signa-
tures. We propose a generic compiler, called Matrioska, which turns any
(sufficiently expressive) single-key homomorphic signature scheme into
a multi-key scheme. Matrioska establishes a formal connection between
these two primitives and is the first alternative to the only known con-
struction under standard falsifiable assumptions. Our result relies on a
novel technique that exploits the homomorphic property of a single-key
HS scheme to compress an arbitrary number of signatures from t different
users into only t signatures.

1 Introduction

Consider a scenario where a user Alice uploads a collection of data items
x1, ... , xn to an untrusted server. Later on, the server executes a computation P

on this data and sends the result y = P(x1, ... , xn) to another user Bob. How can
Bob be sure that y is the correct result obtained by running P on Alice’s data?

A trivial solution to this problem could be obtained by employing digital sig-
natures: Alice could sign each data item xi and send to the server the signatures
σ1, ... , σn. Next, to convince Bob, a server can send along with y the original
inputs with their signatures, and Bob should check that y = P(x1, ... , xn) and
that each σi is a valid signature for xi. While this solution solves the above
c© Springer Nature Switzerland AG 2018
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security concern, it has a clear efficiency drawback: it requires communication
between the server and the verifier Bob that is linear in the input size of P.
This cost is undesirable and can even be unacceptable if Bob is cannot store the
x1, ... , xn.

Homomorphic Signatures. A solution to the above problem that achieves
both security and efficiency can be obtained by using homomorphic signatures
(HS). With this primitive, Alice can use her secret key to sign x1, ... , xn and sends
the signed data items to the server. The server can use a special procedure Eval
that, on input a program P and a collection of signatures σ1, ... , σn, outputs a
signature σP,y. Given Alice’s public key and a triple (P, y, σP,y), Bob (or anyone
else) can get convinced that y is the correct output of P on inputs (x1, ... , xn)
signed by Alice. Very informally, homomorphic signatures are secure in the sense
that an untrusted server (without knowing Alice’s secret key) must not be able
to convince the verifier of a false result. An additional property that makes this
cryptographic primitive interesting and non-trivial is that signatures must be
succinct. This means that the size of σP,y must be significantly smaller than P’s
input size, e.g., size(σP,y) = O(log n).

The notion of homomorphic signatures was proposed by Desdmedt [16] and
first formalized by Johnson et al. [24]. Boneh et al. [4] proposed the first scheme
for computing linear functions over signed vectors and showed an application to
preventing pollution attacks in linear network coding. Following [4], a long series
of works (e.g., [1,2,6,8,9,11–13,15,19,20,26]) addressed the problem of con-
structing linearly-homomorphic signatures obtaining new schemes that improved
on multiple fronts, such as efficiency, security, and privacy. A few more works
addressed the problem of constructing schemes for more expressive functionali-
ties [5,7,14,23]. Boneh and Freeman [5] proposed the first scheme for polynomial
functions based on lattices, which was later improved by Catalano, Fiore and
Warinschi [14] based on multilinear maps. In 2015, Gorbunov, Vaikuntanathan
and Wichs [23] constructed the first HS scheme for arbitrary circuits of bounded
depth from standard lattices.

Multi-key Homomorphic Signatures. In a recent work, Fiore et al. [17]
initiated the study of multi-key homomorphic signatures (MK-HS). In a nut-
shell, MK-HS are homomorphic signatures that allow for computing on data
signed using different secret keys. This capability extends that one of previously
known homomorphic signatures, and is useful in all those applications where one
wants to compute on data provided (and signed) by multiple users. In addition
to formally defining the notion of multi-key homomorphic signatures, Fiore et
al. proposed a construction of MK-HS based on lattices that supports bounded
depth circuits. Their scheme is obtained by extending the techniques of the
single-key scheme of Gorbunov et al. [23]. Another recent work by Lai et al. [25]
shows how to build an MK-HS using SNARKs and digital signatures. However,
since SNARKs are likely to be based on non-falsifiable assumptions [22], the
resulting MK-HS also relies on non standard assumptions.
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1.1 Our Contribution

In this work, we continue the study of multi-key homomorphic signatures. Our
main interest is to identify connections between multi-key homomorphic sig-
natures and their single-key counterpart. In particular, we provide the first
generic method to construct multi-key homomorphic signatures from (sufficiently
expressive) single-key HS schemes. Our main contribution is a compiler, called
Matrioska, that yields the following result:

Theorem 1 (Informal). Let HS be a homomorphic signature scheme for
circuits of polynomial size. Then, for a constant t representing the number of
distinct keys involved in a computation, there exists a multi-key homomorphic
signature scheme MKHS(HS, t) for circuits of polynomial size. Furthermore, if
HS has signatures bounded by a fixed polynomial p(λ), MKHS(HS, t) has signa-
tures bounded by t · p(λ).

Our result essentially shows that for a sufficiently expressive class of functions
multi-key and single-key homomorphic signatures are equivalent. Our construc-
tion is the first to establish a formal connection between these two primitives
without resorting to powerful primitives such as SNARKs which only yield con-
structions from non-falsifiable assumptions. Also, we propose a new methodology
to construct MK-HS, which is the first alternative to the only known construc-
tion from standard assumptions [17]. In particular, while the techniques in [17]
are specific to an algebraic lattice setting, our construction works in a generic
fashion and as such it will allow to immediately obtain new MK-HS schemes
from any future proposal of single-key HS.

Our MK-HS construction is quite involved and its efficiency is, admittedly,
theoretical. In particular, in order to support circuits of (polynomial) size s,
we need to start from a single-key HS scheme that supports circuits of size
scs

t−1
, where t is the number of distinct keys involved in the computation and

cs is some constant that depends on the single-key HS scheme. Therefore our
generic construction generates multi-key homomorphic signature schemes that
can support computations among a constant number of keys (i.e., users) only.

Nevertheless, our MK-HS scheme has succinct signatures that have size
t · p(λ), which is non-trivial as it is independent of the total number of inputs
involved in the computation. Indeed, even in the multi-key setting a trivial solu-
tion to build MK-HS from digital signatures (and even from HS) would require
communication linear in the total number of inputs of a computation, i.e., O(n·t),
assuming each user provides n inputs.

An Overview of Our Techniques. The main challenge in constructing an
MK-HS scheme generically from a single-key one is to obtain a construction with
succinct signatures. In particular, obtaining succinctness requires some mecha-
nism to “compress” n · t signatures into some information that can at most
depend linearly on log n and t. While single-key HS allow for compressing sig-
natures pertaining to the same key, this property seems of no utility when one
needs to compute on signatures pertaining to different keys, if nothing about
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their structure can be assumed.1 To overcome this challenge, we devise a novel
technique that allows us to compress n · t signatures from t different users into t
signatures; for this we show how to use the homomorphic property of the single-
key HS scheme in order to inductively “prove” that the signatures of the first i
users verify correctly on the corresponding inputs.

In what follows we illustrate the core idea of our technique considering, for
simplicity, the two-client case t = 2, and assuming each users contributes to the
computation with n inputs.

Let C : {0, 1}2·n → {0, 1} be the circuit we wish to evaluate. Given the mes-
sages m1, ...mn by user id1 and mn+1, ...m2·n by user id2, we wish to authenticate
the output of y = C(m1, ... ,m2·n). Let σi be the signature for the message mi;
in particular the first n signatures and the last n signatures are associated to
different secret keys.

The initial step is to construct a (2 · n)-input circuit E0 such that E0(x1, ... ,
x2n) = 1 iff C(x1, ... , x2n) = y. Second, define a new circuit E1 : {0, 1}n → {0, 1}
that is E0 with the last n inputs hardwired: E1(x1, ... , xn) = E0(x1, ... , xn,mn+1,
... ,m2n). Now E1 is a circuit that has inputs by a single client only, thus we
can run σ̂1 ← HS.Eval(E1, pk1, σ1, ... , σn). By the correctness of the single-key
homomorphic signature scheme it must hold HS.Verify(E1, pk1, σ̂1, 1) = 1. At this
point, we already compressed the signatures σ1, ... , σn into a single signature σ̂1.
This is however not yet sufficient for succinctness because verifying σ̂1 requires
the circuit E1, which in turn requires to transmit to the verifier n messages
(mn+1, ... ,m2n) to let him reconstruct E1.

This is where the inductive reasoning, and our new technique, begins. Very
intuitively, we use the signatures of the second user to “prove” that HS.Verify(E1,
pk1, σ̂1, 1) = 1, without letting the verifier run this verification explicitly. Let
us see H = HS.Verify((E1, (τ1, ... , τn)), pk1, σ̂1, 1) as a binary string with the
description of a (no input) circuit. Look for the bits of H where the values
mn+1, ... ,m2n are embedded. We can define a new circuit description E2 that
is the same as H except that the hardwired values mn+1, ... ,m2n are replaced
with input gates. Thus E2 is an n-input circuit satisfying E2(mn+1, ... ,m2n) =
HS.Verify(E1, pk1, σ̂1, 1), which returns 1 by correctness of HS.

Now, the crucial observation is that E2 is a circuit on inputs by the sec-
ond client only. Thus, we can run σ̂2 ← HS.Eval(E2, pk2, σn+1, ... , σ2n). By the
correctness of the HS scheme, HS.Verify(E2, pk2, σ̂2, 1) = 1. Note that E2 does
not contain any of the messages m1, ... ,m2·n hardwired; in particular E2 is com-
pletely determined by C, y, pk1, σ̂1 and a description of HS.Verify. Hence, given
(σ̂1, σ̂2) the verifier can reconstruct E2 and check if HS.Verify(E2, pk2, σ̂2, 1) = 1.
Intuitively, this proves that for some messages signed by the second user
E2(mn+1, ... ,m2n) = 1. By the correctness of HS, this in turn implies E1(m1, ... ,
mn) = 1 for some messages signed by the first user; and by construction of E1

the latter implies C(m1, ... ,m2n) = y.

1 This is the case if one aims for a generic single-key to multi-key construction. In
contrast, knowing for example the algebraic structure of signatures can be of help,
as exploited in [17].
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Our compiler, extends the above idea to multiple users, showing that at each
step i the problem consists in proving correctness of a computation Ei−1 that
depends only on the inputs of user i, while inputs of users > i are hardwired
into it. This means that a progressive application of this idea lets the hardwired
inputs progressively disappear up to the point of obtaining a circuit Et which
has no input hardwired and thus can be reconstructed by the verifier. This is
the only computation explicitly checked by the verifier. By construction, Et

encodes the nested execution of several single-key HS verifications (from which
our compiler’s name “Matrioska”), and validity of Et implicitly implies that each
Ei returns 1 (even if the verifier does not know Ei itself). In this description we
favor intuition to precision. A detailed presentation can be found in Sect. 3.

2 Preliminaries

Notation. The security parameter of our schemes is denoted by λ. For any n ∈ N,
we use [n] to denote the set [n] := {1, ... , n}. The symbol lg denotes the logarithm
in base 2; || denotes the string concatenation, e.g., (00)||(10) = (0010); bold font
letters, e.g., σ = (σ1, ... , σn), denote vectors. A function ε(λ) is said negligible in
λ (denoted as ε(λ) = negl(λ)) if ε(λ) = O(λ−c) for every constant c > 0. Also, we
often write poly(·) to denote a function that can be expressed as a polynomial.

2.1 Circuits

We use a modeling of circuits similar to the one in [3]. We define circuits as
6-tuples C = (n, u, q, L,R,G). The value n ≥ 1 denotes the number of inputs to
the circuit, u ≥ 1 is the number of outputs and q ≥ 1 is the number of gates. Let
w denote the total number of wires in the circuit. For the circuits considered in
this work w = n+q. The functions L and R define respectively the left and right
input wire to any given gate g ∈ [q], formally, L,R : [q] → [w] ∪ {0}. Finally,
G : [q] → {0, 1} encodes the gates by mapping each gate g ∈ [q] into a single
bit Gg. In our construction we treat circuit descriptions C as binary strings.
Similarly to [3], the size of our circuit description is quasi-linear in the number
of wires: |C| ∈ O(w lg(w)). Differently from [3], we number gates from 1 to q
(instead of from n+ 1 to n+ q) and label the outgoing wire of a gate g as g + n.
Moreover, we introduce the 0 wire to denote constant output gates, e.g., no-input
gates or gates that have the same output independently of the input values, and
allow for a gate to have the same left and right input, i.e., L(g) ≤ R(g) < g + n.
The largest component in the string C is the descriptions of the function L (and
R), that is a sequence of q values in [w] ∪ {0}, therefore |L| = |R| = q lg(w + 1).
Hence, for a fixed and reasonable encoding it holds |C| ∈ O(w lg(w)).

As an example of a circuit consider the following EQy circuit (that will be
used in our generic compiler) EQy =

(
1, 1, 5, (01134), (02325), (y, 1, 1, 1, 1)

)
.

We explain the procedure to evaluate a 1-output, n-input circuit and refer the
reader to [18] for the general case. Given (x1, ... , xn) and the circuit description
C = (n, 1, q, L,R,G), compute y = C(x1, ... , xn) as follows. Retrieve the label of
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the left and right input wires to gate g = i, for i = 1, 2, ... , q. Let l ← L(i) and
r ← L(i). Create a new variable xn+i ∈ {0, 1}. If l = 0 = r, g is a constant gate,
assign xn+i ← G(i). Otherwise, by definition l �= 0 �= r, retrieve the values xl

and xr, and return xn+i ← xl if G(i) = 0, or xn+i ← NAND(xl, xr) if G(i) = 1.
The output is xn+q = y = C(x1, ... , xn).

Another interesting operation on circuits is circuit composition. Given two
circuits, C1 and C2, we say that C1 is composable with C2 if u1 = n2. Intuitively,
composition connects each output wire of C1 with one input wire of C2. We
denote the circuit composition as C3 = C1 � C2. The resulting circuit C3 =
(n3, u3, q3, L3,R3,G3) is defined as: n3 = n1, u3 = u2, q3 = q1 + q2. Let wi be the
number of wires in Ci, then

L3 =

⎧
⎨

⎩

L1(i) for i ∈ [w1]
0 for i ∈ [w1 + w2] \ [w1] and L2(i − w1) = 0

L2(i − w1) + w1 − u1 for i ∈ [w1 + w2] \ [w1] and L2(i − w1) �= 0

Note that the entries of L3 that are set to 0 preserve constant output gates. The
right-input function R3 is defined analogously. The right-input function R3 is
defined analogously. Finally, G3 = G1||G2.

2.2 Multi-key Homomorphic Signatures

We start by recalling the notion of labeled programs of Gennaro and Wichs [21].

Labeled Programs [21]. A labeled program P is a tuple (C, �1, ... , �t), such that
C : Mt → M is a function of t variables (e.g., a circuit) and �i ∈ {0, 1}∗ is
a label for the i-th input of C. Labeled programs can be composed as follows:
given P1, ... ,Pn and a function G : Mn → M, the composed program P∗ is the
one obtained by evaluating G on the outputs of P1, ... ,Pn, and it is denoted
as P∗ = G(P1, ... ,Pn). The labeled inputs of P∗ are all the distinct labeled
inputs of P1, ... ,Pn (all the inputs with the same label are grouped together
and considered as a unique input of P∗).

We recall the definitions of Fiore et al. [17] for multi-key homomorphic
authenticators, adapted to the case of signature schemes only. Following [17],
we consider labels where � = (id, τ), such that id is a given client identity and τ
is a tag which refers to the client’s input data. To ease the reading, we use the
compact and improper notation id ∈ P meaning that there exists at least one
index label � in the description of P = (C, (�1, ... , �n)) such that � = (id, τ) for
some string τ .

Definition 1 (Multi-key Homomorphic Signature [17] ). A multi-key
homomorphic signature scheme MKHS is a tuple of five PPT algorithms
MKHS = (MKHS.Setup,MKHS.KeyGen,MKHS.Sign,MKHS.Eval,MKHS.Verify)
that satisfies the properties of authentication correctness, evaluation correctness,
succinctness and security. The algorithms are defined as follows:
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MKHS.Setup(1λ). The setup algorithm takes as input the security parameter λ
and outputs some public parameters pp including a description of an identity
space ID, a tag space T (these implicitly define the label space L= ID × T),
a message space M and a set of admissible functions F. The pp are input to
all the following algorithms, even when not specified.

MKHS.KeyGen(pp). The key generation algorithm takes as input the public
parameters and outputs a pair of keys (sk, pk), where sk is a secret signing
key, while pk is the public evaluation and verification key.

MKHS.Sign(sk,Δ, �,m). The sign algorithm takes as input a secret key sk, a
dataset identifier Δ, a label � = (id, τ) for the message m, and it outputs a
signature σ.

MKHS.Eval(P,Δ, {(σi, pkidi
)}i∈[n]). The evaluation algorithm takes as input a

labeled program P = (C, (�1, ... , �n)), where C is an n-input circuit C :
Mn −→ M, a dataset identifier Δ and a set of signature and public-key pairs
{(σi, pkidi

)}i∈[n]. The output is an homomorphic signature σ.
MKHS.Verify(P,Δ, {pkid}id∈P,m, σ). The verification algorithm takes as input a

labeled program P = (C, (�1, ... , �n)), a dataset identifier Δ, the set of public
keys {pkid}id∈P corresponding to those identities id involved in P, a message
m and an homomorphic signature σ. It outputs 0 (reject) or 1 (accept).

Remark 1 (Single/Multi-Hop Evaluation). Similarly to fully homomorphic
encryption, we call a (multi-key) homomorphic signature i-Hop if the Eval algo-
rithm can be executed on its own outputs up to i times. We call single-hop a
scheme where Eval can be executed only on fresh signatures, i.e., generated by
Sign, whereas a multi-hop scheme is a scheme that is i-Hop for all i.

Authentication Correctness. A multi-key homomorphic signature satisfies
authentication correctness if for all public parameters pp ← MKHS.Setup(1λ),
any key pair (skid, pkid) ← MKHS.KeyGen(pp), any dataset identifier Δ, any
label � = (id, τ) ∈ L, any message m ∈ M and any signature σ ←
MKHS.Sign(sk,Δ, �,m), it holds that Pr [MKHS.Verify(I�,Δ, pk,m, σ) = 1] ≥
1 − negl.

Evaluation Correctness. A multi-key homomorphic signature satisfies evalu-
ation correctness if Pr [MKHS.Verify(P′,Δ, {pkid}id∈P′ ,m′, σ′) = 1] ≥ 1 − negl
where the equality holds for a fixed description of the public parameters pp ←
MKHS.Setup(1λ), an arbitrary set of honestly generated keys {(skid, pkid)}id∈ĨD

for some ˜ID ⊆ ID, with | ˜ID| = t, a dataset identifier Δ, a function C :
Mn → M, and any set of program/message/signature triples {(Pi,mi, σi)}i∈[n]

such that MKHS.Verify(Pi,Δ, {pkid}id∈Pi
,mi, σi) = 1 for all i ∈ [n], and

m′ = g(m1, ... ,mn), P′ = g(P1, ... ,Pn), and σ′ = Eval(C, {(σi, PKi)}i∈[n]) where
PKi = {pkid}id∈Pi

.

Succinctness. Succinctness is one of the crucial properties that make multi-key
homomorphic signatures an interesting primitive. Intuitively, a MKHS scheme is
succinct if the size of every signature depends only logarithmically on the size
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of a dataset. More formally, let pp ← MKHS.Setup(1λ), P = (C, (�1, ... , �n))
with �i = (idi, τi), (skid, pkid) ← MKHS.KeyGen(pp) for all id ∈ [n]. and σi ←
MKHS.Sign(skidi

,Δ, �i,mi), for all i ∈ [n], then MKHS has succinct signatures if
there exists a fixed polynomial poly(·) such that size(σ) = poly(λ, t, log n) where
σ = MKHS.Eval(P, {(σi, pkidi

)}i∈[n]).

Security. We adopt Fiore et al.’s security model [17]. Very intuitively, a multi-
key homomorphic signature scheme is secure if the adversary, who can request
to multiple users signatures on messages of its choice, can produce only signa-
tures that are either the ones it received, or ones that are obtained by correctly
executing the Eval algorithm. In addition, in the multi-key setting the adversary
is also allowed to corrupt users but this shall not affect the integrity of compu-
tations performed on data signed by other (un-corrupted) users of the system.
Formally, we define the security experiment below.

Setup. The challenger C runs MKHS.Setup(1λ) and sends the public parameters
pp to the adversary A.

Sign Queries. The adversary can adaptively submit queries of the form
(Δ, �,m), where Δ is a dataset identifier, � = (id, τ) is a label in ID × T and
m ∈ M is a message. The challenger answers performing all the 1–4 checks
below:

1. If (�,m) is the first query for the dataset Δ, the challenger initializes an empty
list LΔ = ∅.

2. If (Δ, �,m) is the first query with identity id, the challenger generates the
keys for that identity: (skid, pkid) ← KeyGen(pp). and proceeds to step 3.

3. If (Δ, �,m) is such that (�,m) /∈ LΔ, the challenger computes σ ←
MKHS.Sign(skid,Δ, �,m) (this is possible since C has already generated the
keys for the identity id). Then the challenger updates the list LΔ ← LΔ∪(�,m)
and returns (σ, pkid) to A.

4. If (Δ, �,m) is such that (�, ·) /∈ LΔ, that is, the adversary had already made a
query (Δ, �,m′) for some message m′, the challenger ignores the query. Note
that for a given (Δ, �) pair only one message can be obtained.

Corruption Queries. At the beginning of the game, the challenger initialises
an empty list Lcorr = ∅ of corrupted identities. During the game, the adversary
can adaptively perform corruption queries by sending id ∈ ID to the challenger.
If id /∈ Lcorr the challenger updates the list Lcorr ← Lcorr ∪ id and answers the
query with the pair (skid, pkid) generated using KeyGen (if not done before). If
id ∈ Lcorr the challenger replies with keys (skid, pkid) assigned to id before.

Forgery. At the end of the game, A outputs a tuple (P∗,Δ∗, {pk∗
id}id∈P∗ , y∗,

σ∗). The experiment outputs 1 if the tuple returned by A is a forgery (defined
below), and 0 otherwise.

A MK-HS scheme MKHS is unforgeable if for every PPT adversary A, its
advantage AdvAMKHS(λ) = Pr[MK-HomUF-CMAA,MKHS(λ) = 1] is negl(λ).
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Definition 2 (Forgery). We consider an execution of MK-HomUF-CMA where
(P∗,Δ∗, {pk∗

id}id∈P∗ , y∗, σ∗) is the tuple returned by A at the end of the
experiment. Let P∗ = (C∗, �∗

1, ... , �
∗
n). The adversary’s output is said to be

a successful forgery against the multi-key homomorphic signature scheme if:
MKHS.Verify(P∗,Δ∗, {pk∗

id}id∈P∗ , y∗, σ∗) = 1 and at least one of the following
conditions hold:

Type-1 forgery: the dataset Δ∗ was never initialised.
Type-2 forgery: for all id ∈ P∗, id /∈ Lcorr and (�∗

i ,mi) ∈ LΔ∗ for all i ∈ [n],
but y∗ �= C∗(m1, ... ,mn).

Type-3 forgery: there exists (at least) one index i ∈ [n] such that �∗
i was

never queried, i.e., (�∗
i , ·) /∈ LΔ∗ and idi /∈ Lcorr is a non-corrupted identity.

Non-adaptive Corruption Queries. We also recall a proposition given in [17],
which shows that it is sufficient to prove security for non-adaptive corruption
queries. This is a setting where the adversary A can perform corruption queries
only on identities for which no signature query had already been performed. This
proposition can be used to simplify security proofs.

Proposition 1 ([17]). MKHS is secure against adversaries that do not make
corruption queries if and only if MKHS is secure against adversaries that make
non-adaptive corruption queries.

2.3 Homomorphic Signatures

Despite some minor syntactic modifications, homomorphic signatures can be seen
as a special case of multi-key homomorphic signatures for algorithms that run
on inputs by a single user only. For the purpose of this work, single-key homo-
morphic signature schemes are defined by five PPT algorithms HS = (HS.Setup,
HS.KeyGen,HS.Sign,HS.Eval,HS.Verify) that have the same input-output behav-
ior as the corresponding algorithms in MKHS except:

– There is no identity space ID and the labels are simply � = τ .
– The evaluation algorithm HS.Eval takes as input a circuit C, a single public

key pk and a set of signatures σ1, ... , σn. In particular HS.Eval runs without
labels or dataset identifier.

– The verification algorithm HS.Verify accepts inputs from a single user only,
i.e., the labeled program P is of the form P = (C, (τ1, ... , τn)) and only one
public key pk is provided.

The properties of authentication and evaluation correctness are analogous to the
ones for MKHS in the case of computations on inputs by a single client. Regarding
succinctness, a homomorphic signature scheme HS has succinct signatures if the
size of any signature σ output by HS.Eval depends only logarithmic in the number
n inputs to the labelled program, i.e., size(σ) = poly(λ, log(n)).

Finally, we observe that the specialization to the single-key setting of the
above security definition corresponds to the strong-adaptive security definition
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of HS that is formalized in [10]. In particular, the definitions in [10] allow for a
simple treatment of Type-3 forgeries. In [10] it is also shown that HS construc-
tions for circuits that are secure in this stronger model can be generically built,
e.g., from [23].

3 The Matrioska Compiler

In this section, we present Matrioska: a generic compiler from a single-key
homomorphic signature scheme HS = (HS.KeyGen, HS.Sign, HS.Eval, HS.Verify)
to a (single-hop) multi-key scheme MKHS = (MKHS.KeyGen, MKHS.Sign,
MKHS.Eval, MKHS.Verify). The result is summarized in the following theorem:

Theorem 2. Let HS be a homomorphic signature scheme that is correct and
unforgeable. Then, for any given integer number T ≥ 1 there exists a multi-
key homomorphic signature scheme MKHS(HS,T) that supports computations on
signatures generated using at most T distinct keys, it is correct and unforgeable.
Furthermore, if HS supports circuits of maximum size s and maximum depth d
and it has succinctness l, then MKHS(HS,T) on T distinct users has succinctness
T · l, and can support circuits of size s′ and depth d′ provided that s > (s′)cs

T−1

and d > max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a
non-negative constant that depend from the single-key scheme HS.

More precisely, dHSV expresses the depth of the circuit for the verification algo-
rithm HS.Verify as a function of its input length (which includes the description
of the labeled program P); cs is a constant such that the size of HS.Verify on
input a circuit C is size(C)cs . Notice that by efficiency of HS such cs exists, and
dHSV can, in the worst case, be written as size(C)cd for some other constant cd.

Theorem 2 can be instantiated in two ways. If HS is a fully-homomorphic
signature (whose existence is not yet known), then for any s′ = poly(λ) and for
any constant number T, we are guaranteed that HS is executed on poly-sized
circuits. Otherwise, if HS is an HS for circuits of bounded polynomial depth
(and of any, or bounded, polynomial size), as e.g., [23], then for any s′ = poly(λ)
and for any fixed number of keys T, we can derive a polynomial bound d on
the depth. The proof of Theorem 2 is constructive. First we show a method to
define MKHS given a HS scheme and a value T. Next, in a sequence of lemmas,
we prove all the properties stated in the theorem.

Our construction is rather involved. Therefore, in the next section we first
illustrate our ideas for a simple case of a computation that takes inputs from
three different users, and then, in Sect. 3.2, we describe the full compiler.

3.1 An Intuition: The Three-Client Case

We provide here a simplified example to explain the core idea of our Matrioska
compiler. To ease the exposition we consider the case t = 3 (three clients with
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identities id1, id2 and id3) and deliberately remove dataset identifiers. A detailed
description for t = n = 3 can be found in the full version of this paper [18].

Let P = (C, (�1, ... , �n)) be a labelled program, where C a (n)-input circuit
(with n = n1 + n2 + n3) and the labels �i = (idi, τi) are ordered, i.e., first n1
inputs belong to client id1, the subsequent n2 to id2 and the last n3 inputs to
id3. Let σi be the signature on message mi for the label �i. For simplicity assume
that C(m1, ... ,mn) = y = 1.

Step 1. We want extract from C a circuit that contains only inputs by clients
id2 and id3. To this end, we define E1 as the partial evaluation of C on the
messages mn1+1, ... ,mn. Thus, E1 is an n1-input circuit with hardwired in it the
inputs by clients id2 and id3. In our framework E1 is obtained with two basic
operations on the bit string C: (1) setting any gate g with left or right input
wire in [n] \ [n1] to be a constant gate (i.e., setting the bits L(g) and R(g) to
0), and (2) initializing the now constant gate to the value mi for i ∈ [n] \ [n1].
At this point we obtained a circuit with inputs of a single client only, and we
can run σ̂1 ← HS.Eval(E1, pkid1 , σ1, ... , σn1). By construction E1(m1, ... ,mn1) =
C(m1, ... ,mn) = 1, therefore HS.Verify((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1.

Step 2. The actual inductive procedure begins now. We wish to verify the cor-
rectness of σ̂1 using the messages input by client id2 as variables. Consider the
input to the (single-client) verification as the string S1 = ((E1, (τ1, ... , τn1)), pkid1 ,
σ̂1, 1). Recall that to construct the circuit E1 we used the messages mn1+1, ...mn

(hard-wired in its gate description). To free the inputs by client id2 we mod-
ify S1 in the following way: (1) identify the gates that contain the messages
mn1+1, ... ,mn1+n2 , (2) turn these gates into input gates by setting the left/right
wires to the opportune values w (using P). Let us consider HS.Verify on the
modified string S1, this is a proper circuit E2 such that E2(mn1+1, ... ,mn1+n2)=
HS.Verify((E1, (τ1, ... , τn1)), pkid1 , σ̂1, 1) = 1. Being E2 a single-client circuit we
can run σ̂2 ← HS.Eval(E2, pkid2 , σn1+1, ... , σn1+n2).

Step 3. This is analogous to Step 2: we wish to verify the correctness of
σ̂2 using the messages input by client id3 as variables and define a circuit
that is completely determined by public values, no hard-wired message value.
Let S2 = ((E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1), we free the inputs by client
id3 as in Step 2. We define E3 as the formal evaluation of HS.Verify on
the modified string S2. By construction it holds that E3(mn1+n2+1, ... ,mn) =
HS.Verify((E2, (τn1+1, ... , τn1+n2)), pkid2 , σ̂2, 1) = 1, and we can run σ̂3 ←
HS.Eval(E3, pkid3 , σn1+n2+1, ... , σn).

The multi-key homomorphic evaluation algorithm outputs σ̂ = (σ̂1, σ̂2, σ̂3).
The Matrioska verification procedure needs only reconstruct the final cir-

cuit E3, as this is fully determined by the public values (P, pkid1 , pkid2 , σ̂1, σ̂2,
HS.Verify, 1). Let E3 = (E3, (τn1+n2+1, ... , τn)), the verification concludes by run-
ning the single-key verification algorithm: HS.Verify(E3, pk3, σ̂3, 1).
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3.2 The Matrioska Compiler

In this section we describe our compiler in the general case of computing on
signatures generated by t different keys.

Definition 3 (Matrioska). Let HS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,
HS.Verify) be a single-key homomorphic signature scheme, we define a multi-key
homomorphic signature scheme MKHS as follows:

MKHS.Setup(1λ,T, s′, d′) → pp. The set-up algorithm takes as input the secu-
rity parameter λ, a positive integer T that represents a bound for the maximal
number of distinct identities involved in the same homomorphic computation,
and bounds s′, d′ = poly(λ) on the size and depth respectively of the circuits used
in the MKHS.Eval and MKHS.Verify algorithms. Setup first uses T, s′, d′ to derive
two integers s and d such that s > (s′)cs

T−1
and d > max{d′, dHSV((s′)cs

T−1
, λ)}.

Next, it runs HS.Setup(1λ, s, d) to obtain a tag space T (which corresponds to
the label space of HS), a message space M and a set of admissible circuits F.2

Labels of the multi-key scheme are defined as pairs � = (id, τ) ∈ ID × T, where
the first entry is a client-identity identifier. Labeled programs are of the form
P= (C, (�1, ..., �t)) with labels as above.

MKHS.KeyGen(pp) → (pk, sk). The multi-key key-generation algorithm runs
HS.KeyGen to obtain a public-secret key pair. This key-pair will be associated to
an identity id ∈ ID. When we need to distinguish among clients we make the
dependency on the identity explicit, e.g., (pkid, skid).

MKHS.Sign(sk,Δ, �,m) → σ. This algorithm takes as input a secret key sk,
a data set identifier Δ (e.g., a string), a label � = (id, τ) for the message m. It
outputs

σ ← HS.Sign(skid,Δ, τ,m). (1)

Without loss of generality we assume that σ includes m.
MKHS.Eval(P,Δ, {(σi, pkidi

)}i∈[t]) → σ̂. Let P = (C, (�1, ... , �n)), where
C = (n, 1, q, L,R,G) and the n ≥ t labels are of the form �j = (idi, τj) for some
i ∈ [t] and τj ∈ T, where t ≤ T.

The case t = 1 In this case all the n signatures belong to the same user, that
is to say, there exists an identity id ∈ ID such that for all j ∈ [n] the labels are
of the form � = (id, τj) for some τj ∈ T. Thus, it is possible to run the classical
evaluation algorithm of HS and the output of the multi-key evaluation algorithm
for t = 1 is:

σ̂ = σ̂id ← HS.Eval
(
E0, pkid, (σ

id
1 , ... , σid

n )
)
. (2)

The case t ≥ 2 In this case the inputs to the labeled program belong to t
distinct users. Without loss of generality, we assume that the labels are ordered
per client identity, i.e., all the labels between �tj and �tj+1−1 are of the form
(idj , ∗). For each i ∈ [t] the signature vector σi is σi = (σi

1, ... , σ
i
ni

) for opportune
values ni ∈ [n − t + 1] satisfying

∑t
i=1 ni = n. Let ti = (

∑i−1
j=0 nj) + 1, where

2 If HS works without these a-priori bounds, it is enough to run HS.Setup(1λ).
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we set n0 = 0, then ti corresponds to the index of first input of identity idi. The
multi-key homomorphic evaluation performs the following t + 1 steps.

Step 0. Given P = (C, (�1, ... , �n)) retrieve the messages corresponding to the
labels �1, ... , �n. For notation sake let mj be the message corresponding to label
�j. Compute the value y = C(m1, ... ,mn). Define a single-input single-output
circuit EQy(x) that outputs 1 if and only if x = y. Construct E0 = C � EQy =
(n, 1, q0, L0,R0,G0). The properties of EQy imply that:

E0(x1, ... , xn) = 1 iff C(x1, ... , xn) = y . (3)

Note that E0 can be constructed directly from C and y, moreover

E0(m1, ... ,mn) = 1. (4)

Step 1. We build a n1-input circuit E1 that corresponds to a partial evaluation

of E0 on the inputs of identities idj with j > 1. Given E0 = (E0, (�1, ... , �n)), the
signatures σ1 = (σ1

1 , ... , σ
1
n1) and the messages mn1+1, ... ,mn do:

• Define the mask circuit M1 = (n1, n, n, L′
1,R

′
1,G

′
1) where

L′
1(j) = R′

1(j) =
{

1 for j ∈ [n1]
0 for j ∈ [n] \ [n1]

andG′
1 =

{
0 for j ∈ [n1]
mj for j ∈ [n] \ [n1]

.

By construction M1(b1, ... , , bn1) = (b1, ... bn1 ,mn1+1, ... ,mn).
• Compose M1 with E0 to obtain E1 = M1 � E0 = (n1, 1, q1, L1,R1,G1) where:
q1 = q0+n; G1 = (G′

1||G0); L1(g) = L′
1(g) for g ∈ [n], L1(g) = (L0(g−n+1)+1)

for g ∈ [n + 1, n + q0] if L0(g − n + 1) �= 0 and 0 whenever L0(g − n + 1) = 0.
The function R1(g) is defined analogously. Equation (4) implies

E1(m1, ... ,mn1) = 1. (5)

• Compute σ̂1 ← HS.Eval(E1, pkid1 ,σ1). This is possible since E1 is a circuit
involving only inputs of client id1.

Remark 2. Let E1 = (E1, (τ1, ... , τn1)). Equation (5) and the correctness of the
HS scheme imply HS.Verify(E1,Δ, pkid1 , σ̂1, 1) = 1.

Step i for i ∈ [2, t]. The goal is to construct an ni-input circuit Ei using
Ei−1 = (Ei−1, (τti , ... , τti+1−1)), Δ, pkidi

and σi = (σi
1, ... σ

i
ni

). This will be possi-
ble using the circuits HSVi = (nHSVi, 1, qHSVi

, LHSVi
,RHSVi

,GHSVi
) for the (single-

key) homomorphic signature verification against the value 1.3

Let Si−1 = (Ei−1,Δ, pkidi−1
,σi−1) be a string of nHSVi = size(Si−1) bits. Set

g1 = 1. The gates of Ei−1 that embed the ni values input by identity idi are located
in the interval Ii = [gi, gi+ni], where gi = 3 lg(Ni−1)+2qi−1 lg(wi−1)+gi−1+ni−1

(see [18] for an explanation).

3 The readers can consider the circuit HSVi to be the representation of
HS.Verify(Ei−1, ·, ·, 1) where Ei−1 is a labelled program for a circuit of size at most
O((nHSVi−1 + qHSVi−1) lg(wHSVi−1)).
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• Define the mask circuit Mi = (ni, nHSVi, nHSVi, L
′
i,R

′
i,G

′
i) where

L′
i(g) = R′

i(g) =

{
0 if g ∈ [nHSVi] \ Ii

1 if g ∈ Ii
and G′

i(g) =

{
Si−1(g) if g ∈ [nHSV3] \ Ii

0 if g ∈ Ii

Note that for gates g in the interval Ii, L′
i(g) = 1 and G′

i(g) = 0 which means
that Mi outputs its ni input bits exactly the interval Ii, while outside Ii the
output of Mi is constant. In particular: Mi(mti , ... ,mti+ni

) = Si−1.
• Compose Mi with HSVi to obtain Ei = Mi�HSVi = (ni, 1, qi, Li,Ri,Gi) where:
qi = nHSVi + qHSVi ; Gi = (G′

i||GHSVi); Li(g) = L′
i(g) for g ∈ [nHSVi], Li(g) =

LHSVi
(g − nHSVi + 1) + ni for g ∈ [nHSVi + 1, qi] if LHSVi

(g − nHSVi + 1) �= 0,
and 0 otherwise; and Ri is defined analogously. . Circuit composition ensures
that4 Ei(mti , ... ,mti+ni

) = HS.Verify(Ei−1,Δ, pkidi−1
, σ̂i−1, 1). In particular,

applying Remark 2 inductively we get:

Ei(mti , ... ,mti+ni
) = 1 (6)

Note that Ei can be constructed directly from E0 given the values mti , ... ,mn

and the public data Δ, pkidj
, σ̂j for j ∈ [i − 1]. In more details, for

i ∈ [2, t] consider the set of bit strings: headi = (ni, 1, qi, Li,Ri) and taili =
(τti , ... , τti+ni

,Δ, pkidi−1
, σ̂i−1,GHSVi

). For every i ∈ [2, t] headi and taili are
completely determined by the tags for identity idi−1, the public key pkidi−1

and
the evaluated signature σ̂i−1. It is immediate to see that headi and taili are
respectively the head and the tail of the circuit description of Ei. The heart
of the string Ei is where “all the magic” happens:

bodyi = (headi−1, ... , head2, 0, ... , 0︸ ︷︷ ︸
(ti+1−1)=

∑i
j=1 nj

mti , ... ,mn,G0, tail2, ... , taili) (7)

In particular, for i = t we have:

Et =
(
headt bodyt tailt

)

=
(
headt, (headt−1, ... , head2, 0, ... , 0

︸ ︷︷ ︸
n

,G0, tail2, ... , tailt−1), tailt
)

(8)

Equation (8) shows that the circuit Et is completely determined by the labeled
program E0 (to get the tags and the gate description G0), the dataset identifier
Δ, the public keys pkidi

and the signatures σ̂i for i ∈ [t].
• Compute σ̂i ← HS.Eval(Ei, pkidi

,σi).

Remark 3. This is possible since Ei is a ni-input circuit with inputs from the
user idi only. Equation (6) and the correctness of the HS scheme imply that

HS.Verify(Ei,Δ, pki, 1, σ̂i) = 1. (9)
4 With abuse of notation one can think that Ei(mti , ... ,mti+ni) = Mi(mti , ... ,mti+ni)�
HSVi = HSVi(Mi(mti , ... ,mti+ni)). Since Mi(mti , ... ,mti+ni) = Si−1 the claim fol-
lows by the definition of HSVi.
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The output of the multi-key evaluation algorithm is the vector of t signatures:
σ̂ = (σ̂1, ... , σ̂t).

MKHS.Verify(P,Δ, {pkid}id∈P, y, σ̂) → {0, 1}. The verification algorithm
parses the labeled program as P = (C, (�1 ... , �n)) and checks the number
1 ≤ t ≤ T of distinct identities present among the n labels.

The case t = 1 In this case all the inputs to the labeled program P come
from the same user and σ̂ = σ̂id. In other words, all the labels are of the form
�j = (id, τj) for an id ∈ ID and some τj ∈ T. Set E0 = (C, (τ1, ... , τn)), notice
that we removed the identity from the labels. The multi-key verification algorithm
returns the output of

HS.Verify(E0,Δ, pkid, 1, σ̂id). (10)

The case t ≥ 2 In this case the labeled program P contains labels with t ≥ 2
distinct identities and σ̂ = (σ̂1, ... , σ̂t). Without loss of generality, we assume
that the labels are ordered per client identity and ni ∈ [n − t + 1] is the number
of labels with identity idi.

Define E0 = (n, 1, q0, L0R0,G0) as the circuit E0 = C � EQy, where EQy(x)
is the a single-input single-output circuit that outputs 1 if and only if x = y.
Thus, E0(x1, ... , xn) = 1 whenever C(x1, ... , xn) = y. As noted in the Step 0 of
the evaluation algorithm, E0 is completely determined by P and y.

To verify the signature σ̂, the multi-key verification algorithm inductively
creates the following strings for i ∈ [2, t]:

headi = (ni, 1, qi = nHSVi + qHSVi , Li = (0, ... , 0,
︸ ︷︷ ︸

(
∑i−1

j=1 nj)−bits

ni−bits
︷ ︸︸ ︷
1, ... , 1, 0, ... , 0

︸ ︷︷ ︸
(n−∑i

j=1 nj)−bits

),Ri = Li)

taili = (τti−1 , ... , τti−1+ni−1 ,Δ, pkidi−1
, σ̂i−1,GHSVi

)

where, the circuit HSVi is the same as the one explained in MKHS.Eval, i.e., the
HSVi is the (single-key) homomorphic signature verification against the value 1.
At this point the verifier can combine all the pieces to (re)-construct the descrip-
tion of the circuit Et:

Et = (headt, ... , head2, 0, ... , 0
︸ ︷︷ ︸

n

,G0, tail2, ... , tailt). (11)

Let Et = (Et, (τtt , ... , τn)), where we removed idt from the labels. The verification
returns:

HS.Verify(Et,Δ, pkidt
, σ̂t, 1). (12)

Remark 4. Note that the Et constructed by the verifier via Eq. (11) coincides
with the one created by the evaluator via Eq. (8).

3.3 Correctness and Succinctness of Matrioska

In what follows we show that the Matrioska scheme satisfies the properties stated
in Theorem 2.
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Succinctness. By construction, for a computation involving messages from
t users, our signatures consist of t signatures of the single-input scheme. It is
straightforward to see that if HS signatures have length bounded by some poly-
nomial l, the size of Matrioska’s signatures is ≤ t · l, which is, asymptotically, the
same level of succinctness as the MK-HS construction by Fiore et al. [17].

Correctness. The following two lemmas reduce the authentication and evalu-
ation correctness of Matrioska multi-key homomorphic signatures to the authen-
tication and evaluation correctness, respectively, of the underlying single-key HS
scheme.

Lemma 1. Let HS be a single-key homomorphic signature scheme with
authentication correctness, then the multi-key homomorphic signature scheme
MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 achieves
authentication correctness.

The proof is quite straightforward and uses the labeled identity program I� =
(Cid, �). For details check [18].

Lemma 2. Let HS be a single-key homomorphic signature scheme with
evaluation correctness, then the multi-key homomorphic signature scheme
MKHS(HS,T) obtained from the Matrioska compiler of Definition 3 achieves eval-
uation correctness.

The evaluation correctness of Matrioska essentially follows from the evaluation
correctness of HS and the way we (inductively) define the circuits Ei. Moreover,
notice that our MK-HS scheme is single-hop, therefore we have to prove eval-
uation correctness with respect to computing on freshly generated signatures
(given that authentication correctness is granted by the previous lemma). For a
detailed proof check [18].

Circuit Growth. In what follows we analyze the size growth of the circuits
Ei computed by the Matrioska compiler, and use this to prove the bounds in
Theorem 2.

Lemma 3. Let HS be a correct single-key homomorphic signature scheme
that supports computations on circuits of (maximum) depth d and size s;
then the multi-key homomorphic signature scheme MKHS(HS,T) obtained from
the Matrioska compiler of Definition 3 supports homomorphic computations
on circuits of size s′ and depth d′ provided that s > (s′)cs

T−1
and d >

max{d′, dHSV((s′)cs
T−1

, λ)}, where dHSV and cs are a function and a non-negative
constant that depend on the single-key scheme HS.

Intuitively, for t = 1, MKHS is running the plain algorithms of HS. and thus
MKHS supports circuits of size s′ < s and depth d′ < max{d, dHSV(s)}. For
t > 1 the Matrioska compiler runs HS.Eval and HS.Verify on every Ei including
Et. Since {Ei}i∈[t] is a sequence of circuits of increasing size and depth we need
to make sure that the circuit given as input to MKHS will grow into an Et that
is supported by HS. The details can be found in [18].
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3.4 Security of Matrioska

In this section we argue that Matrioska MKHS schemes are unforgeable provided
that so is the underlying HS scheme. For the proof we rely on Proposition 1
from [17], which allows for a simpler treating of corruption queries. Due to space
limit, the detailed proof appears in the full version of this paper [18] while below
we give a proof sketch with the main intuition.

Lemma 4. Let HS be a secure single-key homomorphic signature scheme. Then
the multi-key homomorphic signature scheme MKHS(HS,T) obtained from the
Matrioska compiler of Definition 3 is secure. In particular, for any PPT adver-
sary Amaking signing queries on at most Qid = poly(λ) distinct identities, there
is a PPT algorithm B such that: AdvAMKHS ≤ Qid · AdvBHS .

Proof Sketch. The idea is that a forger against our MKHS scheme must create a
forgery for the HS scheme for at least one of the users, say idi� , involved in the
computation. Thus the reduction B, on input a public key pk, makes a guess for
j∗ = i�, programs pkidj∗ = pk and generates all the other keys. This allows B to
perfectly simulate all the signing queries (perfectly hiding j∗ to A).

When A returns (P∗,Δ∗, {pk∗
id}id∈P∗ , y∗, σ∗), with σ∗ = (σ̂∗

1 , ... , σ̂
∗
t ), the cru-

cial part of the proof is showing the existence of an index i� such that σ̂∗
i� is a

forgery for HS. Specifically:

– σ∗is of type-1 (Δ∗ is new). Then i� = t and σ̂∗
t is a type-1 forgery against

HS.
– σ∗is of type-2. This means: E0(m1, ... ,mn) = 0

while HS.Verify(Et, pkidt
, 1, σ̂∗

t ) = 1. Then we show that there must exist
a “forking index” i� ∈ [t] such that Ei−1(mti−1 , ... ,mti−1+ni−1) = 0 but
HS.Verify(Ei, pkidi

, σ̂∗
i , 1) = 1, that is, σ̂∗

i� is a type-2 forgery against HS for
the labeled program Ei.

– σ∗is of type-3. If t = 1, then i� = 1 and σ̂∗
1 is a type-3 forgery against HS. If

t > 1, let i ∈ [t] be the first index such that ∃ j ∈ [n] : �j = (idi, τj) /∈ LΔ∗ ,
i.e., the first identity for which a type-3 forgery condition holds. Then, either
σ̂∗

i is a type-3 forgery for HS for identity idi (and thus i� = i); or there is
i� > i such that σ̂∗

i� is a type-2 forgery against identity idi� . The latter can
be argued by showing the existence of a “forking index” as in the previous
case. In a nutshell, a type-3 forgery against MKHS comes either from a type-3
forgery at some index i, or, the i-th signature is incorrect and thus there must
be a type-2 forgery at a later index to cheat on the fact that verification at
index i is correct.

Therefore, if j∗ = i� (which happens with non-negligible probability 1/Qid), B
can convert A’s forgery into one for its challenger.

4 Conclusions and Future Work

In this paper, we presented Matrioska the first generic compiler based on falsifi-
able assumptions that establishes a formal connection between single-key HS and
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multi-key HS schemes. Matrioska introduces an original mechanism to gain multi-
key features by levering the homomorphic property of a single-key HS scheme.
The resulting signatures are succinct in the sense that their length depends solely
on the number of signers involved in the homomorphic computation, and not
on the total number of signatures input. Unfortunately, constructions obtained
with Matrioska are of limited efficiency, as they require the single-key HS scheme
to support circuits of size exponentially large in the maximum number of dis-
tinct signers involved in the computation. Achieving full signature succinctness
remains an interesting goal for further developments, as well as investigating if
Matrioska’s approach could be used to enhance other cryptographic primitives
with multi-key features.
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Abstract. A watermarking scheme consists of a marking algorithm
allowing one to embed some information into a program while preserv-
ing its functionality and an extraction algorithm enabling one to extract
embedded information from a marked program. The main security prop-
erties of watermarking schemes include unremovability and unforgeabil-
ity. However, all current watermarking schemes achieving both prop-
erties simultaneously require the extraction algorithm to access either
the marking secret key or the latest state maintained by the marking
algorithm. As a result, to extract information embedded in a marked
program, one must communicate with a third party. This greatly lim-
its the applicability of current watermarking schemes. In this paper, we
solve this problem by presenting the first (stateless) publicly extractable
watermarking scheme with unremovability and unforgeability.

Keywords: Watermarking · Unforgeability · Public extraction

1 Introduction

A watermarking scheme can embed some information into a program without
significantly changing its functionality. It has many natural applications, e.g.,
ownership protection, information leaker tracing, etc.

The first formal definition of watermarking schemes is presented by Barak
et al. in [2]. A number of properties and variants are also defined in it and
subsequent works [1,3,5,8,12,15], including
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• Unremovability: This is the essential security property for watermarking
schemes, which requires that it is hard to remove the embedded information
in a marked program without destroying the program.

• Unforgeability: This is dual to unremovability and requires that anyone
without the marking secret key cannot generate a new marked program.

• Public Extraction: This requires the extraction key to be public and allows
anyone to extract the embedded information in a marked program.

• Message-Embedding: The message-embedding property allows one to
embed a given string (instead of merely a mark symbol) into the watermarked
object.

• Collusion-Resistance: This property requires the unremovability to hold
even when the adversary could get copies embedded with different information
of the same program.

• Centralized Program Generation: In a watermarking scheme with cen-
tralized program generation, a user cannot generate the program by him-
self/herself, instead, the “watermarking center” returns a marked program
back to the user directly.

• Stateful: In a stateful watermarking scheme, the marking algorithm needs to
maintain a state that will be updated each time when the marking algorithm
is invoked. The state is also shared with the extraction algorithm.

However, watermarking scheme admitting a proof of standard unremovabil-
ity does not appear until 2015. In two concurrent works [5,12] (which are merged
into [4]), watermarking schemes for the evaluation algorithm of pseudorandom
functions (PRF) are constructed from indistinguishability obfuscators (iO). Both
constructions can support public extraction, but none of them is proved to have
the standard unforgeability property: in [12], the unforgeability is not considered;
while in [5], the construction is only proved to have a relaxed unforgeability1.
Based on the constructed watermarkable PRF families, watermarkable public key
encryption (PKE) schemes and watermarkable signature schemes are also con-
structed in [4,12]. Again, they are publicly extractable but are not unforgeable.

In another line of research, watermarkable PRFs are constructed from vari-
ants of privately constrained PRFs [3]. In particular, in [3], based on their
proposed private programmable PRF which can be instantiated from iO (or
standard lattice assumptions as shown later in [13]), watermarkable PRF with
standard unforgeability is constructed. Subsequently, in [9], based on a relaxed
variant of the private programmable PRF which is denoted as translucent punc-
turable PRF, watermarkable PRFs from the standard lattice assumptions are
presented. Besides, in [15], collusion-resistant watermarking schemes for a vari-
ety of cryptographic schemes are also constructed from a variant of the private
programmable PRF. All these constructions have a full-fledged unforgeability,
but none of them supports public extraction.

Recently, a very simple yet elegant construction of watermarking scheme
for any PKE scheme is given in [1]. The constructed scheme is both publicly
extractable and unforgeable. However, the scheme also has a few shortcomings.
1 We will give a more detailed discussion on this in Sect. 1.2.



Unforgeable Watermarking Schemes with Public Extraction 65

First, the scheme is stateful and its security will be compromised if the adversary
is able to roll back the state. Also, its extraction algorithm needs to access the
state and has a running time linear to the number of times the marking algorithm
has been invoked. Besides, it does not allow a user to generate his/her own public
key/secret key pair. Instead, keys are issued to users by a watermarking center.
Those deficiencies greatly restrict its applicability.

To summarize, it is fair to say, currently, there is no construction of water-
marking scheme that achieves both public extraction and unforgeability with-
out imposing unreasonable restrictions on its functionality. To demonstrate how
this will reduce the usability of current watermarking schemes, we consider the
following scenario, where the protagonist, Alice, desires a stateless watermark-
ing scheme that achieves both unforgeability and public extraction to solve her
problem.

Alice writes an elegant program in her spare time. Instead of selling this
program directly for a profit, she prefers to make it freely available for fame and
reputation. Thus, she hopes that her name could be embedded into the program,
and that no one could erase her name from the program without significantly
changing its functionality. Moreover, to allow the user of her program to learn
her name conveniently, she hopes that the information embedded in a program
could be publicly extracted and anyone could complete the extraction procedure
without resorting to a third party holding some auxiliary information (e.g. the
state). Besides, she worries that someone may want to frame her by making an
inferior program and putting her name on it. Thus, she hopes that information
can only be embedded by a trusted party and no one else should be able to
embed any information (that can be extracted by a specific algorithm) into a
program2.

1.1 Our Results

In this paper, we demonstrate the existence of unforgeable watermarking schemes
with public extraction. In particular, we construct the first watermarkable PRF
families that possess both public extraction and unforgeability. We stress that
our constructed scheme does not suffer from the centralized program generation
problem and is stateless. To better explain our result, we compare the main fea-
tures achieved by our watermarking schemes with current watermarking schemes
in Table 13.

2 One may hope to additionally use a signature scheme to provide unforgeability.
That is, Alice could attach her signature on the marked program to the message
embedded into it; and a program is regarded as unmarked if no valid signature in
the message extracted from it is found. However, this trivial solution will damage
the unremovability. More precisely, an attacker could make Alice’s signature invalid
and thus remove the mark from a program via generating a functionally equivalent
but differently described program.

3 Following [3,9], in this paper, we consider a weaker unremovability compared to that
in [4]. We discuss the differences between these two notions in Remark 2.1.
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Our scheme is built on several cryptographic primitives, which can be instan-
tiated from iO and standard lattice assumptions. While security based on iO
is an obvious disadvantage, it is inherited from previous (stateless) publicly
extractable watermarking schemes. It is an interesting and challenging open
problem to build (stateless) publicly extractable watermarking schemes (even
without unforgeability) from standard assumptions.

Theorem 1.1 (Informal). Assuming the existence of indistinguishability
obfuscator and worst-case hardness of appropriately parameterized GapSVP and
SIVP problems, there exist watermarkable PRF families with public extraction
and unforgeability.

Table 1. The comparison.

Unforgeability Public
extraction

Decentralized
program generation

Stateless

[12] PRF ✗ ✓ ✓ ✓

PKE ✗ ✓ ✗ ✓

SIG∗ ✗ ✓ ✗ ✓

[5] PRF ✗† ✓ ✓ ✓

[4] PRF ✗ ✓ ✓ ✓

PKE ✗ ✓ ✗ ✓

SIG ✗ ✓ ✗ ✓

[3] PRF ✓ ✗ ✗ ✓

[9] PRF ✓ ✗ ✓ ✓

[15] PRF ✓ ✗ ✓ ✓

PKE ✓ ✗ ✓ ✓

SIG ✓ ✗ ✗ ✓

[1] PKE ✓ ✗ ✗ ✗

PKE ✓ ✓ ✗ ✗

Ours PRF ✓ ✓ ✓ ✓

∗: We use “SIG” to denote signature schemes.
†: The watermarking scheme in [5] can only achieve a relaxed form of
unforgeability.

1.2 Our Techniques

Our starting point is the publicly verifiable watermarking scheme WM0 presented
in [5], which only achieves a relaxed form of unforgeability. For completeness,
we recall this scheme in Fig. 1. Also, to simplify the discussion, following the
notation in [4], we denote an input x that can pass the test in step 2 of circuit
M as a marked point and denote a pseudorandom input G(t), which is used to
locate a marked point in the extraction algorithm, as a find point.
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Building Blocks: A public key encryption scheme PKE, three pseudorandom func-
tions F,F(1),F(2), two pseudorandom generators G,G′, a collision-resistant hash func-
tion family H, and an indistinguishability obfuscator iO.
Setup(1λ):
1. Sample a hash function H of H, a pub-
lic key/secret key pair (pk, sk) of PKE, a
secret key K1 of F(1) and a secret key K2

of F(2).
2. Generate a circuit E ← iO(Ext[pk, K1,
K2]).
3. Output (MK, EK) where MK = (sk,
K1, K2) and EK = (H, E).

Mark(MK, k):
Output a circuit C ← iO(M[sk, K1, K2, k]).

Extract(EK, C):
Run the following procedure T times with
κ initially set to be 0:
1. Sample a uniform a in the domain of

G′ and a uniform r in the randomness
space of PKE.

2. Compute t = G′(a), b = H(C(G(t))),
(x, y) = E(a, b, r).

3. If C(x) = y, then κ = κ + 1.
If κ

T
> τ , then output 1; otherwise, output

0.

M

Constant: sk, K1, K2, k
Input: x
1. (t‖b) = PKE . Dec(sk, x).
2. If (t‖b �=⊥) ∧ H(Fk(G(t))) = b:

Output F(1)
K1

(t‖b) ⊕ F
(2)
K2

(x).
3. Otherwise, output Fk(x).

Ext

Constant: pk, K1, K2

Input: a, b, r
1. x = PKE . Enc(pk,G′(a)‖b; r).
2. y = F

(1)
K1

(G′(a)‖b) ⊕ F
(2)
K2

(x).
3. Output (x, y).

Fig. 1. The watermarking scheme WM0 constructed in [5]. For simplicity, we omit
special properties of each used primitive and some concrete parameters. We also modify
a few notations for convenience.

On the Difficulty of Proving Unforgeability for WM0. To illustrate the dif-
ficulty of proving the full-fledged unforgeability for the original scheme WM0, we
describe in Fig. 2 an adversary (A) that can win in the unforgeability experiment
with all but negligible probability. Recall that in the unforgeability experiment,
the adversary will output a circuit C̃ after querying the marking oracle multi-
ple times, and in each query, it submits a secret key k of the original PRF F
and gets a marked circuit C evaluating Fk(·). The adversary wins if C̃ can pass
the extraction algorithm and is far from every circuit returned by the marking
oracle. Please see Definition 2.7 for a formal description of this experiment.

A(1λ, EK):
1. Sample two uniform keys k1, k2 of

F.
2. Submit k1, k2 in turn to the mark-

ing oracle, and get C1 and C2 back.
3. Output the circuit C̃.

C̃
Input: x
1. If C1(x) �= Fk1(x), then output

C1(x).
2. If C2(x) �= Fk2(x), then output

C2(x).
3. Otherwise, output Cx[1]+1(x).

Fig. 2. The adversary A for the full-fledged unforgeability of WM0.
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First, it is not hard to see that the two circuits C̃ and C1 (and the two circuits
C̃ and C2) will compute differently on about half of the inputs. Thus circuit C̃
outputted by A is far from both C1 and C2.

Next, we argue why C̃ could pass the extraction algorithm. First, although C̃
is far from both C1 and C2, for any input, it evaluates identically with either C1
or C2. Thus, when running circuit C̃ on a find point G(t̃), the result C̃(G(t̃)) equals
to either C1(G(t̃)) or C2(G(t̃)), and w.l.o.g, we assume C̃(G(t̃)) = C1(G(t̃)). This
implies that the find point G(t̃) will locate a marked point x̃ for C1. Moreover,
by filtering inputs evaluated differently by C1 and Fk1(·), A could find (and
preserve in C̃ the reprogrammed value of) all marked points for C1. So, we have
C̃(x̃) = C1(x̃), which will cause the counter κ to increase. As the counter κ is
likely to increase at each iteration, circuit C̃ will pass the extraction algorithm.

To circumvent this difficulty, in [5], WM0 is only proved to have a relaxed
unforgeability, which requires that there exists a large fraction of the domain
on which none of the circuits returned by the marking oracle evaluates identi-
cally with the outputted circuit C̃. Note that our adversary A in Fig. 2 will not
compromise the relaxed unforgeability since C̃ is generated by combining the
two returned circuits and there does not exist a “hole” on which C̃ computes
differently with both C1 and C2.

Our Approach to Achieving Unforgeability. In this paper, we use another
approach to overcome the difficulty, which can achieve the full-fledged unforge-
ability. Our key modification is that instead of testing on multiple marked points,
in our extraction algorithm, each marked point is determined by multiple find
points.

In particular, to locate a marked point x for a circuit C, the extraction algo-
rithm first samples d uniform strings a1, . . . , ad in the domain of G′, where d is
a large enough number that is polynomial in the security parameter. Then it
computes t1 = G′(a1), . . . , td = G′(ad) and b = H(C(G(t1)), . . . , C(G(td))), i.e., b
is computed by running C on d find points G(t1), . . . ,G(td). Finally, the located
“marked point” x for C is an encryption of t1‖ . . . ‖td‖b. Besides, to support this
modification, we also adapt the auxiliary circuit M and the way to compute the
value y used to test if C is reprogrammed at x (please see our main construction
at Sect. 3 for the full details).

Next, we will give the intuition why our tweaks make a difference. We start
by showing that the adversary A described in Fig. 2 will not work for our new
scheme. To see this, note that for a (pseudo)random find point χ, the probability
that C̃(χ) = C1(χ) and the probability that C̃(χ) = C2(χ) are both about 1

2 . So,
for an input x̃ generated from d find points, the probability that it is a marked
point for either C1 or C2 will be about 2

2d
, which is negligible for a polynomial d.

This implies that C̃(x̃) is not likely to be a reprogrammed value, and thus circuit
C̃ cannot pass the extraction algorithm.

More generally, for any adversary B, its outputted circuit C̃ should be far
from each circuit returned by the marking oracle. So by a similar probability
analysis, we know that an input x̃ generated from d find points in the extraction
algorithm is not likely to be a marked point for any returned circuit. Thus, the
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adversary B cannot learn the correct reprogrammed value ỹ for x̃ from those
returned circuits. Besides, the obfuscated circuit E in the public extraction key
also does not help. This is because, in order to run the circuit E to compute ỹ,
one must know the initial randomness ã1, . . . , ãd used to generate x̃, but given
x̃, the values of ã1, . . . , ãd are hidden (since x̃ is generated from ã1, . . . , ãd via
a series of cryptographic operations). To summarize, as B cannot obtain the
value of ỹ from its view in the unforgeability experiment, it cannot generate a
circuit that outputs ỹ on input x̃, namely, it cannot generate a circuit passing
the extraction algorithm.

This is the main idea how we achieve the full-fledged unforgeability. Based
on this, to finally complete the construction and proof of an unforgeable water-
marking scheme with public extraction, we also need to tackle with many other
issues, e.g., proving unremovability for the new construction, achieving message
embedding, etc. We will provide more details on how to construct and prove our
unforgeable watermarking schemes with public extraction in Sect. 3.

1.3 Related Works

In this paper, we concentrate on watermarking schemes with a provable secu-
rity against arbitrary removal strategies. There are also numerous works (see [6]
and references therein) attempting to use ad hoc techniques to construct water-
marking schemes, but these constructions lack rigorous security analysis and
are (potentially) vulnerable to attacks. In another line of research [10,11,16],
watermarking schemes for cryptographic objects (e.g., the key, the signature,
etc.) are constructed and rigorously analyzed. But their security definition relies
on a strong assumption that the adversary will not change the format of the
watermarked objects.

2 Preliminaries

Notations. Let a be a string, then we use ‖a‖ to denote the length of a, and
use a[i] to denote the ith character of a for i ≤ ‖a‖. Let S be a finite set, then we

use ‖S‖ to denote the size of S, and use s
$← S to denote sampling an element s

uniformly from set S. For a string a and a set S of strings, we use a‖S to denote
the set {x : ∃s ∈ S, x = a‖s}. For n elements e1, . . . , en, we use {e1, . . . , en} to
denote a set containing these elements and use (e1, . . . , en) to denote an ordered
list of these elements. We write negl(·) to denote a negligible function, and write
poly(·) to denote a polynomial. For integers a ≤ b, we write [a, b] to denote all
integers from a to b. For two circuits C1 and C2, we write C1 ≡ C2 to denote that
for any input x, C1(x) = C2(x). For a circuit family C indexed by a few, say m,
constants, we write C[c1, . . . , cm] to denote a circuit with constants c1, . . . , cm.

2.1 Cryptographic Primitives

In this section, we recall a few cryptographic primitives that are employed in this
work. Due to lack of space, we omit the definitions of pseudorandom generator,
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collision resistant hash and indistinguishability obfuscator in this section and
refer the readers to existing works for their formal definitions.

Puncturable Pseudorandom Function with Constrained One-wayness
and Weak Key-Injectivity. The notion of puncturable pseudorandom func-
tion was first formalized by Sahai and Waters in [14]. They also show that a
PRF constructed via the GGM-framework [7] is a puncturable PRF. In this
work, we will use a slightly stronger version of puncturable PRF, namely, punc-
turable PRF with weak key-injectivity4 and constrained one-wayness, which is
defined in Definition 2.1. In [4], puncturable PRFs with weak key-injectivity are
constructed from the DDH assumption or the LWE assumption under the GGM-
framework. Moreover, it can be easily verified that a PRF constructed under the
GGM-framework also has constrained one-wayness. So one can instantiate the
puncturable PRF with weak key-injectivity and constrained one-wayness from
the DDH assumption or the LWE assumption.

Definition 2.1. A puncturable PRF family with weak key-injectivity, con-
strained one-wayness, key space K, input space {0, 1}n and output space {0, 1}m

consists of four algorithms:

• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the secret key k ∈ K.

• Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation
algorithm outputs a string y ∈ {0, 1}m.

• Constrain. On input a secret keys k ∈ K and a polynomial-size set S ⊆
{0, 1}n, the constrain algorithm outputs a punctured key ck.

• ConstrainEval. On input a punctured key ck and an input x ∈ {0, 1}n, the
constrained evaluation algorithm outputs an string y ∈ {0, 1}m ∪ {⊥}.

and satisfies the following conditions:

• Correctness. For any k ∈ K, any polynomial size set S ⊆ {0, 1}n,
and any x ∈ {0, 1}n\S, let ck ← Constrain(k,S), then we have
ConstrainEval(ck, x) = Eval(k, x).

• Weak Key-Injectivity. Let k1 ← KeyGen(1λ), then we have

Pr[∃k2 ∈ K, x ∈ {0, 1}n, s.t. k1 �= k2 ∧ Eval(k1, x) = Eval(k2, x)] ≤ negl(λ)

• Pseudorandomness. For all probabilistic polynomial-time (PPT) adversary

A, | Pr[k ← KeyGen(1λ) : AOPR
k (·)(1λ) = 1]−Pr[f $← FUN n,m : AOR

f (·)(1λ) =
1] |≤ negl(λ), where FUN n,m denotes the set of all functions from {0, 1}n

to {0, 1}m, the oracle OPR
k (·) takes as input a string x ∈ {0, 1}n and returns

Eval(k, x), and the oracle OR
f (·) takes as input a string x ∈ {0, 1}n and

returns f(x).

4 This is in fact the “key-injectivity” property defined in [4], here we call this property
weak key-injectivity to distinguish it from the “key-injectivity” property defined in
[9].
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• Constrained One-wayness. For any PPT adversary (A1,A2), let (x, σ) ←
A1(1λ), k ← KeyGen(1λ), ck ← Constrain(k, {x}) and y = Eval(k, x), then
we have Pr[A2(σ, ck, y) = k] ≤ negl(λ), where σ is the state of A1.

• Constrained Pseudorandomness. For any PPT adversary (A1,A2), let

(S, σ) ← A1(1λ), k ← KeyGen(1λ), ck ← Constrain(k,S), b
$← {0, 1}, Y0 =

{Eval(k, x)}x∈S , and Y1
$← ({0, 1}n)‖S‖, then we have Pr[A2(σ, ck,Yb) =

b] ≤ 1/2 + negl(λ), where S ⊆ {0, 1}n is a polynomial-size set, and σ is the
state of A1.

Prefix Puncturable Pseudorandom Function. The notion of prefix punc-
turable PRF was formally introduced in [12]. It was also shown that the GGM-
framework can lead to a prefix puncturable PRF. Now, we recall its definition.

Definition 2.2. A prefix puncturable PRF family with key space K, input space
{0, 1}n and output space {0, 1}m consists of four algorithms:

• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the secret key k ∈ K.

• Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation
algorithm outputs a string y ∈ {0, 1}m.

• Constrain. On input a secret keys k ∈ K and a string t ∈ {0, 1}≤n, the
constrain algorithm outputs a constrained key ck.

• ConstrainEval. On input a constrained key ck and an input x ∈ {0, 1}n,
the constrained evaluation algorithm outputs a string y ∈ {0, 1}m ∪ {⊥}.

and satisfies the following conditions:

• Correctness. For any k ∈ K, any t ∈ {0, 1}≤n, and any x ∈ {0, 1}n\t‖
{0, 1}n−‖t‖, let ck ← Constrain(k, t), then we have ConstrainEval(ck, x) =
Eval(k, x).

• Constrained Pseudorandomness. For any PPT adversary (A1,A2), let

(t, σ1) ← A1(1λ), k ← KeyGen(1λ), ck ← Constrain(k, t), b
$← {0, 1}, then

we have

Pr[AOk,b(·)
2 (σ, ck) = b] ≤ 1/2 + negl(λ)

where σ is the state of A1. Here, the oracle Ok,0(·) takes as input a string
x ∈ {0, 1}n with prefix t and outputs Eval(k, x), and the oracle Ok,1(·) takes
as input a string x ∈ {0, 1}n with prefix t and outputs f(x), where f is a truly
random function and is computed via lazy sampling.

Puncturable Encryption. The puncturable encryption scheme was first pre-
sented and constructed in [4,5], and we recall its definition here.

Definition 2.3. A puncturable encryption scheme with message space {0, 1}l

and ciphertext space {0, 1}n consists of four algorithms:
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• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the public key/secret key (pk, sk).

• Puncture. On input a secret keys sk and two ciphertexts c0, c1 ∈ {0, 1}n,
the puncture algorithm outputs a punctured secret key sk′.

• Enc. On input a public key pk and a message m ∈ {0, 1}l, the encryption
algorithm outputs a ciphertext c.

• Dec. On input a secret key (or a punctured secret key) sk and a ciphertext
c ∈ {0, 1}n, the decryption algorithm outputs a valid message in {0, 1}l or a
symbol ⊥ indicating decryption failure.

and satisfies the following conditions:

• Correctness. For any message m ∈ {0, 1}l, let (pk, sk) ← KeyGen(1λ), and
c ← Enc(pk,m), then we have Pr[Dec(sk, c) = m] = 1.

• Punctured Correctness. For any strings c0, c1, c
∗ ∈ {0, 1}n that c∗ �∈

{c0, c1}, let (pk, sk) ← KeyGen(1λ) and sk′ ← Puncture(sk, {c0, c1}), then
we have Pr[Dec(sk, c∗) = Dec(sk′, c∗)] = 1.

• Sparseness. Let (pk, sk) ← KeyGen(1λ), and let c
$← {0, 1}n, then we have

Pr[Dec(sk, c) �=⊥] ≤ negl(λ).
• Ciphertext Pseudorandomness. For any PPT adversary (A1,A2), let

(m∗, σ) ← A1(1λ), (pk, sk) ← KeyGen(1λ), c∗ ← Enc(pk,m∗), r∗ $← {0, 1}n,

sk′ ← Puncture(sk, {c∗, r∗}), b
$← {0, 1}, Y0 = (c∗, r∗), and Y1 = (r∗, c∗),

then we have Pr[A2(σ, pk, sk′, Yb) = b] ≤ 1/2 + negl(λ), where σ is the state
of A1.

2.2 Definition of Watermarking

Next, we recall the definition and security definitions for watermarking schemes,
which is adapted from that defined in recent works [3,4,9].

Definition 2.4 (Watermarkable Family of PRFs). A watermarking scheme
with message space M for a PRF family PRF = (PRF . KeyGen,PRF . Eval) with
key space K (more accurately, for the algorithm PRF . Eval) consists of three
algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the
mark key MK and the extraction key EK.

• Mark. On input the mark key MK, a secret key k ∈ K of PRF, and a message
msg ∈ M, the marking algorithm outputs a marked circuit C.

• Extract. On input the extraction key EK and a circuits C, the extraction
algorithm outputs a string msg ∈ M ∪ {⊥}.

Definition 2.5 (Watermarking Correctness). Correctness of the water-
marking scheme requires that for any k ∈ K and msg ∈ M, let (MK,EK) ←
Setup(1λ), C ← Mark(MK,k,msg), we have:

• Functionality Preserving. C(·) and PRF . Eval(k, ·) compute identically on
all but a negligible fraction of inputs.

• Extraction Correctness. Pr[Extract(EK, C) �= msg] ≤ negl(λ).
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Before defining the security, we first recall oracles the adversaries can query
during the security experiments.

• Marking Oracle OM
MK(·, ·). On input a message msg ∈ M and a PRF key

k ∈ K, the oracle returns a circuit C ← Mark(MK,k,msg).
• Challenge Oracle OC

MK(·). On input a message msg∗ ∈ M, the oracle
first samples a key k∗ ← PRF . KeyGen(1λ). Then, it computes and returns
C∗ ← Mark(MK,k∗,msg∗).

Definition 2.6 (Unremovability). The watermarking scheme for a PRF is
unremovable if for all PPT and unremoving-admissible adversaries A, we have
Pr[ExptURA(λ) = 1] ≤ negl(λ), where we define the experiment ExptUR as
follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Next, A makes a query msg∗ to the challenge oracle and gets a circuit C∗

back.
4. Then, A is further allowed to make multiple queries to the marking oracle.
5. Finally A submits a circuit C̃, and the experiment outputs 1 if and only if

Extract(EK, C̃) �= msg∗.

Here, an adversary A is unremoving-admissible if its submitted circuit C̃ and the
circuit C∗ compute identically on all but a negligible fraction of inputs.

Definition 2.7 (δ-Unforgeability). The watermarking scheme for a PRF is
δ-unforgeable if for all PPT and δ-unforging-admissible adversaries A, we have
Pr[ExptUFA(λ) = 1] ≤ negl(λ), where we define the experiment ExptUF as
follows:

1. The challenger samples (MK,EK) ← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Finally A submits a circuit C̃, and the experiment outputs 1 if and only if

Extract(EK, C̃) �=⊥.

Here, let Q be the number of queries A made to the marking oracle, then an
adversary A is δ-unforging-admissible if for all i ∈ [1, Q], its submitted circuit C̃
and the circuit Ci compute differently on at least a δ fraction of inputs, where Ci

is the output of the marking oracle on the ith query.

Remark 2.1. In [4,5,12], the unremovability is defined with a parameter ε, which
indicates how far the circuit submitted by the adversary could be compared to
the circuit returned by the challenger. In our definition, we set ε as a negligible
function directly. Thus, the scheme presented in this work is only proved to have
a ε-unremovability with negligible ε and a δ-unforgeability with non-negligible
δ. Looking ahead, with slightly modification, our construction in Sect. 3 can
actually achieve a ε-unremovability with non-negligible ε and a δ-unforgeability
with non-negligible δ under the restriction that ε = O( δ

λ ), where λ is the security
parameter. But, for clarity of description, we omit the details in this manuscript.
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Remark 2.2. Note that in the (unrelaxed) unforgeability definition given in [5],
the adversary is allowed to make challenge oracle queries, while in our definition
of unforgeability, the adversary is not allowed to query the challenge oracle.
However, this will not affect the security and the two definitions are in fact
equivalent. This is because in the unforgeability definition in [5], the adversary
will not get additional advantage from querying a challenge oracle and it is easy
to see any scheme satisfying our security definition also satisfies their security
definition (and vice versa) if the parameters are properly set.

3 Main Construction

In this section, we show how to obtain watermarkable PRF families with both
public extraction and unforgeability via constructing an unforgeable watermark-
ing scheme with public extraction for any puncturable PRF with weak key-
injectivity and constrained one-wayness.

Let λ be the security parameter. Let δ be a positive real value and
d = λ/δ = poly(λ). Let n,m, l be positive integers that are polynomial in λ
and n = l + poly(λ). Let PRF = (PRF . KeyGen,PRF . Eval,PRF . Constrain,
PRF . ConstrainEval) be a family of puncturable PRF with key space K, input
space {0, 1}n, and output space {0, 1}m. Besides, we also need the following
building blocks.

• A family of prefix puncturable PRF F(1) = (F(1) . KeyGen,F(1) . Eval,F(1) .
Constrain,F(1) . ConstrainEval) with key space K(1), input space
{0, 1}(d+1)·l and output space {0, 1}m.

• A family of puncturable PRF F(2)=(F(2) . KeyGen,F(2) . Eval,F(2) . Constrain,
F(2) . ConstrainEval) with key space K(2), input space {0, 1}n and output
space {0, 1}m.

• Two pseudorandom generators G : {0, 1}l → {0, 1}n and G′ : {0, 1} l
2 →

{0, 1}l.
• A family of collision-resistant hash function H with input space {0, 1}d·m and

output space {0, 1}l.
• A family of puncturable encryption scheme PE = (PE . KeyGen,PE . Puncture,

PE . Enc,PE . Dec) with plaintext space {0, 1}(d+1)·l, ciphertext space {0, 1}n

and encryption randomness space R.
• An indistinguishability obfuscator iO for all polynomial-size circuits.

Then, our watermarking scheme WM = (WM . Setup,WM . Mark,WM .
Extract) for PRF with message space {0, 1}m/2 works as follows.

• Setup. On input a security parameter λ, the setup algorithm first samples
H

$← H and generates (pk, sk) ← PE . KeyGen(1λ), K1 ← F(1) . KeyGen(1λ)
and K2 ← F(2) . KeyGen(1λ). Then it computes E ← iO(Ext[pk,K1,K2]),
where the circuit Ext is defined in Fig. 3.5 Finally, the output of the setup
algorithm is (MK,EK) where MK = (sk,K1,K2) and EK = (H, E).

5 The circuit E, as well as all circuits E(·) appeared in the proof of Theorem 3.1, will
be padded to the same size.
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• Mark. On input a mark key MK = (sk,K1,K2), a secret key k ∈ K for
PRF and a message msg, the marking algorithm outputs the circuit C ←
iO(M[sk,K1,K2, k,msg]), where the circuit M is defined in Fig. 3.6

• Extract. On input an extract key EK = (H, E) and a circuit C, the extraction
algorithm works as follows:
1. Sample a1, . . . , ad

$← {0, 1} l
2 and r

$← R.
2. t1 = G′(a1), . . . , td = G′(ad).
3. b = H(C(G(t1)), . . . , C(G(td))).
4. (x, y) = E(a1, . . . , ad, b, r).
5. z = C(x).
6. Let u, v be the first m

2 bits and the last m
2 bits of y ⊕ z. If u = 0

m
2 , then

output v; otherwise, output ⊥.

Ext

Constant: pk, K1, K2

Input: a1, . . . , ad, b, r
1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PE . Enc(pk, t1‖ . . . ‖td‖b; r).
3. y = F(1) . Eval(K1, t1‖ . . . ‖td‖b)⊕

F(2) . Eval(K2, x).
4. Output (x, y).

M

Constant: sk, K1, K2, k, msg
Input: x
1. (t1‖ . . . ‖td‖b) = PE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b �=⊥) ∧ (H(PRF . Eval(k,

G(t1)), . . . ,PRF . Eval(k,G(td))) = b)
(a) y = F(1) . Eval(K1, t1‖ . . . ‖td‖b) ⊕

F(2) . Eval(K2, x).
(b) Output y ⊕ (0

m
2 ‖msg)

3. Otherwise, output PRF . Eval(k, x).

Fig. 3. The circuit Ext and the circuit M.

Theorem 3.1. If PRF is a secure puncturable PRF with weak key-injectivity
and constrained one-wayness, F(1) is a secure prefix puncturable PRF, F(2) is a
secure puncturable PRF, G and G′ are pseudorandom generators, H is a fam-
ily of collision-resistant hash function, PE is a secure puncturable encryption
scheme and iO is a secure indistinguishability obfuscator, then WM is a secure
watermarking scheme with δ-unforgeability for PRF.

Proof. To prove that WM is a secure watermarking scheme for PRF, we need
to prove that it has the functionality preserving, the extraction correctness, the
δ-unforgeability, and the unremovability.

Proof of Correctness. Functionality preserving of WM comes from the sparse-
ness of PE and the correctness of iO directly.

Next, we prove the extraction correctness of WM. For any key k ∈ K
and msg ∈ {0, 1}m

2 , let (MK,EK) ← WM . Setup(1λ) and C ← WM . Mark
(MK,k,msg). Also let ã1, . . . , ãd be internal variables used when extracting the

6 The circuit M, as well as all circuits M(·) appeared in the proof of Theorem 3.1, will
be padded to the same size.
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circuit C. Then it is easy to see that the the extraction procedure will output
msg as long as

∀i ∈ [1, d], C(G(G′(ãi))) = PRF . Eval(k,G(G′(ãi))) (1)

Equation (1) holds with all but negligible probability due to the correctness of
iO, the sparseness of PE and the pseudorandomness of G and G′ (consequently,
the pseudorandomness of G(G′(·))). That completes the proof of extraction
correctness.

Proof of δ-Unforgeability. To prove the δ-unforgeability of WM, we define
the following games between a challenger and a PPT unforging-admissible
adversary A:

• Game 0. This is the real experiment ExptUF. In more detail, the challenger
proceeds as follows:
1. In the beginning, the challenger first samples H

$← H and gener-
ates (pk, sk) ← PE . KeyGen(1λ), K1 ← F(1) . KeyGen(1λ) and K2 ←
F(2) . KeyGen(1λ). Then it computes E ← iO(Ext[pk,K1,K2]), and returns
EK = (H, E) to A.

2. Next, the challenger answers marking oracle queries from A and on receiv-
ing a query (kι,msgι) (for the ιth marking oracle query), it returns
Cι ← iO(M[sk,K1,K2, kι,msgι]).

3. Finally, on input a circuit C̃, the challenger works as follows:
(a) Sample ã1, . . . , ãd

$← {0, 1} l
2 and r

$← R.
(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).
(d) (x̃, ỹ) = E(ã1, . . . , ãd, b̃, r).
(e) z̃ = C̃(x̃).
(f) If the first m

2 bits of ỹ and z̃ are identical, then output 1; otherwise,
output 0.

• Game 1. This is identical to Game 0 except that in step 3, after computing
t̃1, . . . , t̃d and b̃, the challenger further checks if t̃1, . . . , t̃d and b̃ define “marked
points” for circuits returned by the marking oracle. More precisely, assuming
A has made Q marking oracle queries, then for i ∈ [1, Q], the challenger
computes

bi = H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

where ki is the secret key submitted in the ith marking oracle query. Next,
it aborts and outputs 2 if there exists i ∈ [1, Q] that bi = b̃; otherwise, it
proceeds identically as in Game 0.

• Game 2. This is identical to Game 1 except that the challenger computes x̃
and ỹ as follows:

x̃ ← PE . Enc(pk, t̃1‖ . . . ‖t̃d‖b̃)
ỹ = F(1) . Eval(K1, t̃1‖ . . . ‖t̃d‖b̃) ⊕ F(2) . Eval(K2, x̃)
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• Game 3. This is identical to Game 2 except that the challenger modifies the
way to generate t̃1, . . . , t̃d. More precisely, it samples t̃1, . . . , t̃d

$← {0, 1}l in
the beginning of step 1 instead of computing them from ã1, . . . , ãd in step 3.

• Game 4. This is identical to Game 3 except that the challenger uses a con-
strained key of K1 instead of using K1 directly. More precisely, the challenger
computes

CK1 ← F(1) . Constrain(K1, t̃1‖ . . . ‖t̃d)
after generating K1 (recall that this means CK1 cannot compute on inputs
with prefix t̃1‖ . . . ‖t̃d). Then it computes

E ← iO(Ext(1)[pk,CK1,K2])

where the circuit Ext(1) is defined in Fig. 4, and returns EK = (H, E) to
A. Besides, in step 2, on receiving a marking oracle query (kι,msgι), the
challenger first computes

bι = H(PRF . Eval(kι,G(t̃1)), . . . ,PRF . Eval(kι,G(t̃d)))

Then it sets αι = t̃1‖ . . . ‖t̃d‖bι and computes βι = F(1) . Eval(K1, αι). After
that, it returns

Cι ← iO(M(1)[sk, CK1,K2, kι,msgι, αι, βι])

to A, where the circuit M(1) is defined in Fig. 5.
• Game 5. This is identical to Game 4 except that the challenger computes

βι = f(αι) with a truly random function f7. The challenger also computes
ỹ = f(t̃1‖ . . . ‖t̃d‖b̃) ⊕ F(2) . Eval(K2, x̃).

Constant: pk, CK1, K2

Input: a1, . . . , ad, b, r
1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PE . Enc(pk, t1‖ . . . ‖td‖b; r).
3. y = F(1) . ConstrainEval(CK1, t1‖ . . . ‖td‖b) ⊕ F(2) . Eval(K2, x).
4. Output (x, y).

Fig. 4. The circuit Ext(1).

Next, we need to prove the indistinguishability of each consecutive pair of
games and show that the adversary A will win in the final game (Game 5) with
a negligible probability. The details are given in the full version of this work.

Proof of Unremovability. To prove the unremovability of WM, we define
the following games between a challenger and a PPT unremoving-admissible
adversary A:
7 f is computed via lazy sampling, i.e., if αι is fresh, then βι is sampled uniformly

from K, and if there exists ι′ < ι that αι = αι′ , then βι is set to be βι′ .
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M(1)

Constant: sk, CK1, K2, k, msg, α, β
Input: x
1. (t1‖ . . . ‖td‖b) = PE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b = α)

(a) y = β ⊕ F(2) . Eval(K2, x).
(b) Output y ⊕ (0

m
2 ‖msg)

3. If (t1‖ . . . ‖td‖b �=⊥) ∧
(H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) y = F(1) . ConstrainEval(CK1,

t1‖ . . . ‖td‖b) ⊕ F(2) . Eval(K2, x).
(b) Output y ⊕ (0

m
2 ‖msg)

4. Otherwise, output PRF . Eval(k, x).

M(2)

Constant: sk, K1, K2, k, msg, P
Input: x
1. For (xi, yi) ∈ P

(a) If x = xi, then outputs yi.
2. (t1‖ . . . ‖td‖b) = PE . Dec(sk, x).
3. If (t1‖ . . . ‖td‖b �=⊥) ∧

(H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) y = F(1) . Eval(K1, t1‖ . . . ‖td‖b)⊕

F(2) . Eval(K2, x).
(b) Output y ⊕ (0

m
2 ‖msg)

4. Otherwise, output PRF . Eval(k, x).

Fig. 5. The circuit M(1) and the circuit M(2).

• Game 0. This is the real experiment ExptUR. In more detail, the challenger
proceeds as follows:
1. In the beginning, the challenger first samples H

$← H and gener-
ates (pk, sk) ← PE . KeyGen(1λ), K1 ← F(1) . KeyGen(1λ) and K2 ←
F(2) . KeyGen(1λ). Then it computes E ← iO(Ext[pk,K1,K2]), and returns
EK = (H, E) to A.

2. Next, the challenger answers marking oracle queries from A and on receiv-
ing a query (kι,msgι) (for the ιth marking oracle query), it returns
Cι ← iO(M[sk,K1,K2, kι,msgι]).

3. Once A makes a challenge oracle query msg∗, the challenger samples k∗ ←
PRF . KeyGen(1λ) and returns C∗ ← iO(M[sk,K1,K2, k

∗,msg∗]) back.
4. Then, the challenger answers marking oracle queries from A in the same

way as in step 2.
5. Finally, on input a circuit C̃, the challenger works as follows:

(a) Sample ã1, . . . , ãd
$← {0, 1} l

2 and r
$← R.

(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).
(d) (x̃, ỹ) = E(ã1, . . . , ãd, b̃, r).
(e) z̃ = C̃(x̃).
(f) If ỹ ⊕ z̃ �= 0

m
2 ‖msg∗, then output 1; Otherwise, output 0.

• Game 1. In Game 1, the challenger changes the way for testing the circuit C̃.
In particular, in step 5, on receiving the circuit C̃, the challenger proceeds as
follows:
1. Sample t̃1, . . . , t̃d

$← {0, 1}l.
2. b̃ = H(PRF . Eval(k∗,G(t̃1)), . . . ,PRF . Eval(k∗,G(t̃d))).
3. x̃ ← PE . Enc(pk, t̃1‖ . . . ‖t̃d‖b̃)
4. z̃ = C̃(x̃).
5. z̃′ = C∗(x̃).
6. If z̃ �= z̃′, then outputs 1; otherwise, outputs 0.

• Game 2. This is identical to Game 1 except that the challenger
samples k∗, t̃1, . . . , t̃d and computes b̃, x̃ immediately after it generates
H, pk, sk,K1,K2 in step 1.
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• Game 3. This is identical to Game 2 except that the challenger further checks
if k∗ has been submitted to the marking oracle. In particular, in step 2 and
in step 4, on receiving a query (kι,msgι), the challenger checks if kι = k∗. It
aborts and outputs 2 if this is the case; otherwise, it proceeds identically as
in Game 2.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to answer the challenge oracle. More precisely, it samples x̃′ $← {0, 1}n

after sampling k∗ in step 1. Moreover, in step 3, it samples ỹ′ $← {0, 1}m, sets
the list P∗ = ((x̃′, ỹ′)) and returns C∗ ← iO(M(2)[sk,K1,K2, k

∗,msg∗,P∗]),
where the circuit M(2) is defined in Fig. 5.

• Game 5. This is identical to Game 4 except that the challenger changes
the way to answer the challenge oracle. More precisely, in step 3, it also
samples ỹ

$← {0, 1}m. Then it sets P∗ = ((x̃′, ỹ′), (x̃, ỹ)) and returns C∗ ←
iO(M(2)[sk,K1,K2, k

∗,msg∗,P∗]).
• Game 6. This is identical to Game 5 except that the challenger interchanges

the way to generate x̃ and x̃′. In particular, it samples x̃
$← {0, 1}n and

computes x̃′ ← PE . Enc(pk, t̃1‖ . . . ‖t̃d‖b̃).
• Game 7. This is identical to Game 6 except that the challenger changes

the way to answer the challenge oracle. More precisely, in step 3, it sets
P∗ = ((x̃′, ỹ′)) and returns C∗ ← iO(M(2)[sk,K1,K2, k

∗,msg∗,P∗]).

Next, we need to prove the indistinguishability of each consecutive pair of
games and show that the adversary A will win in the final game (Game 7) with
a negligible probability. The details are given in the full version of this work. ��
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Abstract. Hash functions are one of the most important cryptographic
primitives, but their desired security properties have proven to be
remarkably hard to formalize. To prove the security of a protocol using a
hash function, nowadays often the random oracle model (ROM) is used
due to its simplicity and its strong security guarantees. Moreover, hash
function constructions are commonly proven to be secure by showing
them to be indifferentiable from a random oracle when using an ideal
compression function. However, it is well known that no hash function
realizes a random oracle and no real compression function realizes an
ideal one.

As an alternative to the ROM, Bellare et al. recently proposed the
notion of universal computational extractors (UCE). This notion for-
malizes that a family of functions “behaves like a random oracle” for
“real-world” protocols while avoiding the general impossibility results.
However, in contrast to the indifferentiability framework, UCE is for-
malized as a multi-stage game without clear composition guarantees.

As a first contribution, we introduce context-restricted indifferentia-
bility (CRI), a generalization of indifferentiability that allows us to model
that the random oracle does not compose generally but can only be used
within a well-specified set of protocols run by the honest parties, thereby
making the provided composition guarantees explicit. We then show that
UCE and its variants can be phrased as a special case of CRI. More-
over, we show how our notion of CRI leads to generalizations of UCE.
As a second contribution, we prove that the hash function constructed
by Merkle-Damg̊ad satisfies one of the well-known UCE variants, if we
assume that the compression function satisfies one of our generalizations
of UCE, basing the overall security on a plausible assumption. This result
further validates the Merkle-Damg̊ard construction and shows that UCE-
like assumptions can serve both as a valid reference point for modular
protocol analyses, as well as for the design of hash functions, linking
those two aspects in a framework with explicit composition guarantees.

1 Introduction

1.1 Motivation and Background

The random oracle model (ROM) [3] is an important tool towards establish-
ing confidence in the security of real-world cryptographic constructions. The
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paradigm can be described in two steps: first, to design a protocol and prove
it secure in the ROM, thus using a random oracle instead of a hash function;
second, to instantiate the random oracle with a cryptographic hash function.
However, it is well known [10] that no hash function realizes a random oracle;
hence, once the random oracle is instantiated the security proof degenerates to
a heuristic security argument.

The ROM is not only used as a model to prove protocols in, but it also
serves as a reference point for the designers of hash functions. The indifferentia-
bility framework [16], while being a general framework, is most famously used to
phrase the security obligation of a hash function construction: the hash function
is proven indifferentiable from a random oracle when using an ideal compression
function (e.g. a fixed input-length random oracle), thereby excluding attacks
exploiting the construction. Since indifferentiability is equipped with a composi-
tion theorem, this guarantee holds moreover irrespective of the context the hash
function is used in. However, just as no hash function can instantiate a ran-
dom oracle, no real compression function can instantiate the idealized version
assumed in the proof.

More recently, Bellare et al. [2] proposed the notion of universal computa-
tional extractors (UCE). This notion is based on the observation that for most
“real-world” protocols proven secure in the random oracle model, instantiating
the random oracle with a concrete hash function is not known to be insecure. The
UCE framework revisits the question of what it means for a hash functions to
“behave like a random oracle” and formalizes families of security notions aimed
at bridging the gap between the general impossibility result and the apparent
security of concrete protocols. So far, the research on the UCE framework has
mainly been focused on two aspects: first, studying in which applications the
ROM can be safely replaced by one of the UCE assumptions and, second, study-
ing which ones of the UCE assumptions are generally uninstantiable and which
one might actually be. Little attention, however, has been paid analyzing com-
mon hash function constructions within the UCE framework. Moreover, UCE is
formalized as a multi-stage game without clear composition guarantees, which
makes it therefore hard to directly apply as a modular step in an analysis of a
complex protocol.

1.2 Contributions

Our contributions are three-fold. First, we introduce a generalization of indiffer-
entiability called context-restricted indifferentiability (CRI). This generalization
allows us to model that a resource cannot be instantiated in every context but
only within a well-specified set of contexts. We then mainly apply the gen-
eral context-restricted indifferentiability framework to the random oracle, called
random-oracle context-restricted indifferentiability (RO-CRI) security.

Secondly, we show that every UCE-class, i.e., every variant of the original
UCE framework introduced by Bellare et al., can be expressed as a set of non-
interactive contexts in which the random oracle can be instantiated. Hence,
we prove that the UCE framework can be translated to RO-CRI and, thus, is
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essentially a special case of it. Thereby we propose an alternative interpretation
of the UCE framework in a traditional single-stage adversary model with well-
defined composition guarantees and provide a direct relation between the UCE
and the indifferentiability frameworks. In the full version [14] we furthermore
show how two of the generalizations of UCE can be expressed within RO-CRI
as well. Viewing UCE as a special case of CRI then allows us to generalize the
split-source UCE-class to non-interactive contexts and we propose in particular
a generalization that we call strong-split security.

Finally, we propose to consider CRI to analyze the security of common hash-
function constructions. In contrast to indifferentiability, CRI allows us to con-
sider more fine-grained versions of both the assumption on the compression func-
tion as well as the guarantee of the constructed hash function. As an example, we
investigate the split-security of the Merkle-Damg̊ard scheme using RO-CRI and
we prove that the constructed hash function is split-secure if the underlying com-
pression function is strong-split secure (as opposed to the usual much stronger
assumption of the compression function being a random function) if the hashed
message has a sufficient min-entropy density from the distinguisher’s point of
view. We thereby generalize a lemma on min-entropy splitting by Damg̊ard et
al., which we believe might be of independent interest.

1.3 Related Work

We discuss the relation between context-restricted indifferentiability and some
related notions, including variants of indifferentiability and UCE.

Variants of Indifferentiability. Several variants of indifferentiability have
been proposed in the past. The reset indifferentiability notion has been intro-
duced by Ristenpart, Shacham, and Shrimpton in [20] as a workaround to the
composition problems in multi-stage settings they highlighted. In [12], Demay
et al. gave an alternative interpretation of those shortcomings. They prove that
reset indifferentiability is equivalent to indifferentiability with stateless simula-
tors. Moreover, they introduce the notion of resource-restricted indifferentiabil-
ity, which makes the memory used in the simulator explicit in contrast to the
original definition which only requires this memory to be polynomially bounded.
In contrast to our CRI notion that weakens indifferentiability, those two vari-
ants are a strengthening, i.e., any statement in those frameworks implies the
traditional indifferentiability statement, but not vice-versa.

In [19], Mittelbach presents a condition called unsplittability on multi-stage
games, that allows to show that the composition theorem of indifferentiability
can be salvaged for iterative hash function constructions. They formalize a con-
dition that specifies certain multi-stage games, in which the random oracle can
be safely instantiated by an iterated hash function based on an idealized com-
pression function. In contrast, CRI formalizes in which single-stage settings a
hash function might be instantiable by an actual hash function, without hav-
ing to assume an unrealistically ideal compression function. Moreover, CRI is a
general paradigm that not only applies to iterative hash function constructions.
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Universal Computation Extractors and Variants Thereof. The UCE
framework was introduced by Bellare et al. [1] as a tool to provide a family of
notions of security for keyed hash functions, refining the predominant random
oracle methodology. Since then, the impossibility of various UCE-classes has
been shown by Brzuska et al. [6,8] and Bellare et al. [4], and the possibility
of a specific UCE-class in the standard model has been shown by Brzuska and
Mittelbach [7]. Bellare et al. [2] have also suggested to use the UCE framework
to study the domain extension of a finite input-length random oracle to a UCE
secure variable input-length random oracle. Their motivation is based on finding
more efficient constructions if they only require the UCE-security of the variable
input-length random oracle. In contrast, we consider the domain extension in a
setting where we also assume the compression function to be only UCE secure.

In [13], Farshim and Mittelbach introduced a generalization of UCE called
interactive computational extractors (ICE). Generalizing UCE to interactive sce-
narios is also one of our contributions. The generalization they propose and the
one we propose, however, differ on a very fundamental level and pursue different
directions. ICE makes the two stages of the original UCE definition symmetri-
cal where the two stages jointly form the queries, requiring that neither one of
them can predict the query. In contrast, we exactly use the asymmetry of UCE
to embed it in the traditional indifferentiability setting with one dishonest and
one honest party, where naturally the honest party knows the position where it
queries the hash function.

In [21], Soni and Tessaro introduce the notion of public-seed pseudoran-
dom permutations (psPRP) that are inspired by UCE. In fact, they introduce
a generalization of UCE, called public-seed pseudorandomness, of which both
psPRP and UCE are instantiations. For their psPRP notion they introduce the
unpredictability and reset-security notions analogous to UCE, and moreover they
study the relations between psPRP and UCE. In contrast to CRI, their defini-
tion is still purely game-based. In the full version [14], we show that CRI is a
strict generalization of their notion as well.

2 Preliminaries

2.1 The (Traditional) UCE Framework

To circumvent the well-known impossibility result that no hash function fam-
ily is indifferentiable from a random oracle, Bellare, Hoang, and Keelveedhi [2]
introduced the UCE framework to formalize a weaker version of what it means
for a family of keyed hash functions to behave like a random oracle. The UCE
framework defines a two-stage adversary, where only the first stage—the source
S—has access to the oracle (either the hash function or the random oracle)
and only the second stage—the distinguisher D—has access to the hash key hk.
The source provides some leakage L to the distinguisher that then decides with
which system the source interacted. The definition of the security game is pre-
sented in Algorithm 1. Here, H.Kg denotes the key-generation algorithm, H.Ev
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the deterministic evaluation algorithm, and l the output length associated with
the family of hash functions H.

Algorithm 1. The UCE game

function Main UCES,D
H (λ)

b
$← {0, 1}; hk

$← H.Kg(1λ)

L
$← SHash(1λ)

b′ $← D(1λ, hk, L)
return (b′ = b)

function Hash(x, 1l)
if T [x, l] = ⊥ then

if b = 1 then
T [x, l] ← H.Ev(1λ, hk, x, 1l)

else T [x, l]
$← {0, 1}l

return T [x, l]

Without any further restriction, this game is trivial to win: the source queries
some point x, obtains the result y, and then provides the tuple (x, y) as leakage
to the distinguisher which then decides whether y matches with the hash of
x. Therefore, in order for this definition to be meaningful, the leakage has to
be restricted in some sense, which gives rise to various UCE-classes depending
on the kind of restriction. The basic restriction proposed was that the queries
of the source S must be unpredictable given the leakage L. Both statistical
unpredictability as well as computational unpredictability have been proposed;
however, the latter has been shown to be impossible assuming iO exists [6].

2.2 Resources and Converters

The indifferentiability framework by Maurer, Renner, and Holenstein [16] is a
widely adopted framework to analyze and prove the security of hash function
constructions. The indifferentiability framework is a simulation-based framework
that uses the so-called “real world – ideal world” paradigm and formalizes secu-
rity guarantees as resources (analogous to functionalities in the Universal Com-
posability framework [9]). A resource S captures the idea of a module which
provides some well-defined functionality to the different parties–both the hon-
est and the dishonest ones–which can then be used in a higher level protocol.
A resource can either be something physically available, such as an insecure
communication network, or can be constructed from another resource R using
a cryptographic protocol π. In fact, the goal of the protocol π can be seen as
constructing the ideal resource S from the real one R assumed to be available.
The protocol is modeled as a converter that connects to the system R.

The indifferentiability framework formalizes this concept in a setting with
a single honest and a single dishonest party. In the following we give a brief
description of the system algebra used in this work. We basically follow the
contemporary notation of indifferentiability presented in [18], while sticking to
the original reducibility notion.

Formal Definitions. A resource is a system with two interfaces via which the
resource interacts with its environment. The (private) interface A and the (public)
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interface E can be thought as being assigned to an honest and a dishonest party,
respectively. Let Φ denote the set of resources. All resources in Φ are outbound
(as in the original version of indifferentiability) meaning that interaction at one
interface does not influence the other interface. If two resources V and W are used
in parallel, this is again a resource, denoted [V,W], where each of the interfaces
allows to access the corresponding interfaces of both subsystems. Moreover, we
assume the existence of a resource � ∈ Φ such that [R,�] = R for any R.

Converters are systems that can be connected to an interface of a resource
to translate the inputs and outputs. A converter has two interfaces: the outer
interface out that becomes the new interface of the resource, and the inner
interface in that is connected to the interface of the existing resource. Attaching
a converter π to a specific interface of a resource R yields another resource. We
understand the left and the right side of the symbol R as the interface A and E,
respectively; thus, attaching π at interface A is denoted πR and attaching it at
interface E is denoted Rπ. Let Σ denote the set of converters. Two converters φ
and ψ can be composed sequentially and in parallel: sequential composition is
denoted as φ ◦ ψ such that (φ ◦ ψ)R = φ(ψR) and parallel composition as [φ, ψ],
where [φ, ψ][R,S] = [φR, ψS]. Moreover, we assume the existence of an identity
converter id such that idR = R id = R.

Conventions for Describing Systems and Algorithms. We describe our systems
using pseudocode. The following conventions are used: We write x ← y for
assigning the value y to the variable x. For a finite set X , x

$← X denotes
assigning x uniformly at random a value in X . Furthermore, x

PX← X denotes
sampling x according to the indicated probability distribution PX over X .

Queries (also called inputs) to systems consist of a list of arguments, of which
the first one is a suggestive keyword. If the input consists only of the keyword
we omit the parenthesis, i.e., we write retrieve or (hash, x). When specifying
the domain of the inputs, we ignore the keyword and write (hash, x) ∈ X to
indicate x ∈ X . If a system outputs a value x at the interface named int, we
denote this “output x at int”. We generally assume that all resources reply
at the same interfaces they have been queried before processing any additional
queries. Therefore, if a converter outputs a query at its inside interface, we write
“let var denote the result” meaning that we wait for the value returned from
the connected system and then store it in the variable var.

2.3 Indifferentiability

In contrast to game-based security definitions, indifferentiability gives compos-
able security guarantees, i.e., the security guarantees obtained are not only with
respect to specific attack scenarios but with respect to all possible attacks. The
fundamental idea of composition is then to prove the construction of S from R in
isolation and be assured that in any higher level protocol φ making use of S, the
resource S can be replaced with R with the protocol applied, without degrading
the security of φ. The system S, while not existing in the real world, there-
fore serves as an abstraction boundary for the design of cryptographic schemes
(Fig. 1).
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π R S σ

Fig. 1. The real (left) and the ideal (right) setting considered in indifferentiability.
We depict resources using rectangular boxes and converters using rounded boxes. The
honest party’s interface is depicted on the left, and the dishonest’s on the right side.

Indifferentiability formalizes this by demanding that there exists an efficient
simulator σ, such that the real setting πR and the ideal setting Sσ are indistin-
guishable according to the following definitions.

Definition 1. The advantage of D in distinguishing R and S is defined as

ΔD(R,S) := Pr[DS = 1] − Pr[DR = 1],

where DS denotes the output of the distinguisher D when connected to the
resource S. The distinguisher thereby gets access to both interfaces of the resource
S. Moreover, let R ≈ S denote that ΔD(R,S) is negligible for every efficient D.

Definition 2 (Indifferentiability). Let R and S be 2-interface resources. S is
reducible to R by π ∈ Σ in the sense of indifferentiability (denoted R

π
==⇒ S),

if
R

π
==⇒ S :⇐⇒ ∃σ ∈ Σ : πR ≈ Sσ,

where we refer to π and σ as the protocol and the simulator, respectively.

The formalism of indifferentiability composes in the natural way under some
standard closure assumptions1 on the sets Σ and D of converters and distin-
guishers considered. First, if T is reducible to S and S is reducible to R, then T
is reducible to R by the composed protocol. Secondly, if S is reducible to R, then
for any resource U, [S,U] is reducible to [R,U]. More formally, for any resources
R, S, T, and U we have the following two conditions:

R
π1

==⇒ S ∧ S
π2

==⇒ T =⇒ R
π2◦π1
==⇒ T

R
π

==⇒ S =⇒ [R,U]
[π,id]
==⇒ [S,U].

3 Context-Restricted Indifferentiability

In this section we first revisit the motivation behind composable frameworks
such as the indifferentiability framework. To handle cases where fully compos-
able security is unachievable, we then introduce the notion of context-restricted
1 The set of distinguishers D needs to be closed under emulation of a resource and

converter. The set of converters needs to be closed under sequential composition and
parallel composition with the identity converter.
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indifferentiability, a single-stage security definition inspired by the original moti-
vation behind the UCE-framework. In fact, in the next section we then prove
that UCE can be seen as a special case of context-restricted indifferentiability.

3.1 The Limitations of General Composability

At the heart of every composable cryptographic framework, such as indifferentia-
bility, lies the concept of a resource (called functionality in the UC framework).
A resource S captures the idea of a module which provides some well-defined
functionality to the different parties–both the honest and the dishonest ones–
which can then be used in a higher level protocol. The goal of a protocol π is
then phrased as constructing the resource S from an assumed resource R and
the fundamental idea of composition is to prove the construction of S from R in
isolation and be assured that in any environment, the resource S can be replaced
with πR, without degrading the security. This allows for a modular approach,
since the construction of the resource S can be considered entirely independent
of its use.

The modular approach of indifferentiability, however, fails if we use a resource
S which cannot be reduced to any R available in the physical world, such as the
random oracle. Let PO denote a public random oracle resource, and HK a public
hash key resource. Then, the famous impossibility result [10] implies, that there
exists no deterministic and stateless protocol h, implementing a hash function,

such that HK
h

==⇒ PO, i.e., such that the hash function reduces the random
oracle to the public hash key.

Traditionally, such an impossibility result is circumvented by weakening the
guarantees S, and instead consider a restricted variant S′. However, for the ran-
dom oracle, and many other examples, no such natural weakened version exists.
As a second approach, one can restrict the class of distinguishers allowed. The
UCE framework is such an approach. Unless there is an application scenario
where one can justify such a restricted attacker, this approach leads, however,
to security definitions without evident semantics. The original motivation of the
UCE framework, though, has not been to consider restricted adversaries but to
phrase that, in contrast to the impossibility results, real-world protocols use the
random oracle in “sensible” ways. In the following, we turn this motivation into
a third approach: We restrict composition in a well-defined way. If there is a
resource S that cannot be reduced to a resource R in all contexts, we propose to
make explicit in which contexts one can do it.

3.2 Context-Restriction

In this section we formally define the idea of restricting composition. In order to
do so, we define a context in which we allow the resource S to be used. A context
consists of an auxiliary parallel resource P and some converter f applied by the
honest party. We usually call this converter f a filter to indicate that its goal is to
restrict the access to the resource S. To obtain general statements, we consider
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a set of contexts instead of a single one. This set should be general enough to
capture many application scenarios but avoid those for which the impossibility
is known.

Definition 3. A context set C is a subset of Σ × Φ, where Σ denotes the set of
all converters and Φ denotes the set of all resources.

Recall that our goal is to make a modular statement: reducing S to another
resource R in each of these contexts in C, i.e., finding a single resource R and pro-
tocol π such that πR can instantiate S in each of these contexts in C. Therefore,
the same context appears in both the real and the ideal setting. See Fig. 2 for an
illustration of the distinction problem when fixing a specific context. Quantifying
over all contexts of a set leads to the following definition of context-restricted
indifferentiability.

f

π R

P

f

S

P

σ

Fig. 2. The real (left) and the ideal (right) setting considered in context-restricted
indifferentiability for a specific context (f,P) consisting of the filter f and the auxiliary
parallel resource P.

Definition 4. Let C ⊆ Σ × Φ be a given set of contexts, and let R and S be
2-interface resources. We define S to be C-restricted reducible to R by π ∈ Σ in

the sense of indifferentiability (denoted R
π,C

==⇒
cr

S), as

R
π,C

==⇒
cr

S :⇐⇒ ∀(f,P) ∈ C ∃σ ∈ Σ : f[πR,P] ≈ f[S,P]σ

and refer to the converters π and σ as the protocol and the simulator, respectively.

3.3 Composition

Composability generally refers to the property of a framework that from one, or
multiple, given statements, new ones can be automatically deduced in a sound
way without having to reprove them. More concretely, in CRI we are interested
in deducing new reducibility statements from given ones. Using the abstract alge-
braic approach of constructive cryptography [15,17], such composition properties
are usually consequences of composition-order invariance, a natural associativity
property stating that the order in which we connect systems is irrelevant.

Before stating the composition theorem, we first observe that when a resource
S is reduced to R in a context (f,P), the overall environment of S actually consists
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of both (f,P) and the distinguisher. Especially, if S can be reduced to R within
(f,P), so can it within (f′ ◦ f, [P,P′]), as f′ and P′ can be absorbed into the
distinguisher. This leads to the following closure operation on context sets.

Definition 5. Let C ⊆ Σ×Φ be a given set of contexts. We denote by C ⊆ Σ×Φ
the following set of contexts:

C := {(f,P) ∈ Σ × Φ | ∃(g,Q) ∈ C ∃h ∈ Σ ∃U ∈ Φ : h ◦ g = f ∧ [Q,U] = P}.

The following proposition is proven in the full version of this work [14].

Proposition 1. Let R,S ∈ Φ denote resources, π ∈ Σ denote a converter, and

let C denote a set of contexts. We then have R
π,C

==⇒
cr

S ⇐⇒ R
π,C

==⇒
cr

S.

Finally, the composition theorem of CRI can be stated.

Theorem 1. Let R, S, T, and U denote resources, let π1 and π2 denote protocols,
and C1 and C2 contexts sets. We have

R
π1 ,C1
==⇒
cr

S ∧ S
π2 ,C2
==⇒
cr

T =⇒ R
π2◦π1,C2
==⇒
cr

T,

iff for all (f,P) ∈ C2 it holds that (f ◦ [π2, id],P) ∈ C1. Moreover, we have

R
π1,C1
==⇒
cr

S =⇒ [R,U]
π1,C2
==⇒
cr

[S,U],

iff for all (f,P) ∈ C2 it holds that (f, [U,P]) ∈ C1.

The proof can be found in the full version [14]. Note that the additional
conditions compared to the composition theorem of classical indifferentiability
(cf. Sect. 2.3) are a direct consequence of the context restrictions. For instance,
if in the sequential case we reduce T to S in one of the given contexts, we have
to ensure that now we are again in a valid context for reducing S to R. This
highlights that in order for context-restricted indifferentiability to be useful, the
context sets have to be defined in a form that containment can be easily verified.

3.4 Relation to Indifferentiability

Let id denote the identity converter, such that idR = R and � the neutral
resource, such that [R,�] = R, for any resource R. It is then easy to see that
regular indifferentiability, which guarantees full composition, is a special case of
context-restricted indifferentiability with the context set Cid := {(id,�)}, since
Cid = Σ × Φ, i.e., the closure equals to the set of all resources and converters.
One can, however, also take the opposite point of view and consider context-
restricted indifferentiability to be a special case of plain indifferentiability. From
this perspective, CRI reducibility is just a set of normal reducibility statements
where the context is part of the considered resources and protocols, respectively.
This can be summarized in the following proposition.
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Proposition 2. Let Cid := {(id,�)}. For all resources R, S, protocol π, and
context sets C ⊆ Σ × Φ, we have

R
π

==⇒ S ⇐⇒ R
π,Cid
==⇒
cr

S,

R
π,C

==⇒
cr

S ⇐⇒ ∀(f,P) ∈ C : [R,P]
f◦[π,id]
==⇒ f [S,P].

Using Cid = Σ × Φ, it is also easy to see that the composition theorem of
regular indifferentiability is just a special case of Theorem1.

4 Generalizing UCE Using CRI

In the following section we consider the ROM in context-restricted indifferen-
tiability, i.e., consider the special case of CRI where the ideal-world resource S
that we reduce is a random oracle. In the first subsection we prove that the UCE
framework is actually a special case of CRI with a random oracle, and in the
second subsection we propose a generalization of the split-security UCE-class
based on CRI.

4.1 Modeling UCE in CRI

In the following, let H : H.K × H.X → H.Y denote a keyed hash function, let
HKH denote the public hash-key resource that chooses a key for H and outputs it
at both interfaces, let hashH denote the converter that implements an oracle for
H at the outside interface when connected to HKH at the inside interface, and
let H := hashHHKH as a shorthand. Finally, let ROH denote the private random
oracle resource with the same input and output domains as H, where by private
we mean that this resource only accepts queries at interface A.2

We now present an alternative formalization of UCE based on context-
restricted indifferentiability, more concretely that every possible UCE-class Sx,
where x ∈ {sup, cup, srs, crs, splt, . . .}, can be mapped to a set of contexts Cx

for which the UCE statement implies the context-restricted indifferentiability

statement HKH

hashH,C
==⇒
cr

RO, and moreover, if the CRI statement were restricted
to a specific simulator, the reverse direction would hold as well.

In order to map every UCE-class to an equivalent set of contexts, we first
introduce the set of non-interactive contexts, i.e., the communication between the
source and the distinguisher being unidirectional. This restricted set of contexts
faithfully encodes the structural restrictions of the traditional UCE game (cf.
p. 5), where the communication between the source and the distinguisher is
unidirectional. Recall that we are in the same general setting as the classical
indifferentiability framework, where one only considers out-bound resources for
which communication at one interface does not affect the other interface.
2 The choice to consider a private random oracle stems from the fact that in the UCE

framework the hash key is just chosen uniformly at random instead of allowing an
arbitrary efficient simulator with access to the random oracle to generate this key.
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H

f

hashH HKH

P

f

ROH

P

σ

Fig. 3. The real (left) and the ideal (right) setting of context-restricted indifferentia-
bility when applied to UCE.

Definition 6. A non-interactive resource P is a resource that at the interface
E accepts at most a single trigger query (usually called retrieve), and a non-
interactive filter is a converter that at the outer interface just accepts a sin-
gle trigger query (usually called retrieve). Let Φni denote the set of all non-
interactive resources, and Σni denote the set of all non-interactive filters, respec-
tively.

Each UCE-source naturally corresponds to a set of non-interactive contexts.
This is formally stated in the following lemma by providing a surjective mapping
from the set of non-interactive contexts to the set of UCE sources S.

Lemma 1. The function φ : Σni ×Φni → S that maps every context (f,P) to the
following UCE source S, that internally emulates f and P, is surjective.

1. S queries the interface E of P to obtain z.
2. S queries the outside interface of the filter f to obtain y. The queries at the

inside interface of f are forwarded to the resource P or output as queries to
the hash oracle, respectively.

3. S outputs L = (y, z).

We now show, that for the specific simulator σH that chooses the hash key
uniformly at random, the distinguishing problem of context-restricted indiffer-
entiability for a fixed context (f,P) is as hard as the UCE game with the source
φ(f,P). In order to relate more directly to the traditional UCE definition, we
first introduce the RO-CRI advantage, which is depicted in Fig. 3 for a specific
context (f,P) ∈ C.

Definition 7. We define the random-oracle context-restricted indifferentiabil-
ity (RO-CRI) advantage of a distinguisher D on a hash function H in a context
(f,P) as

AdvRO-CRI
H,f,P,σ (D) := ΔD(f[H,P], f[ROH,P]σ),

for a simulator σ. If there exists a simulator σ such that for all efficient distin-
guishers and all contexts (f,P) ∈ C, the RO-CRI advantage is negligible, we say
that H is C random-oracle context-restricted indifferentiable.

The following lemma implies that for non-interactive contexts this definition
is equivalent to the game-based definition of UCE-security, if we fix the simulator
to σH. The proof can be found in the full version of this work [14].
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Lemma 2. Let S denote the set of all UCE-sources and φ : Σni × Φni → S the
surjective function from Lemma1. For every distinguisher D, there is a distin-
guisher D′ (with essentially the same efficiency) with

∀(f,P) ∈ Σni × Φni : AdvRO-CRI
H,f,P,σH

(D) = Advuce
H,φ(f,P),D′ ,

where Advuce
H,S,D denotes the uce-advantage of (S,D) on H. Conversely, for

every distinguisher D′ there is an equally efficient distinguisher D such that for
all (f,P) ∈ Σni × Φni we have Advuce

H,φ(f,P),D′ = AdvRO-CRI
H,f,P,σH

(D).

We now state the main result of this section, relating the UCE game to
context-restricted indifferentiability. It implies that instead of viewing the source
as the first stage of an adversary, one can view it as the set of contexts in which
the hash function can safely be used.

Theorem 2. Let D denote the set of all efficient distinguishers. For every class
Sx of UCE sources, there exists a set of contexts Cx such that AdvRO-CRI

H,f,P,σH
(D)

is negligible for every D ∈ D and every context (f,P) ∈ Cx if and only if
Advuce

H,S,D(·) is negligible for all (S,D) ∈ Sx × D.

Proof. Using the surjectivity of φ (Lemma 1), we have that for any UCE-class
Sx we can define Cx := φ−1(Sx) such that φ(Cx) = Sx. Hence, by Lemma 2 we
have that AdvRO-CRI

H,f,P,σH
(D) is negligible for all efficient distinguishers D ∈ D and

all contexts (f,P) ∈ Cx iff Advuce
H,S,D(·) is negligible for all (S,D) ∈ Sx × D.

The following corollary establishes the unidirectional implication from UCE-
security to context-restricted indifferentiability. The reverse direction does not
necessarily hold, since the context-restricted indifferentiability notion allows for
different simulators than the natural one σH.

Corollary 1. Let D denote the set of all efficient distinguishers. For every class
Sx of UCE sources, there exists a set of contexts Cx such that if Advuce

H,S,D(·) is

negligible for all (S,D) ∈ Sx × D, then HKH

hashH,Cx

==⇒
cr

ROH.

Proof. This follows directly from Definitions 4 and 7 and Theorem 2.

4.2 Generalizing Split Security

In this section, we present a generalization of the split-source UCE-class, that
cannot be formalized in plain UCE, based on CRI. The split-source UCE-class
has been proposed by Bellare et al. after it has been shown that computational-
unpredictable UCE-security and computational-reset-secure UCE-security is
infeasible if indistinguishability obfuscation exists. Note that split-security is
not a stand-alone UCE-class in the sense that it is designed to be combined with
either computational unpredictability or reset-security, respectively.

The general idea of split-security is, that the source must not be able to
compute Obfs(H( · , x) = y). To achieve this, the source must be dividable into
two parts (S0, S1), where S0 chooses a vector (x1, . . . , xn) of query points, with-
out having access to the hash oracle, and S1 then just gets the evaluations
yi := Hash(xi), without having access to the hash oracle either.
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Strong-Split Security. Split sources have several limitations. First, the dis-
tinguisher cannot influence the queries at all and, thus, all queries must be
solely determined by the honest parties. This prevents, for example, queries like
H(hk, x ‖ a) where a is a value which can be chosen by the distinguisher (e.g.
a is transmitted over an insecure channel) even if x is unpredictable. In the
following section, we introduce a generalization of split-security, called strong-
split security, to address this limitation. Second, split-security does not allow
nested queries like H(hk,H(hk, x)). In the full version [14] we present a further
generalization to address this issue as well.

Remark 1. Note that the first limitation is not specific to split-security, but is
inherent to the traditional UCE-game. In their work [13] on Interactive Compu-
tational Extractors (ICEs), Farshim and Mittelbach have proposed an alternative
relaxation of this issue. In the full version [14], we show that ICE security implies
strong-split context-restricted indifferentiability for statistical unpredictability.

In order to allow the distinguisher to influence the queries while ensuring that
the overall query is still unpredictable from the viewpoint of the distinguisher, we
allow him to apply any injective function on the preliminary inputs x specified by
the first part of the source S0, which will then be evaluated and passed on to S1.
That is, we use the simple fact that for any injective function f guessing f(xi) is
at least as hard as guessing xi. To formally model this as a context set for RO-
CRI, we use a specific filter fs−splt

p . This filter expects the resource P to output
a sequence of pairs (xi, ai), where xi is intended to be unpredictable. We will
call such a resource P seed in the following. For each of them the distinguisher
can then input p functions f1

i , . . . , fp
i that are injective in the first arguments,

upon which the filter will output (f1
i (xi, ai), . . . , f

p
i (xi, ai)) to the hash oracle

and forwards the results to the distinguisher. A formal definition of is depicted in
Fig. 4. The filter fs−splt

p can then be combined with an arbitrary non-interactive
resource to obtain a strong-split RO-CRI context.

Definition 8. The strong-split RO-CRI context set is the set of filters and non-
interactive resource pairs of which the filter can be factorized into fs−splt

p followed
by an arbitrary filter. Formally,

Cs−splt
p := {f ◦ fs−splt

p | f ∈ Σ} × Φni.

Analogous to split-security, strong-split security is not a sufficient restric-
tion to avoid trivial impossibility results. Rather, these notions are meant to
be combined with a notion of unpredictability or reset-security. However, for
strong-split security, requiring the seed to output distinct unpredictable values
is still insufficient to guarantee the security: for instance, if the resource P out-
puts (x, a1) and (x + 1, a2), then the distinguisher can easily choose f and g
such that f(x, a1) = g(x + 1, a2). Therefore, we introduce suitable notion of
unpredictability in the next subsection, which when combined with strong-split
security presents a plausible assumption for a hash function family.
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Fig. 4. The strong-split filter fs−splt
p for RO-CRI, where IX×A→H.X denotes the set of

all efficiently computable functions from X × A to H.X that are injective in the first
argument. Note that it was pointed out in [7] that the queries of a split-source must
be distinct; otherwise arbitrary information can be communicated to the second stage.

Strict Min-Entropy Seeds. We now define an information-theoretic restric-
tion on the seed called strict min-entropy seeds. Similar to Farshim and Mit-
telbach [13] we choose to focus on statistical rather than computational unpre-
dictability to ensure that our notion excludes interactive version of the attack
highlighted in [6].3 More concretely, we consider seeds whose outputs at inter-
face A consist of pairs (Xi, Ai), with Ai being an auxiliary value, such that Xi

has high average conditional min-entropy given the leakage Z and all previous
queries.

Definition 9. A strict min-entropy k-bit seed with n outputs is a resource that
initially draws random values X1, . . . , Xn, A1, . . . , An, and Z according to some
joint distribution, such that

∀i ≤ n : H̃∞
(
Xi

∣
∣{Xj}j<i, {Aj}j≤i, Z

) ≥ k.

Then, it accepts at the interface E a single trigger query (usually called retrieve)
that is answered with Z, and at the interface A n trigger queries answered with
(X1, A1) to (Xn, An). Let Φs−me

n,k ⊂ Φni denote the set of all strict min-entropy
k-bit seed with n outputs. Moreover, let Cs−me

n,k := Σ ×Φs−me
n,k denote the set of all

strict min-entropy k-bit contexts.

When combining stong-split security with strict min-entropy seeds, the secu-
rity of strong-split sources does not depend on the maximal number n of values
3 We would like to stress that while split-security was originally introduced for the

computational setting, it is still a natural class to consider even when combined
with a statistical unpredictability notion.
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produced by the seed. The following lemma is proven in the full version [14],
using a simple hybrid-argument.

Lemma 3. Let n be polynomially bounded. If H is a Cs−splt
p ∩ Cs−me

1,k indifferen-
tiable hash function, then H is also Cs−splt

p ∩ Cs−me
n,k indifferentiable.

5 Split Security of the Merkle-Damg̊ard Construction

Indifferentiability is widely used to prove the security of hash function construc-
tions. Since CRI is essentially a refined version of indifferentiability, it is hence
natural to consider the RO-CRI security as well. It is easy to show that any
indifferentiable hash function construction is reset-UCE secure if the underlying
compression function is reset-UCE secure. On the other hand, for split security
no corresponding result has been proven so far. In the following we investigate
the split-security of the Merkle-Damg̊ard construction using the RO-CRI frame-
work. While ideally one could prove that the Merkle-Damg̊ard construction is
split secure if the compression function is so, or that the Merkle-Damg̊ard con-
struction is strong-split secure if the compression function is so, we will prove a
slightly weaker result:

Consider the Merkle-Damg̊ard construction that splits the message into blocks
of length m. We show that the Merkle-Damg̊ard construction is split-secure for
inputs having at least one block with k bits of min-entropy, if the compression
function is strong-split secure for inputs with min(k,m) bits of min-entropy.

In contrast to the definition of strict min-entropy seeds (c.f. Definition 9) we
require that at least one of the blocks has high min-entropy and not just the
overall message has. Moreover, in order for the proof to actually work, we require
that this block has k bits of min-entropy given all subsequent blocks. In Lemma4
we then show that having a high min-entropy density, i.e., the fraction between
the min-entropy and the message length, is a sufficient criteria for this. First,
however, let us formally introduce this CRI context set.

Definition 10. For a block length 	 ∈ N+, let Pad� denote the usual padding
scheme of the Merkle-Damg̊ard scheme, that is Pad� : {0, 1}∗ → ({0, 1}�)+ that
pads a message x by first appending zeros up to a multiple of the block length 	,
and then appending an encoding of the number of zeros appended as a last block.
Moreover, for X ∈ {0, 1}∗, we denote by Xi the i-th block of Pad�(X).

Definition 11. A non-interactive resource is said to be a k out of 	-bit strict
min-entropy block, denoted P ∈ Φme−blk

k,�,b,n , if P ∈ Φs−me
k,n with

⋃
i≤(b−1)�{0, 1}i × A

as the output domain of interface A, and there exist random variables C1, . . . , Cn

such that Ci ∈ {1, . . . , |Pad�(Xi)|
� } and

∀i ≤ n : H̃∞(XCi
i

∣
∣{Xj

i }j>Ci
, {Xj}j<i, {Cj}j≤i, {Aj}j≤i, Z) ≥ k.

Moreover, let Cme−blk
k,�,b,n := Σ × Φme−blk

k,�,b,n .
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Note, that contrary to the classical indifferentiability of the Merkle-Damg̊ard
construction, we do not require Pad to be prefix-free: when combined with the
strict min-entropy condition H(X) cannot be extended to H(Pad(X)||Y ), as
for Pad(X)||Y having high min-entropy given X, Y must have so, and thereby
the well-known length-extension attack is excluded. Whether a more advanced
construction with a finalization function, e.g. HMAC, could be proven secure for
a more relaxed context set remains an interesting open problem. We now phrase
our main result of this section; the proof can be found in the full version [14].

Theorem 3. Let h : {0, 1}m+� → {0, 1}m denote a fixed input-length compres-
sion function, H : {0, 1}∗ → {0, 1}m denote the hash function obtained by first
padding the message using Pad� and then applying the Merkle-Damg̊ard scheme
using h, and let k′ := min(k,m). Then, if h is Cs−splt

1 ∩ Cs−me
1,k′ RO-CRI secure,

then H is Csplt ∩ Cme−blk
k,�,b,n RO-CRI secure for any polynomial b and n.

To conclude this section, we now present a sufficient condition for a seed
to satisfy Definition 11 based on the length of the message and its overall min-
entropy. More concretely, we prove that if a message is split into b blocks of
size n, and has overall min-entropy of k bits, then there exists a block with
k
b − log2(b) bits of min-entropy, given all succeeding blocks. In order to more
closely resembles the chain rule of Shannon entropy, the proposition is stated
with conditioning on all preceding message X1 . . . XC−1 instead of all succeeding
ones. The converse result can easily be obtained by simply relabeling the blocks.
The proof can be found in the full version of this work [14].

Lemma 4. Let X1, . . . , Xb and Z be random variables (over possibly different
alphabets) with H̃∞(X1 . . . Xb | Z) ≥ k. Then, there exists a random variable C
over the set {1, . . . , b} such that H̃∞(XC | X1 . . . XC−1CZ) ≥ k/b − log2(b).

This lemma is a generalization of the randomized chain rule proven by the
authors of [11] (similar variants exists also in [5,22]) stating that there exists a
binary random variable C such that H∞(X1−CC) ≥ H∞(X0X1)/2. Note that
the main difference of our result is, that it conditions on all previous blocks,
i.e., it essentially represents the min-entropy equivalence of the strong chain rule
H(X0) + H(X1 | X0) = H(X0X1) instead of H(X0) + H(X1) ≥ H(X0X1).
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Abstract. Signcryption is a public-key cryptographic primitive, origi-
nally introduced by Zheng (Crypto ’97), that allows parties to establish
secure communication without the need of prior key agreement. Instead,
a party registers its public key at a certificate authority (CA), and only
needs to retrieve the public key of the intended partner from the CA
before being able to protect the communication. Signcryption schemes
provide both authenticity and confidentiality of sent messages and can
offer a simpler interface to applications and better performance com-
pared to generic compositions of signature and encryption schemes.

Although introduced two decades ago, the question which security
notions of signcryption are adequate in which applications has still not
reached a fully satisfactory answer. To resolve this question, we conduct
a constructive analysis of this public-key primitive. Similar to previous
constructive studies for other important primitives, this treatment allows
to identify the natural goal that signcryption schemes should achieve and
to formalize this goal in a composable framework. More specifically, we
capture the goal of signcryption as a gracefully-degrading secure net-
work, which is basically a network of independent parties that allows
secure communication between any two parties. However, when a party
is compromised, its respective security guarantees are lost, while all guar-
antees for the remaining users remain unaffected. We show which secu-
rity notions for signcryption are sufficient to construct this kind of secure
network from a certificate authority (or key registration resource) and
insecure communication. Our study does not only unveil that it is the
so-called insider-security notion that enables this construction, but also
that a weaker version thereof would already be sufficient. This may be
of interest in the context of practical signcryption schemes that do not
achieve the stronger notions.

Last but not least, we observe that the graceful-degradation property
is actually an essential feature of signcryption that stands out in compar-
ison to alternative and more standard constructions that achieve secure
communication from the same assumptions. This underlines the vital
importance of the insider security notion for signcryption and strongly
supports, in contrast to the initial belief, the recent trend to consider the
insider security notion as the standard notion for signcryption.
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1 Introduction

1.1 Motivation and Background

Signcryption is a public-key cryptographic primitive introduced by Zheng [35]
in 1997, which simultaneously provides two fundamental cryptographic goals:
confidentiality and authenticity. Intuitively, the first property ensures that no
one except the intended recipient should be able to learn anything about a sent
message, and this is typically achieved by means of an encryption algorithm, and
the second property ensures that the receiver can verify that a message indeed
originated from the claimed sender, which is typically achieved by employing a
digital signature scheme. Signcryption is the public-key analogue of the better
known symmetric-key primitive called authenticated encryption and shares part
of its motivation: by merging the two security goals, one might gain practical
efficiency and at the same time offer better usability to applications, since there
is only a single scheme that needs to be employed.

Since its introduction, several concrete schemes have emerged in the litera-
ture based on different hardness assumptions [20,21,31,35,36]. Also, new prop-
erties beyond the basic security goals have been introduced recently, such as
identity-based [8,20,22,23,29,30], hybrid [13], KEM-DEM-based [7], certificate-
less [5], verifiable [29], attribute-based [11,27], functional [12], or key invisible
[33] signcryption schemes. But finding the basic (or initial) security definitions
for signcryption proved to be a very subtle and challenging task. In fact, the orig-
inal signcryption scheme by Zheng was formally proven secure only about ten
years after its introduction by Baek, Steinfield, and Zheng [4]. While (symmetric)
authenticated encryption was put on solid security definitions directly from the
start (cf. [6]), the basic security notions for signcryption have had a more difficult
path and converged to a set of commonly agreed notions only recently [34] and
only thanks to the merits of a sequence of foundational works [1,2,4] that for-
mally introduced what is now known as the outsider security model—the model
that captures network attackers or an adversarial entity that registers public
keys with a certificate authority—and the insider security model—the model
that captures attacks of corrupted users, for example an a priori legitimate user
whose private key got compromised.

Only little effort has subsequently been made to investigate what the security
notions precisely mean and whether they provide the expected service to higher-
level protocols. An initial approach to this question was taken in [16] where a
functionality is presented that idealizes the process of using the signcryption
algorithm to ensure unforgeability and confidentiality (focusing on the outsider
security model) along the lines of the signature and public-key encryption func-
tionality in the UC framework [9].

In this work, we significantly advance this line of research and provide a
detailed application-centric analysis of the basic security notions of signcryp-
tion. Our novel view underlines the importance of insider security as a distinctive
feature that indeed assigns signcryption a special significance in actual deploy-
ments of network protocols. We note that its importance has been (and still is)
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overlooked by a substantial fraction of works. In particular, our results contrast
the line of previous works that propose, analyze and revisit signcryption schemes
and their security, including [4,16,32], recent developments in practical lattice-
based schemes [17], and one of the main references on the basic notions [34, p.
29 and 46], that assign too little credit to the relevance of insider security. In
this paper, we take a step towards clarifying this situation by systematically
identifying which basic notion a signcryption scheme should fulfill and why. We
believe that our analysis provides sufficient evidence to call insider security the
standard notion for signcryption and to pinpoint which proposed variants of
insider security are practically relevant. We hope that the methodology that we
put forward in this work will be applied to existing and future, more enhanced
notions of signcryption security in order to resolve similar questions.

1.2 Our Analysis

Defining an Application Scenario. To answer the above question, we for-
malize the typical application of signcryption as a construction following the
real-world/ideal-world paradigm: this means we have to specify what resources
are available in the real world (e.g., a certificate authority or a network), we
have to specify how the users in the real world employ a signcryption scheme to
protect their communication, and finally, we have to specify what they achieve.
This is captured by specifying an ideal world, where all desirable security prop-
erties are ideally ensured. The protocol is called secure if it constructs the ideal
specification, i.e., if the real world (where parties execute the protocol) is as use-
ful to an adversary as the ideal world, the latter world being secure by definition.
Formally, one has to construct a simulator in the ideal world to make the worlds
computationally indistinguishable.

In this work, the real world consists of the usual ingredients inspired by
public-key infrastructures:

– An insecure network Net, where each user can register themselves with a
unique identity and send and receive messages, and where a network attacker,
say Eve, has full control over the network, including message delivery.

– A certificate authority CA, where users and the attacker Eve can register
public keys in the name of the identity. The certificate authority only guar-
antees that there is exactly one value registered for an identity, but does not
verify knowledge of, for example, a secret key.

– A memory resource Mem that models the storage of the secret values of each
user. The storage is possibly compromised by an intruder, say Mallory, which
models key compromise.

Defining the Goal for Signcryption. The security goal of signcryption can
be identified in a very natural way: due to the nature of public-key cryptography,
the security depends on which user gets compromised. Furthermore, in a public-
key setting, in sharp contrast to the secret-key setting, parties are independent
in principle. Hence, if a user is compromised, we have to give up his security:
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this means that messages sent to this user can be read by the attacker, and the
attacker can act in the name of this user. This directly gives rise to a notion
of a secure network that gracefully degrades depending on which users gets
compromised as described below. We denote this gracefully-degrading secure
network by SecNT and its main properties are as follows:

1. If two uncompromised legitimate users communicate, then the secure network
guarantees that the network attacker learns at most the length of the messages
and the attacker cannot inject any message into this communication: the
communication between them can be called secure.

2. If, however, the legitimate sender is compromised, but not the receiver, then
the network allows the attacker to inject messages in the name of this sender.
Still, Eve does not learn the contents of the messages to the receiver: the
communication is thus only confidential.

3. If, on the other hand, the legitimate receiver is compromised, but not the
sender, the secure network allows Eve to read the contents of the messages
sent to this compromised user. Still, no messages can be injected into this
communication: the communication is only authentic.

4. If both, sender and receiver, are compromised, then the network does not
give any guarantee on their communication, Eve can read every message and
inject anything at will.

Our main technical result is the proof of the following theorem.

Theorem (informal). If a signcryption scheme is secure in the multi-user out-
sider security model and in the multi-user insider security model as specified
in Definitions 3, 4 and 5, then the associated protocol constructs a gracefully-
degrading secure network from an insecure network and a certificate authority
with respect to any number of compromised keys of legitimate users (and with
respect to static security).

If the signcryption scheme is secure in the multi-user outsider security model
as specified in Definition 3, then the secure network is constructed if no key of
legitimate users is compromised.

1.3 Contributions

The Preferred Insider Security Notion. Our analysis identifies the notions
that imply the above construction and thereby provides confidence that the
security games that we formally describe in Figs. 2 and 3 in Sect. 3 are an ade-
quate choice to model game-based insider security. The notions we use are in
particular implied by what is denoted in [34] as “multi-user insider confidential-
ity in the FSO/FUO-IND-CCA2 sense” and “multi-user insider unforgeable in
the FSO/FUO-sUF-CMA sense”, respectively. The presented games are, how-
ever, weaker forms of insider security, which has the advantage that it might be
possible to construct more efficient schemes for this broader class.
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Graceful Degradation Thanks to Insider Security. One crucial point of
our main theorem is that it is insider security that provably assures that the
secure network degrades gracefully as a function of compromised keys and does
not lose the security guarantees in a coarse-grained fashion (for example per pair
of parties instead of a single party). This view assigns a more crucial, practical
role to the insider security model than what is commonly assumed.

Enabling Comparisons with Other Constructions. By specifying the
assumed resources and the desired goal, we can now ask the question whether
there exist other natural schemes that achieve the same construction and to
compare them. For example, in a recent work [14], it is shown that universally
composable, non-interactive key-exchange (NIKE) protocols realize a function-
ality that provides a shared key to each pair of (honest) users. This key can
be used to protect the session between any such pair by employing a (symmet-
ric) authenticated-encryption scheme and is thus sufficient to realize a secure
network. NIKE needs as a setup a certificate authority (as specified in our real
world), and based on this setup, a shared secret key can be established with
minimal communication and interaction between any two parties. The schemes
are in addition arguably practically efficient [10]. We hence observe that this
would be a second method to achieve the same as signcryption does for the case
when we only have a network attacker (i.e., no key is compromised). This second
method based on NIKE schemes [15] and authenticated encryption [18] is likely
to outperform the signcryption schemes in terms of efficiency.

We point out that such comparisons help to identify the specific core use-
cases of a cryptographic primitive that conceptually separates it from other
primitives. In the context of signcryption, the above observation might suggest
that the real benefit of introducing signcryption as a public-key primitive is to
demand insider-security as the standard formal capability to limit the damage
against key compromises.

Modeling Partial Corruptions. Our composable security analysis considers
the so-called static corruption model which is the typical model when analyzing
communication protocols that involve standard encryption techniques. A discus-
sion of adaptive corruptions and forward secrecy is found in the full version [3].
Since in our setting the only secret information of a party is its secret key, com-
promising the key fully corrupts a party as it allows the attacker to entirely
impersonate and control the party (sending, reading, and delivering messages).

Our approach thereby introduces a conceptual contribution: we make partial
corruptions explicit in the model and we refrain from letting compromised par-
ties be formally absorbed by the adversary (i.e., partially corrupted parties are
still operational as protocol machines). Still, as explained above, our statements
contain the full corruption case. We believe that identifying reasonable partial
corruption scenarios seems to be crucial in building formal models that are able
to capture a range of real-world threats and to precisely express which security
guarantees can still be retained in the presence of such threats.



A Constructive Perspective on Signcryption Security 107

2 Preliminaries

2.1 Notation for Systems and Games

We describe our systems with pseudocode using the following conventions: We
write x ← y for assigning the value y to the variable x. For a distribution D
over some set, x � D denotes sampling x according to D. For a finite set X,
x � X denotes assigning to x a uniformly random value in X. Typically
queries to systems (for example a network) consist of a suggestive keyword and
a list of arguments (e.g., (send,m, IDr) to send a message m to a receiver with
identity IDr). We ignore keywords in writing the domains of arguments, e.g.,
(send,m, IDr) ∈ M × {0, 1}∗ indicates that m ∈ M and IDr ∈ {0, 1}∗. The
systems generate a return value upon each query which is output at an interface
of the system. We omit writing return statements in case the output is a sim-
ple constant whose only purpose is to indicate the completion of an operation.
For the sake of presentation, we assume throughout the paper that the message
space is represented by M := {0, 1}k for some fixed (and known) integer k > 0,
and we do not write the security parameter as an explicit input to functions and
algorithms.

2.2 Definition of Signcryption Schemes

We present the formal syntactic definition of Signcryption from [4]. For conve-
nience, we do not make domain parameters and their generation explicit in our
notation.

Definition 1 (Signcryption Scheme). A signcryption scheme Ψ = (GenS ,
GenR,Signcrypt,Unsigncrypt) for key space K, message space M, and signcryp-
text space S, is a collection of four (efficient) algorithms:

– A sender key generation algorithm, denoted GenS, which outputs a sender
key-pair (skS , pkS), i.e., the sender private key skS ∈ K and the sender
public key pkS ∈ K, respectively. We write (skS , pkS) ← GenS.

– A receiver key generation algorithm, denoted GenR, which outputs a receiver
key-pair (skR, pkR), i.e., the receiver private key skR ∈ K and the receiver
public key pkR ∈ K, respectively. We write (skR, pkR) ← GenR.

– A (possibly randomized) signcryption algorithm, denoted Signcrypt, which
takes as input a sender private key skS, a receiver public key pkR, and
a message m ∈ M, and outputs a signcryptext s ∈ S. We write c ←
Signcrypt(skS , pkR,m).

– A (usually deterministic) unsigncryption algorithm, denoted Unsigncrypt,
which takes as input a receiver private key skR, a sender public key pkS,
and a signcryptext (“the ciphertext”) s ∈ S, and outputs a message m ∈ M,
or a special symbol ⊥. We write m ← Unsigncrypt(skR, pkS , s).

The scheme is correct if for all sender key pairs (skS , pkS) in the support of
GenS, and for all receiver key pairs (skR, pkR) in the support of GenR, and for
all m ∈ M it holds that Unsigncrypt(skR, pkS , (Signcrypt(skS , pkR,m)) = m.
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2.3 Constructive Cryptography

Discrete Systems. The basic objects in our constructive security statements
are reactive discrete systems that can be queried by their environment: Each
interaction consists of an input from the environment and an output that is
given by the system in response. Discrete reactive systems are modeled formally
by random systems [24], and an important similarity measure on those is given
by the distinguishing advantage. More formally, the advantage of a distinguisher
D in distinguishing two discrete systems, say R and S, is defined as

ΔD(R,S) = Pr [DR = 1] − Pr [DS = 1] ,

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to
the system R. More concretely, DR is a random experiment, where the distin-
guisher repeatedly provides an input to one of the interfaces and observes the
output generated in reaction to that input before it decides on its output bit.

Resources and Converters. The central object in constructive cryptography
is that of a resource available to parties, and the resources we discuss in this
work are modeled by reactive discrete systems. As in general the same resource
may be accessible to multiple parties, such as a communication channel that
allows a sender to input a message and a receiver to read it, we assign inputs to
certain interfaces that correspond to the parties: the sender’s interface allows to
input a message to the channel, and the receiver’s interface allows to read what
is in the channel. More generally, a resource is a discrete system with a finite set
of interfaces I via which the resource interacts with its environment.

Converters model protocols used by parties and can attach to an interface of
a resource to change the inputs and outputs at that interface. This composition,
which for a converter π, interface I, and resource R is denoted by πIR, again
yields a resource. In this work, a converter π is modeled as a system with two
interfaces: the inner interface in and the outer interface out. The inner interface
can be connected to an interface I of a resource R and the outer interface
then becomes the new interface I of resource πIR. For a vector of converters
π = (πI1 , . . . , πIn) with Ii ∈ I, and a subset of interfaces P ⊆ {I1, . . . , In}, πPR
denotes the resource where πI is connected to interface I of R for every I ∈ P. We
write P := I\P. Two special converters in this work are the identity converter 1,
which does not change the behavior at an interface, and the converter 0, which
blocks all interaction at an interface (no inputs or outputs).

For I-resources R1, . . .Rm the parallel composition [R1, . . . ,Rm] is again an
I-resource that provides at each interface access to the corresponding interfaces
of all subsystems. (The composition of resources with different interface sets
arises naturally by introducing dummy interfaces.)

In this paper, we make statements about resources with interfaces from the
set I = {P1, . . . , Pn, M1, . . . , Mn, E}. Interface Pi can be thought of as being the
access point of the ith honest party to the system. Interface Mi is the access
point of an intruder (i.e., a hypothetical attacker entity like Mallory), and E is
the access point of the network attacker Eve (also a hypothetical entity).
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Formally, a protocol is a vector π = (πI1 , . . . , πI|I|) that specifies one con-
verter for each interface I ∈ I. For the honest parties, this corresponds to the
actions they are expected to execute (for example, encrypt to protect the content
of a message). For the hypothetical attacker entities, the converter specifies their
default behavior when no attack happens. Typically, for purely hypothetical enti-
ties such as a network attacker or the intruder, we assign the identity converter
since they are not expected to perform additional tasks. However, the interfaces
are possibly dishonest, which means that the default behavior is not necessarily
applied, but replaced by an arbitrary, adversarial strategy that makes use of all
potentially available capabilities (e.g., to inject messages into a network).

Filtered Resources. Typically, one would like to specify that certain capabil-
ities at an interface are only potentially available (e.g., to an attacker), but not
guaranteed to be available (i.e., not a feature of a protocol). A typical example
is that the leakage to the network attacker of a secure channel at interface E
is at most the length of the message |m| (potentially available), but of course
not guaranteed (there exist encryption schemes that hide the length of the mes-
sage). To model such situation, constructive cryptography offers the concept
called filtered resources. Let R be a resource and φ = (φI1 , . . . , φIn) be a vector
of converters. Then, the filtered resource Rφ is a I-resource, where for an honest
party at interface Ij , the interaction through the converter φIj is guaranteed to
be available, while interactions with R directly is only potentially available to
dishonest parties. The converter φIj can be thought of as filtering or shielding
certain capabilities of interface Ij of system R, we hence denote φ as the filter.
We refer the reader to [26] for more details and briefly mention that this concept
has turned out to be useful in modeling cryptographic problems [19].

The way we use filters in this work is as follows: we want to make security
statements that depend on the set of compromised keys of honest parties. We
model this in the real world with a memory functionality, where each party can
store its own key. We model that this storage is potentially unsafe, meaning that
if an intruder is present at interface Mi, he potentially gets the key. However,
the memory does not guarantee that the key is leaked (e.g., if no intruder is
present, no key is leaked at interface Mi). The same idea is used to model the
capabilities of the network attacker. This is also reflected in the ideal world,
where a dishonest intruder (and the network attacker if present) can potentially
get more power by removing the filter.1

Construction. A constructive security definition then specifies the goal of a
protocol in terms of assumed (also known as hybrid functionalities) and con-
structed resources (ideal functionality). The goal of a protocol is to construct
1 This concept can be seen as a variant of the following UC concept: in UC, a func-

tionality is informed which party is corrupted and its behavior can depend on this
corruption set (e.g., leaking inputs to parties that get corrupted to the simulator).
The same is achieved using the concept of filters in constructive cryptography, where
removing the filter uncovers potential information needed to simulate.
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the ideal functionality from the given ones. We directly state the central defini-
tion of a construction of [26] and briefly explain the relevant condition.

Definition 2. Let Rφ and Sψ be filtered resources with interface set I and let
π = (πI1 , . . . , πI|I|) be a protocol. Let further U ⊆ I be the set of interfaces with
potentially dishonest behavior and let ε be a function that maps distinguishers
to a value in [−1, 1]. The protocol π constructs Sψ from Rφ within ε and with
respect to potentially dishonest U , denoted by

Rφ

(π, ε, U)
==⇒ Sψ,

if there exist converters σ = (σU1 , . . . , σU|U|), Ui ∈ U , such that for all (dishonest)
subsets C ⊆ U we have that for any distinguisher D

ΔD(πC φCR, σC ψCS) ≤ ε(D).

The condition in Definition 2 ensures that for any combination of dishonest
interfaces, whatever they can do in the assumed resource using the unfiltered
capabilities, they could do as well with the constructed resource by applying the
simulators σUi

to the respective (unfiltered) interfaces Ui of the ideal resource.
Turned around, if the constructed resource is secure by definition (for example,
a secure channel does potentially leak at most the length of a message), there is
no successful attack on the protocol. The notion of construction is composable,
which intuitively means that the constructed resource can be replaced in any
context by the assumed resource with the protocol attached without affecting
the security. We refer to [25,26] for a proof. For readers more familiar with
Canetti’s UC Framework [9], we refer to [19] for explanations of how the above
concepts relate to similar concepts in UC. We refer to Fig. 4 (in Sect. 4.2) for
a graphical illustration of our main construction, for the case of two dishonest
interfaces.

We are interested in concrete security statements and reductions in this work
and typically ε(·) is the advantage of an adversary A := ρ(D) in a related security
game (such as the outsider security game of signcryption) where ρ(·) stands for an
efficient black-box construction of such an adversary A from a distinguisher D.

3 An Overview of Signcyrption Security

Our analysis of signcryption focuses on the multi-user model extensively studied
by Baek, Steinfield, and Zheng in [4]. We now present the relevant security
games.

3.1 Multi-user Outsider Security

The security for signcryption schemes is usually proven based on two separate
notions defined by two games, one for confidentiality and one for authentic-
ity. For multi-user outsider security, such experiments are indistinguishability
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Real Ideal

Fig. 1. The games RealMOS
Ψ and IdealMOS

Ψ .

of signcryptexts under a chosen-signcryptext attack by an outsider adversary
(MOS-Conf) and strong unforgeability of signcryptexts (also called integrity of
signcryptexts) under a chosen-message attack by an outsider adversary (MOS-
Auth). In this work we define a new and more handy all-in-one definition of
multi-user outsider security in the spirit of the all-in-one security definition for
authenticated encryption introduced by Rogaway and Shrimpton in [28]. The
all-in-one version is equivalent to the combination of the two mentioned sepa-
rate security notions which is proven in the full version [3]. In the following, we
use the standard notation AG to denote the random experiment of adversary A
interacting with (the oracles of) a game G. We succinctly write Pr

[AG = 1
]

to
denote the probability that A returns the output 1 when interacting with G.

Definition 3. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption
scheme and A a probabilistic algorithm. Consider games RealMOS

Ψ and IdealMOS
Ψ

from Fig. 1. We define the real-or-random multi-user outsider security advantage
of A as

AdvMOS
Ψ,A := Pr

[
ARealMOS

Ψ = 1
]

− Pr
[
AIdealMOS

Ψ = 1
]
.

We say that the scheme Ψ is MOS secure if AdvMOS
Ψ,A is negligible for all efficient

adversaries A.

3.2 Multi-user Insider Security

For insider security, the two basic requirements are indistinguishability of sign-
cryptexts under a chosen-signcryptext attack by an insider adversary (MIS-Conf)
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and strong unforgeability of signcryptexts (also called integrity of signcryptexts)
under a chosen-message attack by an insider adversary (MIS-Auth).

Confidentiality. The games capturing MIS-Conf (using the real-or-random
paradigm) are given in Fig. 2. We specify two variants of different strengths:
the games that include the Gen oracle and the boxed statements constitute the
weaker version which we use in this work. Intuitively, the weaker game does not
allow the adversary to choose the randomness to generate keys. However, in both
variants whenever the adversary makes an oracle call, he has to provide a valid
key-pair. As commonly known, enforcing this is actually indispensable in order
to avoid trivial attacks. For example, an attacker could specify a pair (skS , 0)
in a signcryption query, which allows him to unsigncrypt the respective result
using the actual (correct) public key pkS . We now state the formal definition:

Definition 4. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption
scheme and A a probabilistic algorithm. We define the advantage of A in distin-
guishing RealMIS-Conf

Ψ and IdealMIS-Conf
Ψ from Fig. 2 as

AdvMIS-Conf
Ψ,A := Pr

[
ARealMIS-Conf

Ψ = 1
]

− Pr
[
AIdealMIS-Conf

Ψ = 1
]
.

We say that the scheme Ψ is MIS-Conf secure if AdvMIS-Conf
Ψ,A is negligible for all

efficient adversaries A, where we consider the weaker game including the boxed
lines (and considering the version which excludes those lines, and also the Gen
oracle, would yield the definition traditionally found in the literature).

Authenticity. The forgery game AuthMIS
Ψ is given in Fig. 3. We again give two

variants as for confidentiality before. We directly state the relevant definition:

Definition 5. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption
scheme and A a probabilistic algorithm. We define the advantage of A when
interacting with AuthMIS

Ψ from Fig. 3 as

AdvMIS-Auth
Ψ,A := Pr

[
AAuthMIS

Ψ sets win
]
.

We say that the scheme Ψ is MIS-Auth secure if AdvMIS-Auth
Ψ,A is negligible for all

efficient adversaries A, where we consider the weaker game including the boxed
lines (and considering the version which excludes those lines, and also the Gen
oracle, would yield the definition traditionally found in the literature).

4 Constructive Analysis

4.1 Real World: Assumed Resources and Converters

We now describe the assumed resources and the converters. The formal specifi-
cations as pseudo-code are given in the full version [3].
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Fig. 2. The games RealMIS-Conf
Ψ and IdealMIS-Conf

Ψ . The games that additionally includes
the boxed statements (and the oracle Gen) constitute the weaker versions.

Insecure Network. We assume a network resource Netn that accepts, at each
interface Pi, i ∈ [n], a registration query that assigns an identifier to that inter-
face. Any bitstring ID ∈ {0, 1}∗ is valid, and uniqueness is enforced (reflecting
IP-addresses). Subsequently, messages can be sent at this interface in the name of
that identifier, by indicating the message content m and a destination identifier.
Any request is leaked at interface E of the network (to the network attacker).
Eve can further inject any message it wants to each destination address and
indicate any source address as sender. At interface E, these capabilities are only
potentially available and thus not guaranteed. We thus specify a filter converter
for this interface, denoted dlv, which, upon any (·, IDs, IDr) from interface E of
Netn, it immediately outputs (inject, ·, IDs, IDr) at interface E of Netn to reli-
ably deliver the message and does not give any output at its outer interface and
it does not react on any other input. If no attacker is present, i.e., if the filter
is not removed, then the network is trivially “secure”. However, if an attacker is
there, it can access all the potentially available capabilities. Formally, the filter
for the network is defined as φnet := (1, . . . ,1, dlv) for interfaces P1, . . . , Pn, E,
where 1 is the identity converter (no changes at a party’s interface).
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Fig. 3. The forgery game AuthMIS
Ψ . The game that includes the boxed statements (and

the oracle Gen) constitutes the weaker version.

Memory. We model the local memory of each honest party by a memory
resource Memn. The memory can be thought of as being composed of n local
memory modules. For the ease of exposition, we summarize these modules in
one memory functionality that mimics this behavior (each party can read and
write to its (and only this) memory location). The memory allows each party
to store a value. In the construction, this will be the key storage. We make the
storage explicit to model key compromises. To this end, we associate an intruder
interface Mi to each party interface Pi. At interface Mi, the key is only poten-
tially available to an intruder Mallory and thus not guaranteed. This means
that we consider a filtered memory as an assumed resource where the filter is
φmem := (1, . . . ,1,0, . . . ,0) for interfaces P1, . . . , Pn, M1, . . . , Mn, where 1 is again
the identity converter, and 0 is the converter that blocks all interaction (at an
intruder’s interface). Therefore, key-compromise attacks (or key leakage) is cap-
tured with this filtered resource. To see this recall the construction notion of
Definition 2: for every potentially dishonest interface, we consider the case when
no attacker is there—in which case no key is leaked because the filter is there—
and the case when the attacker is present—in which case the filter is removed
and the key readable by the attacker. This allows to model each key compromise
as a separate event.

Certificate Authority. The resource CAn models a key registration function-
ality, and we denote it by certificate authority to stick to the common term in
public-key infrastructures. The resource allows to register at an interface with
an identity-value pair. The resource stores this assignment and does not accept
any further registration with the same identity. The certificate authority is weak
in the sense that it does not perform any further test and corresponds to typ-
ical formalizations of key registration functionalities. Any party can query to
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Fig. 4. Illustration of the construction notion. Left (real world): Three parties running
the protocol and where the second party’s key got compromised. Right (ideal world):
The secure network resource (with simulators) that guarantees secure communication
between P1 and P3, but for example only confidential communication from party P2 to
party P1, and only authentic communication from party P3 to party P2.

(fetch, ID) to retrieve the value registered for identity ID. Eve can register any
value with any identity, under the constraint that the identity is not already
registered. The capabilities at interface E are again not guaranteed and will be
filtered as in the case of the network.

Signcryption Converter. The signcryption converter scrΨ is defined for any
given signcryption scheme Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt). The con-
verter specifies the actions that each party takes to secure the communication
over the insecure network at interface Pi. Upon a registration query, a party
generates the two key-pairs required by the signcryption scheme, i.e., a sender
key pair and a receiver key pair that it uses to send and receive message, respec-
tively. It then tries to register its identity at the insecure network and tries to
register the identity and the two public keys with the certificate authority. If
everything succeeded, the converter stores the keys to its local memory. Oth-
erwise, the initialization is not complete and the party remains un-initialized.
Upon sending a message, an initialized party retrieves the receiver public key
of its intended communication partner, and signcrypts the message according
to the signcryption scheme (and retrieves the secret key from the memory) and
sends the signcryptext over the network (indicating the destination address).
Upon receiving a pair (s, ID) consisting of a signcryptext and a candidate source
address from the insecure network, it tries to unsigncrypt the given value and
outputs the resulting message.

The Default Behavior for Possibly Dishonest Interfaces. The converters
for the potentially dishonest interfaces are quite simple: the intruder is assumed
to perform no additional operation (the filter is not removed and exports no
capability) and this converter is therefore simply the identity converter 1. The
same holds for the network attacker where no additional operation needs to be
specified. Recall that attackers are hypothetical entities as discussed in Sect. 2.3.
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4.2 Ideal World: A Secure Network with Graceful Degradation

The ideal system we want to achieve is a secure network that gracefully degrades
and is specified in Fig. 5. This ideal network is basically a secure network. To
see this, imagine there was no interface Mi: then parties register to the resource
like to the normal network and can send and receive messages. In addition, the
adversary learns the length of the message (and sender and receiver identities),
and cannot inject messages. The reason for this behavior is that in the case of an
honest registration query, if party Pi registers its identity successfully, then its
associated identity is only added to the special set S if there was no input reveal
at interface Mi. Now observe that the condition under which the network attacker
can inject a message for some party identity ID includes that ID �∈ S. In addition,
the network attacker learns only the length of the messages whenever a message
is sent to an identity ID ∈ S. Thus, since all registered identities of honest
parties are in S, communication between any two of them is secure. Now, the
input reveal is potentially available at interface Mi (this models the fact that the
party is compromised). Whenever this input happens, then the corresponding
party identity is not included in S. This means that the network attacker at
interface E can inject messages on behalf of the identity registered at interface Pi

and obtains the content of any message sent to Pi. We see that only the security
of Pi is affected. To complete this description, note that the secure network
outputs shared randomness between the intruder of party Pi and the network
attacker. This models that in the ideal world, shared randomness is potentially
available to the parties. This is indeed the case, since the network attacker learns
signcryptexts that are created with the secret key leaked at interface Mi. On a
technical level, shared randomness is needed to achieve a consistent simulation.

At interface Mi, the capability to reveal is only potentially available to an
intruder Mallory and thus not guaranteed. This means that we actually consider
the filtered resource SecNTn φideal with the filter φideal := (1, . . . ,1,0, . . . ,0, dlv)
for interfaces P1, . . . , Pn, M1, . . . , Mn, E, where converters 1, 0, and dlv are as above.
Looking ahead, the potentially available capability to compromise a party cor-
responds to the potentially available input reveal in the ideal world. Figure 4
illustrates an example instantiation of the real and ideal worlds which should
help clarifying the above descriptions.

4.3 Formal Statement

We are now ready to formally state the main theorem of this work. Recall
that we assign to every honest (party) interface the signcryption converter
scrΨ, whereas to the possibly dishonest network attacker interface E and to
the potentially dishonest intruder interfaces Mi, we assign the identity con-
verter (they model hypothetical entities). This can be summarized by the vector
πΨ = (scrΨ, . . . , scrΨ,1, . . . ,1,1). The real system is the parallel composition
of the assumed resources [Netn,CAn,Memn]φreal , where φreal is the filter that
shields the memory (interfaces Mi), the network, and the certificate authority
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Resource

Fig. 5. The (unfiltered) behavior of the constructed resource.

(interface E), as described above and thus is equal to the filter φideal. The follow-
ing theorem says that if the signcryption scheme is secure in the respective multi-
user, outsider-security and insider-security model, then we achieve the desired
construction. The proof is found in the full version [3].

Theorem 1. Let Ψ be a signcryption scheme, let n > 0 be an integer, and
let κ be an upper bound on the randomness used in one invocation of the key-
generation algorithm. The associated protocol πΨ := (scrΨ, . . . , scrΨ,1, . . . ,1,1)
constructs the gracefully-degrading secure network from an insecure network, a
certificate authority, and a memory resource within ε(·) and with respect to poten-
tially dishonest U := {M1, . . . , Mn, E}, i.e.,

[Netn,CAn,Memn]φreal

(πΨ, ε, U)
==⇒ SecNTn φideal ,

for ε(D) := n2 · AdvMOS
Ψ,ρ1(D) + n · AdvMIS-Auth

Ψ,ρ2(D) + n · AdvMIS-Conf
Ψ,ρ3(D) , and (efficient)

black-box reductions ρ1, ρ2, and ρ3.
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An interesting corollary for the special case when the set of interfaces with
potential dishonest behavior is just {E} is the following statement: The outsider
security model implies the construction of a secure network if no honest parties’
keys are compromised. The formal statement and proof are given in [3].
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Abstract. We present a new public key broadcast encryption scheme
where both the ciphertext and secret keys consist of a constant number
of group elements. Our result improves upon the work of Boneh, Gentry
and Waters (Crypto ’05) as well as several recent follow-ups (TCC ’16-
A, Asiacrypt ’16) in two ways: (i) we achieve adaptive security instead
of selective security, and (ii) our construction relies on the decisional k-
Linear Assumption in prime-order groups (as opposed to q-type assump-
tions or subgroup decisional assumptions in composite-order groups); our
improvements come at the cost of a larger public key. Finally, we show
that our scheme achieves adaptive security in the multi-ciphertext set-
ting with a security loss that is independent of the number of challenge
ciphertexts.

1 Introduction

Broadcast encryption schemes [FN94] allow a sender to encrypt messages to a
set Γ ⊂ [n] of authorized users such that any user in the set Γ can decrypt, and
no (possibly colluding) set of unauthorized users can learn anything about the
plaintext. Two key measures of efficiency for broadcast encryption are the size of
the secret keys and the ciphertext overhead (beyond description of the recipient
set and the symmetric encryption of the message). The early contructions of
broadcast encryption schemes achieve ciphertext overhead that grows with the
number of either authorized or excluded users [NNL01,HS02,DF02,GST04].

The BGW Cryptosystem. Ideally, we would like a broadcast encryption scheme
where the size of secret keys and ciphertext overhead is independent of the
number of users. This was first achieved in the break-through work of Boneh,
Gentry and Waters [BGW05], which presented a broadcast encryption scheme
in bilinear groups where both the secret keys and ciphertext overhead consist of
a constant number of group elements. In their scheme, the decryption algorithm
needs to know the public key, which is linear in the number of users.
c© Springer Nature Switzerland AG 2018
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The BGW cryptosystem has two main limitations, which is the focus of
several follow-up works as well as our current one:

– First, the BGW scheme achieves selective security, where an adversary must
declare a target set of unauthorized users with which it will attack the scheme
before even seeing the system parameters. This restriction does not capture
the power of many kinds of attackers (for instance: an attacker might choose
to corrupt a user after seeing the public parameters, or in response to seeing
secret keys for already corrupted parties), so in practice, we would prefer to
have schemes that satisfy the more general and stronger notion of adaptive
security, which does not place such restrictions on the adversary.

– Next, the BGW scheme relies on parameterized assumptions. Parameter-
ized assumptions (a.k.a q-type assumptions), while in some cases allowing
for improvements over the state-of-the-art, are not particularly well under-
stood. The assumptions are often closely related to the schemes which use
them. For example, the size of the assumption often scales with the number of
oracle queries that can be made in the security reduction. Furthermore, q-type
assumptions become stronger as q grows, with the time needed to recover the
discrete logarithm and break the assumption scaling inversely with q [Che06].
As a result, it is desirable to design systems that can be proven secure under
static assumptions, like the decisional k-Linear Assumption in prime-order
bilinear groups (k-Lin).

These limitations were fixed individually by the works of [GW09,Wee16,
CMM16a] respectively (the latter in composite-order groups), but improving
[BGW05] to achieve security that is both adaptive and based on a static assump-
tion has remained out of reach.

1.1 Our Results

In this paper we present the first broadcast encryption scheme with constant
key and ciphertext overhead size that simultaneously overcomes both of the lim-
itations above. Namely, we achieve adaptive security under a static assumption
(k-Lin) in prime-order bilinear groups. Our improvements come at the cost of a
larger public key that is quadratic instead of linear in the total number of users.
We stress that prior to this work, it was not known how to achieve broadcast
encryption with any size public parameters, constant-sized keys and ciphertext
overhead, and even just selective security under a static assumption in prime-
order groups.

As with the BGW cryptosystem and the follow-up works in [Wee16,
CMM16a], the decryption algorithm in our scheme needs to know the public
key in addition to the secret key. Considering the complications that come with
managing user secret keys, which have to be distributed individually and stored
securely, we achieve a desirable public/private key size tradeoff that makes sense
particularly in applications where decryptors have access to large shared public
storage.
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We give an additional broadcast encryption scheme with constant key and
ciphertext overhead size which is adaptively-secure in the multi-challenge setting
under static assumptions with a tight security reduction (where the security loss
is independent of the number of challenge ciphertexts). Tight security reductions,
which have been studied previously in the context of encryption [BBM00,HJ12]
and signatures [Cor00], are desirable when fixing concrete security parameters,
since the security loss directly impacts the size of scheme elements. In the con-
text of advanced encryption schemes, tight constructions were only known for
identity-based encryption [CW13]. In this work, we give the first tightly secure
broadcast encryption scheme. Note that while our security loss is independent
of the number of challenge ciphertexts, it remains proportional to n: the number
of users in the system. In this work, we view n as being not too large since our
public key contains O(n2) group elements, which would be impractical for very
large n anyway. Thus, a security loss of a small constant times n is much more
desirable than one that is proportional to the number of challenge ciphertexts,
which could be much larger for largely deployed systems.

1.2 Related Work

Previous broadcast encryption schemes for n users that are secure in the standard
model either carry the baggage of a (n/t, t)-tradeoff in key/ciphertext size, use a
non-static assumption (i.e., q-type assumption), or are only secure in the weaker,
selective security setting (see Fig. 1). In fact, all known broadcast encryption
schemes that are adaptively secure under a static assumption and that use the
Dual System Encryption methodology [Att14,Wee14,CGW15,AC16,LL15] fall
in the scope of the lower bound of (n/t, t) for the (ciphertext overhead, secret
key) size proved in [GKW15]. We note that we are able to bypass this lower
bound by using the modified definition of broadcast encryption proposed by
[BGW05], where decryption is allowed to take public parameters as input in
addition to the secret key, as explained above.

Reference |ct| |sk| |pk| assumption security Dec

BGW05 [BGW05] O(1) O(1) O(n) q-type selective pk
GW09 [GW09] O(1) O(1) O(n) q-type adaptive pk

Wee16[Wee16], CMM16[CMM16b] O(1) O(1) O(n) composite selective pk
BW06 [BW06] O(

√
n) O(

√
n) O(

√
n) composite adaptive −

GKSW10 [GKSW10] O(
√

n) O(
√

n) O(n) 2-Lin adaptive −
Waters09 [Wat09] O(1) O(n) O(n) 2-Lin adaptive −
GKW15 [GKW15] O(n/t) O(t) O(n) k-Lin adaptive −
this work O(1) O(1) O(n2) composite adaptive pk
this work O(1) O(1) O(n2) k-Lin adaptive pk

Fig. 1. Comparison amongst broadcast encryption schemes in the standard model,
where n denotes the number of users, |ct|, |sk| and |pk| respectively denote the cipher-
text, secret key and public key size (i.e., the number of group elements or exponents
of group elements). The last column refers to whether or not the decryption algorithm
Dec requires the public key pk as input.
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Short keys and ciphertext overhead have been accomplished in other schemes
by moving outside the standard model: [GW09] gives a construction (different
from the one depicted in Fig. 1 which uses q-type assumptions) with adaptive
security and constant key and ciphertext overhead size, but in the random oracle
model; [BWZ14] achieves adaptive security with polylogarithmic (in the num-
ber of users) size public parameters, keys, and ciphertext overhead, but is only
proven secure in the multilinear generic group model; and [BZ14] achieves adap-
tive security with linear size public parameters, constant size keys and cipher-
text overhead, but relies on strong assumptions, namely, indistinguishability
obfuscation [BGI+01]. Lastly, we note that while our constructions harness the
power of computational assumptions to achieve their efficiency, the problem of
broadcast encryption has been studied in the information-theoretic realm as well
[Sv98,SSW00,GSW00,GSY99].

1.3 Our Techniques

We give a construction in the composite-order setting which is secure under
standard static decision assumptions to illustrate the main techniques, as well
as a construction using prime-order bilinear groups which is secure under k-Lin.

Dual System Proof Methodology. We employ the dual system proof method-
ology [Wat09] to achieve the adaptive security of our schemes. A dual system
encryption scheme is constructed so that an adversary cannot distinguish the
distribution of normal keys (or ciphertexts) from special “semi-functional” keys
(or ciphertexts). Semi-functional keys are capable of decrypting normal cipher-
texts, but semi-functional keys cannot decrypt a semi-functional ciphertext. A
typical dual system proof consists of a hybrid where the first step is construct-
ing the challenge ciphertext as a semi-functional ciphertext. The hybrid then
runs over each key requested by the adversary, replacing each requested key
with a semi-functional key. At the end, only semi-functional keys are given to
an adversary whose job is to break the security of a semi-functional ciphertext.
Due to the way semi-functional ciphertexts and secret keys are constructed, it is
typically easy to argue the game’s security at this point (semi-functional secret
keys cannot be used to decrypt any semi-functional ciphertexts, including the
semi-functional challenge ciphertext).

Overview of the Construction. Our constructions can be understood by starting
with the Boneh-Gentry-Waters construction for broadcast encryption [BGW05],
which is selectively-secure under a (non-static) q-type assumption. BGW’s public
parameters look like:

pk := (gγ , gα, gα2
, . . . , gαn

, hα, hα2
, . . . , hαn

, hαn+2
, . . . , hα2n

, e(g, h)αn+1
)

where γ, α are random exponents in Zp, and g, h respectively generate prime
order groups G,H, where |G| = |H| = p, and e : G × H → GT .
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The ciphertext for a subset Γ ⊆ [n] and the key for a user i ∈ [n] are given by:

ctΓ := (gs, g(γ+
∑

j∈Γ αj)s, e(g, h)sαn+1 · M), ski := hαn−i+1γ

Decryption works as follows. Note that a message M in a ciphertext is hidden
by an encapsulation key e(g, h)sαn+1

. First, an authorized user of index i pairs
hαn−i+1

from the public parameters with g(γ+
∑

j∈Γ αj)s from the ciphertext to
get the encapsulation key hidden by a product of e(g, h)s(n+1−i+j) for j �= i ∈ Γ

and e(g, h)sαn−i+1γ . The former can be removed by performing judicious pairings
with elements from pk and gs from the ciphertext, and the latter can only by
removed by computing the pairing of gs with the (authorized) user’s secret key
ski. The encapsulation key can therefore be computed and used to obtain the
message M .

The q-type assumption underlying BGW’s security is enabled by the pow-
ers of α. These powers prevent a straightforward dual-system proof of adap-
tive security from static assumptions. To obtain a construction based on static
assumptions, we need to remove the powers of α in the scheme. Towards this
goal, consider the substitutions:

gαj �→ gwj , hαn−j+1 �→ hrj , j ∈ [n]

where w1, . . . , wn, r1, . . . , rn are chosen uniformly at random. Correctness of
BGW scheme relies on the fact that

{e(gαjs, hαn−i+1
)}i,j∈[n],j �=i

lies in a set of linear size, namely

{e(gs, hα), . . . , e(gs, hαn

), e(gs, hαn+2
), . . . , e(gs, hα2n

)}.

With our substitutions, the corresponding collection lies in a set

{e(gs, hwjri)}i,j∈[n],j �=i

of size O(n2), and hence the corresponding blow-up in the size of the public key,
which needs to additionally contain {hwjri}i,j∈[n],i �=j .

Finally, replacing the prime-order pairing group by an composite-order asym-
metric bilinear group (G,H,GT ) where |G| = |H| = N = pq, so as to use a
subgroup membership assumption instead of the q-DBDH assumption used in
BGW, and replacing g �→ gp, h �→ hp, where gp, hp respectively generate Gp,Hp:
prime order subgroups of groups G,H, we obtain our composite-order scheme.

Alternative Viewpoint. As seen above, we can view our construction as a modifi-
cation of the broadcast encryption scheme from [BGW05] where we improve the
secret key/public key size trade-off. An alternative way to view our construc-
tion is to start from the broadcast encryption scheme of Waters [Wat09], which
can be proven adaptively secure from static assumptions (using the dual system
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proof methodology) and features constant size ciphertext overhead, but linear
size secret keys. We describe the construction using composite-order asymmetric
bilinear groups for simplicity:

pk :=
({gwj

p }j∈[n], e(gp, hp)α
)

ctΓ :=
(
gs

p, g
s(u+

∑
j /∈Γ wj)

p , e(gp, hp)sα · M
)

ski :=
(
hri

p , {hwjri
p } j∈[n],

j �=i
, hα+uri

p

)

where s, u, α,wj , ri for i, j ∈ [n] are random exponents in ZN , and gp, hp

respectively generate Gp,Hp: prime order subgroups of groups G,H, where
|G| = |H| = N = pq, and e : G × H → GT .

Decryption works as follows. Note that a message M in a ciphertext is
again hidden by an encapsulation key e(gp, hp)sα. To get the encapsulation
key e(gp, hp)sα, decryption pairs gs

p with hα+uri
p . To get rid of the extra term

e(gp, hp)suri , it pairs g
s(u+

∑
j /∈Γ wj)

p from the ciphertext together with hri
p . Doing

so, decryption also gets many cross terms of the form e(gp, hp)s
∑

j /∈Γ wjri which
can be stripped away, pairing gs

p with the appropriate h
wjri
p from the secret key.

Note that these secret key elements are all available only when i ∈ Γ and the
key is therefore authorized.

To improve this construction’s linear-sized secret keys to constant-size, we
pre-compute the values {hri

p , h
wjri
p }j∈[n],j �=i and include them in the public

parameters instead of the secret key. Therefore, the secret key is reduced to
the part that contains the encapsulation key α. Note that this crucially takes
advantage of our modified model of broadcast encryption where decryption is
allowed to use elements from the public key as well as the secret key.

Indeed, the main technical challenge in proving our schemes secure is to
carry on the dual-system proof when the values {hri

p , h
wjri
p }j∈[n],j �=i are public

for every i ∈ [n], and only a single group element remains private. This is in
contrast to the security proof of previous dual system schemes, such as [Wat09],
where the values hri

p , {h
wjri
p }j∈[n],j �=i are known to the adversary only for queried

keys ski. We solve it by carefully switching the hri
p , {h

wjri
p }j∈[n],j �=i for each

i ∈ [n] one by one to semi-functional, thereby changing the distribution of the
public parameters over the hybrid through the keys. Similar techniques are also
found in the selectively secure broadcast encryption of [Wee16,CMM16a], which
removed the use of q-type assumptions in [BGW05], using the Déjà Q paradigm
introduced by [CM14].

Prime-Order Groups. The scheme we just described in two ways is based on
composite-order asymmetric bilinear groups. We give the scheme in detail in
Sect. 3 and its proof in [GKW18, Sect. 3]. For efficiency reasons [Gui13], schemes
based on prime-order groups are preferable in practice. As such, we additionally
provide a translation of our composite-order scheme to the prime-order setting
in Sect. 4.

Our construction uses a proof paradigm that can be seen as an optimization
of known composite to prime-order translation frameworks, such as [Fre10,OT08,
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OT09,Lew12,CGW15,Att15,AC16]. Roughly speaking, in these frameworks, a
random group element gs

p of a composite order bilinear group G is emulated

by a vector of group elements [As]1, where s ∈ Z
k
p, A ∈ Z

(k+1)×k
p is a k-Lin

matrix, and we use the bracket notation [a]i to denote the element ga
i for i ∈

{1, 2, T} (for a prime order bilinear group G1 × G2 → GT ). Here, k depends on
the k-Lin assumption used, i.e.: k = 1 corresponds to the Symmetric External
Diffie-Hellman Assumption, or SXDH. The decision assumption used to argue
that gs

p ≈ gs
pg

s
q in composite order groups is replaced by the k-Lin assumption:

[As]1 ≈ [u]1, where A ∈ Z
(k+1)×k
p is a k-Lin matrix, s ←R Z

k
p, and u ←R Z

k+1
p

is a uniformly random vector over Z
k+1
p . Finally, each group element gwi of the

public parameters is mapped to a (k + 1) × (k + 1) matrix of group elements.
Our constructions employ an optimization that uses public parameter matri-

ces of size only (k + 1) × k, thereby reducing the public parameters and the
ciphertext size by a factor of k+1 (see Fig. 2). This is done by replacing the infor-
mation theoretic argument at the heart of the dual system encryption method-
ology (used to switch secret keys to semi-functional secret keys) with a compu-
tational argument. Similar techniques are used in [CW14,BKP14,AC16].

In [CGW15]:
wj → Wj ∈ Z

(k+1)×(k+1)
p

s → s ∈ Z
k
p, ri → ri ∈ Z

k
p

gs
p → [s�A�]1, hri

p → [Bri]2
g

wjs
p → [s�A�Wj ]1, h

wjri
p → [WjBri]2

In our work:
wj → Wj ∈ Z

(k+1)×k
p

s → s ∈ Z
k
p, ri → ri ∈ Z

k
p

gs
p → [s�A�]1, hri

p → [Bri]2
g

wjs
p → [s�A�Wj ]1, h

wjri
p → [WjBri]2

Fig. 2. A,B ∈ Z
(k+1)×k
p are k-Lin matrices, B ∈ Z

k×k
p denotes the k upper rows of B.

Tight Security Proof in the Multi-challenge Setting. The security definition of
public key encryption schemes typically involves a game where there is only
one challenge ciphertext, since this implies security of the scheme when mul-
tiple challenge ciphertexts are allowed to be requested via a standard hybrid
argument. However, using such an argument incurs a security loss that is pro-
portional to the number of challenge ciphertexts. This can be problematic since
real-life attacks might be performed on many challenge ciphertexts. In particu-
lar, for widely deployed schemes, the number of challenge ciphertexts can be as
large as 220, or even 230. A standard hybrid over the ciphertexts in the latter case
results in an increase in the size of the security parameter by 30 compared to the
setting where the adversary receives only one challenge ciphertext. For elliptic
curve groups eligible to instantiate our scheme in which the SXDH assumption
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is believed to hold, such an increase would translate to a 2 · 30 = 60 bit increase
in the size of each group element description. Thus, a tight security reduction
allows for shorter group element descriptions and increased efficiency. Finally,
note that the number of challenge ciphertexts can be unknown during the setup
phase, which means that a conservative estimate could assume it to be high dur-
ing security parameter calculation, thereby resulting in needlessly large group
elements used in the scheme. Tight security reductions avoid this problem by
allowing the security parameter to be set in a way that is independent of the
number of challenge ciphertexts.

To obtain a tightly secure construction, we slightly modify the prime-order
scheme mentioned above, so as to allow a different proof strategy. The modifi-
cation does not incur any increase in the ciphertext size for the most efficient
version of the scheme: when k = 1 and security holds under 1-Lin a.k.a. the SXDH
assumption. In general, the ciphertext size in the tightly secure scheme increases
by k − 1 group elements when security is based on k-Lin. In the tight-security
proof, we simultaneously switch all of the challenge ciphertexts to semi-functional
mode using the random self reducibility of the k-Lin assumption. Then, the high-
level proof structure is similar to that of previous scheme: we perform a hybrid
argument that switches each secret key one by one to a semi-functional version
(note that the number of secret keys is upper bounded by n, so this hybrid argu-
ment only incurs a security loss that is proportional to n, the number of users).
To switch the key sk� to semi-functional mode, we use entropy from the compo-
nent [W0r�]2 in the key sk� to obtain a new random semi-functional component
(the component γ�a⊥). Doing so requires analysis of the entropy of W0 leaked by
the public key and the challenge ciphertext(s). When there is only one challenge
ciphertext for some set of users Γ , the (non-tight) proof crucially relies on the
fact that � /∈ Γ for the challenge Γ , as required by the security game definition
and the fact that the adversary queried sk�. For the tight reduction, we have
many challenges Γi, so we must deal with potentially more information about
W0 leaked. In fact, this is not the case: the challenge ciphertexts for all sets Γi

queried to EncO do not leak more information about W0 than a single ciphertext
for the set

⋃
i Γi, which would be an allowed challenge query given the same set

of user keys. This allows us to reduce to the argument for the single-ciphertext
case.

1.4 Discussion

Prior to this work, it wasn’t clear what the bottleneck was in improving a broad-
cast encryption scheme with constant size secret keys and ciphertext overhead
based on q-type assumptions to being based only on static assumptions. More
specifically, one might ask: “What exactly is the use of q-type assumptions in
[BGW05] buying us?” Our work clarifies that the main bottleneck is to get to
linear-size public keys (and not constant-size secret keys or ciphertext overhead).
Indeed, as noted earlier, if we replace the ri, wi in the composite-order scheme
of Sect. 3 with powers of α (ri = αi, wi = αn−i+1), we can compress the public
parameters to linear size, and essentially recover the construction of [BGW05].
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That is, the role of the q-type assumption is to compress a quadratic number of
terms to linear. This is very different from the use of q-type assumptions in the
HIBE of [BBG05], for example, which were replaced with static assumptions by
[LW10] without a loss in asymptotic parameters.

2 Preliminaries

2.1 Notation

We denote by x ←R X the fact that x is picked uniformly at random from a
finite set X. By “PPT”, we denote a probabilistic polynomial-time algorithm.

2.2 Bilinear Groups

We instantiate both broadcast encryption schemes using asymmetric bilinear
groups. Let G be a probabilistic polynomial time (PPT) algorithm that on input
a security parameter 1λ returns an asymmetric bilinear group description G :=
(N,G1, G2, GT , e), where G1, G2 and GT are cyclic groups of order N , and
e : G1 × G2 → GT is a non-degenerate bilinear map. We require that the group
operations in G1, G2 and GT as well as the bilinear map e are computable in
deterministic polynomial time.

Composite-Order Groups. For the composite-order construction in Sect. 3, we
consider groups of order N = pq, where p, q are distinct primes of Θ(λ) bits, and
G1 = G,G2 = H are asymmetric groups. In this setting, we can write G = GpGq

and H = HpHq, where Gp, Gq,Hp,Hq are subgroups of the subscripted order.
In addition, we use G∗

s,H
∗
s to denote Gs \ {1},Hs \ {1}, where s ∈ {p, q}. We

will often use write gp, gq, hp, hq to denote random generators for the subgroup
Gp, Gq,Hp,Hq.

Prime-Order Groups. For the prime-order construction in Sect. 4, we consider
groups of order N = p for some prime p of Θ(λ) bits, where G1 and G2 are
possibly different groups (type 1, 2 or 3 pairing). We write g1, g2 to denote
random generators of G1 and G2 respectively, and gT := e(g1, g2), which is a
generator of GT . We use implicit representation of group elements: for a ∈ Zp,
define [a]s = ags ∈ Gs as the implicit representation of a in Gs, for s ∈ {1, 2, T}.
Given [a]1 and [b]2, one can efficiently compute [ab]T using the pairing e. For
two matrices A ∈ Z

�×m
p , B ∈ Z

m×n
p , define e([A]1, [B]2) := [AB]T ∈ G�×m

T .

2.3 Static Composite-Order Assumptions

The security of the composite-order scheme in Sect. 3 is proven under three
static assumptions in composite-order asymmetric bilinear groups. We define
the advantage functions referred to in the assumptions in Fig. 3.

Definition 1 (Composite-Order Static Decision Assumptions). We say
that the Static Decision Assumptions hold relative to G if for all PPT adversaries
A, the advantages AdvSD1

G,A (λ), AdvSD2
G,A (λ), and AdvSD3

G,A (λ) are negligible func-
tions in λ.
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AdvSD1
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp), gp ←R G∗
p, hp ←R H∗

p

and T0 := gs
p ←R Gp, T1 = gs

pgs′
q ←R GpGq

AdvSD2
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp, gs
pgs′

q , hα′
q ),

gp ←R G∗
p, hp ←R H∗

p , gs
pgs′

q ←R GpGq, hα′
q ←R Hq

and T0 := hz
p ←R Hp, T1 = hz

phz′
q ←R HpHq

AdvSD3
G,A (λ) := |Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]|

where G ← G(λ), D := (gp, hp, gs
pgs′

q , hα
p hα′

q ),
gp ←R G∗

p, hp ←R H∗
p , gs

pgs′
q ←R GpGq, hα

p hα′
q ←R HpHq

and T0 := e(gp, hp)sα, T1 = X ←R GT

Fig. 3. Advantage functions

2.4 Matrix Diffie-Hellman Assumptions

The security of the prime-order scheme in Sect. 4 is proven under the Matrix
Decision Diffie-Hellman (MDDH) Assumption [EHK+13], whose definition we
recall here.

Definition 2 (Matrix Distribution). Let k, � ∈ N, with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem in Gs for s ∈ {1, 2, T}
is to distinguish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s) where A ←R

D�,k, w ←R Z
k
p and u ←R Z

�
p.

Definition 3 (D�,k-Matrix Diffie-Hellman Assumption D�,k-MDDH). Let
D�,k be a matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-
MDDH) Assumption holds relative to G in Gs for s ∈ {1, 2, T} if for all PPT
adversaries A,

AdvMDDH
G,D�,k,A(λ) := |Pr[A(, [A]s, [Aw]s) = 1] − Pr[A(, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over ←R G(1λ), A ←R Dk,w ←R Z
k
p,u ←R Z

�
p.

For each k ≥ 1, [EHK+13] specifies distributions Lk, SCk, Ck (and others)
over Z

(k+1)×k
p such that the corresponding Dk-MDDH assumptions are gener-

ically secure in bilinear groups and form a hierarchy of increasingly weaker
assumptions. Lk-MDDH is the well known k-Linear Assumption k-Lin with 1-Lin
= DDH.
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Definition 4 (Uniform distribution). Let �, k ∈ N, with � > k. We denote
by U�,k the uniform distribution over all full-rank � × k matrices over Zp. Let
Uk := Uk+1,k.

Among all possible matrix distributions D�,k, the uniform matrix distribution
Uk is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH.
Lemma 1 (D�,k-MDDH ⇒ Uk-MDDH, [EHK+13]). Let D�,k be a matrix dis-
tribution. For any PPT adversary A, there exists an adversary B such that
T(B) ≈ T(A) and AdvMDDH

G,D�,k,A(λ) = AdvMDDH
G,Uk,B(λ).

Let Q ≥ 1. For W ←R Z
k×Q
p ,U ←R Z

�×Q
p , we consider the Q-fold D�,k-

MDDH Assumption in Gs for s ∈ {1, 2, T} which consists in distinguishing the
distributions ([A]s, [AW]s) from ([A]s, [U]s). That is, a challenge for the Q-fold
D�,k-MDDH Assumption consists of Q independent challenges of the D�,k-MDDH
Assumption (with the same A but different randomness w). In [EHK+13] it is
shown that the two problems are equivalent, where (for Q ≥ �−k) the reduction
loses a factor � − k.
Lemma 2 (Random self-reducibility of D�,k-MDDH, [EHK+13]). Let �, k,
Q ∈ N with � > k. For any PPT adversary A, there exists an adversary B such
that T(B) ≈ T(A) + Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-MDDH
G,D�,k,A(λ) ≤ (� − k) · AdvMDDH

G,D�,k,B(λ) +
1

p − 1

where AdvQ-MDDH
G,D�,k,A(λ) := |Pr[A(G, [A]s, [AW]s) = 1] − Pr[B(G, [A]s, [U]s) = 1]|

and the probability is over G ←R G(1λ), A ←R D�,k,W ←R Z
k×Q
p ,U ←R Z

�×Q
p .

2.5 Broadcast Encryption

A broadcast encryption scheme consists of three randomized algorithms
(Setup,Enc,Dec), along with a fourth deterministic procedure: KeyGen.
– Setup(1λ, 1n) → (pk,msk). The setup algorithm gets as input the security

parameter 1λ and the number of users 1n. It outputs the public parameters
pk and master secret key msk.

– KeyGen(msk, i) → ski. The key generation algorithm gets as input the master
secret key msk and an index i ∈ [n]. It (deterministically) outputs the secret
key for user i: ski.

– Enc(pk, Γ,M) → ctΓ . The encryption algorithm gets as input pk and a subset
Γ ⊆ [n]. It outputs a ciphertext ctΓ . Here, Γ is public given ctΓ .

– Dec(pk, ski, ctΓ ) → M . The decryption algorithm gets as input pk, ski, and
ctΓ . It outputs a message M .

Correctness. We require that for all Γ ⊆ [n], messages M , and i ∈ [n] for
which i ∈ Γ ,

Pr[ctΓ ← Enc(pk, Γ,M), ski ← KeyGen(msk, i);Dec(pk, ski, ctΓ ) = M ] = 1

where the probability is taken over (pk,msk) ← Setup(1λ, 1n) and the coins of
Enc.
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Security. For an adversary A, we define the advantage function

AdvBE
A (λ) :=

∣
∣
∣
∣ Pr
(b,pk,msk)←SetupO

[
b′ = b

∣
∣
∣ b′ ← AKeyGenO(·),EncO(·,·)(1λ)

]
− 1/2

∣
∣
∣
∣

where:

– SetupO samples (pk,msk) ←R Setup(1λ, 1n) and b ←R {0, 1}, and returns pk.
SetupO is called once at the beginning of the game.

– KeyGenO(i ∈ [n]) returns KeyGen(msk, i).
– If M0 and M1 are two messages of equal length, and Γ ⊂ [n], EncO(Γ,M0,M1)

returns Enc(pk, Γ,Mb).

with the restriction that for all queries i ∈ [n] that A makes to KeyGenO(·) and
all queries Γ ⊂ [n] to EncO satisfy i /∈ Γ (that is, ski does not decrypt ctΓ ).

Note that this definition allows the adversary to query EncO multiple times.
We call this the multi-challenge setting and say that a broadcast encryption

Setup(1λ, 1n):

G ←R G(1λ);gp ←R G∗
p, hp ←R H∗

p ; α, u ←R ZN ; {wi, ri ←R ZN}i∈[n]

Output pk = gp, gu
p , {gwi

p }i∈[n], {hri
p }i∈[n], {h

wirj
p }i�=j , e(gp, hp)α

)
and

msk = hp, α, u, {ri}∈[n]

)
.

KeyGen(msk, i ∈ [n])):
Output ski = hα+uri

p ∈ Hp.

Enc(pk, Γ ⊂ [n], M ∈ GT ):
s ←R ZN

C0 := gs
p; C1 := g

s

(
u+

∑
j �∈Γ

wj

)
p ; C2 := e(gp, hp)αs · M

Output ctΓ := (C0, C1, C2) ∈ G2
p × GT

Dec(ctΓ , ski):
Compute D0 = e((gs

p)
−1

︸ ︷︷ ︸
=C−1

0

, hα+uri
p︸ ︷︷ ︸
=ski

) = e(gp, hp)−sα−suri

Compute D1 = e(g
s

(
u+

∑
j �∈Γ

wj

)
p︸ ︷︷ ︸

=C1

, hri
p︸︷︷︸

from pk

) = e(gp, hp)
suri+s

∑
j �∈Γ

wjri

Compute D2 = e((gs
p)

−1

︸ ︷︷ ︸
=C−1

0

,
∏
j �∈Γ

h
wjri
p

︸ ︷︷ ︸
from pk

) = e(gp, hp)
−s

∑
j �∈Γ

wjri

Compute and output M = C2 · D0 · D1 · D2.

Fig. 4. BEcomposite, an adaptively secure broadcast encryption scheme based on
composite-order bilinear groups.
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scheme is adaptively secure in the multi-challenge setting if for all PPT adver-
saries A, AdvBE

A (λ) is a negligible function in λ.
If we only consider adversaries that query EncO once, we have the standard

notion of adaptive security. Namely, we say that a broadcast encryption scheme
is adaptively secure if for all PPT adversaries A that issue only one query to
Enc, AdvBE

A (λ) is a negligible function in λ.
Note that a scheme being adaptively secure implies that it is also adaptively

secure in the multi-challenge setting via a hybrid argument over the challenge
ciphertexts. However, this incurs a security loss proportional to the number of
challenge ciphertexts, In Sect. 5, we present a scheme with a tight reduction in
the multi-challenge security proof that avoids this loss.

3 Composite-Order Construction

Figure 4 shows our composite order construction. The security proof is given in
the full version of this paper [GKW18, Sect. 4].

Setup(1λ, 1n):

G ←R G(1λ);A ←R Dk; k ←R Z
k+1
p ; {Wi ←R Z

(k+1)×k
p , ri ←R Z

k
p}i∈[n]

Output pk :=
(
[A]1, [A�W0]1{[A�Wi]1, [ri]2}i∈[n], [A�k]T , {[Wjri]2}i,j∈[n],i�=j

)
and

msk := [k]2, {[W0ri]2}i∈[n]

)
.

KeyGen(msk, i ∈ [n])):

Output ski := [k+W0ri]2 ∈ G
(k+1)
2 .

Enc(pk, Γ ⊂ [n], M ∈ GT ):

s ←R Z
k
p

C0 := [s�A�]1; C1 := [s�A�(W0 +
∑

j /∈Γ �

Wj)]1; C2 := [s�A�k]T · M

Output ctΓ := (C0, C1, C2) ∈ G2k+1
1 × GT

Dec(ctΓ , ski): // ctΓ and ski implictly contain a description of Γ and i

Compute D0 = e([s�A�]1︸ ︷︷ ︸
=C0

, [k+W0ri]2︸ ︷︷ ︸
=ski

) = [s�A�k+ s�A�W0ri]T .

Compute D1 = e([s�A�(W0 +
∑
j /∈Γ

Wj)]1

︸ ︷︷ ︸
=C1

, [ri]2︸︷︷︸
∈pk

) = [s�A�W0ri + s�A�
∑
j /∈Γ

Wjri]T .

Compute D2 = e([s�A�]1︸ ︷︷ ︸
=C0

, [
∑
j /∈Γ

Wjri]2

︸ ︷︷ ︸
∈pk for i∈Γ

) = [s�A�
∑
j /∈Γ

Wjri]T .

Compute and output M = C2 · D0 · D−1
1 · D2

Fig. 5. BEprime, an adaptively secure broadcast encryption scheme based on prime-order
bilinear groups.
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4 Prime Order Construction

Our prime-order construction is detailed in Fig. 5. The security proof is given in
the full version of this paper [GKW18, Sect. 6].

5 Tightly Secure, Prime Order Construction

We give the description of our construction and its security proof in the full
version of this paper [GKW18, Sects. 7 and 8].
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Abstract. In the situation where there are one sender and multiple
receivers, a receiver selective opening (RSO) attack for a public key
encryption (PKE) scheme considers adversaries that can corrupt some
of the receivers and get their secret keys and plaintexts. Security against
RSO attacks for a PKE scheme ensures confidentiality of ciphertexts
of uncorrupted receivers. Simulation-based RSO security against chosen
ciphertext attacks (SIM-RSO-CCA) is the strongest security notion in
all RSO attack scenarios. Jia, Lu, and Li (INDOCRYPT 2016) proposed
the first SIM-RSO-CCA secure PKE scheme. However, their scheme used
indistinguishability obfuscation, which is not known to be constructed
from any standard computational assumption. In this paper, we pro-
pose two constructions of SIM-RSO-CCA secure PKE from standard
computational assumptions. First, we propose a generic construction of
SIM-RSO-CCA secure PKE using an IND-CPA secure PKE scheme and
a non-interactive zero-knowledge proof system satisfying one-time simu-
lation soundness. Second, we propose an efficient concrete construction
of SIM-RSO-CCA secure PKE based on the decisional Diffie-Hellman
assumption.

1 Introduction

1.1 Background and Motivation

In the context of public key encryption (PKE), the generally accepted secu-
rity notions are IND-CPA and IND-CCA security [10,12]. However, Bellare,
Hofheinz, and Yilek [4] pointed out that IND-CPA and IND-CCA security might
not be strong enough when considering Selective Opening (SO) attacks in a
multi-user scenario. Intuitively, SO attacks consider the corruptions of some
fraction of users and the extortions of their secret information. Motivated by the
c© Springer Nature Switzerland AG 2018
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above problem, they firstly introduced SO security for PKE. Even if an adversary
can mount SO attacks, SO security can guarantee confidentiality of ciphertexts
of uncorrupted users. In practice, considering secret communication among many
users, we should take account of information leakage from some users. Therefore,
SO security is an important security notion for PKE in practice. To date, two
settings have been considered for SO security: Sender Selective Opening (SSO)
security [4,5] and Receiver Selective Opening (RSO) security [3,15]. The main
focus in this paper is on RSO security. In the situation where one sender and
multiple receivers exist, RSO security guarantees confidentiality of uncorrupted
ciphertexts even if an adversary can corrupt some fraction of receivers and get
their plaintexts and secret keys. SO security is defined in both the chosen plain-
text attack (CPA) and the chosen ciphertext attack (CCA) settings. In order to
take active adversaries into account, we should consider CCA security for many
situations.

Furthermore, there are two types of definitions for SO security:
indistinguishability-based SO security and simulation-based SO security. The
definition of indistinguishability-based SO security usually has a restriction for
a plaintext distribution that an adversary can choose. More specifically, the def-
inition of indistinguishability-based SO security usually requires the plaintext
distribution to satisfy a notion called efficient resamplability [4]. Intuitively, effi-
cient resamplability requires a plaintext distribution to be such that even if
some plaintexts are fixed, the other plaintexts can be efficiently sampled. This
requirement is somewhat artificial and limits application scenarios since plaintext
distributions appearing in practice do not necessarily satisfy this requirement.

On the other hand, simulation-based SO security does not have such a restric-
tion on the plaintext distribution. This security requires that the output of
any adversary that is given the public keys, ciphertexts, and plaintexts and
secret information of corrupted users, can be simulated by a simulator which
only takes the corrupted plaintexts as its input. The secret information corre-
sponds to randomnesses (used in encryptions) of the senders in the SSO setting
and secret keys of the receivers in the RSO setting, respectively. Compared to
indistinguishability-based SO security, simulation-based SO security can guar-
antee security even if an adversary chooses an arbitrary plaintext distribution.
Since there is no restriction on the plaintext distributions, we can say that
simulation-based SO security is preferable to indistinguishability-based SO secu-
rity considering the utilization of PKE. Also, the previous works [3,15] showed
that simulation-based SO security is stronger than indistinguishability-based SO
security in the CPA setting. It seems that this implication also holds in the CCA
setting.

From the above arguments, we aim to achieve simulation-based RSO security
against chosen ciphertext attacks which we call SIM-RSO-CCA security for PKE.
So far, the only construction of SIM-RSO-CCA secure PKE is of Jia, Lu, and
Li [16], but their construction is based on a very strong cryptographic primitive,
indistinguishability obfuscation (iO) [2,11]. This primitive is not known to be
constructed from standard computational assumptions. Hence, in this paper, we
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tackle the following question: Is it possible to construct a SIM-RSO-CCA secure
PKE scheme from standard computational assumptions?

1.2 Our Contributions

Based on the above motivation, we give affirmative answers to the question.
More specifically, our technical results consist of the following three parts.

SIM-RSO-CCA Security Derived from RNC-CCA Security. As our first techni-
cal result, we introduce a new security notion that we call RNC-CCA secu-
rity for receiver non-committing encryption (RNCE) [6, Sect. 4], which is a
variant of PKE with a special non-committing property. Then, we show that
RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE. When consid-
ering SIM-RSO-CCA security for PKE, we must take into account informa-
tion of multiple users, a simulator, and an adversary. Thus, if we try to prove
SIM-RSO-CCA security directly from standard computational assumptions,
security proofs could become very complex. The merit of considering RNCE with
our new security notion is that the definition of RNC-CCA security involves only
a single user, a single adversary, and no simulator. Hence, we can potentially
avoid a complex security proof when proving RNC-CCA security from stan-
dard computational assumptions. We believe that this result gives us a guideline
for constructing a new SIM-RSO-CCA secure PKE scheme, and in fact, our
proposed SIM-RSO-CCA secure PKE schemes are obtained via this result, as
explained below.

A Generic Construction of RNC-CCA Secure RNCE. As our second technical
result, we show a generic construction of RNC-CCA secure RNCE using an
IND-CPA secure PKE scheme and a non-interactive zero-knowledge (NIZK)
proof system satisfying one-time simulation soundness. (In the following, we call
this primitive an OTSS-NIZK for simplicity.) This primitive is slightly stronger
than a normal NIZK proof system. However, the constructions of this primitive
based on various standard assumptions are known [13,14,19]. Therefore, our
second technical result shows that we can construct RNC-CCA secure RNCE
schemes from various standard assumptions through our generic construction.

An Efficient Concrete Construction of RNC-CCA Secure RNCE. Although our
generic construction of RNC-CCA secure RNCE can be instantiated based on
standard computational assumptions, we require an NIZK proof system as a
building block. In general, NIZK proof systems are not very efficient, and thus
the above construction does not necessarily lead to an efficient construction.
Thus, as our third technical result, we show an efficient concrete construction of
RNC-CCA secure RNCE based on the decisional Diffie-Hellman (DDH) assump-
tion. This scheme is a variant of the Cramer-Shoup encryption scheme [7], and
thus we do not need general NIZK proof systems. (We note that this efficient
concrete construction supports only a polynomial-sized plaintext space.)

In summary, combining our first and second technical results, we obtain
the first generic construction of SIM-RSO-CCA secure PKE from an IND-CPA
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secure PKE scheme and an OTSS-NIZK. This result enables us to construct
SIM-RSO-CCA secure PKE from various standard computational assumptions.
Moreover, combining our first and third technical results, we obtain the first effi-
cient concrete construction of SIM-RSO-CCA secure PKE (with a polynomial-
sized plaintext space) from the DDH assumption.

1.3 Technical Overview

As mentioned earlier, Jia et al. [16] proposed the first SIM-RSO-CCA secure PKE
scheme using iO. They pointed out that there exist common features between
an IND-CCA security proof and a SIM-RSO security proof. To date, there are
three major techniques for constructing IND-CCA secure PKE schemes: the
double encryption technique [26], the hash proof system (HPS) technique [8],
and the all-but-one (ABO) technique [24,25]. Sahai and Waters [27] pointed out
that the “punctured programming” paradigm is compatible with iO when con-
structing various cryptographic primitives, and they in particular constructed an
IND-CCA secure PKE scheme based on iO. Jia et al.’s SIM-RSO-CCA secure
PKE scheme is obtained from the Sahai-Waters PKE scheme. Since the ABO
technique has some similarity to the punctured programming paradigm, in ret-
rospect, Jia et al.’s PKE scheme can be viewed as constructed via the ABO
technique.

In contrast to their approach, we take two different paths of constructing
SIM-RSO-CCA secure PKE schemes, that is, the double encryption technique
and the HPS technique. Somewhat surprisingly, our SIM-RSO-CCA secure PKE
schemes only require underlying cryptographic primitives that were required to
construct IND-CCA secure PKE schemes. In particular, our constructions do
not need any other strong cryptographic primitives, such as iO, for achieving
SIM-RSO-CCA security.

In order to take the above approach, we adopt another strategy proposed by
Hazay, Patra, and Warinschi [15], who pointed out that RNCE [6, Sect. 4] is an
appropriate cryptographic primitive for achieving RSO security. Concretely, they
showed that CPA secure RNCE implies SIM-RSO-CPA secure PKE. Inspired by
their idea, we formalize a new security notion for RNCE which we call RNC-CCA
security, and show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure
PKE. Then, we propose a generic construction and an efficient concrete con-
struction of RNC-CCA secure RNCE based on the double encryption technique
and the HPS technique, respectively.

The Features of RNCE. Here, we explain the features of RNCE. Informally,
RNCE is special PKE having the following two algorithms, Fake and Open.1 Fake
is the fake encryption algorithm that takes a public key and a trapdoor informa-
tion (generated at the key generation) as input, and outputs a fake ciphertext
which has no information about a plaintext. Open is the opening algorithm that
takes a public key, a trapdoor information, the fake ciphertext, and a certain
1 In fact, our syntax of RNCE has additional algorithms FKG and FDec. These algo-

rithms are needed for defining RNC-CCA security. See Sect. 3 for the details.
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plaintext m as input, and outputs a fake secret key which decrypts the fake
ciphertext to the plaintext m.

RNCE requires the following two security properties. The first one is that an
adversary cannot distinguish a real ciphertext generated by the ordinary encryp-
tion algorithm and a fake ciphertext generated by Fake. The second one is that
an adversary cannot distinguish a real secret key generated by the ordinary key
generation algorithm and a fake secret key generated by Open. Canetti, Halevi,
and Katz [6, Sect. 4.1] firstly introduced RNCE and a security notion for it con-
sidering only non-adaptive chosen ciphertext attacks (CCA1). We extend their
security notion to RNC-CCA security considering adaptive chosen ciphertext
attacks.

Sufficient Condition for SIM-RSO-CCA Secure PKE. We briefly review the secu-
rity definition of RNCE. Informally, if only considering CPA, the security of
RNCE is defined using an experiment that proceeds as follows.

1. An adversary is given a public key and chooses an arbitrary plaintext from
the plaintext space.

2. The adversary is given either a real ciphertext or a fake ciphertext depending
on the challenge bit chosen uniformly at random.

3. The adversary is given either a real secret key or a fake secret key depending
on the above challenge bit.

4. The adversary guesses whether the given ciphertext and secret key are real
or fake.

When defining RNC-CCA security for RNCE, it is natural to consider a
definition in which an adversary is allowed to make a decryption query at any
time in the above security experiment. If we define such a security experiment, an
adversary can make a decryption query after he gets a secret key. Therefore, when
we show that RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE, an
adversary of RNC-CCA security can perfectly simulate the decryption oracle for
a SIM-RSO-CCA adversary.

However, there is one technical problem if we adopt the above definition. The
problem is that we cannot obtain an efficient concrete construction of RNCE
from the HPS technique. More specifically, it seems hard to construct an RNCE
scheme based on the Cramer-Shoup encryption scheme [7]. The critical problem
is that when proving the CCA security of the Cramer-Shoup encryption scheme,
we use the fact that the entropy of the secret key is sufficiently large. In the
security experiment of RNCE, an adversary gets the secret key used in the
experiment, and thus the entropy of the secret key is completely lost and the
security proof fails if we adopt the above definition.

In order to circumvent the above problem, we define the security experiment
for RNC-CCA security of an RNCE scheme so that an adversary is not allowed
to make decryption queries after he gets the secret key. Adopting this security
definition, we do not have to simulate the decryption oracle for the adversary
after he gets the secret key, and we can complete the security proof of our RNCE
scheme. See Sect. 5 for the details.
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Here, one might have the following question: Can we show that RNC-CCA
security implies SIM-RSO-CCA security when adopting the above modified def-
inition for RNC-CCA security? We show an affirmative answer to this question.
In a nutshell, we do not have to simulate the decryption queries which are relative
to the secret keys of corrupted users in the definition of SIM-RSO-CCA security,
and thus we can still show that RNC-CCA secure RNCE implies SIM-RSO-CCA
secure PKE. See Sect. 3 for the details.

How to Derive RNC-CCA Secure RNCE from the Double Encryption Technique.
Here, we give an overview of our generic construction of RNC-CCA secure RNCE
derived from the classical double encryption technique [23,26]. One can see that
our generic construction is an extension of a CPA secure RNCE scheme observed
by Canetti et al. [6, Sect. 4.1]. Their RNCE scheme is inspired by the double
encryption technique without considering CCA security. The trick for the non-
committing property of their construction is that the secret key used in the
decryption algorithm is chosen at random from the two underlying secret keys,
and thus their scheme is very simple. In order to upgrade the CPA security of
this RNCE scheme to CCA security, we focus on the work by Lindell [19] who
constructed an IND-CCA secure PKE scheme based on an IND-CPA secure PKE
scheme and an OTSS-NIZK using the double encryption technique. Applying a
similar method to the above RNCE scheme, we obtain our generic construction
of RNC-CCA secure RNCE. See Sect. 4 for the details.

We note that the technique for achieving the non-committing property, i.e.,
generating multiple secret keys and using only one of them for decryption, has
been adopted in a number of works, e.g., in the construction of an adaptively and
forward secure key-evolving encryption scheme [6, Sect. 3], and more recently in
the construction of a tightly secure key encapsulation mechanism in the multi-
user setting with corruption [1]. Furthermore, our construction shares an idea
of binding two ciphertexts with an NIZK proof system with [6, Sect. 3] to resist
against active behaviors of an adversary (e.g., decryption queries). However, one
difference is that we require one-time simulation-soundness for the underlying
NIZK proof system, while they require unbounded simulation-soundness.

How to Derive RNC-CCA Secure RNCE from the HPS Technique. Here, we
explain an overview of our concrete construction of RNC-CCA secure RNCE
derived from the HPS technique [7,8]. Our concrete construction is an extension
of the CCA1 secure RNCE scheme proposed by Canetti et al. [6, Sect. 4.2].
Their RNCE scheme is a variant of the Cramer-Shoup-“lite” encryption scheme
[7], which is an IND-CCA1 secure PKE scheme based on the DDH assumption.
The only difference is that they encode a plaintext m by the group element gm,
where g is a generator of the underlying group. This encoding is essential for
the opening algorithm Open of their proposed scheme, and the plaintext space
of their scheme is of polynomial-size since they have to compute the discrete
logarithm of gm in the decryption procedure. We extend their scheme to a CCA
secure RNCE scheme based on the “full”-Cramer-Shoup encryption scheme [7].
See Sect. 5 for the details.
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1.4 Related Work

To date, SSO secure PKE schemes have been extensively studied, and several
constructions of SIM-SSO-CCA secure PKE have been shown based on various
standard computational assumptions [18,20–22]. On the other hand, RSO secure
PKE schemes have been much less studied.

As mentioned above, the only existing construction of SIM-RSO-CCA secure
PKE is the construction using iO proposed by Jia et al. [16]. Jia, Lu, and
Li [17] proposed indistinguishability-based RSO-CCA (IND-RSO-CCA) secure
PKE schemes based on standard computational assumptions. Concretely, they
showed two generic constructions of IND-RSO-CCA secure PKE schemes. First,
they gave a generic construction based on an IND-RSO-CPA secure PKE scheme,
an IND-CCA secure PKE scheme, an NIZK proof system, and a strong one-time
signature scheme. Second, they gave a generic construction based on universal
HPS. It is not obvious whether their schemes (can be easily extended to) satisfy
SIM-RSO-CCA security.

1.5 Organization

The rest of the paper is organized as follows: In Sect. 2, we review the notations
and definitions of cryptographic primitives. In Sect. 3, we introduce RNC-CCA
security for RNCE and show its implication to SIM-RSO-CCA security for PKE.
In Sect. 4, we show a generic construction of RNC-CCA secure RNCE with a
binary plaintext space, which is constructed from an IND-CPA secure PKE
scheme and an OTSS-NIZK. In Sect. 5, we show a DDH-based concrete con-
struction of RNC-CCA secure RNCE.

2 Preliminaries

In this section, we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x ← X denotes sampling an element from a finite set X uniformly
at random. y ← A(x; r) denotes that a probabilistic algorithm A outputs y for
an input x using a randomness r, and we simply denote y ← A(x) when we need
not write an internal randomness explicitly. For strings x and y, x‖y denotes the
concatenation of x and y, and x := y denotes the substitution y for x. In other
cases, x := y denotes that x is defined as y. λ denotes a security parameter. A
function f(λ) is a negligible function in λ, if f(λ) tends to 0 faster than 1

λc for
every constant c > 0. negl(λ) denotes an unspecified negligible function. PPT
stands for probabilistic polynomial time. If n, a, b are integers such that a ≤ b,
[n] denotes the set of integers {1, · · · , n} and [a, b] denotes the set of integers
{a, · · · , b}. If m = (m1, · · · ,mn) is an n-dimensional vector, mJ denotes the
subset {mj}j∈J where J ⊆ [n]. If O is a function or an algorithm and A is an
algorithm, AO denotes that A has oracle access to O.
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2.2 Public Key Encryption

A public key encryption (PKE) scheme with a plaintext space M consists of
a tuple of three PPT algorithms Π = (KG,Enc,Dec). KG is the key generation
algorithm that, given a security parameter 1λ, outputs a public key pk and
a secret key sk . Enc is the encryption algorithm that, given a public key pk
and a plaintext m ∈ M, outputs a ciphertext c. Dec is the (deterministic)
decryption algorithm that, given a public key pk , a secret key sk , and a ciphertext
c, outputs a plaintext m ∈ {⊥} ∪ M. As the correctness for Π, we require that
Dec(pk , sk ,Enc(pk ,m)) = m holds for all λ ∈ N, m ∈ M, and (pk , sk) ← KG(1λ).

Next, we define IND-CPA and SIM-RSO-CCA security for a PKE scheme.

Definition 1 (IND-CPA security). We say that Π = (KG,Enc,Dec) is IND-
CPA secure if for any PPT adversary A = (A1,A2),

Advind-cpaΠ,A (λ) := 2
∣
∣
∣Pr[b ← {0, 1}; (pk, sk) ← KG(1λ); (m∗

0,m
∗
1, st1) ← A1(pk);

c∗ ← Enc(pk,m∗
b); b

′ ← A2(c∗, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

where it is required that |m∗
0| = |m∗

1|.
Definition 2 (SIM-RSO-CCA security). Let n be the number of users. For
a PKE scheme Π = (KG,Enc,Dec), an adversary A = (A1,A2,A3), and a
simulator S = (S1,S2,S3), we define the following pair of experiments.

Exprso-cca-realn,Π,A (λ) :
(pk, sk) := (pk j , sk j)j∈[n] ← (KG(1λ))j∈[n]

(Dist, st1) ← AODec(·,·)
1 (pk)

m∗ := (m∗
j )j∈[n] ← Dist

c∗ := (c∗
j )j∈[n] ← (Enc(pk j ,m

∗
j ))j∈[n]

(J, st2) ← AODec(·,·)
2 (c∗, st1)

out ← AODec(·,·)
3 (skJ ,m∗

J , st2)
Return (m∗,Dist, J, out)

Exprso-cca-simn,Π,S (λ) :
(Dist, st1) ← S1(1λ)
m∗ := (m∗

j )j∈[n] ← Dist
(J, st2) ← S2(st1)
out ← S3(m∗

J , st2)
Return (m∗,Dist, J, out)

In both of the experiments, we require that the distributions Dist output by A
and S be efficiently samplable. In Exprso-cca-realn,Π,A (λ), a decryption query (c, j) is
answered by Dec(pk j , sk j , c). A2 and A3 are not allowed to make a decryption
query (c∗

j , j) for any j ∈ [n]. Furthermore, A3 is not allowed to make a decryption
query (c, j) satisfying j ∈ J . (This is without losing generality, since A3 can
decrypt any ciphertext using the given secret keys.)

We say that Π is SIM-RSO-CCA secure if for any PPT adversary A and
any positive integer n = n(λ), there exists a PPT simulator S such that for any
PPT distinguisher D,

Advrso-ccan,Π,A,S,D(λ) := |Pr[D(Exprso-cca-realn,Π,A (λ)) = 1]

− Pr[D(Exprso-cca-simn,Π,S (λ)) = 1]| = negl(λ).
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Remark 1. For simplicity, we consider non-adaptive opening queries by an adver-
sary in our experiments. That is, an adversary can make an opening query
J ⊆ [n] only at once. However, our constructions of SIM-RSO-CCA secure PKE
remain secure even if we consider adaptive opening queries by an adversary.

Remark 2. In this paper, as in the previous works [16,17], we consider only the
revelation of secret keys in the definition of SIM-RSO-CCA security. Namely,
we assume that an adversary cannot obtain a random coin used for generating
a secret key. Hazay, Patra, and Warinschi [15] considered the revelation of both
secret keys and random coins used in the key generation algorithm in the RSO-
CPA security. If we take into account corruptions of both secret keys and random
coins, it seems that we need key simulatability [9,15] for building blocks.

2.3 Non-interactive Zero-Knowledge Proof System

Let R be a binary relation that is efficiently computable, and L := {x|∃w s.t.
(x,w) ∈ R}. A non-interactive proof system for L consists of a tuple of the
following five PPT algorithms Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv).

CRSGen: The common reference string (CRS) generation algorithm, given a
security parameter 1λ, outputs a CRS crs.

Prove: The proving algorithm, given a CRS crs, a statement x ∈ L, and a
witness w for the fact that x ∈ L, outputs a proof π.

Verify: The verification algorithm, given a CRS crs, a statement x, and a proof
π, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

SimCRS: The simulator’s CRS generation algorithm, given a security parameter
1λ, outputs a simulated CRS crs and a trapdoor key tk .

SimPrv: The simulator’s proving algorithm, given a trapdoor key tk and a (pos-
sibly false) statement x, outputs a simulated proof π.

As the correctness for Φ, we require that Verify(crs, x,Prove(crs, x, w)) = 1 holds
for all λ ∈ N, all crs ← CRSGen(1λ), all statements x ∈ L, and all witnesses w
for the fact that x ∈ L.

Next, we define the security notions for a non-interactive proof system: One-
time simulation soundness (OT-SS) and zero-knowledge (ZK).

Definition 3 (One-time simulation soundness). We say that a non-
interactive proof system Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satis-
fies one-time simulation soundness (OT-SS) if for any PPT adversary A =
(A1,A2),

Advot-ssΦ,A (λ) := Pr[(crs, tk) ← SimCRS(1λ); (x∗, st1) ← A1(crs);
π∗ ← SimPrv(tk , x∗); (x, π) ← A2(π∗, st1) :

(x /∈ L) ∧ (Verify(crs, x, π) = 1) ∧ ((x, π) �= (x∗, π∗))] = negl(λ).

Definition 4 (Zero-knowledge). For a non-interactive proof system Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) and an adversary A = (A1,A2), con-
sider the following pair of experiments.
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Expzk-realΦ,A (λ) :
crs ← CRSGen(1λ)
(x,w, st1) ← A1(crs)
π ← Prove(crs, x, w)
b′ ← A2(π, st1)
Return b′

Expzk-simΦ,A (λ) :
(crs, tk) ← SimCRS(1λ)
(x,w, st1) ← A1(crs)
π ← SimPrv(tk , x)
b′ ← A2(π, st1)
Return b′

In both of the experiments, it is required that x ∈ L and w is a witness for x ∈ L.
We say that Φ is zero-knowledge (ZK) if for any PPT adversary A,

AdvzkΦ,A(λ) := |Pr[Expzk-realΦ,A (λ) = 1] − Pr[Expzk-simΦ,A (λ) = 1]| = negl(λ).

In this paper, we call a non-interactive proof system satisfying both OT-SS
and ZK property an OTSS-NIZK.

2.4 “+1”-Decisional Diffie-Hellman (DDH) Assumption

Here, we define the “+1”-DDH assumption. It is straightforward to see this
assumption is implied by the standard DDH assumption. This assumption is
used to simplify the security proof of our concrete construction in Sect. 5.

Definition 5 (“+1”-DDH assumption). Let p be a prime number such that
p = Θ(2λ), G be a multiplicative cyclic group of order p, and Zp be the set of
integers modulo p. We say that the “+1”-DDH assumption holds in G if for any
PPT adversary A,

Adv+1-ddh
G,A (λ) := |Pr[g ← G; a ← Z

∗
p; b ← Zp : A(g, ga, gb, gab) = 1]

− Pr[g ← G; a ← Z
∗
p; b ← Zp : A(g, ga, gb, gab+1) = 1]| = negl(λ).

2.5 Collision-Resistant Hash Function

In this section, we recall the definition of a collision-resistant hash function. A
hash function consists of a pair of PPT algorithms Λ = (HKG,Hash). HKG is
the hash key generation algorithm that, given a security parameter 1λ, outputs
a hash key hk . Hash is the (deterministic) hashing algorithm that, given a hash
key hk and a string x ∈ {0, 1}∗, outputs a hash value h ∈ {0, 1}λ.

Definition 6 (Collision-resistance). We say that Λ = (HKG,Hash) is a
collision-resistant hash function if for any PPT adversary A,

AdvcrΛ,A(λ) := Pr[hk ← HKG(1λ); (x, x∗) ← A(hk) :

(Hash(hk , x) = Hash(hk , x∗)) ∧ (x �= x∗)] = negl(λ).

3 CCA Security for Receiver Non-commiting Encryption

In this section, we introduce a new security notion that we call RNC-CCA
security for receiver non-commiting encryption (RNCE). Next, we show that
RNC-CCA secure RNCE implies SIM-RSO-CCA secure PKE.
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3.1 Receiver Non-commiting Encryption

Here, we give definitions of RNCE and RNC-CCA security for this primitive.
Informally, RNCE is PKE having the property that it can generate a fake cipher-
text which can be later opened to any plaintext (by showing an appropriate secret
key). Canetti, Halevi, and Katz [6, Sect. 4.1] gave a definition of RNCE consider-
ing security against non-adaptive chosen ciphertext attacks (CCA1). We extend
their definition to one considering security against adaptive CCA.

Informally, an RNCE scheme Π consists of the seven PPT algorithms
(KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the same algorithms as
those of a PKE scheme. The remaining four algorithms (FKG,Fake,Open,FDec)
are used for defining the security notion of this primitive. Therefore, these algo-
rithms are not used when using this scheme in practice. We note that the def-
inition of RNCE in [6, Sect. 4.1] does not contain FKG and FDec, but they are
necessary for our formalization of RNC-CCA security. The formal definition is
as follows.

Definition 7 (Receiver non-commiting encryption). An RNCE scheme
Π with a plaintext space M consists of the following seven PPT algorithms
(KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the same algorithms as
those of a PKE scheme. (FKG,Fake,Open,FDec) are defined as follows.

FKG: The fake key generation algorithm, given a security parameter 1λ, outputs
a public key pk and a trapdoor td.

Fake: The fake encryption algorithm, given a public key pk and a trapdoor td,
outputs a fake ciphertext c̃.

Open: The opening algorithm, given a public key pk, a trapdoor td, a fake cipher-
text c̃, and a plaintext m, outputs a fake secret key s̃k .

FDec: The fake decryption algorithm, given a public key pk, a trapdoor td, and
a ciphertext c, outputs m ∈ {⊥} ∪ M.

Next, we define RNC-CCA security for RNCE as follows.

Definition 8 (RNC-CCA security). For an RNCE scheme Π = (KG,Enc,
Dec,FKG,Fake,Open,FDec) and an adversary A = (A1,A2,A3), consider the
following pair of experiments.

Exprnc-realΠ,A (λ) :
(pk, sk) ← KG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Enc(pk,m∗)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ := sk
Return b′ ← A3(sk∗, st2)

Exprnc-simΠ,A (λ) :
(pk, td) ← FKG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Fake(pk, td)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ ← Open(pk, td, c∗,m∗)
Return b′ ← A3(sk∗, st2)

In Exprnc-realΠ,A (λ), a decryption query c is answered by Dec(pk , sk , c). On the other
hand, in Exprnc-simΠ,A (λ), a decryption query c is answered by FDec(pk , td , c). In
both of the experiments, A2 is not allowed to make a decryption query c = c∗

and A3 is not allowed to make any decryption query.
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We say that Π is RNC-CCA secure if for any PPT adversary A,

Advrnc-ccaΠ,A (λ) := |Pr[Exprnc-realΠ,A (λ) = 1] − Pr[Exprnc-simΠ,A (λ) = 1]| = negl(λ).

3.2 RNC-CCA Secure RNCE Implies SIM-RSO-CCA Secure PKE

In this section, we show that an RNC-CCA secure RNCE scheme implies a
SIM-RSO-CCA secure PKE scheme. Specifically, we show the following theorem.

Theorem 1. If an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,Open,FDec) is
RNC-CCA secure, then Πrso := (KG,Enc,Dec) is a SIM-RSO-CCA secure PKE
scheme.

Here we describe an intuition of the proof. (Due to the space limitation,
the formal proof of Theorem 1 is given in the full version of this paper.) Let n
be the number of key pairs and A be an adversary against the SIM-RSO-CCA
security of Πrso in security experiments. In the proof, we firstly construct a
PPT simulator S in Exprso-cca-simn,Πrso,S (λ). Specifically, S computes fake ciphertexts
(c̃j)j∈[n] using Fake and fake secret keys (s̃k j)j∈J using Open, where J is the set
of corrupted indices. Here, S can perfectly simulate the decryption oracle for A
using the trapdoors (td j)j∈[n] generated by S.

Next, in order to move from the real experiment Exprso-cca-realn,Πrso,A (λ) to the
simulated experiment Exprso-cca-simn,Πrso,S (λ), we change, step by step, n real chal-
lenge ciphertexts (c∗

j )j∈[n] to n fake ciphertexts (c̃j)j∈[n] and n real secret keys
(sk j)j∈[n] to n fake secret keys (s̃k j)j∈[n] which are given to A, respectively. We
can show this by the RNC-CCA security of Π using a hybrid argument. Here, we
have to deal with some technically subtle point when simulating the decryption
oracle for A. Namely, we have to program the behavior of an adversary B against
the RNC-CCA security of Π depending on whether the index i is contained in
the corrupted set J output by A2, where i is the position that B embeds his own
challenge instance into the challenge instances of A. See the full version of this
paper for the details.

4 Our Generic Construction of RNC-CCA Secure RNCE

In this section, we show our generic construction of an RNC-CCA secure RNCE
scheme with the plaintext space {0, 1}. First, in Sect. 4.1, we describe our generic
construction. Then, in Sect. 4.2, we give a proof of RNC-CCA security for our
generic construction.

4.1 The Description of Our Generic Construction

Here, we formally describe our generic construction of an RNC-CCA secure
RNCE scheme with the plaintext space {0, 1}. Let Π = (KG,Enc,Dec) be a
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KG (1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
crs ← CRSGen(1λ)
pk := (pk0, pk1, crs)
sk := (α, skα)
Return (pk , sk)

Enc (pk , m) :
(r0, r1) ← R2

Π

c0 ← Enc(pk0, m; r0)
c1 ← Enc(pk1, m; r1)
x := (pk0, pk1, c0, c1)
w := (m, r0, r1)
π ← Prove(crs, x, w)
Return c := (c0, c1, π)

Dec (pk , sk , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1
then

m ← Dec(pkα, skα, cα)
Return m

else Return ⊥

FKG (1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, tk) ← SimCRS(1λ)
pk := (pk0, pk1, crs)
td := (α, sk0, sk1, tk)
Return (pk , td)

Fake (pk , td) :
cα ← Enc(pkα, 0)
c1⊕α ← Enc(pk1⊕α, 1)
x := (pk0, pk1, c0, c1)
π ← SimPrv(tk , x)
Return c := (c0, c1, π)

Open (pk , td , c, m) :
sk := (α ⊕ m, skα⊕m)
Return sk

FDec (pk , td , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, x, π) = 1
then

m ← Dec(pk0, sk0, c0)
Return m

else Return ⊥

Fig. 1. Our generic construction of RNC-CCA secure RNCE Π ′.

PKE scheme with the plaintext space {0, 1} and RΠ be a randomness space for
the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv)
be a non-interactive proof system for Leq, where

Leq :=
{

(pk0, pk1, c0, c1)| ∃(m, r0, r1) s.t.

(c0 = Enc(pk0,m; r0)) ∧ (c1 = Enc(pk1,m; r1))
}

.

Then, we construct an RNCE scheme Π ′ = (KG′,Enc′,Dec′,FKG′,Fake′,
Open′,FDec′) with the plaintext space {0, 1} as described in Fig. 1. We note
that, considering a real ciphertext c and a real secret key sk , the correctness of
the decryption of Π ′ is straightforward due to the correctness of Π and Φ.

How to Expand the Plaintext Space of Our Generic Construction. In the above,
we only give the construction whose plaintext space is {0, 1}. However, we can
expand the plaintext space by using our single-bit construction in a parallel
way except for the generation of a proof of an OTSS-NIZK. More concretely,
if we encrypt an �-bit plaintext m = m1‖ · · · ‖m�, the procedure is as follows.
Firstly, we generate a public key pk = ((pk i

0, pk
i
1)i∈[�], crs) and a secret key

sk = (αi, sk i
αi

)i∈[�], where α1, · · · , α� ← {0, 1}, (pk i
v, sk i

v) ← KG(1λ) for all
(i, v) ∈ [�]×{0, 1}, and crs denotes a CRS of an OTSS-NIZK. Next, we compute
a ciphertext c = ((ci

0)i∈[�], (ci
1)i∈[�], π), where ci

v ← Enc(pk i
v,mi) for all (i, v) ∈

[�] × {0, 1} and π is a proof proving that, for each i ∈ [�], the ciphertexts ci
0 and

ci
1 encrypt the same plaintext mi ∈ {0, 1}. Similarly, for the other procedures,

we execute one-bit version algorithms in a parallel way for all i ∈ [�] except
for the procedure of the OTSS-NIZK. See the full version of the paper for the
details.
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4.2 Security Proof

In this section, we show the following theorem.

Theorem 2. If Π is an IND-CPA secure PKE scheme and Φ is an
OTSS-NIZK, then Π ′ is RNC-CCA secure.

Before describing the formal proof, we highlight the flow of the proof. We
change Exprnc-realΠ′,A (λ) to Exprnc-simΠ′,A (λ) step by step, where A is an adversary that
attacks the RNC-CCA security of Π ′. Although the main part of our proof is
similar to that of the original double encryption paradigm [23,26], we have the
following three remarkable changes.

First, toward transforming the challenge ciphertext to a fake ciphertext, we
make the challenge ciphertext component c∗

1⊕α encrypts 1 ⊕ m∗. Second, in
order to eliminate the information of the bit α from the decryption oracle, when
answering a decryption query c = (c0, c1, π) made by A, we use the compo-
nents (pk0, sk0, c0) corresponding to the position 0 instead of the components
(pkα, skα, cα) corresponding to the position α. Third, we use α⊕m∗ instead of α
in order to make the challenge ciphertext c∗ and the secret key sk be independent
of the challenge plaintext m∗. Due to these changes, the challenge ciphertext c∗

and the real secret key sk are respectively switched to the fake ciphertext c̃ and
the fake secret key s̃k . The proof is as follows.

Proof of Theorem 2. Let A = (A1,A2,A3) be any PPT adversary that attacks
the RNC-CCA security of Π ′. We introduce the following experiments {Expi}5i=0.

Exp0 : Exp0 is the same as Exprnc-realΠ′,A (λ). The detailed description is as follows.
1. First, Exp0 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ),

(pk1, sk1) ← KG(1λ), and crs ← CRSGen(1λ). Next, Exp0 sets pk :=
(pk0, pk1, crs) and sk := (α, skα) and runs A1(pk). When A1 makes a
decryption query c = (c0, c1, π), Exp0 checks whether Verify(crs, (pk0, pk1,
c0, c1), π) = 1 holds. If this holds, Exp0 computes m ← Dec(pkα, skα, cα),
and returns m to A1. Otherwise, Exp0 returns ⊥ to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the challenge
ciphertext c∗ as follows. First, Exp0 samples (r∗

0 , r
∗
1) ← R2

Π , computes
c∗
0 ← Enc(pk0,m

∗; r∗
0), c∗

1 ← Enc(pk1,m
∗; r∗

1), and π∗ ← Prove(crs, (pk0,
pk1, c

∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)). Next, Exp0 sets c∗ = (c∗

0, c
∗
1, π

∗), and runs A2(c∗,
st1). When A2 makes a decryption query c, Exp0 answers in the same way
as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk ,
st2). When A3 outputs a bit b′ and terminates, Exp0 outputs b′.

Exp1 : Exp1 is identical to Exp0 except for the following change. The common
reference string crs is generated by executing (crs, tk) ← SimCRS(1λ), and
Exp1 generates a simulated proof π∗ ← SimPrv(tk , (pk0, pk1, c

∗
0, c

∗
1)) when

computing the challenge ciphertext c∗.
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Exp2 : Exp2 is identical to Exp1 except that when computing the challenge
ciphertext c∗, Exp2 computes c∗

1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗) instead of c∗
1⊕α ←

Enc(pk1⊕α,m∗).
Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption

query c = (c0, c1, π), Exp3 answers m ← Dec(pk0, sk0, c0) instead of m ←
Dec(pkα, skα, cα), if Verify(crs, (pk0, pk1, c0, c1), π) = 1 holds. Note that the
decryption procedure in Exp3 is exactly the same as FDec′.

Exp4 : Exp4 is identical to Exp3 except that α ⊕ m∗ is used instead of α. That
is, when computing the challenge ciphertext c∗, Exp4 computes c∗

0 and c∗
1

by c∗
α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and c∗

α⊕(1⊕m∗) ← Enc(pkα⊕(1⊕m∗), 1 ⊕ m∗).
Moreover, Exp4 gives the secret key sk = (α ⊕ m∗, skα⊕m∗) to A3 instead of
sk = (α, skα).

Exp5 : Exp5 is exactly the same as Exprnc-simΠ′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 5]. Then, we have Advrnc-ccaΠ′,A (λ) =
|Pr[Exprnc-realΠ′,A (λ) = 1] − Pr[Exprnc-simΠ′,A (λ) = 1]| = |p0 − p5| ≤ ∑4

i=0 |pi − pi+1|.
It remains to show how each |pi − pi+1| is upper-bounded. Due to the space
limitation, we will show them formally in the full version of the paper. There,
we will show that there exist an adversary E = (E1, E2) against the ZK property
of Φ such that |p0 − p1| = AdvzkΦ,E(λ), an adversary F = (F1,F2) against the
IND-CPA security of Π such that |p1 − p2| = Advind-cpaΠ,F (λ), and an adversary
G = (G1,G2) against the OT-SS of Φ such that |p2 − p3| ≤ Advot-ssΦ,G (λ). Then, we
will show that |p3 − p4| = 0 holds. The main reason why this is true, is because
since α is chosen uniformly at random, α ⊕ m∗ is also distributed uniformly at
random. Finally, we will show that |p4 − p5| = 0 holds, by showing that Exp4
and Exp5 are identical.

Putting everything together, we obtain Advrnc-ccaΠ′,A (λ) = |p0 − p5| ≤
∑4

i=0 |pi − pi+1| ≤ AdvzkΦ,E(λ) + Advind-cpaΠ,F (λ) + Advot-ssΦ,G (λ). Since Π is IND-CPA
secure and Φ is an OTSS-NIZK, for any PPT adversary A, Advrnc-ccaΠ′,A (λ) = negl(λ)
holds. Therefore, Π ′ satisfies RNC-CCA security. � (Theorem 2)

5 Our DDH-Based Concrete Construction of RNC-CCA
Secure RNCE

In this section, we show our concrete construction of RNC-CCA secure RNCE
with a polynomial-sized plaintext space, based on the DDH assumption and a
collision-resistant hash function. First, in Sect. 5.1, we describe our DDH-based
concrete construction. Then, in Sect. 5.2, we give a proof of RNC-CCA security
for our DDH-based construction.

5.1 The Description of Our Concrete Construction

Here, we give the formal description of our DDH-based construction of RNC-
CCA secure RNCE with a polynomial-sized plaintext space. One can see that
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KG(1λ) :
g1 ← G; w ← Z

∗
p; g2 := gw

1

x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy1
1 gy2

2

t := gz1
1 gz2

2

hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
sk := (x1, x2, y1, y2, z1, z2)
Return (pk , sk)

Enc(pk , m) :
r ← Zp

u1 := gr
1

u2 := gr
2

e := kr · gm
1

μ ← Hash(hk , u1 u2 e)
v := srtrμ

Return c := (u1, u2, e, v)

Dec(pk , sk , c) :
Parse c = (u1, u2, e, v)
μ ← Hash(hk , u1 u2 e)
If uy1+z1μ

1 uy2+z2μ
2 = v

then
m := logg1

( e

(u
x1
1 u

x2
2 )

)

Return m
else Return ⊥

FKG(1λ) :
g1 ← G; w ← Z

∗
p

g2 := gw
1

x1, x2, y1, y2, z1, z2 ← Zp

k := gx1
1 gx2

2

s := gy1
1 gy2

2

t := gz1
1 gz2

2

hk ← HKG(1λ)
pk := (g1, g2, k, s, t, hk)
r ← Zp

td := (r, w, x1, x2,
y1, y2, z1, z2)

Return (pk , td)

Fake(pk , td) :
u1 := gr

1

u2 := g1g
r
2

e := gx2
1 kr

μ ← Hash(hk , u1 u2 e)
v := gy2+z2μ

1 srtrμ

Return c := (u1, u2, e, v)
Open(pk , td , c, m) :

x1 := x1 + mw (mod p)
x2 := x2 − m (mod p)
sk := (x1, x2, y1, y2, z1, z2)
Return sk

FDec(pk , td , c) :
Parse c = (u1, u2, e, v)
μ ← Hash(hk , u1 u2 e)
u1 := gr

1

u2 := g1g
r
2

e := gx2
1 kr

μ ← Hash(hk , u1 u2 e)
If (μ = μ) ∧ (uw

1 = u2)
∧(uy1+z1μ

1 uy2+z2μ
2 = v)

then
m := logg1

( e

(u
x1
1 u

x2
2 )

)

Return m
else Return ⊥

Fig. 2. Our DDH-based construction of RNC-CCA secure RNCE Πddh.

our scheme is a variant of the Cramer-Shoup encryption scheme [7]. The only
difference is that we encode a plaintext m by the group element gm

1 , where g1 is
a generator of the underlying group. This encoding is essential for the opening
algorithm Open of our proposed scheme. The plaintext space of our scheme needs
to be of polynomial-size since we need to compute the discrete logarithm of gm

1

for the decryption procedure.
Formally, we let Λ = (HKG,Hash) be a hash function. Let G be a multiplica-

tive cyclic group of prime order p = Θ(2λ). We naturally encode an element in
{0, 1}λ as one in Zp. Then, we construct our RNCE scheme Πddh = (KG,Enc,
Dec,FKG,Fake,Open,FDec) as described in Fig. 2. We note that the correctness
of the decryption of Πddh is straightforward due to the correctness of the original
Cramer-Shoup encryption scheme.

5.2 Security Proof

In this section, we show the following theorem.

Theorem 3. If the “+1”-DDH assumption holds in G, and Λ = (HKG,Hash)
is a collision-resistant hash function, then Πddh is RNC-CCA secure.
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Since the “+1”-DDH assumption is implied by the ordinary DDH assump-
tion, Theorem 3 implies that our construction Πddh is indeed RNC-CCA secure
under the ordinary DDH assumption.

Before describing the proof, we highlight the flow of the proof. We change
Exprnc-realΠddh,A(λ) to Exprnc-simΠddh,A(λ) step by step, where A is an adversary that attacks
the RNC-CCA security of Πddh. Although the main part of our proof is similar
to that of the original HPS technique [7,8], we have the following two remarkable
changes in order to change the challenge ciphertext c∗ to a fake ciphertext c̃.

First, toward transforming the challenge ciphertext to a fake ciphertext, we
change the challenge ciphertext component u∗

2 = gr∗
2 to u∗

2 = g1g
r∗
2 . Second, we

change the real secret key component (x1, x2) to the fake secret key component
(x′

1, x
′
2) computed by Open described in Fig. 2. Due to these changes, the chal-

lenge ciphertext component e∗ is changed to the fake ciphertext component ẽ
and the real secret key sk is changed to the fake secret key s̃k . The proof is as
follows.

Proof of Theorem 3. Let A = (A1,A2,A3) be any PPT adversary that attacks
the RNC-CCA security of Πddh and makes Qdec > 0 decryption queries. We
introduce the following experiments {Expi}7i=0.

Exp0 : Exp0 is the same as Exprnc-realΠddh,A(λ). The detailed description is as follows.
1. First, Exp0 samples g1 ← G and w ← Z

∗
p and sets g2 := gw

1 . Next, Exp0
samples x1, x2, y1, y2, z1, z2 ← Zp and sets k := gx1

1 gx2
2 , s := gy1

1 gy2
2 , and

t := gz1
1 gz2

2 . Then, it samples hk ← HKG(1λ), sets pk := (g1, g2, k, s, t, hk)
and sk := (x1, x2, y1, y2, z1, z2), and runs A1(pk). When A1 makes a
decryption query c = (u1, u2, e, v), Exp0 computes μ ← Hash(hk , u1‖u2‖e)
and checks whether uy1+z1μ

1 uy2+z2μ
2 = v holds. If this holds, Exp0 returns

m = logg1
(e · (ux1

1 ux2
2 )−1) to A1. Otherwise, Exp0 returns ⊥ to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the chal-
lenge ciphertext c∗ as follows. First, Exp0 samples r∗ ← Zp and sets
u∗
1 := gr∗

1 , u∗
2 := gr∗

2 , and e∗ := kr∗ · gm∗
1 . Next, Exp0 computes

μ∗ ← Hash(hk , u∗
1‖u∗

2‖e∗), sets v∗ := sr∗
tr

∗μ∗
and c∗ := (u∗

1, u
∗
2, e

∗, v∗),
and runs A2(c∗, st1). When A2 makes a decryption query c = (u1, u2, e, v),
Exp0 answers the query from A2 in the same way as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs A3(sk ,
st2). When A3 outputs b′ and terminates, Exp0 outputs b′.

Exp1 : Exp1 is identical to Exp0 except for the following change. When computing
the challenge ciphertext c∗ = (u∗

1, u
∗
2, e

∗, v∗), Exp1 computes e∗ and v∗ by
e∗ := (u∗

1)
x1(u∗

2)
x2 · gm∗

1 and v∗ := (u∗
1)

y1(u∗
2)

y2((u∗
1)

z1(u∗
2)

z2)μ∗
, respectively.

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge
ciphertext c∗ = (u∗

1, u
∗
2, e

∗, v∗), Exp2 computes u∗
2 by u∗

2 := gwr∗+1
1 .

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption
query c = (u1, u2, e, v) made by A2, Exp3 answers ⊥ if Hash(hk , u∗

1‖u∗
2‖e∗) =

Hash(hk , u1‖u2‖e) holds.
Exp4 : Exp4 is identical to Exp3 except that when responding to a decryption

query c = (u1, u2, e, v) made by A1 or A2, Exp4 answers ⊥ if uw
1 �= u2 holds.



Simulation-Based RSO-CCA Secure PKE from Standard Assumptions 157

Exp5 : Exp5 is identical to Exp4 except that x′
1 := x1 + wm∗ (mod p) and x′

2 :=
x2 − m∗ (mod p) are used instead of x1 and x2, respectively. That is, when
computing the challenge ciphertext c∗ := (u∗

1, u
∗
2, e

∗, v∗), Exp5 computes e∗

by e∗ := (u∗
1)

x′
1(u∗

2)
x′
2 · gm∗

1 instead of (u∗
1)

x1(u∗
2)

x2 · gm∗
1 . Note that e∗ =

(u∗
1)

x′
1(u∗

2)
x′
2 · gm∗

1 = (gr∗
1 )(x1+wm∗)(g(wr∗+1)

1 )(x2−m∗) · gm∗
1 = gx2

1 (gx1
1 gx2

2 )r∗

holds. Furthermore, Exp5 gives the secret key sk ′ := (x′
1, x

′
2, y1, y2, z1, z2) to

A3 instead of sk := (x1, x2, y1, y2, z1, z2).
Since e∗ in Exp5 is independent of the challenge message m∗, without loss of
generality we generate it before A1 is run.

Exp6 : Exp6 is identical to Exp5 except that when responding to a decryption
query c = (u1, u2, e, v) made by A1, Exp6 answers ⊥ if Hash(hk , u∗

1‖u∗
2‖e∗) =

Hash(hk , u1‖u2‖e) holds. Note that the procedure of the decryption oracle in
Exp6 is exactly the same as that of FDec(pk , td , c).

Exp7 : Exp7 is exactly the same as Exprnc-simΠddh,A(λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 7]. Then, we have Advrnc-ccaΠddh,A(λ)
= |Pr[Exprnc-realΠddh,A(λ) = 1] − Pr[Exprnc-simΠddh,A(λ) = 1]| = |p0 − p7| ≤ ∑6

i=0 |pi − pi+1|.
It remains to show how each |pi − pi+1| is upper-bounded. Due to the space
limitation, we will show them formally in the full version of the paper. There,
we will show that |p0 − p1| = 0 holds since the difference between Exp0 and
Exp1 is only conceptual. Then, we will show that there exist a PPT adversary E
against the “+1”-DDH assumption in G such that |p1 − p2| = Adv+1-ddh

G,E (λ), and
a PPT adversary F against the collision-resistance of Λ such that |p2 − p3| ≤
AdvcrΛ,F (λ). Next, we will show that |p3 − p4| ≤ Qdec

p holds by showing that the
probability that each of A’s valid queries is rejected in Exp5 but not in Exp4, is
at most 1

p . Then, we will show that |p4 −p5| = 0 holds since (x1, x2) and (x′
1, x

′
2)

are information-theoretically indistinguishable from A. Next, we will show that
there exists a PPT adversary G against the collision-resistance of Λ such that
|p5 − p6| ≤ AdvcrΛ,G(λ) + Qdec

p . Finally, we will show that |p6 − p7| = 0 holds, by
showing that Exp6 and Exp7 are identical.

Putting everything together, we obtain Advrnc-ccaΠddh,A(λ) = |p0−p7| ≤ ∑6
i=0 |pi −

pi+1| ≤ Adv+1-ddh
G,E (λ) + AdvcrΛ,F (λ) + AdvcrΛ,G(λ) + 2Qdec

p . Since the “+1”-DDH
assumption holds in G, Λ is a collision-resistant hash function, Qdec is a poly-
nomial of λ, and p = Θ(2λ), for any PPT adversary A, Advrnc-ccaΠddh,A(λ) = negl(λ)
holds. Therefore, Πddh satisfies RNC-CCA security. � (Theorem 3)
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Abstract. The LWE problem has been widely used in many construc-
tions for post-quantum cryptography due to its reduction from the worst-
case of lattice hard problems and the lightweight operations for gener-
ating its instances. The PKE schemes based on the LWE problem have
a simple and fast decryption, but the encryption phase requires large
parameter size for the leftover hash lemma or Gaussian samplings.

In this paper, we propose a novel PKE scheme, called Lizard, with-
out relying on either of them. The encryption procedure of Lizard first
combines several LWE samples as in the previous LWE-based PKEs,
but the following step to re-randomize this combination before adding
a plaintext is different: it removes several least significant bits of each
component of the computed vector rather than adding an auxiliary error
vector. To the best of our knowledge, Lizard is the first IND-CPA secure
PKE under the hardness assumptions of the LWE and LWR problems,
and its variant, namely CCALizard, achieves IND-CCA security in the
(quantum) random oracle model.

Our approach accelerates the encryption speed to a large extent and
also reduces the size of ciphertexts. We present an optimized C imple-
mentation of our schemes, which shows outstanding performances with
concrete security: On an Intel single core processor, an encryption and
decryption for CCALizard with 256-bit plaintext space under 128-bit
quantum security take only 32,272 and 47,125 cycles, respectively. To
achieve these results, we further take some advantages of sparse small
secrets. Lizard is submitted to NIST’s post-quantum cryptography stan-
dardization process.
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1 Introduction

Since the National Institute of Standards and Technology (NIST) launched a
project to develop new quantum-resistant cryptography standards [26], post-
quantum cryptography has gained a growing attention at this moment. Lattice-
based cryptography, one of the most attractive areas of the post-quantum cryp-
tography, has been studied actively over the last decade due to its distinctive
advantages on the strong security, fast implementations, and versatility in many
applications. In particular, the Learning with Errors (LWE) problem [31] has
very attractive features for many usages due to its rigorous reduction from the
worst-case of the lattice problems that are regarded to be hard to solve even
after the advance of quantum computers. The LWE problem was first introduced
by Regev [31] to construct a Public-Key Encryption (PKE). Some well-known
variants of Regev’s scheme [21,29] had a drawback requiring too large parame-
ters to be used in practice. It was improved by Lindner and Peikert [25] using a
method to insert noises to a combination of LWE samples in the encryption stage.
Recently, several post-quantum key exchanges [6,10–12,17,28], key encapsula-
tion mechanism [11], and one more efficient PKE [15] with sparse small secrets
have been proposed on the hardness assumptions of the LWE problem and its
ring (or module) variant. They enjoy fast performances in practice as well as
quantum-resistant security, but the noise sampling causes some overheads.

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert
and Rosen [8], is a de-randomized version of the LWE problem, which generates
an instance using the deterministic rounding process into a smaller modulus
instead of adding auxiliary errors. Since the sampling of LWR instances does not
contain the Gaussian sampling process, it is rather simpler than that of LWE
instances. Up to recently, there have been several researches on the hardness of
the LWR problem, which address that the LWR problem is at least as hard as
the LWE problem when the number of samples is bounded [7–9].

Our Contributions. We propose a PKE scheme based on LWE and LWR for the
first time, called Lizard. Lizard has a conceptually simple encryption procedure
consisting of subset sum and rounding operations without Gaussian samplings.
We also apply cryptanalytic strategies for LWE to LWR and estimate the concrete
hardness of LWR for the first time, which is expected to be useful in the future
studies.

Through the cryptanalysis against the LWR problem, we show that the
parameters of Lizard can be set as tight as those of the Lindner and Peikert’s
PKE scheme [25], so our scheme enjoys two advantages of smaller ciphertext
and faster encryption speed compared to their scheme under the same setup of
distributions, security level, and decryption failure probability.

Taking some advantages of sparse binary secrets as well, we further show
that our PKE scheme Lizard is very practical. We implement CCA variants
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of Lizard and achieve a comparable performance to NTRU [18,22,24] in spite
of the better security grounds: Our scheme has a stronger security guarantee
than NTRU in the sense that our scheme has a provable security from the LWE
and LWR problems which have reductions from the standard lattice problems
(GapSVP, SIVP), but NTRU does not.1

Technical Details. Our PKE scheme consists of Lizard.Setup, Lizard.KeyGen,
Lizard.Enc, and Lizard.Dec. In the key generation Lizard.KeyGen, we choose a
private key s and use it to generate several samples of the LWE problem in modulo
q. The public key is (A, b = As + e) ∈ Z

m×n
q × Z

m
q , where the error term e is

sampled from the discrete Gaussian distribution. To encrypt a plaintext M ∈ Zt,
we first generate an ephemeral secret vector r and calculate (AT r, 〈b, r〉) ∈
Z

n+1
q . Then, we rescale the vector into a lower modulus p < q using the rounding

function defined by
Z

n+1
q → Z

n+1
p , x �→ �(p/q) · x� ,

where the function �·� denotes the component-wise rounding of entries to the
closest integers. After then, encoded plaintext M̃ ∈ Zp is added to the second
component of the rescaled vector.

For the concrete instantiation of our PKE scheme, we take private keys and
ephemeral secrets used in encryption procedure from certain small distributions
for efficiency. In particular, ephemeral secrets for the encryption procedure are
chosen to be binary vectors in {0,±1}m with low Hamming weights. The Ham-
ming weight of ephemeral secret vectors has an effect on the error sizes after
subset sum of the public data, while the secret key size is related to the error
caused by rounding into a smaller modulus p. Therefore, the smallness of private
keys and ephemeral secrets takes an important role not only in efficiency of our
scheme including encryption and decryption speeds, but also in setting feasible
parameter sets to achieve negligible decryption failure probabilities.

Cryptanalysis of LWR and Parameter Selection. While various attacks
on the LWE problem were proposed, the cryptanalytic hardness of the LWR
problem has not been well-understood so far. Considering all possible attacks
on LWE and LWR in our setup, we concluded that the best attack on the LWR
problem with sparse small secrets is a variant of dual attack combined with
Albrecht’s combinatorial attack for the sparse secrets [3].

Through complete analyses on the correctness conditions, we also present our
parameter sets for three different security levels based on the best attacks against
LWE and LWR, following the methodology of [6,10]. In particular, we provide
the recommended parameter set for the long-term security, which remains secure
against all known quantum attacks. Due to the lack of space, we do not include
the complete analyses in the conference version; for more details, see the full
version of this paper [16].

1 A provably secure variant of NTRU [32] is secure under the hardness assumption of
ring-LWE, but the ring-LWE problem only has a reduction from a lattice problem
with ring structure, not from the standard lattice problems.



Lizard: A Practical Post-quantum PKE from LWE and LWR 163

IND-CCA Variant of Lizard. We present CCA-secure version of Lizard,
namely CCALizard. We converted Lizard with negligible decryption failure prob-
ability into CCALizard using a variant of Fujisaki-Okamoto transformation
[19,20,23,33] which make it IND-CCA PKE in the random oracle model (ROM)
and quantum random oracle model (QROM), respectively. Note that CCALizard
achieves IND-CCA security in standard ROM with tighter security reduction.

Implementation and Comparison. We provide our implementation results
for Lizard and CCALizard. The proposed PKE schemes were implemented in C
language and we measured the performances on Linux with an Intel Xeon E5-
2620 CPU running at 2.10 GHz processor. With 128-bit quantum security, the
encryption and decryption of CCALizard take about 32,272 and 47,125 cycles,
respectively. We compare CCALizard with NTRU [22,24] and the recently pro-
posed LWE-based PKE scheme [15], which shows comparable results to NTRU
in terms of both enc/dec speed and ciphertext size. Our source code is publicly
available at https://github.com/LizardOpenSource/Lizard c.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
summarize some notations used in this paper, and introduce LWE and LWR. We
describe our public-key encryption scheme Lizard based on both LWE and LWR
in Sect. 3, presenting its correctness condition, security proof and advantages.
Finally, we provide implementation results of our schemes, and compare their
performances with other lattice-based schemes in Sect. 4. We also describe an
IND-CCA variant of Lizard in AppendixA.

2 Preliminaries

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For a positive integer q, we
use Z ∩ (−q/2, q/2] as a representative of Zq. For a real number r, �r� denotes
the nearest integer to r, rounding upwards in case of a tie. We denote vectors
in bold, e.g. a, and every vector in this paper is a column vector. The norm ‖·‖
is always 2-norm in this paper. We denote by 〈·, ·〉 the usual dot product of two
vectors. For positive integers t, p, and q, t|p|q denotes t|p and p|q. We use x ← D
to denote the sampling x according to the distribution D. It denotes the uniform
sampling when D is a finite set. For an integer n ≥ 1, Dn denotes the product
of i.i.d. random variables Di ∼ D. We let λ denote the security parameter
throughout the paper: all known valid attacks against the cryptographic scheme
under scope should take Ω(2λ) bit operations. A function negl : N → R

+ is
negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that
negl(λ) < 1/p(λ) for all λ > λ0. For two matrices A and B with the same
number of rows, (A‖B) denotes their row concatenation, i.e., for A ∈ Z

m×n1

and B ∈ Z
m×n2 , the m × (n1 + n2) matrix C = (A‖B) is defined as cij ={

ai,j 1 ≤ j ≤ n1

bi,(j−n1) n1 < j ≤ n1 + n2

. Let Bm,h be the subset of {−1, 0, 1}m of which

elements have exactly h number of non-zero components.

https://github.com/LizardOpenSource/Lizard_c
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2.2 Distributions

For a positive integer q, we define Uq by the uniform distribution over Zq. For a
real σ > 0, the discrete Gaussian distribution of parameter σ, denoted by DGσ, is
a probability distribution with support Z that assigns a probability proportional
to exp(−πx2/σ2) to each x ∈ Z. Note that the variance of DGσ is very close
to σ2/2π unless σ is very small. For an integer 0 ≤ h ≤ n, the distribution
HWT n(h) samples a vector uniformly from {0,±1}n, under the condition that
it has exactly h nonzero entries. For a real number 0 < ρ < 1, the distribution
ZOn(ρ) samples a vector v from {0,±1}n where each component vi of the vector
v is chosen satisfying Pr[vi = 0] = 1 − ρ and Pr[vi = 1] = ρ/2 = Pr[vi = −1].

2.3 Learning with Errors

Since Regev [31] introduced the learning with errors (LWE), a number of LWE-
based cryptosystems have been proposed relying on its versatility. For an n-
dimensional vector s ∈ Z

n and an error distribution χ over Z, the LWE distribu-
tion ALWE

n,q,χ(s) over Zn
q ×Zq is obtained by choosing a vector a uniformly and ran-

domly from Z
n
q and an error e from χ, and outputting (a, b = 〈a, s〉+e) ∈ Z

n
q ×Zq.

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent
samples (ai, bi) from ALWE

n,q,χ(s). The decision LWE for a distribution D over Z
n
q

of a secret vector s, denoted by LWEn,q,χ(D), aims to distinguish the distribu-
tion ALWE

n,q,χ(s) from the uniform distribution over Z
n
q × Zq with non-negligible

advantage, for a fixed s ← D. When the number of samples are limited by m,
we denote the problem by LWEn,m,q,χ(D).

In this paper, we only consider the discrete Gaussian χ = DGαq as an error
distribution where α is the error rate in (0, 1), so α will substitute the distribu-
tion χ in description of LWE problem, say LWEn,m,q,α(D). The LWE problem is
self-reducible, so we usually omit the key distribution D when it is a uniform
distribution over Z

n
q .

The hardness of the decision LWE problem is guaranteed by the worst-case
hardness of the standard lattice problems: the decision version of the shortest
vector problem (GapSVP), and the shortest independent vectors problem (SIVP).
After Regev [31] presented the quantum reduction from those lattice problems
to the LWE problem, Peikert et al. [14,27] improved the reduction to a classical
version for significantly worse parameter; the dimension should be the size of
n log q. In this case, note that the reduction holds only for the GapSVP, not
SIVP. After the works on the connection between the LWE problem and some
lattice problems, some variants of LWE, of which the secret distributions are
modified from the uniform distribution, were proposed. In [14], Brakerski et
al. proved that the LWE problem with binary secret is at least as hard as the
original LWE problem. Following the approach of [14], Cheon et al. [15] proved
the hardness of the LWE problem with sparse secret, i.e., the number of non-zero
components of the secret vector is a constant.

As results of Theorem 4 in [15], the hardness of the LWE problems with
(sparse) small secret, LWEn,m,q,β(HWT n(h)) and LWEn,m,q,β(ZOn(ρ)), are
guaranteed by the following theorem.
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Theorem 1. (Informal) For positive integers m,n, k, q, h, 0 < α, β < 1 and
0 < ρ < 1, following statements hold:

1. If log(nCh) + h > k log q and β > α
√

10h, then the LWEn,m,q,β(HWT n(h))
problem is at least as hard as the LWEk,m,q,α problem.

2. If
(
(1 − ρ) log

(
1

1−ρ

)
+ ρ − ρ log ρ

)
n > k log q and β > α

√
10n, then the

LWEn,m,q,β(ZOn(ρ)) problem is at least as hard as the LWEk,m,q,α problem.

In [13,29,30], to pack a string of plaintexts in a ciphertext, LWE with single
secret was generalized to LWE with multiple secrets. An instance of multi-secret
LWE is (a, 〈a, s1〉 + e1, . . . , 〈a, sk〉 + ek) where s1, . . . , sk are secret vectors and
e1, . . . , ek are independently chosen error vectors. From a standard hybrid argu-
ment, multi-secret LWE is proved to be at least as hard as LWE with single
secret [1].

2.4 Learning with Rounding

The LWR problem was firstly introduced by Banerjee et al. [8] to improve the effi-
ciency of pseudorandom generator (PRG) based on the LWE problem. Unlikely
to the LWE problem, errors in the LWR problem are deterministic so that the
problem is so-called a “derandomized” version of the LWE problem. To hide
secret information, the LWR problem uses a rounding by a modulus p instead of
inserting errors. Then, the deterministic error is created by scaling down from
Zq to Zp. For an n-dimensional vector s over Zq, the LWR distribution ALWR

n,q,p(s)
over Zn

q ×Zp is obtained by choosing a vector a from Z
n
q uniform randomly, and

returning (
a,

⌊
p

q
· (〈a, s〉 mod q)

⌉)
∈ Z

n
q × Zp.

As in the LWE problem, ALWR
n,m,q,p(s) denotes the distribution of m samples from

ALWR
n,q,p(s); that is contained in Z

m×n
q ×Z

m
p . The search LWR problem are defined

respectively as finding secret s just as same as the search version of LWE problem.
In contrary, the decision LWRn,m,q,p(D) problem aims to distinguish the distri-
bution ALWR

n,q,p(s) from the uniform distribution over Z
n
q × Zp with m instances

for a fixed s ← D.
In [8], Banerjee et al. proved that there is an efficient reduction from the LWE

problem to the LWR problem for a modulus q of super-polynomial size. Later,
the follow-up works by Alwen et al. [7] and Bogdanov et al. [9] improved the
reduction by eliminating the restriction on modulus size and adding a condition
of the bound of the number of samples. In particular, the reduction by Bogdanov
et al. works when 2mBp/q is bounded, where B is a bound of errors in the LWE
problem, m is the number of samples in both problems, and p is the rounding
modulus in the LWR problem. That is, the rounding modulus p is proportional to
1/m for fixed q and B. Since the reduction from LWE to LWR preserves the secret
distribution, the hardness of LWRn,m,q,p(HWT n(h)) and LWRn,m,q,p(ZOn(ρ)) is
obtained from that of the LWE problems with corresponding secret distributions.
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3 (LWE+LWR)-Based Public-Key Encryption

In this section, we present a (probabilistic) public-key encryption Lizard based
on both the LWE and LWR problems with provable security. Our construction
has several advantages: one is that we could compress the ciphertext size by
scaling it down from Zq to Zp where p is the rounding modulus, and the other is
that we speed up the encryption algorithm by eliminating the Gaussian sampling
process.

3.1 Construction

We now describe our public-key encryption Lizard based on both the LWE and
LWR problems. The public key consists of m number of n-dimensional LWE
samples with 
 multiple secrets. A plaintext is an 
-dimensional vector of which
each component is contained in Zt, and a ciphertext is (n+
)-dimensional vector
in Z

n+�
p . The PKE scheme Lizard is described as follows:

• Lizard.Setup(1λ): Choose positive integers m,n, q, p, t and 
. Choose private
key distribution Ds over Z

n, ephemeral secret distribution Dr over Z
m, and

parameter σ for discrete Gaussian distribution DGσ. Output params ←
(m,n, q, p, t, 
,Ds,Dr, σ).

• Lizard.KeyGen(params): Generate a random matrix A ← Z
m×n
q . Choose a

secret matrix S = (s1‖ · · · ‖s�) by sampling column vectors si ∈ Z
n indepen-

dently from the distribution Ds. Generate an error matrix E = (e1‖ · · · ‖e�)
from DGm×�

σ and let B ← AS + E ∈ Z
m×�
q where the operations are held

modulo q. Output the public key pk ← (A‖B) ∈ Z
m×(n+�)
q and the secret key

sk ← S ∈ Z
n×�.

• Lizard.Encpk(m): For a plaintext m = (mi)1≤i≤� ∈ Z
�
t, choose an m-

dimensional vector r ∈ Z
m from the distribution Dr. Compute the vectors

c′
1 ← AT r and c′

2 ← BT r over Zq, and output the vector c ← (c1, c2) ∈ Z
n+�
p

where c1 ← �(p/q) · c′
1� ∈ Z

n
p and c2 ← �(p/t) · m� + �(p/q) · c′

2� ∈ Z
�
p.

• Lizard.Decsk(c): For a ciphertext c = (c1, c2) ∈ Z
n+�
p , compute and output

the vector m′ ←
⌊

t
p (c2 − ST c1)

⌉
(mod t).

We will assume that t | p | q in the rest of paper. This restriction allows us to
compute c2 by a single rounding process, i.e., c2 = �(p/t) · m + (p/q) · c′

2�, and
makes the implementation of rounding procedures faster. However, our scheme
still works correctly for parameters not satisfying this condition when t < p < q.

3.2 Correctness and Security

The following lemma shows a required condition of parameter setup to ensure
the correctness of our PKE scheme. Note that the assumption t | p | q in Lemma 1
is not necessary for the correctness of our scheme, but it makes the correctness
condition more tight.
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Lemma 1 (Correctness). Assuming that t | p | q, the public key encryption
Lizard works correctly as long as the following inequality holds for the security
parameter λ:

Pr
[
|〈e, r〉 + 〈s, f〉| ≥ q

2t
− q

2p

]
< negl(λ)

where e ← DGm
σ , r ← Dr, s ← Ds, and f ← Z

n
q/p.

Proof. Let r ∈ Z
m be a vector sampled from Dr in our encryption procedure,

and let c′ = (c′
1, c

′
2) ← (AT r, BT r) ∈ Z

n+�
q . The output ciphertext is c ← (c1 =

�(p/q) · c′
1� , c2 = �(p/t) · m� + �(p/q) · c′

2�).
Let f1 ← c′

1 (mod q/p) ∈ Z
n
q/p and f2 ← c′

2 (mod q/p) ∈ Z
�
q/p be the vectors

satisfying (q/p)·c1 = c′
1−f1 and (q/p)·(c2−�(p/t) · m�) = c′

2−f2. Note that f1 =
AT r (mod q/p) is uniformly and randomly distributed over Z

n
q/p independently

from the choice of r, e, and s. Then for any 1 ≤ i ≤ 
, the i-th component of
c2 − ST c1 ∈ Z

�
q is

�(p/t) · mi� + (p/q) · {(c′
2 − ST c′

1)[i] − (f2[i] − 〈si, f1〉)}
= �(p/t) · mi� + (p/q) · (〈ei, r〉 + 〈si, f1〉) − (p/q) · f2[i]
= �(p/t) · mi� + �(p/q) · (〈ei, r〉 + 〈si, f1〉)�

since f2 = (AS + E)T r = ST f1 + ET r (mod q/p). Therefore, the correctness of
our scheme is guaranteed if the encryption error is bounded by p/2t, or equiva-
lently, |〈ei, r〉 + 〈si, f1〉| < q/2t − q/2p with an overwhelming probability. ��

We argue that the proposed encryption scheme is IND-CPA secure under the
hardness assumptions of the LWE problem and the LWR problem. The following
theorem gives an explicit proof of our argument on security.

Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under
the hardness assumption of LWEn,m,q,DGσ

(Ds) and LWRm,n+�,q,p(Dr).

Proof. An encryption of m can be generated by adding �(p/t) · m� to an
encryption of zero. Hence, it is enough to show that the pair of public infor-
mation pk = (A‖B) ← Lizard.KeyGen(params) and encryption of zero c ←
Lizard.Encpk(0) is computationally indistinguishable from the uniform distribu-
tion over Z

m×(n+�)
q × Z

n+�
q for a parameter set params ← Lizard.Setup(1λ).

• D0 = {(pk, c) : pk ← Lizard.KeyGen(params), c ← Lizard.Encpk(0)}.
• D1 = {(pk, c) : pk ← Z

m×(n+�)
q , c ← Lizard.Encpk(0)}.

• D2 = {(pk, c) : pk ← Z
m×(n+�)
q , c ← Z

n+�
p }.

The public key pk = (A‖B) ← Lizard.KeyGen(params) is generated by sam-
pling m instances of LWE problem with 
 independent secret vectors s1, . . . , s� ←
Ds. In addition, the multi-secret LWE problem is no easier than ordinary LWE
problem as noted in Sect. 2.3. Hence, distributions D0 and D1 are computa-
tionally indistinguishable under the LWEn,m,q,DGσ

(Ds) assumption. Now assume
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that pk is uniform random over Z
m×(n+�)
q . Then pk and c ← Lizard.Encpk(0)

together form (n + 
) instances of the m-dimensional LWR problem with secret
r ← Dr. Therefore, distributions D1 and D2 are computationally indistinguish-
able under the LWRm,n+�,q,p(Dr) assumption. As a result, distributions D0 and
D2 are computationally indistinguishable under the hardness assumption of
LWEn,m,q,DGσ

(Ds) and LWRm,n+�,q,p(Dr), which denotes the IND-CPA security
of the PKE scheme. ��

3.3 Advantages of (LWE+LWR)-Based PKE Scheme

In this subsection, we compare Lizard with the previous LWE-based PKE
schemes, Regev’s scheme (Regev) [31] and Lindner-Peikert’s scheme (LP) [25],
and show that our scheme has some advantages in performance under a reason-
able cryptanalytic assumption about the LWR problem. Instead of the specific
descriptions of previous schemes, we will consider generalized versions of the
Regev and LP schemes with undetermined small distributions Ds of secret vec-
tor and Dr of ephemeral vector for encryption2.

All three schemes assume the hardness of the LWE problem to guarantee
the computational randomness of public information pk ← (A‖B = AS + E) ∈
Z

m×n
q ×Z

m×�
q , where A is a matrix uniformly and randomly chosen from Z

m×n
q ,

S = (s1‖ · · · ‖s�) is a secret matrix sampled from D�
s, and E is an error matrix

sampled from DGm×�
σ . This matrix is computationally indistinguishable from a

uniform matrix over Zm×n
q ×Z

m×�
q under LWEn,m,q,σ(Ds) assumption. The main

difference of these schemes is shown in the encryption procedure of plaintext
m ∈ Z

�
t.

• Regev.Encpk(m): Choose an m-dimensional vector r ∈ Z
m from the distri-

bution Dr. Output the vector c ← (c1, c2) ∈ Z
n+�
q where c1 ← AT r and

c2 ← BT r + (q/t) · m.
• LP.Encpk(m): Choose an m-dimensional vector r ∈ Z

m from the distribution
Dr and error vectors f1 ← DGn

σ′ and f2 ← DG�
σ′ . Output the vector c ←

(c1, c2) ∈ Z
n+�
q where c1 ← AT r − f1 and c2 ← BT r + (q/t) · m + f2.

• Lizard.Encpk(m): Choose an m-dimensional vector r ∈ Z
m from the distri-

bution Dr. Compute the vectors c′
1 ← AT r and c′

2 ← BT r over Zq, and
output the vector c ← (c1, c2) ∈ Z

n+�
p where c1 ← �(p/q) · c′

1� ∈ Z
n
p and

c2 ← �(p/q) · c′
2� + �(p/t) · m� ∈ Z

�
p.

The Regev scheme applies the leftover hash lemma (LHL) to guarantee the
randomness of (pk, Lizard.Encpk(m)). However, this information-theoretic app-
roach requires huge parameter m = Ω((n + 
) log q) + ω(log λ) for sufficiently
large entropy of r, so the Regev scheme is far less efficient than other two
schemes in public key size and encryption speed. In the case of the LP scheme,

2 Hence, the parameter choices of [25] are irrelevant of this comparison. Note that the
chosen parameter sets in [25] do not achieve the claimed security anymore, due to
many recent attacks in the literatures [3–5].
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an encryption of zero forms (n + 
)-number of LWE samples with public infor-
mation pk. Hence, the conditional distribution of LP.Encpk(m) for given pk is
computationally indistinguishable from the uniform distribution Z

n+�
q under the

LWEm,n+�,q,σ′(Dr) assumption. As described in the previous subsection, Lizard
has a similar security proof with LP, but the LWRm,n+�,q,p(Dr) assumption
is used instead of LWEm,n+�,q,σ′(Dr). In summary, Lizard can be viewed as a
(LWE+LWR)-based scheme while Regev and LP are represented as (LWE+LHL)-
based and (LWE + LWE)-based schemes, respectively.

Table 1. Comparison of Lizard, Regev, and LP

Scheme Security Correctness condition

Regev LWEn,m,q,σ(Ds) +
Leftover hash lemma

|〈ei, r〉| < q/2t:

ei ← DGm
σ , r ← Dr

LP LWEn,m,q,σ(Ds) +
LWEm,n+�,q,σ′(Dr)

|〈ei, r〉 + 〈si, f1〉 + f2[i]| < q/2t:

ei ← σm, r ← Dr,

si ← Ds, f1 ← DGn
σ′ , f2[i] ← DGσ′

Lizard LWEn,m,q,σ(Ds) +
LWRm,n+�,q,p(Dr)

|〈ei, r〉 + 〈si, f1〉| < q/2t − q/2p:

ei ← DGm
σ , r ← Dr,

si ← Ds, f1 ← Z
n
q/p

Now let us consider the required conditions for correctness of schemes. All
three schemes has the same decryption structure: for a ciphertext c = (c1, c2),
compute c2 − ST c1 and extract its most significant bits. In our scheme, an
encryption error can be represented as �(p/q) · (〈ei, r〉 + 〈si, f1〉)�, where si is
i-th secret vector, ei is an error vector sampled from the discrete Gaussian
distribution, r is a randomly chosen small vector for encryption, and f1 is a
random vector in Z

n
q/p defined in the proof of Lemma1. This error term should

be bounded by p/2t for the correctness of the scheme. Meanwhile, an error term
of the Regev scheme can be simply described by 〈ei, r〉 since an encryption of zero
is generated by multiplying a small vector r to public key; however, this value is
comparably larger than other two PKE schemes because of its huge dimension.
Finally, in the case of the LP scheme, an encryption c = (c1, c2) ∈ Z

n+�
q of m

satisfies (c2−ST c1)[i] = (q/t) ·mi +〈ei, r〉+〈si, f1〉+f2[i], so its encryption error
is expressed as 〈ei, r〉 + 〈si, f1〉 + f2[i]. This encryption error should be bounded
by q/2t for the correctness of the scheme. The hardness assumption problems
and correctness conditions of each scheme are summarized in Table 1.

We mainly compare the performances of LP and Lizard that are clearly
more efficient than the Regev scheme. Both schemes share the first error term
〈ei, r〉 of encryption noise. This value is a summation of many independent and
identically distributed random variables for various candidate distributions Dr

so that its distribution is close to a normal distribution by the central limit



170 J. H. Cheon et al.

theorem. In the remaining terms, Lizard samples f1 from uniform distribution
Z

n
q/p and has a slightly tighter bound q/2t − q/2p, while LP samples f1 from

the discrete Gaussian distribution and has an additional error term f2[i]. Similar
to the first term, 〈si, f1〉 is close to a normal distribution for various candidate
distributions of Ds, whose variance depends on Ds and the variance of entries of
f1. Specifically, if the variance q2/12p2 of uniform distribution of Zq/p coincides
with the variance σ′2/2π of DGσ′ , then distributions 〈si, f1〉 in Lizard and LP
will be statistically close. In this case, the common term 〈ei, r〉 + 〈si, f1〉 of
two schemes will be close to a normal distribution of the same variance σ2

enc.
Therefore, the failure probabilities of Lizard and LP are approximately measured
by the complementary error function:

Pr[|〈ei, r〉 + 〈si, f1〉| <
q

2t
− q

2p
] ≈ erfc

(
q/2t − q/2p√

2σenc

)
, and

Pr[|〈ei, r〉 + 〈si, f1〉 + f2[i]| <
q

2t
] ≈ erfc

(
q/2t√

2(σ2
enc + σ′2)

)
,

respectively. Since q/2t − q/2p is close to q/2t and σ′ is very small compared
to σenc in parameter setting, two PKE schemes will have almost the same
decryption failure probability. For instance, in the case of our recommended
parameter set (t = 2, q = 2048, p = 512, m = 1024, n = 536, Ds =
ZOn(1/2), Dr = HWT m(134)), the decryption failure probability of Lizard
and LP is approximately measured by erfc((q/2t − q/2p)/

√
2σenc) ≈ 2−154 and

erfc((q/2t)/
√

2(σ2
enc + σ′2)) ≈ 2−155, respectively.

Moreover, in an attacker’s point of view, the hardness of LWR is somewhat
equivalent to that of LWE: So far, there is no known specialized attack strategy
for the deterministic rounding errors so that we applied LWE attacks for LWR to
estimate its hardness. It resulted as the following lemma which implies the attack
complexity against the LWR problem of the modulus q and rounding modulus
p is no less than that of the LWE problem with the same dimension, modulus
q, and the error distribution DGσ′ of the variance σ′2/2π = q2/12p2, in case of
applying the dual attack strategies in [5,6,15]3.

Lemma 2. Let m, k, q and p be positive integers. A lattice reduction algorithm
which achieves δ > 0 such that

m log q̂

log2 p̂
≤ 1

4 log δ

for p̂ =
√

6/π · p and q̂ =
√

12σr · p where σ2
r is the variance of component

of secret vector r leads an algorithm to solve the LWRm,k,q,p(Dr) problem with
advantage 1/23.

3 After approving it, Albrecht’s combinatorial strategy for sparse secrets in [3] can be
exploited naturally: As far as we know, the adjusted dual attack in [3] is the best
attack for LWR using sparse signed binary secrets.
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Proof. See the full version [16] of our paper.

This agrees with the view that an LWR sample (a, b = �(p/q) · 〈a, r〉�) ∈ Z
m
q ×Zp

can be naturally seen as a kind of an LWE sample by sending back the value b
to an element of Zq, i.e., b′ = (q/p) · b ∈ Zq satisfies b′ = 〈a, r〉 + f (mod q) for
a small error f = −〈a, r〉 (mod q/p).

Combining these two about functionality and security, we derive our conclu-
sion that Lizard achieves a better efficiency compared to LWE-based PKE scheme
while guaranteeing the same hardness in cryptanalysis. More precisely, if we set
the parameter satisfying σ′2/2π = q2/12p2, then Lizard has simpler and faster
encryption phase (rounding instead of Gaussian sampling) and smaller cipher-
texts size (n + 
) log p than (n + 
) log q of the LP scheme while preserving its
cryptanalytic security level and decryption failure probability.

Ciphertext bitsize Gaussian sampling
in encryption phase

LP (n + �) log q Yes

Lizard (n + �) log p No

4 Implementation

In this section, we present our implementation result for Lizard and its CCA ver-
sion called CCALizard. CCALizard is obtained by applying a variant of Fujisaki-
Okamoto (FO) transformation [19,20,23,33] to our Lizard encryption scheme.
Full description of CCALizard is presented in AppendixA.

In Sect. 4.1, we propose parameter sets for Lizard (and CCALizard) in three
perspectives, respectively. In Sect. 4.2, we present implementation results of
Lizard and its CCA version with referred parameters achieving 128-bit quan-
tum security.

4.1 Proposed Parameters

In this section, we propose parameter sets secure against the best attacks on
LWE and LWR using lattice basis reduction algorithm. Targeting 128-bit secu-
rity, we suggest three parameter options following the criteria in [6,10] so that
we have two sets called Classical and Recommended according to the security
estimates against classical and quantum attacks respectively, and one more set
called Paranoid for the pessimistic view. Note that Recommended parameter set
aims to achieve 128-bit quantum security.

Secret Distributions. We instantiate our scheme for the case that Ds =
ZOn(ρs) and Dr = HWT m(hr), proposing concrete parameter sets in Table 2.
We have some evidence in mind (Theorem 1) that LWE and LWR of sufficiently
large dimensions are secure even with the sparse secrets, and the sparse secret
in the LWR instance accelerates our encryption phase.
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Security Analysis. The security of our instantiation of Lizard relies on both
of the LWE and LWR assumptions with signed binary and sparse signed binary
secrets, respectively. We considered all known attacks for LWE including those
in [5], the recent dual attack [3] for sparse secrets and primal attack revisited
in [4], and also applied them to LWR with some helps from the lwe-estimator [2]4.
At the end, we came to the conclusion that the dual attack combined with BKW-
style combinatorial attack [3] is the best attack for our LWE and LWR instances.
To estimate the attack complexities, we adopted the methodology in [6,10] to
calculate the core SVP hardness in BKZ lattice reduction algorithm, setting the
time complexity of solving SVP as T = 20.292b, 20.265b, and 20.2075b for Classical,
Recommended, and Paranoid parameter sets, respectively, where b is the BKZ
block size. For lack of space, we present a detailed analysis on the dual attack
applied for LWR and the attack complexities for parameter sets in the full version
of our paper.

Note on Power-of-Twos. We set t = 2 to achieve cryptographically negligible
decryption failure probability more easily, and set p and q to be power-of-twos for
the following reasons: In the LWE and LWR attacks, one can reduce the modulus
q to q′ < q via modulus switching first and then apply arbitrary attack scenarios.
Especially since we use the binary (and even sparse) secrets, the benefits in the
considered attacks obtained by the modulus switching overwhelms others with
strategies for specific q’s as far as we know. Hence, any particular choice for
modulus q does not harm the security. Therefore, we set q and p as power-of-
twos to make the rounding procedures efficiently done through the bitwise shift
process.

Table 2. Suggested parameter sets for 128-bit security; n and m are dimensions of
LWE and LWR, respectively. q is a large modulus shared in LWE and LWR, and p is a
rounding modulus in LWR. α is an error rate in LWE, and ρs and hr are parameters for
secret distributions in LWE and LWR, respectively. ε denotes the estimated decryption
failure probability.

Parameter m n log q log p α−1 ρs hr ε

Classical 724 480 11 9 303 1/2 128 2−154

Recommended 1024 536 11 9 316 1/2 134 2−154

Paranoid 1024 704 13 9 404 1/2 200 2−150

4.2 Performance and Comparison

We present the implementation results for Lizard and CCALizard in Table 3.
Due to the lack of space, we defer a detailed sketch of our implementation which
presents symmetric cryptographic primitives involved and techniques to boost
up the speed of our algorithms to the full version of this paper.
4 We used the lwe-estimator [2] reported on July 6th, 2017. We remark that one can

find a guideline for attacking the LWE problem in [5].
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All the implementations of our schemes were written in C, and performed
on an Linux environment containing an Intel Xeon E5-2620 CPU running
at 2.10 GHz with Turbo Boost and Multithreading disabled. The gcc com-
piler version is 5.4.0, and we compiled our C implementation with flags -O3
-fomit-frame -pointer -march=native -std=c99 for the x86 64 architec-
ture. Throughout this subsection, the performances of key generations (resp.
encryptions and decryptions) of our schemes were reported as a mean value
across 100 (resp. 100000) measurements. We recorded public key sizes of our
schemes used in our software.5

Table 3. Performances of Lizard and CCALizard with 256-bit plaintexts in millisec-
onds with recommended parameters in Table 2

Our schemes KeyGen (ms) Enc (ms) Dec (ms)

Lizard 18.185 0.014 0.007

CCALizard 18.131 0.015 0.022

CCALizard vs. Lattice-based PKEs. We compare the performance of our
CCALizard to those of NTRU [22,24] and an LWE-based PKE in [15], say CCA-
CHK+, for the 128-bit quantum security. To make a fair comparison, we present
an implementation of CCALizard with the recommended parameters in Table 2,
the CCA-secure PKE scheme CCA-CHK+ with 128-bit post-quantum param-
eters in Table 2 of [15], and NTRU with the parameter set EES743EP1. For
NTRU, we get its performance on Intel Core i5-6600 from eBACS (https://
bench.cr.yp.to/results-encrypt.html). For CCA-CHK+, we refer the perfor-
mances from their paper.

We present two implementation results of ours: one for generating the public
matrix A with a random function, and the other for replacing A by a 256-bit
seed which generates A. The later result is recorded in brackets in Table 4. The
CCA-CHK+ scheme is obtained by adapting sparse small secrets for LWE and
applying the FO variant conversion [33] to achieve IND-CCA security, as in
our cases. It should be noticed that their parameter set is insecure now, and
it only achieves 58-bit quantum security in our perspective with the estimate
of the LWE security estimator of Albrecht [2]. NTRU with the parameter set
EES743EP1 achieves 159-bit quantum security according to the estimates from
[6]. As suggested in Table 4, the encryption and decryption speeds, and the
ciphertext size of CCALizard are comparable to those of NTRU. Compared to
CCA-CHK+, the encryption and decryption of CCALizard are about 25 times
and 17 times faster, respectively.

Lizard can be compared to other lattice-based Key Encapsulation Mecha-
nisms (KEM) such as [6,10,11] as well. However, since we focused on improving
performances of encryption and decryption rather than key generation, and KEM
5 Since the data type of each component of public key is uint16 t and the modulus q

is 211, our public key can be compressed by a factor 16/11.

https://bench.cr.yp.to/results-encrypt.html
https://bench.cr.yp.to/results-encrypt.html
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Table 4. Comparison of CCALizard, NTRU, and the CCA version of CHK+; Records
in brackets are results when generating the public matrix A with a 256-bit seed;
“kcycles” denotes kilocycles

CCA-PKE
scheme

KeyGen
(kcycles)

Enc
(kcycles)

Dec
(kcycles)

ptxt
(bytes)

ctxt
(bytes)

pk
(KB)

sk
(KB)

NTRU 1,136 102 110 59 980 1 1

CCA-CHK+ ≈76,700 ≈814 ≈785 32 804 - -

CCALizard 38,074
(34,615)

32 47 32 955 1,622
(524)

34

usually requires somewhat balanced computational costs for Alice and Bob who
want to establish a shared key using the KEM, it is hard to compare Lizard
to KEMs in parallel. We note that a ring version of our scheme which can be
naturally considered has more balanced features and it is highly competitive as
a KEM.

Acknowledgments. We would like to thank Martin Albrecht and Fernando Virdia
for valuable discussions on parameter selection. We would also like to thank Leo Ducas,
Peter Schwabe, Tsuyoshi Takagi, Yuntao Wang and anonymous SCN 2018 reviewers
for their useful comments.

A IND-CCA Variant of Lizard

In this section, we present CCA-secure encryption scheme, say CCALizard,
achieved by applying a variant of Fujisaki-Okamoto (FO) transformation
[19,20,23,33] to our Lizard encryption scheme. More precisely, we first convert
Lizard into IND-CCA Key Encapsulation Mechanism (KEM) applying the trans-
formation in [23], and then combine it with a (one-time) CCA-secure symmetric
encryption scheme.

G : Z�
t → Bm,hr

, H : Z�
t → {0, 1}d, H′ : Z�

t → Z
�
t are the hash functions, where

{0, 1}d is the plaintext space for CCALizard. Here, Lizard.Encpk(δ;v) denotes the
encryption of δ with the random vector v, i.e., the output of Lizard.Encpk(δ;v)
is (

⌊
(p/q) · ATv

⌉
,
⌊
(p/t) · δ + (p/q) · BTv

⌉
).

CCALizard consists of three algorithms (CCALizard.KeyGen, CCALizard.Enc,
CCALizard.Dec). CCALizard.KeyGen is the same as Lizard.KeyGen, and
CCALizard.Enc and CCALizard.Dec are as follows:

• CCALizard.Encpk(m ∈ {0, 1}d):
– Choose δ ← Z

�
t.

– Compute a tuple of vectors c1 := H(δ) ⊕ m, c2 := Lizard.Encpk(δ;G(δ)),
c3 := H′(δ).

– Output the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × Z
n+�
p × Z

�
t.

• CCALizard.Decsk(c):
– Parse c into c = (c1, c2, c3) ∈ {0, 1}d × Z

n+�
p × Z

�
t.
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– Compute δ′ ← Lizard.Decsk(c2) and v′ ← G(δ′).
– If (c2, c3) = (Lizard.Encpk(δ′;v′),H′(δ′)), then compute and output m′ ←

H(δ′) ⊕ c1.
– Otherwise, output ⊥.

Correctness. If Lizard is correct with the probability 1 − ε, then CCALizard
is correct except with the probability 1 − ε in the (quantum) random oracle
model [23].
Security. CCALizard achieves tight IND-CCA security in the random oracle
model, and non-tight IND-CCA security in the quantum random oracle model.
For IND-CCA security in ROM, the hash function H ′ and the hash value d is
not necessary.

Theorem 3. ([23], Theorems 3.2 and 3.3). For any IND-CCA adversary B on
CCALizard issuing at most qD queries to the decryption oracle, qG queries to
the random oracle G, and qH queries to the random oracle H, there exists an
IND-CPA adversary A on Lizard such that

AdvCCACCALizard(B) ≤ qG · ε +
qH

2ω(log λ)
+

2qG + 1
t�

+ 3 · AdvCPALizard(A)

where λ is a security parameter and ε is a decryption failure probability of Lizard
and CCALizard.

Theorem 4. ([23], Theorems 4.4 and 4.5). For any IND-CCA quantum adver-
sary B on CCALizard issuing at most qD (classical) queries to the decryption
oracle, qG queries to the quantum random oracle G, qH queries to the quantum
random oracle H, and qH′ queries to the quantum random oracle H′, there exists
an IND-CPA quantum adversary A on Lizard such that

AdvCCACCALizard(B) ≤ (qH + 2qH′)

√
8ε(qG + 1)2 + (1 + 2qG)

√
AdvCPALizard(A)

where ε is a decryption failure probability of Lizard and CCALizard.

Parameters for CCALizard. We use the recommended parameters in Table 2
for CCALizard and set t = 2, 
 = d = 256.

References

1. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle
length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 659–680. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 23

2. Albrecht, M.R.: A Sage Module for estimating the concrete security of learning
with errors instances (2017). https://bitbucket.org/malb/lwe-estimator

3. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

https://doi.org/10.1007/978-3-662-53008-5_23
https://doi.org/10.1007/978-3-662-53008-5_23
https://bitbucket.org/malb/lwe-estimator
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4


176 J. H. Cheon et al.
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Abstract. We show that the recent, highly efficient, three-party honest-
majority computationally-secure MPC protocol of Araki et al. can be
generalised to an arbitrary Q2 access structure. Part of the performance
of the Araki et al. protocol is from the fact it does not use a complete
communication network for the most costly part of the computation. Our
generalisation also preserves this property. We present both passively-
and actively-secure (with abort) variants of our protocol. In all cases
we require fewer communication channels for secure multiplication than
Maurer’s “MPC-Made-Simple” protocol for Q2 structures, at the expense
of requiring pre-shared secret keys for Pseudo-Random Functions.

1 Introduction

Secret-sharing-based secure MPC (multi-party computation) is generally consid-
ered to lie in two distinct camps. In the first camp lies the information-theoretic
protocols arising from the original work of Ben-Or, Goldwasser and Wigder-
son [4] and Chaum, Crepeau and Damg̊ard [7]. In this line of work, adversar-
ial parties are assumed to be computationally unbounded, and parties in an
MPC protocol are assumed to be connected by a complete network of secure
channels. Such a model was originally introduced in the context of threshold
adversary structures, i.e. t-out-of-n secret-sharing schemes, which could toler-
ate up to t adversaries amongst n parties. We will call these access structures
(n, t)-threshold. To obtain passively-secure protocols one requires t < n/2, and
to obtain actively-secure protocols one requires t < n/3; these conditions are
also sufficient. Passive adversaries follow the protocol but possibly try to learn
information about other parties’ inputs, whereas active adversaries may deviate
arbitrarily from the protocol.

These results for threshold structures were extended to arbitrary
access/adversary structures by Hirt and Maurer [14], in which case the two nec-
essary and sufficient conditions become Q2 and Q3 respectively. These notions
will be discussed in more detail later, but in brief an access structure is Q� if
the union of no � unqualified sets is the whole set of parties; for example, an
(n, t)-threshold scheme is Q� if and only if t < n/�.

c© Springer Nature Switzerland AG 2018
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Another line of work which considered computationally-bounded adversaries
started with [12,13]. Here the parties are connected by a complete network
of authenticated channels and one can obtain actively-secure protocols in the
threshold case when t < n/2 (i.e. honest majority), and active security with
abort when only one party is honest. Generally speaking, such computationally-
secure protocols are less efficient than the information-theoretic protocols as they
usually need some form of public-key cryptography.

In recent years there has been considerable progress in practical MPC by
marrying the two approaches. For example, the BDOZ [5], VIFF [9], SPDZ [10]
and Tiny-OT [17] protocols are computationally secure and use information-
theoretic primitives in an online phase, but only computationally-secure prim-
itives in an offline/pre-processing phase. The offline phase is used to produce
so-called Beaver triples [2], which are then consumed in the online phase. In
these protocols, parties are still connected by a complete network of authenti-
cated channels, and they are usually in the full-threshold model (i.e. situations
in which only one party is assumed to be honest). A key observation in much of
the practical MPC work of the last few years is that communication costs in the
practically important online phase are the main bottleneck.

However, recent work has provided a new method to unify information-
theoretic and computationally-secure protocols. Araki et al. [1] provide a very
efficient passively-secure MPC evaluation of the AES circuit in the case of a 1-
out-of-3 adversary structure. This was then generalised to an actively secure pro-
tocol by Furukawa et al. [11]. Both protocols require a pre-processing phase mak-
ing use of symmetric-key cryptographic primitives only; thus the pre-processing
is much faster than for the full-threshold protocols mentioned above.

The passively-secure protocol of [1] makes use of a number of optimisations
to the basic offline/online paradigm. Firstly, the offline phase is only used to pro-
duce additive sharings of zero. Additive sharings of zero can be easily produced
using symmetric key primitives and pre-shared secrets. Secondly, the underlying
network is not assumed to be complete: each party only sends data to one other
party via a secure channel, and only receives data from the third party via a
secure channel. Thirdly, parties need only transmit one finite-field element per
multiplication. On the downside, however, each party needs to hold two finite-
field elements per share, as opposed to using an ideal secret-sharing scheme (such
as Shamir’s) in which each party only holds one finite-field element per secret.

The underlying protocol of Araki et al., bar the use of the additive shar-
ings of zero, is highly reminiscent of the Sharemind system [6], which also
assumes a 1-out-of-3 adversary structure. Since both [1,6] are based on repli-
cated secret-sharing, they are also closely related to the “MPC-Made-Simple”
approach of Maurer [16]. Thus, for the case of this specific adversary struc-
ture, the work in [1] shows how to use cryptographic assumptions to optimise
the information-theoretic approach of [16]. The active variant of the proto-
col given by Furakawa et al. [11] uses the passively-secure protocol (over an
incomplete network of secure channels) to run an offline phase which produces
the Beaver triples. These are then consumed in the online phase, by using the
triples to check the passively-secure multiplication of actual secrets. The online
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phase also runs over an incomplete network of authenticated channels. The ques-
tion therefore naturally arises as to whether the approach outlined in [1,6,11] is
particularly tied to the 1-out-of-3 adversary structure, or whether it generalises
to other access/adversary structures.

1.1 Our Work

In this paper we show that the basic passively-secure protocol of Araki et al.
generalises to arbitrary Q2 access structures and in the process hopefully shed
some light onto the fundamental nature of what initially appear to be very spe-
cific constructions for 1-out-of-3 adversary structures. Moreover, the generalised
protocol offers significant advantages in terms of communication cost when com-
pared to the prior protocols in this setting.

In the full version we then show how to extend this to an actively-secure
protocol (with abort) for any Q2 access structure. We take a more traditional
approach than [11] to obtain active security. In particular we utilise our pas-
sive protocol as an offline phase, and then in the online phase multiplication
is performed via standard Beaver multiplication over an incomplete network of
authenticated channels. We only require a full network of secure channels in the
active protocol to obtain (verified) private output in the online phase and in a
short setup phase.

The main challenge we meet in attempting to generalise the work of Araki et
al. is that it is not immediately clear what the conditions on its shares mean in
a wider context; more specifically, their protocol relies heavily on the fact that
in the (3, 1)-threshold setting replicated shares are necessarily “consistent” and
consequently their communication pattern allows errors to be detected in the
active variant due to Furukawa et al. [11].

General, as opposed to threshold, access structures are practically interesting
in situations where different groups of parties play different organisational roles.
For example consider a financial application where one may have a computa-
tion performed between a number of banks and regulators; the required access
structures for collaboration between the banks and the regulators may be dif-
ferent. Thus general access structures, such as the Q2 structures considered in
this paper, may have important real-world applications. All protocols have been
implemented in the SCALE-MAMBA system1.

We now proceed to give a high-level overview of our protocol and its main
components. We divide the discussion into looking at the passively secure proto-
col first, and then give the changes needed to consider the actively secure (with
abort) variant.

Passively Secure Protocol: If the access structure is Q2 then the product of
the shared values can be expressed as a linear combination of products of the
values held by individual players. Hence, the product can be expressed as the

1 See https://homes.esat.kuleuven.be/∼nsmart/SCALE/ for details.

https://homes.esat.kuleuven.be/~nsmart/SCALE/
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sum of a single value held by each party. This is exploited in the protocol of
Maurer to obtain a sharing (in the original replicated scheme) of the product,
by each party producing a resharing of their component of the product. Thus
multiplication of secrets in the passively-secure protocol of Maurer requires all
parties to produce one secret-sharing.

In our protocol we take start as in Maurer’s protocol in forming a represen-
tation of the product as a full threshold additive secret sharing. We then mask
this using a pseudo-random zero sharing (PRZS), and then use the resulting
full threshold sharing as a basis for the original replicated sharing. This means
that each party need only communicate the share they hold to the other parties
which need to replicate it. This produces savings in both the number of elements
transmitted and the number of communication channels. In Sects. 3.1 and 3.2
we outline and compare Maurer’s and our protocol.

In a further optimisation, given in Sect. 3.3, we reduce the number of chan-
nels, which we denote by GΓ , and the required number of finite field elements
transmitted, even further. This optimisation, however, comes at the expense of
requiring more pre-distributed keys and PRF evaluations. But we present a sim-
ple six party access structure for which this optimization that gives a 93% saving
on transmitted finite-field elements, and a 50% saving on the number of secure
channels, compared to the original protocol of Maurer.

To obtain the output from our passively protocol we require a full set of
either authenticated or secure channels (depending on the specific subprotocol
being executed). However, these operations are not performed nearly as often as
multiplication operations. It is the high bandwidth requirements of multiplica-
tion operations that form a bottleneck in many practical instantiations of MPC
protocols.

Actively Secure Protocol: In the full version we then extend this basic pro-
tocol to the case of active security (with abort), again with the objective of min-
imising the number of pairwise connections and transmitted finite field elements.
Our actively-secure protocol follows the paradigm of Furukawa et al. However,
we need to make a few small changes to allow for arbitrary Q2 access structures.
We adopt a relatively standard three step approach to obtaining active security.

1. We use our passively-secure multiplication protocol in an offline phase to
obtain so-called Beaver triples.

2. These triples are then checked using the trick of sacrificing (see e.g. [5]) to
ensure that the triples are actually valid, and have not been tampered with
by a malicious adversary. This requires communication over a reduced set of
authenticated channels HΓ .

3. The triples are then used in a standard Beaver-like online phase which is
executed over the same sub-network of authenticated channels.

Active security is obtained, as in [1], by each player hashing their view during a
multiplication and comparing the resulting hashes at the end (which requires a
complete graph of authenticated channels). We show that this obviates the need
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for every party holding a given share to send it to every party who does not.
However, in generalising to arbitrary access structures it is no longer sufficient
to hash the view of the values opened in the multiplication sub-protocol: one
also needs to hash the vector of shares used to produce these values. This hash-
checking is analogous to the MAC checking in full threshold protocols such as
SPDZ [10].

In this paper we are interested in evaluation of arithmetic circuits over an
arbitrary finite field Fq, which could include q = 2. We will assume, for the
sacrifice step of our actively-secure protocol with abort, that q is sufficiently
large to have a cheating detection probability of 1 − 2−sec for a suitable choice
of sec; i.e. q > 2sec. If this is not the case, then by repeating our checking
procedures sec/ log2 q times, we can reduce the cheating probability to 2−sec. We
do not analyse this aspect in this paper so as to aid the reader in seeing the
main concepts more clearly. This repetition and its generalisation to balls-and-
bins experiments is relatively standard.

2 Preliminaries

In this section we recap on access structures, and in particular Q2 access struc-
tures, and also look at pseudo-random zero sharings with respect to the additive
secret sharing scheme. In this section we are working over an arbitrary finite
field Fq where q is a prime power, although our protocols also work over any
finite ring R. For any n ∈ N we denote the set {1, . . . , n} by [n]. We denote the
computational security parameter by λ and the statistical security parameter by
sec.

2.1 Access Structures and Secret Sharing

Access Structures. Let P denote the set of parties, P = [n], and let Γ,Δ ∈ 2P .
If Γ ∩ Δ = ∅ then we call the pair (Γ,Δ) an access structure. We call a set of
parties B ∈ Γ qualified, and a set in A ∈ Δ unqualified. As is typical in the
literature, we assume monotonicity of the access structure: supersets of qualified
sets are qualified, and subsets of unqualified sets are unqualified. The access
structure is said to be complete if Δ = 2P \ Γ , (i.e. every set of parties is either
qualified or unqualified), and in this case we will sometimes just write Γ for the
access structure instead of the pair.

A set of parties A ∈ Δ is called maximally unqualified if Δ contains no
proper supersets of A. For a complete access structure, this implies that adding
any party not already in A makes the set qualified. We denote by M ⊆ Δ the set
of maximally unqualified sets. Similarly, A set in Γ is called minimally qualified
if it is qualified and every proper subset is unqualified. The set M and its
structure is important for our protocol; however, it will be notationally simpler
for us instead to consider the set of complements of maximally unqualified sets,
which we denote by B = {P \ M : M ∈ M}. Note that, in general, it is not true
that the set B is equal to the set of minimally qualified sets.
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Q� Access Structures. The set Δ, called the adversary structure, is said to
be Q� (for quorum), where � ∈ N, if no set of � sets in Δ cover P. A result
of Hirt and Maurer [15] says that every function can be computed securely in
the presence of an adaptive, passive (resp. adaptive, active) computationally
unbounded adversary if and only if the adversary structure is Q2 (resp. Q3).

It is clear that if Δ is Q2, then so is any subset. In particular, the set of
maximally unqualified sets M is also Q2. In fact, if M is Q2 then Δ is Q2. Hence,
for the set of complements B it holds that if B1, B2 ∈ B then B1 ∩ B2 �= ∅. A
set B for which this property holds was called a quorum system by Beaver and
Wool [3].

Let S denote a linear secret-sharing scheme which implements the Q2 access
structure (Γ,Δ). We use double square brackets, [[v]] to denote a sharing of
the secret v according to this scheme. We let Sv,i denote the set of elements
which player i holds in representing the value v. Hirt and Maurer’s result is
realised by showing that if an access structure is Q2 then it can be realised by a
multiplicative secret sharing scheme, i.e. given two secret shared values [[a]] and
[[b]], the product a · b can be represented as a linear combination of the elements
in the local Schur products

Sa,i ⊗ Sb,i = {sa · sb : sa ∈ Sa,i, sb ∈ Sb,i}.

The fact that by local computations the parties each obtain one summand of
the product is the reason one is able to build an MPC protocol secure against
passive adversaries for any Q2 access structure. For the details, we refer the
reader to [15].

Replicated Secret Sharing. Given a monotone access structure (Γ,Δ), we will
make extensive use of the replicated secret sharing scheme which respects it. Let
B be, as above, the set of sets which are complements of maximally unqualified
sets in the access structure. Then to share secret x, a set of shares {xB}B∈B
is sampled uniformly at random from the field subject to x =

∑
B∈B xB and

xB is given to each player in B. From now on, when writing [[x]] we will mean
the secret sharing with respect to this scheme, and in particular the set Sx,i

above is given by Sx,i = {xB : i ∈ B and B ∈ B}. Since every unqualified set
is a (not necessarily proper) subset of a maximally unqualified set, every set of
unqualified parties is missing at least one member of the set {xB}B∈B, and hence
these parties learn no information about the secret. Replicated secret-sharing is
therefore perfect, which is defined to mean that no unqualified set of parties has
any advantage over uniformly guessing the secret. Conversely, a qualified set A
of parties is not a subset of any M ∈ M (i.e., for every M ∈ M, A contains
some i where i �∈ M), and hence for every B ∈ B, there is at least one party in
A which receives the share xB .

To see that a replicated secret-sharing scheme is multiplicative if the access
structure it realises is Q2, observe that given secrets x and y, for every pair of
sets B1, B2 ∈ B there is some party i in B1 ∩ B2, since the intersection of these
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sets is non-empty by definition of Q2. Then party i can compute the cross terms
xB1 ·yB2 and xB2 ·yB1 (and also the diagonal terms xB1 ·yB1 and xB2 ·yB2). Thus
the parties can together obtain all terms of x · y =

(∑
B∈B xB

) · (∑
B∈B yB

)
=∑

B1,B2∈B xB1 · yB2 by local computations. Note that the parties do not, in
general, have a correct sharing of the product after these local computations,
since each party now holds only one share: the parties must somehow convert
this additive share of the product into a sharing within the scheme. Minimising
the number of communication channels required after the local computations to
achieve this is the main goal of this paper. Note also that there may be multiple
parties in the intersection of two sets in B, but we only require one of these
parties to include the term in their computation.

Example. We will use the following example later to demonstrate the savings
which can result from our method and also to examine the communication chan-
nels in the next paragraph. Consider the following set of maximally unqualified
sets for a six-party access structure, which we shall use as a running example
throughout this section.

M =
{
{2, 5, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},

{2, 3}, {2, 4}, {3, 4}
}

.

Here the set B becomes

B =
{

{1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6},

{2, 3, 4, 6}, {2, 3, 4, 5}, {1, 4, 5, 6}, {1, 3, 5, 6}, {1, 2, 5, 6}
}

.

As stated above, in replicated secret sharing a secret s is shared as an additive
sum s =

∑
B∈B sB , with party i holding value sB if and only if i ∈ B.

Redundancy. A redundant player is one whose shares are not necessarily needed
to reconstruct the secret (if it is shared using replicated secret-sharing), and
so one could define an MPC protocol achieving the same (passive) security by
ignoring this player entirely in the computation and just providing it with the
final output. To provide a more formal definition, consider the replicated scheme
above: if there is a party i ∈ P for which there exists some other party j ∈ P
such that for all B ∈ B we have i ∈ B implies j ∈ B, then every share given to
party i is also given to party j, and hence we consider party i redundant.

For an access structure Γ with set M of maximal unqualified sets, we define
party i to be redundant if for every M ∈ M there exists j ∈ P \ {i} such
that i �∈ M implies j �∈ M , and non-redundant otherwise; equivalently, i is non-
redundant if for every j ∈ P there exists M ∈ M such that i �∈ M but j ∈ M ,
and we say that Γ is non-redundant if every party in P is non-redundant.
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For example, consider the set of maximally unqualified sets over P = [4]
given by M = {{1}, {2}, {3, 4}}. We obtain the replicated scheme over this
access structure by computing B = {{2, 3, 4}, {1, 3, 4}, {1, 2}} and splitting a
secret s into three shares s = s234 + s134 + s12; then we give player one the
shares {s134, s12}, player two {s234, s12}, player three {s234, s134} and player four
{s234, s134}. Both shares obtained by player three are also obtained by player
four, so we can essentially ignore player four in any protocol design and just
provide the output to this player at the end.

Note that if any party is omitted from all sets in M then it is present in all sets
in B and hence every party, but this party, is redundant, which makes the MPC
protocol trivial: the omitted party can simply perform the entire computation
itself and output the result to all parties.

Partition. In our protocol, we partition the set B into sets indexed by the parties
{Bi}i∈P such that for every i ∈ P we have B ∈ Bi implies i ∈ B. To make this
assignment of sets in B to parties, we consider all the maps f : B → P such that
for every i ∈ P, f(B) = i implies i ∈ B, and choose an f such that Im(f) is as
large as possible; then for each i ∈ P we let Bi = f−1(i), where f−1(i) denotes
the preimage of i under the map f .

Note that if f is not surjective then there is at least one set Bi (for some i)
which is empty. For the rest of the main body of this paper, we assume that Bi

is not empty for all i, since for small numbers of parties on a non-redundant Q2

access structure, we can always find a surjective f . For the necessary adaptation
to the protocol when this is not the case, and further relevant discussion, see
Sect. 4.

Note that in general non-redundancy implies a lower bound on the size of
M: let n′ be the number of parties which are not maximally unqualified sets
as singleton sets, and let x be the number of sets in M. The lower bound on
number of sets there must be in M so that there is no redundancy amongst
these n′ parties is the number of ways of putting each party into at least two
sets so that for every pair of parties there is a set containing one and not the
other. Thus we require

(
x
2

) ≥ n′, which means that x ≥ 1+
√
1+8n′
2 . Since there

are more sets in M for non-redundant access structures, it becomes “easier” to
find the surjective maps f required by our main protocol.

In our earlier six party example we could set the partition to be

B1 = {{1, 3, 4}},
B2 = {{1, 2, 4}},
B3 = {{1, 2, 3}},
B4 = {{2, 3, 4, 5}},
B5 = {{1, 2, 5, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}},
B6 = {{2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
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Channel Sets. Given the above partition of B we define the following graphs of
channels:

GΓ =
⋃

i∈P

⋃

B∈Bi

⋃

j∈B\{i}
{(i, j)}

HΓ =
⋃

i∈P

⋃

B∈Bi

⋃

j �∈B

{(i, j)}

Our (passively-secure) multiplication protocol makes use of the set of secure
channels denoted by SC(GΓ ), namely (i, j) ∈ SC(GΓ ) implies that party i is con-
nected to party j by a uni-directional secure channel. The sacrificing step and
online multiplication protocol in our actively secure protocol requires communi-
cation over an authentic set of channels AC(HΓ ), where (i, j) ∈ AC(HΓ ) implies
that party i is connected to party j by an authenticated channel.

The key operation in both sacrificing and the online phase is being able to
open a value to all parties in an authenticated manner. Publicly opening a secret
requires every party to receive every share it does not have from at least one
other party holding that share. Thus the definition of HΓ .

2.2 Pseudo-Random Zero Sharing for Additive Secret Sharing
Schemes

At various points we will need to use an additive secret sharing over all players
P = {1, . . . , n}. This shares a value v ∈ Fq as an additive sum v =

∑n
i=1 vi

and gives player i the value vi. We denote such a sharing by 〈v〉. This type of
secret-sharing does not respect a Q2 access structure since all shares are required
to determine the secret, but it will play a crucial role in our protocols.

Improving on the protocol of [3,16] requires us to sacrifice the information-
theoretic security for a cryptographic assumption. In particular, we require the
parties to engage in a pre-processing phase in which they share keys for a pseudo-
random function (PRF) in order to generate (non-interactively) pseudo-random
zero sharings (PRZSs) for the additive secret sharing scheme 〈v〉, and pseudo-
random secret sharings (PRSSs) for the replicated scheme [[v]]. Note, we could
produce these using additional interaction, but recall our goal is to reduce com-
munication. In particular, we make black-box use of the functionality given in
Fig. 1. Pseudo-random secret sharings, and pseudo-random zero sharings in par-
ticular, for arbitrary access structures can involve a set-up phase requiring the
agreement of exponentially-many keys in general. The protocol is given in [8]
and so we omit it here, though the reader may refer to the full version for an
overview of our variant (specialised for replicated secret-sharing).

3 Passively-Secure MPC Protocol

In this section we outline our optimisation of Maurer’s protocol. As remarked
earlier, our protocol, instead of being in the information-theoretic model, uses
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The Functionality Rand

Set-up: The functionality accepts Initialise or Abort from all parties and the ad-
versary. If any party inputs Abort, the functionality sends the message Abort to all
parties.

PRZS:
– On input PRZS(count) from all parties, if the counter value is the same for all

parties and has not been used before, for each i ∈ [n − 1] the functionality

samples ti
$← F uniformly at random, fixes tn ← − ∑n−1

i=1 ti and sends ti to
party i for each i ∈ P.

PRSS:
– On input PRSS(count) from all parties, if the counter value is the same for

all parties and has not been used before, the functionality samples a set
{rB}B∈B

$← F and for each B ∈ B sends rB to all i ∈ B.

Fig. 1. The functionality FRand

PRFs to obtain additive sharings of zero non-interactively. We assume through-
out that we start with an access structure which does not contain any redundant
players. As stated in Sect. 2, we will assume we can define a partition {Bi} of
B such that Bi �= ∅ and B ∈ Bi implies i ∈ B. We call such a partition (where
Bi �= ∅ for all i) a surjective partition; when this is not possible we provide the
requisite alterations to the protocol in Sect. 4. We consider Bi to be the set of
sets for which party i will be “responsible”.

3.1 Maurer’s “MPC-Made-Simple” Protocol

The information-theoretic protocol we describe is based on one due to Maurer
[16]. Maurer’s protocol is itself a variant of the protocol of Beaver and Wool [3]
but specialised to the case of replicated secret-sharing. For comparison with our
protocol, we explain Maurer’s protocol here.

We assume a Q2 access structure (Γ,Δ), and we share data values x via
the replicated secret-sharing [[x]], where x =

∑
B∈B xB. Since this secret-sharing

scheme is linear, addition of secret-shared values comes “for free”, i.e. it requires
no interaction and parties just need to add their local shares together.

The real difficulty in creating an MPC protocol given a linear secret-sharing
scheme is in performing secure multiplication of secret-shared values, [[x]] and
[[y]]. With this goal, we begin by following [3] and define a surjective function
ρ : B2 → P such that ρ(B1, B2) = i implies that i ∈ B1 ∩ B2; the existence
of such a function follows from the fact that the access structure is Q2. Note
that there are possibly multiple choices for ρ, and that it is certainly not true in
general that i = ρ(B1, B2) implies B1∩B2 = {i} (though clearly B1∩B2 ⊇ {i}).
Note that party ρ(B1, B2) holds a copy of share xB1 and yB2 . We will put player
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ρ(B1, B2) “in charge” of computing the cross term xB1 · yB2 in the following
multiplication protocol:

1. Party i computes

vi ←
∑

B1,B2∈B : ρ(B1,B2)=i

xB1 · yB2

2. Party i creates a sharing [[vi]] of the value vi and distributes the different
summands securely to the appropriate parties according to the replicated
secret-sharing scheme.

3. The parties now locally compute

[[z]] ←
n∑

i=1

[[vi]].

It is clear that each party i, in sharing vi, needs to generate |B| different finite-
field elements, each of which is sent to every member of a given set of parties in
B. In particular this means that each party has to maintain a secure connection
to each other party, assuming a non-redundant access structure. If we let l denote
the average size of B ∈ B, i.e. l =

∑
B∈B |B|/|B|, then it is clear that the total

communication required is n · |B| · l finite-field elements.
In fact each party i sends a total of

∑

B∈B:B�i

(|B| − 1) +
∑

B∈B:B ��i

|B| =
∑

B∈B
|B| −

∑

B∈B:B�i

1

finite-field elements, and hence the total communication (for all parties) for one
multiplication is

n∑

i=1

(
∑

B∈B
|B| −

∑

B∈B:B�i

1

)

= (n − 1) ·
∑

B∈B
|B|

finite-field elements over n · (n − 1) uni-directional secure channels2. For our
example Q2 access structure this translates into sending (6−1) ·41 = 205 finite-
field elements over 6 · 5 = 30 secure channels. Note that the same finite-field
element will be sent to multiple parties (every set of parties B ∈ B obtains
a share common to them all), but we count these elements as distinct when
analysing communication costs.

2 Note, as is common in security systems we assume channels are uni-directional; as
good security practice is to have different secret keys securing communication in
different directions so as to avoid various reflection attacks etc. This is exactly how
TLS and IPSec secure channels are configured.
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3.2 New Protocol

Our protocol is largely the same as Maurer’s, with one major difference: in
our protocol, the parties do not each create a replicated sharing of the partial
product vi – instead, they do the following. Notice that the vi form an additive
sharing 〈z〉 of the sum. Our basic idea is first to re-randomise this sum using
a PRZS, and then to consider each re-randomised vi as one share of the new
secret (namely, the product of the previous two secrets), i.e. consider each share
vi as zB indexed by some B containing i, which should then be distributed to
all other parties in B. There are some minor technical caveats but this is the
essential idea.

Our method directly generalises the method used by [1], which concentrated
on the case of the finite field F2 and a 1-out-of-3 adversary structure. It results in
each party not needing to be connected to each other party by a secure channel.
The total number of distinct finite field elements transmitted for a threshold
structure via this method is then O(n · 2n), as opposed to the O(n2 · 2n) of
Maurer’s protocol. For other Q2 structures the saving in communication is more
significant, as our earlier example demonstrates.

As in Maurer’s “MPC-Made-Simple” protocol, we assume a Q2 access struc-
ture (Γ,Δ) and share data values x via the replicated secret-sharing [[x]], so that
x =

∑
B∈B xB. We also retain the assignment which tells player i = ρ(B1, B2)

to compute the product xB1 · yB2 . However, our basic multiplication procedure
is given by the following:

1. Party i computes

vi ←
∑

B1,B2∈B : ρ(B1,B2)=i

xB1 · yB2

We think of vi as an additive sharing 〈v〉 of the product.
2. The parties obtain an additive sharing of zero 〈t〉 using the PRZS from Fig. 1;

thus party i holds ti such that
∑n

i=1 ti = 0.
3. Party i samples uB for B ∈ Bi such that

∑
B∈Bi

uB = vi + ti.
4. Party i sends, for all B ∈ Bi, the value uB to party j for all j ∈ B.

Notice that the parties do not need to perform local computations after the
communication as in Maurer’s protocol, and that the total number of elements
transmitted is

∑
B∈B(|B| − 1). Also notice that we obtain a valid sharing of the

product as we have assumed Bi �= ∅, and thus every share vi has been utilised
in the final sharing.

The key observation for security is that the PRZS masks the Schur product
terms, so after choosing the uB’s and sending these to the appropriate parties,
not even qualified sets of parties can learn any information about these terms,
despite being able to compute the secret.

Given this informal description, we now give a full description of our MPC
protocol, which is the analogue of [1] for arbitrary Q2 access structures and
arbitrary finite fields; see Fig. 3 for details. One can think of the passively-secure
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Passively Secure MPC Functionality PMPC

Input: On input (Input, xi) by party i, the functionality stores (id, xi) in memory.

Add: On input (Add, id1, id2, id3) from all parties, the functionality retrieves (id1, x)
and (id2, y) and stores (id3, x + y).

Multiply: On input (Multiply, id1, id2, id3) from all parties, the functionality re-
trieves (id1, x) and (id2, y) and stores (id3, x · y).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x)
and returns x to all parties if i = 0, and to player i only otherwise.

Fig. 2. Passively secure MPC functionality FPMPC

protocol as being in the pre-processing model in which the offline phase simply
involves some key agreement. The online phase is then a standard MPC protocol
in which parties can compute an arithmetic circuit on their combined (secret)
inputs, using the multiplication procedure described above, so as to implement
the functionality in Fig. 2. That the protocol securely implements this function-
ality is given by the following theorem, whose proof is given in the full version.

Theorem 1. Suppose we have a non-redundant Q2 access structure with a sur-
jective partition {Bi} of the set B. Then the protocol ΠPMPC securely realises the
functionality FPMPC against passive adversaries in the FRand-hybrid model3.

Assuming a surjective partition, the protocol requires at most
∑

B∈B(|B|−1)
field elements of communication, over |GΓ | secure channels, per multiplication
gate, and the same number to perform the input procedure.

In the output procedure we require that the parties be connected by a complete
network of bilateral secure channels (i.e. n · (n − 1) uni-directional channels) if
all players are to receive distinct private outputs, and instead a complete network
of authenticated channels if only public output is required.

Note that the above theorem is given for non-redundant access structures. To
apply the protocol in the case of redundant access structures, we simply remove
redundant players from the computation phase and only require interaction with
them in the input and output phases. To avoid explaining this (trivial) extra
complication we specialise to the case of non-redundant access structures.

In our previous six party example we have

SC(GΓ ) =
{

(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 5),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5)
}

.

3 The alterations to the protocol for when there is no surjective partition are discussed
in Sect. 4.
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Protocol ΠPMPC

The set Bi denotes the set of the partition B = {Bi}i∈P containing sets associated
to party i (though note that it is usually a strict subset of the sets containing i).

Set-up: The parties set count ← 0.

Input: For party i to provide input x,
1. The parties call Rand with input PRZS(count) so that each player j ∈ P obtains

tj such that
∑

j∈P tj = 0.
2. Party i samples {uB}B∈Bi ← F such that

∑
B∈Bi

uB = x + ti.
3. For each j ∈ P \{i}, party j samples {uB}B∈Bj ← F such that

∑
B∈Bj

uB = tj .
4. For each j ∈ P, for each B ∈ Bj , for each k ∈ B, party j sends uB securely to

party k.
5. The parties increment count by one.

Add:
1. For each B ∈ B, each party i ∈ B locally computes xB +yB so that collectively

the parties obtain [[x + y]].

Multiply:
1. For each i ∈ P, party i computes vi ← ∑

B1,B2∈B : ρ(B1,B2)=i xB1 · yB2 .
2. The parties call Rand with input PRZS(count) so that each player i ∈ P obtains

ti such that
∑

i∈P ti = 0.
3. For each i ∈ P, party i samples {uB}B∈Bi ← F such that

∑
B∈Bi

uB = vi + ti.
4. For each i ∈ P, for each B ∈ Bi, for each j ∈ B \ {i}, party i securely sends

the value uB to party j.
5. The parties increment count by one.

Output([[x]], i):
1. If i �= 0, for each j ∈ P, for each B ∈ Bj , party j securely sends xB to i if

i �∈ B. If i = 0, each player j instead sends to all players i for which i �∈ B. In
the latter case the communication need not be done securely.

2. Player i (or all players if i = 0) computes x ← ∑
B∈B xB .

Fig. 3. Protocol ΠPMPC

Thus in this example we need to send 30 finite-field elements over 18 uni-
directional secure channels per multiplication operation, thus giving a saving
of 85% on the number of finite-field elements transmitted, and 40% on the num-
ber of secure channels needed.

3.3 An Optimisation

We end this section by presenting a minor optimisation of our passively secure
multiplication protocol, which can result in a further reduction in both the
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number of communication channels and the number of finite-field elements that
need to be sent. However, this comes at the expense of needing further PRF
evaluations.

Recall that to each player i we associated a set Bi, of sets B for which player i
is “responsible” for producing the sharing uB during the multiplication protocol.
In our optimisation we make player i responsible for only a single set, which we
call Bi, which is an element of Bi. All other values uB for B ∈ Bi \ {Bi} are
generated by a PRF evaluation.

We informally describe the extensions needed here in the case of a surjec-
tive partition; the extension to non-surjective partitions is immediate. First
we extend the FRand functionality so that it contains an additional command
FRand.Rand(B). This command, on input of a set of players B, will output the
same uniformly random value zB to all players in B. Clearly, this additional
command is a component of the existing command FRand.PRSS, and so can be
implemented in the same way.

Our optimisation of the multiplication protocol is then given in Fig. 4. It is
then clear that we need to transmit only n distinct, finite-field elements over the
set

ĜΓ =
⋃

i∈P

⋃

j∈Bi\{i}
{(i, j)} ⊆ GΓ

of secure channels, which we denote by SC(ĜΓ ). The total number of (non-
distinct) finite fields elements that need to be sent is equal to

∑n
i=1(|Bi| − 1).

Optimised Passively Secure Multiplication Protocol

Multiply:
1. For each i ∈ P, party i computes vi ← ∑

B1,B2∈B : ρ(B1,B2)=i xB1 · yB2 .
2. The parties call Rand.PRZS so that each player i ∈ P obtains ti such that∑

i∈P ti = 0.
3. For each B ∈ Bi \{Bi} the players execute Rand.Rand(B), so that each player

j ∈ B obtains a uniformly random element uB .
4. Party i defines uBi by setting uBi ← vi + ti − ∑

B∈Bi\{Bi} uB .
5. For each i ∈ P, party i sends the value uBi securely to party j for all j ∈ Bi.

Fig. 4. Optimised passively secure multiplication protocol

When specialised to our six-party example from the introduction, and taking
B5 = {1, 2, 5, 6} and B6 = {2, 3, 4, 6} (with the obvious definition of B1, B2, B3,
and B4), we find

ĜΓ =
{

(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 5),

(5, 1), (5, 2), (5, 6), (6, 2), (6, 3), (6, 4)
}

.
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Thus we need to send only 15 finite fields elements over 15 uni-directional secure
channels. This equates to a bandwidth saving of an additional 50% over our
initial protocol, and a 17% saving over the number of secure channels. Compared
to the initial protocol of Maurer we obtain a saving of 93% in the number of
transmitted finite field elements, and a saving of 50% in the number of secure
channels.

4 Passive Multiplication Protocol When f Is Not
Surjective

We now describe the modifications to our basic protocol when we cannot find a
partition of the set B into non-empty sets {Bi}i∈[n] such that i ∈ B for all B ∈ Bi.
We also work out how this change affects our overall consumption of bandwidth,
and the number (and type) of communication channels. For efficiency, we first
select any map f : B −→ P for which Im(f) is as large as possible.

Recall that our basic protocol works in the case that Im(f) = P. The mod-
ification is simply to apply the standard protocol for all i ∈ Im(f), and apply
Maurer’s protocol when i �∈ Im(f). The multiplication protocol then becomes:

1. For each i ∈ P, party i computes vi ← ∑
ρ(B1,B2)=i xB1 · yB2 .

2. The parties call FRand.PRZS so that each player i ∈ P obtains ti such that∑
i∈P ti = 0.

3. For each i ∈ Im(f)
(a) Party i samples {uB}B∈Bi

← F such that
∑

B∈Bi
uB = vi + ti.

(b) Party i sends, for all B ∈ Bi, the value uB securely to party j for all
j ∈ B \ {i}.

4. For each i �∈ Im(f)
(a) Party i samples {si

B}B∈B ← F such that
∑

B∈B si
B = vi + ti. Note that

the sum is over all B ∈ B not B ∈ Bi (which by assumption is empty).
(b) Party i sends, for all B ∈ B, the value si

B securely to party j for all
j ∈ B \ {i}. Note, the transmission is over all B ∈ B not Bi.

5. Party i for each B ∈ B with i ∈ B computes

zB = uB +
∑

j �∈Im(f)

sj
B .

The fact that the multiplication protocol is correct and secure can be easily
verified. The only issue is to adapt our formulae for the number of secure and
authenticated channels needed. Instead of the graph GΓ , we have

G̃Γ =

⎛

⎝
⋃

i∈Im(f)

⋃

B∈Bi

⋃

j∈B\{i}
{(i, j)}

⎞

⎠
⋃

⎛

⎝
⋃

i�∈Im(f)

⋃

B∈B

⋃

j∈B\{i}
{(i, j)}

⎞

⎠ .

and hence we require the set SC(G̃Γ ) of secure channels. The number of finite-
field elements needed to be transmitted in our passively secure protocol above
becomes
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(
∑

B∈B
(|B| − 1)

)

+
∑

i�∈Im(f)

⎛

⎝
∑

B∈B:B�i

(|B| − 1) +
∑

B∈B,B ��i

|B|
⎞

⎠ .

Recall that for the set of authenticated channels HΓ , needed in the actively
secure variant, we just need to guarantee that every party receives one share
from at least one player. Hence, each party in P \ Im(f) can receive all their
required values from any one of the parties in Im(f). Thus, instead of HΓ , we
have

H̃Γ =

⎛

⎝
⋃

i∈Im(f)

⋃

B∈Bi

⋃

j �∈B

{(i, j)}
⎞

⎠ .

and hence a set AC(H̃Γ ) of authenticated channels is needed in place of HΓ in
our actively secure protocol.

5 Summary

To make clear what channels are required when, and how many, we provide
Table 1. Following the standard mathematical notation, we use Kn to denote the

Table 1. Number of channels needed at each point in the computation. The channels
for “Output to one” assumes every party will receive private output. Notice that the
active variant of our protocol never needs a complete network of secure channels in
the online phase and that it only requires a complete authenticated network for the
hash-comparison stage only.

Protocol Procedure Channels required

ΠRand Set-up SC(Kn)

PRSS n/a

PRZS n/a

Passive protocol Input SC(GΓ )

Multiplication SC(GΓ )

Output to one SC(Kn)

Output to all AC(Kn)

Active offline protocol Triple Gen. SC(GΓ )

Triple Sac. AC(HΓ )

Authentication check AC(Kn)

Active online protocol Input SC(HΓ ) + AC(Kn)

Multiplication AC(HΓ )

Output to one SC(HΓ ) + AC(Kn)

Output to all AC(HΓ ) + AC(Kn)
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complete graph on n vertices (i.e. parties) so that, for example, SC(Kn) means
that the n parties are connected in a complete network of secure channels. The
table presents the costs in terms of the sets of edges Kn, GΓ and HΓ . Apart from
the first set, the cardinalities of these sets depend crucially on the precise access
structure one is considering, so it is not possible to give formulae describing
their size. However, since GΓ and HΓ are strict subsets of Kn, we always obtain
benefits over the naive protocol(s).

The set-up of the protocol ΠRand is a one-time offline phase used to gener-
ate sharings of random values at various points for zero communication cost.
While it requires a complete network of secure channels, the main bottleneck
in secret-sharing-based MPC is in multiplication, for which our protocol signifi-
cantly reduces the communication cost.

It should be noted that our online phase methodology can actually be exe-
cuted using other secret-sharing schemes, assuming the Beaver triples in the
offline phase are produced with respect to the corresponding secret-sharing
scheme. In particular in the (n, t)-threshold case it turns out that we would
obtain, using Shamir sharing, an online phase which only requires n · t authenti-
cated channels, as opposed to n · (n − 1) authenticated channels using the näıve
protocol.
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Abstract. Secure multiparty computation (MPC) protocols enable n
distrusting parties to perform computations on their private inputs while
guaranteeing confidentiality of inputs (and outputs, if desired) and cor-
rectness of the computation, as long as no adversary corrupts more than
a threshold t of the n parties. Existing MPC protocols assure perfect
security for t ≤ �n/2� − 1 active corruptions with termination (i.e.,
robustness), or up to t = n − 1 under cryptographic assumptions (with
detection of misbehaving parties). However, when computations involve
secrets that have to remain confidential for a long time such as cryp-
tographic keys, or when dealing with strong and persistent adversaries,
such security guarantees are not enough. In these situations, all parties
may be corrupted over the lifetime of the secrets used in the computa-
tion, and the threshold t may be violated over time (even as portions of
the network are being repaired or cleaned up). Proactive MPC (PMPC)
addresses this stronger threat model: it guarantees correctness and input
privacy in the presence of a mobile adversary that controls a changing
set of parties over the course of a protocol, and could corrupt all par-
ties over the lifetime of the computation, as long as no more than t are
corrupted in each time window (called a refresh period). The threshold t
in PMPC represents a tradeoff between the adversary’s penetration rate
and the cleaning speed of the defense tools (or rebooting of nodes from a
clean image), rather than being an absolute bound on corruptions. Prior
PMPC protocols only guarantee correctness and confidentiality in the
presence of an honest majority of parties, an adversary that corrupts
even a single additional party beyond the n/2− 1 threshold, even if only
passively and temporarily, can learn all the inputs and outputs; and if
the corruption is active rather than passive, then the adversary can even
compromise the correctness of the computation.

In this paper, we present the first feasibility result for constructing
a PMPC protocol secure against a dishonest majority. To this end, we
develop a new PMPC protocol, robust and secure against t < n − 2 pas-
sive corruptions when there are no active corruptions, and secure but
non-robust (but with identifiable aborts) against t < n/2 − 1 active cor-
ruptions when there are no passive corruptions. Moreover, our protocol
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is secure (with identifiable aborts) against mixed adversaries controlling,
both, passively and actively corrupted parties, provided that if there are
k active corruptions, there are less than n − k − 1 total corruptions.

1 Introduction

Secure multiparty computation (MPC) protocols allow a set of distrusting par-
ties, each holding private inputs, to jointly and distributedly compute a func-
tion of the inputs while guaranteeing correctness of its evaluation, and privacy of
inputs (and outputs, if desired) for honest parties. The study of secure computa-
tion has been combining distributed computing paradigms and security method-
ologies. It was initiated by [Yao82] for two parties and [GMW87] for many par-
ties, and both of these works relied on cryptographic primitives. The information-
theoretic setting was introduced by [BGW88,CCD88] which, assuming private
channels, constructed information-theoretically secure MPC protocols tolerating
up to n/3 malicious parties. Assuming a broadcast channel, [RB89] constructs
a protocol that can tolerate up to n/2 malicious parties. These thresholds, n/3
and n/2, are optimal in the information-theoretic setting, in their respective
communication models. In the context of public key cryptography, schemes for
enhancing distributed trust, e.g., threshold encryption and threshold signatures,
are a special case of MPC, e.g., [FGMY97a,FGMY97b,Rab98,CGJ+99,FMY01,
Bol03,JS05,JO08,ADN06]. Also, when the computation to be performed via
MPC involves private keys, e.g., for threshold decryption or signature generation,
it is of utmost importance for trustworthy operation to guarantee the highest
possible level of corruption tolerance, since confidentiality of cryptographic keys
should be ensured for a long time (e.g., years).

Constructing MPC protocols that guarantee security against stronger adver-
saries and at the same time satisfy low communication and computation com-
plexity bounds has seen significant progress, e.g., [IKOS08,DIK+08,DIK10,
BFO12,OY91,BELO14,BELO15]. While enforcing an honest majority bound
on the adversary’s corruption limit renders the problem (efficiently) solvable, it
is often criticized, from a distributed systems point of view, as unrealistic for pro-
tocols that require long-term security of shared secrets used in the computation,
or for very long computations (i.e., reactive operation, typical in systems mainte-
nance), or may be targeted by nation-state adversaries (often called “Advanced
Persistent Threats”). With advancements of cloud hosting of security services,
and online exchanges for cryptocurrencies which require trustworthy services
protected by their distributed nature, the above criticism makes sense. This con-
cern is especially relevant when considering so-called “reactive” functionalities
that never stop executing, e.g., continuously running control loops that perform
threshold decryption or signature generation via a secret shared key. Such long-
running reactive functionalities will become increasingly important for security
in always-on cloud applications: example settings could include the use of MPC
to compute digital signatures in online financial transactions between large insti-
tutions, or to generate securely co-signed cryptocurrency transactions via secret-
shared (or otherwise distributed) keys [GGN16]. In both these cases, one should
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expect persistent strong adversaries to continuously attack the parties involved
in the MPC protocol, and given enough time vulnerabilities in underlying soft-
ware (or even some hardware) will eventually be found, and the cryptographic
keys may be compromised.

An approach to deal with an adversary’s ability to eventually corrupt all
parties is the proactive security model [OY91]. This model introduces the notion
of a mobile adversary, motivated by the persistent corruption of participating
parties in a distributed computation and the continuous race between parties’
corruption and recovery. A mobile adversary is one that can corrupt all parties
in a distributed protocol over the course of a protocol execution but with the
following limitations: (1) only a constant fraction of parties can be corrupted
during any round, and (2) parties periodically get rebooted to a clean initial
state—in a fashion designed to mitigate the total adversarial corruption at any
given time—guaranteeing that some fraction of honest parties will be maintained
as long as the corruption rate is not more than the reboot rate1. The [OY91]
model also assumes that an adversary does not have the ability to predict or
reconstruct the randomness used by parties in any uncorrupted period of time,
as demarcated by rebooting; in other words, a reboot entails erasing all previous
state.

This paper’s main goal is to answer the following basic question: Is it feasible
to construct a proactive MPC protocol for the dishonest majority setting?

1.1 Contributions

We answer this question in the affirmative by developing the first proactive secure
multiparty computation (PMPC) protocol that is secure in the presence of a
dishonest majority. Our new protocol is, first, secure and robust against t < n−2
passive adversaries (parties which follow the protocol but leak what they know)
when there are no active corruptions (arbitrarily misbehaving parties), and when
parties are serially rebooted. Secondly, the same protocol preserves secrecy but
is unfair (with identifiable aborts) against t < n/2 − 1 active adversaries when
there are no additional passive corruptions. Thirdly, the protocol is also secure
(but non-robust with identifiable aborts) against mixed adversaries that control
a combination of passively and actively corrupted parties such that if there are
k active corruptions there are less than n − k − 1 total corruptions2. We note
that the number of parties we start from is n − 1 and not n because we assume
that parties may be serially rebooted and need recovery from the rest of the
n − 1 parties. The threshold t is n − 3 and not n − 2 because in the refresh
protocol, the secret being shared in the randomizing polynomial is always 0, so
the free coefficient in those polynomials is always an additional point that the
adversary knows, hence we can tolerate one less corruption than in the non-
proactive gradual secret sharing case.
1 We model rebooting to a clean initial state to include required global information,

e.g., circuit representation of the function to be computed, identities of parties, access
to secure point-to-point and broadcast channels.

2 The threshold in this case is actually the minimum of n − 3 and n − k − 1.
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Our design and analysis require new ideas, since the security guarantees of all
existing PMPC protocols do not apply in the case of a dishonest passive major-
ity, or in the case of mixed adversaries that may form a majority as described
above. Our PMPC protocol can be based on any one-way function and oblivious
transfer (the same assumptions as the classic [GMW87] protocol, and formally
requires only oblivious transfer which implies the existence of one-way functions).
The secret sharing scheme underlying our PMPC protocol is an adaptation of
[DEL+16], which recently constructed the first stand-alone proactive secret shar-
ing scheme secure against a dishonest majority. The [DEL+16] scheme makes
use of discrete-logarithm-based verification of secret shares (similar to [Fel87]);
for our PMPC protocol (being a portion of a more general protocol), we replace
this component with another technique (described below as “mini MPC”) to
overcome problematic proactive simulation issues in the security proof. Com-
puting on secret-shared data (with security against mobile dishonest-majority
adversaries) is a topic unaddressed by prior work. Our addition and multipli-
cation sub-protocols are the building blocks that enable the parties to jointly
compute a secret sharing of the desired output value. Addition of two secret-
shared values can be performed by local addition of shares (as in many common
secret sharing schemes), but multiplication requires more work. Our multipli-
cation sub-protocol makes use of the [GMW87] protocol for standard MPC to
perform a “mini MPC” on the proactive secret shares held by the parties, in
order to obtain a proactive secret sharing of the multiplication of two secrets.
(More generally, the multiplication sub-protocol can be instantiated based on
any standard MPC protocol Φ secure against a dishonest majority, and inherits
the efficiency properties from Φ.)

To build in security against mobile adversaries, we intersperse the execu-
tion of the addition and multiplication sub-protocols with a refresh sub-protocol
that “refreshes” the shares held by all parties: informally, each time shares are
refreshed, any knowledge of shares from previous “pre-refresh” sharings becomes
useless to the adversary. This effectively prevents the adversary from learning
sensitive information by putting together shares obtained from corruptions that
occur far apart in time. Whenever a party is de-corrupted (rebooted), its mem-
ory contents are erased, so it needs to “recover” the necessary share information,
this is achieved using our recovery sub-protocol which is triggered dynamically
each time a memory loss occurs. The number of parties that can simultaneously
lose memory is a parameter of our protocol, which trades off with the number
of corruptions allowed per phase. This sensitive trade-off is inherent, if n − τ
parties can restore the shares of τ parties who lost memory, then they could also
collude to learn the shares of those τ parties.

As an additional contribution we provide the first (formal) definition of secure
PMPC in the presence of a dishonest majority consisting of passively and actively
corrupted parties in the full version [EOPY]. Prior security definitions for PMPC
only addressed the honest majority setting, so they did not have to address
potential failures of robustness and fairness. Moreover, no existing definitions
considered PMPC security with mixed adversaries. Our ideal functionality for
the dishonest majority setting models robustness and fairness as a fine-grained
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function of the passive and active corruptions that actually occur during a proto-
col execution (rather than a coarser-grained guarantee depending on adherence
to a corruption threshold that is fixed as a protocol parameter), by adapting
for the proactive setting the multi-thresholds paradigm that was introduced by
[HLM13] in the context of standard (not proactive) MPC.

1.2 Related Work

To the best of our knowledge there are currently only two generic PMPC proto-
cols, [OY91] (requires O(Cn3) communication, where C is the size of the circuit
to be computed via MPC) and [BELO14] (requiring O(C log2(C)polylog(n) +
Dpoly(n) log2(C)), where C is the size of the circuit to be computed via MPC
and D its depth). These PMPC protocols are inherently designed for an honest
majority and it seems difficult to redesign them for a dishonest majority; the
reason is that the underlying secret sharing scheme stores secrets as points on
polynomials of degree less than n/2, so the only adversary structure that can
be described is one in terms of a fraction of the degree of the polynomial and
once the adversary compromises enough parties (even if only passively), it can
reconstruct the polynomial and recover the secret.

1.3 Outline

The rest of the paper is organized as follows. Section 2 outlines the terminol-
ogy of proactively secure computation, communication and adversary models;
corresponding formal definitions are in Appendix A in the full version [EOPY].
Section 3 presents details of our PMPC protocol. The security proofs are pro-
vided in Appendix B in the full version [EOPY].

2 Model and Definitions

We consider n parties (pi where i ∈ [n]) connected by a synchronous network
and an authenticated broadcast channel. Protocol communication proceeds in
discrete rounds which are grouped into consecutive blocks called stages. We
consider a mobile adversary with polynomially bounded computing power, which
“moves around” and chooses a (new) set of parties to corrupt per stage, subject
to a maximum threshold of corruptions for any stage. Note that parties once
corrupted do not necessarily remain so for the remainder of the protocol, which
means that over the course of protocol execution, the adversary can corrupt all
the parties, although not all at the same time.

2.1 Phases and Stages of a Proactive Protocol

We adopt terminology from previous formalizations of proactive protocols
[ADN06,BELO14].
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Phases. The rounds of a proactive protocol are grouped into phases ϕ1, ϕ2, . . . .
A phase ϕ consists of a sequence of consecutive rounds, and every round belongs
to exactly one phase. There are two types of phases, refresh phases and operation
phases. The protocol phases alternate between refresh and operation phases; the
first and last phase of the protocol are both operation phases. Each refresh phase
is furthermore subdivided into a closing period consisting of the first k rounds
of the phase, followed by an opening period consisting of the final � − k rounds
of the phase, where � is the total number of rounds in the phase.

In non-reactive MPC, the number of operation phases can be thought to
correspond to the depth of the circuit to be computed. Intuitively, each operation
phase serves to compute a layer of the circuit, and each refresh phase serves to
re-randomize the data held by parties such that combining the data of corrupt
parties across different phases will not be helpful to an adversary.

Stages. A stage σ of the protocol consists of an opening period of a refresh
phase, followed by the subsequent operation phase, followed by the closing period
of the subsequent refresh phase. Thus, a stage spans (but does not cover) three
consecutive phases, and the number of stages in a protocol is equal to its number
of operation phases. In the case of the first and last stages of a protocol, there
is an exception to the alternating “refresh-operation-refresh” format, the first
stage starts with the first operation phase, and the last stage ends with the last
operation phase.

Corruptions. If a party pi is corrupted by the adversary (A) during an oper-
ation phase of a stage σj , then A learns the view of pi starting from its state
at the beginning of stage σj . If the corruption is made during a refresh phase
between consecutive stages σj and σj+1, then A learns pi’s view starting from
the beginning of stage σj . Moreover, in the case of a corruption during a refresh
phase, pi is considered to be corrupt in both stages σj and σj+1. Finally, a party
pi that is corrupt during the closing period of a refresh phase in stage σj may
become decorrupted. In this case, pi is considered to be no longer corrupt in stage
σj+1 (unless A corrupts him again before the end of the next closing period).
A decorrupted party immediately rejoins the protocol as an honest party, if it
was passively corrupted, then it rejoins with the correct state according to the
protocol up to this point; or if it was actively corrupted, then it is restored to
a clean default state (which may be a function of the current round). Note that
in restoring a party to the default state, its randomness tapes are overwritten
with fresh randomness: this is important since otherwise, any once-corrupted
party would be deterministic to the adversary. In terms of modeling, parties to
be decorrupted are chosen arbitrarily from the corrupt set by the environment.

Erasing State. In our model, parties erase their internal state (i.e., the content
of their tapes) between phases. The capability of erasing state is necessary in the
proactive model, if an adversary could learn all previous states of a party upon
corruption, then achieving security would be impossible, since over the course of
a protocol execution a mobile adversary would eventually learn the state of all
parties in certain rounds.



206 K. Eldefrawy et al.

2.2 Mixed Corruption Model

We consider mixed adversaries [HLM13] which can perform two distinct types
of corruptions. The adversary can passively corrupt a set of parties (P) and only
read their internal state; the adversary may also actively corrupt some of these
parties (A) and make them deviate arbitrarily from the protocol. We assume
that A ⊆ P. In traditional MPC, a common notation is to denote the num-
ber of parties by n, and the maximum threshold of corrupt parties by t. For
mixed adversaries, there are distinct thresholds for active and passive corrup-
tions. We write ta and tp to denote the thresholds of active and passive corrup-
tions, respectively, i.e., |A| ≤ ta and |P| ≤ tp. Note that since we have defined
each active corruption to be also a passive corruption, each active corruption
counts towards both ta and tp. Following the notation of [HLM13,DEL+16], in
order to model security guarantees against incomparable maximal adversaries,
we consider multi-thresholds T =

{
(t1a, t1p), . . . , (t

k
a, tkp)

}
which are sets of pairs

of thresholds (ta, tp). Security properties are guaranteed if (A,P) ≤ (ta, tp) for
some (ta, tp) ∈ T , where (A,P) ≤ (ta, tp) is a shorthand for |A| ≤ ta and |P| ≤ tp.
If this condition is satisfied, we write that (A,P) ≤ T .

We define our MPC protocols in terms of four security properties: correctness,
secrecy, robustness, and fairness.3 The security properties which are guaranteed
in any given protocol execution is a function of the number of actually corrupted
parties. Accordingly, we consider four multi-thresholds Tc, Ts, Tr, Tf . Correctness
(with agreement on abort) is guaranteed if (A,P) ≤ Tc, secrecy is guaranteed if
(A,P) ≤ Ts, robustness is guaranteed if (A,P) ≤ Tr, and fairness is guaranteed
if (A,P) ≤ Tf . Note that Tr ≤ Tc and Tf ≤ Ts ≤ Tc, since secrecy and robust-
ness are not well-defined without correctness, and secrecy is a precondition of
fairness.4

2.3 New PMPC and Security Definitions

Formal definitions for a proactive MPC protocol and the corresponding ideal
functionality, and security for mixed mobile adversaries and dishonest majorities
can be found in Appendix A in the full version [EOPY] due to space constraints.
These definitions are new to this work; they do not exist in prior proactive
MPC literature since the dishonest majority setting is unaddressed. One notable

3 These terms are standard in the MPC literature. Correctness means that all parties
that output a value must output the correct output value with respect to the set
of all parties’ inputs and the function being computed by the MPC. Secrecy means
that the adversary cannot learn anything more about honest inputs and outputs
than can already be inferred from the corrupt parties’ inputs and outputs (more
formally, secrecy requires that the adversary’s view during protocol execution can
be simulated given only the corrupt parties’ input and output values). Robustness
means that the adversary must not be able to prevent honest parties from learning
their outputs. Finally, fairness requires that either all honest parties learn their own
output values, or no party learns its own output value.

4 We write T ≤ T ′ if ∀(ta, tp) ∈ T, ∃(t′
a, t′

p) ∈ T ′ such that ta ≤ t′
a and tp ≤ t′

p.
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difference of the proactive dishonest majority definition we develop compared to
the dishonest majority model for standard MPC is that in the standard model,
it is acceptable to exclude parties found to be corrupt and simply restart the
protocol with the remaining parties, whereas in the proactive setting this could
result in the exclusion of all parties even though the adversary cannot actually
corrupt all parties simultaneously. Thus, exclusion of misbehaving parties in
our proactive model is only temporary, and the protocol is guaranteed to make
progress in any phase when the adversary does not cause a majority of parties
to deviate from the protocol (otherwise, the phase is restarted). An adversary
could cause multiple restarts of a phase and delay protocol execution—which
seems unavoidable in a dishonest majority model with a mobile adversary—but
cannot cause a phase to have an incorrect output. Due to the definitions’ length
and notational complexity, we have opted for a less formal protocol description
in the limited space in the body.

3 Construction of a PMPC Protocol for Dishonest
Majorities

3.1 Intuition and Overview of Operation

Our PMPC protocol consists of six sub-protocols. GradualShare allows a dealer
to share a secret s among n parties. Reconstruct allows parties to reconstruct
the underlying secret s based on shares that they hold. Refresh is executed
between two consecutive phases, w and w + 1, and generates new shares for
phase w + 1 that encode the same secret as the shares in phase w. Recover
allows parties that lost their shares to obtain new shares encoding the same
secret s, with the help of other honest parties. Add allows parties holding shares
of two secrets s and s′ to obtain shares that encode the sum s + s′. Mult allows
parties holding shares of two secrets s and s′ to obtain shares that encode the
product s × s′.

The overall operation of the PMPC protocol is as follows. First, each party
uses GradualShare to distribute its private input among the n parties (including
itself). The circuit to be computed via PMPC is public, and consists of multiple
layers each comprised of a set of Add or Mult gates which are executed via the
corresponding sub-protocols (layer by layer). Between circuit layers, the shares
of all parties are refreshed via Refresh. Decorrupted parties obtain new shares
encoding the same shared secrets corresponding to the current state of the MPC
computation, i.e., the output of the current circuit layer and any shard values
that will be needed in future layers, by triggering the Recover sub-protocol as
soon as they find themselves rebooted. When the (secret-shared) output of the
final layer of the circuit is computed, parties use Reconstruct to reconstruct
the final output.

In order to tolerate a dishonest majority, it is not enough to directly store
the inputs of the parties (the secrets to be computed on, and which will at the
end be transformed into the outputs) in the free term, or as other points on a
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polynomial. What is needed is to encode the secrets, and compute using them,
in a different form resistant to a dishonest majority of say up to n − 1 parties.
At a high level, this can be achieved by first additively sharing the secret into
d = n − 1 random additive summands (this provides security against t = n − 3
passive corruptions), then sharing each summand using polynomial-based secret
sharing for a range of different reconstruction thresholds: this is the key insight
of the “gradual secret sharing” scheme of [DEL+16].

We develop protocols to add and multiply shares to perform computation on
the secret shares. Addition can be performed locally, but to multiply we utilize a
standard MPC protocol for a dishonest majority. A simple version of our protocol
yields security against passive corruptions; to furthermore achieve active security,
we leverage constant round non-malleable homomorphic commitments and zero-
knowledge proofs based on one-way functions and oblivious-transfer.

The protocol description thus far makes the following two simplifying
assumptions: (1) the function f to be computed is deterministic, and (2) all
output wire values are learned by all parties. The next two paragraphs discuss
how to generalize our protocols, eliminating these assumptions.

We address randomized functions using a standard technique, each party pi

initially chooses a random value ζi. We treat (xi, ζi) as the input of party pi

(instead of just xi as above), and compute the deterministic function f ′ defined
by f ′((x1, ζ1), . . . , (xn, ζn)) = f(x1, . . . , xn; ζ1 + · · · + ζn). As this is a standard
transformation, we omit further details, and for simplicity of exposition, the rest
of the paper deals only with deterministic functions.

We now describe an adaptation for the case when each party pi is to receive
its own private output yi, as follows. This is a slight variation of the stan-
dard technique of “masking” output values using a random mask known only to
the intended recipient—but we highlight that the standard technique requires
a tweak for the proactive setting.5 Before the reconstruction step, the parties
possess a gradual secret sharing of the output values (y1, . . . , yn). At this point,
each party chooses a secret random value ρi (called a mask) and shares it among
the n parties using GradualShare. Then, the Add sub-protocol is run to obtain a
gradual secret sharing of (y1 + ρ1, . . . , yn + ρn) instead of (y1, . . . , yn). Next, the
Reconstruct sub-protocol is run so that every party learns (y1+ρ1, . . . , yn+ρn).
Finally, each party pi performs an additional local computation at the end of
the protocol, subtracting ρi from the value on his output wire to obtain his final
output yi.

3.2 Real-World Protocol Operation

We now give the formal definition of protocol operation based on the sub-
protocols. Definition 1 is the formalization of the description given in prose
in Sect. 3.1.

5 The standard trick is to consider the masks ρi to be part of the parties’ inputs. In
the proactive setting, it is important that the masks be chosen later on, as we shall
see in the security proof.
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The description of how each sub-protocol works will be given in Sect. 3.3.
Within Definition 1 below, the subprotocols are invoked in black-box manner.

Definition 1 (PMPC Protocol Operation). Given an arithmetic circuit C
(of depth dC) that is to be computed by an MPC protocol on inputs x1, . . . , xn,
the proactive MPC protocol is defined as follows. For simplicity, we assume that
refresh phases occur between layers of the circuit, and let R ⊆ [dC ] be the set of
circuit layers after which a refresh phase is to be triggered.6

1. Each party pi acts as the dealer in GradualShare to share its own input xi

among all n parties. (Note that at the conclusion of this step, the parties hold
secret sharings of all the values on the input wires of C, i.e., all the inputs to
gates at layer 1 of C.)

2. Run the Refresh sub-protocol. The duration of a single Refresh sub-protocol
execution is considered to be a refresh phase.

3. For each layer of the circuit, � = 1, . . . , dC :
– For each addition or multiplication gate μ in layer �:7

Compute a sharing of the value on the output wire of μ by using the Add
or Mult sub-protocol respectively. The parties’ inputs to the Add or Mult
protocol will be the sharings of the values on the input wires of μ, which
the parties already possess (the input sharings are computed by step 1 for
� = 1, and subsequently, the input sharings for layer � + 1 are computed
during step �).

– If � ∈ R, run the Refresh sub-protocol.
4. At the conclusion of step 3, the parties possess a gradual sharing of the value

(y1, . . . , yn) on the output wire(s) of the circuit C, where each yi is the output
intended for party pi. The period from this step until the end of the protocol
is a single operation phase. Each party now samples a random value ρi and
acts as the dealer in GradualShare to share ρi among all n parties. Then, the
Add sub-protocol is run to obtain a gradual sharing of the value (z1, . . . , zn)
where zi = yi + ρi.

5. The Reconstruct sub-protocol is then run to reconstruct the shared value
(z1, . . . , zn).

6. Each party pi obtains its output yi by subtraction: yi = zi − ρi.

Moreover, the adversary may decorrupt a party at any point, during operation
or refresh phases, upon which the decorrupted party is restored to a default state
which we shall call ⊥.

– Whenever a party finds itself with internal state ⊥, it broadcasts a message
Help!.

6 In general, more complex refresh patterns are possible, e.g., at the level of gates
rather than circuit layers.

7 If the Add and Mult sub-protocols are secure under parallel composition, the itera-
tions of this for-loop can be executed in parallel for all gates in layer �.
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– Upon receiving message Help! from a party pi, all parties immediately execute
the Recover sub-protocol so that pi ends up with the secret shares: of all values
on circuit wires that will be used for later computation, or in steps 4–6, of the
masks ρ1, . . . , ρn and the shared output (z1, . . . , zn). In addition, from step
4 onwards, pi is assisted to recover his own mask ρi, by the other parties
sending to pi their shares thereof. Then, the interrupted operation phase or
refresh phase is resumed, starting with the next round after the last completed
operation-phase or refresh-phase round.

3.3 Sub-protocol Specifications

In the following, field operations occur over a finite field F (of prime characteris-
tic). The sub-protocols make use of a polynomial-based secret sharing schemes,
e.g., [Sha79], and are implicitly parametrized by (F, n, d) where n is the number
of parties and n−d−1 is the number of parties that can simultaneously undergo
a reboot (thus losing their shares, and requiring recovery). The multiplication
sub-protocol is additionally parametrized by Φ (which, in turn, is parametrized
by a security parameter κ), which can be any general MPC protocol secure
against up to n− 1 active corruptions (such as [GMW87]). For simplicity, secret
values are assumed to be field elements; multi-element secrets can be handled
by running the sub-protocols on each element separately.

The proactive MPC protocol resulting from instantiating Definition 1 with
the sub-protocols defined in this subsection is denoted by ProactiveMPCF,n,d,Φ.

GradualShare is used by parties to share their inputs, i.e., each party
acts as a dealer when sharing its own inputs. Parties holding sharings (from
GradualShare) of secrets s may use subprotocol Reconstruct to reconstruct
s, or use subprotocol Refresh to refresh (re-randomize) their shares. Parties
holding sharings of secrets s, s′ can compute a sharing of s + s′ using Add, or a
sharing of s × s′ using Mult.

Subprotocol 1 (GradualShare). We denote by pD the dealer who starts in
possession of the secret value s to be shared. At the conclusion of this protocol,
each party (including the dealer) will possess a share of the secret s.

1. pD chooses d random summands s1, . . . , sd which add up to s, Σd
δ=1sδ = s.

2. For δ = 1, . . . , d, the dealer pD does the following:
(a) pD samples a random degree-δ polynomial fδ over finite field F, subject to

fδ(0) = sδ. pD stores the evaluations fδ(1), . . . , fδ(n) and deletes fδ from
memory.

(b) For i ∈ [n], the dealer pD sends shδ,i = fδ(i) to pi, then deletes fδ(i) from
memory.

3. Each party pi stores its d shares shi = (sh1,i, . . . , shd,i).

Subprotocol 2 (Reconstruct). After a sharing of a secret s using
GradualShare, the n parties can reconstruct s as follows.

1. For δ = d, . . . , 1:
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(a) Each party pi broadcasts its share shδ,i.
(b) Each party locally interpolates to determine the polynomial fδ, then com-

putes sδ = fδ(0).
2. Each party outputs the secret s computed as s = s1 + s2 + · · · + sd.

Subprotocol 3 (Refresh). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) and ends this protocol in possession
of new “refreshed” shares sh′

i = (sh′
1,i, . . . , sh

′
d,i).

1. Each party pi generates an additive sharing of 0 (i.e., d randomization sum-
mands which add up to 0). Let the additive shares of pi be denoted by rδ,i:
note that Σd

δ=1rδ,i = 0.
2. For δ = 1, . . . , d do:

(a) For i = 1, . . . , n: Party pi shares rδ,i by running GradualShare and acting
as the dealer.

(b) Each party pi adds up the shares it received: sh′′
i =

∑n
j=1 shj

δ,i and sets
sh′

δ,i = shδ,i + sh′′
i .

3. Each honest party pi deletes the old shares shi and stores instead: sh′
i =

(sh′
1,i, . . . , sh

′
d,i).

The following sub-protocol is used by parties to recover shares for a rebooted
party.

Subprotocol 4 (Recover). Let parties {pr}r∈R be the ones that need recovery,
where R ⊂ [n]. We refer to the other parties, {pi}i/∈R, as “non-recovering par-
ties.” Below, we describe the procedure to recover the shares of a single party pr.
To recover the shares of all parties, the below procedure should be run ∀r ∈ R.

1. For δ = 1, . . . , d do:
(a) Each non-recovering party pi chooses a random degree-δ polynomial gδ,i

subject to the constraint that gδ,i(r) = 0.
(b) Each non-recovering party pi shares its polynomial with the other n −

|R| − 1 non-recovering parties as follows: pi computes and sends to each
receiving party pj the value shi

δ,j = gδ,i(j).
(c) Each non-recovering party pj adds all the shares it received from the other

n−|R|−1 parties for the recovery polynomials gδ,i to its share of fδ, i.e.,
zj
δ = fδ(j) + Σn

i=1sh
i
δ,j = fδ(j) + Σn

i=1gδ,i(j).
(d) Each non-recovering party pj sends zj

δ to pr. Using this information, pr

interpolates the recovery polynomial gδ = fδ + Σn
i=1gδ,i and computes

shδ,r = gδ(r) = fδ(r).

Subprotocol 5 (Add). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) corresponding to a secret s and
sh′

i = (sh′
1,i, . . . , sh

′
d,i) corresponding to a secret s′, and ends this protocol in

possession of shares sh+
i = (sh+

1,i, . . . , sh
+
d,i) corresponding to the secret s + s′.

1. For each δ ∈ {1, . . . , d} and each i ∈ [n], party pi sets sh+
δ,i = shδ,i + sh′

δ,i.
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Subprotocol 6 (Mult). Each party pi ∈ {pi|i ∈ [n]} begins this protocol in
possession of shares shi = (sh1,i, . . . , shd,i) corresponding to a secret s and
sh′

i = (sh′
1,i, . . . , sh

′
d,i) corresponding to a secret s′, and ends this protocol in

possession of shares sh×
i = (sh×

1,i, . . . , sh
×
d,i) corresponding to the secret s × s′.

1. Each party pi adds up its local shares of s and s′ respectively: θi =
∑

δ∈[d] shδ,i

and θ′
i =

∑
δ∈[d] sh

′
δ,i. By construction of the gradual secret sharing scheme,

these sums can be expressed as θi = f̂(i) and θ′
i = f̂ ′(i) for some degree-d

polynomials f̂ , f̂ ′ such that f̂(0) = s and f̂ ′(0) = s′.
2. Run the MPC protocol of [GMW87] as follows:

– The input of party pi to the MPC is (θi, θ
′
i).

– The function to be computed by the MPC on the
collective input

(
(θ1, θ′

1), . . . , (θn, θ′
n)

)
is:

(a) Interpolate (θi)i∈[n] and (θ′
i)i∈[n] to recover the secrets s and s′ as the

free terms of the respective polynomials f̂ and f̂ ′.
(b) Compute the product s× = s × s′.
(c) Compute shares (sh×

δ,i)δ∈[d],i∈[n] as a dealer would when sharing secret
s× using GradualShare.

(d) For each i ∈ [n], output (sh×
δ,i)δ∈[d] to party pi.

3.4 Security Proofs

Security proofs of the full protocol with respect to the formal definitions in
Appendix A are given in Appendix B in the full version [EOPY] due to space
constraints.

4 Conclusion and Open Issues

This paper presents the first proactive secure multiparty computation (PMPC)
protocol for a dishonest majority. Our PMPC protocol is robust and secure
against t < n − 2 passive only corruptions, and secure but non-robust (but with
identifiable aborts) against t < n/2 − 1 active corruptions when there are no
additional passive corruptions. The protocol is also secure, and non-robust but
with identifiable aborts, against mixed adversaries that control a combination
of passively and actively corrupted parties such that with k active corruptions
there are less than n − k − 1 total corruptions.

In this paper we prove the feasibility of constructing PMPC protocols secure
against dishonest majorities. Optimizing computation and communication in
such protocols (and making them practical) is not the goal of this paper and
is an interesting open problem. Specifically, we highlight the following issues of
interest which remain open:

– There are currently no practical proactively secure protocols for dishonest
majorities for specific classes of computations of interest such as threshold
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decryption and signature generation; all existing practical proactively secure
threshold encryption and signature schemes such as [FGMY97a,FGMY97b,
Rab98,FMY01,Bol03,JS05,JO08,ADN06] require an honest majority.

– There are currently no PMPC protocols (or even only proactive secret sharing
schemes) for asynchronous networks and secure against dishonest majorities.
Our PMPC protocol assumes a synchronous network.

– It is unclear what the lowest bound for communication required for a PMPC
protocol secure against a dishonest majority is. We achieve O(n4) commu-
nication for the refresh and recover sub-protocols which are typically the
bottleneck; it remains open if this can be further reduced. PMPC protocols
[BELO14,BELO15] for an honest majority have constant (amortized) com-
munication overhead; it is unlikely that this can be matched in the dishonest
majority case, but it may be possible to achieve O(n3) or O(n2).
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Abstract. In the setting of secure multiparty computation (MPC), a
set of mutually distrusting parties wish to jointly compute a function in
a correct and private manner. An MPC protocol is called fully secure if
no adversary can prevent the honest parties from obtaining their out-
puts. A protocol is called fair if an adversary can prematurely abort the
computation, however, only before learning any new information.

We present highly efficient transformations from fair computations
to fully secure computations, assuming the fraction of honest parties
is constant (e.g., 1% of the parties are honest). Compared to previous
transformations that require linear invocations (in the number of parties)
of the fair computation, our transformations require super-logarithmic,
and sometimes even super-constant, such invocations.

One application of these transformations is a new δ-bias coin-flipping
protocol, whose round complexity has a super-logarithmic dependency on
the number of parties, improving over the protocol of Beimel, Omri, and
Orlov (Crypto 2010) that has a linear dependency. A second application
is a new fully secure protocol for computing the Boolean OR function,
with a super-constant round complexity, improving over the protocol of
Gordon and Katz (TCC 2009) whose round complexity is linear in the
number of parties.
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Finally, we show that our positive results are in a sense optimal,
by proving that for some functionalities, a super-constant number of
(sequential) invocations of the fair computation is necessary for comput-
ing the functionality in a fully secure manner.

1 Introduction

In the setting of secure multiparty computation (MPC), a set of mutually dis-
trusting parties wish to jointly compute a function of their inputs, while guar-
anteeing the privacy of their local inputs and the correctness of the output. The
security definition of such a computation has numerous variants. A major dif-
ference between the variants, which is the focus of this work, is the ability of
an adversary to prevent the honest parties from completing the computation
by corrupting a subset of the parties. According to the full-security variant,
an adversary cannot prevent the honest parties from receiving their output.1 A
more relaxed security definition called fairness, allows an adversary to prema-
turely abort the computation, but only before it has learned any information
from the computation. Finally, security with abort allows an adversary to pre-
vent the honest parties from receiving the output, even after it has learned the
output, but never to learn anything more.

A common paradigm for constructing a protocol that provides a high security
guarantee (e.g., full security) for a given functionality f , is to start with con-
structing a protocol for f of a low security guarantee (e.g., security with abort),
and then to “uplift” the security of the protocol via different generic transforma-
tions (e.g., the GMW compiler from semi-honest security to malicious security).
Hence, finding such security-uplifting transformations is an important research
question in the study of MPC. In this work, we study such security-uplifting
transformations from security with abort and fairness to full security.

It is known that when the majority of the parties are honest, security with
abort can be uplifted to fairness. Given an n-party functionality f , let SSout(f)
denote the functionality that outputs secret shares of y = f(x1, . . . , xn) using
an �n/2�-out-of-n error-correcting secret-sharing scheme (ECSS).2 Assume that
SSout(f) can be computed securely with abort. In case the adversary aborts the
computation of SSout(f), it does not learn any new information, since it can only
obtain less than n/2 shares. Whereas in case the adversary does not abort, it
cannot prevent the honest parties from reconstructing the correct output, thus
completing the computation. Similarly, assume SSout(f) can be securely com-
puted with identifiable abort,3 then the security of computing SSout(f) can be
uplifted to a fully secure computation of f via the following player-elimination

1 This property is also known as guaranteed output delivery.
2 A (t + 1)-out-of-n secret-sharing scheme is error correcting, if the reconstruction

algorithm outputs the correct secret even when up to t shares are arbitrarily modi-
fied. ECSS schemes are also known as robust secret sharing.

3 Same as security with abort, except that upon a premature abort, all honest parties
identify a corrupted party.
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technique: All parties iteratively compute SSout(f) with identifiable abort, such
that in each iteration either all honest parties obtain the output, or the adver-
sary aborts the computation at the cost of revealing the identity of a corrupted
party. After at most t + 1 iterations, it is guaranteed that the computation will
successfully complete. Security with identifiable abort can be reduced to secu-
rity with abort, assuming one-way functions, via a generic reduction [10]. More
efficient generic reductions in terms of round complexity appear in [17,22], using
stronger hardness assumptions.

In case no honest majority is assumed, it is impossible to generically trans-
form security with (identifiable) abort to full security, and even not to fairness;
every functionality can be computed with abort [10] (assuming oblivious transfer
exists), but some functionalities cannot be fairly computed [5,19]. In contrast,
fairness can be uplifted to full security also in the no-honest-majority case [6]
(assuming one-way functions exist),4 by first uplifting the security to fairness
with identifiable abort, and then invoking (up to) t + 1 fair computations of f
with identifiable abort.

In the setting of large-scale computation, the linear dependency on number
of corruptions forms a bottleneck, and might blow-up the round complexity of
the fully secure protocol. In this work, we explore how, and to what extent, this
linear dependency can be reduced.

1.1 Our Results

Our main positive result is highly efficient reductions from full security to fair
computation, assuming that the fraction of honest parties is constant (e.g., 1%
of the parties are honest). We show how to compute in a fully secure manner
an n-party functionality fn, by fairly computing a related n′-party functionality
fn′

for ω(1) sequential times, where n′ = ω(log(κ)) (e.g., n′ = log∗(κ) · log(κ))
and κ is the security parameter. For some functionalities, we only need to be
able to compute the functionality fn′

in a security-with-abort manner (no fair-
ness is needed). Throughout, we assume the static-corruption model, where the
corrupted parties are determined before the protocol begins.

Apart from the obvious benefit of being security-uplifting (from fairness to
full security), the reduction in the number of parties is also useful, i.e., only
n′ = ω(log(κ)) parties are required to work in the protocol, whereas the remain-
ing parties simply “listen” to the computation over a broadcast channel. The
efficiency of secure protocols is typically proportional to the number of parties
(in some cases, cf. [3,4], the dependency is exponential). Furthermore, for imple-
mentations that are only δ-close to being fair (i.e., the real-world computation is
δ-distinguishable from the ideal-world computation, denoted δ-fair below), the
error parameter δ is typically a function of the number of parties. Hence, even

4 Unless stated otherwise, we assume that parties can communicate over a broadcast
channel. If a broadcast channel is not available, identifiable abort cannot be achieved
generically [6], and indeed, some functionalities can be fairly computed, but not with
full security [6,7].
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given a fully secure implementation (or δ-close to being fully secure, denoted δ-
fully-secure below) of a functionality, applying the above reductions can improve
both the security error and the efficiency (see the applications part below for
concrete examples). The reductions presented in this paper are depicted in Fig. 1,
alongside previously known reductions.

To keep the following introductory discussion simple, we focus below on no-
input, public-output functionalities (a single output is given to all parties). A
less detailed description of the reductions to security with abort and the reduc-
tions for the case of with-input functionalities can be found in Sect. 2.1. We
start by describing the reduction from a fully secure computation of a no-input
functionality (e.g., coin flipping) to a fair computation of this functionality, and
an application of this reduction to fair coin flipping. We then describe a lower
bound on the number of rounds in which such a reduction (from fully secure)
invokes the fair functionality.

As mentioned above (and elaborated on in Sect. 2), our protocols make use of
Feige’s lightest-bin protocol for committee election [9]. For integers n′ < n and
for 0 < β < β′ < 1, Feige’s protocol is used by n parties, β fraction of which are
corrupted, to elect a committee of size n′, whose fraction of corrupted parties is

at most β′. We denote by err(n, n′, β, β′) = n
n′ · e− (β′−β)2n′

2(1−β) the error probability
of Feige’s protocol. Note that for n′ = ω(log(κ)) it holds that err(n, n′, β, β′) is
negligible (in κ).

Our results in the no-honest-majority setting hold under the assumption that
enhanced trapdoor permutations (TDP) and collision-resistant hash functions
(CRH) exist. Given a no-input functionality f , let fn denote its n-party variant:
the output contains n copies of the common output.

Theorem 1 (fairness to full security, no-input case, informal). Let f be
a no-input functionality, let n′ < n ∈ N, let 0 < β < β′ < 1, let t = βn, let
t′ = β′n′, and let err = err(n, n′, β, β′). If fn′

can be δ-fairly computed by an
r-round protocol π′ tolerating t′ corruptions, then the following hold.

1. Assuming TDP and CRH, fn can be computed with (t′ · δ + err)-full-security,
tolerating t corruptions by an O(t′ ·r)-round protocol. Furthermore, if π′ is δ-
fully-secure, then the resulting protocol is (δ+err)-fully-secure and has O(t′+r)
rounds.

2. For β′ < 1/2 and n′ = ϕ(κ) · log(κ) for ϕ = Ω(1), if π′ can be computed
	-times in parallel, for 	 = κc (for some universal constant c), then fn can
be computed with (ϕ(κ)2 · 	 · δ + err)-full-security, unconditionally, tolerating t
corruptions by an O(ϕ(κ)2 · r)-round protocol. Furthermore, the computation
is black-box in the protocol π′.5

The idea underlying the above reduction is quite simple. To achieve a fully
secure computation of an n-party functionality fn, we first choose a small com-
mittee of size n′, using an information-theoretically secure committee-election
5 Following [15], by a black-box access to a protocol we mean a black-box usage of a

semi-honest MPC protocol computing its next-message function.
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protocol. The computation is then delegated to this small committee, which in
turn, securely computes the functionality with fairness and identifiable abort.
Since, the computation of the small committee might abort, we might need to
repeat this process several times, while eliminating the aborting parties. See
Sect. 2 for more details.

Application to Coin Flipping. As an application of the above type of reduc-
tion, we show how to improve on the round complexity of δ-bias coin-flipping
protocols. The n-party, no-input, public-output, coin-flipping functionality fn

cf

outputs to all parties a uniformly distributed bit b ∈ {0, 1}. A δ-bias, t-secure,
n-party coin-flipping protocol is a real-world, polynomial-time, n-party protocol
that emulates the ideal functionality fn

cf up to a δ distinguishing distance, even
in the face of up to t corruptions.

Cleve [5] has given a lower bound that relates the bias in any r-round coin-
flipping protocol to 1/r. Averbuch et al. [2] constructed an r-round, t-secure,
O(t/

√
r)-bias coin-flipping protocol for an arbitrary number of parties n and

t < n. This was improved by Beimel et al. [3], who gave an r-round, t-secure,
O(1/

√
r − t)-bias coin-flipping protocol for the case that t = βn for some con-

stant 0 < β < 1. We remark that r-round coin-flipping protocols of bias o(t/
√

r)
are known when the number of parties is at most double-logarithmic in r or when
the difference between corrupted and honest parties is constant [1,3,4,13,20].
None of these protocols, however, deals with a large number of parties when a
β > 0.51 fraction of them are malicious. Actually, for this case, it is not even
known how to obtain an r-round, t-secure, O(1/

√
r)-round coin-flipping pro-

tocol, i.e., where the bias is independent of the number of corruptions. Using
Theorem 1, we are able to improve upon [3] by replacing the linear dependency
on t with a super-logarithmic dependency on the security parameter κ.

Corollary 1 (informal). Let n ∈ N, let 0 < β < 1 be a constant, let t = βn,
and let r : N �→ N be an efficiently computable function. Assuming TDP and
CRH, there exists an n-party, r(κ)-round, O(1/

√
r(κ) − log∗(κ) · log(κ))-bias,

t-secure coin-flipping protocol.

Lower Bound on the Number of Sequential Fair Calls. We prove that some
functionalities, and in particular coin flipping, achieving full-security requires
a super-constant number of functionality rounds, i.e., rounds in which a fair
ideal functionality is invoked, even if a constant fraction of parties are honest.
Namely, the (super-)logarithmic multiplicative overhead in the round complexity,
appearing in Theorem1 (Item 1), cannot be reduced to constant.

The lower bound is proven in a hybrid model in which an ideal computa-
tion with fairness and identifiable abort of the functionality is carried out by a
trusted party. For a no-input functionality fn, the model allows different sub-
sets of parties (committees) to invoke the trusted party in parallel (in the same
functionality round), such that only committee members can abort the call to
the trusted party that is made by the committee. We assume that the outputs
of such parallel invocations, which consist of bit-values and/or identities of the



From Fairness to Full Security in Multiparty Computation 221

aborting parties, are given at the same time to all n parties, unless an invoca-
tion is made by an all-corrupted committee, which can first see the output of
the other parallel invocations before deciding upon its action.

The above model is more optimistic than the one we can actually prove to
exist, assuming a fair protocol for computing the functionality at hand (hence,
proving lower bounds is harder in this model). Actually, the no-honest-majority
part of Theorem 1 (Item 1) can be pushed further in this model to match the
lower bound given below. See the full version [8] for further discussion regarding
this model.

Theorem 2 (necessity of super-constant sequential fair calls, informal).
The following holds in the hybrid model in which any subset of the parties can invoke
the trusted party that fairly computes the coin-flipping functionality. Let π be a coin-
flipping protocol in this model that calls the trusted party in a constant number of
rounds (i.e., in each round, the trusted party can be invoked many times in parallel
by different subsets). Then, for any 1/2 < β < 1, there exists an efficient fail-stop
adversary controlling βn parties that noticeably biases the output of the protocol.

Note that in this model, fully secure coin-flipping protocols do exist (e.g.,
as we show in Theorem 1, by invoking the trusted party in a super-logarithmic
number of rounds).

Fig. 1. Reductions between security notions. Solid arrows refer to black-box reductions
with respect to the functionality (i.e., a hybrid model) whereas dashed arrows refer to
non-black-box reductions (i.e., a protocol compiler). Restricted id-fair refers to fairness
where the set of parties who can abort the computation is restricted to a designated
subset.
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Paper Organization. In Sect. 2, we present a technical overview of our positive
and negative results for no-input functionalities; additional results are presented
in Sect. 2.1. Basic definitions can be found in Sect. 3. Our reductions from full
security to fairness for no-input functionalities are given in Sect. 4. Due to space
limitations, the reductions for of functionalities with inputs, the reductions from
full security to security with abort and the lower bound on the number of sequen-
tial fair calls are deferred to the full version of the paper [8].

2 Technical Overview

We start with describing the techniques underlying our positive results, focusing
on the no-input case for the sake of clarity of the presentation. Later below, we
discuss the ideas underlying the lower bound on round complexity.

Upper Bound. Let fn be some n-party (no-input, public-output) functionality,
and let π be an n-party, r-round protocol that computes fn with fairness, tolerat-
ing t < n corruptions. It was shown by [6] that π can be compiled into a protocol
that computes fn with fairness and identifiable abort. The original compilation
uses the technique of [10] and is inefficient in terms of round complexity. How-
ever, using the constant-round, bounded-concurrent, zero-knowledge techniques
of Pass [22], the resulting protocol has O(r) rounds. Having this compilation
in mind, we henceforth consider the goal of uplifting fairness with identifiable
abort to full security. Let π be a protocol that computes fn with fairness and
identifiable abort tolerating t = β · n corruptions. A näıve way for achieving full
security is using the above mentioned player-elimination technique to obtain a
fully secure computation of fn. This, however, comes at a cost in terms of round
complexity. Specifically, the resulting protocol will run in O(t · r) rounds.

In the following, we explain how the security-uplifting transformation can be
kept efficient in terms of round complexity. Our transformation builds on the
player-elimination technique and works given the following three components:
(i) a method to select a small subset (committee) C of n′ parties that contains
at most t′ = β′ · |C| corrupted parties (for arbitrary small β′ > β), (ii) an
n′-party, r′-round protocol π′ that computes fn′

with fairness and identifiable
abort, and (iii) a monitoring procedure for all n parties to verify the correctness
of an execution of π′ run by the committee members. In such a case, we could
get a simple security-uplifting reduction with a low round complexity (assuming
r′ ≤ r). Specifically, in order to compute fn with full security, we would select a
committee C, let the parties in C execute π′ with full security using the player-
elimination technique, while the remaining parties monitor the execution and
receive the final output from the committee members. Since player elimination
will only be applied to committee members, it may be applied at most t′ times.
Hence, the resulting protocol will run in O(t′ · r′) rounds. Below, we explain
how to select a committee C, and how the execution of the protocol π′ can be
monitored by non-committee parties. Whether an appropriate protocol π′ exists
depends on the functionality at hand.
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Our key tool for electing the committee is Feige’s lightest-bin protocol [9].
This is a single-round protocol, secure against computationally unbounded
adversaries, ensuring the following. If n parties with up to β · n corruptions
use the protocol to elect a committee C of size n′, then for all β′ > β, the
fraction of corrupted parties in the committee is at most β′, with all but proba-

bility err(n, n′, β, β′) = n
n′ · e− (β′−β)2n′

2(1−β) . In particular, for n′ = ω(log(κ)) Feige’s
protocol succeeds with all but negligible probability (in κ). The beauty of this
protocol is in its simplicity, as parties are simply instructed to select a random
bin (out of n/n′ possible ones), and the elected committee are the parties that
chose the lightest bin.

We now turn to explain how the non-committee parties can monitor the work
of the committee members. In the no-input setting that we have discussed so far,
things are quite simple. Recall that all our protocols assume a broadcast channel,
which allows the non-committee parties to see all communication among com-
mittee members.6 Now, all that is needed is that when the protocol terminates,
the non-committee parties can verify that they obtain the correct output from
the computation. To this end, we start the protocol with committee members
being publicly committed to a random string (used as their randomness in the
execution). Then, as the protocol ends, a committee member notifies all parties
of the output it received by proving in zero knowledge that it has followed the
prescribed protocol using the randomness it committed to.

Proving security of the above reduction raises a subtle technical issue. When-
ever a computation by the committee is invoked, it is required that all parties
will obtain the output (either a genuine output or an identity of a corrupted
committee member), however, only corrupted committee members are allowed
to abort the computation. This property is not captured by the standard defi-
nition of fairness with identifiable abort, where every corrupted party can abort
the computation. We therefore introduce a new ideal model with fairness and
restricted identifiable abort that models this property. In this ideal model, the
trusted party is parametrized by a subset C ⊆ [n]. The adversary, controlling
parties in I ⊆ [n], can abort the computation only if I ∩ C �= ∅, by revealing the
identity of a corrupted party i∗ ∈ I ∩ C. This means that if I ∩ C = ∅ this ideal
model provides full security, however, in case C ⊆ I, no security is provided, and
the adversary gets to choose the output.7

The proof consists of two steps. Initially, full security is reduced to fairness
with restricted identifiable abort. This is done by electing a super-logarithmic
committee C using Feige’s protocol, and iteratively invoking the trusted party
for computing fn with fairness with restricted identifiable abort, parametrized
by C, until the honest parties obtain the output. Next, fairness with restricted
identifiable abort is reduced to fairness. This is done by compiling (in a similar
way to the GMW compiler) the protocol π′ for computing fn′

with fairness into
a protocol π for computing fn with fairness with restricted identifiable abort.

6 Private messages should be encrypted before being sent over the broadcast channel.
7 In the with-input setting Sect. 2.1, the adversary also obtains the input values of all

honest parties.
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Lower Bound. Recall that our lower bound is given in the hybrid model in
which a trusted party computes the coin-flipping functionality with fairness and
restricted identifiable abort (as presented before, Theorem2). In this model, in
addition to standard communication rounds, a protocol also has functionality
rounds in which different committees (subsets) of the parties invoke the trusted
party.

Consider an n-party coin-flipping protocol π in this hybrid model with a
constant number of functionality rounds. The heart of the proof is showing that
if none of the committees is large, i.e., has more than log(n) parties, then the
protocol can be biased noticeably. The proof is completed by showing that since
π has only a constant number of functionality rounds, an adversary can force all
calls made by large committees to abort, and thus attacking arbitrary protocols
reduces to the no-large-committee case.

To prove the no-large-committees case, we transform the n-party coin-flipping
protocol π in the hybrid model, into a two-party coin-flipping protocol ψ in the
standard model. By Cleve [5], there exists an attack on protocol ψ. Hence, we
complete the proof by showing how to transform the attack on ψ (guaranteed
by Cleve [5]) into an attack on π. The aforementioned protocol transformation
goes as follows: partition the n parties of π into two subsets, S0 of size βn and
S1 = [n]\S0. The two-party protocol ψ = (P0,P1) emulates a random execution
of π by letting party P0 emulate the parties in S0 and party P1 emulate the
parties in S1. The calls to the trusted party are emulated by P0 as follows: let
C1, . . . , C� be the (small) committees that invoke the trusted party, in parallel, in
a functionality round. In protocol ψ, party P0 sends 	 uniformly distributed bits,
each bit in a different round, and the parties interpret these bits as the output
produced by the coin-flipping functionality. At the end of the protocol, each
party outputs the output of the first party of π in its control. If P0 aborts while
emulating a functionality round, i.e., when it is supposed to send the output bit
of a committee C, party P1 continues as if the first party in C (for simplicity,
we assume this party is in S0) aborts the call to the trusted party in π, and the
rest of the parties in S0 abort immediately after the call to the trusted party.
If P0 aborts in a round that emulates a communication round in π, party P1

continues the emulation of π as if all parties in S0 abort. Party P0 handles an
abort by P1 analogously.

By Cleve [5], there exists a round i∗ such that one of the parties in ψ can
bias the protocol merely by deciding, depending on its view, whether to abort
in round i∗ or not.8 Assume, without loss of generality, that the attacking party
is P0, and the round i∗ is a functionality round (other cases translate directly to
attacks on π). The core difference between the ability of an adversary corrupting
party P0 in ψ from that of an adversary corrupting the parties in S0 in π, is that
the adversary in ψ can decide whether to abort before sending the i∗’th message.
This raises a subtle issue, since the i∗’th message corresponds to an output of the
coin-flipping functionality in π, in response to a call made by some committee

8 The attacker of [5] either aborts at round i∗ or at round i∗+1, but the transformation
to the above attacker is simple (see the full version [8]).
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C. Yet, if the adversary in π controls all parties in C, he can abort after seeing
the output of the call to trusted party made by C and the results of all other
parallel calls, while still preventing other parties from getting the output of the
call made by C. We conclude the proof by showing that if the corrupted subset
S0 is chosen at random, then it contains all parties in the relevant committee
with a noticeable probability, and thus the attack on π goes through.

2.1 Additional Results

In Sects. 1 and 2, we only reviewed our reductions from full security to fairness
for the no-input case. This was done for the sake of clarity, however, in this paper
we also deal with arbitrary functionalities (with input) and with reducing full
security to security with abort (when a vast majority of the parties are honest).
We next state these additional results. We remark that the lower bound for the
no-input case, described above, applies also to the with-input case.

2.1.1 Full Security to Fairness – Arbitrary Functionalities
(with Inputs)

The case of functionalities with inputs is somewhat more involved than that
of no-input functionalities. As in the no-input case, our fully secure computa-
tion of an n-party functionality fn is done by delegating the computation to a
small committee that computes a related n′-party functionality with fairness.
However, when considering functionalities with inputs, parties outside the com-
mittee cannot reveal their inputs to committee members, but still need to make
sure that the right input was used in the computation performed by commit-
tee members. This can be done using secret-sharing schemes and commitments.
Note that non-committee parties take a bigger role in the computation now.
However, corrupted parties outside the committee should never be able to cause
the protocol to prematurely terminate, as otherwise the number of rounds would
depend on the number of corruptions among all parties and not only committee
members. The above becomes even more challenging when wishing to have a few
committees perform the computation in parallel. Here, it must also be verified
that each party provides the same input to all committees.

Considering the no-honest-majority case, we let each party Pi secret share
its input xi in an n′-out-of-n′ secret sharing, publicly commit to every share,
and send each decommitment value, encrypted, to the corresponding committee
member. We define SSn→n′

in (fn) to be the n′-party functionality, parametrized
by a vector of commitments (c1i , . . . , c

n′
i ) for every Pi, where cj

i is a commitment
to the j’th share of xi. The functionality receives as input the deommitments of
each cj

i , reconstructs the decommitted values to obtain the n-tuple (x1, . . . , xn),
computes y = fn(x1, . . . , xn), and outputs y in the clear.

By having the parties publicly commit to shares of their inputs (using a
perfectly binding commitment) and send the decommitment values to the com-
mittee members, corrupted committee members cannot change the values cor-
responding to honest parties (otherwise the decommit will fail and the cheating
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committee member will be identified). Preventing corrupted parties from sending
invalid decommitments to honest committee members is external to the func-
tionality and must be part of the protocol. In addition to TDP and CRH, we
assume non-interactive perfectly binding commitment schemes exist.9 We prove
the following.

Theorem 3 (fairness to full security, informal). Let fn be an n-party
functionality, let n′ = ϕ(κ) · log(κ) for ϕ = Ω(1), let 0 < β < β′ < 1, let
t = βn, let t′ = β′n′, and let err = err(n, n′, β, β′). The following hold assuming
TDP, CRH, and non-interactive perfectly binding commitment schemes.

1. If SSn→n′
in (fn) can be δ-fairly computed by an r-round protocol, tolerating t′

corruptions, then fn can be computed with (t′ ·δ+err)-full-security, tolerating
t corruptions, by an O(t′ · r)-round protocol.

2. If SSn→n′
in (fn) can be δ-fairly computed by an r-round protocol, tolerating

n′ −1 corruptions, 	-times in parallel, for 	 = κc (for some universal constant
c), then fn can be computed with (ϕ(κ)2 · 	 · δ + err)-full-security, tolerating t
corruptions, by an O(ϕ(κ)2 · r)-round protocol.

In the honest-majority setting, a similar result can be achieved with the
transformation only requiring black-box access to the fair protocol, and the
resulting security being unconditional. Furthermore, the transformation becomes
much simpler with an honest majority and relies solely on ECSS scheme.
We denote by SS

n→(t′,n′)
in-out (fn), for t′ < n′/2, the n′-party functionality that

receives secret shares of an n-tuple (x1, . . . , xn), reconstructs the inputs, com-
putes y = f(x1, . . . , xn) and outputs secret shares of y.

Reducing a Logarithmic Factor. When considering functionalities with inputs, it
is possible to use generic techniques (see, for example, [14, Sect. 2.5]) and assume
without loss of generality that the functionality is deterministic and has a public
output (i.e., all parties receive the same output). In this case, we show how to
reduce an additional logarithmic factor from the number of fair computations
performed by the committee, compared to the no-input case. The parties start
by electing a random, (super-)logarithmic committee C, of size m = ϕ(κ) · log(κ),
for some ϕ(κ) ∈ Ω(1) (e.g., ϕ(κ) = log∗(κ)). However, instead of sharing the
inputs with the committee members, the protocol considers all sufficiently large
sub-committees, i.e., all subsets of C of size n′ = m − log(κ)/ϕ(κ). Next, every
party secret shares its input to each of the sub-committees, and each of the
sub-committees computes, in parallel, the functionality SSn→n′

in (f) with fairness

9 Although non-interactive perfectly binding commitments can be constructed from
one-way permutations, in our setting, one-way functions are sufficient. This follows
since Naor’s commitments [21] can be made non-interactive in the common random
string (CRS) model, and even given a weak CRS (a high min-entropy common
string). A high min-entropy string can be constructed by n parties, without assuming
an honest majority, using the protocol from [12] that requires log∗(n)+O(1) rounds.



From Fairness to Full Security in Multiparty Computation 227

and identifiable abort. It is important for each party to prove in zero knowl-
edge that the same input value is shared across all sub-committees, in order to
ensure the same output value in all computations. We show that in this case:
(1) there are polynomially many sub-committees, (2) with overwhelming prob-
ability, no sub-committee is fully corrupted, and (3) if the adversary aborts
the fair computations in all sub-committees, then log(κ)/ϕ(κ) corrupted parties
must be identified. It follows that after ϕ2(κ) iterations the protocol is guaran-
teed to successfully terminate.

In order to prove security of this construction, we generalize the notion of
fairness with restricted identifiable abort to the with-input setting. The ideal
model is parametrized by a list of subsets C1, . . . , C� ⊆ [n], such that if one of
the subsets is fully corrupted, i.e., Ci ⊆ I for some i ∈ [	] (where I is the set of
corrupted parties), then no security is provided (the adversary gets all inputs and
determines the output). If one of the subsets is fully honest, i.e., Ci ∩ I = ∅ for
some i ∈ [	], then the adversary cannot abort the computation. Otherwise, the
adversary is allowed to abort the computation by revealing a corrupted party
in each subset, however, only before it has learned any new information. See
Sect. 3.1 for more details.

Application to Fully Secure Multiparty Boolean OR. An application of the above
reductions is a fully secure protocol for n-party Boolean OR. Gordon and Katz
[11] constructed a fully secure protocol, tolerating t < n corruptions, that
requires O(t) rounds.

Corollary 2 (informal). Under the assumptions in Theorem3, the n-party
Boolean OR functionality can be computed with full security tolerating t = βn
corruptions, for 0 < β < 1, with round complexity O(log∗(κ)).

Application to a Best-of-Both-Worlds Type Result. Another application is to a
variant of the protocol of Ishai et al. [16] that guarantees t-full-security assuming
an honest majority and t-full-privacy otherwise.10 Their idea is to repeatedly
compute SSout(fn), using a secure protocol with identifiable abort, and use the
player-elimination approach until the honest parties obtain the secret shares and
reconstruct the result. It follows that the round complexity in [16] is O(t). The
above reduction suggests an improvement both to the round complexity of the
protocol and to the privacy it guarantees.

Corollary 3 (informal). Let fn be an n-party functionality and let t = βn for
0 < β < 1, and consider the assumptions as in Theorem3. Then, there exists a
single protocol π, with round complexity O(log∗(κ) · log(κ)), such that:

1. π computes fn with O(log∗(κ) · log(κ))-full-privacy.
2. If β < 1/2, then π computes fn with full security.

10 t-full-privacy means that the adversary does not learn any additional information
other than what it can learn from t + 1 invocations of the ideal functionality, with
fixed inputs for the honest parties.



228 R. Cohen et al.

Application to Uplifting Partially Identifiable Abort to Full Security. Finally,
we improve a recent transformation of Ishai et al. [18, Theorems 3 and 4] from
partially identifiable abort11 to full security in the honest-majority setting. In
[18], the computation of SSn→(t′,n′)

in-out (fn) with partially identifiable abort is car-
ried out iteratively by a committee, initially consisting of all the parties, until
the output is obtained. In case of abort, all the identified parties (both honest
and corrupted) are removed from the committee. It follows that the number of
iterations in [18] is O(n).

Corollary 4 (informal). Let fn be an n-party functionality, let n′ = log∗(κ) ·
log(κ), let 0 < β < β′ < 1/2, let t = βn and t′ = β′n′, and let π′ be an
r-round protocol that securely computes SSn→(t′,n′)

in-out (fn) with β′-partially identifi-
able abort, tolerating t′ corruptions. Then, fn can be computed with full security,
tolerating t corruptions, by a O(t′ · r)-round protocol that uses the protocol π′ in
a black-box way.

2.1.2 Security with Abort to Full Security
When a vast majority of the parties are honest, similar techniques can be used
to efficiently uplift security with abort to full security. We emphasize that since
we only consider security with abort, no corrupted parties are identified if the
protocol halts, and so the player-elimination technique mentioned before cannot
be applied in this setting. We stress that for this result, n is not required to be
super-constant. We prove the following theorem.

Theorem 4 (security with abort to full security, informal). Let fn be an
n-party functionality, and let t such that t·(2t+1) < n. Then, fn can be computed
with full security tolerating t corruptions (with information-theoretic security) in
the hybrid model computing SS

n→(t,2t+1)
in-out (fn) with abort. For t · (3t + 1) < n, the

above holds with perfect security.

To the best of our knowledge, the transformation in Theorem4 is the first
generic black-box transformations from security with abort to full security (not
requiring identifiability).

3 Preliminaries

In this section we present a new security definition, fairness with restricted
identifiable abort, that will play a central role in our constructions.

11 A computation has α-partially identifiable abort [18], if in case the adversary aborts
the computation, a subset of parties is identified, such that at least an α-fraction of
the subset is corrupted.
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3.1 Fairness with Restricted Identifiable Abort (with Inputs)

Delegating computation to a small committee will be a useful technique through-
out this work. In such a computation, we wish to allow non-members of the com-
mittee to monitor the execution of the protocol by committee members, however,
non-members should never be able to disrupt the execution themselves. To cap-
ture the required security, we introduce a variant of fairness with identifiable
abort that will be used as an intermediate step in our constructions.

This definition captures the delegation of the computation to smaller com-
mittees that independently carry out the (same) fair computation, such that the
adversary can only abort the computation of committees with corrupted parties.

In Sect. 4, we use this security notion for the case of no-input functionalities.
Clearly, this is a special case captured by the general definition. We first present
a variant of the definition that does not require fairness, which, looking ahead,
will turn out to be useful in some of the applications.

Ideal Model with Restricted Identifiable Abort. An ideal computation, with
C-identifiable-abort, of an n-party functionality f on input x = (x1, . . . , xn)
for parties (P1, . . . ,Pn) with respect to C = (C1, . . . , C�), where C1, . . . , C� ⊆ [n],
in the presence of an ideal-model adversary A controlling the parties indexed by
I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party : An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. Let x′

i be the value actually sent as the input of
party Pi.

Early abort : If there exists a corrupted party in every subset Cj , i.e., if I ∩Cj �= ∅
for every j ∈ [	], then the adversary A can abort the computation by choosing
an index of a corrupted party i∗j ∈ I ∩ Cj for every j ∈ [	] and sending the
abort message (abort, {i∗1, . . . , i

∗
�}) to the trusted party. In case of such abort,

the trusted party sends the message (⊥, {i∗1, . . . , i
∗
�}) to all parties and halts.

Trusted party answers adversary : If Cj ⊆ I for some j ∈ [	], the trusted party
sends all the input values x′

1, . . . , x
′
n to the adversary, waits to receive from the

adversary output values y′
1, . . . , y

′
n, sends y′

i to Pi and proceeds to the Outputs
step. Otherwise, the trusted party computes (y1, . . . , yn) = f(x′

1, . . . , x
′
n) and

sends yi to party Pi for every i ∈ I.
Late abort : If there exists a corrupted party in every subset Cj , then the adversary

A can abort the computation (after seeing the outputs of corrupted parties) by
choosing an index i∗j ∈ I ∩Cj for every j ∈ [	] and sending the abort message
(abort, {i∗1, . . . , i

∗
�}) to the trusted party. In case of such abort, the trusted

party sends the message (⊥, {i∗1, . . . , i
∗
�}) to all parties and halts. Otherwise,

the adversary sends a continue message to the trusted party.
Trusted party answers remaining parties: The trusted party sends yi to Pi for

every i /∈ I.
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Outputs: Honest parties always output the message received from the trusted
party and the corrupted parties output nothing. The adversary A outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupted parties from the trusted party and its auxiliary input.

Definition 1 (ideal-model computation with restricted identifiable
abort). Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be an n-party functionality, let I ⊆ [n],
and let C = (C1, . . . , C�), where C1, . . . , C� ⊆ [n]. The joint execution of f with
C under (A, I) in the ideal model, on input vector x = (x1, . . . , xn), auxiliary
input z to A, and security parameter κ, denoted IDEAL

C-id-abort
f,I,A(z) (x, κ), is defined

as the output vector of P1, . . . ,Pn and A(z) resulting from the above described
ideal process.

To keep notation short, in case C = {C1}, i.e., 	 = 1, we denote C1-id-abort
instead of C-id-abort. The ideal model presented above defines security with
C-identifiable-abort. We define the fair variant of this ideal computation as
follows:

Ideal Model with Fairness and C-Identifiable-Abort. This ideal model proceeds
as in Definition 1 with the exception that in step Late abort, the adversary is
not allowed to abort the computation. This ideal computation is denoted as
IDEAL

C-id-fair
f,I,A(z)(x, κ).

Security Definitions. We present the security definition according to the ideal
model computing f with fairness and C-identifiable-abort in the computa-
tional setting. The definitions for security with C-identifiable-abort and for the
information-theoretic setting follow in a similar way.

Definition 2 Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be an n-party functionality and let
π be a probabilistic polynomial-time protocol computing f . The protocol π (δ, t)-
securely computes f with fairness and (	, n′, t′) -identifiable-abort (and computa-
tional security), if for every probabilistic polynomial-time real-model adversary A,
there exists a probabilistic polynomial-time adversary S for the ideal model, such
that for every I ⊆ [n] of size at most t and subsets C1, . . . , C� ⊆ [n] satisfying
|Cj | = n′ and |I ∩ Cj | ≤ t′, for every j ∈ [	], it holds that
{
REALπ,I,A(z)(x , κ)

}
(x ,z)∈({0,1}∗)n+1,κ∈N

≡δ
c

{
IDEAL

(C1,...,C�)-id-fair
f,I,S(z) (x , κ)

}
(x ,z)∈({0,1}∗)n+1,κ∈N

.

If δ is negligible, we say that π is a protocol that t-securely computes f with
fairness and (	, n′, t′)-identifiable-abort and computational security.

4 Fairness to Full Security for No-Input Functionalities

In this section, we present a reduction from a fully secure computation to a fair
computation for functions without inputs (e.g., coin flipping). In Sect. 4.1, we
consider a reduction that does not assume an honest majority. We present the
honest-majority setting and the application to coin flipping in the full version.
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Our reductions are two-phased. Initially, we show how to reduce full security
to fairness with restricted identifiable abort in a round-efficient manner. Next,
we show how to reduce fairness with restricted identifiable abort to fairness.

Recall that if a no-input functionality f has public output, then it can be
defined for any number of parties. We denote by fn the functionality f when
defined for n parties, and show how to compile any fair protocol computing
fn′

to a protocol that fairly computes fn with restricted identifiable abort (for
n′ < n). For integers n′ < n and for 0 < β < β′ < 1 we define err(n, n′, β, β′) =
n
n′ · e− (β′−β)2n′

2(1−β) . In addition, denote by SS
(t,n)
out (fn) the n-party functionality that

computes fn and outputs shares of the result using a (t + 1)-out-of-n error-
correcting secret-sharing scheme. We prove the following theorem.

Theorem 5 (restating Theorem 1). Assume that TDP and CRH exist. Let
f be a no-input functionality with public output, let n′ < n be integers, let
0 < β < β′ < 1, and let t = βn and t′ = β′n′.

1. If fn′
can be (δ, t′)-securely computed with fairness by an r-round protocol,

then fn can be (t′ · δ + err(n, n′, β, β′), t)-securely computed with full security
by an O(t′ · r)-round protocol.

2. If fn′
can be (δ, t′)-securely computed with full security by an r-round protocol,

then fn can be (δ + err(n, n′, β, β′), t)-securely computed with full security by
an O(t′ + r)-round protocol.

3. For β′ < 1/2 and n′ = min(n, log(κ) · ϕ(κ)) with ϕ = 1/
√

1 − 2β′ + Ω(1),12

the following holds unconditionally. If SS
(t′,n′)
out (fn′

) can be (δ, t′)-securely
computed with abort by an r-round protocol, 	-times in parallel, for 	 =
κlog(e)·( 2

e+
1

ϕ(κ) ), then fn can be (ϕ(κ)2 · 	 · δ + err(n, n′, β, β′), t)-securely com-
puted with full security by an O(ϕ(κ)2 · r)-round protocol.

The main ideas of the proof of Theorem5 are given in the sections below; due
to space limitations, the full proof appears in the full version [8]. The first part
follows from a combination of Theorems 6 and 7; the second part from Theorem6
and Corollary 5; and the third part we prove in the full version.

4.1 Fairness to Full Security Without an Honest Majority
(No Inputs)

We now present a reduction from full security to fairness for no-input function-
alities when an honest majority is not assumed. In Sect. 4.1.1, we show how to
compute fn with full security in the hybrid model computing fn with fairness
and restricted identifiable abort. In Sect. 4.1.2, we show how to compile a fair
protocol for fn′

to a fair protocol for fn with restricted identifiable abort.

12 By ϕ = 1/
√

1 − 2β′ + Ω(1) we mean that for sufficiently large κ it holds that
ϕ(κ) > 1/

√
1 − 2β′.
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4.1.1 Fairness with Restricted Identifiable Abort to Full Security
We start by showing how to reduce full security to fairness with restricted iden-
tifiable abort. A single committee C is considered in this setting (i.e., 	 = 1). The
idea is quite simple: initially, a committee C is elected using Feige’s lightest-bin
protocol [9] such that the ratio of corrupted parties in the committee is approx-
imately the same as in the original party-set. Next, the parties sequentially call
the fair computation with C-identifiable-abort, until receiving the output.

Theorem 6. Let f be a no-input, n-party functionality with public output, let
n′ < n, let 0 < β < β′ < 1, and let t = βn and t′ = β′n′. Then, f can be
(err(n, n′, β, β′), t)-securely computed with full security in a hybrid model that
computes f with fairness and (n′, t′)-identifiable-abort, by using t′ +1 sequential
calls to the ideal functionality.

The proof of Theorem6 can be found in the full version [8].

4.1.2 Fairness to Fairness with Restricted Identifiable Abort
We next present a reduction from a fair computation with restricted identifiable
abort of fn to a fair computation of fn′

. More specifically, let π′ be a fair
protocol computing fn′

by a subset of n′ parties C. We show that π′ can be
compiled into a protocol π that computes f with fairness and C-identifiable-
abort. The underlying idea is to let the committee C prove that every step in the
execution is correct (in a similar way to the GMW compiler [10]) such that when
π′ terminates the parties in C′ either obtain the output or identify a corrupted
party. Next, every party in the committee broadcasts the result and proves that
it is indeed the correct result to all n parties.

The above is formally stated in the theorem below, proved in the full ver-
sion [8], using the following notations. Let f be a no-input functionality with
public output, let t, n′ < n, let t′ < n′, and let C ⊆ [n] of size n′.

Theorem 7. Assume that TDP and CRH exist, and let f be a no–input func-
tionality with public output. Then, there exists a ppt algorithm Compilern

′→n
no-in

such that for any n′-party, r-round protocol π′ computing fn′
, the protocol

π = Compilern
′→n

no-in (π′, C) is an n-party, O(r)-round protocol computing fn with
the following guarantee. If the number of corrupted parties in C is at most t′,
and π′ is a protocol that (δ, t′)-securely computes fn′

with fairness, then π is a
protocol that (δ, t)-securely computes fn with fairness and C-identifiable-abort.

The proof of Theorem 7 can be easily adjusted to the case where π′ is a fully
secure protocol for computing fn′

. In this case, since the augmented coin-tossing
functionality fC

aug-ct used in the compiler is secure with C-identifiable-abort, the
adversary can force to restart it t′+1 times. Once fC

aug-ct completes, the adversary
cannot abort the computation. This yields the following corollary.
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Corollary 5. Assume that TDP and CRH exist. Then, there exists a ppt

algorithm Compilern
′→n

no-in such that for any n′-party, r-round protocol π′ com-
puting fn′

, the protocol π = Compilern
′→n

no-in (π′, C) is an n-party, O(t′ + r)-round
protocol computing fn with the following guarantee. If the number of corrupted
parties in C is at most t′, and π′ is a protocol that (δ, t′)-securely computes fn′

with full security, then π is a protocol that (δ, t)-securely computes fn with full
security.
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Abstract. In private set intersection (PSI), a set of parties, each hold-
ing a private data set, wish to compute the intersection over all data sets
in a manner that guarantees both correctness and privacy. This secure
computation task is of great importance and usability in many different
real-life scenarios. Much research was dedicated to the construction of
PSI-tailored concretely efficient protocols for the case of two-party PSI.
The case of many parties has been given much less attention, despite
probably being a more realistic setting for most applications.

In this work, we propose a new concretely efficient, highly scalable,
secure computation protocol for multiparty PSI. Our protocol is an
extension of the two-party PSI protocol of Dong et al. [ACM CCS’13]
and uses the garbled Bloom filter primitive introduced therein. There are
two main variants to our protocol. The first construction provides semi-
honest security. The second construction provides (the slightly weaker)
augmented semi-honest security, and is substantially more efficient. Fur-
thermore, in the augmented semi-honest protocol all heavy computations
can be performed ahead of time, in an offline phase, before the parties
ever learn their inputs. This results in an online phase that requires only
short interaction. Moreover, in the online phase, interactions are per-
formed over a star topology network. All our constructions tolerate any
number of corruptions.

We implemented our protocols and incorporated several optimization
techniques. These techniques allow the running time of the protocol to
be comparable to that of the two party protocol of Dong et al. and scale
linearly with the number of parties. We ran extensive experiments to
compare our protocol with the two-party protocol and to demonstrate
the effect of the different optimizations.
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1 Introduction

Powerful feasibility results for secure multiparty computation were given three
decades ago [1,10,23] demonstrating that any polynomial time computable func-
tion can also be securely computed. Furthermore, in the last decade, there
has been tremendous progress in the construction of concretely efficient generic
secure two-party protocols, and for extent also for the multiparty setting.

Most of the above progress in concretely efficient secure computation was
made in the design of generic protocols via the circuit evaluation paradigm,
which allows parties to jointly and efficiently compute a logical or arithmetic
circuit for computing the functionality at hand. The generic approach, however,
becomes much less applicable for functionalities that require the evaluation of
large circuits. One such example is private set intersection (PSI), which is the
focus of this work.

In the PSI problem a set of parties, each holding a large private data set,
wish to compute the intersection over all data sets. PSI is of great relevance to
many different real-life scenarios, motivated, for example by the need to perform
joint computational tasks over several sensitive databases. Much research was
dedicated to the construction of PSI-tailored highly efficient protocols for the
case of two parties. A survey of the abundance of works on efficient two-party PSI
protocols is given in [20], including a classification of the underlying techniques.
Some results on this topic can be found in, e.g., [5–8,13,16,17,19,20], where
many of the recent results include optimized implementations. To our discussion,
most relevant is the work of [6], which we describe in detail below.

The case of more than two parties was given much less attention. To the best
of our knowledge the only implementation of a concretely efficient multiparty
PSI protocol to date was recently given in [18]. Nevertheless, multiparty private
set intersection remains a very relevant and important question and the case
of many parties is the right setting in many scenarios. As a running example,
we take the scenario that motivated this work to begin with. Consider a set of
governmental or commercial agencies wishing to collaborate to detect a possible
intrusion attack to a common network. Each agency must protect the privacy of
its information and of its costumers. However, as part of the collaborative effort
to detect an intrusion, the agencies are interested in finding the intersection over
the sets of suspicious IP addresses held by each agency.

In light of the above, the main question that this work deals with is:

Construct concretely efficient secure multiparty protocols for computing
private set intersection that scale well with the number of parties and with
data set size.
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1.1 The Protocol of Dong et al. [6]

The starting point of our work is the two-party PSI protocol of [6]. They intro-
duced garbled Bloom filters – a cryptographic variant of the Bloom filter data
structure, introduced by Bloom [3]. Recall that a Bloom filter, BFS , encodes a
set S of elements as an m-bit vector with respect to k randomly selected hash
functions h1, . . . , hk. To insert an element x into the Bloom filter, the indices
h1(x), . . . , hk(x) are all set to 1 (all indices are initialized to 0). A search query
is never answered by a false negative, and is answered by a false positive with
overwhelmingly low probability for the right choice of k and m (depending on
the bound on the size of the set).

Dong et al. [6] introduced a garbled version of the Bloom filter (GBF),
obtained by expanding each bit in the original Bloom filter to a λ-long bit string
(where λ depends on the security parameter). The strings are chosen such that
for every x, if x ∈ S, then the XOR of the strings in indices h1(x), . . . , hk(x) is
the all-zero string1, and is a uniformly chosen string otherwise (i.e., if x /∈ S).
The false negative probability of GBF searches is inherited from the false positive
probability of the original Bloom filter. The false positive probability is 2−λ.

A property of garbled Bloom filters which is very useful for computing the
intersection, is that for two sets S1,S2 the bit-wise XOR on GBFS1 and GBFS2

yields GBFS1∩S2 . In addition, seeing the strings in the GBF for any proper
subset the indices h1(x), . . . , hk(x) leaks nothing on whether x ∈ S or not.

The construction of [6] considered a client C and a server S and worked in
the semi-honest model (which we also consider here). In a preliminary phase, the
parties agree on a sequence of hash functions (modeled as random functions). The
client, holding a set SC, is instructed to construct a local GBFSC

and the server
S, holding a set SS, is instructed to construct a local BFSS

(both, with respect
to the predetermined set of hash functions). Then, using oblivious transfer, for
each i ∈ [k] (where k is the size of the filters), S learns a string si from C, where
if BFSS

[i] = 1 it holds that si = GBFSC
[i] and si is a randomly selected string

otherwise. The security of the oblivious transfer ensures that the clients learn
nothing about the choices of the server, and the server learns nothing about the
value of GBFSC

[i] whenever BFSS
[i] = 0. By the properties of garbled Bloom

filters, the server ends up with the garbled Bloom filter of the intersection.
Recently, Rindal and Rosulek [21] extended the construction of [6] to the

malicious setting, using cut-and-choose techniques. We believe that similar tech-
niques may be applied to our constructions to obtain a maliciously secure
multiparty PSI protocol. We leave this as future work.

1.2 Efficient Secure PSI for Many Parties

Freedman et al. [7] suggested a multiparty PSI protocol, based on oblivious poly-
nomial evaluation (OPE) which is implemented using additively homomorphic
1 In the original work of [6], this value was x itself, rather than the all-zero string.

This change is of no real importance, however, it makes the presentation of our
construction simpler.



238 R. Inbar et al.

encryption, such as Paillier encryption scheme. Recently, Hazay and Venkita-
subramaniam [11] presented a reduction from the multiparty (semi-honest and
malicious) case to the two-party case. Specifically, they run a version of the
protocol of [7] between pairs of parties. Their construction runs over a star
network topology and is asymptotically efficient. However, it requires a linear
number of encryptions and decryptions of an additively homomorphic public-key
encryption scheme.

The only work, we are aware of, that offered an implementation of a con-
cretely efficient secure multiparty PSI protocol is the very recent work of
Kolesnikov et al. [18]. They propose a highly efficient construction, based on
a new primitive that they call oblivious programmable pseudorandom function.

1.3 Our Contribution

In this work we extend the construction of [6] to obtain protocols for securely
computing the PSI functionality with many parties. We describe three proto-
cols for three different settings, differing on the assumed adversarial model. All
our protocols are highly efficient and scale well as the number of parties and
the size of each data set grow. We implemented all three constructions and ran
extensive experiments to evaluate the different components of our protocols and
the multiple improvements that were incorporated. The experiments also nicely
demonstrate the scalability of our construction. We next describe the three vari-
ant of the protocol and motivate each of them.

An Information Theoretic Construction – When the Server Is External and Does
Not Collude with Other Parties. Consider our running example of collaborative
intrusion detection, and consider the case where a regulator (server), which is
assumed to never collude with any of the clients, wishes to learn the intersection
over all the data sets of local agencies (clients). For this case, we construct a
protocol that uses no cryptographic hardness assumptions for securely comput-
ing the intersection over the data sets of t − 1 clients P1, . . . ,Pt−1. Indeed, this
protocol is the basis of all our constructions.

The protocol is initialized by the server randomly choosing a sequence of
k hash functions h1, . . . , hk and sending their description to the clients. Each
client Pi first locally computes a garbled Bloom filter GBFi encoding its private
data set (with respect to h1, . . . , hk). The client then selects t random strings
si
1, . . . , s

i
t−1, each as long as the GBF, under the constraint that the XOR of these

t strings equals GBFi (i.e., it is a t-out-of-t XOR secret sharing of GBFi). Finally,
each client XORs all the shares it received (i.e., client j computes the XOR of
s1j , . . . , s

t−1
j ) to obtain a share s∗

j of the garbled Bloom filter of the intersection.
The client then sends the result to the server P0. The server computes the XOR
of all the shares it received to obtain the resulting garbled Bloom filter.

The correctness of the protocol follows from the fact that the XOR of two
garbled Bloom filters is a garbled Bloom filter of the intersection. The security
of the protocol stems from the fact that all that clients see are random shares,
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and the server learns nothing but the XOR of all local GBFs. See the full version
of our paper for the formal description of the protocol.

A Semi-honest Construction. Before demonstrating how to extend the previous
construction to provide semi-honest security, let us point out the changes in the
settings and the shortcomings of the information theoretic construction. The
first change is that the server should not learn anything about the intersection
of the data sets of P1, . . . ,Pt−1 (other than what is implied by the intersection
of all parties). This could be overcome by a similar manner to what is done
in the two-party protocol of [6]. That is, the server locally computes a Bloom
filter BF0 and for every coordinate �, if BF0[�] = 1 then P0 asks from each
client Pi the �’th block of the share s∗

j , and if BF0[�] = 0, then P0 asks from
each client Pi a random string instead. Let s∗ = GBFIS be the secret filter
reconstructed by the server P0. Using the oblivious transfer functionality, the
interaction is done such that Pi learns nothing about the choice of the server,
and the server learns nothing about the string it has not chosen to learn. We
denote the communication pattern of this interaction as the star protocol.

The second change is in the adversarial model. Before, we assumed that if
the adversary corrupts the server P0, then it does not corrupt any of the clients.
Now, we put no such restriction on the adversary. Consider the case that an
element x is an element in the set of P0 but not in the set of P1. In this case, the
adversary corrupting P0 and P1, must not learn whether x is in the intersection
of the sets of all honest parties P2, . . . ,Pt−1 or not. In the star protocol, however,
an adversary controlling P1 can XOR GBF1 with the final output of P0 to obtain
the intersection of all honest parties together with P0. The server therefore learns
whether x is in this intersection, which occurs if and only if x is in the intersection
of the sets of all honest parties.

To solve this problem, we instruct each pair of parties to exchange shares by
engaging in an oblivious transfer interaction, where each party Pi asks Pj for a
random string as the �’th block, whenever BFi[�] = 0 and s∗

j [�] otherwise. This
ensures that if x is not in the intersection (and specifically BFi′ [�] = 0 for some
i′), then all parties contribute ‘noise’ to GBFIS [�].

An Augmented-Semi-honest Construction. An augmented semi-honest adversary
is the same as a semi-honest one, with the only difference that it can choose
any probable input. It should be noticed that in our settings, this strengthens
the simulator more than it does the real-world adversary. Thus, this security
definition is actually easier to obtain (than semi-honest). In this paper, we show
that our star protocol already guarantees augmented semi-honest security. The
intuition for that is that we can simulate the protocol by selecting (in the ideal
model) the input of all corrupted parties to be the same as the input of the P0.

1.4 Optimizations to the Augmented Semi-honest Protocol

Computation. All the heavy computations of the augmented semi-honest proto-
col can be performed ahead of time, before the parties learn their inputs. This
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is done using two main ideas. The first is the OT-extension paradigm of [12],
allowing the computation intensive part of the oblivious transfer interactions to
be performed ahead of time. Second, we observe that the secret sharing of the
local GBFs can also be done ahead of time, by having each party simply send
random shares to all other parties in the offline phase, and then adjusting its
local share to be the XOR of all the other shares and the GBF (constructed upon
receiving the input data set). In this manner, the online phase only consists of
a short interaction between the server and each of the other parties.

Communication. The goal of this optimization is to load balance the interactions
between pairs of parties. Instead of having all parties send messages directly to
the server, it is possible for them to route the messages through their peers, over
a hypercube network structure. Each party which receives messages, aggregates
them (namely, computes the XOR of the received GBFs) before forwarding the
result in the direction of the server. It turns out that using this method, we
were able to decrease the linear number of OT interactions of the server, to a
logarithmic number of interactions for any party, and this improve the overall
latency of the protocol. We elaborate on this optimization in Sect. 4.1.2

1.5 Implementations and Experimental Results

We implemented all of our protocols. Our code is based on the open source code
of [6]. Nevertheless, we incorporated several improvements and techniques that
allow the protocol in the multiparty setting to be linearly dependent on the
number of parties and the data sets size (as one would expect from a theoretical
analysis). In Sect. 4, we describe our implementation and optimizations, and
detail the experiments that we ran.

Our implementations may be compared with those of [18]. We use the mea-
surements reports from their paper to compare. Evidently, for small numbers of
parties their implementation outperforms ours. It is our understanding that the
reason for that is twofold. First, we think that our code can be improved and in
particular rewritten in C++, rather than Java (which is currently the case). We
believe that this change alone would result in an improvement by a factor of 2.
Second, the GBF based construction comes with an inherent cost in communica-
tion complexity. When the number of parties grows, however, our protocols seem
to gain on that of [18]. The protocol of [18] contains a phase in which a quadratic
number of comparisons are made. Indeed, while we report on experiments with
up to 56 parties for our augmented semi-honest construction, [18] only report on
experiments with at most 15 parties. Our experimental results show a very slow
growth in running time as the number of parties grow (sub-linear), see Table 4.

We summarize the theoretical overhead of our three constructions in Table 1.
Therein m is the BF size, λ is the GBF bit-string length (i.e., the GBF Size

2 Originally, the hypercube method [2] was used to speed up message propagation
replacing a star like propagation scheme with a tree like scheme. We use it in order
to aggregate messages sent by all parties to the server.
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is λm), t is the number of parties. The table is split into P0 (the server that
learns the output) and Pi, playing the role of a client with no output. “Hashes
Used” counts the number of HashRange accesses; “Memory Complexity” refers
to the worst case memory require to store GBFs; “Communication Complexity”
count the number of bits that will sent or received; “OT Extensions” counts the
number of OT Protocol invocations; “Create Shares” counts PRG accesses. A
comparison with the theoretical overhead in the work of [18] is given in Table 2.

Table 1. Theoretical complexity analysis.

MPSI MPSI -Aug MPSI -NoOT

Operation P0 Pi P0 Pi P0 Pi

Hashes used 2(k · n) 2(k · n) 2(k · n) (k · n) (k · n) (k · n)

Memory

complexity

t(λ + 1)m t(λ + 1)m t(λ + 1)m (λ + 1)m t(λ + 1)m (λ + 1)m

Communication

complexity

λ · m · t λ · m · t λ · m · t λ · m λ · m · t λ · m

OT extensions m · t m · t m · t m − −
Create shares 2λmt 2λmt − 2λm(t − 1) − 2λm(t − 1)

With hyper cube communication

Hashes used − − 2(k · n) 2(k · n)

Memory

complexity

− − log(t)(λ + 1)m log(t)(λ + 1)m log(t)(λ + 1)m log(t)(λ + 1)m

Communication

complexity

− − λ · m · log(t) λ · m · log(t) λ · m · log(t) λ · m · log(t)

OT extensions − − m · log(t) m · log(t) − −
Create shares − − − 2λm(t − 1) − 2λm(t − 1)

Table 2. Theoretical complexity analysis – in comparison to state of the art.

Protocol Communication Computation Security model

Leader Client Leader Client

KMPRT17 [18] O(tnλ) O(tnλ) O(tκ) O(tκ) Semi-honest

Here O(tnλk) O(tnλk) O(λntk) O(λntk) Semi-honest

KMPRT17 [18] O(tnλ) O(nλ) O(tκ) O(κ) Augmented semi-honest

Here O(tnλk) O(nλk) O(λntk) O(λntk) Augmented semi-honest

Here (hypercube) O(log(t)nλk) O(log(t)nλk) O(λntk) O(λntk) Augmented semi-honest

1.6 More Related Work

Much research was dedicated to the construction of PSI-tailored highly effi-
cient protocols for the case of two-party set intersection. A survey on efficient
two-party PSI protocols is given in Pinkas et al. [20], including a classification
of the underlying techniques. Public-key based PSI protocols were presented
in, e.g., [5,7,8] and the oblivious-transfer based and oblivious-pseudo-random-
function based PSI protocols (see, e.g., [6,16,19]).
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2 Preliminaries

For space considerations we only describe here some less standard definitions.
For n ∈ N, let [n] = {1, . . . , n}. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. We use the
abbreviation PPT to denote probabilistic polynomial-time. All polynomials that
we will consider will be with respect to the security parameter, unless explicitly
stated otherwise; specifically, all polynomial time machines will be polynomial
in the security parameter.

2.1 Secure Multiparty Computation and the MPSI Functionality

We follow the standard definitions of secure multiparty computation for semi-
honest adversaries according to the ideal versus real paradigm (cf. [9]). All parties
run in probabilistically polynomial time, and adversaries are non-uniform. We
consider semi-honest adversaries who follow the prescribed protocol faithfully,
but may try to infer additional information about the honest parties as the pro-
tocol terminates. We also consider augmented semi-honest adversaries, which are
similar to semi-honest ones, with the only difference being that such adversaries
are allowed to change their input to any other (valid) input. We next give the
definition of the MPSI functionality.

Definition 1 (multiparty private set intersection).
Functionality FMPSI:
Inputs: All parties hold the number of parties t, an upper bound M on the number
of elements in any data set, and the security parameter κ. In addition, each party
Pi has a data set DBi as its private input.
Computation: Compute the intersection of all data sets, i.e., IS =

⋂t
i=0 DBi.

Outputs: Party P0 receives IS from the functionality, and all other parties receive
no output.

Bloom Filters. Bloom filters were introduced by Bloom [3] as a compact data
structure for probabilistic set membership testing. A Bloom filter encodes a
subset S of elements in some domain D into an array of m bits, where each
element in the domain is attributed with a subset of the indices in the bit array.
Specifically, a Bloom filter is parametrized by a sequence of k hash functions H =
(h1, . . . , hk), and an element x is attributed with the indices (h1(x), . . . , hk(x)).
To encode a set of elements S, all the bits in the array with index that is
attributed to some x ∈ S are set to 1 and all other bits are set to 0.

It is easy to verify that for two sets S1,S2 that were encoded (with the
same H) into BF1 ,BF2 it holds that BF1 ⊗ BF2 encodes S1 ∩ S2, where ⊗
is the bit-wise AND operator. This feature will play an important role in the
constructions introduced in this work, and a variant thereof (where the bitwise
AND is replaced with a bitwise XOR) will apply to the garbled variant of Bloom
filters that will be used here.



Efficient Scalable Multiparty PSI via Garbled Bloom Filters 243

Garbled Bloom Filters. A garbled variant of Bloom filters (GBF) was intro-
duced by Dong et al. [6]. The garbled version of a Bloom filter is obtained by
expanding each bit in the original Bloom filter to a long bit string (whose length
depends on the security parameter). The compactness of the original Bloom fil-
ter is somewhat compromised here for the sake of obtaining an obliviousness
property. Intuitively, this obliviousness property means that for a given element
x, it is impossible to learn anything on whether x is in the data set without
querying the GBF on all indices attributed to x.

GBF is an array of m ∈ N bit strings, each of length λ ∈ N. Similarly
to a Bloom filter, a GBF is parametrized by a sequence of k hash functions
H = (h1, . . . , hk). To insert an item x, where j1, . . . , jk are the k indices
attributed to x, first choose a vacant index finalInd (namely, finalInd is not
attributed to any element x′ previously inserted to the GBF). Second, treat all
other indices ji. If ji is also vacant, then set it to a randomly chosen λ long bit
string. Otherwise, do noting (the appropriate string was previously determined).
Finally, set the string at index finalInd to the bit-wise XOR of all other k − 1
strings.

3 Multiparty PSI Protocols

3.1 A Protocol with Semi-honest Security

We describe our construction of a semi-honest secure multiparty set intersection
protocol. As in all our constructions, the key idea is to let the parties jointly
compute the garbled Bloom filter for the intersection of all data sets. Recall that
for two sets S1,S2 that were encoded (with the same H) into GBF1 ,GBF2 it
holds that GBF1 ⊕GBF2 encodes S1∩S2, where ⊕ is the bit-wise XOR operator.
The formal description of the protocol appears in Fig. 1.

We prove the security of the protocol, formally given in the following theorem,
in the full version of the paper.

Theorem 1. Protocol MPSI (appearing in Fig. 1) computes FMPSI with statis-
tical security in the FOT-hybrid model,3 in the semi-honest model, for the right
choice of parameters m and k as functions of the security parameter κ and the
bound M on the size of each individual data set.

The composition theorem of [4], immediately yields the following corollary.

Corollary 1. Assume trap-door permutations exist. Then, protocol MPSI
(appearing in Fig. 1) securely computes FMPSI in the semi-honest model, for
the right choice of parameters m and k as functions of the security parameter κ
and the bound M on the size of each individual data set.

3 We stress that as we run many instantiations of FOT in parallel, we need to use an
OT protocol that is secure under parallel composition.



244 R. Inbar et al.

Fig. 1. Protocol MPSI – multiparty private set intersection with semi-honest security

3.2 A Protocol with Augmented Semi-honest Security

We describe the protocol GBF-MPSI-aug that is secure against augmented semi-
honest adversaries. Recall that an augmented semi-honest adversary must follow
the protocol honestly, but is also allowed to select a different input (from the
correct domain) upon engaging in a protocol execution. On the face of it, this may
seem as a stronger definition of security, since the real model adversary is more
powerful than a semi-honest one. However, it turns out that it is actually easier
to obtain in the case of multiparty set intersection (with a single output). The
intuition for this is that the definition also empowers the ideal model adversary
by allowing it to select different inputs, which it is unable to do in the ideal
semi-honest setting.
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Indeed, the protocol we describe in this section is a (faster) variant of the
protocol that was introduced in Sect. 3.1. The main change here is that all OT
interactions are performed in a star-like communication graph (rather than a
complete network communication graph), with the server P0 taking the role of
the receiver.

The key idea of the construction is to first let parties P1, . . . ,Pt−1 jointly
compute the garbled Bloom filter for the intersection of their data sets (without
the data set of P0). Then, each party Pi interacts with the server P0 via an
oblivious transfer for each entry in Pi’s (share of the) GBF, such that P0 receives
the real share part only for those entries that are attributed to elements that
P0 holds (and random strings otherwise). The formal description of the protocol
appears in Fig. 2.

Theorem 2. Protocol MPSI-Aug (appearing in Fig. 2) computes FMPSI with
statistical security in the FOT-hybrid model,5 in the augmented semi-honest
model, for the right choice of parameters m and k as functions of the security
parameter κ and the bound M on the size of each individual data set.

The composition theorem of [4], immediately yields the following corollary.

Corollary 2. Assume trap-door permutations exist. Then, protocol MPSI-Aug
securely computes FMPSI in the augmented semi-honest model, for the right
choice of parameters m and k as functions of the security parameter κ and the
bound M on the size of each individual data set.

4 Implementations and Experimental Results

We implemented all three versions of our protocol with an emphasis on the aug-
mented semi-honest construction, as we find it more comparable to previous
implementations of [6] and of [18]. Our implementations are based on the open
source code of [6]. Nevertheless, we incorporated several changes and optimiza-
tions, and generalized the implementation from the two-party setting.

We ran our experiments on a cluster with a very low latency network called
CREATE [22] (which is part of the DETER project). The cluster is comprised of
Intel XEON 2.20 GHz machines (E5-2420) with 6 cores running Linux (Ubuntu
16.04 x86-64), and the ping time between computers is approximately 0.1ms and
1Gb of symmetric bandwidth. We survey the results of each of the variants in a
separate table, surveying the effect of the main optimizations incorporated.

See Table 4 for the experimental results of the implementation of the aug-
mented semi-honest protocol – ran in a high latency network, and Table 3 for
the experimental results of that protocol ran over a low latency network.

Code. Our code is written in Java, using OpenJDK Runtime Environment
(version 1.8.0). We view this choice as a first step, which was easier given the
implementation of [6]. We believe that translating our code into a C++ imple-
mentation would result in a factor of two improvement to its running time. We
leave this as future work.
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Fig. 2. Protocol MPSI -Aug – multiparty private set intersection with augmented semi-
honest security

4.1 Optimizing Communication via Hypercube Routing

The most significant optimization we have incorporated is in the communication
scheme of the protocol, which is now performed over a hypercube spanning tree.
Recall that in the star protocol the server P0 engages in an OT interaction with
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all other parties. In order to reduce the overall latency, we wish to load balance
the interactions between pairs of parties. Hypercube routing was originally used
to speed up message propagation by replacing a star-like propagation scheme
with a tree like scheme [2]. In each step, all parties that have already received
the message forward it to its destination via their neighbors. To transmit the
shares to the servers, we use the reverse order of communication. In addition,
rather than just sending a message, the full OT interaction takes place.

Assume that the number of parties is t = 2�. Let ej be a binary vector of
length �, in which the bit in location j is set to 1 and all other bits are set to
0. In the hypercube scheme, at time 0 ≤ j ≤ � − 1, each party i whose identity
has 0 in all bits 0, . . . , j, runs the OT protocol with party i ⊕ ej , where party
i is the receiver. It is straightforward to see that P0 (the server) is the receiver
in all rounds, and that at the end of the protocol it learns information that it is
indistinguishable from the information it learns in the star protocol.

The number of interactions run by P0 is reduced from being equal to the num-
ber of parties t to being � = log t. In the CREATE environment that we used, the
original protocol, without the hypercube optimization, could not exceed 524288
items per data set and 12 parties, or otherwise it would crash (see Table 3).
However, we may expect to be able to run the hypercube based protocol with
as many as 212 = 4096 parties with the same dataset size.

Nevertheless, our experiments demonstrated that if the flow of information is
done round by round by all parties (as specified by the hypercube method), the
running time is much slower than one would expect. We observe that allowing the
parties to start interacting with parties for ‘future’ rounds, before completing the
interaction for the current round (with another party) proves highly beneficial.
In this manner, the order of communication is no longer predefined, however,
this flexibility turns out to give the protocol’s running time a great boost. The
effect of this additional optimization, referred to as the no-blocking hypercube
is illustrated in Table 3. It should be noted that this optimization balances the
load not only in terms of RAM resources, but also in bandwidth and CPU
load.

Remark 1 (proving the security of the hypercube communication optimization).
We stress that the proof of the augmented semi-honest protocol with the hyper-
cube optimization goes through, similarly to the original semi-honest protocol.
One change that is required in the protocol is to have the server participate in
the creation and sharing of the intersection GBF (with all other parties) – before
the OT phase starts. Intuitively, this deals with the case that the server is not
corrupted, and all honest parties engage in OT interaction with a subset of the
corrupted parties.

4.2 Optimizing the Computation

Using Murmur3 [14]/xxHash [15] in the Bloom Filter. The implementation of the
garbled Bloom filter in [6] uses SHA-1 to map values to locations in the filter. Since
there is no need to use a cryptographic hash function for this purpose, we replaced
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SHA-1 with the non-cryptographic hash functions Murmur3 and xxHash (which
are commonly used in algorithms). This turned out to substantially improve the
run time of the GBF creation.

Cached Memory Misses Optimization. The implementation of [6] used a two
dimensional array to hold the GBFs. In our implementation, which requires
many XOR operations, this resulted in many cache misses. We changed the
implementation to store the GBFs in a cache-aware manner. The effect of this
optimization was more evident as the data set size (and, hence, share size) grew.
For example, for 524288-bit long shares, this optimization shaved off up to 60%
of the time it took to construct share in the two dimensional array of [6].

Local Share Reconstruction – Parallel Computation. The local computations of
the XOR operations can be improved by running them in parallel by multiple
threads. However, this requires a substantial part of the RAM to be occupied at
all time. to reduce RAM usage we break the bit-strings into blocks and compute
the XOR block-wise and in parallel. In some more detail, we create two PRG
threads for each party Pi, one for handling the shares (seeds) Pi sends to other
parties, and the other for the shares it receives. Both threads run in parallel and
divide the shares into blocks of a predefined length. After creating the blocks,
the XOR is applied block-wise to all shares in parallel, independently of each
other. Because the XOR operation is faster than the PRG operation, blocks of
the shares are removed shortly after their creation, leaving enough memory free
and usable for upcoming block XOR computations. The improvements of this
optimization, as well as the previous one, are illustrated in Table 5.

Sending Short Seeds Instead of Full Payload. The parties share their local GBF
with each other. To improve the communication complexity, rather than send-
ing the full random sharing to each other, parties send a short seed such that
the receiving party can expand this seed and calculate its final share. payload
locally. We stress that, since all parties hold the same key, in order to claim
security of our implementations, we need to model the PRG or the PRF as a We
further stress that secret sharing only takes place during offline preprocessing,
and hence, not incorporating this optimization does not affect the online time
of our constructions.
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Table 3. Time measurements (in seconds) – augmented semi-honest protocol – low
latency. Rows indicate number of parties. Colomns indicate data set size. Results appear
for (i) basic star topology (no hypercube optimization), (ii) basic hypercube optimiza-
tion (allows blocking), and (iii) hypercube optimization without blocking.

Parties 1024 65536 131072 262144 524288

Augmented semi-honest star
communication

2 2.25 12.99 28.23 54.81 149.21

3 1.97 32.01 64.83 85.80 229.80

4 2.08 25.03 47.56 91.48 268.56

6 2.36 23.84 63.89 110.08 238.69

12 2.29 39.22 67.87 195.51 493.21

18 4.17 45.49 108.11 276.14 -

24 5.48 59.97 132.48 339.10 -

32 6.10 83.21 190.47 - -

36 6.62 102.82 244.15 - -

Augmented semi-honest
hyper cube communication

2 2.00 11.46 28.82 63.67 152.99

3 3.49 27.91 43.34 136.57 324.12

4 3.00 30.21 56.09 205.00 437.25

6 4.52 34.15 72.90 184.00 376.14

12 5.31 45.42 87.05 206.00 430.98

18 6.38 46.00 98.80 219.36 507.29

24 6.43 52.00 101.07 215.38 565.17

32 5.66 58.67 114.57 234.11 581.36

36 7.30 63.46 125.34 237.53 652.46

Augmented semi-honest
hyper cube communication,
no blocking

2 1.98 11.97 31.09 79.28 172.00

3 1.95 32.11 62.85 108.82 224.21

4 2.49 33.54 88.18 142.65 341.40

6 2.58 30.10 78.40 149.23 267.56

12 3.07 38.53 71.69 239.00 384.04

18 3.44 43.00 90.56 204.94 486.11

24 3.57 46.04 101.64 203.03 499.00

32 3.82 51.85 112.21 218.69 418.00

36 3.87 61.93 107.57 252.06 557.42

56 4.06 62.92 136.58 294.37 744.29
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Table 4. Time measurements – MPSI -Aug protocol – 50ms latency, 100Mb band-
width. Time in seconds.

Parties Items

1024 65536 131072 262144 524288

2 3.91 32.78 66.85 142.08 307.52

3 3.93 70.066 139.2 243.44 512.91

4 6.64 75.09 142.48 311.46 612.76

6 6.88 90.39 174.41 360.32 825.24

12 9.07 117.67 227.19 467.78 1045.63

18 11.46 140.55 266.23 536.11 1181.91

24 12.01 142.9 295.96 594.37 1250.43

32 13.76 160.15 310.02 628.95 1342.29

36 13.8 167.34 326.73 666.91 1469.35

Table 5. Time measurement (in seconds) of share creation (κ = 80).

Items

Shares 1024 65536 131072 262144 524288

Two-dimensional array GBF of [6] 1 0.08 7.33 15.71 29.02 76.31

2 0.17 12.53 26.17 52.58 142.26

4 0.32 21.81 50.44 92.00 256.45

8 0.66 37.47 76.71 169.87 407.49

12 0.86 53.72 111.32 229.89 672.39

24 1.69 101.17 207.84 446.05 1261.62

36 2.45 151.35 310.74 641.65 1813.56

64 4.23 268.46 534.31 1111.70 3092.48

One-dimensional array 1 0.07 3.81 7.17 14.49 28.80

2 0.13 7.42 14.40 28.91 57.27

4 0.29 14.74 29.02 57.97 116.68

8 0.58 29.26 58.08 115.46 248.23

12 0.85 43.40 88.11 181.43 368.56

24 1.47 87.52 172.45 350.52 685.31

36 2.15 128.71 255.90 519.93 1059.23

64 3.81 229.66 459.14 906.53 1852.85

One-dimensional array with

parallel computation of XOR

operations

1 0.11 5.97 9.70 30.79 63.95

2 0.10 5.65 12.15 34.38 64.52

4 0.13 4.36 8.62 43.92 51.45

8 0.16 7.32 15.89 39.92 37.47

12 0.20 10.05 14.55 31.74 113.77

24 0.35 17.85 46.70 92.09 181.84

36 0.37 23.95 38.66 100.75 208.85

64 0.58 24.05 62.84 85.88 199.61
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Abstract. The notion of universal re-encryption is an established prim-
itive used in the design of many anonymity protocols. It allows anyone to
randomize a ciphertext without changing its size, without first decrypt-
ing it, and without knowing who the receiver is (i.e., not knowing the
public key used to create it). By design it prevents the randomized cipher-
text from being correlated with the original ciphertext. We revisit and
analyze the security foundation of universal re-encryption and show a
subtlety in it, namely, that it does not require that the encryption func-
tion achieve key anonymity. Recall that the encryption function is dif-
ferent from the re-encryption function. We demonstrate this subtlety by
constructing a cryptosystem that satisfies the established definition of
a universal cryptosystem but that has an encryption function that does
not achieve key anonymity, thereby instantiating the gap in the defini-
tion of security of universal re-encryption. We note that the gap in the
definition carries over to a set of applications that rely on universal re-
encryption, applications in the original paper on universal re-encryption
and also follow-on work. This shows that the original definition needs to
be corrected and it shows that it had a knock-on effect that negatively
impacted security in later work. We then introduce a new definition that
includes the properties that are needed for a re-encryption cryptosys-
tem to achieve key anonymity in both the encryption function and the
re-encryption function, building on Goldwasser and Micali’s “semantic
security” and the original “key anonymity” notion of Bellare, Boldyreva,
Desai, and Pointcheval. Omitting any of the properties in our definition
leads to a problem. We also introduce a new generalization of the Deci-
sion Diffie-Hellman (DDH) random self-reduction and use it, in turn, to
prove that the original ElGamal-based universal cryptosystem of Golle
et al. is secure under our revised security definition.

1 Introduction

Nowadays, perhaps more then ever, anonymity tools are crucial for maintaining
basic civil liberties. For example, as a result of the whistle-blowing by Edward
Snowden, Americans and others have a better understanding of surveillance
states and the privacy risks they pose. This reinforces the need for anonymity of
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communication, which, in fact, has been an active area of cryptographic research
since the 1980s with numerous propositions and tools, suitable for various
scenarios.

Having a sound theoretical foundation for anonymity systems is a critical
component in achieving privacy of users in the same way that message security
is achieved by having a sound theoretical foundation for encryption. Camenisch
and Lysyanskaya, for example, presented a formal treatment of onion routing [5]
where prior work was comparatively informal with ad-hoc security justifications.
Onion routing falls into a class of anonymity systems known as “decryption
mixes”, since layers of ciphertext are shed as the onion makes its way to the
receiver.

In this work we present a formal treatment of a different fundamental class
of anonymous communication protocols, namely, those based on universal re-
encryption. This concept forms the basis of what has been called “re-encryption
mixes”.

Golle et al. presented the definition of a universal cryptosystem that permits
re-encryption without knowledge of the public key. They called this definition
UCS [11]. By extending the ElGamal public key cryptosystem [7], they instanti-
ated a UCS, hereafter referred to as the UCS construction. They also defined what
it means for a UCS to be secure. This they called universal semantic security
under re-encryption, abbreviated USS. They used UCS as a basis to construct a
re-encryption mix and an anonymized RFID tag application, hereafter referred
to as GJJSMix and GJJSRFID, respectively.

A ciphertext of UCS has the property that it can be efficiently re-encrypted
by anyone without knowledge of the receiver’s public key. This re-encryption is
accomplished without decrypting the ciphertext, without adding a new encryp-
tion layer, and without changing the size of the ciphertext. Using re-encryption
randomness, the mapping is “lost” between the ciphertext that is supplied to
the re-encryption operation and the resulting output ciphertext. Therefore, the
notion of universal re-encryption propelled anonymous communication protocols
into the area of “end-to-end encryption” systems that do not rely on servers to
maintain secret keys, thereby exhibiting the forward-secrecy property. Forward-
secrecy and end-to-end encryption are becoming increasingly important in indus-
trial systems in the post-Snowden era.

Whereas the USS definition has an anonymity test after the re-encryption
operation, there is no anonymity test after the initial encryption operation.
This means that USS does not require that the encryption function achieve key
anonymity. This gap has had a knock-on effect on follow-on works, causing them
to exhibit the same gap. We show that the key anonymity gap that is present
in the definition of security of a universal cryptosystem (as defined by USS) is
inherited by the security definitions of six applications that rely on universal re-
encryption as a black-box. All six applications did not introduce new problems
per se, but inherently assume that the encryption function is key anonymous,
thereby potentially exposing ciphertexts produced by the encryption function to
the adversary.
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However, the gap did not only affect applications in follow-on work to [11].
We show that the security definitions of the applications GJJSMix and GJJSR-
FID that appear in [11] exhibit this gap as well, allowing instantiations of the
encryption function that compromise user anonymity. Since these two applica-
tion security definitions are in [11], we show that USS does not sufficiently capture
what is necessary for security.

What is needed is a formal foundation of the field as was done in other
areas such as message encryption. To this end, we put forth a model of what is
required for re-encryption in the context of systems that require key anonymity.
In particular, our new definition requires that the re-encryption function and
the encryption function achieve key anonymity. Our definition requires that the
re-encryption function and the encryption function achieve message indistin-
guishability. Our contributions are as follows:

1. We identify a gap in USS, namely, the missing requirement that the encryption
function achieve key anonymity.

2. We cryptanalyze this gap and formally prove that it exists using an encryption
function that achieves all that is required in the original work1.

3. Due to black-box use of the primitive, we point out that the gap applies to
the following applications: GJJSMix, a mix network with defense against
unwanted messages [16], GJJSRFID, Klein bottle routing protocol [21],
the mobile private microblogging protocol [26], and an additional RFID
protocol [25]. For all of these protocols: failure of the encryption function
to achieve key anonymity (as not required by the original work) results in
privacy loss/compromised receiver anonymity.

4. We then present what we call semantically secure anonymity that defines the
complete set of security properties that assure key anonymity.

5. We generalize the well-known DDH random self-reduction and then use this
generalization to prove that the UCS construction is secure under DDH in our
new model2. The proof may guide corrections to derived applications, while
the new reduction technique may have independent applications.

Example application: A new forward-anonymous batch mix and proof that it
is secure (as modeled here) under DDH appears in our ePrint version of this paper
(the original ePrint is from 2016 [28]). Due to space limitations this application
is not presented here.

Due to its flexibility, we anticipate that our new reduction technique will aid
in future concrete and workable designs that use number theoretic and elliptic
curve groups where DDH holds, since anonymity of channels is a central issue in
cryptography and privacy applications and since sound foundations and correct
proofs are needed. In fact, our new application of a forward-anonymous batch
mix is an example of such an application, giving an end-to-end secure anonymous
communication system.
1 See Theorem 1. The gap pertains to the “initial” encryption function, not the

re-encryption function.
2 i.e., that key anonymity and message indistinguishability both hold for the encryp-

tion and re-encryption functions.



258 A. L. Young and M. Yung

Organization: Notation and definitions are covered in Sect. 2. In Sect. 3 we
review UCS and USS and show that there is a gap in USS (the proof is in
AppendixA). We use the gap in Sect. 4 to break the security definitions of six
cryptographic applications. We define semantically secure anonymity in Sect. 5.
We review the UCS construction in Sect. 6 with adjusted input/output specifica-
tions to accommodate our proofs of security. The new DDH reduction technique
is given in AppendixB and we use it to prove the security of the UCS construction
in Sect. 7 and AppendixC. We conclude in Sect. 8 and present related work in
AppendixD.

2 Notation and Definitions

If T is a finite set then x ∈U T denotes sampling x uniformly at random from
T . Define Zp to be {0, 1, 2, ..., p − 1}. Let Z∗

n be the set of integers from Zn that
are relatively prime to n. [1, t] denotes the set of integers {1, 2, ..., t}. |G| denotes
the size of the group G, i.e., number of elements in G. We may omit writing
“mod p” when reduction modulo p is clear from the context. Pr[A] denotes the
probability that A is true. Let a ← b denote the assignment of b to a. For
example, a ← M(x) denotes the execution of Turing machine M on input x
resulting in output a.

A function negl is negligible if for all polynomials p(·) there exists an α such
that for all integers n > α it is the case that negl(n) < 1

p(n) . We use negl to
denote a negligible function.

The following definition of DDH is directly from [3]. A group family G is a
set of finite cyclic groups G = {Gp} where p ranges over an infinite index set. We
denote by |p| the size of the binary representation of p. We assume that there
is a polynomial time (in |p|) algorithm that given p and two elements in Gp

outputs their sum. An instance generator, IG, for G is a randomized algorithm
that given an integer n (in unary), runs in time polynomial in n and outputs
some random index p and a generator g of Gp. In particular, (p, g) ← IG(n).
Note that for each n, the instance generator induces a distribution on the set of
indices p. The index p encodes the group parameters.

A DDH algorithm A for G is a probabilistic polynomial time Turing machine
satisfying, for some fixed α > 0 and sufficiently large n:

|Pr[A(p, g, ga, gb, gab) = “true”] − Pr[A(p, g, ga, gb, gc) = “true”]| >
1

nα

where g is a generator of Gp. The probability is over the random choice of 〈p, g〉
according to the distribution induced by IG(n), the random choice of a, b, and
c in the range [1, |Gp|] and the random bits used by A. The group family G

satisfies the DDH assumption if there is no DDH algorithm for G.
We now review the well-known random-self reduction for DDH [3,20,27].

DDHRerand((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
u1, u2, v ∈U [1, q] and computing,

(x′, y′, z′) ← (xvgu1 , ygu2 , zvyu1xvu2gu1u2)
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When (x, y, z) is a valid Diffie-Hellman 3-tuple then the output is a random
Diffie-Hellman 3-tuple. When (x, y, z) is not a valid Diffie-Hellman 3-tuple then
the output is a random 3-tuple.

3 Gap in Universal Re-encryption Definition

3.1 Review of UCS and USS

UCS is a 4-tuple of algorithms (UKG,UE,URe,UD), where UKG is the key
generator, UE is the encryption algorithm, URe is the re-encryption algorithm,
and UD is the decryption algorithm.

UKG outputs a public key PK (Golle et al. do not have it return a key pair
in the definition of their experiment). UE(m, r, PK) denotes the encryption of
message m using public key PK and r is a re-encryption factor. It outputs a
universal ciphertext C. URe(C, r) denotes the re-encryption of C using a re-
encryption factor r. Golle et al. assume an implicit parameterization of UCS
under security parameter k. The decryption algorithm UD(SK,C) takes as input
a private key SK and ciphertext C and returns the corresponding plaintext
(or an indicator for failure).

Let M be a message space and let R be a set of encryption factors. Let A
be a stateful adversarial algorithm. Below is the verbatim definition of USS:

Experiment Expuss
A (UCS, k)

PK0 ← UKG;PK1 ← UKG;
(m0,m1, r0, r1) ← A(PK0, PK1,“specify ciphertexts”);
if m0,m1 /∈ M or r0, r1 /∈ R then output ‘0’;
C0 ← UE(m0, r0, PK0);C1 ← UE(m1, r1, PK1);
r′
0, r

′
1 ∈U R;

C ′
0 ← URe(C0, r

′
0);C

′
1 ← URe(C1, r

′
1);

b ∈U{0, 1};
b′ ← A(C ′

b, C
′
1−b,“guess”);

if b = b′ then output ‘1’ else output ‘0’;

An instantiation of UCS is said to be semantically secure under re-encryption
(i.e., achieve USS) if for any adversary A with resources polynomial in K, the
probability given by pr[Expuss

A (UCS, k) = ‘1’] − 1/2 is negligible in k.
The UCS construction is as follows. Let p = (p, q) be a group family where p

is prime and p − 1 is divisible by a large prime q. The group Gp is the subgroup
of Z∗

p having order q. Let g be a generator for Gp. The key generator outputs
(PK,SK) = (y, x) where x ∈U Zq and y = gx mod p.

The encryption operation is denoted by UE(m, (k0, k1), y). It encrypts
message m ∈ Gp using y. (k0, k1) ∈U Zq × Zq are random encryption nonces.
The encryption operation outputs the ciphertext c ← ((α0, β0), (α1, β1)) ←
((myk0 mod p, gk0 mod p), (yk1 mod p, gk1 mod p)).

The universal re-encryption algorithm URe(((α0, β0), (α1, β1)), (k′
0, k

′
1))

outputs a re-randomized ciphertext C ′. (k′
0, k

′
1) ∈U Zq × Zq is a random
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re-encryption factor. Generate k′
0, k

′
1 ∈U Zq. The output C ′ is defined as

((α′
0, β

′
0), (α

′
1, β

′
1)) which is equal to ((α0α

k′
0

1 , β0β
k′
0

1 ), (αk′
1

1 , β
k′
1

1 )).
The decryption algorithm UD(x, ((α0, β0), (α1, β1))) takes as input the pri-

vate key x followed by a universal ciphertext under public key y. First it verifies
that all 4 values in the universal ciphertext are in Gp and if not the special
symbol ⊥ is output. Compute m0 = α0/βx

0 and m1 = α1/βx
1 . If m1 = 1 then

the output is m = m0. Otherwise, output ⊥ indicating decryption failure.

3.2 Missing Key Anonymity Requirement for UE in USS Definition

We now prove that USS as defined by Golle et al. accepts as valid cryptosys-
tems that, in fact, contain encryption algorithms UE that do not produce key
anonymous ciphertexts. Consider the following modification of UE called UE’:

1. let b1 be the least significant bit of y
2. generate random encryption nonces (k0, k1) ∈U Zq × Zq

3. set (α0, β0) ← (myk0 mod p, gk0 mod p)
4. set (α1, β1) ← (yk1 mod p, gk1 mod p)
5. set c ← ((α0, β0), (α1, β1))
6. let b2 be the least significant bit of β0

7. if b1 �= b2 then goto step 2 otherwise output c.

Cryptosystem A: Cryptosystem A is the same as the UCS construction except
that UE is replaced with UE’.

Theorem 1. If DDH is hard then Cryptosystem A is secure in the sense of USS.

We give a full proof of Theorem 1 in AppendixA. We have therefore proven
that Cryptosystem A is “secure” under USS. Let y0 and y1 be two public keys.
Suppose that y0 and y1 have differing least significant bits. An adversary can
break the anonymity of UE’ by extracting the least significant bit of β0 and
correlating it with the public key with matching least significant bit. This proves
that Cryptosystem A satisfies USS yet has an encryption algorithm that does
not achieve key anonymity. This, in turn, proves that USS admits cryptosystems
wherein URe is key anonymous but UE is not key anonymous.

USS is devoid of a requirement that the output of UE be key anonymous.
It has a test of anonymity of URe but there is no test of anonymity of UE.
This is the only definition of security spelled out for UCS in [11]. Therefore,
the foundation put forth by Golle et al. for universal re-encryption “accepts”
as secure encryption algorithms UE that are not key anonymous as proven by
Cryptosystem A. There may exist other constructions in which the failure of UE
to achieve key anonymity is subtle, yet like Cryptosystem A satisfy USS.

Practically, this means that cryptographers can construct universal cryp-
tosystems that satisfy the USS definition but that have encryption algorithms
that compromise the identity of the receiver without violating USS. This could
potentially place the users of a universal cryptosystem in harms way.
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Consequently, defining security for universal re-encryption in a way that
achieves key anonymity for ciphertexts output by UE has been left open.
In addition, the properties of message indistinguishability for encryption and
re-encryption were claimed to hold under DDH but no proof for this was given.

4 Systemic Problem Caused by the USS Definition

An insufficient definition in security modeling may migrate to other construc-
tions. Thus the risk of potentially getting an insecure system due to varying
the underlying cryptographic tools is magnified. We have identified six crypto-
graphic applications that leverage UCS and USS that, merely due to copying the
component of the original work, have gaps in their security definitions. These
applications advocate the use of UCS to instantiate the applications. UCS is secure
and does provide key anonymity of the encryption function and re-encryption
function. However, the point we are making is that these six applications inherit
USS as part of their security definitions, they rely on UE achieving key anonymity,
but there is nothing in the security definitions that require UE to achieve key
anonymity. From the perspective of having sound security definitions, the defini-
tions of security for these six applications is broken. We emphasize the difference
between a definition of security of a cryptosystem vs. an instantiation that must
be proven to adhere to the definition. Our goal here is to provide a remedy to
these applications that employ UE in a blackbox fashion. We elaborate on these
important applications in details in order to demonstrate cases where anonymity
of users is very crucial and must be modeled correctly.

The definition of security of GJJSMix is missing a crucial key anonymity
requirement. Let U be a universal cryptosystem that has an encryption algorithm
UE that outputs ciphertexts that are not key anonymous. GJJSMix has, in
the first step called “submission of inputs”, users post ciphertexts produced by
UE to a public bulletin board. When U is used in this universal mix network
construction, the anonymity of receivers is compromised. This places users of
this mix (e.g., activists, journalists) in harms way.

We now analyze the mix network protocol that leverages signatures to protect
against unwelcome messages such as spam [16]. Their solution leverages UCS and
relies on USS. In the Admission Protocol, each message that enters the system
is encrypted using the public key of the recipient. The resulting ciphertexts are
received by a server from a pool of servers. This exposes ciphertexts produced
by UE to the first server. This Admission Protocol application therefore assumes
that UE provides key anonymity even though this security requirement is not
captured anywhere.

In GJJSRFID, the data contained in RFID tags is encrypted using a UCS. An
example is given that leverages a key pair owned by a transit agency and a key
pair owned by a department store. The description of this application permits the
initial RFID ciphertext to be the output of UE. When UE is not key anonymous
it follows that the RFID tag can be correlated with the associated public key.
This compromises privacy.
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A protocol for RFID privacy that leverages a UCS and that relies on USS is
given in [25]. Their protocol has the RFID tag regularly emit ID information
in the form of a universal ciphertext C produced using UE. When UE does not
achieve key anonymity, this means that receiver anonymity is compromised. This
constitutes a perpetual window of attack.

The use of a UCS to achieve compliance with RFID privacy legislation,
addressing the EU RFID Privacy and Data Protection working document in
particular, is proposed in [24]. The proposal presumes that USS encapsulates the
privacy assurances that are needed. We cannot overstate the importance of a
proper definition of security for RFID applications. The correct frame of mind
is not RFIDs in products in grocery stores. The correct frame of mind is RFID
chips in people, e.g., VeriChip [14] that cites the use of UCS.

The Klein bottle routing protocol [21] leverages a UCS with a slight change.
They add to a UCS n-out-of-n decryption. We will not reiterate the Klein bottle
routing protocol but will provide enough points to show that the security def-
inition of it is broken since it directly relies on USS. The protocol leverages a
set of routers. Let the routers be labeled Alice, Bob, and Carol, each of whom
has a key pair for the routing. There is a sender Sally and receiver Rick. Sally
announces that she will create and send out Klein bottles. She states that she
will only ever use two possible routes: Sally → Alice → Bob → Rick, or Sally
→ Alice → Carol → Rick. She further announces that she uses the following
algorithm to decide which route to use for a given bottle: flip a fair coin. If the
result is heads, use the route that goes through Bob. If the result is tails, use the
route that goes through Carol. Let y0 denote the public key that is the product
of Alice’s public key and Bob’s public key (mod p). Let y1 denote the public key
that is the product of Alice’s public key and Carol’s public key (mod p). The
second value in the encrypted route list is encrypted under either y0 or y1 using
UE. Consider a distinguishing adversary that obtains the bottle right after it
leaves Sally. When UE does not achieve key anonymity then the adversary has
a non-negligible advantage in determining whether y0 or y1 was used to com-
pute this second value. It follows that the adversary knows with non-negligible
advantage whether the bottle will go to Bob or Carol before it even arrives at
Alice.

A mobile private microblogging protocol MoP-2-MoP [26] that leverages a
UCS and that relies on USS is another important application. The implementa-
tion as given exposes the ciphertexts produced by UE3. UE needs to achieve
key anonymity for security to hold. When UE does not achieve key anonymity,
receiver anonymity is compromised.

We have shown that these six applications all assume that UE achieves key
anonymity yet nowhere is this cryptographic requirement asserted. We pointed
out the above to demonstrate the harmful knock-on effect that the insufficient
USS security definition has had. These multiple important examples show that
this gap was and continues to be a systemic problem (risk) in the design of new

3 Per Sect. 2.1 of [26].
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application protocols since UE is an important building block. We have therefore
further shown that the requirement for UE to achieve key anonymity is indeed
necessary.

In hindsight, we believe that UCS and USS provide great insight into lay-
ing a proper foundation for universal re-encryption. In particular, we commend
the approach of having the adversary fully specify the ciphertexts (messages
and nonces) that are used in forming the re-encryption challenge ciphertexts.
However, the USS definition is certainly not sufficient!

5 Semantically Secure Anonymity

We now present the first definition of security for a universal cryptosystem that
requires that the encryption algorithm provide key anonymity. We made slight
adjustments to the input/output specifications of UCS. For example, the original
UCS key generator does not take a security parameter as input, ours does. We
define the algorithms in the cryptosystem to take auxiliary information such as
group parameters as input. We remark that the adjustments to the input/output
specifications of the algorithms are superficial. We made them to support the
full proofs of security that we provide.

Definition 1. A universal cryptosystem Π is a 4-tuple of probabilistic polyno-
mial time algorithms (UKG,UE,URe,UD) together with auxiliary information
λ (e.g., group parameters) such that:

1. The key generation algorithm UKG(n, λ) takes as input a security parameter
n (in unary) and λ and outputs (pk, sk) where pk is a public key and sk is
the corresponding private key.

2. The encryption algorithm UEpk(m, k, λ) is deterministic and it takes as input
a public key pk, a message m from the underlying plaintext space, an encryp-
tion nonce k, and λ. It outputs a ciphertext c. The operation is expressed as
c ← UEpk(m, k, λ).

3. The re-encryption algorithm URe(c, k, λ) is deterministic and it takes as input
a ciphertext c, a re-encryption nonce k, and λ. It outputs a ciphertext c′. The
operation is expressed as c′ ← URe(c, k, λ).

4. The decryption algorithm UDsk(c, λ) takes as input a private key sk, a cipher-
text c, and λ. It outputs a message m and a Boolean s. s is true if and only
if decryption succeeds. The operation is expressed as (m, s) ← UDsk(c).

It is required that, for all m, the ordered execution of c0 ← UEpk(m, k0, λ),
ci+1 ← URe(ci, ki, λ) for i = 0, 1, 2, ..., t−1, (m′, s) ← UDsk(ct, λ) with (m′, s) =
(m,true) except with possibly negligible probability over (pk, sk) that is output by
UKG(n, λ) and the randomness used by the nonces for UE and URe. Here t is
bounded from above by uα for some fixed α > 0 and sufficiently large u.

Definition 2 for message indistinguishability has been adapted from [9,19].
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Definition 2. The experiment for eavesdropping indistinguishability for the
encryption operation is PubKEnceav

A,Π(n, λ):

1. UKG(n, λ) is executed to get (pk, sk).
2. Stateful adversary A(n, λ, pk) outputs a pair of messages (m0,m1) where m0

and m1 have the same length. These messages must be in the plaintext space
associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, k, λ) is computed and provided to A. This is the challenge
ciphertext.

4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 3. The experiment for eavesdropping indistinguishability for the
re-encryption operation is PubKReEnceav

A,Π(n, λ):

1. UKG(n, λ) is executed to get (pk, sk).
2. Stateful adversary A(n, λ, pk) outputs ((m0, k0), (m1, k1)) where (mi, ki) is a

message/nonce pair for i = 0, 1. The messages must be of the same length.
These messages must be in the plaintext space associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, kb, λ) is computed. Then c′ ← URe(c, k, λ) is computed and
provided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 4 is key anonymity [2]. Definition 5 is key anonymity adapted for
re-encryption.

Definition 4. The experiment for key anonymity of the encryption operation is
denoted by AnonEnceav

A,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Stateful adversary A(n, λ, pk0, pk1) outputs a message m. This message must

be in the plaintext space associated with pk0 and pk1.
3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext

c ← UEpkb
(m, k, λ) is computed and provided to A. This is the challenge

ciphertext.
4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 5. The experiment for key anonymity of the re-encryption operation
is denoted by AnonReEnceav

A,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Stateful adversary A(n, λ, pk0, pk1) outputs (m, k) where m is a message and

k is an encryption nonce k. The message m must be in the plaintext space
associated with pk0 and pk1.
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3. A random bit b ∈U{0, 1} and random nonce k′ are chosen. Then c ←
UEpkb

(m, k, λ) is computed. Then c′ ← URe(c, k′, λ) is computed and pro-
vided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 6. A universal cryptosystem Π is secure in the sense of seman-
tically secure anonymity for security parameter n (in unary) and auxiliary
information λ if it satisfies the following:

1. Pr[PubKEnceav
A,Π(n, λ) = 1] ≤ 1

2 + negl(n)
2. Pr[PubKReEnceav

A,Π(n, λ) = 1] ≤ 1
2 + negl(n)

3. Pr[AnonEnceav
A,Π(n, λ) = 1] ≤ 1

2 + negl(n)
4. Pr[AnonReEnceav

A,Π(n, λ) = 1] ≤ 1
2 + negl(n)

We recap and say that correctness of decryption is obviously a must and we
have demonstrated that message security must be required for the encryption
and the re-encryption operations in order to maintain the security of the mes-
sage throughout the system. Further, as the examples above demonstrated, key
anonymity is required for these two operations as well. Intuitively, any viola-
tion of message security will render the encryption useless. Also, any tracing via
the re-encryption operation due to message or key linkability will violate strict
anonymity. Similarly, any tracing via the encryption operation due to message
or key linkability will violate strict anonymity.

6 Universal Re-encryption Cryptosystem

We adjusted the input/output specifications of UCS (see Sect. 5) to facilitate our
proofs. But, we preserved the original cryptosystem entirely. For clarity, we now
present the cryptosystem in full.

Let n be a security parameter (in unary) and let p = (p, q) be a group family
where p is prime and p − 1 is divisible by a large prime q. The group Gp is the
subgroup of Z∗

p having order q. For key anonymity, the single group ((p, q), g) is
generated once using IG(n) and is then used by all users. The auxiliary infor-
mation λ is defined to be ((p, q), g). We define the following to be universal
cryptosystem Ψ .

Key Generation: Key generation is denoted by (y, x) ← UKG(n, λ). Here y ←
gx mod p where x ∈U [1, q]. The public key is pk = y and the private key is
sk = x.

Encryption: Encryption is denoted by UEpk(m, (k0, k1), λ). It encrypts message
m ∈ Gp using y. (k0, k1) ∈U [1, q] × [1, q] is a random encryption nonce. The
operation outputs the ciphertext c ← ((α0, β0), (α1, β1)) ← ((myk0 mod p),(gk0

mod p),((yk1 mod p), (gk1 mod p)).



266 A. L. Young and M. Yung

Decryption: The following decryption operation is denoted by UDsk(c, λ). Here
c is the ciphertext ((α0, β0), (α1, β1)). Compute m1 ← α1/βx

1 mod p. If m1 = 1
then set s = true else set s = false. If s = true set m0 = α0/βx

0 mod p else set m0

to be the empty string. s = true indicates successful decryption. Return (m0, s).

Universal Re-encryption: The universal re-encryption operation is denoted
by URe(((α0, β0), (α1, β1)), (�0, �1), λ). The pair c = ((α0, β0), (α1, β1)) is a uni-
versal ciphertext and (k′

0, k
′
1) ∈U [1, q]× [1, q] is a re-encryption nonce. Compute

(α′
0, β

′
0) ← (α0α

k′
0

1 mod p, β0β
k′
0

1 mod p) and compute (α′
1, β

′
1) ← (αk′

1
1 mod p, β

k′
1

1

mod p). Output the ciphertext c′ ← ((α′
0, β

′
0), (α

′
1, β

′
1)).

7 Security of Universal Cryptosystem Ψ

We now give the theorems for the proofs of security for our construction. These
are the first proofs of security for universal re-encryption that constitute direct
reductions with respect to DDH and prove all the properties that are necessary
(in the sense of the fact that any missing property implies potential breaks). The
proofs of the below are in AppendixC.

Theorem 2. If DDH is hard then Pr[AnonEnceav
A,Ψ (n, λ) = 1] ≤ 1

2 + negl(n).

Theorem 3. If DDH is hard then Pr[AnonReEnceav
A,Ψ (n, λ) = 1] ≤ 1

2 +negl(n).

Theorem 4. If DDH is hard then Pr[PubKEnceav
A,Ψ (n, λ) = 1] ≤ 1

2 + negl(n).

Theorem 5. If DDH is hard then Pr[PubKReEnceav
A,Ψ (n, λ) = 1] ≤ 1

2 +negl(n).

Theorem 6. If DDH is hard then Ψ is secure in the sense of semantically secure
anonymity.

8 Conclusion

We showed that the definition of security of universal re-encryption, USS, is
missing the requirement that the encryption algorithm produce key anonymous
ciphertexts, thereby forming a gap. We leveraged this gap to show that the
security definitions of multiple applications of universal re-encryption contain
the gap as well, breaking anonymity. Two of these applications are in the orig-
inal paper on universal re-encryption by Golle et al., showing that the original
security definition of re-encryption, namely, USS, is in err. We then presented
a new definition of security for universal re-encryption that requires that mes-
sage indistinguishability and key anonymity hold for both the encryption and
re-encryption operations. We proved that the original ElGamal-based universal
cryptosystem is secure under our new definition of security. Finally, we presented
a forward-anonymous batch mix that is secure under DDH.
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A Proof for Cryptosystem A

Below is the proof of Theorem 1. DDHRerand5 is covered in Sect. B.

Proof. Suppose for the sake of contradiction that there exists a successful prob-
abilistic polynomial time USS distinguishing adversary A for Cryptosystem
A. Adversary A is stateful. Consider algorithm AlgRA that takes as input a
Decision Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgRA((p, q), g, a0, b0, c0):
1. (θ′

j , θj , yj , μj , μ
′
j) ← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. PK0 ← y0, PK1 ← y1
3. (m0,m1, r0, r1) ← A(PK0, PK1,“specify ciphertexts”);
4. if m0,m1 /∈ M or r0, r1 /∈ R then output ‘0’;
5. C0 ← ((α0,0, β0,0), (α0,1, β0,1)) ← UE′(m0, r0, PK0)
6. C1 ← ((α1,0, β1,0), (α1,1, β1,1)) ← UE′(m1, r1, PK1)
7. C ′

0 ← ((α0,0μ0, β0,0θ0), (μ′
0, θ

′
0))

8. C ′
1 ← ((α1,0μ1, β1,0θ1), (μ′

1, θ
′
1))

9. b ∈U {0, 1}
10. b′ ← A(C ′

b, C
′
1−b,“guess”)

11. if b = b′ then output ‘1’ else output ‘0’;

Consider the case that the input is a DH 3-tuple. Clearly Cj is the ciphertext
under public key PKj as specified by A for j = 0, 1. It follows from the definition
of DDHRerand5 that C ′

j is a re-encryption of Cj in accordance with URe for
j = 0, 1. Therefore, the input to A is drawn from the same set and probability
distribution as the input to A in USS. Since A distinguishes with non-negligible
advantage, it follows that b = b′ with probability greater than or equal to 1

2 + γ
where γ is non-negligible in the security parameter.

Now consider the case that the input is not a DH 3-tuple. It follows from def-
inition of DDHRerand5 that the 5-tuple (θ′

j , θj , yj , μj , μ
′
j) is uniformly distributed

in G5
p for j = 0, 1. Therefore, C ′

j is uniformly distributed in G2
p ×G2

p for j = 0, 1.
Let p1 be the probability that A responds with b′ = 0. Then the probability
that b = b′ is 1

2p1 + 1
2 (1 − p1) = 1

2 . It follows that A has negligible advantage to
distinguish in this case. 
�

B The New Construction: Expanded DDH Self-reduction

We now generalize the DDH random self-reduction to output five values instead
of three. This allows us to transform a DDH problem instance into either two
DH 3-tuples with a common “public key” or a random 5-tuple, depending on
the input problem instance. We utilize this property in our proofs of security
in Sect. 7 (granted, this new reduction is given for pragmatic and proof sim-
plicity reasons, and not as an essential issue as are the modeling issues and
their correction presented above). We define algorithm DDHRerand5 as follows.
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DDHRerand5((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
the values u1, u2, v, v′, u′

1 ∈U [1, q] and computing,

(x′′, x′, y′, z′, z′′) ← (xv′
gu′

1 , xvgu1 , ygu2 , zvyu1xvu2gu1u2 , zv′
yu′

1xv′u2gu′
1u2)

Case 1. Suppose (x, y, z) is a valid Diffie-Hellman (DH) 3-tuple. Then x = ga,
y = gb, z = gab for some a, b. It follows that (x′, y′, z′) is also a valid DH 3-tuple.
It is straightforward to show that (x′′, y′, z′′) is a valid DH 3-tuple as well.

Case 2. Suppose (x, y, z) is not a valid DH 3-tuple. Then x = ga, y = gb,
z = gab+c for some c �= 0. In this case, x′ = ga′

, y′ = gb′
, z′ = ga′b′

gcv.
Since c �= 0 it follows that gc is a generator of Gp. Also, x′′ = ga′′

, y′ = gb′
,

z′′ = ga′′b′
gcv′

.
So, when (x, y, z) is a valid DH 3-tuple then (x′, y′, z′) and (x′′, y′, z′′) are

random DH 3-tuples with y′ in common and when (x, y, z) is not a valid DH
3-tuple then the output is a random 5-tuple.

C Proofs

Below is proof of Theorem 2.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonEnceav

A,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with
probability greater than or equal to 1

2 + 1
κα . Consider algorithm AlgR3 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR3((p, q), g, a0, b0, c0):
1. set (θ′

j , θj , yj , μj , μ
′
j) ← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. m ← A(n, λ, y0, y1)
3. generate u ∈U {0, 1}
4. set c ← ((α0, β0), (α1, β1)) ← ((mμu, θu), (μ′

u, θ′
u))

5. u′ ← A(c)
6. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerand5 in AppendixB that c is an encryption of m in accordance with
UE using yu as the public key. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 4. It follows
that u = u′ with probability greater than or equal to 1

2 + 1
κα . So, for random

exponents a and b in [1, q], Pr[AlgR3((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

κα .
Define ψ = Pr[AlgR3((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerand5 that the 5-tuple (θ′

u, θu, yu, μu, μ′
u) is uniformly

distributed in G5
p. Therefore, c is uniformly distributed in G2

p × G2
p. Let p1 be

the probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1 − p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR3((p, q), g, ga, gb, gc) = “true”] = q2

q3 ψ+(1− q2

q3 ) 12 = 1
2 + 2ψ−1

2q

which is overwhelmingly close to 1
2 . 
�
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Below is proof of Theorem 3.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonReEnceav

A,Ψ , an α > 0, and a sufficiently large κ such that A succeeds with
probability greater than or equal to 1

2 + 1
κα . Consider algorithm AlgR4 that takes

as input a Decision Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgR4((p, q), g, a0, b0, c0):
1. (θ′

j , θj , yj , μj , μ
′
j) ← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. (m, (k0, k1)) ← A(n, λ, y0, y1)
3. u ∈U {0, 1}
4. ((α0, β0), (α1, β1)) ← UEyu

(m, (k0, k1), λ)
5. c′ ← ((α′

0, β
′
0), (α

′
1, β

′
1)) ← ((α0μu, β0θu), (μ′

u, θ′
u))

6. u′ ← A(c′)
7. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1)) is
the ciphertext under public key yu as specified by A. It follows from the definition
of DDHRerand5 in AppendixB that c′ is a re-encryption of ((α0, β0), (α1, β1)) in
accordance with URe. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 5. It follows that u = u′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR4((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define the value

ψ to be Pr[AlgR4((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

definition of DDHRerand5 that the 5-tuple (θ′
u, θu, yu, μu, μ′

u) is uniformly dis-
tributed in G5

p. Therefore, c′ is uniformly distributed in G2
p × G2

p. Let p1 be the
probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1 − p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR4((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . 
�
Below is proof of Theorem 4.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKEnceav

A,Ψ , an α > 0 and a sufficiently large κ, such that A succeeds with
probability greater than or equal to 1

2 + 1
κα . Consider algorithm AlgR1 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR1((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, μ, μ′) ← DDHRerand5((p, q), g, a0, b0, c0)
2. (m0,m1) ← A(n, λ, y)
3. b ∈U {0, 1}
4. c ← ((α0, β0), (α1, β1)) ← ((mbμ, θ), (μ′, θ′))
5. b′ ← A(c)
6. if b = b′ then output “true” else output “false”
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Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerand5 in AppendixB that c is an encryption of mb according to UE using
y as the public key. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 2. It follows that b = b′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR1((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define ψ =

Pr[AlgR1((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

the definition of DDHRerand5 that (θ′, θ, y, μ, μ′) is uniformly distributed in G5
p.

Therefore, c is uniformly distributed in G2
p × G2

p. Let p1 be the probability
that A responds with b′ = 0. Then the probability that b = b′ is 1

2p1 + 1
2 (1 −

p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR1((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . 
�
Below is the proof of Theorem 5.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKReEnceav

A,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with
probability greater than or equal to 1

2 + 1
κα . Consider algorithm AlgR2 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR2((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, μ, μ′) ← DDHRerand5((p, q), g, a0, b0, c0)
2. ((m0, r0), (m1, r1)) ← A(n, λ, y)
3. b ∈U {0, 1}
4. ((α0, β0), (α1, β1)) ← UEy(mb, rb, λ)
5. c′ ← ((α0μ, β0θ), (μ′, θ′))
6. b′ ← A(c′)
7. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1))
is the ciphertext of mb as specified by adversary A. It follows from the definition
of DDHRerand5 in AppendixB that c′ is a re-encryption of ((α0, β0), (α1, β1))
according to URe. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 3. It follows that b = b′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR2((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define the value

ψ to be Pr[AlgR2((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from the

definition of DDHRerand5 that (θ′, θ, y, μ, μ′) is uniformly distributed in the set
G5

p. Therefore, c′ is uniformly distributed in G2
p × G2

p. Let p1 be the probability
that A responds with b′ = 0. Then the probability that b = b′ is 1

2p1 + 1
2 (1 −

p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR2((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . 
�
Theorems 2, 3, 4, and 5 show that Theorem 6 holds.
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D Related Work

Fairbrother sought a more efficient hybrid universal cryptosystem based on
UCS [8]. Universal re-encryption was used in a protocol to control anonymous
information flow, e.g., to prevent spam from being injected into the anonymiza-
tion network [16]. Onion-based routing and universal re-encryption were lever-
aged to form hybrid anonymous communication protocols [12,17]. A circuit-
based anonymity protocol was presented based on universal re-encryption [18].
Weaknesses in [12,16–18] were presented in [6]. Golle presented a reputable mix
network construction based on universal re-encryption [10].

Groth presented a re-randomizable and replayable cryptosystem based on
DDH achieving adaptive chosen ciphertext security [13]. The construction and
security arguments do not address key anonymity. Prabhakaran and Rosulek
presented a construction for a rerandomizable encryption scheme [22] that aims
to be CCA-secure under DDH. See also [23]. Re-encryption mix networks are
utilized in actual electronic voting systems such as Helios [1]. They are also used
in GR.NET’s Zeus system (github.com/grnet/zeus).

There has been more recent work on proxy encryption [15]. In proxy
encryption a ciphertext of a message m encrypted under Alice’s public key is
re-encrypted into a ciphertext of m under Bob’s public key. Our setting differs
since the receiver’s public key does not change during re-encryption.

The notion of key anonymity was introduced by Bellare, Boldyreva, Desai,
and Pointcheval [2]. They formally defined public key cryptosystems that pro-
duce ciphertexts that do not reveal the receiver and showed that ElGamal and
Cramer-Shoup achieve key anonymity.

The present paper was published in 2016 on e-print [28]. It influenced
the privacy-preserving user-auditable pseudonym system of Camenisch and
Lehmann [4] who leverage our security definition for incomparable public keys
and cite the applicability of our reduction technique from AppendixB. The
present paper was also mentioned as a needed building block for universal
re-encryption for AppeCoin4.
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Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 667–678. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 54

24. Rieback, M.R., Crispo, B., Tanenbaum, A.S.: Uniting legislation with RFID
privacy-enhancing technologies. In: Proceedings of the 3rd Conference on Secu-
rity and Protection of Information–SPI 2005, pp. 15–23 (2005)

25. Saito, J., Ryou, J.-C., Sakurai, K.: Enhancing privacy of universal re-encryption
scheme for RFID tags. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC
2004. LNCS, vol. 3207, pp. 879–890. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30121-9 84

26. Senftleben, M., Bucicoiu, M., Tews, E., Armknecht, F., Katzenbeisser, S., Sadeghi,
A.-R.: MoP-2-MoP – mobile private microblogging. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 384–396. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 25

27. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

28. Young, A.L., Yung, M.: Semantically secure anonymity: foundations of re-
encryption. Cryptology ePrint Archive, Report 2016/341, 29 March 2016. http://
eprint.iacr.org/2016/341

https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-540-70583-3_54
https://doi.org/10.1007/978-3-540-30121-9_84
https://doi.org/10.1007/978-3-540-30121-9_84
https://doi.org/10.1007/978-3-662-45472-5_25
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17
http://eprint.iacr.org/2016/341
http://eprint.iacr.org/2016/341


Securing Abe’s Mix-Net Against
Malicious Verifiers via Witness

Indistinguishability

Elette Boyle1(B), Saleet Klein2(B), Alon Rosen1(B), and Gil Segev3(B)

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu, alon.rosen@idc.ac.il

2 MIT, Cambridge, USA
saleet@csail.mit.edu

3 Hebrew University, Jerusalem, Israel
segev@cs.huji.ac.il

Abstract. We show that the simple and appealing unconditionally
sound mix-net due to Abe (Asiacrypt’99) can be augmented to further
guarantee anonymity against malicious verifiers.

As our main contribution, we demonstrate how anonymity can be
attained, even if most sub-protocols of a mix-net are merely witness
indistinguishable (WI). We instantiate our framework with two variants
of Abe’s mix-net. In the first variant, ElGamal ciphertexts are replaced
by an alternative, yet comparably efficient, “lossy” encryption scheme.
In the second variant, new “dummy” vote ciphertexts are injected prior
to the mixing process, and then removed.

Our techniques center on new methods to introduce additional wit-
nesses to the sub-protocols within the proof of security. This, in turn,
enables us to leverage the WI guarantees against malicious verifiers. In
our first instantiation, these witnesses follow somewhat naturally from
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the lossiness of the encryption scheme, whereas in our second instantia-
tion they follow from leveraging combinatorial properties of the Beneš-
network. These approaches may be of independent interest.

Finally, we demonstrate cases in Abe’s original mix-net (without mod-
ification) where only one witness exists, such that if the WI proof leaks
information on the (single) witness in these cases, then the system will
not be anonymous against malicious verifiers.

1 Introduction

A mix-net, introduced by Chaum [Cha81], is a means to provide anonymity
for a set of users. It has become a central tool for electronic voting, in which
each voter submits an encrypted vote and the mix-net outputs the same set of
votes in randomized order. Mix-nets have also found applications in other areas,
including anonymous web browsing [GGMM97], payment systems [JM98], and
as a building block for secure multi-party computation [JJ00].

In some cases, for instance for electronic voting, the mix-net is required to
be verifiable. That is, the mixing process should be accompanied by a proof that
does not violate anonymity (traditionally, zero-knowledge), and at the same time
convinces that the set of votes (alternatively, the vote tally) was preserved fol-
lowing the mixing process (soundness). Much work has been devoted to opti-
mizing the running times of protocols, resulting in highly efficient solutions
(e.g., [Nef01,GI08,Wik09,TW10,BG12]). At the same time, the strive for effi-
ciency has almost always required assuming that verifying parties act honestly.

While there exist relatively simple methods for enforcing honest verifier
behavior, very often the verifier ends up being replaced with some concrete
“challenge-generating” hash function that is modeled as a random oracle. This
transformation (known as the Fiat-Shamir transform [FS86]) only provides
heuristic guarantees for anonymity, as any concrete instantiation of a hash func-
tion is far from behaving randomly (and consequently is far from emulating the
behavior of an honest verifier). Moreover, there is indication that when applied
to computationally sound protocols (which include all known mix-nets with sub-
linear verification) it may result in loss of soundness [GK03].

The primary reason known efficient solutions require assuming honest ver-
ifiers is that they achieve anonymity by requiring underlying protocols to be
zero-knowledge (ZK). In some sense this is an overkill, since it may be possible
to guarantee anonymity of the overall system even if some of its building blocks
do not satisfy such a strong security notion. One prime example is given by Feige
and Shamir, who demonstrated how to construct 4-round ZK arguments for NP
by invoking sub-protocols that satisfy the notion of witness indistinguishability
(WI) [FS90]. In contrast to ZK, WI protocols are only required to hide which
of the (possibly many) NP-witnesses is used in the protocol execution. This
weaker notion gives rise to very simple and consequently efficient constructions,
secure even against malicious verifiers and sound even against computationally
unbounded provers.
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1.1 This Work

The goal of this work is to explore the possibility of constructing a simple mix-net
that is secure against malicious verifiers and in addition is unconditionally sound.
This would in particular mean that when applying the Fiat-Shamir transform
to the proofs in the mix-net, anonymity would provably be guaranteed for any
choice of a hash function. While soundness would still be heuristic, unconditional
soundness of the protocols makes them less susceptible to theoretical doubts
cast on the Fiat-Shamir transform in the case of certain computationally sound
protocols [GK03].

Towards this end, we aim for a relaxed indistinguishability-based notion of
anonymity, which is weaker than zero-knowledge and yet guarantees the pri-
vacy of voters in the system. We demonstrate how indistinguishability-based
anonymity of an entire mix-net system can be attained, even if most of the
underlying sub-protocols are merely WI. At the core of our analysis are new
techniques for guaranteeing the existence of multiple witnesses in NP-verification
relations upon which the soundness of mix-nets is based.

We instantiate our ideas with a very simple and appealing Beneš-network
based construction due to Abe [Abe99,AH01]. While this construction does
not match the sublinear verification efficiency of later mix-nets in the literature
(verification time is quasi-linear in the number of voters), it does enjoy a num-
ber of desirable features, most notably high parallelizability. In addition, proving
and verifying consists of invoking standard and widely used proofs of knowledge,
making the mix-net easy to understand and implement.

Abe’s mix-net was originally shown to be anonymous assuming honest veri-
fiers, and specifically based on the honest-verifier ZK property of the underlying
proofs of knowledge. In the case of a malicious verifier, these sub-protocols are
known only to be witness indistinguishable; alas, this guarantees nothing in cases
where there is a single witness. Moreover, (as we show) in Abe’s mix-net, cases
in which only one witness exists cannot be ruled out, and if indeed leakage on
the single witness occurs in these situations we demonstrate that the system is
not anonymous.

1.2 Our Results

We propose two different methods for modifying Abe’s original proposal that
result in a verifiable mix-net anonymous against malicious verifiers and sound
against computationally unbounded provers. Both methods require only minor
changes to Abe’s original protocol:

Lossy Abe mix-net: This encryption is identical to Abe’s original proposal,
with the only difference being that plain ElGamal encryption is replaced with
an alternative, yet comparably efficient, encryption scheme with the property
that public-keys can be sampled using a “lossy” mode (this mode is only
invoked in the analysis). When sampled with lossy public-keys, encrypted
ciphertexts do not carry any information about the plaintext. (The same
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property can also be satisfied by the Goldwasser-Micali QR-based, Paillier’s
DCR-based and Regev’s LWE-based, encryption schemes.)

Injected Abe mix-net: This method consists of running the original Abe mix-
net with additional dummy ciphertexts that are injected to the system for the
purpose of proving D-WI without having to modify and/or assume anything
about the encryption scheme in use (beyond it being re-randomizable). The
analysis of this construction relies on combinatorial properties of the Beneš-
network, and may turn out to be relevant elsewhere.

These modifications correspond to two approaches for introducing additional
witnesses to the sub-protocols of the mix-net verification: In the first, the extra
witnesses follow from the lossiness of the encryption scheme, and in the second
they follow by leveraging combinatorial properties of the Beneš-network.

In both cases, we show that the entire transcript of the mix-net system
satisfies the following natural anonymity property (in the style of [NSK04]): for
any choice of votes and any two permutations on the votes, the corresponding
views of an adversary are computationally indistinguishable.

We allow the adversary to control all but one of the mix-servers, an arbitrary
subset of the voters, subset of the decryption servers, and the verifier. If the
adversary controls a subset of the voters, then our definition quantifies over any
two permutations that are consistent on the votes that it controls. Note that
this anonymity notion completely hides information about which honest voter
placed which vote from the collective set of honest votes (which is necessarily
revealed by the shuffled output).

Theorem. The Lossy and Injected Abe mix-nets are anonymous against mali-
cious verifiers.

Our result assumes the availability of a non-malleable (more precisely, plain-
text aware) encryption scheme, under which the ciphertexts are encrypted, and
an efficient secure (simulatable) multi-party protocol for threshold decryption
of the ciphertexts. The latter building blocks can be constructed in an efficient
manner, even if participating parties are malicious, and moreover are routinely
assumed available in the cryptographic voting literature.

In a precise strong sense, the modifications introduced in the lossy and
injected versions of Abe’s mix-net are necessary for achieving anonymity in the
case of a malicious verifier.

1.3 Technical Overview

In what follows, we provide further background on verifiable mix-nets and Abe’s
mix-net construction, and then describe the main technical ideas behind our
results.

Verifiable Mix-Nets. Ideally, a mix-net is a protocol that completely breaks
the link between a user and the vote she has submitted. This remains true even
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if a subset of users share their votes with each other with the purpose of “de-
anonymizing” votes of users outside their coalition.

In principle, if one is only interested in the tally, then a simple way to protect
anonymity of individual voters would be to output the tally

∑
i vi. However,

specifically designing a protocol to meet this functionality limits its applicability
in case one is interested in alternative tallying mechanisms. Further, such tallying
solutions relying on homomorphic encryption either limit the message size or
require the use of relatively complicated zero-knowledge procedures for proving
the submitted vote encryptions are well formatted.

Mix-Net Phases. The operating assumption underlying most known mix-net
constructions is that some vote-encryption mechanism is in place, resulting in
a list c1, . . . , cn of ciphertexts where ci = Encpk(vi; ri) is an encryption of vi

with randomness ri, under a public key pk that corresponds to a certain polling
station. The output of the mix-net is a shuffled list of plaintexts vσ(1), . . . , vσ(n),
and we want a mix-net that hides σ even if malicious entities were involved in
the mixing phase, the input phase, and the verification phase.

The public key pk is jointly generated and certified in a distributed man-
ner by a set of trustees, so that no individual entity (or even any sufficiently
small coalition of entities) is able to decrypt its corresponding ciphertexts. The
assumption is that a large subset of the trustees acts as prescribed by the set-up
protocol. We note that such an assumption is standard in the literature, and it
does not necessitate the generation of a common reference string, at least not in
its most general form.

Given such a setup, most known verifiable mix-net constructions can be con-
ceptually decomposed to the following three stages:

Submit Ciphertexts: Each of the n users publishes their own ciphertext ci

on an authenticated bulletin board. For simplicity it is convenient to assume
that the encryption is “non-malleable” (in fact, plaintext aware), which guar-
antees that voters cannot make their own vote depend on others’.
Verifiably Mix: Ciphertexts c1, . . . , cn are:

– re-randomized (i.e. Encpk(vi; ri) is mapped to Encpk(vi; si) for random and
independent si) and then

– randomly shuffled to obtain ciphertexts c′
π(i) = Encpk(vi; si), where π is

randomly sampled from Sn.
In addition, the mixing party provides a proof that the set of plaintexts under-
lying the output ciphertexts c′

1, . . . , c
′
n equals the original set of submitted

votes underlying c1, . . . , cn.
Decrypt: The ciphertexts c′

1, . . . , c
′
n are collectively decrypted by means of

a secure distributed protocol.

In terms of complexity, the Submit Ciphertexts and Decrypt stages can be imple-
mented in time O(n). Moreover, by using lightweight protocols for threshold
decryption, the Decrypt phase can be implemented in a zero-knowledge fashion
without paying much penalty in terms of efficiency. In light of this, much of the
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literature (including the present work) focuses on optimizing the efficiency of the
Verifiably Mix stage.

A näıve implementation would require work proportional to O(n2) (by prov-
ing consistency of individual input-output ciphertext pairs). Remarkably, it has
been shown how to achieve perfect ZK with verification time as little as o(n)
(see [Nef01,GI08,Wik09,Gro10,TW10,BG12] to name a few). As we mentioned
above, in many cases this comes at the price of the assumption that the prover
is computationally bounded and that verification is performed as prescribed.

Abe’s Mix-Net. Abe presented [Abe99,AH01] a simple mix-net construction
which performs the Verifiably Mix stage on user ciphertexts via a sequence of
pairwise ciphertext rerandomize-and-swap operations, as dictated by a Beneš
permutation network. A d-dimensional Beneš network is a “butterfly” switching
network on n = 2d inputs, consisting of (2d − 1) levels of n

2 switch gates. Given
any permutation π ∈ Sn, this permutation can be implemented via some (effi-
ciently determined) choice of the control bits for each of the switch gates, where
0 at a gate indicates its input are output in order and 1 indicates its inputs are
swapped.

In Abe’s mix-net construction, the mixing entity samples a random permuta-
tion π ← Sn, and identifies a corresponding choice of Beneš control bits. Then,
implementing and proving the validity of the overall n-input mix reduces to
the same task on each of the O(n log n) individual switch gates in its Beneš
representation. Namely, the overall proof is simply a collection of independent
proofs that an individual rerandomize-and-switch gate operation preserved the
plaintext values underlying its input ciphertexts.

For many common encryption schemes, this simple statement structure yields
lightweight proofs of knowledge. For example, for ElGamal encryption (as con-
sidered by Abe), such a proof can be attained with 3 rounds by combining
the Chaum-Pedersen protocol [CP92], which proves the equality of two discrete
logarithms, with the protocol used in [CDS94], which proves two statements con-
nected by OR, overall costing about four times as much computation as a single
Chaum-Pedersen protocol execution.

However, lightweight protocols of this kind (inherently) provide only witness
indistinguishability guarantees and/or honest verifier zero knowledge. Because
of this, the mix-net of Abe was only proved to possess these properties as well.

Techniques and Ideas. To prove anonymity of our constructions, we must
prove for any vector of votes v = (v1, . . . , vn), and any permutation π of the
honest parties, that the view of a (possibly malicious) verifier in the mix-net
proof of correctness executed on votes (v1, . . . , vn) is indistinguishable from the
analogous view on initial votes (vπ(1), . . . , vπ(n)). That is, intuitively, the verifier
cannot distinguish which of the honest votes came from which honest party.

The semantic security of the encryption scheme directly allows us to “swap
out” the starting honest-party vote encryptions themselves. So the core task is
showing that interaction with an honest mix-server proving proper execution of
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random permutation σ on encryptions of (v1, . . . , vn) is indistinguishable from
an analogous proof executing σ ◦ π−1 on encryptions of (vπ(1), . . . , vπ(n)). The
main difficulty in doing so arises for adversaries who have partial control of the
votes: specifically, when the adversary controls a subset {vi}i∈A of votes for some
arbitrary A ⊆ [n] of his choice.

Recall that Abe’s construction is composed of a collection of underlying
proofs of knowledge, where each individual sub-protocol is WI. Consider the
proof for a single switch gate. To leverage the WI property, we must arrive to
a state where the corresponding gate-validity statement ((c1, c2), (c′

1, c
′
2)) has at

least two witnesses. This aligns precisely with the case in which the two input
ciphertexts (c1, c2) of the gate have the same underlying plaintext. In such case,
one could have reached the output ciphertexts (c′

1, c
′
2) either by simply reran-

domizing directly, or by swapping first and then rerandomizing (with different
randomness); conversely, if the input plaintexts differ then by the correctness of
the encryption scheme there is a unique witness.

Now, suppose we are in the case of a gate where both input ciphertexts c1, c2
correspond to encrypted votes of honest users. Then although the underlying
votes of the two users may disagree, by relying on the semantic security of the
encryption scheme, we can argue that the adversary cannot distinguish this state
from the one in which the votes do agree. Once in this modified version of the
world, we can invoke the WI guarantee to argue that the proof hides the identity
of the swap bit. A similar approach can further take care of the situation where
a single input ciphertext to a gate is controlled by the adversary (by changing
the honest ciphertext to agree with the adversary’s fixed vote).

What poses an issue is when both input ciphertexts to a gate are under adver-
sarial control. The adversary can then force the gate to have a single witness,
by choosing different plaintext votes. (Note we cannot hope to invoke semantic
security arguments as above, as the adversary generates the ciphertexts him-
self). In such a case, for all that is known, the underlying protocol may very
well leak the control bit of this gate. Interestingly, we demonstrate that such
leakage, while directly regarding only corrupt-party ciphertexts, would be fatal
to anonymity of honest parties in Abe’s mix-net (see full version on eprint1).

We address this issue via two alternative proposed modifications to Abe’s
protocol.

Using a lossy encryption scheme. In the first variant, we instantiate the
encryption scheme within Abe’s mix-net with a DDH-based lossy encryption
scheme that admits a similar underlying WI gate-consistency proof. A lossy
encryption scheme has the property that standard key generation is indistin-
guishable from a “lossy” version, such that encryption under a lossy key pk
completely loses all information about the message. In particular, for a lossy
pk, for any pair of ciphertexts c, c′ (not necessarily formed by encrypting the
same message), there exists a choice of re-randomization that takes c to c′.
This means for a lossy key that for any switch gate tuple (c1, c2, c′

1, c
′
2), there

1 https://eprint.iacr.org/2017/544.

https://eprint.iacr.org/2017/544
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necessarily exist two witnesses.
The proof of anonymity then follows from four simple steps. First, the public
key is replaced by a lossy version. Then, once we are under a lossy pk, we can
directly use the WI of the underlying gate protocols to switch (gate by gate)
from a Beneš representation of a starting permutation π to the representation
of any other permutation σ. Additionally, by the guaranteed hiding, we can
switch the plaintexts of honest users’ votes to an arbitrary shuffle amongst
themselves. Once we attain the desired permutation and plaintext settings,
we simply return back to a standard (non-lossy) pk.

Injecting and removing “dummy” votes. In the second variant, we con-
sider an arbitrary rerandomizable public-key encryption scheme (e.g., stan-
dard ElGamal), and instead modify the Abe mix protocol at a higher level.
Interestingly, the design approach leverages the combinatorial structure of
the Beneš network, without modifying the underlying building block proofs
of knowledge (for which it is not known how to prove an analogous property).
The new mixing procedure begins by generating and injecting n “dummy”
votes (i.e., encryptions of a fixed non-vote message ⊥) into the list of n real
encrypted votes. Abe’s mix phase is performed (without modification) on
the combined list of 2n ciphertexts (injecting the ⊥ ciphertexts into the
even-indexed positions). Then, Abe’s Decrypt protocol is performed on all
2n resulting ciphertexts, and the ⊥ plaintexts are identified and removed.
Verification consists of Abe’s standard verification, plus a process for verify-
ing that ⊥ ciphertexts were properly injected and removed in each mix step.
We remark that this modification of injecting non-adversarial ciphertexts into
the even-indexed positions does not directly preclude gates within the Beneš
execution whose input ciphertexts are both under adversarial control; indeed,
this remains quite likely to occur in many locations within later levels of the
Beneš network. However, leveraging the combinatorial Beneš structure, we
prove that the power we gain by ensuring the first-level gates do not have
this problem, is sufficient to hide all control bits used within the Beneš net-
work.
Our proof takes an inductive approach, on the dimension d (i.e., number of
users n = 2d) of the Beneš network. Ultimately, we design a carefully ordered
sequence of hybrids which enables us to step from honest input votes uhonest

and permutation π ∈ Sn to an arbitrary other choice u ′
honest, σ. In essence, for

each gate g in the Beneš network whose control bit we would like to flip, we:
(1) switch the control bits of relevant first-level gates to ensure at least one
non-adversarial ciphertext ci becomes directed to gate g; (2) rely on semantic
security to change the plaintext underlying ci to agree with its neighboring
ciphertext cj into g; and then (3) use the WI to flip the control bit of gate
g, now that we have forced the existence of 2 witnesses. This procedure is
performed on gates in a particular order to ensure progress is made in each
step, while leaving sufficient flexibility to enable that the step (1) redirection
can be performed.
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2 Indistinguishability-Based Anonymity of Mix-Nets

In this section we discuss the property of anonymity of a mix-net sys-
tem, which is our main focus. Due to space limitations, in the full
version (see footnote 1) we provide a complete definition of the stan-
dard syntax, correctness, and verifiability properties of a mix-net sys-
tem (Setup,SubmitCipher,VrfblyMix,Decrypt, (P,V)) (as discussed informally in
Sect. 1.3).

A wide range of anonymity notions have been considered within the mix-net
literature, ranging from addressing specific anonymity attacks, to very strong
notions of universally composable (UC) simulation.

In particular, the mix-net of Abe was proved in [Abe99,AH01,AI06] to satisfy
the following anonymity notion: An efficient adversary who corrupts a subset of
users, mix-servers, and decryption servers cannot gain noticeable advantage in
predicting any single input-output pair (i, j) ∈ [n]2 for which honest user i’s
encrypted plaintext is permuted to position j in the output. Note that this
definition protects the anonymity of each user, but is weaker than more general
indistinguishability and simulation definitions, in that it could potentially reveal
correlations between users (e.g., that users 2 and 3 voted in the same fashion).

We consider a stronger indistinguishability-based notion of anonymity, in
the flavor of [NSK04]. Intuitively, our definition requires that for any permuta-
tion on the honest users’ votes, the resulting views of the mix-net protocol and
verification—including the view of a possibly corrupt verifier—are indistinguish-
able.2 Note that this implies the anonymity definition of Abe [Abe99,AH01,
AI06], as a successful (i, j)-predicting adversary would serve as a successful dis-
tinguisher between views for permutations σ, σ′ which disagree on user i.

We formalize this notion via a notion of distributional WI (D-WI), a strength-
ening of WI we introduce that is related to strong-WI [Gol01], but parametrized
by specific pairs of distributions.

Distributional Witness Indistinguishabilty. For ease of reading, we will make
use of the following shorthand notation for the distribution over the view of a
(potentially malicious) verifier V within an interactive proof (P,V) for a given
distribution over statements (and witnesses).

Notation 1 (ViewV∗ [Dλ]). Let (P,V) be an interactive proof for a relation R.
For a given ensemble of distributions Dλ over statements, witnesses, and auxil-
iary input {(Xλ,Wλ, Zλ)}λ∈N for which (Xλ,Wλ) ∈ R and |Xλ| ≥ λ, and PPT
interactive machine V∗, we define the distribution

ViewV∗ [Dλ] := {〈P(Wλ),V∗(Zλ)〉 (Xλ) : (Xλ,Wλ, Zλ) ← Dλ}λ∈N
.

2 We remark, however, that [Abe99,AH01,AI06] directly consider non-malleability
concerns, which we factor out and address separately; see Remark on Non-
Malleability below. Note that Abe and Imai considered notions of anonymity against
both static and adaptive adversaries [AI06]; however, anonymity of Abe’s mix-net
construction was proven only in the static setting [Abe99,AH01], and thus this is
the notion we compare against.
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Definition 1 (D-WI). Let (P,V) be an interactive proof for a relation R, and
let Dλ and D′

λ be two probability ensembles over statements, witnesses, and
auxiliary inputs, as in Notation 1. We say that (P,V) is distributional witness-
indistinguishable (D-WI) with respect to Dλ,D′

λ for relation R if for every PPT
interactive machine V∗, the following holds: ViewV∗ [Dλ]

c≈ ViewV∗ [D′
λ].

Mix-Net Anonymity. For a given mix-net protocol MixNet, adversarial entity A,
and vector of honest user votes (ui)i∈UĀ

, the distribution DMixNet,A
λ ((ui)i∈UĀ

) as
given in Definition 2 denotes the induced distribution over statements, witnesses,
and auxiliary input of correctness of the mix-net. Our notion of anonymity (Def-
inition 3) requires the interactive proof system for correctness of the mix-net
to be distributional witness indistinguishable (D-WI) with respect to any pair
DMixNet,A

λ ((ui)i∈UĀ
) and DMixNet,A

λ ((uσ(i))i∈UĀ
), for any permutation σ on the

ordering of the honest users.

Definition 2 (DMixNet,A
λ distribution). Let MixNet = (Setup,SubmitCipher,

VrfblyMix,Decrypt) be a verifiable n-user m-server mix-net system with respect
to a re-randomizable encryption scheme E over message space M

Let A = (UA,SA,A) be given, where UA ⊆ [n], SA ⊂ [m] are corrupted subsets
of users and mix-servers, respectively, and A is an adversarial non-uniform PPT
algorithm which has four modes setup, submit votes,mix, and decrypt with the
syntax as below. We define the distribution DMixNet,A

λ as follows (we denote UĀ =
[n] \ UA and SĀ = [m] \ SA):

DMixNet,A
λ ((ui)i∈UĀ

):

Input: For each honest user i ∈ UĀ, a vote ui ∈ {0, 1}.
– Let state := ∅
– Sample (pk, (sk1, . . . , skm), state) ← SetupA(“setup”,1λ,state)(1λ),

i.e., simulate Setup protocol execution on honest party input 1λ and (ora-
cle access to) adversarial next-message function A(“setup”, 1λ, state), in each
round with updated state. Output the induced values pk, (sk1, . . . , skm), and
updated state.

– For each i = 1, . . . , n: // Submit votes (n users)
if i ∈ UA

then Sample (c0i , zi) ← A(“submit votes”, pk, i, state)
Update state := {zi} ∪ state

else Sample c0i ← SubmitCipher(pk, ui)
– For j = 1, . . . , m do: // Mix phase (m mix servers)

if j ∈ SA

then Sample (cj , wπ
j , zπ

j ) ← A(“mix”, pk, j, cj−1, state)
Update state := {zπ

j } ∪ state

else Sample rndj ← $, and set cj = Mixj(pk, cj−1; rndj)
– Run (v , (wsk

j )j∈SA
, state) ← DecryptA(“decrypt”,state)(cm, (skj)j∈SĀ

),
i.e., simulate Decrypt protocol execution on input (cm, skj) for each hon-
est mix-server j, and oracle access to adversarial next-message function
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A(“decrypt”, state), in each round with updated state. Output the induced
plaintext vector v , adversarial witness information (wsk

j )j∈SA
for decryption,

and updated state.
Output: (Xλ,Wλ, Zλ) where
– Xλ = (pk, c0, v)
– Wλ = ((rndj)j∈SĀ

, (wπ
j )j∈SA

, (skj)j∈SĀ
, (wsk

j )j∈SA
)

– Zλ = (state)

Definition 3 (Anonymous Mix-Net System). We say that a verifiable n-
user m-server mix-net system MixNet is anonymous if for every A (as in Defini-
tion 2), every choice of honest user votes ui ∈ {0, 1} for i ∈ UĀ, and every permu-
tation σ over the honest users UĀ (i.e. σ : UĀ ↪→ UĀ) the interactive proof system
(P,V) for correctness of MixNet is D-WI with respect to the following two prob-
ability ensembles Dλ = DMixNet,A

λ ((ui)i∈UĀ
) and D′

λ = DMixNet,A
λ ((uσ(i))i∈UĀ

)
where DMixNet,A

λ is as in Definition 2.

3 Abe’s Mix-Net with Lossy Encryption

For our first mix-net construction, we consider an implementation of Abe with a
modified lossy ElGamal encryption scheme. In Sect. 3.1 we present the additional
necessary building blocks, and in Sect. 3.2 we provide our construction.

3.1 Building Blocks for Lossy Abe

A lossy encryption scheme [PVW07] (KeyGen,KeyGenloss,Enc,Dec) is a PKE
scheme which possesses an alternative “lossy mode” key generation algorithm
KeyGenloss, whose output pk is computationally indistinguishable from an hon-
estly generated pk, but for which the encryption of a message m information
theoretically hides m.

We make use of the following lossy variant of ElGamal.

Definition 4 (Lossy ElGamal [BHY09]). The lossy ElGamal encryption
scheme for message space M = {0, 1} is given by:

– KeyGen(1λ): Generate the description of a cyclic group G of prime order q
(with log2 q ≥ λ) and generators g0, g1. Sample a random secret key s ← [q−1]
and compute h0 = gs

0, h1 = gs
1. Output pk = (G, q, g0, g1, h0, h1) and sk = s.

– KeyGenloss(1λ): Generate the description of G and g0, g1 as above. Sample
two random elements s0, s1 ← [q − 1], compute h0 = gs0

0 , h1 = gs1
1 . Output

pk = (G, q, g0, g1, h0, h1).
– Encpk(m): Sample r0, r1 ← [q − 1]. Output (gr0

0 gr1
1 , hr0

0 hr1
1 · gm).

– Decsk(c = (a, b)): Compute u := b · a−s, and output m ∈ {0, 1} for which
u = gm.

– ReRandpk(c = (a, b)): Choose random r0, r1 ← [q − 1], and output cout =
(a · gr0

0 gr1
1 , b · hr0

0 hr1
1 ).
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Theorem 1 ([BHY09]). Based on the Decisional Diffie-Hellman assumption,
the Lossy ElGamal scheme (Definition 4) is a rerandomizable lossy PKE scheme.

Note that ciphertexts are composed of two group elements, and conversely
any pair of elements of G can be interpreted as a “valid” ciphertext under a
given public key pk.

Proving correctness of the new switch gate can be achieved with WI via
a similar approach as to standard ElGamal: Here, combining the protocol of
Cramer et al. for proving OR [CDS94] instead with Okamoto’s protocol [Oka93]
for proving knowledge of Pedersen commitments (in the place of the Chaum-
Pederson protocol [CP92] for proving equality of discrete logarithms). Further
details of the resulting 3-round proof are given in the full version (see footnote 1).

3.2 Lossy Abe Mix-Net

Construction 1 (Lossy Abe Mix-Net). We define the n = 2d-user lossy Abe
mix-net system MixNetloss to be identical to Abe’s mix-net, with two exceptions:

– All mix-net procedures Setup,SubmitCipher,VrfblyMix,Decrypt make use of the
Lossy ElGamal algorithms KeyGen,Enc, and ReRand (Definition 4), in the
place of ElGamal.

– Each gate-consistency proof execution (PGate,VGate) (which was specific to
ElGamal) within Abe’s (PAbe

Mix ,VAbe
Mix ) is replaced by a corresponding gate-

consistency proof execution (P loss
Gate,V loss

Gate) for Lossy ElGamal, (this proof is
formed as an OR (via Cramer et al. [CDS94]) of ANDs of Okamoto [Oka93]).

Note that while we use Lossy ElGamal for concreteness, a similar approach
could be taken using amenable lossy encryption schemes based on, e.g., quadratic
residosity, Paillier, or LWE (see e.g., [BHY09,PW11,FGK+13]).

Theorem 2 (Lossy Abe is Anonymous). The Lossy Abe Mix-Net, as
described in Construction 1, is anonymous, as per Definition 3.

Proof. Let A = (UA,SA,A) be as in Definition 2, ui ∈ {0, 1} for i ∈ UĀ a
choice of honest user votes, and σ a permutation over the honest users UĀ. We
show that for any PPT interactive machine V∗: ViewV∗ [DMixNet,A

λ ((ui)i∈UĀ
)]

c≈
ViewV∗ [DMixNet,A

λ ((uσ(i))i∈UĀ
)], where DMixNet,A

λ is as in Definition 2), by a
sequence of the hybrids which use also the following claim:

Claim (Multiple Witnesses). With overwhelming probability over the choice of
a lossy key pkloss ← KeyGenloss(1λ), the following holds. For any ciphertexts
x0, x1, y0, y1 in the support of Encpkloss(·), there exists (r̂0, r̂1), (r̃0, r̃1) for which
yb = ReRandpkloss(xb; r̂b) and yb = ReRandpkloss(x1−b; r̃1−b) for b ∈ {0, 1}.

Proof. Follows by the equivalence of distributions Encpkloss(m0) ≡ Encpkloss(m1)
for all messages m0,m1 ∈ M under a lossy key.
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Recall the view of V∗ consists of: honest user votes (ui)i∈UĀ
(chosen by A),

the view during the key setup phase viewSetup, the public key pk, secret shares
(skj)j∈SA

of sk, vote ciphertexts of corrupt parties (c0i )i∈UĀ
, the view of V∗

within the mix phase
(
viewMixj

)

j∈[m]
, the view of V∗ during the Decrypt joint

decryption viewDec, and the shuffled plaintext votes v .
At a high level, the proof of Theorem2 moves from

ViewV∗ [DMixNet,A
λ ((ui)i∈UĀ

)] to ViewV∗ [DMixNet,A
λ ((uσ(i))i∈UĀ

)]

via the following sequence of hybrids. (1) First, viewSetup and viewDec are replaced
by simulated views, relying on zero knowledge simulation of the setup and joint
decryption protocols. (2) The honest setup functionality is replaced by a modified
one which samples a lossy system public key and outputs random secret key
shares skj to the corrupt servers. (3) Using semantic security, the encryptions
of honest user votes (ui)i∈UĀ

are replaced by encryptions of the σ-permuted
values (uσ(i))i∈UĀ

(but the mix and decryption phases are still with respect to
(ui)i∈UĀ

). (4) One uncorrupted mix-server modifies his permutation to “undo”
the σ shuffle of honest votes. This step relies on the special-soundness property
of the mix phase (in order to extract the permutations used by corrupt mix-
servers), the WI of the gate-consistency proofs, and the existence of multiple
witnesses for any ReRand-switch gate with respect to a lossy public key. (5) The
setup procedure is returned to the honest (non-lossy) version. (6) Finally, the
simulated viewSetup, viewDec are returned to the honestly generated versions.

4 Abe’s Mix-Net with Injected Dummy Votes

We demonstrate that an alternative simple tweak to the Abe mix-net system with
comparable efficiency preserves verifiability, and further guarantees anonymity
against a malicious verifier. At a high level, our construction is identical to
the Abe mix-net (without changing the encryption scheme) on 2n votes, where n
“dummy” ciphertexts of ⊥ are introduced and removed at the beginning and end
of each mix-server mix phase. To verify that this process was followed honestly,
the injected ciphertexts will be decrypted at the end along with the shuffled
votes (in a carefully chosen order).

Construction 2 (Injected Abe Mix-Net). The injected Abe n = 2d-user
m-servers mix-net system is identical to Abe’s mix-net with two exceptions: (1)
VrfblyMixinjectAbe (pk, c0) is a sequential algorithm with m iterations, where each iter-
ation j ∈ [m] is an execution of MixInject as given below (instead of MixAbe), and
(2) the verification proof system (P inject

Abe ,V inject
Abe ) has 4 steps as described below

(instead of (PAbe,VAbe)).
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MixInject(pk, cj−1): Let L = 2d − 1. Perform the following:
1. (Inject Fake Votes). Generate n encryptions of the message ⊥, and insert

them into the even positions of a new (N = 2n)-length vector Cj−1, with
the real input ciphertexts in the odd positions. That is, for every i ∈ [n],

Cj−1
2i−1 := cj−1

i , Cj−1
2i ← Encpk(⊥).

2. (Choose Permutation). Sample a random permutation πj ← Sn on n
elements, and let πnew

j ∈ SN be the permutation on N elements that acts
as π on the odd positions and as the identity on the evens. That is:

∀i ∈ [n] : πnew[2i − 1] = 2 · π[i] − 1, πnew[2i] = 2i.

3. (AbeMix on 2n Inputs): Execute AbeMix with input (pk,Cj−1, πnew
j ). Let

wj = (Cj , Bπnew
j

, R̂j
0, R̂

j
1) be the resulting output.

4. (Remove Fake Votes). Output the length-n vector cj corresponding to the
odd locations of Cj. That is, output

∀i ∈ [n] : cj
i := C ′

2i−1.

(P inject
Abe ,V inject

Abe ): The interactive proof system (P inject
Abe ,V inject

Abe ) with common
input (pk, c0, v) and witness (rndj , skj)j∈[m] is
1. Submission of intermediate ciphertext vectors: For every j ∈

[m]: P generates and sends V the input and output lists of ciphertexts
(Cj−1,Cj) where Cj−1 is generated as in step 1 above, and Cj is the
list of ciphertexts output from AbeMix in step 3 above. V verifies that the
output ciphertexts in odd locations for each mix-server j − 1 are identi-
cal to the corresponding input ciphertexts to mix-server j: i.e., for every
j ∈ [m − 1], i ∈ [n]: Cj

2i−1 = Cj+1
2i−1. Additionally, V verifies that the first

set of ciphertexts in odd locations agree with the submitted vote cipher-
texts: c0i = C0

2i−1, for every i ∈ [n].
2. Correctness Proof of VrfblyMix: For every j ∈ [m], execute

(PAbe
Mix ,VAbe

Mix ) with input (pk,Cj−1,Cj) and witness (πnew, Bπnew
j

, R̂j
0, R̂

j
1).

3. Correctness Proof of Injected Fake Votes: Let v⊥ = (⊥, . . . ,⊥)
be an n-dimension vector of the message ⊥, and cj−1,⊥ be the vector
of n ciphertexts such that cj−1,⊥

i = Cj−1
2i for every i ∈ [n]. Execute

(PAbe
Dec ,VAbe

Dec ) with input (pk, cj−1,⊥, v⊥), using witness (skj)j ∈ [m]. If
the prover is rejected in this step, the proof system terminates, and no
further steps take place.

4. Correctness Proof of Decrypt: Let cm be a list of n ciphertexts such
that cm

i = Cm
2i−1. Execute (PAbe

Dec ,VAbe
Dec ) with input (pk, cm, v) and witness

(skj)j ∈ [m]. If the prover is rejected in this step, or if for any i ∈ [n] it
holds that vi = ⊥, the proof system terminates, and no further steps take
place.
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5. Correctness Proof of Removed Fake Votes: Let v⊥ = (⊥, . . . ,⊥)
be an n-dimension vector of the message ⊥, and cj,⊥ be the vector of n
ciphertexts such that cj,⊥

i = Cj
2i for every i ∈ [n]. Execute (PAbe

Dec ,VAbe
Dec )

with input (pk, cj,⊥, v⊥), using witness (skj)j ∈ [m]. If the prover is
rejected in this step, the proof system terminates, and no further steps
take place.

Overall (P inject
Abe ,V inject

Abe ) proves that: (1) the submitted user ciphertexts are
properly copied into the odd positions of the first mix input vector, and for
every mix server j the ciphertexts in the odd locations of its input ciphertext
vector are the same as those in the output of server j − 1;3 (2) every mix server
permuted its input vector to its output vector; (3) the injected ciphertexts (in
even positions) of each mix server are encryptions of ⊥; (4) the final ciphertexts
in the odd locations indeed decrypt to v ; and (5) the final ciphertexts in the
even locations decrypt to ⊥. Altogether, this ensures that the final vector v is
indeed the permutation of the votes underlying c0. That is, soundness holds.

Theorem 3 (Injected Abe Mix-Net is Anonymous). The Injected Abe
Mix-Net, as described in Construction 2, is anonymous (as per Definition 3).

The proof uses the following core lemma, focusing on the proof of a single
mix-phase. It states that for an honest mix-server who indeed injects ciphertexts
of ⊥ in even positions, then the view of a malicious verifier during the proof of
correctness of the corresponding mix-phase is indistinguishable for any pair of
implemented permutations which fix the even-location positions (but operate
arbitrary π0, π ∈ Sn on the odd-location positions).

Lemma 1 (Replacing Permutation in Mix). For every (adversarial) non-
uniform PPT A, and every two permutations π0, π1 ∈ Sn, the interactive
proof system (PAbe

Mix ,VAbe
Mix ) (for correctness of Abe mixing) for the relation RMix

in Abe Mix-net satisfies distributional witness-indistinguishability (D-WI) with
respect to the following two distribution ensembles Dλ = DMix,A

λ (π0) and D′
λ =

DMix,A
λ (π1) where DMix,A

λ is as in Definition 5 described below.

Definition 5 (DMix,A
λ ). For any (adversarial) non-uniform PPT algorithm A,

and security parameter λ ∈ N, we define the following distribution DMix,A
λ as

follows:
DMix,A

λ (π):

Input: Permutation π ∈ Sn

– Sample (pk, (sk1, . . . , skm)) ← Setup(1λ)
– For every i ∈ [n]: Obtain ci, zi ← A(pk, i)
– For every i ∈ [n]: Set C2i−1 := ci and C2i ← Encpk(Encpk(⊥)
– Let πnew be such that ∀i ∈ [n]:

πnew[2i − 1] = 2 · π[i] − 1, πnew[2i] = 2i.
3 Note that any pair of group elements can be interpreted as a “valid” ElGamal cipher-

text under the public key pk.
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– Execute AbeMix (step 2 in Abe’s Mix, on 2n votes):
(C’, Bπnew , R̂0, R̂1) ← AbeMix(pk,C, πnew)

Output: (Xλ = (pk,C,C’),Wλ = (Bπnew , R̂0, R̂1), Zλ = (z1, . . . , zn))

Proof. We change from the Beneš switch gate settings of πnew
0 ∈ S2n to those of

πnew
1 one gate at a time, in a particular order. This is achieved by a sequence of

steps of the following two forms: (a) For any honest ciphertext (i.e., encrypting
⊥), we can change the plaintext, by semantic security. (b) For any gate whose
input ciphertexts encrypt the same plaintext (i.e., 2 witnesses to the switch gate),
we can flip the switch bit from b to 1 − b, by WI.

The order of gates is as follows.
We first target the last (output) level of the Beneš network, changing from

the corresponding last-level bits of πnew
0 to those of πnew

1 . Since the mix-server is
honest, in each even output position 2i in the last level is the (rerandomized) ⊥
ciphertext that originated in input position 2i. Using step type (a) (i.e., semantic
security), convert each ciphertext 2i to encrypt the same value as its output-gate
neighbor 2i−1. This can be done by rerandomizing the neighbor ciphertext and
using this as the original injected “⊥” 2ith ciphertext. Note that changing the
plaintext does not affect the permutation, meaning the same pairs of ciphertexts
will appear together in the last level gates. Then, given the plaintext switch,
we have that every gate in the final level has a pair of ciphertexts of the same
plaintext. Then using step type (b) (i.e., WI), we may change each gate to agree
with the Beneš settings for πnew

1 .
Next we target the gates in the upper sub-BenešȦgain we will use the power

of the honest mix-server controlled dummy “⊥” ciphertexts to change from the
corresponding permutation bits of πnew

0 to those of πnew
1 . First, we “direct” all the

⊥ ciphertexts up to enter this sub-network by (temporarily) changing the switch
settings of the first (input) level of the Beneš: Using (a) change all ⊥ ciphertexts
2i to encrypt the same value as their input-gate neighbor 2i−1, using (b) change
all first-level gates to switch value 1, so that all ciphertexts entering the upper
sub-Beneš are dummy, and then using (a) change them all back to encryptions
of ⊥. At this point, all gates in the upper sub-Beneš satisfy the conditions of
step (b) (namely, all ciphertexts encrypt the same plaintext ⊥), which means
they can be changed one by one to agree with the Beneš settings for πnew

1 .
Finally, the gates in the lower sub-Beneš and in the first-level (input) gates

are changed in an analogous fashion.
Given Lemma 1, the proof of anonymity follows essentially the same structure

as in the case of the Lossy Abe Mix-net (where previously an analogous statement
held by the multiple-witness guarantee of the lossy public key combined with
WI). We note that the order of the executions of (PAbe

Dec ,VAbe
Dec ) (i.e., first the

injected even-position ciphertexts, then the final shuffled user votes, then the
post-shuffle even-position ciphertexts) is important in order to ensure that we
can properly simulate the execution of these executions (i.e., Hybrid 1 in the
Lossy Abe proof) without information on users’ votes.
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González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-
1 28

https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-48892-8_13
https://doi.org/10.1007/978-3-540-24852-1_5
https://doi.org/10.1007/978-3-540-24852-1_5
https://doi.org/10.1007/3-540-57568-5_268
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28


Zero-Knowledge Protocols for Search
Problems

Ben Berger(B) and Zvika Brakerski

Weizmann Institute of Science, Rehovot, Israel
{ben.berger,zvika.brakerski}@weizmann.ac.il

Abstract. We consider natural ways to extend the notion of Zero-
Knowledge (ZK) Proofs beyond decision problems. Specifically, we con-
sider search problems, and define zero-knowledge proofs in this context
as interactive protocols in which the prover can establish the correctness
of a solution to a given instance without the verifier learning anything
beyond the intended solution, even if it deviates from the protocol.

The goal of this work is to initiate a study of Search Zero-Knowledge
(search-ZK), the class of search problems for which such systems exist.
This class trivially contains search problems where the validity of a solu-
tion can be efficiently verified (using a single message proof containing
only the solution). A slightly less obvious, but still straightforward, way
to obtain zero-knowledge proofs for search problems is to let the prover
send a solution and prove in zero-knowledge that the instance-solution
pair is valid. However, there may be other ways to obtain such zero-
knowledge proofs, and they may be more advantageous.

In fact, we prove that there are search problems for which the afore-
mentioned approach fails, but still search zero-knowledge protocols exist.
On the other hand, we show sufficient conditions for search problems
under which some form of zero-knowledge can be obtained using the
straightforward way.

Keywords: Zero-knowledge · Search problems · Interactive proofs

1 Introduction

The notion of Zero-Knowledge Proofs (ZK-Proofs) introduced by Goldwasser,
Micali and Rackoff [20] is one of the most insightful and influential in the the-
ory of computing. Its tremendous impact came not only from having numerous
applications but maybe more importantly from changing the way we think about
proofs, communication and how to formalize such intuitive claims as a party “not
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learning anything” from an interaction. In a nutshell, a ZK-Proof is an inter-
active proof of some statement, i.e. an interaction between a prover P and a
verifier V with the prover attempting to convince the verifier that some instance
x belongs to a language L. In addition to the usual completeness and sound-
ness, in the ZK scenario the prover wants to protect itself from revealing “too
much information” to the verifier. Surely the verifier needs to learn that indeed
x ∈ L, but nothing else beyond this fact should be revealed. Furthermore, even
a malicious verifier that does not follow the prescribed protocol should not be
able to trick the prover into revealing more information than intended. This
intuitive statement is formalized using the simulation paradigm, the existence
of a simulator machine S that takes an input x ∈ L and a possibly cheating
verifier V ∗ and samples from the view of V ∗ in the interaction (P, V ∗) (up to
negligible statistical or computational distance). Since the view of the verifier
can essentially be produced (up to negligible distance) knowing only that x ∈ L,
it clearly does not reveal anything beyond this fact.

Our Results. In this work we consider a setting where again the prover is
concerned about revealing too much information to the verifier, but now in the
context of search problems. That is, the prover would like to assist the verifier
in learning a solution y to an instance x of some search problem, but would like
to limit the verifier’s ability to learn anything beyond the intended solution (or
distribution of solutions).

While one’s first intuition of a search problem is of one where it is efficient
to verify a solution (e.g. searching for an NP witness), this is actually not the
interesting setting here. In fact, in this case the prover can just send the witness,
and the verifier verifies locally, so no additional information beyond the solution
is revealed. One example one could consider is the isomorphic vertex problem:
given two graphs (G1, G2) and a vertex v1 in G1, find a vertex v2 in G2 that is
isomorphic to v1 under some isomorphism.

Our first contribution is to formalize this notion via the simulation paradigm,
as follows. We require that the prover for the interactive protocol is associated
with a family of distributions {Yx}x over solutions for each input x, intuitively
corresponding to the distribution V is allowed to learn. We require that the view
of any verifier can be simulated given only a sample y drawn from Yx. To reduce
the number of free parameters in the definition we propose to associate Yx with
the distribution of solutions output by an interaction of an honest prover with an
honest verifier (note that importantly this refers to the distribution of solutions
y output by the honest verifier and not to the honest verifier’s entire view). Thus
the zero-knowledge task becomes to ensure that no verifier (including the honest
verifier) learns anything except the honest verifier’s prescribed output. In terms
of soundness, we require that V either outputs some valid solution for the search
problem (if such exists), or rejects, except perhaps with small probability, even
when interacting with a malicious prover. The definition, a discussion and an
example protocol are provided in Sect. 2.
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Intuitively one could think that in order to achieve search-ZK, the prover
should first sample a solution from Yx, send it to the verifier and then prove
in decision-ZK the validity of the solution (that is, that in a sense search-ZK
is reducible to decision-ZK). Indeed almost all examples for protocols we have
are roughly of this form. Section 3 is dedicated to understanding whether it is
possible to provide a protocol of this form for any language in search-ZK, or
whether there are some cases where other methods can achieve search-ZK but
the aforementioned outline cannot. We define the class prefix-ZK to be the class
of problems with protocols as above. We show that prefix-ZK has a complete
problem (which we are unable to show for general search-ZK) and we show
conditions under which some search-ZK systems can be transformed into prefix-
ZK (for the same underlying search problem). Finally, we show that, perhaps
counter-intuitively, search-ZK contains problems that are not in prefix-ZK, so at
least in that sense the study of search-ZK may not be a derivative of the study
of decision-ZK. Interestingly, this separation follows from showing that search-
PSPACE does not contain search-IP, which may be of independent interest.

Lastly, in Sect. 4, we discuss the relation between search-ZK and the notion of
pseudo-deterministic algorithms and protocols presented by Gat and Goldwasser
[8] and further explored by Goldreich, Goldwasser, Grossman, Holden and Ron
[11,17–19,21]. In a pseudo-deterministic protocol, not only should the distribu-
tion Yx be a singleton yx, but also the soundness requirement is that a malicious
prover cannot make an honest verifier output a solution different from yx (except
with small probability). One of the advantages of pseudo-deterministic protocols
is that they allow for soundness amplification for search problems. We show that
the isomorphic vertex problem indeed has a pseudo-deterministic search-ZK pro-
tocol, suggesting that achieving strong soundness together with strong privacy
is possible in some interesting cases.

Related Notions. The first related notion is that of secure multiparty com-
putation (MPC) by Yao [26] and Goldreich, Micali and Wigderson [12]. For the
purpose of this work, the relevant setting is of secure two-party computation
where two parties A,B with inputs xA, xB wish to compute values yA, yB which
depend on both inputs. The privacy requirement is that each party does not learn
more than its intended output. It would appear that setting A = P,B = V , and
defining FB appropriately to output what the verifier is allowed to learn, should
result in a search-ZK protocol. However, looking more closely, the complexity
of an MPC protocol scales with the complexity of the function FB, which in
general scales with the complexity of the prover’s functionality. If the prover’s
functionality is not in NP, then MPC cannot be used. MPC appears to be useful
in the restricted case of computational search-ZK for search problems that can
be computed as a function of an NP witness. Our isomorphic vertex problem
falls into that category (with the NP witness being an isomorphism), however
for isomorphic vertex we have a statistical search-ZK protocol. For statistical
search-ZK, the MPC methodology does not seem to be useful, since information
theoretically secure two-party computation is not possible [3,5].
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Another related line of work is concerned with privacy of approximation
algorithms, initiated by Feigenbaum et al. [7] and Halevi et al. [22], and further
studied by Beimel et al. [1]. The setting in these works is quite different from
ours. Their ideal setting is where a solution to some search problem is posted
without revealing the input (e.g. output a vertex cover for some graph without
revealing the edges of the graphs). The problem arises when solving exactly is
hard and an approximation algorithm is used instead. Their goal is to show
that the approximate solution does not reveal more information than the exact
solution. Note that in this setting there is no soundness requirement (in fact, a
client cannot be convinced that a solution is correct since it does not have the
input).

Future Directions. Our work is far from being an exhaustive study of search-
ZK, and we hope to open the door for additional study. One direction of research
is designing search-ZK protocols for other problems of interest, and more impor-
tantly general approaches for search-ZK for classes of problems. The question
of whether search-ZK has complete problems in the computational and statisti-
cal setting remains open. Another intriguing line of inquiry, which may also be
helpful for resolving the above, is whether we can translate the extensive body
of work on statistical ZK protocols [6,9,15,16,23,24] into the search regime.

Remark 1. Due to space constraints some parts of this work had to be ommitted.
For the full version see [4].

2 Zero Knowledge Protocols for Search Problems

Notational Convention. In this work we consider three types of zero knowl-
edge classes: computational, statistical and perfect zero knowledge, denoted
CZK,SZK and PZK respectively. Most of the claims in this text apply to
all three of these classes, and therefore we use the abbreviation ZK whenever
the statement or definition it appears in refers to all three types of zero knowl-
edge at the same time. For example, the statement “any ZK protocol p1 admits
a ZK protocol p2” expands to three different statements for each of the zero-
knowledge types considered.

Given a relation R we denote LR := {x | ∃y, (x, y) ∈ R} and for any x,
R (x) := {y | (x, y) ∈ R}. A promise decision problem is a pair L = (LY ES , LNO)
of sets where LY ES ∩ LNO = ∅. A promise search problem is a pair R =
(RY ES , LNO) where RY ES is a relation, LNO is a set and LRY ES

∩ LNO = ∅.

Definition 1 (The class IP , [20]). We say that the promise decision problem
L = (LY ES , LNO) ∈ IP if there is an interactive protocol (P, V ) where V is a
PPTM and P is (possibly) computationally unbounded such that:

– Completeness: For any x ∈ LY ES, Pr [(P, V ) (x) = 1] = 1.
– Soundness: For any x ∈ LNO and prover strategy P ∗, Pr [(P ∗, V ) (x) = 1] ≤ 1

2 .
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We now turn to zero knowledge proofs.

Definition 2. We say a promise decision problem L = (LY ES , LNO) ∈ ZK
if there is a triplet (P, V, S) where (P, V ) is an IP protocol for L and S is
an expected PPTM such that for any PPTM V ∗ and x ∈ LY ES, it holds that
view

(P,V ∗)
V ∗ (x) ≈ S (x, V ∗), where view

(P,V ∗)
V ∗ (x) is a random variable containing

x, the random coins of V ∗ and the messages exchanged between the parties.

Remark 2. The meaning of “view(P,V ∗)
V ∗ (x) ≈ S (x, V ∗)” depends on the type of

zero knowledge considered, as explained below:

– CZK:
∣
∣
∣Pr

[

D
(

view
(P,V ∗)
V ∗ (x)

)

= 1
]

− Pr [D (S (x, V ∗)) = 1]
∣
∣
∣ = negl (|x|) for

any PPTM D.
– SZK:

∥
∥
∥view

(P,V ∗)
V ∗ (x) − S (x, V ∗)

∥
∥
∥ = negl (|x|) where ‖·‖ denotes statistical

distance.
– PZK:

∥
∥
∥view

(P,V ∗)
V ∗ (x) − S (x, V ∗)

∥
∥
∥ = 0.

Remark 3. In the original definition of zero-knowledge proofs, given in [20], the
zero knowledge property required that for any V ∗ there exists a (possibly differ-
ent) S∗ that simulates the view of V ∗ in the original protocol. Here we chose to
adopt the notion of a universal simulator : a single algorithm that simulates the
view of V ∗ when given as input a description of V ∗.

Remark 4. A stronger definition of zero-knowledge proofs was given in [14] where
the verifier is required to learn nothing from the protocol even when it has
access to some external auxiliary input. This stronger notion is particularly
important when one wants to use a zero-knowledge protocol as a subprotocol of
another zero-knowledge protocol. Since the results of this work do not require
this stronger property we chose to work with the simpler definition in order to
facilitate the presentation.

Remark 5. Note that PZK ⊆ SZK ⊆ CZK.

Next we define the search counterpart of IP .

Definition 3 (Search-IP ). We say that the promise search problem R =
(RY ES , LNO) ∈ Search-IP if there is a pair (P, V ) where V is a PPTM and P
is (possibly) computationally unbounded such that:

– Completeness: ∀x ∈ LRY ES
, Pr [(P, V ) (x) ∈ RY ES (x)] = 1.

– Soundness: ∀x ∈ LRY ES
∪ LNO and ∀P ∗,Pr [(P ∗, V ) (x) ∈ RY ES (x) ∪ {⊥}]

≥ 1
2 .

A few comments about this definition are due. Note that we require zero
probability of error when the two honest parties interact. That is, we require
perfect completeness, a requirement that we also have in the decisional definition.
This choice complies with the definition of interactive proofs as formulated in
[10] and is not very significant: we could have also allowed small completeness
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error and most of the results of this paper would still hold. Furthermore, note
that the soundness condition refers also to the case where x ∈ LRY ES

: even if
the instance has a solution, no prover strategy can make the verifier output a
wrong solution but with small probability. Another thing to note is that it is not
clear how one can reduce the soundness error. Repetition of the protocol can
yield different solutions, and it is not clear why one of these solutions should
be favored more than another. Later in this work we consider different ways
to deal with this problem. On the other hand, note that a Search-IP protocol
immediately gives rise to an IP protocol for the task of deciding whether the
given instance has a solution or not: the parties just need to run the original
protocol, in the end of which the verifier accepts if and only if the output is
not ‘⊥’. This protocol can be repeated (sequentially or in parallel) to reduce the
soundness error.

We now present zero knowledge protocols for search problems. These are
Search-IP protocols that apart from simply solving the search problem they
also have a ‘zero knowledge’ property: it is guaranteed that the verifier does
not learn anything other than the obtained solution, in the sense that given a
solution, he could have simulated the entire interaction with the prover. This
is analogous to the decisional version of zero knowledge, where the verifier is
guaranteed not the learn anything but the validity of the proven statement in
the sense that given the bit 1 (i.e. given that the statement is true), he could
have simulated the entire interaction with the prover. What exactly do we mean
by “given a solution”? Our interpretation is given in the formal definition below:

Definition 4. We say that the promise search problem R = (RY ES , LNO) ∈
Search-ZK if there is a triplet (P, V, S) such that

– (P, V ) is a Search-IP protocol for R.
– Zero-knowledge: S is an expected PPTM and for any PPTM adversary V ∗

and x ∈ LRY ES
it holds that view

(P,V ∗)
V ∗ (x) ≈ S (x, V ∗, (P, V ) (x)), where

view
(P,V ∗)
V ∗ (x) is a random variable containing x, the random coins of V ∗ and

the messages exchanged between the parties.

Remark 6. The meaning of “view(P,V ∗)
V ∗ (x) ≈ S (x, V ∗)” depends on the exact

instantiation of Definition 4, whether it be Search-CZK, Search-SZK or
Search-PZK, as explained below:

– CZK:
∣
∣
∣Pr

[

D
(

view
(P,V ∗)
V ∗ (x)

)

= 1
]

− Pr [D (S (x, V ∗, (P, V ∗) (x)) , ) = 1]
∣
∣
∣

= negl (|x|)

for any PPTM D.
– SZK:

∥
∥
∥view

(P,V ∗)
V ∗ (x) − S (x, V ∗, (P, V ∗) (x))

∥
∥
∥ = negl (|x|) where ‖·‖ denotes

statisticaldistance.

– PZK:
∥
∥
∥view

(P,V ∗)
V ∗ (x) − S (x, V ∗, (P, V ∗) (x))

∥
∥
∥ = 0.
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Our interpretation of the zero knowledge property is that whatever any (pos-
sibly malicious) verifier can learn from the protocol (when run on an instance
that has a solution) he could have also learned when presented with a sample
from the distribution of legal solutions that corresponds to the protocol (when
run by the honest parties). This is indeed a distribution since a yes instance x
can have many possible solutions, and the one that is output can depend on the
randomness. This is in contrast to the decisional version of zero knowledge pro-
tocols, where any instance has only one possible solution - either yes or no. Later
we will show that if some search problem has a Search-ZK protocol that always
outputs the same solution for every yes instance x (i.e. |supp ((P, V ) (x))| = 1)
then in some sense the problem has a decisional zero-knowledge protocol.

Remark 7. The distribution on solutions from which the simulator gets a sample
in Definition 4 depends on the honest parties executing it. That is, the simula-
tor gets a sample from (P, V ) (x) rather than from some other distribution on
RY ES (x), which could be independent from the protocol. We could have defined
an implementation-independent notion, where the search problem R is associ-
ated with a collection of distributions - each yes instance x ∈ LRY ES

is paired
with a distribution Yx of legal solutions for x, and the protocol would have
to satisfy the requirement that any poly-time verifier could have simulated its
interaction with the honest prover when given a sample from Yx. In this work
we investigate the notion of zero-knowledge protocols for search problems as
defined in Definition 4, but it is interesting to understand how things change
when considering the other variant.

2.1 Perfect Zero Knowledge Protocols for Any Search Problem
with Efficiently Verifiable Solutions

The first thing to notice about Search-ZK protocols is that any search prob-
lem for which the solutions can be verified by a deterministic poly-time Turing
machine admits such a protocol. In fact, any such search problem admits a
Search-PZK protocol with a single message that is sent by the prover - namely
some arbitrary solution to the given instance. Upon receiving the alleged solu-
tion the verifier checks its validity and then outputs it (or outputs ⊥ if it was a
fake solution). Completeness and soundness are clear, as the verifier only accepts
legal solutions, and zero knowledge is achieved by having the simulator output
the solution it is given (along with the input and the randomness for the verifier).
As an important example, Search-NP ⊆ Search-PZK, i.e. given any language
L ∈ NP and NP -relation for it RL, it holds that RL ∈ Search-PZK. This
example can be extended to MA which is the randomized counterpart of NP :
formally, a language L ∈ MA if there exists a randomized poly-time verifier V
such that if x ∈ L then there is some polynomially bounded witness w = w (x)
such that V (x,w) accepts with probability 1, and if x /∈ L then for any w∗,
V (x,w∗) = 1 with probability at most 1

2 . For any such verifier, the search prob-
lem of finding a witness w that makes the verifier accept with probability at
least 1

2 is in Search-PZK with respect to the same protocol as described above,
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where the honest prover sends an arbitrary witness that makes the verifier accept
with probability 1.

2.2 An Example of a Search-PZK Protocol

Given two (undirected) graphs G1, G2 and two vertices v1 ∈ G1, v2 ∈ G2 we
say that v1 is isomorphic to v2 if there is an isomorphism between G1 and
G2 that maps v1 to v2. Consider the following search problem which we call
Find-Isomorphic-V ertex: given two undirected graphs G1, G2 on n vertices and
some vertex v1 ∈ G1, find a vertex v2 ∈ G2 that is isomorphic to v1, or output
⊥ if there is no such isomorphism. Note that it is not clear that this problem
has efficiently verifiable solutions. That is, given v2 ∈ G2, it is not clear how
to verify that v2 corresponds to v1 via some isomorphism between G1 and G2

without knowing what the isomorphism is. We propose the following protocol for
this problem that is inspired by the original decisional zero knowledge protocol
for the Graph-Isomorphism problem [13]: given input (G1, G2, v1):

P V
Choose some arbitrary
isomorphism π : G1 → G2

v2 := π (v1)−−−−−−−−→
Pick a random
permutation ϕ : [n] → [n]

H = ϕ (G1)−−−−−−−−→
u = ϕ (v1)−−−−−−−→

randomly choose j ∈ {1, 2}
j←−

if j = 1, φ := ϕ
if j = 2, φ := ϕ ◦ π−1

φ−→
verify that φ is an isomorphism,
verify that φ (Gj) = H,φ (vj) = u
if verification succeeded, output v2

Lemma 1. The above protocol is a Search-PZK protocol for the Find-I
somorphic-V ertex problem.

The proof of Lemma 1 appears in the full version of this paper [4]. Now,
consider the language of all tuples (G1, G2, v1, v2) such that v1 ∈ G1, v2 ∈ G2 and
v1 and v2 are isomorphic. The protocol that we showed above (discarding the first
message of the prover) is a decisional perfect zero knowledge protocol for that
language. This shows that the search problem of finding an isomorphic vertex is
in fact a prefix-completion problem of a language that has a (decisional) zero-
knowledge protocol. Is this example a coincidence or is it a general phenomenon?
Is it true that every search problem that has a Search-ZK protocol is in fact a
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prefix-completion problem of a ZK decision problem? This question is addressed
in the next section.

3 Prefix-Completion Problems

In this section we introduce a natural sub-class of Search-ZK which we call
Prefix-ZK and investigate its properties. Loosely speaking, these are search
problems that can be solved in the following way: given an instance x, the prover
sends a solution y and then proves in zero knowledge that the pair (x, y) satisfies
some predetermined property. It need not necessarily be that (x, y) satisfies the
property for any possible legal solution y, but there must exist at least one
such y. Furthermore, if y is not a legal solution then (x, y) should not satisfy
this property.

Definition 5 (The class Prefix-ZK). We say that a promise search problem
R = (RY ES , LNO) ∈ Prefix-ZK if there exists a promise decision problem
L̂ =

(

L̂Y ES , L̂NO

)

∈ ZK such that

– L̂Y ES ⊆ RY ES.
– L̂NO =

(

(LRY ES
∪ LNO) × {0, 1}∗) \RY ES.

– For every x ∈ LRY ES
there is some y ∈ RY ES (x) such that (x, y) ∈ L̂Y ES.

– L̂Y ES is polynomially bounded - there is some polynomial p (·) such that if
(x, y) ∈ L̂Y ES then |y| ≤ p (|x|).

Remark 8. The condition bounding |y| is necessary since the verifier is a poly-
nomial time Turing machine and it should be able to read the solution y that
the prover sends him.

Remark 9. Find-Isomorphic-V ertex ∈ Prefix-PZK.

The next lemma formalizes the intuition behind the definition of Prefix-ZK.
Its proof can be found in the full version of this work [4].

Lemma 2. Prefix-ZK ⊆ Search-ZK.

It can be shown that if ZK has a complete problem then Prefix-ZK also has
a complete problem. This further strengthens the intuitive connection between
Prefix-ZK and Decisional-ZK. Details can be found in the full version of this
paper [4].

3.1 The Relationship Between Search-ZK and Prefix-ZK

Does every Search-ZK protocol essentially amount to having the prover send
the solution and prove in zero knowledge that it really is a solution? Is it true
that Search-ZK ⊆ Prefix-ZK? As we will see, it turns out that in general
the answer to this question is no. Nevertheless there are some conditions under
which a Search-ZK protocol can be transformed into a Prefix-ZK protocol.
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Lemma 3. Let R = (RY ES , LNO) ∈ Search-ZK with respect to the protocol
(P, V, S). Assume that the protocol has the property that each yes instance has
only one solution that is output when the honest parties interact. That is, for
any x ∈ LRY ES

we have |supp ((P, V ) (x))| = 1. Then R ∈ Prefix-ZK.

Intuitively, if the solution for each instance is unique then in particular it does
not depend on the verifier randomness and so the prover knows it already in the
beginning of the protocol. In this case it can simply send it at the beginning
and use the original protocol to prove that it is the unique solution. The proof
of Lemma 3 is given in the full version of this paper [4]. In the next section we
address the relationship between Search-CZK and Prefix-CZK. A treatment
of the statistical setting is given in the full version of this paper [4].

The Computational Setting. Is it true that Search-CZK ⊆ Prefix-CZK?
In this section we will investigate this question and we start by characterizing
Prefix-CZK.

Definition 6 (The class Search-PSPACE). We say that a promise search-
problem R = (RY ES , LNO) ∈ Search-PSPACE if there is a deterministic poly-
nomial space Turing machine M that solves R: for every x ∈ LRY ES

,M (x) ∈
RY ES (x) and for every x ∈ LNO, M (x) = ⊥.

Definition 7 (The class Search-PSPACE (poly)). We say that a promise
search-problem R ∈ Search-PSPACE (poly) if R ∈ Search-PSPACE and
there is a polynomial space deterministic Turing machine M and a polynomial
p (·) such that M solves R and for any x ∈ LRY ES

we have |M (x)| ≤ p (|x|).
Remark 10. Note that if R ∈ Search-PSPACE (poly) then every yes instance
has at least one polynomially bounded solution.

Lemma 4. Prefix-CZK ⊆ Search-PSPACE (poly).

Proof. Let R = (RY ES , LNO) ∈ Prefix-CZK with respect to the promise deci-
sion problem L̂ =

(

L̂Y ES , L̂NO

)

∈ CZK. In particular, L̂ ∈ IP and therefore

L̂ ∈ PSPACE [25]. We can therefore solve R in polynomial space in the fol-
lowing way: given input x, we go over all the strings y of length at most p (|x|)
where p (·) is the polynomial from Definition 5, and decide in polynomial space if
(x, y) ∈ L̂Y ES . If there is some y for which (x, y) ∈ L̂Y ES , we output that y. Oth-
erwise we output ⊥. The algorithm we described indeed solves R: if x ∈ LRY ES

then there is some y of length at most p (|x|) for which (x, y) ∈ L̂Y ES ⊆ RY ES

and one of these strings y is output by the algorithm. If on the other hand
x ∈ LNO then for any y (x, y) ∈ L̂NO, and thus the algorithm on x outputs ⊥.

Lemma 5. If one-way functions exist then

Search-PSPACE (poly) ⊆ Prefix-CZK.
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Proof. Let R = (RY ES , LNO) ∈ Search-PSPACE (poly) with respect to the
deterministic poly-space Turing machine M and polynomial p (·). Denote L̂ =
(

L̂Y ES , L̂NO

)

where

L̂Y ES = {(x,M (x)) ∈ RY ES}
L̂NO =

(

(LRY ES
∪ LNO) × {0, 1}∗) \RY ES

L clearly satisfies the requirements in the four bullets of Definition 5. We
need to show that L ∈ CZK - assuming the existence of one-way functions, it
is enough to show that L ∈ IP [2], or equivalently that L ∈ PSPACE. The
following deterministic and poly-space algorithm solves L: Given (x, y), run M
on x and accept if M (x) = y.

The combination of Lemmas 4 and 5 give us

Theorem 1. If one-way functions exist then

Prefix-CZK = Search-PSPACE (poly) .

The characterization of Prefix-CZK hints at a possible path for proving
that Search-CZK ⊆ Prefix-CZK - show that any problem in Search-CZK
has a deterministic poly-space machine that solves it with polynomially
bounded solutions. Now, it is tempting to claim that Search-CZK ⊆
Search-PSPACE (poly) in the spirit of the proof that IP ⊆ PSPACE, but
it turns out that the idea behind that proof does not translate to the realm of
search problems.

Following is an informal sketch of the proof of IP ⊆ PSPACE: given an
input x, the computation tree that corresponds to the given protocol execution
on x is considered. Each node in the i’th level of the tree corresponds to the party
whose turn it is to send the i’th message, and each out-edge corresponds to a
possible message that can be sent by that party. A polynomial space machine
can determine the prover strategy that maximizes the verifier’s acceptance prob-
ability in the following recursive manner: first assign value 0 or 1 to each leaf
depending on whether the computation path that leads to that leaf makes the
verifier accept or reject. Then assign each verifier node the average of the values
of its out-neighbors, according to the probability of choosing each out-message
(a poly-space machine can compute this probability by going over all possible
coin tosses for the verifier), and assign each prover node the maximum value
among the values of its out-neighbors. The value in the root corresponds to the
maximum acceptance probability and so if that value is 1 the algorithm can
conclude that the input was a yes instance, and if that value is at most 1

2 then
the algorithm can conclude that the input was a no instance. In the case of
interactive protocols for search problems it is not clear how to mimic this proce-
dure. Each computation path (leaf) corresponds to some solution, but it is not
possible to verify if that solution is valid or not unless assuming a priory that a
solution can be verified in polynomial space. The soundness condition assures us
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that the output of the interaction between any prover P ∗and the honest verifier
on some x ∈ LRY ES

is either a solution or ⊥ w.p at least 1
2 , but nothing more.

Imagine the following scenario for example: take some yes instance x, a solution
y1 for it, a non-solution y2 and some prover P ∗ for which

Pr [(P ∗, V ) (x) = y1] =
1
4

Pr [(P ∗, V ) (x) = y2] =
1
2

− ε

Pr [(P ∗, V ) (x) = ⊥] =
1
4

+ ε

this scenario complies with the soundness requirement, but why should a deter-
ministic machine choose y1 over y2 upon computing these probabilities?

Theorem 2. Search-IP � Search-PSPACE (poly).

The theorem is proven using a counterexample based on [11]. The version pre-
sented here contains a modification due to a discussion with Grossman which
allows to generalize the counterexample to protocols with perfect completeness.

Proof. Consider the search problem R = {(x, y) | |y| = 5 |x| and K (y) > 2 |x|}
where all instances are legal (i.e. the promise is trivial) and K (z) denotes the
Kolmogorov complexity of z. Then R /∈ Search-PSPACE (poly) since other-
wise, if M is the respective machine solving R, each solution y would satisfy
K (y) = |M | + |x| = O (1) + |x| which is a contradiction to K (y) > 2 |x|
(when |x| is large enough). We claim that R ∈ Search-IP . To show this, we
note that the number of strings whose Kolmogorov complexity is at most 2 |x|
is upper bounded by 22|x|+1 − 1 (which is a bound on the number of Turing
machines whose encoding is of size at most 2 |x|). In particular, There exists a
prefix a ∈ {0, 1}2|x|+1 such that for any suffix b ∈ {0, 1}3|x|−1, the concatenation
y=a ‖ b ∈ {0, 1}5|x| satisfies K (y) > 2 |x| and so y is a solution to the instance x.
We call such a prefix a ‘good’. On the other hand, For any prefix a ∈ {0, 1}2|x|+1,
the fraction of such suffixes b for which K (a ‖ b) ≤ 2 |x| is upper bounded by
22|x|+1

23|x|−1 < 1
2 (for |x| > 2). This suggests the following Search-IP protocol for R.

Given input x:

P V

choose a good a ∈ {0, 1}2|x|+1

a−→
sample a uniform
b ← {0, 1}3|x|−1 and
output a ‖ b

The discussion above shows that this protocol has perfect completeness and
soundness error 1

2 , as desired.
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The Search-IP protocol presented above is also perfect zero-knowledge. Note
that the only information revealed by the prover is a part of the solution, hence
it is clear that no (possibly malicious) verifier can learn anything other than the
solution when interacting with the honest prover. A simulator for this protocol,
upon receiving (x, V ∗, a ‖ b), simply prints x, the randomness for V ∗ and a.
Thus R ∈ Search-PZK and together with R /∈ Search-PSPACE (poly) and
Prefix-CZK ⊆ Search-PSPACE (poly) (Lemma 4) we get

Theorem 3. Search-PZK � Prefix-CZK.

Strengthening the Requirements - Zero Knowledge Protocols for
Search Problems with Zero Error. The foregoing counter-example shows
us that the definition of Search-ZK as presented captures even uncomputable
problems. Indeed, the analysis of the example shows that it can not be solved
by any deterministic Turing machine. We would like to modify the definition of
search zero knowledge so that such a phenomenon could not be possible. As we
will see next, one option is to not allow any soundness error in the protocol. In
other words, the soundness requirement from the honest verifier is:

1. For any x ∈ LNO and any P ∗, Pr [(P ∗, V ) (x) = ⊥] = 1.
2. For any x ∈ LRY ES

and any P ∗, Pr [(P ∗, V ) (x) ∈ RY ES (x) ∪ {⊥}] = 1.

This is very similar to the requirement in ZPP algorithms, which are randomized
poly-time algorithms for decision problems with the guarantee that whenever
they output a solution it is always correct, but they are allowed to out-
put a ‘don’t know’ symbol with some low probability (⊥). In the same manner,
a Search-IP protocol with perfect completeness and perfect soundness guar-
antees that whenever the honest verifier outputs a solution, it really is a legal
solution. We denote the class of search problems having Search-IP protocols
with perfect soundness by ZP -Search-IP . The subclass of search problems that
have ZP -Search-IP protocols which also satisfy the zero-knowledge property
(as in Definition 4) is denoted by ZP -Search-ZK (as usual, ZK is replaced by
CZK,SZK and PZK depending on the quality of simulation). The following
claim shows that ZP -Search-ZK contains only computable problems.

Lemma 6. ZP -Search-IP ⊆ Search-PSPACE (poly).

Proof. Let R ∈ ZP -Search-IP with respect to the protocol (P, V ). Given input
x, a Search-PSPACE (poly) machine can simulate the execution of the given
protocol on x between the honest verifier and any deterministic prover - it can
iterate over all possible coins for the honest verifier and all possible prover
responses. The completeness property guarantees that in one of the iterations
some valid solution is output. Furthermore, the soundness property guarantees
that whenever a solution is output (in contrast to ⊥) then it is valid. Hence, the
machine can simply output the first solution it encounters.
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Corollary 1. ZP -Search-CZK ⊆ Search-PSPACE (poly).

If we could prove the converse inclusion of Corollary 1 then we could conclude
that ZP -Search-CZK = Prefix-CZK, showing exactly which Search-CZK
protocols are in fact prefix-completion problems of CZK problems. Unfortunately,
as we will show next, it is very likely that the inclusion ZP -Search-IP
⊆ Search-PSPACE (poly) is strict (which implies that the inclusion ZP -Search-
CZK ⊆ Search-PSPACE (poly) is strict), indicating that the zero error require-
ment is too strong. We will need the following lemma:

Lemma 7. Let R ∈ ZP -Search-IP where the promise is trivial and every yes
instance has exactly one solution, i.e. |R (x)| = 1 for any x ∈ LR. Then the set
R is an NP language.

Proof. Let R be as above and suppose that (P, V ) is the ZP -Search-IP protocol
for R. The perfect soundness and completeness conditions imply that we can
assume without loss of generality that V is deterministic (by fixing its random
tape to the all zero string for example) - we are still guaranteed that if x is a
yes instance then the legal solution will be output when interacting with the
honest prover P , and no prover P ∗ can make V output something other than
the solution, or ⊥. Since V is deterministic there is no need for interaction at
all, since the prover can anticipate all of the messages of V . That is, there is
another protocol for R with perfect completeness and soundness where, given
input x, the prover sends the entire transcript that would have been produced in
the original protocol and the verifier simply needs to verify consistency. Hence
the set of pairs R is in NP : given (x, y), the prover can send the message that
corresponds to x in the protocol for R, and the verifier accepts if the solution was
y. If (x, y) ∈ R then y is the only legal solution for x and therefore the message
that the honest prover sends corresponds to the solution y. On the other hand,
if (x, y) /∈ R then the perfect soundness of the 1-round protocol for R guarantees
that the verifier always rejects regardless of the message he receives.

Theorem 4. ZP -Search-IP � Search-PSPACE (poly), unless NP =
PSPACE.

Proof. Assume towards contradiction that ZP -Search-IP = Search-PSPACE
(poly) and let L ∈ PSPACE. Let’s assume for now that L is a language of
pairs (x, y), where |x| = |y| and for any (x, y) , (x, y′) ∈ L it holds that y =
y′. In other words, L is a length-preserving function on a subset of {0, 1}∗.
First we will show that L ∈ NP and after that we will show that if NP �
PSPACE then there is some L′ ∈ PSPACE\NP that is a length preserving
function, giving us the desired contradiction. To see that L ∈ NP , consider
the search problem R induced from L. That is, given x the goal is to find y
such that (x, y) ∈ L. The fact that L ∈ PSPACE clearly implies that R ∈
Search − PSPACE (poly), since given x, a poly-space machine can go over all
y of the same length as x and check if (x, y) ∈ L. Therefore by our assumption,
R ∈ ZP -Search-IP . Furthermore, observe that each yes instance of R has only
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one solution (since L is a function). Therefore, by Lemma 7, L = R ∈ NP .
To summarize, we have shown that under the assumption ZP -Search-IP =
Search-PSPACE (poly), any PSPACE language that is a length-preserving
function is also an NP language. It is left to show that if NP � PSPACE then
there is some language in PSPACE\NP that is a length-preserving function:
given L ∈ PSPACE\NP , take L′ = {(x, x) | x ∈ L}.

4 Pseudo-deterministic Zero-Knowledge Protocols

Pseudo-deterministic protocols for search problems, which were introduced in
[19], are Search-IP protocols in which the honest parties output some predeter-
mined canonical solution and moreover, the soundness condition requires that
no malicious prover can cause the verifier to output a solution other than the
canonical one but with small probability. Consequently these protocols can be
repeated to reduce the soundness error, potentially making them more suitable
for applications. In this section we define pseudo-deterministic zero knowledge
protocols for search problems, where the verifier is guaranteed not to learn any-
thing else apart from the canonical solution. We show how these protocols relate
to previous notions introduced in this work and give an example of such a proto-
col for the Find-Isomorphic-V ertex problem that was introduced in a previous
section. We start with the definition of pseudo-deterministic protocols as given
in [19], with our usual modification of requiring perfect completeness.

Definition 8 (The class PSD-IP ). We say that the promise search problem
R = (RY ES , LNO) ∈ PSD-IP if there is a triplet (P, V, c) where V is a PPTM,
P is computationally unbounded and c : LRY ES

→ {0, 1}∗ is a function such
that:

– Completeness: For any x ∈ LRY ES
, Pr [(P, V ) (x) = c (x)] = 1.

– Soundness:
• For any x ∈ LNO and any P ∗,Pr [(P ∗, V ) (x) = ⊥] ≥ 1

2 .• For any x ∈ LRY ES
and any P ∗,Pr [(P ∗, V ) (x) ∈ {c (x) ,⊥}] ≥ 1

2 .

Remark 11. PSD-IP ⊆ Search-IP .

We turn to our definition of pseudo-deterministic zero knowledge protocols.

Definition 9 (The class PSD-ZK). We say that the promise search problem
R = (RY ES , LNO) ∈ PSD-ZK if there is a tuple (P, V, S, c) such that:

– (P, V, c) is a PSD-IP protocol for R.
– (P, V, S) is a Search-ZK protocol for R.

Remark 12. We define the class PSD-HV -ZK analogously (see Definitions 36,
37 and 38 in [4] for details).

Note that a PSD-IP protocol (P, V ) satisfies |supp ((P, V ) (x))| = 1 for any yes
instance x. Thus Lemma 3 immediately implies that PSD-ZK ⊆ Prefix-ZK.
Moreover it is possible to characterize exactly which Prefix-ZK problems have
PSD-ZK protocols. Details can be found in the full version of this paper [4].
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4.1 A Pseudo-deterministic Statistical Zero-Knowledge Protocol
for Find-Isomorphic-V ertex

Recall the decision problem Isomorphic-V ertex which is the language of
all tuples (G1, G2, v1, v2) where G1, G2 are graphs on n vertices, v1, v2
are some vertices in G1, G2 respsectively and there is some isomorphism
between G1 and G2 that matches v1 to v2. We have shown previously that
Find-Isomorphic-V ertex ∈ Search-PZK and Isomorphic-V ertex ∈ PZK.
The complement Isomorphic-V ertex is the language of all tuples (G1, G2, v1, v2)
where either G1, G2 are not isomorphic or they are but v1, v2 are not. A mild
modification of the classic interactive proof for the Graph-Non-Isomorphism
problem from [13] gives us the following lemma, whose proof is given in the full
version of this paper [4]:

Lemma 8. Isomorphic-V ertex ∈ HV -PZK.

In the next theorem we give an example of a pseudo-deterministic honest verifier
perfect zero knowledge protocol for Find-Isomorphic-V ertex, which is very sim-
ilar in nature to the pseudo-deterministic protocol given in the appendix of [19]
for the Graph-Isormophism problem. Intuitively, the solution to the yes instance
(G1, G2, v1) will be the lexicographically first vertex in G2 that is isomorphic to
v1, and the protocol will contain as sub-protocols the (honest verifier perfect zero
knowledge) proofs of the facts that the solution vertex is indeed isomorphic to v1
and that all the vertices that are lexicographically smaller than the solution are
not isomorphic to v1. The fact that each sub-protocol is honest verifier perfect
zero knowledge will imply that the entire protocol is honest verifier perfect zero
knowledge. The technical details of the next theorem are given in the full version
of this paper [4].

Theorem 5. Find-Isomorphic-V ertex ∈ PSD-HV -PZK.

In [15] it was proved that any honest verifier statistical zero knowledge
proof can be transformed into a statistical zero knowledge proof (that is zero
knowledge against any possible verifier), i.e. HV -SZK = SZK. In particular,
the characterization PSD-HV -PZK = Single-Prefix-HV -PZK implies that
PSD-HV -PZK ⊆ PSD-SZK, giving us:

Theorem 6. Find-Isomorphic-V ertex ∈ PSD-SZK.

Acknowledgements. We thank Ofer Grossman and Oded Goldreich for helpful
discussions.
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Abstract. Evolving secret-sharing schemes, introduced by Komargod-
ski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which
the dealer does not know the number of parties that will participate.
The parties arrive one by one and when a party arrives the dealer gives
it a share; the dealer cannot update this share when other parties arrive.
Komargodski and Paskin-Cherniavsky (TCC 2017) constructed evolving
a·i-threshold secret-sharing schemes (for every 0 < a < 1), where any set
of parties whose maximum party is the i-th party and contains at least
ai parties can reconstruct the secret; any set such that all its prefixes
are not an a-fraction of the parties should not get any information on
the secret. The length of the share of the i-th party in their scheme is
O(i4 log i). As the number of parties is unbounded, this share size can
be quite large.

In this work we suggest studying a relaxation of evolving threshold
secret-sharing schemes; we consider evolving (a, b)-ramp secret-sharing
schemes for 0 < b < a < 1. Again, we require that any set of parties
whose maximum party is the i-th party and contains at least ai parties
can reconstruct the secret; however, we only require that any set such
that all its prefixes are not a b-fraction of the parties should not get any
information on the secret. For all constants 0 < b < a < 1, we con-
struct an evolving (a, b)-ramp secret-sharing scheme where the length of
the share of the i-th party is O(1). Thus, we show that evolving ramp
secret-sharing schemes offer a big improvement compared to the known
constructions of evolving a · i-threshold secret-sharing schemes.

1 Introduction

Evolving secret-sharing schemes, introduced by Komargodski, Naor, and Yogev
[11], are a secret-sharing scheme in which the dealer does not know the number
of parties that will participate and has no upper bound on their number. The
parties arrive one after the other and when a party arrives the dealer gives it
a share; the dealer cannot update this share when other parties arrive. The
motivation for studying such schemes is that updates can be the very costly
(e.g., the Y2K problem). On the other hand, if the system designer would take
cautious upper bound on the number of parties, then the scheme will not be
efficient (specifically, if a small number of parties participate).
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Komargodski, Naor and Yogev [11] constructed evolving k-threshold secret-
sharing schemes for any constant k (where any k parties can reconstruct the
secret). The size of the share of the i-th party in their scheme is O(k log i).
Komargodski and Paskin-Cherniavsky [12] constructed evolving dynamic a-
threshold secret-sharing schemes (for every 0 < a < 1), where any set of parties
whose maximum party is the i-th party and contains at least ai parties (i.e., the
set contains an a-fraction of the firtst i parties) can reconstruct the secret; any
set such that all its prefixes are not an a-fraction of the parties should not get
any information on the secret. The length of the share of the i-th party in their
scheme is O(i4 log i). As the number of parties is unbounded, this share size can
be quite large.

We consider a relaxation of evolving a-threshold secret-sharing schemes moti-
vated by ramp secret-sharing schemes. Ramp secret-sharing schemes were first
presented by Blakley and Meadows [2], and were used to construct efficient
secure multiparty computation (MPC) protocols, starting in the work of Franklin
and Yung [8]. We consider evolving (a, b)-ramp secret-sharing schemes (where
0 < b < a < 1), in which any set of parties whose maximum party is the i-th
party and contains at least ai parties can reconstruct the secret, however we only
require that any set such that all its prefixes are not a b-fraction of the parties
should not get any information on the secret. For all constants 0 < b < a < 1,
we construct an evolving (a, b)-ramp secret-sharing scheme where the length of
the share of the i-th party is O(1). Thus, we show that evolving ramp secret-
sharing schemes offer a big improvement compared to the known constructions
of evolving a · i-threshold secret-sharing schemes. We note that all our schemes
are linear.

Our Technique. We demonstrate the basic idea of our schemes by describing a
simple construction of an evolving (1/2,1/8)-ramp secret-sharing scheme. Fol-
lowing [11], we partition the parties to sets, called generations, according to the
order they arrive. The first generation contains the first two parties, the second
generation contains the next 22 parties, and so on, where the g-th generation
contains 2g parties. When the first party of the g-th generation arrives, the
dealer prepares shares of a 2g/4-out-of-2g threshold secret-sharing scheme (e.g.,
Shamir’s scheme [14]); when a party in generation g arrives the dealer gives it
a share of this scheme. On one hand, if a set whose maximum party is the i-th
party contains at least i/2 parties, then in some generation it contains at least
1/4 of the parties (even if it ends at the beginning of a generation), thus it can
reconstruct the secret. On the other hand, if a set can reconstruct the secret
from the shares of some generation g, then it contains at least 1/4 of the parties
in that generation, hence it contains at least 1/8 of the parties that have arrived
until the end of the generation.

Using a more complicated analysis, we show how to construct evolving
(1/2,b)-ramp secret-sharing schemes with small share size for every b < 1/6 by
sharing the secret using one threshold secret-sharing scheme in each generation
(with an appropriate threshold). To construct evolving (a, b)-ramp secret-sharing
schemes for every constants 0 < b < a < 1, we need to share the secret more
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than once in each generation. However, we share the secret only O(1) times in
each generation, resulting in a scheme in which the share size of the i-th party is
O(log i) (where O(log i) is the share size in the threshold secret-sharing scheme).
To reduce the share size to O(1), we use (non-evolving) ramp secret-sharing
schemes of Chen et al. [6] instead of the threshold secret-sharing schemes. As
Chen et al. only provide an existential proof of their ramp schemes with share size
O(1), we only obtain that there exist evolving (a, b)-ramp secret-sharing schemes
with share size O(1). In contrast, our evolving (a, b)-ramp secret-sharing schemes
with share size O(log i) for party pi are explicit.

1.1 Previous Works

Secret-sharing schemes were introduced by Shamir [14] and Blakley [1] for thresh-
old access structures, and by Ito, Saito, and Nishizeki for the general case [9].
Shamir’s [14] and Blakley’s [1] constructions are efficient both in the size of the
shares and in the computation required for sharing and reconstruction. The size
of the share in Shamir’s scheme for sharing an �-bits secret among n parties
is max{�, log n}. Blakley’s scheme requires larger share size, but it can be opti-
mized by using finite fields to get a scheme that is equivalent to Shamir’s scheme.
Kilian and Nisan [10] proved a log(n − k + 2) lower bound on the share size for
sharing a 1-bit secret for the k-out-of-n threshold access structure. This lower
bound implies that Ω(log n) bits are necessary when k is not too close to n.
Bogdanov, Guo, and Komargodski [3] proved that the lower bound of Ω(log n)
bits applies to any secret-sharing scheme realizing k-out-of-n threshold access
structures for every 1 < k < n. When k = 1 or k = n, schemes with share size
of 1 are known.

Ramp secret-sharing schemes are a generalization of threshold secret-sharing
schemes that allow for a gap between the privacy and reconstruction thresh-
olds. Ramp secret-sharing schemes were first presented by Blakley and Meadows
[2], and were used to construct efficient secure multiparty computation (MPC)
protocols, starting in the work of Franklin and Yung [8]. Ramp schemes have
found numerous other applications in cryptography, including broadcast encryp-
tion [15] and error decodable secret sharing [13]. Cascudo, Cramer, and Xing [5]
proved lower bounds on the share size in ramp secret-sharing schemes: If every
set of size at least an can reconstruct the secret while every set of size at most
bn cannot learn any information on the secret, then the length of the shares is at
least log((1 − b)/(a − b)). Bogdanov et al. [3] showed that for all 0 < b < a < 1,
in any ramp secret sharing the length of the shares is at least log(a/(a − b)).
On the positive side, Chen et al. [6] proved that for every ε > 0 there is a ramp
secret-sharing scheme with share size O(1) in which every set of size at least
(1/2 + ε)n can reconstruct the secret while every set of size at most (1/2 − ε)n
cannot learn any information on the secret.

Evolving Secret-Sharing Schemes. Evolving secret-sharing schemes were intro-
duced by Komargodski, Naor, and Yogev [11]. They showed that for every evolv-
ing access structure there is a secret-sharing scheme that realizes it in which the
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share size of party i is 2i−1 (even if the dealer does not know the access struc-
ture in advance). The main result of their work is providing schemes for evolving
threshold access structures. They showed a scheme for the evolving 2-threshold
access structure where the share size of party i is log i + O(log log i). Further-
more, they proved a matching lower bound on the share size in any evolving
secret-sharing scheme realizing the evolving 2-threshold access structure, that
is, their scheme is almost optimal. They generalized the scheme for the evolv-
ing 2-threshold access structure to a scheme for the evolving k-threshold access
structure for any constant k ∈ N. In their scheme, the size of the share of the
i-th party is (k − 1) log i + O(log log i).

Komargodski and Paskin-Cherniavsky [12] considered evolving α(i)-
threshold access structures, where a set A is authorized if for some pi ∈ A
the set A contains at least α(i) parties from the set {p1, . . . , pi}. For example,
for the function α(i) = i/2 this is the evolving 1/2 · i-threshold access structure.
For every monotone function α : N → N, they constructed an evolving secret-
sharing scheme realizing the evolving α(i)-threshold access structure in which
the share size of the i-th party is O(i4 log i). Furthermore, they showed how to
transform any evolving secret-sharing scheme to a robust schme, where a shared
secret can be recovered even if some parties hand-in incorrect shares.

Cachin [4] and Csirmaz and Tardos [7] considered online secret sharing,
which is similar to evolving secret-sharing schemes. As in evolving secret-sharing
scheme, in on-line secret-sharing, parties can enroll in any time after the initial-
ization, and the number of parties is unbounded. However, in the works on online
secret-sharing, the number of authorized sets a party can join is bounded.

2 Preliminaries

In this section we present formal definitions of secret-sharing schemes and evolv-
ing secret-sharing schemes.

Notations. We denote the logarithmic function with base 2 by log. We use the
notation [n] to denote the set {1, 2, . . . , n}. When we refer to a set of parties
A = {pi1 , pi2 , . . . , pit

}, we assume that i1 < i2 < · · · < it.

2.1 Secret-Sharing Schemes

We next present the definition of secret-sharing schemes.

Definition 2.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ = (ΓYES, ΓNO) is a pair of collections of sets such that
ΓYES, ΓNO ⊆ 2{p1,...,pn}, the collections ΓYES and 2{p1,...,pn}\ΓNO are monotone,
and ΓYES ∩ ΓNO = ∅. Sets in ΓYES are called authorized, and sets in ΓNO are
called unauthorized. The access structure is called an incomplete access structure
if there is a subset of parties A ⊆ P such that A �∈ ΓYES ∪ ΓNO. Otherwise, it is
called a complete access structure.
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Definition 2.2 (Secret-sharing schemes). A secret-sharing Σ = 〈Π,μ〉
over a set of parties P = {p1, . . . , pn} with domain of secrets K is a pair, where μ
is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K × R to a set of n-tuples K1 × K2 × · · · × Kn (the
set Kj is called the domain of shares of pj). A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to μ, com-
puting a vector of shares Π(k, r) = (s1, . . . , sn), and privately communicating
each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(k, r) as
the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).
The size of the secret is defined as log |K| and the size of the share of party pj

is defined as log |Kj |.
A secret-sharing scheme 〈Π,μ〉 with domain of secrets K realizes an access

structure Γ = (ΓYES, ΓNO) if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ ΓYES, there exists a reconstruc-
tion function ReconB : Ki1 × · · · × Ki|B| → K such that for every secret k ∈ K

and every random string r ∈ R, ReconB

(
ΠB(k, r)

)
= k.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T ∈ ΓNO, every two secrets a, b ∈ K, and every
possible vector of shares 〈sj〉pj∈T , Pr[ ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ ΠT (b, r) =
〈sj〉pj∈T ], where the probability is over the choice of r from R at random accord-
ing to μ.

Remark 2.3. For sets of parties A ∈ 2P such that A �∈ ΓYES ∪ ΓNO there are no
requirements, i.e., they might be able to reconstruct the secret, they may have
some partial information on the secret, or they may have no information on the
secret.

Definition 2.4 (Threshold access structures). Let 1 ≤ k ≤ n. A k-out-
of-n threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the
complete access structure accepting all subsets of size at least k, that is, ΓYES =
{A ⊆ P : |A| ≥ k} and ΓNO = {A ⊆ P : |A| < k}.
The well known scheme of Shamir [14] for the k-out-of-n threshold access struc-
ture (based on polynomial interpolation) satisfies the following.

Claim 2.5 (Shamir [14]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret-
sharing scheme for secrets of length m realizing the k-out-of-n threshold access
structure in which the share size is �, where � = max{m, log(n + 1)�}.
Definition 2.6 (Ramp secret-sharing schemes [2]). Let 0 ≤ b ≤ a ≤ 1.
An (a, b)-ramp access structure over a set of parties P = {p1, . . . , pn} is the
incomplete access structure Γn

a,b = (ΓYES, ΓNO), where ΓYES = {A ⊆ P : |A| ≥
an} and ΓNO = {A ⊆ P : |A| < bn}. An (a, b)-ramp scheme with n parties is a
secret-sharing scheme realizing Γn

a,b.
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Chen et al. [6] showed the existence of ramp secret-sharing schemes with
share size O(1).

Claim 2.7 (Chen et al. [6]). For every constant 0 < ε < 1/2 there are integers
� and n0 such that for every n ≥ n0 there is a (1/2 + ε, 1/2 − ε)-ramp secret-
sharing scheme with n parties and share size �.

2.2 Secret Sharing for Evolving Access Structures

We proceed with the definition of an evolving access structure, introduced in
[11].

Definition 2.8 (Evolving access structures). Let P = {pi}i∈N be an infi-
nite set of parties. An evolving access structure Γ = (ΓYES, ΓNO) is a pair of
collections of sets ΓYES, ΓNO ⊂ 2P , where each set in ΓYES ∪ ΓNO is finite and
for every t ∈ N the collections Γ t � (ΓYES ∩ 2{p1,...,pt}, ΓNO ∩ 2{p1,...,pt}) is an
access structure as defined in Definition 2.1.

Definition 2.9 (Evolving secret-sharing schemes). Let Γ be an evolving
access structure, K be a domain of secrets, where |K| ≥ 2, and {Rt}t∈N, {Kt}t∈N

be two sequences of finite sets. An evolving secret-sharing scheme with domain
of secrets K is a pair Σ = 〈{Πt}t∈N, {μt}t∈N〉, where, for every t ∈ N, μt is a
probability distribution on Rt and Πt is a mapping Πt : K ×R1 ×· · ·×Rt → Kt

(this mapping returns the share of pj).
An evolving secret-sharing scheme Σ = 〈{Πt}t∈N, {μt}t∈N〉 realizes Γ

if for every t ∈ N the secret-sharing scheme 〈μ1 × · · · × μt,Πt〉, where
Πt(k, (r1, . . . , rk)) = 〈Π1(k, r1), . . . , Πt(k, r1, . . . , rt)〉, is a secret-sharing
scheme realizing Γ t according to Definition 2.2.

Definition 2.10 (Evolving threshold access structures [11]). For every
k ∈ N, the evolving k-threshold access structure is the evolving access structure
Γ , where Γ t is the k-out-of-t threshold access structure.

Definition 2.11 (α(t)-threshold access structures [12]). Let α : N → N be
a monotone function. The α(t)-threshold access structure is the evolving access
structure Γ , where Γ t is the α(t)-out-of-t threshold access structure.

Similar to the above definition of the α(t)-threshold access structure, we define
the evolving ramp access structure as follows.

Definition 2.12 (Evolving ramp access structures). For every 0 ≤ b <
a ≤ 1, the evolving (a, b)-ramp incomplete access structure is the evolving incom-
plete access structure Γa,b, where Γ t

a,b is the (a, b)-ramp access structure.

Let A = {pi1 , pi2 , . . . , pit
}. Notice that the set A is authorized in Γa,b if

a · ij < j for some 1 ≤ j ≤ t. Furthermore, the set A is unauthorized in Γa,b if
b · ij ≥ j for every 1 ≤ j ≤ t. There are no requirements on sets where j < a · ij
for every j and b · ij < j for at least one j.

We next prove two lemmas that are used to prove the security and correctness
of the schemes we construct in this paper.
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Lemma 2.13. Assume that we share a secret s using a k-out-of-n secret-sharing
scheme among the parties p�+1, . . . , p�+t and

k ≥ b (� + t) . (1)

If a set A = {pi1 , pi2 , . . . , pit
}, where it ≤ �+ t, can learn information on the

secret then |A| ≥ b · it, i.e., A is not unauthorized in Γa,b.

Proof. If A can learn information on the secret, by the security of the thresh-
old secret-sharing scheme, it must contain at least k parties from the parties
p�+1, p�+2, . . . , p�+n. Since it ≤ � + t parties, by (1), |A| ≥ k ≥ b(� + t) ≥ b · it.
This implies that A contains at least a fraction b of the parties p1, p�+2, . . . , pit

,
i.e., A is not unauthorized in Γa,b. ��

The above lemma remains true if we replace the k-out-of-n secret-sharing
scheme with any secret-sharing scheme in which each set of size k − 1 has no
information on the secret.

Lemma 2.14. Let A = {pi1 , pi2 , . . . , pit
} be a minimal authorized set in Γa,b

for a < 1. If for some j < it there are at most D parties in A ∩ {p1, . . . , pj},
then it · a ≥ a

1−a (j − D).

Proof. We first give an upper bound on the size of A, |A| = |A ∩ {p1, . . . , pj}| +
|A∩{pj+1, . . . , pit

}| ≤ D+it−j. Since A is a minimal authorized set, the number
of parties in A is at least it · a, hence, D + it − j ≥ it · a, and the lemma follows.

��

3 Two Warmup Evolving Ramp Schemes

3.1 A Simple Scheme Realizing Γ1/2,1/8

As a warm up, we start with a secret-sharing scheme realizing Γ1/2,1/8. We
partition the parties into sets, called generations; the size of generation g is
2g, that is, generation g contains the parties p2g−1, . . . , p2g+1−2. We define the
scheme Π0 as follows.

Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a 2g

4 -out-of-2g threshold secret-sharing scheme.

Remark 3.1. In the above scheme and in the rest of the paper, when we instruct
the dealer to share the secret among the parties in generation g, we mean that
when the first party of generation g arrives, the dealer shares the secret using
Shamir’s threshold scheme; when the i-th party in generation g arrives, the
dealer gives it the i-th share of the scheme. Since we use Shamir’s scheme, the
dealer does not need to prepare all shares of Shamir’s scheme in advance; instead
it samples the appropriate polynomial Q; when the i-th party in generation g
arrives, the dealer gives it the share Q(i).
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In order to prove the correctness of Π0, it suffices to prove that a minimal
authorized set of parties A, that is, a set that contains the majority of the
parties that have arrived, can reconstruct the secret. Let A = {pi1 , pi2 , . . . , pit

}
be a minimal authorized set; in particular t ≥ it/2. Let g be the generation of
party pit

. Then, it ≥ 2g − 1 and

|A| ≥
⌈

it
2

⌉
≥

⌈
2g − 1

2

⌉
= 2g−1. (2)

There are two cases:

1. For some j < g the number of parties in A from generation j is at least 1
4 ·2j .

In this case A can reconstruct the secret using the shares of generation j.
2. For each j < g, there are less than 1

4 · 2j parties from generation j. Thus, the
number of parties in A from generations 1, . . . , g−1 is less than

∑g−1
j=1

1
4 ·2j =

(2g − 2)/4. Thus, by (2), the number of parties in A from generation g is at
least |A| − (2g − 2)/4 ≥ 2g−1 − (2g − 2)/4 > 2g/4, so the parties in A from
generation g can reconstruct the secret using the shares of generation g.

Next we prove the security of the scheme. We show that if the parties in
A can learn some information on the secret, then there is a prefix of A that
contains at least a 1/8 fraction of the parties, i.e., the set A is not unauthorized.
As the dealer shares the secret independently in each generation, if a set A can
learn some information on the secret, then it can learn information on the secret
from the shares of some generation g. In generation g, the secret is shared by
a 2g

4 -out-of-2g secret-sharing scheme among the parties p2g−1, . . . , p2g+1−2. It
holds that 2g/4 ≥ (

2g+1 − 2
)
/8. Therefore, by Lemma 2.13, the set of parties

in A from generations 1, . . . , g is not unauthorized in Γ1/2,1/8, hence, A is not
unauthorized.

3.2 A Scheme Realizing Γ1/2,b for b < 1
6

We next generalize the scheme Π0 to a scheme realizing Γ1/2,b provided that
b < 1

6 . We denote the scheme by Π1. We partition the parties to generations,
where the size of generation g is mg for some integer m that will be fixed later.
That is, generation g contains the parties pmg−m

m−1 +1, . . . , pmg+1−m
m−1

. We define the

scheme Π1 below; in this scheme, c < 1 and g0 are constants that will be chosen
such that correctness and security hold.

Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a c · mg�-out-of-mg secret-sharing scheme.

2. For all the parties in the first g0 − 1 generations, share the secret
using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.
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For security, we require that

c ≥ bm

m − 1
. (3)

Thus, c · mg� ≥ c · mg ≥ bmg+1

m−1 > b · mg+1−m
m−1 , and, by Lemma 2.13, every set

that can learn information on the secret is not unauthorized, thus, the scheme
is secure.

For correctness, let A = {pi1 , pi2 , . . . , pit
} be a minimal authorized set in

Γ1/2,b; in particular, t ≥ it/2. Let g be the generation of party pit
. There are

two cases.

First Case. For some j < g, the number of parties in A from generation j is
at least

⌈
c · mj

⌉
. In this case A can reconstruct the secret using the shares of

generation j.

Second Case. For every j < g, the number of parties in A from generation j is
less than

⌈
c · mj

⌉
, thus is less than c · mj . In this case, we show a condition on

the parameters m and c that implies that the number of parties from generation
g in A must be at least c · mg�, and therefore they can reconstruct the secret.

We first show that, since the first case does not hold, the index it cannot be
in the beginning of generation g. Since for 1 ≤ j ≤ g − 1 the number of parties
from generation j is less than c · mj ,

The number of parties in A from the first g − 1 generations is less than

g−1∑
j=1

c · mj = c · mg − m

m − 1
. (4)

Thus, since the first party in generation g is pmg−m
m−1 +1, by Lemma 2.14 it holds

that it

2 ≥ mg−m
m−1 (1 − c).

Since t = |A| ≥ it

2 , by (4), the number of parties from generation g is at
least

it
2

− c · mg − m

m − 1
≥ (mg − m) (1 − 2c)

m − 1
. (5)

For correctness, we want that the parties in generation g can reconstruct the
secret. Therefore, it suffices to require (mg−m)(1−2c)

m−1 ≥ c · mg + 1. That is,

mg
(

1−2c
m−1 − c

)
≥ 1 + m(1−2c)

m−1 . If 1−2c
m−1 − c > 0, then there is a g0 such that

for every g ≥ g0 the condition holds. For the parties in the first g0 − 1 genera-
tions we share the secret using a (non-evolving) secret-sharing scheme realizing
the (a, b)-ramp access structure restricted to the parties in the first g0 − 1 gen-
erations. Therefore, it suffices to require 1−2c

m−1 − c > 0. That is,

c <
1

m + 1
. (6)
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By (3) and (6),

b ≤ c(m − 1)
m

≤ m − 1
m

· 1
m + 1

=
m − 1

m2 + m
. (7)

The maximum value of the right hand side of (7) is maximized when m = 3
(recall that m is an integer); in this case (7) holds when b < 1

6 . In this case, we
take c = bm

m−1 = 1.5b < 1/4 and (3) and (6) hold.

Lemma 3.2. For every b < 1
6 , there exists an integer g0 such that the scheme

Π1 realizes Γ1/2,b.

Proof. The correctness and security of the Π1 for parties in generations g ≥ g0
follows from the discussion above. A traditional secret-sharing scheme is used in
Step 3.2 of Π1 to share the secret for parties in the first g0 − 1 generations is
correct and secure. Since the shares given to parties in generations g ≥ g0 are
independent of the shares given to the parties in the first g0 − 1 generations, the
combination of both secret-sharing schemes is correct and secure as well. ��
Example 3.3. If we take m = 3 and b = 1/7. Then, c = 3/14 and 1−2c

m−1 − c =
(1 − 3/7)/2 − 3/14 = 1/14. Thus, for (5) to hold, we can take g0 = 3, therefore
we need to share the secret among the parties in the first 2 generations using a
(non-evolving) secret-sharing scheme.

4 Evolving Ramp Schemes Realizing Γa,b for Every a < 1
and b < a

In the scheme Π1, in each generation we shared the secret using one threshold
secret-sharing scheme; Π1 can realize Γ1/2,b only when b < 1/6. To realize Γa,b

for every a < 1 and b < a, we generalize the previous method and in each
generation we share the secret using r threshold secret-sharing schemes, for a
constant r.

As in our previous schemes, we partition the parties into generations, where
the size of generation g is mg. That is, generation g contains the parties

pmg−m
m−1 +1, . . . , pmg+1−m

m−1
.

We define the scheme Π2 below; in this scheme, kr = m − 1 and the other
parameters will be chosen later such that the security and correctness hold.
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Input: a secret s ∈ {0, 1}.

1. For every g, share the secret s among the parties in generation g
using a c0mg�-out-of-mg secret-sharing scheme (denote this scheme
by Πc0).

2. For every 1 ≤ � ≤ r and for every g ≥ 2, share the secret s among the
parties in generation g − 1 and the first

⌈
k�

m−1 · mg
⌉

parties in gen-

eration g using a
(⌈

c� · mg−1
⌉)

-out-of-
(
mg−1 +

⌈
k�

m−1 · mg
⌉)

secret-
sharing scheme (denote this scheme by Πc�

).
3. For all the parties in the first g0 − 1 generations, share the secret

s using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.

We will choose our parameters such that c0 ≤ 1 and
⌈
c� · mg−1

⌉ ≤ mg−1 +⌈
k�

m−1 · mg
⌉

for 1 ≤ � ≤ r, thus, all threshold schemes used in Π2 are properly
defined. For security of Πc0 , by Lemma 2.13, it suffices to require

c0 ≥ b · m

m − 1
. (8)

For security of Πc�
for each 1 ≤ � ≤ r, we require

c� ≥ b · m

m − 1
· (1 + k�) . (9)

Thus,
⌈
c� · mg−1

⌉ ≥ c� ·mg−1 ≥ b·m
m−1 ·(1 + k�)·mg−1 ≥ b·

(
mg

m−1 + k�

m−1mg
)

> b·(
mg−m
m−1 + k�

m−1mg + 1
)
, and by Lemma 2.13 (observing that the maximal index

of a party that gets a share in Πc�
is mg−m

m−1 +
⌈

k�

m−1 · mg
⌉
), the scheme is secure.

Next we consider the correctness. Let A = {pi1 , pi2 , . . . , pit
} be a minimal

authorized set in Γa,b; in particular, t ≥ it · a. Let g be the generation of party
pit

. There are a few cases, for which we define r − 1 segments for every g ≥ 2.

– Segment 1 contains the parties with indexes
{

mg − m

m − 1
+ 1, . . . ,

mg − m

m − 1
+

⌈
k1

m − 1
· mg

⌉}
.

– Segment � where 2 ≤ � ≤ r − 1 contains the parties with indexes
{

mg − m

m − 1
+

⌈
k�−1

m − 1
· mg

⌉
+ 1, . . . ,

mg − m

m − 1
+

⌈
k�

m − 1
· mg

⌉}
.

We defined kr = m−1; thus, these r−1 segments are a partition of generation g.
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First Case. For some j < g, the number of parties in A from generation j is at
least

⌈
c0 · mj

⌉
. In this case A can reconstruct the secret from the scheme Πc0

for generation j.

Observation 4.1. If case 1 does not hold, then for every j < g the number of
parties in A from generations 1, . . . , j is less than

∑j
i=1 c0 · mj = c0 · mj+1−m

m−1 .

Second Case. Case 1 does not hold and party pit
is in the first segment in

generation g, that is mg−m
m−1 + 1 ≤ it ≤ mg−m

m−1 +
⌈

k1
m−1 · mg

⌉
. In this case we

show a condition on the parameters implying that the number of parties in A
from generations g − 1 and the first segment of generation g must be at least
c1 · mg−1, therefore they can reconstruct the secret.

We start with a lower bound on it. By Observation 4.1 and Lemma 2.14
(with j = mg−m

m−1 – the index of last party in generation g − 1)

it · a ≥ a

1 − a

(
mg − m

m − 1
(1 − c0)

)
. (10)

The shares of Πc1 are given to the parties in generation g − 1 and the parties in
the first segment in generation g. As the number of parties in A from generations
1, . . . , g − 2 is less than c0 · mg−1−m

m−1 (by Observation 4.1), the number of parties
in A from generation g − 1 and the parties in the first segment in generation g
is at least

it · a − c0 · mg−1 − m

m − 1
. (11)

In order to reconstruct the secret from the scheme Πc1 of generation g, the
number of parties from generation g − 1 and the parties in Segment 1 in gener-
ation g must be at least

⌈
c1 · mg−1

⌉
. Therefore, by (11), it suffices to require

it · a − c0 · mg−1−m
m−1 ≥ c1 · mg−1 + 1. Thus, by (10), it suffices to require

a
1−a

(
mg−m
m−1 (1 − c0)

)
− c0 · mg−1−m

m−1 ≥ c1 · mg−1 + 1, that is,

mg−1

( am
1−a (1 − c0) − c0

m − 1
− c1

)
≥

am
1−a (1 − c0) − c0 · m

m − 1
+ 1. (12)

If
( am

1−a (1−c0)−c0

m−1 − c1

)
> 0, then there exists g1 such that for every g ≥ g1

inequality (12) holds. Therefore, it suffices to require that

a
1−am − c1 · (m − 1)

a
1−am + 1

> c0. (13)

Third Case. For each 2 ≤ � ≤ r we define Case 3.� as:
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The number of parties in A from generation g−1 and the first
⌈

k�·mg

m−1

⌉
parties

from generation g is at least c� · mg�. In this case A can reconstruct the secret
from the scheme Πc�

for generation g.

Fourth Case. For each 2 ≤ � ≤ r we define the Case 4.� as:
Cases 1 and Case 3.� − 1 do not hold and pit

is in the �-th segment in gen-
eration g, that is mg−m

m−1 +
⌈

k�−1
m−1 · mg

⌉
+ 1 ≤ it ≤ mg−m

m−1 +
⌈

k�

m−1 · mg
⌉
. In this

case we show a condition on the parameters implying that the number of parties
in A from generation g − 1 and the first � segments of generation g must be at
least c� · mg−1, therefore they can reconstruct the secret.

The number of parties in A from generations 1, . . . , g − 1 and the parties in
the first � − 1 segments in generation g is less than c0 · mg−1−m

m−1 + c�−1 · mg−1,
by Observation 4.1 and since there are less than c�−1 · mg−1 parties in A from
generation g −1 and the parties in the first �−1 segments in generation g (since
Case 3.� − 1 does not hold). By Lemma 2.14 (with j = mg−m

m−1 +
⌈

k�−1
m−1 · mg

⌉
–

the index of last party in segment � − 1)

it · a ≥ a

1 − a

(
mg − m

m − 1
+

k�−1

m − 1
· mg − c0 · mg−1 − m

m − 1
− c�−1 · mg−1

)
. (14)

The shares of the scheme Πc�
of generation g are given to the parties in gen-

eration g − 1 and the parties in the first � segments in generation g. As the
number of parties in A from generations 1, . . . , g − 2 is less than c0 · mg−1−m

m−1
(by Observation 4.1), the number of parties in A from generation g − 1 and the
parties in the first � segments in generation g is at least

it · a − c0 · mg−1 − m

m − 1
. (15)

For correctness, we require that the parties in A from generation g − 1 and the
parties in the first � segments in generation g can reconstruct the secret from
the scheme Πc�

of generation g − 1. Therefore, by (15), it suffices to require
it · a − c0 · mg−1−m

m−1 ≥ c� · mg−1 + 1 >
⌈
c� · mg−1

⌉
. Thus, by (14), it suffices to

require

a

1 − a

(
mg − m

m − 1
+

k�−1

m − 1
· mg − c0 · mg−1 − m

m − 1
− c�−1 · mg−1

)

−c0 · mg−1 − m

m − 1
≥ c� · mg−1 + 1. (16)

That is,

mg−1

( am
1−a (1 + k�−1) − c0(1 + a

1−a )
m − 1

− a

1 − a
c�−1 − c�

)

≥ 1 +
m( a

1−a − c0
a

1−a − c0)
m − 1

. (17)



326 A. Beimel and H. Othman

If
am
1−a (1+k�−1)−c0(1+

a
1−a )

m−1 − a
1−ac�−1 − c� > 0, then there exist g� such that for

every g ≥ g� inequality (17) holds. Therefore, it suffices to require that

a

1 − a
m +

a

1 − a
k�−1 · m − a

1 − a
c�−1(m − 1) − c�(m − 1) >

c0
1 − a

. (18)

4.1 Finding the Values of the Parameters for Realizing Γa,b for
Every b < a

In order to build a scheme for Γa,b for 0 < b < a < 1, we have to find constants
m, r, k1, . . . , kr−2, and c0, c1, . . . , cr that satisfy (8), (9), (13), and (18). In The-
orem 4.7 we prove that such constants exist for every b < a. To find the values
of the parameters, we first prove that we can choose the values of c0, . . . , cr as
the minimal values required by the security requirements (i.e., (8) and (9)). We
then prove that for large enough m there is a value of k1 that satisfies inequality
(13). Then, we prove that there exists a constant β < 1 such that for every k� if
we can take k�−1 = βk�, then we satisfy inequality (18). Thus, if we start with
kr = m − 1 and with a large enough r and apply the last step iteratively, then
k1 is small enough to satisfy (13).

Example 4.2. As an example, for the scheme Γ1/2,0.25 we take r = 2 and m = 5.
We start with k2 = m−1 = 4 and take β = 1/3, thus, k1 = βk2 = 4/3. We choose
the values of c0, c1, and c2 as the minimal values required by (8) and (9), that
is, c0 = mb

m−1 = 5/16, c1 = mb
m−1 (1+k1) = 35/48, and c2 = mb

m−1 (1+k2) = 25/16.
Note that for a = 1/2 and m = 5, inequality (13) requires that c1 < (5 − 6c0)/4
and c0, c1 satisfy this inequality (if this inequality would not hold, we would have
taken a larger r). It can be checked that (18) also holds.

Lemma 4.3. Let 0 < b < a < 1. If Π2 realizes the access structure Γa,b

with the parameters r,m, k1, . . . , kr and c0, c1, . . . , cr, then Π2 realizes it with
r,m, k1, . . . , kr, c0 = m·b

m−1 , and c� = (1+k�)b·m
m−1 for every 1 ≤ � ≤ r.

Proof. By (13), if we decrease c1 then the left side of the inequality increases,
and thus the inequality still holds. By (18), if we decrease c�−1 and c�, the left
side increases and, thus, the inequality still holds. In all the inequalities, if we
decrease c0, they still hold. Therefore, we can decrease each c� to its minimum
value which is c� = (1+k�)b·m

m−1 and keep the inequalities. ��
In all our proofs in this section, we take the minimum value of c0, c1, . . . , cr,

that is, c0 = m·b
m−1 , and c� = (1+k�)b·m

m−1 for every 1 ≤ � ≤ r.

Lemma 4.4. Let b < a. Every m ≥ 2b
a−b and every k1 ≤ a−b

2b(1−a) satisfy (13).
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Proof. We set c0 = m
m−1b and c1 = (1+k1) m

m−1b in (13). Next we prove that for
any b < a for every 0 < k1 < a−b

2b(1−a) inequality (13) holds. By substituting the

above c0, c1 in (13) we obtain the inequality
a

1−a m−(1+k1)
m

m−1 b·(m−1)
a

1−a m+1 > m
m−1b.

That is,

k1 <

a
1−a − b − b

m−1 − ba
(1−a)(m−1)

b
=

a−b
1−a − b

(m−1)(1−a)

b
. (19)

Thus, every m > 2b
a−b + 1 and k1 ≤ a−b

(1−a)2b satisfy inequality (19). ��

Lemma 4.5. For every b < a, every m > a
a−b , and every k� inequality (18) is

satisfied when k�−1 = (1−a)b
a(1−b)k�.

Proof. We substitute c0 = mb
m−1 , c�−1 = (1 + k�−1) mb

m−1 , and c� = (1 + k�) mb
m−1

in (18) and obtain the following requirement.

a

1 − a
m +

a

1 − a
k�−1m − a

1 − a
(1 + k�−1)

mb

m − 1
(m − 1) − (1 + k�)

mb

m − 1
(m − 1)

>

(
1 +

a

1 − a

)
mb

m − 1
.

That is,

a − b

1 − a
+

a

1 − a
(1 − b)k�−1 − bk� >

b

(1 − a)(m − 1)
. (20)

Taking k�−1 = (1−a)b
a(1−b)k�, we conclude that (20) holds if and only if m > b

a−b +1 =
a

a−b . ��
Next we show that the schemes Πc0 , . . . ,Πcr

are all legal threshold secret-sharing
schemes, that is, the number of parties needed to reconstruct the secret is at most
the number of parties in the scheme.

Lemma 4.6. Assume that m ≥ 2
1−b . The thresholds in the schemes Πc�

for
0 ≤ � ≤ r are at most the number of parties in the schemes for every g ≥ 2, that
is, c0 · mg� ≤ mg and

⌈
c� · mg−1

⌉ ≤ mg−1 +
⌈

k�

m−1 · mg
⌉
for 1 ≤ � ≤ r.

Proof. For Πc0 , note that c0 = mb
m−1 = b + b

m−1 . Thus, if m ≥ b
1−b + 1, then

c0 ≤ 1 and c0 · mg� ≤ mg� = mg as required.
For Πc�

(where 1 ≤ � ≤ r), the threshold is
⌈
c� · mg−1

⌉
< c� · mg−1 + 1 and

the number of parties is mg−1+
⌈

k�

m−1 · mg
⌉

≥ mg−1+ k�

m−1 ·mg. Recall that c� =
(1+k�)b·m

m−1 . Thus, it suffices to show that (1+k�)bm
m−1 ·mg−1 +1 ≤ mg−1 + k�

m−1 ·mg.
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As b < 1 and g ≥ 2, it suffices to choose m such that
(

1 − bm

m − 1

)
m ≥ 1. (21)

Taking m ≥ 2
1−b satisfies (21). ��

Theorem 4.7. For every b < a there is a choice of the parameters such that
Π2 realizes Γa,b with share size of O(log i) for party pi.

Proof. In order to prove the theorem, we need to show that for every b < a
there is a choice of the parameters that satisfies (8), (9), (13), and (18). We take
c0 = mb

m−1 and c� = (1 + k�) mb
m−1 for 1 ≤ � ≤ r, thus, inequalities (8) and (9) are

satisfied and the scheme is secure.
We take m =

⌈
2

a−b

⌉
≥ max{ 2b

a−b ,
a

a−b ,
2

1−b}, thus, we can apply Lemmas 4.4
to 4.6. We still need to find r. In order to find it, we apply Lemma 4.5 iteratively

starting from kr = m − 1 and taking k�−1 = (1−a)bk�

a(1−b) =
(

(1−a)b
a(1−b)

)r−�

(m − 1)
for 2 ≤ � ≤ r. By Lemma 4.5, inequality (18) is satisfied for every �. Note
that (1−a)b

a(1−b) < 1 (as b < a), thus, k1 < k2 < · · · < kr. We take r =⌈
2 + log a(1−b)

(1−a)b

2(1−a)b·m
a−b

⌉
. Thus, we get k1 ≤

(
(1−a)b
a(1−b)

)log a(1−b)
(1−a)b

2(1−a)b·m
a−b

(m−1) =

a−b
2(1−a)b·m (m − 1) < a−b

2(1−a)b ; by Lemma 4.4, inequality (13) is satisfied.
If we take g0 = max{2, g1, . . . , gr} (where g1, . . . , gr are the constants required
for (13) and (18)), then the scheme is correct.

We next analyze the length of the share of pi in Π2. Let g be the generation
of pi. It suffices to consider only parties in generations g ≥ g0. Recall that
the generation g of pi is the maximal g such that (mg − m)/(m − 1) < i; in
particular, mg ≤ (m − 1)i. Every party pi gets O(r) shares in Shamir’s scheme
with O(mg) = O(mi) parties. The length of the share in Shamir’s scheme with
n parties and a one bit secret is O(log n). Thus, the size of the share of each
party pi is O(log i) (since m and r are constants as b < a are constants). ��

4.2 An Optimized Scheme with Share Size O(1)

Next we show an optimization of the previous scheme such that each party’s
share size is O(1). In the optimized scheme we use ramp secret-sharing schemes
instead of threshold secret sharing schemes. We next describe the optimized
scheme, denoted as Π3, in which the share size is O(1).
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Input: a secret s ∈ {0, 1}.

1. For every g, share s among the mg parties in generation g using a
(c0, c0 − ε)-ramp secret-sharing scheme for some constant ε > 0 to
be fixed later (denote this scheme by Π

′
c0).

2. For every 1 ≤ � ≤ r and for every g ≥ 2, share the secret s among
the parties in generation g − 1 and the first

⌈
k�

m−1 · mg
⌉

parties in

generation g using a (c� · mg−1 · 1
n , (c� − ε) · mg−1 · 1

n )-ramp secret-
sharing scheme for some constant ε > 0 to be fixed later, where
n = mg−1+

⌈
k�

m−1 · mg
⌉

is the number of parties (denote this scheme

by Π
′
c�

).
3. For all the parties in the first g0 − 1 generations, share the secret

s using a (non-evolving) secret-sharing scheme realizing the (a, b)-
ramp access structure restricted to the parties in the first g0 − 1
generations.

Chen et al. [6] showed that there exist (1/2 + ε, 1/2 − ε)-ramp secret-sharing
schemes with share size O(1) for every constant ε > 0 (see Claim 2.7). In
Appendix A, we prove the following claim that shows that Chen et al.’s result
implies the existence of (a, b)-ramp secret-sharing schemes with share size O(1)
for every constants b < a.

Claim 4.8. For every constants 0 < b < a < 1 there are integers � and n0 such
that for every n ≥ n0 there is an (a, b)-ramp secret-sharing scheme with n parties
and share size �.

Theorem 4.9. For every b < a there is a choice of the parameters such that
Π3 realizes Γa,b with share size O(1).

Proof. We modify the proof of Π2 to prove the security and correctness of Π3.
For the security of Π

′
c0 , we now have the following requirement.

c0 ≥ bm

m − 1
+ ε. (22)

For security of Π
′
c�

for each 1 ≤ � ≤ r, we require

c� ≥ b · m

m − 1
· (1 + k�) + ε. (23)

Thus, it holds that
⌈
(c� − ε)mg−1

⌉ ≥ (c� − ε)mg−1 ≥ b·m
m−1 · (1 + k�) · mg−1 ≥

b·
(

mg

m−1 + k�

m−1mg
)

> b·
(

mg−m
m−1 + k�

m−1mg + 1
)
, and by Lemma 2.13 (observing

that the party with the maximal index which gets a share for Πc�
is mg−m

m−1 +⌈
k�

m−1 · mg
⌉
), the scheme is secure.
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The correctness conditions remain the same. Therefore, we need to prove
that inequalities (13) and (18) hold under the new security conditions. Let
m, r, c0, c1, . . . , cr, k1, . . . , kr be the parameters used to construct Π2 for some a
and b. We show that there exists ε such that the parameters m, r, c′

0 = c0+ε, c′
1 =

c1 + ε, . . . , c′
r = cr + ε, k1, . . . , kr satisfy the security and correctness conditions

for Π3. It is easy to see that the security conditions hold, since c0 ≥ b m
m−1 and

increasing it by ε > 0 will satisfy the security condition (22) for Π3 (the same
for the other conditions).

For the correctness, in inequality (13) the right-hand side is increased by
ε, and the left-hand side is decreased by ε(m+1)(1−a)

am+1−a . In (13), it is required
that the left-hand side is strictly greater than the right-hand side. Thus, for
the constants defined in the proof of the correctness of Π2, there is a constant
δ1 > 0 (which is a function of a and b) such that the left side of inequality
(13) equals to c0 + δ1. Therefore, the left side in inequality (13) with c′

0, . . . , c
′
r

equals to c0 + δ1 − ε(m−1)(1−a)
am+1−a . For the inequality to hold, we require that

c0 + δ1 − ε(m−1)(1−a)
am+1−a > c0 + ε. Taking ε such that ε + ε(m−1)(1−a)

am+1−a < δ1 will

satisfy the inequality. Thus, we take ε < min{c0,
δ1(am+1−a)

m }.
In inequality (18), the right hand side is increased by ε

1−a , and the left hand

side is decreased by ε(m−1)
1−a . In (18), it is required that the left-hand side is

strictly greater than the right-hand side. Thus, for the constants defined in the
proof of the correctness of Π2, there is a constant δ2 > 0 (which is a function of
a and b) such that the left side of inequality (18) equals to c0

1−a + δ2, Therefore,

the left hand side in inequality (18) with c′
0, . . . , c

′
r equals to c0

1−a + δ2 − ε(m−1)
1−a .

For the inequality to hold, we require that c0
1−a + δ2 − ε(m−1)

1−a > c0+ε
1−a . Taking

ε < δ2(1−a)
m satisfies the inequality.

Taking ε < min{c0, . . . , cr,
δ1(am+1−a)

m , δ2(1−a)
m } satisfies both inequalities and

guarantees that all ramp secret-sharing schemes are properly defined.
The share size each party consists of r = O(1) shares of ramp secret-sharing

schemes, each is of size O(1). Therefore, the share size of each party is O(1). ��

A Proof of Claim 4.8

We next prove Claim 4.8, i.e., we prove that for every constants b < a there
exists a ramp secret-sharing scheme with share size O(1).

Proof. Chen et al. [6] proved the claim for the case when a = 1/2 + ε and
b = 1/2 − ε for every ε > 0, see Claim 2.7. We use two standard transformations
to prove it for every b < a. Let ΠN

1/2+ε,1/2−ε, for some ε < 1/2, be a ramp
secret-sharing scheme with share size � with N parties. If a > 1/2 and b < 1/2,
the scheme Πn

1/2+ε,1/2−ε, where ε = min{a − 1/2, 1/2 − b}, is an (a, b)-ramp
secret-sharing with share size O(1). Otherwise, there are two cases; in each case
we show the existence of an (a, b)-ramp secret-sharing scheme with n parties,
denoted Πn

a,b, with share size �.
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The case b ≥ 1/2. We use the scheme ΠN
1/2+ε,1/2−ε, where N = αn for some

constants α > 1 and ε < 1/2 to be fixed later. We only use the shares of the first
n parties of ΠN

1/2+ε,1/2−ε. In ΠN
1/2+ε,1/2−ε, a set of size N(1/2+ ε) = αn(1/2+ ε)

can reconstruct the secret. In Πn
a,b, we require that an parties can reconstruct the

secret, thus, we take α such that αn(1/2+ε) = an, i.e., α = 2a
1+2ε . By the security

of ΠN
1/2+ε,1/2−ε, any set of parties of size less than N(1/2 − ε) = αn(1/2 − ε) =

2a
1+2εn(1/2 − ε) cannot learn any information on the secret. In Πn

a,b, we require
that bn parties cannot learn any information on the secret, thus, we require that
2a

1+2ε (1/2 − ε) = b, i.e., ε = a−b
2(a+b) . Notice that α = 2a

1+2ε = 2a
1+ a−b

a+b

= a + b > 1

(since a > b ≥ 1/2), thus, we have enough shares in Παn
1/2+ε,1/2−ε to give to the

n parties. Furthermore, ε < 1/2 as required by Claim 2.7.

The case a ≤ 1/2. Again, we use the scheme ΠN
1/2+ε,1/2−ε, where N = αn for

some constants α > 1 and ε < 1/2 to be fixed later. We use the shares of the first
n parties of ΠN

1/2+ε,1/2−ε as the shares in Πn
a,b. However, in this case we publish

N −n = (α− 1)n shares on a public blackboard (we later explain how to get rid
of this public blackboard). In Πn

a,b, we require that an parties can reconstruct
the secret. As the number of shares of ΠN

1/2+ε,1/2−ε that an parties in Πn
a,b have

is an + (α − 1)n, we require that an + (α − 1)n = N(1/2 + ε) = αn(1/2 + ε),
i.e., α = (2 − 2a)/(1 − 2ε). In Πn

a,b, we require that bn parties cannot learn
any information on the secret. As the number of shares of ΠN

1/2+ε,1/2−ε that bn

parties in Πn
a,b have is bn+(α−1)n, we require that bn+(α−1)n = αn(1/2−ε),

i.e., α(1 + 2ε) = 2 − b. Solving the requirements on α, we get that ε = a−b
2(2−a−b)

and α = 2 − a − b. Note that α > 1 since b < a ≤ 1/2 and ε < 1/2.
To get rid of the shares published on the blackboard, we fix possible shares

sn+1, . . . , sαn of the last (α − 1)n parties in ΠN
1/2+ε,1/2−ε (e.g., in the scheme of

Chen et al. [6], we can fix sn+1 = · · · = sαn = 0). To share the secret, the dealer
chooses only vectors of shares of ΠN

1/2+ε,1/2−ε such that the shares of the last
(α − 1)n parties are the fixed shares sn+1, . . . , sαn. ��
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Abstract. We consider recent constructions of 1-out-of-N OT-extension
from Kolesnikov and Kumaresan (CRYPTO 2013) and from Orrù et al.
(CT-RSA 2017), based on binary error-correcting codes. We generalize
their constructions such that q-ary codes can be used for any prime
power q. This allows to reduce the number of base 1-out-of-2 OT’s that
are needed to instantiate the construction for any value of N , at the cost
of increasing the complexity of the remaining part of the protocol. We
analyze these trade-offs in some concrete cases.

1 Introduction

A K-out-of-N oblivious transfer, or
(
N
K

)
-OT, is a cryptographic primitive that

allows a sender to input N messages and a receiver to learn exactly K of these
with neither the receiver revealing which messages he has chosen to learn nor
the sender revealing the other N − K input messages. This is a fundamental
cryptographic primitive in the area of secure multiparty computation, and in
fact [9] showed that any protocol for secure multiparty computation can be
implemented if the OT functionality is available. However, the results in [6]
indicate that OT is very likely to require a public key cryptosystem, and therefore
implementing OT is relatively expensive. Unfortunately, well-known protocols
such as Yao’s garbled circuits [13] and the GMW-compiler [5] rely on using a
large number of independent instances of OT. It is therefore of interest to reduce
the number of OT’s used in a protocol in an attempt to reduce the overall cost.
This can be done using what is called OT-extensions, where a large number of
OT’s are simulated by a much smaller number of base OT’s together with the
use of cheaper symmetric crypto primitives, such as pseudorandom generators.

Beaver showed in [1] that OT-extension is indeed possible, but it was not
before 2003 that an efficient

(
2
1

)
-OT-extension protocol was presented by Ishai et

al. in [7]. In addition, while this protocol had security against passive adversaries,
subsequent has work showed that active security can be achieved at a small
additional cost [8].

In [10], Kolesnikov and Kumaresan noticed that Ishai et al. were in essence
relying on the fact that the receiver encodes its input as a codeword in a repeti-
tion code, and therefore one can generalize their idea by using other codes, such
c© Springer Nature Switzerland AG 2018
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as the Walsh-Hadamard code, which not only obtains efficiency improvements for(
2
1

)
-OT-extension, but also allows to generalize the protocol into passively secure(

N
1

)
-OT-extension. In such an extension protocol the base OT’s are

(
2
1

)
-OT’s, but

the output consist of a number of
(
N
1

)
-OT’s. In more recent work, Orrù et al. [12]

transformed the protocol by [10] into an actively secure
(
N
1

)
-OT-extension pro-

tocol by adding a “consistency check” which is basically a zero-knowledge proof
that the receiver is indeed using codewords of the designated code to encode his
selections. As shown in [12], 1-out-of-N oblivious transfer has a direct application
to the problem of private set inclusion and, via this connection, to the problem
of private set intersection. In fact this application requires only a randomized
version of

(
N
1

)
-OT, where the sender does not have input messages, but these are

generated by the functionality and can be accessed on demand by the sender.
The structure of the aforementioned OT extension protocols is especially well
suited for this application, since such a randomized functionality is essentially
implemented by the same protocol without the last step, where the sender would
send its masked inputs to the receiver.

The aforementioned papers on
(
N
1

)
-OT-extension relied on the use of binary

linear codes, and the concrete parameters of the resulting construction, the num-
ber of OT’s and the value of N , are given respectively by the length and size of
the binary linear code being used. Furthermore, the construction requires that
the minimum distance of the code is at least the desired security parameter.
Well-known bounds on linear codes, such as the Plotkin, Griesmer or Hamming
bounds [11], provide lower bounds for the length of a code with certain size and
minimum distance, and therefore these imply lower bounds on the number of
base OT’s for the OT-extension protocol. In fact, even if we omit the require-
ment on the minimum distance, we can see that at least log2 N base OT’s are
needed for those extension protocols.

In this paper, we discuss the use of q-ary linear codes, where q can be any
power of a prime, as a way of reducing the number of required base OT’s in
the 1-out-of-N OT-extension constructions mentioned above. We show that one
can easily modify the protocol in [12] to work with q-ary codes, rather than just
binary. Given that all parameters of the code still have the same significance for
the construction and, in particular, N is still the size (the number of codewords)
of the code, we obtain a reduction in the number of base OT’s required: indeed,
for given fixed values N and d, the minimal length among all q-ary linear codes
of size N and minimum distance d becomes smaller as q increases. In particular
one can show cases where the lower bound of log2 N base OT’s can be improved
even if we have relatively large minimum distance.

This improvement, however, comes at a cost: since we need to communicate
elements of a larger field, the communication complexity of the OT-extension
protocol (not counting the complexity of the base OT’s) increases. This increase
is compensated to some extent by the fact that this communication complexity
also depends on the number of base OT’s.

The concrete tradeoffs obtained by the use of q-ary codes depend of course on
N and the security level. We show several examples comparing explicit results
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listed in [12] and the q-ary alternative achieving the same (or similar) N and
security level. For example, for the largest value of N considered in [12] we show
that by using a linear code over the finite field of 8 elements, we need less than
half of the base OT’s, while the communication complexity increases only by
33%.

When q is a power of two, we can show an improvement on the complexity
of the consistency check that we use in the case of a general q. Namely, the
consistency check in [12] works by asking the receiver, who has previously used
the base OT’s to commit to both the codewords encoding his selections and
some additional random codewords, to open sums of random subsets of these
codewords. The natural way of generalizing this to a general prime power q is to
ask the receiver to open random linear combinations over Fq of the codewords.
However, in case q is a power of two, we show that it is enough to open random
linear combinations over F2, i.e., sums, just as in [12] (naturally, this extends to
the case where q is a power of p, where it would be enough to open combinations
over Fp). The advantage of this generalization is of course that the verifier needs
to send less information to describe the linear combinations that it requests to
open, and in addition less computation is required from the committer to open
these combinations.

We give a presentation of the protocol and its security proof that is inspired
by a recent work on homomorphic universally composable secure commitments
[2]. As noted in [12], there is a strong similarity between the OT-extension proto-
col constructions in the aforementioned works and several protocol constructions
in a line of work on homomorphic UC commitments [2–4]. In the first part of
the OT-extension protocol in [10], the base OT’s are used for the receiver to
eventually create an additive 1-out-of-2 sharing of each coordinate in the code-
words encoding his selection, so that the sender learns exactly one share of each.
This is essentially the same as the committing phase of the passively secure
homomorphic UC commitment proposed in [3] (one can say that the receiver
from the OT-extension protocol has actually committed to his inputs at that
point). In order to achieve active security, a consistency check was added in
[4], which is basically the same as the one introduced in [12] in the context
of OT-extension. Finally, [2] generalized this consistency check by proving that
rather than requesting the opening of uniformly random linear combinations of
codewords, these combinations can be determined by a hash function randomly
selected from an almost universal family of hash functions. This leads to asymp-
totical complexity gains, both in terms of communication and computation (since
one can use linear time encodable almost universal hash functions which can in
addition be described by short seeds), but in our case it also allows us to give a
unified proof of security in both the case where the linear combinations for the
consistency check are taken over Fq and when they are taken over the subfield.

The work is structured as follows. After the preliminaries in Sect. 2, we
present our OT-extension protocol and prove its security in Sect. 3. In Sect. 4, we
show that the communication cost can be reduced by performing the consistency
checks over a subfield, and finally Sect. 5 contains a comparison with previous
protocols.
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2 Preliminaries

This section contains the basic definitions needed to present and analyse the
protocol for OT-extension.

2.1 Notation

Throughout this paper, q will denote a prime power and Fq a finite field of q
elements. Every finite field has elements 0 and 1, and hence it will be natural
to embed the set {0, 1} in Fq.1 Bitstrings in {0, 1}n and vectors from F

n
q are

denoted in boldface. The i-th coordinate of a vector or bitstring b is denoted bi.
For a bitstring b ∈ {0, 1}n, we will use the notation Δb to denote the diagonal

matrix in F
n×n
q with entries from the vector b, i.e. the (i, i)-entry of Δb is bi. Note

that for vectors b, c ∈ F
n
q , the product cΔb equals the componentwise product

of b and c.

2.2 Linear Codes

Since our protocol depends heavily on linear codes, we recall here the basics of
this concept. First, a (not necessarily linear) code of length n over an alphabet
Q is a subset C ⊆ Qn. An Fq-linear code C is an Fq-linear subspace of Fn

q . The
dimension k of this subspace is called the dimension of the code, and therefore
C is isomorphic to F

k
q . A linear map F

k
q → C can be described by a matrix

G ∈ F
k×n
q , which is called a generator matrix for C. Note that G acts on the

right, so w ∈ F
k
q is mapped to wG ∈ C by the aforementioned linear map.

For x ∈ F
n
q we define the support of x to be the set indices where x is

nonzero, and we denote this set by supp(x). Using this definition we can turn
F

n
q into a metric space. This is done by introducing the Hamming weight and

distance. The Hamming weight of x is defined as wH(x) = |supp(x)|, and this
induces the Hamming distance dH(x,y) = wH(x − y), where y ∈ F

n
q as well.

The minimum distance d of a linear code C is defined to be

d = min{dH(c, c′) | c, c′ ∈ C, c �= c′},

and by the linearity of the code it can be shown that in fact

d = min{wH(c) | c ∈ C \ {0}}.
Since n, k, and d are fixed for a given linear code C over Fq, we often refer to it
as an [n, k, d]q-code.

It may be shown that if x ∈ F
n
q is given by c + e for some codeword c ∈ C

and an error vector e with wH(e) < d, it is possible to recover c from x and
supp(e). This process is called erasure decoding.
1 Of course, the elements of {0, 1} could be identified with the elements of the field of

two elements, F2. But for the sake of clarity, we will prefer to use {0, 1} where we
refer to bits and bitstrings and no algebraic properties are needed.
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Another way to see erasure decoding is by considering punctured codes. For
a set of indices E ⊆ {1, 2, . . . , n} we denote the projection of x ∈ F

n
q onto

the indices not in E by πE(x). For a code C and a set of indices E, we call
πE(C) a punctured code. Now consider the case where |E| < d, which implies
the existence of a bijection between C and πE(C). This is the fact exploited in
erasure decoding, where E is the set of indices where the errors occur.

As in [2], we will use interleaved codes. If C ⊆ F
n
q is a linear code, C�s denotes

the set of s × n-matrices with entries in Fq whose rows are codewords of C. We
can also see such an s × n-matrix as a vector of length n with entries in the
alphabet F

s
q. Then we can see C�s as a non-linear2 code of length n over the

alphabet F
s
q.

Since the alphabet F
s
q contains a zero element (the all zero vector), we can

define the notions of Hamming weight and Hamming distance in the space (Fs
q)

n.
We can then speak about the minimum distance of C�s and even though C�s is
not a linear code, it is easy to see that the minimum distance of C�s coincides
with its minimum nonzero weight, and also with the minimum distance of C.

2.3 Cryptographic Definitions

Consider a sender S and a receiver R participating in a cryptographic protocol.
The sender holds vj,i ∈ {0, 1}κ for j = 1, 2, . . . , N and i = 1, 2, . . . ,m. For
each i the receiver holds a choice integer wi ∈ [1, N ]. We let Fκ,m

N-OT denote the
ideal functionality that, on inputs vj,i from S and wi from R, outputs vwi,i for
i = 1, 2, . . . ,m to the receiver R. For ease of notation, we will let the sender
input N matrices of size κ × m with entries in {0, 1}, and the receiver a vector
of length m, with entries in [1, N ]. Hence, for the i’th OT the sender’s inputs
are the i’th column of each matrix, and the receiver’s input is the i’th entry of
the vector.

The protocol presented in Sect. 3 relies on two functions with certain security
assumptions, the foundations of which we define in the following. For the first
function let X be a probability distribution. The min-entropy of X is given by

H∞(X ) = − log(max
x

Pr[X = x]),

where X is any random variable following the distribution X . If H∞(X ) = t we
say that X is t-min-entropy. This is used in the following definition.

Definition 1. (t-Min-Entropy Strongly C-Correlation Robustness).
Consider a linear code C ⊆ F

n
q , and let X be a distribution on {0, 1}n with min-

entropy t. Fix {ti ∈ F
n
q | i = 1, 2, . . . ,m} from some probability distribution and

let κ be a positive integer. An efficiently computable function H : Fn
q → {0, 1}κ

is said to be t-min-entropy strongly C-correlation robust if

{H(ti + cΔb) | i = 1, 2, . . . ,m, c ∈ C}
is computationally indistinguishable from the uniform distribution on {0, 1}κm|C|

when b is sampled according to the distribution X .
2 The code is linear over Fq, but not the alphabet F

s
q.
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The second type of function we need is a pseudorandom generator.

Definition 2. A pseudorandom generator is a function PRG : {0, 1}κ → F
m
q

such that the output of PRG is computationally indistinguishable from the uni-
form distribution on F

m
q .

If A = [a1,a2, . . . ,an] is a κ × n-matrix with entries in {0, 1} for some integer
n, we use the notation PRG(A) = [PRG(a1),PRG(a2), . . . ,PRG(an)] where we
see PRG(ai) as columns of an m × n matrix.

In addition to the usual concept of advantage, one can also consider the con-
ditional advantage as it is done in [12]. Let A be an event such that there exist x0

and x1 in the sample space of the two random variables X0 and X1, respectively,
where Pr[Xi = xi | A] > 0 for i = 0, 1. Then we define the conditional advantage
of a distinguisher D given A as

Adv(D|A) =
∣
∣
∣ Pr[D(X0) = 0|A] − Pr[D(X1) = 0|A]

∣
∣
∣.

We end this section by presenting the following lemma, which allows us to bound
the advantage by considering disjoint cases. The proof follows by the law of total
probability and the triangle inequality.

Lemma 1. Let A1, A2, . . . , An be events as above. Additionally, assume that the
events are disjoint. If

∑n
i=1 Pr[Ai] = 1, then

Adv(D) ≤
n∑

i=1

Adv(D | Ai) Pr[Ai]

for any distinguisher D.

3 Actively Secure OT-Extension

In this section we describe and analyse a generalization of the protocol described
in [12] which uses OT-extensions to implement the functionality Fκ,m

N-OT by using
only n ≤ m base OT’s, which are 1-out-of-2. Our OT-extension protocol is also
using 1-out-of-2 base OT’s, but works with q-ary linear codes instead of binary.
Our main result is summarized in the following theorem.

Theorem 1. Given security parameters κ and s, let C be an [n, k, d]q linear code
with k = logq(N) and d ≥ max{κ, s}. Additionally, let PRG : {0, 1}κ → F

m+2s
q be

a pseudorandom generator and let H : Fn
q → {0, 1}κ be a t-min-entropy strongly

C-correlation robust function for all t ∈ {n − d + 1, n − d + 2, . . . , n}. If we have
access to C, the functions PRG and H, and the functionality Fκ,n

2-OT, then the
protocol in Fig. 1 on page 7 implements the functionality Fκ,m

N-OT.
The protocol is computationally secure against an actively corrupt adversary.3

3 In Sect. 4, we show that this is still true if the protocol relies on a code over Fpr ,
and the consistency check is changed such that M ′ ∈ F

2s×m
p .
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Protocol 1: OT-Extension

1. Initialization phase
(a) S chooses uniformly at random b ∈ {0, 1}n.
(b) R generates uniformly at random two seed matrices N0, N1 ∈ {0, 1}κ×n and

defines the matrices Ti = PRG(Ni) ∈ F
(m+2s)×n
q for i = 0, 1.

(c) The participants call the functionality κ,n
2-OT, where S acts as the receiver

with input b, and R acts as the sender with inputs (N0, N1). S receives N =
N0 +(N1 − N0)Δb, and by using PRG, he can compute T = T0 +(T1 − T0)Δb.

2. Encoding phase
(a) Let W ′ ∈ F

k×m
q be the matrix which has wi as its columns. R generates a

uniformly random matrix W ′′ ∈ F
k×2s
q , and defines the (m + 2s) × k-matrix

W = [W ′ | W ′′]T .
(b) R sets C = WG, and sends U = C + T0 − T1.
(c) S computes Q = T + UΔb. This implies that Q = T0 + CΔb.

3. Consistency check
(a) S samples a uniformly random matrix M ′ ∈ F

2s×m
q and sends this to R. They

both define M = [M ′ | I2s].
(b) R computes the 2s × n-matrix T̃ = MT0 and the 2s × k-matrix W̃ = MW

and sends these matrices to S.
(c) S verifies that MQ = T̃ + W̃GΔb. If this fails, S aborts the protocol.

4. Output phase
(a) Denote by qi and ti, the i’th rows of Q and T0, respectively. For i = 1, 2, . . . , m

and for all w ∈ F
k
q , S computes yw,i = vw,i ⊕H(qi −wGΔb) and sends these

to R. For i = 1, 2, . . . , m, R can recover vwi,i = ywi,i ⊕ H(ti).

Fig. 1. This protocol implements the functionality Fκ,m
N-OT having access to Fκ,n

2-OT. The
security of the protocol is controlled by the security parameters κ and s. The sender
S and the receiver R have agreed on a linear code C ⊆ F

n
q with generator matrix G

of dimension k = logq(N) and minimum distance d ≥ max{κ, s}. The protocol uses

a pseudorandom generator PRG : {0, 1}κ → F
m+2s
q and a function H : Fn

q → {0, 1}κ,
which is t-min-entropy strongly C-correlation robust for all t ∈ {n − d + 1, n − d +
2, . . . , n}. R has m inputs w1,w2, . . . ,wm ∈ F

k
q , which act as selection integers. S has

inputs vw ,i ∈ {0, 1}κ, indexed by i ∈ {1, 2, . . . , m} and w ∈ F
k
q .

3.1 The Protocol

We start by noticing that in our protocol R has inputs wi ∈ F
k
q rather than

choice integers wi ∈ [1, N ]. However, the number of elements in F
k
q is qk = N ,

and hence wi can for instance be the q-ary representation of wi. In this way we
have a bijection between selection integers and input vectors.

Our protocol is, like the protocol in [12], very similar to the original protocol
in [7]. The idea in this protocol is that we first do OT’s with the roles of the
participants interchanged such that the sender learns some randomness chosen
by the receiver. Afterwards, R encodes his choice vectors using the linear code C
and hides the value with a one-time pad. He sends these to S, who will combine
this information with the outputs of the OT functionality to obtain a set of
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vectors, only m of which R can compute; namely the ones corresponding to
his input vectors. When S applies a t-min-entropy strongly C-correlation robust
function H to the set of vectors, he can use the outputs as one-time pads of his
input strings. Like in [12] the protocol contains a consistency check to ensure that
R acts honestly, or otherwise he will get caught with overwhelming probability.
The full protocol is presented in Fig. 1 on page 7.

In order to argue that the protocol is correct, we see that for each i, the
sender S computes and sends the values yw ,i for all w ∈ F

k
q . Since k = logq(N),

this yields N strings for each i ∈ {1, 2, . . . ,m}. The receiver R obtains one of
these because

H(qi − wiGΔb) = H(qi − ciΔb) = H(ti).

Furthermore, if both S and R act honestly, the consistency checks in phase 3
will always pass. This follows from the observation that

T̃ + W̃GΔb = M(T0 + CΔb) = MQ.

Hence, we note that if only passive security is needed in Protocol 1, we can omit
phase 3 and set s = 0. The aforementioned steps are included to ensure that the
receiver uses codewords in the matrix C. What a malicious receiver might gain
by choosing rows which are not codewords is explained in [7, Sect. 4].

3.2 Proofs of Security

In this section we give formal proofs for security. The proof of security against a
malicious sender works more or less the same as the proof in [12] but in a different
notation. For completeness, we have included this proof. However, we present
the proof against a malicious receiver in another way, where the structure, some
strategies, and some arguments differ from the original proof.

Theorem 2. Protocol 1 is computationally secure against an actively corrupt
sender.

Proof. To show this theorem we give a simulator, which simulates the view of
the sender during the protocol. The view of S is ViewS = {N,U, T̃ , W̃}. The
simulator SimS works as follows.

1. SimS receives b from S and defines a uniformly random matrix N , sets T =
PRG(N), and passes N back to S.

2. Then SimS samples U uniformly at random and sends this to S. Additionally,
it computes Q as S should.

3. In phase 3 the simulator receives M ′ from S, and constructs M . The matrix
W̃ is sampled uniformly at random in F

2s×k
q , and using this, SimS sets T̃ =

MQ − W̃GΔb . It sends T̃ and W̃ to S.
4. SimS receives yw ,i from S and since SimS already knows Q and b, it can

recover vw ,i = yw ,i ⊕H(qi −wGΔb) and pass these to the ideal functionality
Fκ,m

N-OT.
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We now argue that the simulator produces values indistinguishable from ViewS .
The matrix N is distributed identically in the real and ideal world. Since both
T0 and T1 are outputs of a pseudorandom generator, the matrix T0 − T1, and
therefore also U , is computationally indistinguishable from a uniformly random
matrix. In the real world, W̃ = M ′(W ′)T + (W ′′)T is uniform since W ′′ is
chosen uniformly. The simulator SimS constructs T̃ such that the consistency
check will pass. This will always be the case in the real world, and hence S
cannot distinguish between the real and ideal world. Additionally, we note that
step 4 ensures that the receiver obtains the same output in both worlds. This
shows security against an actively corrupt sender. 	

We now shift our attention to an actively corrupt receiver. This proof is not
as straight forward as for the sender. The idea is to reduce the problem of
breaking the security of the protocol to the problem of breaking the assumptions
on H. Before delving into the proof itself, we will introduce some lemmata and
notations that will aid in the proof. The focus of these will be the probability that
certain events happen during the protocol. These events are based on situations
that determine the simulator’s ability or inability to simulate the real world.
Essentially, they are the event that R passes the consistency check, which we
denote by PC; the event that R has introduced errors in too many positions,
denoted by LS; and the event that the error positions from the consistency check
line up with the errors in C, which we call ES. These will be defined more
precisely below.

Inspired by the notation in the protocol, we define

C̃ = MC. (1)

A corrupt receiver may deviate from the protocol and may send an erroneous
W̃ , which we denote by W̃∗. Let

C̄ = C̃ − W̃∗G

and let E = supp(C̄), where C̄ is interpreted in C�2s. When writing C̃, C̄, and
E later in this section these are the definitions we are implicitly referring to.

Lemma 2. Let C, C, and M be as in Protocol 1. Further, let LS be the event
that |E| ≥ s, and let ES be the event that for every C ′ ∈ C�2s there exists a
Ĉ ∈ C�m+2s such that supp(C̃ − C ′) = supp(C − Ĉ). Then the probability that
neither ES nor LS happen is at most q−s.

Proof. The matrix M ′ in Protocol 1 is chosen uniformly at random, and hence
M can be interpreted as a member of a universal family of linear hashes. Thus,
this lemma is a special case of [2, Theorem 1] when letting m′ = m + 2s, s′ = s,
and t′ = 0 where the primes denote the parameters in [2]. Additionally, note
that our event LS happens if MC has distance at least s from C�2s. 	

We will now bound the probability that an adversary is able to pass the consis-
tency check, even if C contains errors.
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Lemma 3. Let PC denote the event that the consistency check passes. Then

Pr[PC] ≤ 2−|E|.

Proof. In order to compute Pr[PC], we consider C̄ and T̄ = T̃ − T̃∗, where the ∗
indicates that the matrix may not be constructed as described in the protocol.
The event PC happens if MQ = T̃∗ + W̃∗GΔb . However, from the definition of
Q, MQ = T̃ + C̃Δb , implying that PC happens if and only if

T̃ + C̃Δb = T̃∗ + W̃∗GΔb ⇐⇒ T̄ = −C̄Δb .

Now consider T̄ and C̄ in (Fn
q )�2s, meaning that the entries C̄j and T̄j are

elements in F
2s
q . If the adversary chooses C̄j = 0 for some j ∈ {1, 2, . . . , n}, it

must choose T̄j = 0 as well since the check would fail otherwise. If it chooses
C̄j �= 0, it has two options. Either bet that bj = 0 and set T̄j = 0 or bet that
bj = 1 and set T̄j = −C̄j . This means that for each entry j ∈ E the adversary
has probability 1

2 of guessing the correct value of bj . For every entry j /∈ E,
each possible bj gives a consistent value since C̄j = T̄j = 0. By this and the
independence of the entries in b, it follows that the probability of the check
passing is bounded by Pr[PC] ≤ 2−|E|. 	

This immediately gives the following corollary.

Corollary 1. If LS denotes the same event as in Lemma 2, then

Pr[PC | LS] ≤ 2−s.

We now have the required results to prove the security of Protocol 1 against an
actively corrupt receiver. The events PC, LS, and ES from the previous lemmata
and corollaries will also be used in the proof of the following theorem.

Theorem 3. Protocol 1 is computationally secure against an actively corrupt
receiver.

Proof. As in the proof of Theorem 2, we construct a simulator SimR simulating
the view of the receiver, which is ViewR = {M ′,yw ,i}. The simulator works as
follows.

1. SimR receives N0 and N1 from R.
2. The simulator receives U from R and combines these with T0 = PRG(N0)

and T1 = PRG(N1) to reconstruct the matrix C. Additionally, it samples
uniformly at random an internal value b. Using this b, the simulator SimR

computes Q = T0 + CΔb .
3. SimR samples a random M ′ like the sender would have done in the protocol

and sends this to R. In return, it receives T̃∗ and W̃∗, where the ∗ indicates
that the vectors may not be computed according to the protocol. The simu-
lator runs the consistency check and aborts if it fails.
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4. Otherwise, it erasure decodes each row of C by letting E be the erasures
to obtain W ′. If the decoding fails, it aborts. If the decoding succeeds, the
simulator gives W ′ as inputs to the ideal functionality Fκ,m

N-OT, which returns
the values vw i,i to SimR. It can now compute yw i,i = vw i,i ⊕H(qi −wiGΔb),
and chooses yw ,i uniformly at random in F

κ
q for all w �= wi.

The matrix M ′ is uniformly distributed both in the real and ideal world. Hence,
we only need to show that the output yw ,i produced by the simulator is indis-
tinguishable from the output of the protocol.

Let Z be a distinguisher for distinguishing between a real world execution
of the protocol and an ideal execution using the simulator. By Lemma 1 its
advantage is bounded by

Adv(Z) ≤ Adv(Z | PC) + Adv(Z | PC, LS) Pr[PC | LS]

+ Adv(Z | PC, LS,ES) Pr[LS,ES] + Adv(Z | PC, LS,ES) Pr[PC],
(2)

where we have omitted some probability factors since they are all at most 1.
Notice that yw i,i is constructed identically in both worlds. The remaining yw ,i

are uniformly distributed in the ideal world, but constructed as

yw ,i = vw ,i ⊕ H(qi − wGΔb) (3)

in the real world. Also notice that, if the consistency check fails, the simulator
aborts before constructing the yw ,i. This is the same as in the real world, and the
only information R has received before this is M ′, which is identically distributed
in both worlds. Hence, the simulator is perfect in this case. This implies that the
first term on the right-hand side in (2) is zero.

Since the consistency check by the simulator is identical to the consistency
check done by S, it follows that the probability for the consistency check to
pass even if R might have sent inconsistent values is the same in both worlds.
This means that Pr[PC | LS] ≤ 2−s by Corollary 1. In a similar fashion, Lemma
2 implies that the penultimate term in (2) can be bounded above by q−s. In
summary, (2) can be rewritten as

Adv(Z) ≤ 2−s + q−s + Adv(Z | PC, LS,ES)2−|E|. (4)

To show that this is negligible in κ and s, assume the opposite; that is, Z has non-
negligible advantage. We then construct a distinguisher D breaking the security
assumptions on H.

The distinguisher D simulates the protocol with minor changes in order to
produce its input to the challenger. After receiving the challenge it uses the
output of Z to respond. There exist inputs and random choices for R and S,
which maximize the advantage of Z, and we can assume that D has fixed these
in its simulation. This also means that PC, LS and ES happen in the simulation
since otherwise, Adv(Z) is negligible.

Because ES happens, puncturing C in the positions in E gives a codeword
in πE(C�m+2s). Further, the event LS ensures that this corresponds to a unique
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codeword in C�m+2s. Hence, D is able to erasure decode and for i = 1, 2, . . . ,m +
2s obtain ci = wiG + ei, where ci is the i’th row of C, wH(ei) < d, and
supp(ei) ⊆ E.

The following arguments use that no matter which b the challenger chooses,
the distinguisher D knows eiΔb . This follows from the fact that PC has happened
and therefore bj for j ∈ E is known to the adversary, which is simulated by D.
Hence, the distinguisher is able to construct t′i = ti + eiΔb , where the b is the
vector eventually chosen by the challenger, and ti the i’th row of T0. Letting
t = n − |E|, define the probability distribution X to be the uniform distribution
on F

n
2 under the condition that the indices in E are fixed to the corresponding

entry of b. By uniformity this distribution has min-entropy t. The distinguisher
passes X and the t′i to the challenger. It receives back xw ,i for all i = 1, 2, . . . , n
and w ∈ F

k
q and needs to distinguish them between being uniformly random and

being constructed as

xw ,i = H(t′i + wGΔb), (5)

As in the protocol, let Q = T0 + CΔb , where b is again the vector chosen by the
challenger. Therefore, if xw ,i is constructed as in (5), we have that

xw ,i = H(ti + eiΔb + wGΔb)
= H(qi − ciΔb + eiΔb + wGΔb)
= H(qi − (wi − w)GΔb).

The distinguisher will now construct and input to Z the following

yw i,i = vw i,i ⊕ H(t′
i),

yw ,i = vw ,i ⊕ xw i−w ,i, for w �= wi.

Since t′i = ti + eiΔb = qi −wiGΔb , we have that yw i,i is identical to the value
computed in both the real and ideal worlds.

For the remaining w we notice that if the challenger has chosen xw ,i uni-
formly at random, then the values yw ,i are uniformly distributed as well. This is
the same as the simulator will produce in the ideal world. On the other hand, if
xw ,i = H(t′i +wGΔb), then we have yw ,i = vw ,i ⊕H(qi −wΔb). This is exactly
the same as produced during the protocol in the real world. Hence, D can feed
the values yw ,i to Z, which can distinguish between the real and ideal world,
and depending on the answer from Z, D can distinguish whether the xw ,i are
uniformly distributed or are constructed as H(t′i +wGΔb). Hence, the advantage
of D is the same as that of Z under the restriction that PC, LS, and ES happen.
This means that

Adv(D) = Adv(Z|PC, LS,ES) ≥ 2|E| (Adv(Z) − 2−s − q−s
)
, (6)

where the inequality comes from (4). This contradicts that H is t-min-entropy
strongly C-correlation robust, and therefore Z must have negligible advantage
in the security parameters κ and s. 	
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4 Consistency Check in a Subfield

Assume that q = 2r and that r | s. By restricting the matrix M ′ in Protocol 1 to
have entries in F2, the set of possible matrices M form a 2−2s-almost universal
family of hashes. The probability in Lemma 2 can then be replaced by 2−s by
setting m′ = m + 2s, s′ = s

r , and t′ = 2s(1 − 1/r). This modification will
show itself in (4), but here only the term q−s is replaced by 2−s, and hence
the advantage will still be negligible in κ and s. However, choosing M ′ in a
subfield reduces the communication complexity, since the number of bits needed
to transmit M ′ is lowered by a factor of r. Furthermore, the computation of T̃
and W̃ can be done using only sums in Fq, instead of multiplication and sums.

This method of reducing the communication complexity can be done to an
intermediate subfield, which will give a probability bound between q−s and 2−s.
In a similar way, this procedure could also be applied to fields of other charac-
teristics.

5 Comparison

We compare the parameters of our modified construction with those that can
be achieved by the actively secure OT-extension construction from [12]. We will
show that the ability to use larger finite fields in our modified construction
induces a tradeoff between the number of base OT’s that are needed for a given
N and given security parameters (and hence also the complexity of the set-up
phase), and the complexity of the encoding and consistency check phases of the
extension protocol.

We have shown that given an [n, k, d]q-code, with d ≥ max{κ, s}, one can
build an OT-extension protocol that implements the functionality Fκ,m

N-OT using
the functionality Fκ,n

2-OT, where N = qk. The parameters achieved in [12] are the
same as we obtain in the case q = 2.

We will limit our analysis to the case where q = 2r, and r | s. We fix the
security parameters s and κ, and fix N to be a power of q, N = qk. Note then
that N = 2k·log2 q. Let n′ and n be the smallest integers for which there exist an
[n′, k log2 q,≥ d]2-linear code and an [n, k,≥ d]q-linear code, respectively. As we
discuss later, we can always assume that n ≤ n′, and in most cases it is in fact
strictly smaller. Therefore, by using q-ary codes one obtains a reduction on the
number of base OT’s from n′ to n, and therefore a more efficient initialization
phase. Note for example that the binary construction always requires at least
a minimum of log2 N base OT’s, while using q-ary codes allows to weaken this
lower bound to n ≥ logq N .

On the other hand, however, this comes at the cost of an increase in the
communication complexity of what we have called the encoding and consistency
check phases of the protocol since we need to send a masking of codewords
over a larger field. We compare these two phases separately since the consis-
tency check is only needed for an actively secure version of the protocol and
it has a smaller cost than the encoding phase anyway. In the encoding phase,
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[12] communicates a total of (m+s)n′ bits, while our construction communicates
(m + 2s)n log2 q bits. However, typically m � s, and therefore we only compare
the terms mn′ and mn log2 q. Hence, the communication complexity of this phase
gets multiplied by a factor log2 q·n/n′. During the consistency check phase, which
is less communication intensive, [12] communicates a total of sm+sn′ +sk log2 q
bits while our construction communicates 2sm + 2sn log2 q + 2sk log2 q bits when
using the method from Sect. 4.

We now discuss in more detail the rates between n and n′ that we can obtain
for different values of q. In order to do that, having fixed d and k, let n′ and n
denote the minimum values for which [n′, k log2 q,≥ d]2-linear codes and [n, k,≥
d]q-linear codes exist. Let k′ denote k log2 q. It is easy to see that n ≤ n′ by
considering a generator matrix for the binary code of length n′ and considering
the code spanned over Fq by that same matrix. In many situations, however,
n is in fact considerably smaller than n′. The extreme case is when q = N ,
and therefore k = 1, in which case one can take the repetition code over Fq

and set n = d. It is difficult to give a general tight bound on the relation
between n and n′, although at least we can argue that n ≤ n′ − k′ + k: indeed,
given an [n′, k′,≥ d]2-code C2 then one can obtain an [n′, k′,≥ d]q-code Cq by
simply considering the linear code spanned over the field Fq by the generator
matrix of C2 and then shorten4 Cq at k′ − k positions, after which we obtain
an [n,≥ k,≥ d]q-code C, with n = n′ − k′ + k. This bound is however by no
means tight in general. We now consider concrete examples of codes, that will
be summarized in Table 1.

Table 1. Comparison of using binary and q-ary codes for OT-extension. In the last
two columns we consider the decrease in the number of base OT’s and increase in
the dominant term of the communication complexity in the encoding phase when we
consider a q-ary construction

Comparison

Code N n (Base OT’s) d n CC

Walsh-Had. [10] 256 256 128
Juxt. simplex code over F4 256 170 128 ÷ 1.51 × 1.33
Punct. Walsh-Had. [12] 512 256 128

Juxt. simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511, 76, ≥ 171]2-BCH [12] 276 511 ≥ 171

[455, 48, ≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023, 443, ≥ 128]2-BCH [12] 2443 1023 ≥ 128

[455, 154, ≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

4 Shortening a code at positions i1, . . . , it means first taking the subcode consisting of
all codewords with 0′s at all those positions and then erasing those coordinates.
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Small Values of N

For relatively small values of N (N < 1000), [10] suggests the use of Walsh-
Hadamard codes, with parameters [2k′

, k′, 2k′−1]2, while [12] improves on this by
using punctured Walsh-Hadamard codes instead. Punctured Walsh-Hadamard
codes (also known as first order Reed-Muller codes) are [2k′−1, k′, 2k′−2]2-linear
codes. These are the shortest possible binary linear codes for those values of N
and d, as they attain the Griesmer bound. In terms of N , the parameters can
be written as [N/2, log2 N,N/4]2.

The natural generalization of these codes to Fq are first order q-ary Reed
Muller codes, which have parameters [qk−1, k, qk−1 − qk−2]q. Moreover, there is
a q-ary generalization of Walsh-Hadamard codes, known as simplex codes, which
have parameters [ qk−1

q−1 , k, qk−1]q.
For example for q = 4, the parameters of the simplex code can be written in

terms of N as [(N − 1)/3, log4 N,N/4]4, and hence, for the same values of d and
N , the number of base OT’s is reduced by a factor 3/2 since n/n′ < 2/3. On
the other hand, the communication complexity of the encoding phase increases
by a factor 2n/n′ < 4/3 compared to using binary punctured Walsh-Hadamard
codes. We note, however, that this comparison is only valid if N is a power of 4.

Because of the fact that N needs to be a power of q, in Table 1 it will be
convenient to use the juxtaposition of two copies of the same code. This means
that given an [n, k, d]q code C′, we can obtain a [2n, k, 2d]q code by sending each
symbol in a codeword twice. With respect to the examples listed in [12], we see
that by choosing an adequate finite field and using juxtapositions of simplex
codes, the number of OT’s gets divided by a factor slightly over 1.5, while the
communication complexity increases by a somewhat smaller factor.

Larger Values of N

For larger values of N , [12] suggests using binary BCH codes. We use q-ary BCH
codes instead. It is difficult to find BCH codes that match exactly the parameters
(N, d) from [12] so in our comparison we have always used larger values of both
N and d. This is actually not too advantageous for our construction since the
codes in [12] were selected so that their length is of the form 2m−1 (what is called
primitive binary BCH codes, which usually yields the constructions with best
parameters) and that results in a range of parameters where it is not adequate
to choose primitive q-ary BCH codes. Nevertheless, in the case where the large
value N ′ = 2443 is considered in [12], we can reduce the number of base OT’s
needed to less than half, while the communication complexity only increases by
4/3, and in addition to that we achieve a larger value N = 2462. Observe that, for
this value of N , with a binary code the number of base OT’s would be restricted
by the näıve bound n′ ≥ log2 N = 462 in any case (i.e. even if d = 1), while
using a code over F8 we only need to use 455.
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1 Introduction

In 2015, the US National Institute of Standards and Technology (NIST) began
a process aimed at standardising post-quantum Public-Key Encryption schemes
(PKE), Key Encapsulation Mechanisms (KEM), and Digital Signature Algo-
rithms (SIG), resulting in a call for proposals in 2016 [57]. The aim of this stan-
dardisation process is to meet the cryptographic requirements for communication
(e.g. via the Internet) in an era where quantum computers exist. Participants
were invited to submit their designs, along with different parameter sets aimed
at meeting one or more target security categories (out of a pool of five). These
categories roughly indicate how classical and quantum attacks on the proposed
schemes compare to attacks on AES and SHA-3 in the post-quantum context. As
part of their submissions participants were asked to provide cryptanalysis sup-
porting their security claims, and to use this cryptanalysis to roughly estimate
the size of the security parameter for each parameter set.

Out of the 69 “complete and proper” submissions received by NIST, 23 are
based on either the LWE or the NTRU family of lattice problems. Whilst tech-
niques for solving these problems are well known, there exist different schools of
thought regarding the asymptotic cost of these techniques, and more specifically,
of the BKZ lattice reduction algorithm. This algorithm, which combines SVP
calls in projected sub-lattices or “blocks”, is a vital building block in attacks on
these schemes. These differences can result in the same scheme being attributed
several different security levels, and hence security categories, depending on the
cost model being used. By “cost model” we mean the combination of the cost of
solving SVP in dimension β and the number of SVP oracle calls required by BKZ
(cf. Sect. 4). A major source of divergence in estimated security is whether cur-
rent estimates for sieving [2,13,45] or enumeration [27,39,53] are used to instan-
tiate the SVP oracle in BKZ; we refer to the former as the “sieving regime” and
the latter as the “enumeration regime”. A second source of divergence is how
polynomial factors are treated.

Thus, to provide a clearer view of the effect of the chosen cost model on the
security assurances given by each submission, we extract the proposed parameter
sets for each LWE-based and NTRU-based submission (Sect. 3). In particular,
we consider the underlying instances in each LWE-based scheme as plain LWE
instances, i.e. we mention algebraic (ring, module) structure but do not consider
it further in our analysis, as is standard. We also extract the cost models used
to analyse them (Sect. 4). Using this information, we then cross-estimate the
security of each parameter set under every cost model from every submission
(Sect. 5).

In this work, we restrict our attention to a subset of attacks on both fami-
lies of problems. For LWE, we restrict our attention to the uSVP variant of the
primal lattice attack (possibly combined with guessing zero-entries of the short
vector) as given in [6,8,11] and the dual lattice attack as given in [3,52]. We
disregard combinatorial [5,32,33,41] and algebraic attacks [4,10], since those
algorithms are not competitive for the parameter sets considered here in the
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sieving regime.1 Furthermore, we only consider the different cost models pro-
posed in each submission and leave the consideration of variants of the dual and
primal attack proposed in several submissions for future work. For the primal
attack this, in particular, means that we do not consider the primal attack via
a combination of lattice reduction and BDD enumeration often referred to as
a “lattice decoding” attack [47,67]. The primal uSVP attack can be considered
as a simplified variant of the decoding attack in the enumeration regime. For
NTRU, we restrict our attention to the primal uSVP attack (possibly combined
with guessing zero-entries of the short vector). We do not consider the hybrid
lattice reduction and meet-in-the-middle attack [38,73] or “guessing + nearest
plane” after lattice reduction.

Related Work. NIST categorised each scheme according to the family of under-
lying problem (lattice-based, code-based, SIDH-based, MQ-based, hash-based,
other) in [54]. This analysis was refined in [28]. NIST then provided a first
performance comparison of all complete and proper schemes in [58]. Bernstein
provided a comparison of all schemes based on the sizes of their ciphertexts and
keys in [14].

2 Preliminaries

We write vectors in lowercase bold letters v and matrices in capital bold letters
A, and refer to their entries with a subscript index vi, Ai,j . We identify polyno-
mials f of degree n − 1 with their corresponding coefficient vector f . We write
‖f‖ to mean the Euclidean norm of f . Inner products are written using angu-
lar brackets 〈v,w〉. The transpose of v is indicated as vt. Generic probability
distributions are labelled χ. We use the notation a ← χ to indicate that a is
an element sampled from χ. We refer to the expectation of a as Eχ[a], and its
variance as Vχ[a] and we may omit the subscript χ if the distribution is clear
from the context. For c ∈ Q, we use �c� to denote the procedure of rounding c to
the nearest integer z ∈ Z, rounding towards zero in the case of a tie. We denote
by log the logarithm to base 2.

We write US to mean the discrete uniform distribution over S∩Z. If S = [a, b],
we refer to U[a,b] as a bounded uniform distribution. We write the distribution
of s such that si ← U[a,b] as (a, b), and the distribution of s such that exactly h
entries (selected at uniform) have been sampled from U[a,b]\{0}, and the remain-
ing entries have been set to 0, as ((a, b), h).

An n-dimensional lattice is a discrete additive subgroup of R
n. Every n-

dimensional lattice L can be represented by a basis, i.e. a set of linearly inde-
pendent vectors B = {b1, . . . , bm} such that L = Zb1 + · · ·+Zbm. If n = m, the
lattice is called a full-rank lattice. Let L be a lattice and B be a basis of L, in
which case we write L = L(B). Then the volume (also called covolume or deter-
minant) of L is an invariant of the lattice and is defined as Vol(L) =

√
det(BtB).

1 BKW-style algorithms do outperform BKZ in the enumeration regime for some
medium-sized parameter sets. However, similarly to BKZ in the sieving regime, BKW
requires 2Θ(n) memory.



354 M. R. Albrecht et al.

In a random lattice, the Gaussian heuristic estimates the length of a shortest
non-zero vector of an full-rank m-dimensional lattice L to be

Γ (1 + m/2)1/m

√
π

Vol(L)1/m ≈
√

m

2πe
Vol(Λ)1/m

.

The quality of a lattice basis B = {b1, . . . , bm} of a full-rank lattice L such
that ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bm‖ can be measured by its root Hermite factor δ
defined via ‖b1‖ = δmVol(L)1/m. If the basis B is BKZ reduced with block size
β we can assume [19] the following relation between the block size and the root
Hermite factor

δ = (((πβ)1/β
β)/(2πe))

1/(2(β−1))
.

In this work, we are concerned with schemes whose security is based on either
the LWE or the NTRU assumption.

2.1 LWE

Definition 1. (LWE [62]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Z

n
q . We denote the LWE Distribution

Ls,χ,q as the distribution on Z
n
q × Zq given by choosing a ∈ Z

n
q uniformly at

random, choosing e ∈ Z according to χ and considering it as an element of Zq,
and outputting (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of distinguishing whether samples {(a i, bi)}m
i=1

are drawn from the LWE distribution Ls,χ,q or uniformly from Z
n
q × Zq.

Search-LWE is the problem of recovering the vector s from a collection
{(a i, bi)}m

i=1 of samples drawn according to Ls,χ,q.

As originally defined in [62], χ is a rounded Gaussian distribution, however
LWE is typically defined with a discrete Gaussian distribution [47]. It was later
shown that the secret can also be drawn from the error distribution without
any loss in security [9]. This variant is known as the “normal form”. Many
submissions consider alternative distributions for sampling errors and secrets
such as small uniform, sparse or binomial distributions.

The primal-uSVP attack solves the Search-LWE problem by constructing an
integer embedding lattice (using either the Kannan [40] or Bai and Galbraith
[11] embedding), and solving the unique Shortest Vector Problem (uSVP). The
dual attack solves Decision-LWE by reducing it to the Short Integer Solution
Problem (SIS) [1], which in turn is reduced to finding short vectors in the lattice
{x ∈ Z

m
q | xtA ≡ 0 mod q}. Note that an oracle solving Decision-LWE can be

turned into an oracle solving Search-LWE. For either attack, variants are known
which exploit the presence of unusually short, or sparse, secret distributions
[3,11,21] and we consider these variants in this work where applicable.

Related Problems. Expanding on the idea of LWE, related problems with a
similar structure have been proposed. In particular, in the Ring-LWE [50,71]
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problem polynomials s, ai and ei (s and ei are “short”) are drawn from a ring
of the form Rq = Zq[x]/(φ) for some polynomial φ of degree n. Then, given a
list of Ring-LWE samples {(ai, ai · s + ei)}m

i=1, the Search-RLWE problem is to
recover s and the Decision-RLWE problem is to distinguish the list of samples
from a list uniformly sampled from Rq ×Rq. More generally, in the Module-LWE
[46] problem vectors (of polynomials) a i, s and polynomials ei are drawn from
Rk

q and Rq respectively. Search-MLWE is the problem of recovering s from a set
{(a i, 〈a i, s〉 + ei)}m

i=1, Decision-MLWE is the problem of distinguishing such a
set from a set uniformly sampled from Rk

q × Rq.
One can view RLWE and MLWE instances as LWE instances by interpret-

ing the coefficients of elements in Rq as vectors in Z
n
q and ignoring the algebraic

structure of Rq. This identification with LWE is the standard approach to cost-
ing the complexity of solving RLWE and MLWE due to the absence of known
cryptanalytic techniques exploiting algebraic structure. Therefore, we restrict
our analysis of solving RLWE and MLWE to the primal and dual attacks men-
tioned above.

There is also a class of LWE-like problems that replace the addition of a
noise term by a deterministic rounding process. For example, an instance of
the learning with rounding (LWR) problem is of the form

(
a , b := �p

q 〈a , s〉�
)

∈
Z

n
q × Zp. We can interpret this as a LWE instance by multiplying the second

component by q/p and assuming that q/p ·b = 〈a , s〉+e where e is chosen from a
uniform distribution on the set {− q

2p + 1, . . . , q
2p} [56]. The same ideas apply to

the other variants of LWE that use deterministic rounding error, such as RLWR
and MLWR.

Number of Samples. LWE as defined in Definition 1 provides the adversary
with an arbitrary number of samples. However, this does not hold true for any
of the schemes considered in this work. In particular, in the RLWE KEM setting
– which is the most common for the schemes considered here – the public key is
one RLWE sample (a, b) = (a, a · s + e) for some short s, e and encapsulations
consist of two RLWE samples v ·a+e′ and v ·b+e′′+m̃ where m̃ is some encoding
of a random string and v, e′, e′′ are short. Thus, depending on the target, the
adversary is given either n or 2n plain LWE samples. In a typical setting, though,
the adversary does not get to enjoy the full power of having two samples at its
disposal, because, firstly, the random string m̃ increases the noise in v ·b+e′′ +m̃
by a factor of 2 and, secondly, because many schemes drop lower order bits from
v · b + e′′ + m̃ to save bandwidth. Due to the way decryption works this bit
dropping can be quite aggressive, and thus the noise in the second sample can
be quite large. In the case of Module-LWE, a ciphertext in transit produces a
smaller number of LWE samples, but n samples can still be recovered from the
public key. In this work, we consider the n and 2n scenarios for all schemes. We
note that, for many schemes, n samples are sufficient to run the most efficient
variant of either attack.
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2.2 NTRU

Definition 2. (NTRU [36]). Let n, q be positive integers, φ ∈ Z[x] be a monic
polynomial of degree n, and Rq = Zq[x]/(φ). Let f ∈ R×

q , g ∈ Rq be small
polynomials (i.e. having small coefficients) and h = g ·f−1 mod q. Search-NTRU
is the problem of recovering f or g given h.

Note that one can exchange the roles of f and g (in the case that g is invertible)
by replacing h with h−1 = f · g−1 mod q, if this leads to a better attack. The
most common ways to choose the polynomial f (or g) are the following. The first
is to choose f to have small coefficients (e.g. ternary). The second is to choose
F to have small coefficients (e.g. ternary) and to set f = pF for some (small)
prime p. The third is to choose F to have small coefficients (e.g. ternary) and to
set f = pF + 1 for some (small) prime p.

The NTRU lattice L(B) is generated by the columns of

B =
(

qI n H
0 I n

)
,

where H is the “rotation matrix” of h, see for example [23,37]. L(B) contains
up to n linearly independent short vectors given by the rotations of (f | g)t, since
hf = g mod q and hence (g | f )t = B( w | f )t for some w ∈ Z

n. We treat the
NTRU problem as a uSVP instance and account for the presence of rotations
by amplifying the success probability p of guessing entries of the short vector
correctly to 1−(1−p)k, where k is the number of rotations. Further speedups as
presented in [42] which exploit the structure of the NTRU lattice do not affect
the proposals submitted to NIST and are therefore not considered.

In addition, if f = pF or f = pF + 1 for some small polynomial F then
one can construct a similar uSVP lattice that contains (F , g)t, see for example
[64,73]. Similarly to LWE, in order to improve this attack, rescaling and dimen-
sion reducing techniques can be applied [51], and the impact of these techniques
can be measured using the estimator [7]. Note that the dimension of the lattice
must be between n and 2n by construction. The dual attack is not considered,
as it does not apply.

2.3 Lattice Reduction

The techniques outlined above to solve the LWE and NTRU problems rely on
lattice reduction, the procedure of generating a “sufficiently orthogonal” basis
given the description of a lattice. The lattice reduction algorithm attaining the
best theoretical results is Slide reduction [29]. In this work, however, we consider
the experimentally best performing algorithm, BKZ [20,25,66]. Given a basis for
one of the lattices described above, we need to choose the block size necessary to
successfully recover the shortest vector when running BKZ. This is done following
the analysis introduced in [8, Sect. 6.3] for the LWE and NTRU primal attacks,
and the analysis done in [3,52] for the LWE dual attack.
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BKZ in turn makes use of an oracle solving the Shortest Vector Problem
(or SVP oracle) in a smaller lattice. Several SVP algorithms can be used to
instantiate this oracle, the two most efficient are current generations of sieving
[13] or enumeration [53]. Since we are considering security in the post-quantum
setting, we also have to consider quantum algorithms, which as of writing mainly
means to consider potential Grover [31] speed-ups for these algorithms [8,45].
We note that the reported speed-ups of these algorithms are assuming perfect
quantum computers that can run arbitrarily long computations and disregard the
inherent lack of parallelism in Grover-style search. A more refined understanding
of the cost of quantum algorithms for solving SVP is a pressing topic for future
research.

3 Proposed Schemes

The website https://estimate-all-the-lwe-ntru-schemes.github.io specifies the
parameter sets for the schemes considered. Throughout, n is the dimension of
the problem and q the modulus. The polynomial φ, if present, is the polynomial
considered to form the ring from which LWE or NTRU elements are drawn.
In particular, this ring is Rq = Zq[x]/(φ), that is, degree n polynomials with
coefficients from the integers modulo q quotiented by the ideal generated by φ.

The value σ is the standard deviation of the distribution χ from which
the errors are drawn. This error distribution is not always Gaussian, and our
approaches to such cases are explained in Sect. 5. Note that often in lattice
based cryptography the notation DΛ,s,c is used to denote a discrete Gaussian
with support the lattice Λ, s a “standard deviation parameter” and c a centre.
In this work σ is the standard deviation, explicitly σ = s/

√
2π. If the secret

distribution is “normal”, i.e. in the normal form, this means it is the same dis-
tribution as the error, namely χ. If not, the distribution given determines the
secret distribution.

4 Costing Lattice Reduction

A variety of approaches are available in the literature to cost the running time
of BKZ, e.g. [7,8,20]. The main differences between models are whether they are
in the sieving or enumeration regime, and how many calls to the SVP oracle are
expected to recover a vector of length ≈ δd Vol(Λ)1/d. A summary of every cost
model considered as part of a submission can be found in Table 1.

The most commonly considered SVP oracle is sieving. In the literature, its
cost on a random lattice of dimension β is estimated as 2cβ+o(β), where c = 0.292
classically [13], with Grover speedups lowering this to c = 0.265 [43]. A “para-
noid” lower bound is given in [8] as 20.2075β+o(β) based on the “kissing num-
ber”. Some authors replace o(β) by the constant 16.4 [7], based on experiments
in [44], some authors omit it. A “min space” variant of sieving is also con-
sidered in [13], which uses c = 0.368 with Grover speedups lowering this to
c = 0.2975 [43]. Alternatively, enumeration is considered in some submissions. In

https://estimate-all-the-lwe-ntru-schemes.github.io
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Table 1. Cost models proposed as part of a PQC NIST submission. The name of a
model is the log of its cost

Model Schemes

0.292β 0.265β CRYSTALS [49,68] SABER [24]

Falcon [61] ThreeBears [34]

HILA5 [63] Titanium [72]

KINDI [12] NTRU HRSS [65]

LAC [48] NTRUEncrypt [74]

New Hope [60] pqNTRUSign [75]

0.292β +16.4
0.265β +16.4

LIMA [70]

0.368β
0.2975β

NTRU HRSS [65]

0.292β + log(β)
0.265β + log(β)

Frodo [55] KCL [76]

Lizard [22] Round2 [30]

0.292β + 16.4 + log(8d) Ding Key Exchange [26] EMBLEM [69]

0.265β + 16.4 + log(8d) qTESLA [17]

0.187β log β − 1.019β + 16.1 NTRU HRSS [65] pqNTRUSign [75]

NTRUEncrypt [74]
1
2
(0.187β log β − 1.019β + 16.1) NTRU HRSS [65]

0.000784β2 + 0.366β − 0.9 + log(8d) NTRU Prime [16]

0.125β log β − 0.755β + 2.25 LOTUS [59]

particular, it can be found estimated as 2c1β log β+c2β+c3 [39,53] or as 2c1β2+c2β+c3

[20,27], with Grover speedups considered to half the exponent. The estimates
0.187β log β − 1.019β + 16.1 [7] and 0.000784β2 + 0.366β − 0.9 [35] are based on
fitting the same data from [19].

We note that the different cost models diverge on the unit of operations they
are using. In the enumeration models, the unit is “number of nodes visited during
enumeration”. It is typically assumed that processing one node costs about 100
CPU cycles [20]. For sieving the elementary operation is typically an operation
on word-sized integers, costing about one CPU cycle. For quantum algorithms
the unit is typically the number of Grover iterations required. It is not clear how
this translates to traditional CPU cycles. Of course, for models which suppress
lower order terms, the unit of computation considered is immaterial.

With respect to the number of SVP oracle calls required by BKZ, a popular
choice was to follow the “Core-SVP” model introduced in [8], that considers a
single call. Alternatively, the number of calls has also been estimated to be β
(for example, in [18]) or 8d (for example, in [3]), where d is the dimension of the
embedding lattice and β is the BKZ block size.

LOTUS [59] is the only submission not to provide a closed formula for esti-
mating the cost of BKZ. Given their preference for enumeration, we fit their
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estimated cost model to a curve of shape 2c1β log β+c2β+c3 following [53]. We fit a
curve to the values given by (39) in [59], the script used is available in the public
repository.

The NTRU Prime submission [16] utilises the BKZ 2.0 simulator of [20] to
determine the necessary block size and number of tours to achieve a certain root
Hermite factor prior to applying their BKZ cost model. In contrast, we apply
the asymptotic formula from [19] to relate block size and root Hermite factor,
and consider BKZ to complete in 8 tours while matching their cost asymptotic
for a single enumeration call.

5 Estimates

For our experiments we make use of the LWE estimator2 from [7], which allows
one to specify arbitrary cost models for BKZ. We wrap it in a script that loops
though the proposed schemes and cost models, estimating the cost of the appro-
priate variants of the primal and dual lattice attacks. As mentioned previously,
for every LWE-based scheme we estimate each attack twice; using n and 2n
available samples. Our code is available at https://github.com/estimate-all-the-
lwe-ntru-schemes.

Our results are available at https://estimate-all-the-lwe-ntru-schemes.
github.io which supports filtering and sorting. It also contains SageMath source
code snippets to reproduce each entry. As discussed above, the meaning of the
output values vary depending on cost model since the unit of computation is not
consistent across different cost models. Furthermore, submissions might consider
different units of computation, such as bit security, even when using a particu-
lar cost model. Furthermore, we do not consider memory requirements in this
work. We now illuminate other choices and assumptions we made to arrive at
our estimates.

Secret Distributions. Many submissions consider uniform, bounded uniform,
or sparse bounded uniform secret distributions. In the case of Lizard [22], LWE
secrets are drawn from the distribution ZOn(ρ) for some 0 < ρ < 1. ZOn(ρ)
is the distribution over {−1, 0, 1}n where each component si of a vector s ←
ZOn(ρ) satisfies Pr [si = 1] = Pr [si = −1] = ρ/2 and Pr [si = 0] = 1 − ρ. We
model this distribution as a fixed weight bounded uniform distribution, where
the Hamming weight h matches the expected number of non-zero components
of an element drawn from ZOn(ρ).

Error Distributions. While the estimator assumes the distribution of error vec-
tor components to be a discrete Gaussian, many submissions use alternatives.
Binomial distributions are treated as discrete Gaussians with the correspond-
ing standard deviation. Similarly, bounded uniform distributions U[a,b] are also

treated as discrete Gaussians with standard deviation,
√

VU[a,b] [ei]. In the case

of LWR, we use a standard deviation of
√

(q/p)2−1
12 , following [56].

2 https://bitbucket.org/malb/lwe-estimator, commit 1850100.

https://github.com/estimate-all-the-lwe-ntru-schemes
https://github.com/estimate-all-the-lwe-ntru-schemes
https://estimate-all-the-lwe-ntru-schemes.github.io
https://estimate-all-the-lwe-ntru-schemes.github.io
https://bitbucket.org/malb/lwe-estimator
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Success Probability. The estimator supports defining a target success prob-
ability for both the primal and dual attack. The only proposal we found that
explicitly uses this functionality is LIMA [70], which chooses to use a target suc-
cess probability of 51%. For our estimates we imposed this to be the estimator’s
default 99% for all schemes, since it seems to make little to no difference for the
final estimates as amplification in this range is rather cheap.

Known Limitations. While the estimator can scale short secret vectors with
entries sampled from a bounded uniform distribution, it does not attempt to shift
secret vectors whose entries have unbalanced bounds to optimise the scaling.
Similarly, it does not attempt to guess entries of such secrets to use a hybrid
combinatorial approach. We note, however, that only the KINDI submission
[12] uses such a secret vector distribution. In this case, the deviation from a
distribution centred at zero is small and we thus ignore it.

NTRU. For estimating NTRU-based schemes, we also utilise the LWE estimator
as described here to evaluate the primal attack (and its improvements, when
considered in combination with dimension reduction) on NTRU. In particular,
we cost NTRU as a uSVP instance but note that when no guessing is performed,
the geometry of the NTRU-lattice can possibly be exploited as in [42]. The dual
attack is not considered, as it does not apply. Let (f , g) ∈ Z

2n be the secret
NTRU vector. We treat f as the LWE secret and g as the LWE error (or vice
versa, as their roles can be swapped). The LWE secret dimension n is set to the
degree of the NTRU polynomial φ. The standard deviation of the LWE error
distribution is set to ‖g‖/

√
n. The LWE modulus q is set to the NTRU modulus.

The secret distribution is set to the distribution of f . We limit the number of
LWE samples to n. The estimator is set to consider the n rotations of g when
estimating the cost of the primal attack on NTRU.

Beyond Key Recovery. We consider key recovery attacks on all schemes. In
the case of LWE-based schemes, we also consider message recovery attacks by
setting the number of samples to be m = 2n and trying to recover the ephemeral
secret key set as part of key encapsulation. A straightforward primal uSVP
message recovery attack for NTRU-based schemes as described in Footnote 2
of [65] is not expected to perform better than the primal uSVP key recovery
attack, and is therefore omitted in this work.

In the case of signatures, it is also possible to attempt forgery attacks. All
four lattice-based signatures schemes submitted to the NIST process claim that
the problem of forging a signature is strictly harder than that of recovering the
signing key. In particular Dilithium and pqNTRUSign provide analyses which
explicitly determine that larger BKZ block sizes are required for signature forgery
than key recovery. Falcon argues similarly without giving explicit block sizes and
qTESLA presents a tight reduction in the QROM from the RLWE problem to
signature forgery, in particular from exactly the RLWE problem one would have
to solve to yield the signing key. As such, since one may trivially forge signatures
given possession of the signing key, forgery attacks are not considered further in
their security analyses.
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Several complications arise when attempting to estimate the complexity of
signature forgery compared to key recovery. These include the requirement for
a signature forging adversary to satisfy the conditions in the Verify algorithm,
which for the four proposed schemes consists of solving different, sometimes not
well studied, problems, such as the SIS problem in the �∞-norm for Dilithium
and qTESLA and the modular equivalence required between the message and
signature in pqNTRUSign. In attempts to determine how one might straightfor-
wardly estimate the complexity of signature forgery against the Dilithium and
qTESLA schemes, custom analysis was required which was heavily dependent on
the intricacies of the scheme in question, ruling out a scheme-agnostic approach
to security estimation in the case of signature forgeries.

6 Discussion

Our data highlights that cost models for lattice reduction do not necessarily
preserve the ordering of the schemes under consideration. That is, under one
cost model some scheme A can be considered harder to break than a scheme B,
while under another cost model scheme B appears harder to break.

An example for the schemes EMBLEM and uRound2.KEM was high-
lighted in [15]. Consider the EMBLEM parameter set with n = 611 and the
uRound2.KEM parameter set with n = 500. In the 0.292β cost model, the cost of
the primal attack for EMBLEM-611 is estimated as3 76 and for uRound2.KEM-
500 as 84. For the same attack in the 0.187β log β−1.019β+16.1 cost model, the
cost is estimated for EMBLEM-611 as 142 and for uRound2.KEM-500 as 126.
Similar swaps can be observed for several other pairs of schemes and cost mod-
els. In most cases the estimated securities of the two schemes are very close to
each other (differing by, say, 1 or 2) and thus a swap of ordering does not funda-
mentally alter our understanding of their relative security as these estimates are
typically derived by heuristically searching through the space of possible param-
eters and computing with limited precision. In some cases, though, such as the
one highlighted in [15], the differences in security estimates can be significant.
There are two classes of such cases.

Sparse Secrets. The first class of cases involves instances with sparse secrets.
The LWE estimator applies guessing strategies when costing the dual attack
(cf. [3]) and the primal attack. The basic idea is that for a sparse secret, many
of the entries of the secret vector are zero, and hence can be ignored. We guess τ
entries to be zero, and drop the corresponding columns from the attack lattice.
In dropping τ columns from a n-dimensional LWE instance, we obtain a (n−τ)-
dimensional LWE instance with a more dense secret distribution, where the
density depends on the choice of τ and the original value of h. On the one hand,
there is a probability of failure when guessing which columns to drop. On the
other hand there may exist a τ for which the (n − τ)-dimensional LWE instance

3 Any discrepancies in value from those cited in [15] are due to rounding introduced
to the estimator output since.
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is easier to solve, and in particular requires a smaller BKZ blocksize β. The
trade-off between running BKZ on smaller lattices and having to run it multiple
times can correspond to an overall lower expected attack cost. This probability
of failure when guessing secret entries does not depend on the cost model, but
rather on the weight and dimension of the secret, making this kind of attack
more effective for very sparse secrets. In the case of comparing an enumeration
cost model versus a sieving one, we have that the cost of enumeration is fitted
as 2Θ(β log β) or 2Θ(β2) whereas the cost of sieving is 2Θ(β). The steeper curve
for enumeration means that as we increase τ , and hence decrease β, savings are
potentially larger, justifying a larger number τ of entries guessed. Concretely, the
computed optimal guessing dimension τ can be much larger than in the sieving
regime. This phenomenon can also be observed when comparing two different
sieving models or two different enumeration models.

In Fig. 1, we illustrate this for the EMBLEM and uRound2.KEM exam-
ple. EMBLEM does not have a sparse secret, while uRound2.KEM does. For
EMBLEM the best guessing dimension, giving the lowest overall cost, is τ = 0
in both cost models. For uRound2.KEM, we see that the optimal guessing dimen-
sion varies depending on the cost model. In the 0.292β cost model, the lowest
overall expected cost is achieved for τ = 1 while in the 0.187β log β−1.019β+16.1
model the optimal choice is τ = 197.

0 50 100 150 200 250 300 350

100

200

300

400

500

τ

co
st

EMBLEM 0.187β log β − 1.019β + 16.1
EMBLEM 0.292β

uRound2.KEM 0.187β log β − 1.019β + 16.1
uRound2.KEM 0.292β

Fig. 1. Estimates of the cost of the primal attack when guessing τ secret entries for
the schemes EMBLEM-611 and uRound2.KEM-500 using the sieving-based cost model
0.292β and the enumeration-based cost model 0.187β log β − 1.019β + 16.1

Dual Attack. The second class of cases can be observed for the dual attack.
Recall that the dual attack runs lattice reduction to find a small vector v in
the scaled dual lattice of A and then considers 〈v , b〉 which is short when A, b
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is an LWE sample. In more detail, the advantage of distinguishing 〈v , b〉 is
ε = exp(−δ2 d · c0) for some constant c0 depending on the instance and with
d being the dimension of the lattice under consideration [47]. To amplify this
advantage to a constant advantage, we have to repeat the experiment roughly
1/ε2 times. Thus, the overall cost of the attack is ≈ C(β)/exp(−δ2 d · c0)

2 where
C(β) is the cost of lattice reduction with block size β. In the sieving regime
C(β) ≈ 2c1β in the enumeration regime we have C(β) ≈ βc2β (from enumeration
costing 2Θ(β log β)). For large β we have δ ≈ β1/2β [19] (cf. Sect. 2), and thus
we have overall log costs of roughly c1 β + 2 log(e)βd/β c0 resp. c2 β log(β) +
2 log(e)βd/β c0. We wish to minimise both expressions (under the constraint
that β ≥ 2) and the optimal trade-off depends on c0, c1 and c2. In particular,
the optimal β in the sieving regime is not necessarily the optimal β in the
enumeration regime.

We stress that while the above discussion gives an account of why our esti-
mates show the behaviour we observe, it leaves the fundamental question par-
tially unanswered: how does the security of the schemes considered in this work
compare to one another. As it stands, the answer to this question depends on
which between enumeration and sieving is the correct regime to consider for
a given block size, i.e. from which dimension sieving beats enumeration. Thus,
resolving these questions is a pressing concern.

Multiple Hardness Assumptions. Lizard (RLizard) is based on two hardness
assumptions: LWE (RLWE) and LWR (RLWR). Secret key recovery corresponds
to the underlying LWE problem, and ephemeral key recovery corresponds to the
underlying LWR problem. There are Lizard parameter sets for which ephemeral
key recovery is harder than secret key recovery (i.e the underlying LWR problem
is harder than the underlying LWE problem), and there are also parameter sets for
which the converse is true. To deal with this issue, for each parameter set, in each
cost model, for each attack, we always choose the lower of the two possible costs.

Quantum Security. In [57], NIST defines five security categories that schemes
should target in the presence of an adversary with access to a quantum com-
puting device. They furthermore propose as a plausible assumption that such
a device would support a maximum quantum circuit depth MAXDEPTH ≤ 296

(although they do not mention a preferred set of universal gates to consider).
Since concrete designs for large scale quantum computers are still an open
research problem, not all schemes take this limitation into account, and many
opt for using a (quantum) asymptotic cost model that considers the best known
theoretical Grover speed-up, resulting in overestimates of the adversary’s power.

This use of quantum cost models introduces a further difficulty when trying
to compare schemes based on the outputs of the [7] estimator. For example, the
security definition of Category 1 says that attacks on schemes should be as hard
as AES128 key recovery. Some schemes address this by tuning their parameters
to match hardness (using a quantum cost model) ≥ 2128, in the vein of “128 bit
security”. On the other hand, other schemes claiming the same category match
hardness (using a quantum cost model) ≥ 264 since key recovery on AES128 can
be considered as a search problem in an unstructured list of size 2128, which Grover
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can complete in O(2n/2) time. This results in schemes with rather different cycle
counts and memory usage claiming the same security category, as can be seen from
the “claimed security” column in the estimates table.
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homomorphe. Ph.D. thesis, Paris 7 (2013)

20. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

21. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 2016.
LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53177-9 3

22. Cheon, J.H., et al.: Lizard. Technical report, NIST (2017)
23. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EURO-

CRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 5

24. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber. Technical report,
NIST (2017)

25. The FPLLL Development Team: fplll, a lattice reduction library (2017). https://
github.com/fplll/fplll

26. Ding, J., Takagi, T., Gao, X., Wang, Y.: Ding key exchange. Technical report,
NIST (2017)

27. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–463 (1985)

28. Fujita, R.: Table of underlying problems of the NIST candidate algorithms (2017).
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/1lDNio0sKq4/
7zXvtfdZBQAJ

29. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press,
New York, May 2008

30. Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tolhuizen, L.,
Torre-Arce, J.: Round2. Technical report, NIST (2017)

31. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press, New York, May 1996
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Abstract. We present a practical construction of an additively homo-
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hiding, it is most efficient when both hiding and binding properties are
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1 Introduction

Over the past several years, lattice-based cryptography has developed and
matured rapidly. As this development continues, it is desirable to have a full
suite of efficient lattice-based tools and protocols. This is particularly important
since lattice problems are currently some of the most promising “post-quantum”
replacements for the discrete logarithm and factoring problems. Therefore, we
want to construct standard cryptographic primitives such as encryption and
commitment schemes, plus companion protocols, such as zero-knowledge proofs,
in the lattice setting.

Commitment schemes [10] are a key tool in the design of cryptographic pro-
tocols and have numerous applications (e.g. threshold encryption [13], electronic
voting [11], etc.). In particular, when combined with zero-knowledge proofs, they
can enforce “good” behavior by adversarial parties and make the design of proto-
cols secure against malicious attacks easier. The main result of this work is a con-
struction of an efficient commitment scheme and accompanying zero-knowledge
proofs of knowledge for proving relations among committed values.

1.1 Related Work

There are several earlier works in this area: Kawachi et al.’s work on identi-
fication schemes [19] presents a string commitment scheme based on the SIS
assumption [2], where one commits to vectors over Zq. However, the message
space is restricted to vectors of small norm; otherwise, the binding property is
lost. This restriction causes problems in the applications we are interested in: for
instance, if a player wants to prove (efficiently) that he has performed an encryp-
tion or decryption operation correctly in a cryptosystem that uses the ring Zq,
one typically requires a commitment scheme that is linearly homomorphic and
can commit to arbitrary vectors over Zq rather that only short ones.

In [18], Jain et al. proposed a commitment scheme where the hiding property
is based on the Learning Parity with Noise (LPN) assumption, a special case of
the Learning With Errors (LWE) assumption [30]. They also constructed zero-
knowledge proofs to prove general relations on bit strings. A generalization of [18]
was proposed by Xie et al. [31]. Their work presents a commitment scheme that
is based on Ring-LWE [25] instead of LPN, and they build Σ-protocols from it.
Further Σ-protocols based on (Ring-)LWE encryption schemes were presented
by Asharov et al. [5] and Benhamouda et al. [8].

A main drawback of all these previous schemes is that the zero-knowledge
proofs had a non-negligible soundness error, and hence one needs many itera-
tions to have full security. In [9], a commitment scheme, as well as companion
zero-knowledge protocols were constructed with much better efficiency: one can
commit to a vector over Zq resulting in a commitment that is only a constant
factor larger than the committed vector. Furthermore, they gave protocols for
proving knowledge of a committed string as well as proving linear and multi-
plicative relations on committed values. These are efficient in the sense that
the soundness error is negligible already for a single iteration of the protocol.
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The commitments are unconditionally binding and computationally hiding, and
the underlying assumption is Ring-LWE.

1.2 Our Contributions

We propose a commitment scheme that allows to commit to vectors over polyno-
mial rings, as well as associated zero-knowledge proofs of knowledge for proving
knowledge of the commitment and relationships between committed values. In
comparison to [9], which is the most closely related previous work, we achieve
all the “different flavors” of commitments. While the technique in [9] only leads
to a statistically binding commitment scheme, we show how to achieve a sta-
tistically binding scheme, a statistically hiding one, and a more efficient scheme
that is only computationally hiding and binding. The latter construction gives
rise to the currently most practical instantiation of a commitment scheme (that
admits a zero-knowledge proof of opening) of arbitrary-sized messages based on
the hardness of lattice problems. The binding property of all our schemes relies
on the Module-LWE assumption, while the hiding is based on the hardness of
the Module-SIS problem.

The idea of creating a more efficient scheme which relies on both Module-
LWE and Module-SIS is analogous to the techniques for creating the most effi-
cient lattice-based signature schemes in which the hardness of recovering the
secret key is based on (Module)-LWE and the hardness of forging signatures
is based on (Module)-SIS [6,15,17,23]. In contrast, basing schemes entirely on
(Module)-SIS [22] or (Module)-LWE [1,4,20] results in schemes with larger pub-
lic keys and/or signatures.

2 Preliminaries

2.1 The Setting

Let q be a prime and r ∈ N
+. We set N = 2r and define the rings R =

Z[X]/〈XN + 1〉, Rq = Zq[X]/〈XN + 1〉. This is the setting that we will use
throughout this work. We also define Ik ∈ Rk×k to be an identity matrix of
dimension (over R) k.

For each f ∈ R, let f =
∑

i fiX
i, then we can define the following norms

of f :

�1 : ||f ||1 =
∑

i
|fi|

�2 : ||f ||2 = (
∑

i
|fi|2)1/2

�∞ : ||f ||∞ = max
i

|fi|.

For g ∈ Rq and g =
∑

i giX
i, we identify each gi with an element gi ∈[

−q − 1
2

,
q − 1

2

]

such that gi = gi mod q. For a positive integer α, we write

Sα to be the set of all elements in R with �∞-norm at most α.
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For f ∈ Rq we then have the standard inequalities.

||f ||1 ≤
√

N ||f ||2 ≤ N ||f ||∞ and ||f ||∞ ≤ ||f ||1
The choice of the polynomial XN + 1 allows to give tight bounds on the

norms of product f ·g of polynomials f, g ∈ Rq, based on their respective norms.
In this work, we use the following two bounds (c.f. [27], which are applicable to
the polynomial modulus XN + 1 and XN − 1):

1. If ||f ||∞ ≤ β, ||g||1 ≤ γ then ||f · g||∞ ≤ β · γ.
2. If ||f ||2 ≤ β, ||g||2 ≤ γ then ||f · g||∞ ≤ β · γ.

All of the above definitions and inequalities are transferable to the setting of
polynomial vectors over Rk

q in the obvious fashion by simply treating f ∈ Rk
q as

Nk-dimensional integer vectors rather than N -dimensional ones.

2.2 Invertible Elements in Rq and the Challenge Space

Of special importance in our work will be sets of elements of Rq that are both
invertible and of small norm. The following Lemma shows that if one chooses
the prime q in a particular way, then all elements with small norms (either �2
or �∞) will be invertible.

Lemma 1. ([26, Corollary 1.2]) Let N ≥ d > 1 be powers of 2 and q ≡
2d + 1(mod 4d) be a prime. Then XN + 1 factors into d irreducible polynomials
XN/d − rj modulo q and any y ∈ Rq \ {0} that satisfies

‖y‖∞ <
1√
d

· q1/d or ‖y‖2 < q1/d

is invertible in Rq.

We will need invertibility of polynomials for two separate purposes. First,
working with invertible polynomials will allow us to prove the universality of
certain hash function families, which is important for establishing statistical
binding and statistical hiding properties of our protocol.

More importantly, though, we will need the challenge space of our zero-
knowledge proof to consist of short elements such that every difference of distinct
elements is invertible in Rq. This property is crucial to the soundness of our zero-
knowledge proof of commitment opening. For practical purposes, we would also
like to define our sets so that they are easy to sample from.

The Challenge Space C. One common way to define this challenge space is as

C = {c ∈ Rq | ‖c‖∞ = 1, ‖c‖1 = κ}. (1)

If we would like the size of C to be 2λ, then we need to set κ such that(
N
κ

) · 2κ > 2λ. For example, if N = λ = 256, then we can set κ = 60. Through-
out the paper we will be assuming that the parameters of the ring Rq are set
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in such a way (as dictated by Lemma 1) that all non-zero elements of �∞-norm
at most 2 are invertible in Rq. This implies that for any two distinct c, c′ ∈ C,
the difference c − c′ is invertible in Rq. For convenience, we define this set of
differences as C̄ = {c − c′ | c 
= c′ ∈ C}.

2.3 Normal Distributions

The continuous normal distribution over R
N centered at v ∈ R

N with standard
deviation σ has probability density function

ρN
v ,σ(x) =

1√
2πσ

· exp
(−||x − v||22

2σ2

)

.

In this work we are more interested in a discrete version. The discrete normal
distribution over Rk centered at v ∈ Rk with standard deviation σ is given by
the distribution function (for all x ∈ Rk)

N k
v ,σ(x) = ρk·N

v ,σ (x)/ρk·N
σ (Rk),

where we omit the subscript v when it is zero.
We will need the following tail-bound from [7] (see also [23, Lemma 4.4]):

Remark 1. For any δ > 0,

Pr[||z||2 > δσ
√

kN | z $← N k
σ ] < δkN · exp

(
kN

2
(1 − δ2)

)

.

In our protocols, we set δ = 2. This choice is sufficient for Remark 1 as we surely
have N = Ω(λ), so the tail-bound holds with probability that is overwhelming
in λ.

Moreover, the rejection sampling theorem from [23, Theorem 4.6] can be
expressed in our setting as follows:

Lemma 2. Let V ⊆ Rk such that all elements have || · ||2-norm less than T ,
σ ∈ R such that σ = ω(T

√
log(kN)) and h : V → R be a probability distribution.

Then there exists a M = O(1) such that the distribution of the following two
algorithms A,S is within statistical distance 2−ω(log(kN))/M .

A:
1. v

$← h
2. z

$← N k
v ,σ

3. Output (z, v) with probability min
( N k

σ (z)
MN k

v ,σ(z)
, 1

)

S:
1. v

$← h
2. z

$← N k
σ

3. Output (z, v) with prob. 1/M

The probability that A outputs something is at least
1 − 2−ω(log(kN))

M
.
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As mentioned in [23], by setting σ = αT one obtains

M = exp
(
12/α + 1/(2α2)

)

such that the statistical distance of the output of A,S is at most 2−100/M while
A outputs a result with probability at least (1−2−100)/M . In practice one would
choose kN � 128, but already for kN = 128 one obtains that M ≈ 4.5, and it
just decreases for larger choices.

2.4 Commitments and Zero-Knowledge Proofs

For completeness, we now give a formal definition of commitment schemes and
zero-knowledge proofs. As we mainly care about zero-knowledge proofs of open-
ing knowledge for commitments in this work, the definitions will be tailored to
this setting.

Consider the following three algorithms KeyGen,Commit,Open, which have
1λ as implicit input:

KeyGen is a PPT algorithm that outputs the public parameters PP ∈ {0, 1}poly(λ)

containing a definition of the message space M.
Commit is a PPT algorithm that, on input the public parameters PP and a

message x ∈ M outputs values c, r ∈ {0, 1}poly(λ).
Open is a deterministic polynomial-time algorithm that, on input the public

parameters PP, a message x ∈ M and values c, r ∈ {0, 1}poly(λ) outputs a bit
b ∈ {0, 1}.

A scheme is ε-hiding if for all algorithms A, the probability (over the ran-
domness of KeyGen,Commit, and the algorithm A) that i′ = i in the below
experiment is less than ε:

1. A receives PP ← KeyGen()
2. A outputs x0, x1 ∈ M
3. A receives c created as: i ← {0, 1}, (c, r) ← Commit(PP, xi)
4. A outputs i′ ∈ {0, 1}

If the algorithms A are restricted to polynomial-time algorithms, then the
scheme is called computationally hiding. If there is no restriction on the running
time of such algorithms, then the scheme is statistically hiding. In this paper,
we will be proving that A in fact cannot distinguish between a commitment
of a message of his choosing and a uniformly-random element in the space of
commitments. This definition is stronger and implies the one above.

Similarly, the commitment scheme is called ε-binding if, for any A,

Pr
[ A(PP) = (x, x′, r, r′, c) s.t. x 
= x′

PP ← KeyGen()&Open(PP, x, c, r) = Open(PP, x′, c, r′) = 1

]

< ε,

where the probability is taken over the randomness of A and KeyGen. If we
restrict A to being polynomial-time, then the binding property is computational.
If we allow for arbitrarily-powerful algorithms, then the property is statistical.
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Zero-Knowledge Proofs of Knowledge of Opening. A Zero-Knowledge
Proof of Knowledge for the Opening of a commitment c is an interactive protocol
Π between two PPT algorithms P,V, such that V in the end of Π outputs a
bit. We call P the prover and V the verifier. Assume that PP ← KeyGen(), x ∈
M, (c, r) ← Commit(PP, x), then the protocol Π will have the following three
properties:

– Completeness: If P on input (PP, c, x, r) and V on input (PP, c) follow the
protocol honestly, then V outputs 1 except with negligible probability.

– Soundness: If a PPT algorithm A on input (PP, c) makes the algorithm V
output 1 in Π with polynomial probability p, then there exists an algo-
rithm E which, given black-box access to A, outputs (x′, r′) such that
Open(PP, x′, c, r′) = 1 in time poly(p, λ) with constant non-zero probability.

– Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S whose out-
put distribution on input (PP, c) is (statistically) indistinguishable of the
transcript of Π when running with P,V.

3 The Knapsack Problem over Rq and Lattice Problems

The security of our commitment scheme is based on the hardness of the Module-
SIS and Module-LWE problems defined in [21]. These problems are generaliza-
tions of the usual SIS [2] and LWE [30] problems to polynomial rings. At the
other extreme, these problems become exactly Ring-SIS [24,29] and Ring-LWE
[25]. As with SIS and LWE, these problems can be defined over any norm (in
practice, we do not know of any algorithms that are more successful at attacking
these problems due to the norm that is being used). Because it is convenient for
our scheme, we will be relying on the Module-SIS problem in the �2-norm, and
on the Module-LWE problem in the �∞ norm.

Module-SIS and Module-LWE problems are essentially vector knapsack prob-
lems over a particular ring. For this reason, rather than working with Module-
SIS and Module-LWE, we will directly work with knapsacks. We first define the
Search Knapsack problem in the �2 norm (SKS2) and define its security. The
SKS2 problem is exactly the Module-SIS problem (in Hermite Normal Form).

Definition 1. The SKS2n,k,β problem asks to find a short non-zero vector y
satisfying [ In A′ ] ·y = 0n when given a random A′. We say that an algorithm
A has advantage ε in solving the SKS2n,k,β problem if

Pr

⎡

⎣‖yi‖2 ≤ β ∧ [ In A′ ] · y = 0n | A′ $← Rn×(k−n)
q ;y =

⎡

⎣
y1
. . .
yk

⎤

⎦ ← A(A′)

⎤

⎦ ≥ ε

We next define the Decisional Knapsack problem in the �∞ norm (DKS∞),
which is equivalent to the Module-LWE problem when the number of samples is
limited.
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Definition 2. The DKS∞
n,k,β problem asks to distinguish the distribution

[ In A′ ] ·y for a short y, from the uniform distribution when given A′. We say
that an algorithm A has advantage ε in solving the DKS∞

n,k,β problem if

∣
∣
∣Pr[b = 1 | A′ $← Rn×(k−n)

q ;y $← Sk
β ; b ← A(A′, [ In A′ ] · y)]

− Pr[b = 1 | A′ $← Rn×(k−n)
q ;u $← Rn

q ; b ← A(A′,u)]
∣
∣
∣ ≥ ε

3.1 Unconditional Hardness of the Knapsack Problem

In this section we will give ranges of parameters when the DKS∞ and SKS2

problems become unconditionally hard. This will be used in the next section to
derive parameter sets for when the commitment scheme is statistically binding
or statistically hiding.

Lemma 3. Let 1 < d < N be a power of 2. If q is a prime congruent to
2d + 1(mod 4d) and

qn/k · 2256/(k·N) ≤ 2β <
1√
d

· q1/d. (2)

then any (all-powerful) algorithm A has advantage at most 2−128 in solving
DKS∞

n,k,β.

Lemma 4. Let 1 < d < N be a power of 2. If q is a prime congruent to
2d + 1(mod 4d) and

β < q1/d, and

β <

√
N

2πe
· qn/k · 2−128/(k·N) −

√
N/2,

then any (all-powerful) algorithm A has advantage at most 2−128 in solving
SKS2n,k,β.

3.2 Computational Hardness of the Knapsack Problem

For typical settings of parameters, the best attacks against the DKS∞ and SKS2

problems use lattice reduction algorithms. If we look at the SKS2n,k,β problem,
then we can define the set

Λ = {y ∈ Rk : [ In A′ ] · y = 0n mod q}. (3)
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Fig. 1. As β increases, the DKS∞ problem becomes harder, while the SKS2 problem
becomes easier.

It’s easy to see that Λ is an additive group over Rk. Finding a solution y =

⎡

⎣
y1
. . .
yk

⎤

⎦

such that ‖yi‖ ≤ β is at least as hard as finding a y such that ‖y‖ ≤ β · √
k.

Since Λ is also an additive group over Zk·N , this is equivalent to finding a vector
of norm β ·√k in a random lattice of dimension kN . As we saw in Lemma 4, once
β is small enough, such short vectors no longer exist and so even an all-powerful
adversary cannot solve the SKS2n,k,β problem. But it is known that as β gets
larger, the problem becomes easier.

If we now look at the DKS∞
n,k,β problem, then the best current attack requires

finding a close vector to a target in Λ. In case the input is of the form (A′, t)
for a uniform t, then the target vector will be uniformly distributed in space.
On the other hand, if t = [ In A′ ] · y for a y with small coefficients, then the
target vector will be close to Λ. Deciding between the two distributions involves
finding a lattice point close to the target and looking at the distance. Lemma 3
essentially states that if β becomes too big, then t = [ In A′ ] ·y will have the
same distribution as a uniform t, thus making the problem unsolvable. It is also
known that as β becomes smaller, the problem becomes easier.

A visual representation of the above discussion is represented in Fig. 1. Due
to the fact that one problem is in the �2 norm, while the other is in the �∞ norm,
the graph should only be seen as a visualization of the fact that as norm of the
vector y increases, the DKS∞ problem becomes harder, while the SKS2 problem
becomes easier. One should not infer anything about the actual hardness of these
problems based on the slopes in the picture. The only important thing is that for
some value, the hardness of the two problems becomes roughly the same. This
rough visualization will be useful in the next section for explaining the strategy
for the optimal setting of parameters (Table 1).
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Table 1. Overview of parameters and notation

Parameter Explanation

R = Z[X]/〈XN + 1〉 The ring over which we define the norms of vectors

Rq = Zq[X]/〈XN + 1〉 The ring over which we do most of the computations

q Prime modulus defining Rq

k Width (over Rq) of the commitment matrices

n Height (over Rq) of the commitment matrix A1

� Dimension (over Rq) of the message space

β Norm bound for honest prover’s randomness in �∞-norm

Sβ Set of all elements x ∈ R with �∞-norm at most β

C A subset of S1 from which challenges come from (see (1))

C̄ The set of differences C − C excluding 0

κ The maximum �1 norm of any element in C
σ = 11 · κ · β · √

kN Standard deviation used in the zero-knowledge proof

4 The Commitment Scheme with a Proof of Opening

4.1 The Commitment Scheme

Our commitment scheme can be seen as a particular instantiation of the scheme
due to Damg̊ard et al. [12]. A “wrinkle” in our scheme is that the opening
of the commitment does not simply involve producing the message with the
randomness that was used in the commitment. The reason is that we do not have
efficient zero-knowledge proofs that can prove knowledge of simply the message
and the randomness that was used to commit. The zero-knowledge proof can
prove something weaker, and therefore our commitment scheme should still be
binding with such a relaxed opening.1

KeyGen: We will create public parameters that can be used to commit to mes-
sages x ∈ R�

q. Create A1 ∈ Rn×k
q and A2 ∈ R�×k

q as.

A1 = [ In A′
1 ], where A′

1
$← Rn×(k−n)

q (4)

A2 = [ 0�×n I� A′
2 ], where A′

2
$← R�×(k−n−�)

q (5)

Commit: To commit to x ∈ R�
q, we choose a random polynomial vector r $← Sk

β

and output the commitment.

Com(x; r) :=
[
c1
c2

]

=
[
A1

A2

]

· r +
[
0n

x

]

(6)

1 This was also the property in the commitment scheme of [9].
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Open: A valid opening of a commitment
[
c1
c2

]

is a 3-tuple consisting of an

x ∈ R�
q, r =

⎡

⎣
r1
. . .
rk

⎤

⎦ ∈ Rk
q , and f ∈ C̄. The verifier checks that

f ·
[
c1
c2

]

=
[
A1

A2

]

· r + f ·
[
0n

x

]

,

and that for all i, ‖ri‖2 ≤ 4σ
√

N .
We now make some observations about our scheme. Firstly, we observe that

the commitment opening is not simply the randomness r and message x, but also
includes a polynomial f ∈ C̄. As mentioned in the beginning of the section, we
are not able to create efficient zero-knowledge proofs that prove the knowledge
of r and x satisfying (6). In other words, the extractor for our zero-knowledge
protocol (in Fig. 4) does not guarantee that it will extract f = 1 from the prover.
We should mention that if the prover is honest, then the extractor will exactly
recover the r,x from (6) and f will be 1. Also, if an (honest) committer would
like to simply open the commitment (without giving a zero-knowledge proof),
he can simply output the r,x from (6) and f = 1.

Secondly, note that the randomness in the commitment is generated accord-
ing to a distribution using the �∞ norm, whereas the opening is using the �2
norm. The reason for this “mismatch” is that the most efficient lattice-based
zero-knowledge proofs prove the knowledge of small vectors in the �2 norm. On
the other hand, when committing, it is simpler to just use the �∞ norm. If one
wishes to use the �2 or the �∞ norm everywhere, the scheme is easily modifiable.

4.2 Hiding and Binding

The hiding property of the scheme is based on the DKS∞
n+�,k,β problem.

Lemma 5. For any x,x′ ∈ R�, if there exists an algorithm A that has advantage
ε in breaking the hiding property of the commitment scheme, then there exists
another algorithm A′ that runs in the same time and has advantage ε in solving
the DKS∞

n+�,k,β problem.

The next lemma shows that the binding property of the scheme is based on
the SKS2 problem.

Lemma 6. If there is an algorithm A who can break the binding of the commit-
ment scheme with probability ε, then there is an algorithm A′ who can solve the
SKS2

n,k,16σ
√

κN
problem with advantage ε.
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Fig. 2. Setting parameters for statistically binding and statistically hiding versions of
the scheme. In each graph, the leftmost circle is the parameter β in the hardness of
the DKS∞ problem, and the right circle is the parameter β in the SKS2 problem. The
crosees correspond to the security of these problems with the particular parameters.

4.3 Instantiations

There are three “interesting” ways in which one can instantiate the commitment
scheme. If we would like the scheme to be statistically-hiding, then Lemma 5
implies that the DKS∞

n+�,k,β problem should be difficult even for all-powerful
adversaries. Lemma 3 then describes exactly how the parameters of the scheme
should be set. Statistically-hiding schemes are therefore based entirely on the
hardness of the SKS2 (or equivalently, Module-SIS) problem.

On the other hand, if we would like the scheme to be statistically binding,
then Lemma 6 states that it’s enough for the SKS2

n,k,16σ
√

κN
problem to be

unconditionally hard. Lemma 4, in turn, dictates the setting of parameters.
The statistically-binding variant of the scheme is therefore based entirely on
the DKS∞ (or equivalently, Module-LWE) problem.

Figure 2 presents a visualization of how one needs to choose the parameters
of the commitment scheme in order to achieve statistical binding/hiding. In both
instances, the left circle indicates the parameter β for the DKS∞ problem which
controls the hardness of breaking the hiding property of the scheme. The right
circle is the value of β = 16σ

√
κN for the SKS2 problem.

The third way in which we can instantiate the scheme is, from a practical
perspective, the most notable. The ability to instantiate our scheme in this man-
ner is the main advantage of this scheme over the construction in [9]. While the
structure of the commitment scheme in [9] required the scheme to be statistically
binding, our construction has the freedom to move the “circles” in Fig. 2 arbi-
trarily along the horizontal axis (with the restriction that the distance between
them is preserved). If one measures the security of the commitment scheme by
the weakest of the hiding and binding (as is the natural way to measure secu-
rity), then it makes sense to set the hardness of the two to be the same. A visual
sketch of this is given in Fig. 3. We point out that it does not matter what the
exact “slopes” representing the hardness of the DKS∞ and SKS2 problems are.
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Fig. 3. Optimal setting of the parameters for the commitment scheme.

Since these two lines (or curves) intersect, the minimal hardness in either of the
variants in Fig. 2 can always be raised by shifting the “circles” to either the left
or the right.

4.4 Zero-Knowledge Protocols

We will now give a zero-knowledge proof of knowledge of a valid opening. The
protocol is almost identical to those underlying the constructions of digital signa-
ture schemes from [23]. In particular, the proof is a 3-move Σ-protocol in which
an honest prover sometimes needs to abort for security reasons. It can be shown
that non-aborting interactions are honest-verifier zero-knowledge, and the proto-
col itself is a proof of knowledge. The fact that only non-aborting interactions are
zero-knowledge does not cause a problem in practice. The interactive protocol
is usually converted to a non-interactive one using the Fiat-Shamir transform,
in which case the aborting transcripts are never seen. If one wishes to keep the
protocol interactive, one can slightly change it by making the prover apply an
auxiliary commitment to the first move, and opening the commitment in the
last. The above-described transformation techniques are standard, and so we
only present the underlying interactive protocol.

Proof for Opening a Commitment. Below, we will look at the properties of
this protocol.

Lemma 7. The protocol ΠOpen has the following properties:

– Completeness: The verifier accepts with overwhelming probability when ΠOpen

does not abort. The probability of abort is at most 1 − 1−2−100

M .
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Proof for Opening a Commitment. Below, we will look at the properties of
this protocol.

Lemma 7. The protocol ΠOpen has the following properties:

– Completeness: The verifier accepts with overwhelming probability when ΠOpen

does not abort. The probability of abort is at most 1− 1−2−100

M .

ΠOpen

Public Instance-Specific Information: A =

[
A1

A2

]
as in (4), (5) defining Com(·; ·).

Prover’s Information: r ∈ Sk
β

Commitment: c =

[
c1
c2

]
= Com(x; r) as in (6).

Prover Verifier

y
$← N k

σ

t := A1 · y
t �

d
$← C

d�
z = y + d · r
Abort with probability

1 − min

(
1,

Nk
σ (z)

M·Nk
dr,σ

(z)

)
z �

Write z =

⎡
⎣z1

. . .
zk

⎤
⎦

Accept iff ∀i, ‖zi‖2 ≤ 2σ
√

N and
A1 · z = t + d · c1

Fig. 4. Zero-knowledge proof of opening.

– Special Soundness: Given a commitment c and a pair of transcripts for ΠOpen

(t, d,z), (t, d′,z′) where d 
= d′, we can extract a valid opening
⎛

⎝x, r =

⎡

⎣
r1
. . .
rk

⎤

⎦ , f

⎞

⎠

of c with ||ri||2 ≤ 4σ
√

N, and f ∈ C̄.
– Honest-Verifier Zero-Knowledge: Non-aborting transcripts of ΠOpen with

an honest verifier can be simulated with statistically indistinguishable
distribution.
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Proof. Completeness: An honest prover can clearly answer correctly for any
challenge d and by Lemma 2, the abort probability of the prover for our choice
of parameters is at most 1− 1−2−100

M . For the verifier, by Remark 1 the bound on
the �2-norm of every polynomial zi comprising z is 2σ ·√N except with negligible
probability.

Special Soundness: Notice that two valid transcripts for different challenges

d, d′ allows the computation of an f = (d−d′) ∈ C̄ and an r =

⎡

⎣
r1
. . .
rk

⎤

⎦ = z−z′ such

that A1 ·r = f ·c1. We define the message contained in c as x = c2−f−1 ·A2 ·r.

Since ‖ri‖2 ≤ ‖zi‖2 + ‖z′
i‖2 ≤ 4σ

√
N and

[
A1

A2

]

· r + f ·
[
0n

x

]

= f ·
[
c1
c2

]

, the

opening (x, r, f) is valid.

Honest-Verifier Zero-Knowledge:
To simulate an accepting conversation, draw a random d from C and a random

z from N k
σ . Set t = A1z−dc1. This distribution is statistically indistinguishable

from the real non-aborting transcript as the simulator simply acts as S as in
Lemma 2. ��

In addition to the zero-knowledge protocol described above, we can also
give protocols that prove knowledge of various other properties of the com-
mitment. Most of these protocols are fairly straight-forward to construct using
the additive-homomorphic property of the commitment scheme. We only provide
brief sketches here.

Proof for Opening to a Specific Message. The protocol ΠOpen demon-
strates that the prover knows how to open a commitment, without revealing
either the randomness or the message. An easy variant, which we will call
ΠOpen-x, can be used to show that the prover can open c to a specific mes-
sage x: it is enough to show that a commitment can be opened to 0, since one
can use that protocol on input c−Com(x;0). Now, to prove that a commitment
can be opens to 0, the verifier makes an additional check in ΠOpen to make sure
that A2 · z = t + d · c2.

Proof for Linear Relation. Suppose that the prover has published two com-
mitments c1 = Com(x1; r1), c2 = Com(x2; r2) and claims that x2 = g · x1 for
for some g ∈ Rq. The protocol ΠLin for proving this relation is similar to run-
ning ΠOpen on two separate commitments, but the prover’s first message and
the verifier’s check also contains the relationship between the two. The protocol
is given in the full version of the paper (Table 2).

From two valid transcripts, we can recover r, r′, f such that

A1 · r = f · c1 (7)
A1 · r′ = f · c′

1 (8)
g · A2 · r − A2 · r′ = f · (g · c2 − c′

2) (9)
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and define

x = c2 − f−1 · A2 · r (10)

x′ = c′
2 − f−1 · A2 · r′ (11)

as in the proof of Lemma 7. As in that proof, this implies that (x, r, f) is a valid

opening for
[
c1
c2

]

(and analogously for x′, r′, f). The relationship x′ = g · x is

derived from plugging in the values of c2, c′
2 from (10) and (11) into (9).

Proof for Sum. Suppose that the prover has published three commitments
c1 = Com(x1; r1), c2 = Com(x2; r2), c3 = Com(x3; r3) and claims that x3 =
α1 · x1 + α2 · x2 where α1, α2 ∈ Rq are public constants. The protocol ΠSum is
very similar to the previous protocol.

Table 2. Parameter settings for our scheme (from Fig. 4) and the one from [9]

Parameter I II III

This paper This paper [9]

(optimal) (stat.-hiding) (stat.-binding)

q ≈ 232 ≈ 235 ≈ 271

N 1024 512 1024

� 1 1 1

d 2 or 4 or 8 2 or 4 2

n 1 3 6

k 3 18 9

κ 36 44 36

β (in Sβ) 1 128 1

σ ≈ 27000 ≈ 5947000 ≈ 46000

Hermite factor LWE ≈ 1.0035 N/A ≈ 1.0035

Hermite factor SIS ≈ 1.0035 ≈ 1.0035 N/A

Commit. size 8.1 KB 9KB 54.5 KB

Proof size 6.6 KB 29KB 30 KB
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Meet-in-the-Middle Attacks: Applications
to 6-Round Generic Feistel Constructions

Akinori Hosoyamada(B) and Yu Sasaki

NTT Secure Platform Laboratories, 3-9-11, Midori-cho Musashino-shi,
Tokyo 180-8585, Japan

{hosoyamada.akinori,sasaki.yu}@lab.ntt.co.jp

Abstract. This paper shows that quantum computers can significantly
speed-up a type of meet-in-the-middle attacks initiated by Demiric and
Selçuk (DS-MITM attacks), which is currently one of the most powerful
cryptanalytic approaches in the classical setting against symmetric-key
schemes. The quantum DS-MITM attacks are demonstrated against 6
rounds of the generic Feistel construction supporting an n-bit key and
an n-bit block, which was attacked by Guo et al. in the classical setting
with data, time, and memory complexities of O(23n/4). The complex-
ities of our quantum attacks depend on the adversary’s model. When
the adversary has an access to quantum computers for offline compu-
tations but online queries are made in a classical manner, the attack
complexities become Õ(2n/2), which significantly improves the classical
attack. The attack is then extended to the case that the adversary can
make superposition queries. The attack is based on 3-round distinguish-
ers with Simon’s algorithm and then appends 3 rounds for key recovery.
This can be solved by applying the combination of Simon’s and Grover’s
algorithms recently proposed by Leander and May.

Keywords: Post-quantum cryptography
Demiric-Selçuk meet-in-the-middle attack · Feistel construction
Grover’s algorithm · Claw finding algorithm · Q1 model

1 Introduction

Post-quantum cryptography is a hot topic in the current symmetric-key crypto-
graphic community. It has been known that Grover’s quantum algorithm [Gro96]
and its generalized versions [BBHT98,BHMT02] reduce the cost of the exhaus-
tive search on a k-bit key from 2k to 2k/2. Whereas Grover’s algorithm is quite
generic, post-quantum security of specific constructions has also been evaluated,
e.g. against Even-Mansour constructions [KM12], 3-round Feistel constructions
[KM10], multiple encryptions [Kap14], CBC-like MACs [KLLN16a], FX con-
structions [LM17]. Given those quantum attacks, NIST announced that they

Due to space limitations, some details and proofs are left to the full paper [HS17].
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take into account the post-quantum security in the profile of the light-weight
cryptographic schemes [MBTM17]. It is now important to investigate how quan-
tum computers can impact to the symmetric-key cryptography.

It is also possible to view the quantum attacks from an approach-wise. That
is, several researchers converted the well-known cryptanalytic approaches in the
classical setting to ones in the quantum setting. Several examples are quan-
tum differential cryptanalysis [KLLN16b], quantum meet-in-the-middle attacks
[Kap14,HS18], quantum universal forgery attacks [KLLN16a], and so on.

At the present time, one of the most powerful cryptanalytic approaches in the
classical setting is a type of the meet-in-the-middle attacks initiated by Demiric
and Selçuk [DS08]. The attacks are often called meet-in-the-middle attacks, while
we call them the DS-MITM attacks in order to distinguish them from the tradi-
tional meet-in-the-middle attacks that separate the attack target into two inde-
pendent parts. The DS-MITM attack is one of the current best attacks against
AES-128 is the DS-MITM attacks [DFJ13], which can often be applied to other
SPN-based ciphers. The DS-MITM attacks are also effective against Feistel con-
structions [GJNS14] and their variants [GJNS16].

Kuwakado and Morii [KM12] and Kaplan et al. [KLLN16a] demonstrate that
security of symmetric-key primitives drops to a linear to the output size when
adversaries are allowed to make superposition queries Q2 model. Several attacks
have recently been proposed in this model [Kap14,Bon17,LM17]. On the other
hand, we can consider another security model such that adversaries only make
queries through a classical network but have access to quantum computers in
their local environment Q1 model. This model is relatively realistic.

Simple Quantum Attacks Against Feistel Construction. Our target is a
balanced Feistel construction whose block size is n bits, and the round function
first XORs an n/2-bit subkey and then apply a public function F : {0, 1}n/2 �→
{0, 1}n/2. Subkeys in each round are independently chosen, thus the key size for
r rounds is nr/2 bits. F can be different in different rounds. To make the paper
simple, we denote the public function in all rounds by F .

Classical Attacks. Generic attacks in the classical setting have been studied
in various approaches; an impossible differential attack [Knu02], all-subkeys
recovery attacks [IS12,IS13], a DS-MITM attack [GJNS14], a dissection attack
[DDKS15]. The number of attacked rounds depends on the key size. Let us dis-
cuss the case that the adversaries can spend up to 2n computations. In this
setting, the best attack is the DS-MITM attack [GJNS14] that recovers the key
up to 6 rounds with O(23n/4) complexities in all of data, time, and memory.

Application of Grover’s Algorithm. The most simple quantum attack is to apply
Grover’s algorithm [Gro96] that performs the exhaustive key search of a k-bit
key in time O(2k/2). Furthermore, if O(n2p) qubits are available, the parallel
Grover search [GR04] can run in time O(2(k−p)/2). Thus, key recovery attacks
for the r-round Feistel construction can be performed in time O(2nr/4−p/2) with
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O(1) classical queries, using O(n2p) qubits. For r = 6, the key can be recovered
in time O(2n), using Õ(2n) qubits. To be more strict, the exhaustive search can
be performed without guessing the last-round subkey, however the attack still
does not have advantage over the classical DS-MITM attack.

Our Contributions. We show that quantum computers significantly speed-up
the DS-MITM attacks in both of the Q1 and Q2 models.

For the Q1 model, we need to solve a variant of claw finding problem to
find a match between the offline and online phases. Normally, a claw between
functions f ′ and g is defined to be a pair (x, y) such that f ′(x) = g(y), and
there exist quantum algorithms [BHT97,Amb04,Zha05,Tan09] to find a claw
assuming both of f ′ and g are quantum accessible. However, we need to find a
pair (x, y) such that f(x, y) = g(y), and g must be implemented in a classical
manner in our Q1 model attack. Thus we describe a quantum algorithm to solve
this issue.

We then apply the above algorithm in the Q1 model to improve the classical
DS-MITM attack by Guo et al. [GJNS14] against the 6-round Feistel construc-
tion. The data complexity, or the number of classical queries, is reduced from
O(23n/4) of the classical attack to O(2n/2). The time complexity T depends on
the parameter q that is the number of qubits available. In fact, T is given by
a tradeoff curve Tq = 2n, where q ≤ 2n/2. Hence, in addition to D, the quan-
tum attack outperforms the classical attack with respect to T when q > 2n/4.
In particular, all parameters are balanced at Õ(2n/2), which improves previous
O(23n/4) in the classical setting.

We then provide the analysis in the Q2 model. The approach is quite different
from the one in the Q1 model. We use the distinguisher against 3-round Feistel
construction by Kuwakado and Morii [KM10] as a base, and then append 3
more rounds for key recovery.1 The 3-round distinguisher uses Simon’s algorithm
[Sim97] whereas the 3-round key recovery requires to use Grover’s algorithm
[Gro96]. The combination of those two algorithms has recently been studied by
Leander and May [LM17], which leads to significant speed-up in our setting. In
this attack, T = D = 23n/4 that is the same as the classical attack, but the
space, i.e. the number of qubits and the amount of classical memory is O(1).
This extreme efficiency in space is only available in the Q2 model.

As pointed out in Kaplan et al. [KLLN16a], the 3-round distinguisher has
the following problem:

Problem 1. The 3-round distinguisher by Kuwakado and Morii only uses the
right half n/2-bits of outputs of the Feistel construction. On the other hand, if
the Feistel construction is implemented on a quantum circuit, then it will output
all the n-bits. In the classical setting, attackers can just truncate received n bits
to obtain the right half n/2-bits. However, in the quantum setting, truncating n
bits to n/2-bits is non-trivial because all (quantum) bits are entangled. Hence the

1 Dong and Wang [DW17] independently pointed out the combination of the 3-round
distinguisher [KM10] and key recovery attack [LM17].
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Table 1. Summary of the attack complexities against 6-Round feistel construction

Setting Time Data #qubits Classic Overall complexity

(T ) (D) (N) mem (M) Product max(T,D,M,N)

Classic N3/4 N3/4 - N1/2 N9/4 N3/4

Q1 N/q N1/2 q N1/2 N8/4 N1/2

Q2 N3/4 N3/4 logN 1 logN ·N6/4 N3/4

The range of q in Q1 is q ≤ N1/2. All complexities of Q1 are balanced when
q = N1/2. Q1 always outperforms classical attacks in terms of D for any q.
Besides, it improves classical attacks in terms of T when N1/4 ≤ q ≤ N1/2.

3-round distinguisher is applicable only when attackers have access to a quantum
circuit which outputs just the right half n/2-bits of the Feistel construction.

This paper shows a general technique to simulate “truncation” of outputs of
oracles in the quantum setting. Our technique can apply not only to the 3-round
distinguisher but also to various situations in symmetric-key cryptography.

The attack complexities against 6-round Feistel construction are summarized
in Table 1. When the attacks are compared with respect to a product of the time
complexity, data complexity, the number of qubits and the amount of classical
memory, the Q2 model outperforms the other two. When the attacks are com-
pared with respect to their maximum value, the Q1 model becomes the best.2

Paper Outline. Section 2.1 explains attack models and quantum algorithms.
Section 3 extends the claw finding algorithm to the case that one function is eval-
uated only in the classical manner. Section 4 improves the previous DS-MITM
attack in the Q1 setting. Section 5 discusses the attack in the Q2 setting.

2 Preliminaries

This section gives attack models and a summary of the quantum algorithms that
are related to our work. Throughout the paper, we assume a basic knowledge of
the quantum circuit model. For a public function F : {0, 1}n/2 → {0, 1}n/2, we
assume that a quantum circuit which calculates F , CF : |x〉 |y〉 �→ |x〉 |y ⊕ F (x)〉
is available, and CF runs in a constant time.

2.1 Offline Quantum Computation

If we want to access some data or to operate table look-up in a quantum algo-
rithm without any measurement, we have to set all data on quantum circuits
2 Since any Q1 attack can be trivially converted to a Q2 attack by regarding quantum

oracles as classical oracles, we can construct a Q2 attack with max(T,D,M,N) =
N1/2 � N3/4 from the best Q1 attack. However, such a Q2 attack requires time
T = N in the case that only O(logN) qubits are available.
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so that data can be accessed in quantum superposition states. In particular, if
we want to implement random access to memories, we need as many qubits (or
width of the quantum circuit) as the data size. Thus, quantum memory for ran-
dom access is physically equivalent to quantum processor. We regard that they
are essentially identical.

Regardless of whether we use quantum computers or classical computers,
the running time of an algorithm significantly depends on how a computational
hardware is realized, when the algorithm needs exponentially many hardware
resources. Thus if we want to use exponentially many qubits, we have to pay
attention to data communication costs in quantum hardwares. In the quantum
setting, Bernstein [Ber09] and Banegas and Bernstein [BB17] introduced two
communication models, which they call free communication model and realis-
tic communication model. The free communication model assumes that we can
operate a unitary operation on any pairs of qubits. On the other hand, the real-
istic communication model assumes that 2p qubits are arranged as a 2p/2 × 2p/2

mesh, and a unitary operation can be operated only on a pair of qubits that
are within a constant distance. A quantum hardware in the free communication
model which has O(N) qubits can simulate a quantum hardware in the free
communication model which has O(

√
N) qubits, with time overhead O(

√
N)

[BBG+13].
In this paper, for simplicity, we estimate the time complexity of quantum

algorithms in the free communication model. Note that this does not imply that
our proposed attacks do not work in the realistic communication model. We
design our algorithms so that small quantum processors (of size polynomial in n)
parallelly run without any communication between each pair of small processors.
Hence if the realistic communication model is applied, time complexity increases
by a factor of polynomial in n.

2.2 Related Quantum Algorithms

Grover’s Algorithm. Grover’s quantum algorithm, or the Grover search, is
one of the most famous quantum algorithms, with which we can obtain quadratic
speed up on database searching problems compared to the classical algorithms.
It was originally developed by Grover [Gro96] and generalized later [BBHT98,
BHMT02]. Let us consider the following problem:

Problem 2. Suppose a function φ : {0, 1}u → {0, 1} is given as a black box, with
a promise that there is x such that φ(x) = 1. Then, find x such that φ(x) = 1.

Grover’s algorithm can solve the above problem with O(2u/2) evaluations of
φ using O(u) qubits, if φ is given as a quantum oracle (or using O(v) qubits, if φ
is given as a v-qubit quantum circuit without any measurement). The algorithm
is composed of iterations of an elementary step which operates O(1) evaluation
of φ, and can easily be parallelized [GR04].

If we can use a quantum computer with O(u2p) qubits, we regard it as 2p

independent small quantum processors with O(u) qubits. Then, by parallelly
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running O(
√

2u/2p) iterations on each small quantum processor, we can find x
such that φ(x) = 1 with high probability. This parallelized algorithm runs in
time O(

√
2u/2p · Tφ), where Tφ is the time needed to evaluate φ once.

Simon’s Algorithm. Grover’s algorithm is an exponential time algorithm.
Here we introduce a quantum algorithm that can solve a problem in polynomial
time. The problem is defined as follows:

Problem 3. Let φ : {0, 1}u → {0, 1}u be a function such that there is a unique
secret value s that satisfies φ(x) = φ(y) if and only if x = y or x = y ⊕ s.
Then, find s.

Suppose φ is given as a quantum oracle. Then, Simon’s algorithm [Sim97] can
solve the above problem with O(n) queries, using O(n) qubits. We have to solve a
system of linear equations after making queries, which requires O(n3) arithmetic
operations. Since any classical algorithm needs exponential time to solve this
problem (see the original paper [Sim97] for details), Simon’s algorithm obtains
exponential speed-up from classical algorithms. The algorithm can be applied to
the problem of which condition “ φ(x) = φ(y) if and only if x = y or x = y⊕s”
is replaced with the weaker condition “φ(x ⊕ s) = φ(x) for any x”, under the
assumption that φ satisfies some good properties [KLLN16a].

Quantum Claw Finding Algorithms. Let us consider two functions f :
{0, 1}u → {0, 1}� and g : {0, 1}v → {0, 1}�. If there is a pair (x, y) ∈ {0, 1}u ×
{0, 1}v such that f(x) = g(y), then it is called a claw of the functions f and g.
Now we consider the following problem:

Problem 4. Let u, v be positive integers such that u ≥ v. Suppose that two func-
tions f : {0, 1}u → {0, 1}� and g : {0, 1}v → {0, 1}� are given as black boxes.
Then, find a claw of f and g.

This problem, called claw finding problem, has attracted researchers’ attention
and is well studied. It is known that, given f and g as quantum oracles, this
problem can be solved with O(2(u+v)/3) queries in the case v ≤ u < 2v, and
O(2u/2) queries in the case 2v ≤ u [BHT97,Amb04,Zha05,Tan09]. Quantum
claw finding algorithms and their generalizations already have some applica-
tions in attacks against symmetric-key cryptosystems [Kap14,MS17]. Below we
assume � = O(u + v).

3 Claw Finding Between Classical and Quantum
Functions

Quantum claw finding algorithms are useful, though, they cannot be applied if
one of target functions, say g, is not quantum accessible. For example, if we need
some information from a classical online (i.e., keyed) oracle to calculate g(y), then
we have to use other algorithms, even if we have a quantum computer.
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Sections 3 and 4 focus on the Q1 model. Hence, this section considers how
to find a claw of functions f, g where g can be evaluated only classically. We are
particularly interested in the case that there exists only a single claw of f and g,
and show that the following proposition holds.

Proposition 1. Suppose that f can be implemented on a quantum circuit Cf

using O(u + v) qubits, g can be evaluated only classically, and we can use a
quantum computer with O((u + v)2p) qubits. Assume that there exist only a
single claw of f and g. Then we can solve Problem 4 in time

O
(
TC

g,all + 2u/2+v−(p+pL)/2 · TQ
f + 2v−pL+p

)
, (1)

where TC
g,all is the time to calculate the pair (y, g(y)) for all y, TQ

f is the time to
run Cf once, and pL is a parameter that satisfies pL ≤ min{p, n}. We also use
O(2v) classical memory.

Below we give an algorithm to find a claw and confirm that it gives the upper
bound 1, which shows Proposition 1.

Algorithm. First, evaluate g(y) for all y classically, and store each pair (y, g(y))
in a list L. For each y ∈ {0, 1}v, define a function fy : {0, 1}u → {0, 1} by
fy(x) = 1 if and only if f(x) = g(y). Given Cf and the list L, we can imple-
ment fy on a quantum circuit that runs in time O(TQ

f ) using O(u + v) qubits.
Note that the parallelized Grover search on fy, which parallelly runs O(2p−pL)
independent small processors, can find x0 such that fy(x0) = 1 (if there exists)
in time O(2u/2−(p−pL)/2 · TQ

f ). Let CGrover
y denote this quantum circuit of size

O((u + v)2p). Then, run the following procedure:

1. For 0 ≤ i ≤ 2v−pL − 1, do:
2. Run CGrover

(i‖j) parallelly for 0 ≤ j ≤ 2pL − 1.
3. If a pair (x, (i‖j)) such that f(i‖j)(x) = 1 is found, then return the pair

(x, (i‖j)).

In the above procedure, we consider that i, j are elements in {0, 1}v−pL and
{0, 1}pL

, respectively, and i‖j ∈ {0, 1}v.

Complexity Analysis. To evaluate g(y) and store it for every y, we need O(TC
g,all)

time and O(2v) classical memory. In Step 2 of the procedure, the parallelized
Grover search on f(i‖j) requires time O(2u/2−(p−pL)/2TQ

f ) for each i and j as
stated above. In Step 3 of the procedure, we need time O(2p) to check whether
a pair (x, (i‖j)) such that f(i‖j)(x) = 1 exists. Thus, the total running time is
O(TC

g,all + 2v−pL · (2u/2−p/2+pL/2TQ
f + 2p)) = O(TC

g,all + 2u/2+v−p/2−pL/2 · TQ
f +

2v−pL+p).
As for the number of qubits, for a fixed i, we use O((u + v)2p−pL) qubits for

the parallelized Grover search on f(i‖j) for each 0 ≤ j ≤ 2pL − 1. Thus the total
number of qubits we use is O((u + v)2p−pL) · 2pL = O((u + v)2p).
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3.1 Variation of Claw Finding

Next, we consider the following variant of the claw finding problem.

Problem 5. Suppose that functions f : {0, 1}u × {0, 1}v → {0, 1}� and g :
{0, 1}v → {0, 1}� are given as black boxes, with promise that there is a unique
pair (x, y) ∈ {0, 1}u × {0, 1}v such that f(x, y) = g(y). Then, find such a pair
(x, y).

Again, we assume that g can be evaluated only classically, f can be imple-
mented on a quantum circuit, and � = O(u + v). Problem 5 appears to be
different from Problem 4, however, we can also solve it by applying our algo-
rithm introduced above with a slight modification to the definition of fy as:
fy(x) = 1if and only iff(x, y) = g(y). With this small modification, we can
find the pair (x, y) such that f(x, y) = g(y) with the same complexity as in
Proposition 1. The next section treats this variant problem to attack Feistel
constructions, instead of the original claw finding problem. In what follows, we
measure p ≤ v and 2v ≤ TC

g,all.

Corollary 1. Suppose that f can be implemented on a quantum circuit Cf using
O(u + v) qubits, g can be evaluated only classically, and we can use a quantum
computer with O((u + v)2p) qubits, where p ≤ v. Assume that there is a unique
claw of f and g. Then we can solve Problem 4 in time

O
(
TC

g,all + 2
u
2 +v−p · TQ

f

)
, (2)

where TC
g,all ≥ 2v is the time to calculate the pair (y, g(y)) for all y and TQ

f is
the time to run Cf once. We also use O(2v) classical memory.

The algorithms that we introduced in this section assume an ideal situation
that we are given a quantum circuit that calculates f without error. However,
in real applications, having some error might be inevitable (e.g. we use Grover’s
algorithm as a subroutine a few times to calculate f). Nevertheless, if error
is small, then the above algorithms can still be applied with a small modifi-
cation. (Roughly speaking, we use quantum amplitude amplification technique
[BHMT02] instead of Grover’s algorithm. See Appendix B of this paper’s full
version [HS17] for details.)

4 Quantum DS-MITM Attacks Against 6-Round Feistel

4.1 Classical DS-MITM Attack on 6-Round Feistel Constructions

Overview of DS-MITM Attacks. We first briefly introduce the framework
of the DS-MITM attack. The attack generally consists of the distinguisher and
the key-recovery parts as illustrated in the left of Fig. 1. A truncated differential
is specified to the entire cipher and suppose that the plaintext difference ΔP
propagates to the input difference ΔX of the distinguisher with probability p1.
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Similarly, the ciphertext difference ΔC propagates to the output difference ΔY
of the distinguisher with probability p2 when decryption is performed. The attack
is composed of two parts: distinguisher analysis and queried-data analysis.

In the distinguisher analysis, the attacker enumerates all the possible differ-
ential characteristics that can satisfy the specified truncated differential. Sup-
pose that there exist Nc such characteristics. For each of them, input paired
values to the distinguisher are expected to be fixed uniquely. Let (X,X ′

0) be
the paired values. Then, the attacker generates a set of texts called δ-set by
generating δ − 1 new texts X ′

i ← X ′
0 ⊕ i for i = 1, 2, · · · , δ − 1. Suppose that

the corresponding value at the output of the distinguisher can be computed.
Let Y, Y ′

0 , Y ′
1 , Y

′
2 , · · · , Y ′

δ−1 be the corresponding values at the output of the dis-
tinguisher. The attacker then computes the differences between Y and Y ′

i for
i = 0, 1, · · · , δ − 1 and makes a sequence of δ output differences at the output of
the distinguisher. This sequence is called Δ-sequence. Note that the difference
between Y and Y ′

i may be able to be computed only partially, say γ bits. Thus
the bit-size of the sequence is γδ. In the end, the Δ-sequence of the size γδ bits
is computed for each of the Nc characteristics and stored in a list L.

In the queried-data analysis, the attacker makes queries to collect (p1p2)−1

paired values having the plaintext difference ΔP and the ciphertext difference
ΔC. One pair, with a good probability, satisfies ΔX and ΔY at the input and
output of the distinguisher, respectively. Thus for each of (p1p2)−1 paired values,
the attacker guesses subkeys for the key-recovery rounds such that ΔX and ΔY
appear after the first and the last key recovery parts, respectively. Then, one
of the paired texts (corresponding to P ′) is modified to P ′

i so that the δ-set
is generated at the input to the distinguisher, and those are queried to the
oracle to obtain the corresponding ciphertext C ′

i. The attacker then processes
C ′

i with the guessed subkeys for the last key-recovery part, and the Δ-sequence
is computed at the output of the distinguisher. Finally, those are matched the
list L. If the analyzed pair is a right pair and the guessed subkeys are correct,
then a match will be found. Otherwise, a match will not be found as long as
(p1p2)−1Nc × 2−γδ � 1.

Application to 6-Round Feistel Constructions. Guo et al. [GJNS14]
applied the DS-MITM attack to 6-round Feistel constructions. The attack needs
to solve the following problems.

Problem 6. Let F : {0, 1}n/2 �→ {0, 1}n/2 be a public function and Δ be a fixed
difference.

• For a given Δo, how can we find all v such that F (v) ⊕ F (v ⊕ Δ) = Δo?
• For a given Δi, how can we find all v such that F (v) ⊕ F (v ⊕ Δi) = Δ?

In the classical attack, those problems can be solved only with 1 access to the
precomputed table of size 2n/2. The procedure is rather straightforward. Readers
are refer to the paper by Guo et al. [GJNS14] for the exact procedure.
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Distinguisher Analysis. The core of the attacks is the 5-round distinguisher.
The input and output differences for the 5 rounds are defined as 0‖X and Y ‖0,
respectively, where X,Y ∈ {0, 1}n/2,X = Y . For a given X,Y , the number of
the 5-round differential characteristics satisfying those input and output differ-
ences is 2n/2. In fact, by representing the n/2-bit difference of the second round-
function’s output as Z, the 5-round differential characteristics can be fixed to

(0‖X) 1stR−→ (X‖0) 2ndR−→ (Z‖X) 3rdR−→ (Y ‖Z) 4thR−→ (0‖Y ) 5thR−→ (Y ‖0),

which is illustrated in the center of Fig. 1.

Fig. 1. Left: Overview of DS-MITM Attacks. Center: |Z| Differential Characteristics
in the 5-Round Distinguisher. Right: 1-Round Extension for Key-Recovery.

For each Z, both input and output differences of F in the middle 3 rounds
are fixed, which suggests that the paired values during F are fixed to one choice
on average. Guo et al. showed that by generating a δ-set at the right half of
the distinguisher’s input, the corresponding Δ-sequence can be computed for
the right-half of the distinguisher’s output. Readers are referred to the paper by
Guo et al. [GJNS14] for the complete analysis. The computed Δ-sequences are
stored in the list L. Note that the size of δ is very small. Indeed, p1 = 2−n/2,
p2 = 1, Nc = 2n/2 and γ = n/2. Hence, δ = 3 is sufficient to filter out all the
wrong candidates.

To balance the complexities between the distinguisher analysis and the
queried-data analysis, Guo et al. iterated the above analysis for 2n/4 different
choices of Y . More precisely, the n/4 MSBs of Y are always set to 0 and n/4
LSBs of Y are exhaustively analyzed. The complexity of the procedure for each
choice of Y is O(2n/2) both in time and memory. Hence, the entire complexity
of the distinguisher part is O(23n/4) in both time and memory.
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Queried-Data Analysis. Guo et al. appended 1-round before the 5-round distin-
guisher to achieve the 6-round key-recovery attack, which is illustrated in the
right of Fig. 1. By propagating the input difference to the distinguisher, 0‖X, in
backwards, ΔP is set to X‖∗ where ∗ can be any n/2-bit difference. The proba-
bility p1 that a randomly chosen plaintext pair with the difference X‖∗ satisfies
the difference 0‖X after 1 round is 2−n/2.

The attacker collects the pairs that satisfy the truncated differential in Fig. 1
by using the structure. Namely, the attacker prepares 2 sets of 2n/2 plaintexts in
which the first and the second sets have the form {(c‖0), (c‖1), · · · , (c‖2n/2 −1)}
and {(c⊕X‖0), (c⊕X‖1), · · · , (c⊕X‖2n/2 − 1)}, respectively, where c is a ran-
domly chosen n/2-bit constant. About 2n pairs exist whereas only O(2n/4) pairs
satisfy ΔC in the corresponding ciphertexts. By iterating this procedure O(2n/4)
times for different choices of c, the attacker collects O(2n/2) pairs satisfying the
truncated differential in Fig. 1. In summary, with O(23n/4) queries (and thus the
time complexity of O(23n/4) memory accesses), O(2n/2) pairs are obtained, in
which one pair will satisfy the probabilistic differential propagation in the first
round.

For each pair, the input and output differences of F in the first round are
fixed, which will fix K0 uniquely. The attacker then modifies the left-half of
the plaintext such that δ-set with δ = 3 is generated at the right-half of the
input to the distinguisher. The right-half of the plaintext is also modified to
ensure that the left-half of the input to the distinguisher is not affected. The
modified plaintexts are then queried to obtain the corresponding ciphertexts.
The attacker computes the corresponding Δ-sequence and matches L; the list
computed during the distinguisher analysis. A match recovers K0 and Z. The
other subkeys are trivially recovered from the second round one by one.

Summary of Complexity. In the distinguisher analysis, both of the time and
memory complexities are O(23n/4). In the queried-data analysis, the data and
time complexities are O(23n/4) and it uses a memory of size O(2n/2) to collect
the pairs with the structure technique.

4.2 Quantum DS-MITM Attack on 6-Round Feistel Constructions

We now convert the classical DS-MITM attack on 6-round Feistel constructions
into quantum one, in which the adversary has access to a quantum computer
to perform offline computations whereas queries are made in the classical man-
ner. The attack complexity becomes O(2n/2) queries, O(2n/2) offline quantum
computations by using O(2n/2) qubits.

The main idea is to introduce quantum operations to reduce the complexity
of the distinguisher analysis. We show that the claw finding algorithm in Sect. 3
can be used to find a match between the distinguisher and the queried-data
analyses. This enables us to adjust the tradeoff between the complexities in the
distinguisher and the queried-data analyses, and thus the data complexity can
also be reduced.
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Adjusted Truncated Differentials. After the careful analysis, we determined
to analyze all 2n/2 choices of Y in the 5-round distinguisher during the distin-
guisher analysis part. In the classical attack, this increases the cost of the dis-
tinguisher analysis to O(2n), whereas it reduces the number of queries in the
queried-data analysis. In the quantum attack, the increased cost of the distin-
guisher analysis can be reduced to its square root, i.e. O(2n/2) and eventually
the cost of two analyses are balanced.

Switching Online and Offline Phases. The claw finding algorithm in Sect. 3
matches the result of the quantum computation against the results collected in
the classical method. Namely, the results of the queried-data analysis must be
stored before the distinguisher analysis starts.

This can be easily done by switching the order of the two analyses. In fact,
such a switch has already been applied by Darbez and Perrin [DP15, Appendix
E] though their goal is to optimize the classical attack complexity, which is
different from ours.

Queried-Data Analysis. Because queries are made in the classical manner,
the procedure of the queried-data analysis remains unchanged from the classical
attack by Guo et al. However, to directly apply the claw finding algorithm to
the DS-MITM attack, we explicitly separate the procedure to collect p−1

1 = 2n/2

pairs satisfying the truncated differentials (both ΔP and ΔC) and the procedure
to compute Δ-sequences.

Precomputation for Collecting Pairs. The goal of this procedure is to collect
2n/2 pairs satisfying both ΔP = X‖∗ and ΔC = ∗‖0. To use the structure
technique, we query 2 sets of 2n/2 plaintexts {(c‖0), (c‖1), · · · , (c‖2n/2 −1)} and
{(c⊕X‖0), (c⊕X‖1), · · · , (c⊕X‖2n/2−1)}. About 2n pairs can be generated and
2n/2 of them have no difference in the right-half of the ciphertexts. The generated
pairs are stored in the list Lpre indexed by the difference Y (the left-half of ΔC).
In summary, this procedure requires O(2n/2) classical queries, O(2n/2) memory
access and O(2n/2) classical memory.

Generating Δ-sequences. The goal of this procedure is to generate Δ-sequences
for all the pairs stored in Lpre. To make it consistent with the notations in Sect. 3,
we define a classical function g : {0, 1}n/2 → {0, 1}δn/2 that takes the difference
Y (the left-half of ΔC) as input and outputs the Δ-sequence as follows.

1. Pick up all the pairs in Lpre such that the difference Y matches the g’s input.
2. Compute the Δ-sequences as in the classical attack by assuming that the

probabilistic differential propagation in the first round is satisfied.

Then, the classical queried-data analysis becomes identical with computing g(y)
for all y ∈ Y . The cost of computing g for a single choice of y is 1. Hence, with
the notation in Sect. 3, TC

g,all becomes O(2n/2). After this phase, a list L with a
classical memory that stores O(2n/2) Δ-sequences is generated.
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Quantum Distinguisher Analysis. The goal of the distinguisher analy-
sis is to calculate Δ-sequences for all 2n/2 choices of Y and 2n/2 choices of
Z in Fig. 1 in order to find a match with L. We define a quantum function
f : {0, 1}n/2 ×{0, 1}n/2 → {0, 1}δn/2 that takes Z and Y as input and calculates
the corresponding Δ-sequence. Given that L is computed before this analysis,
the goal can be viewed as searching for a preimage Z such that ∃Y, f(Z, Y ) ∈ L.

An Issue to be Taken into Account. Note that in our situation, the function f
might be incompletely defined. We want to define f(Z, Y ) to be the correspond-
ing Δ-sequence to (Z, Y ), however, to be precise, we will have the following issue
when Problem 6 is solved.

Issue. To calculate the corresponding Δ-sequence, we need input/output pairs
of the 2nd, 3rd, and 4th round functions that are compatible with the pair
(Z, Y ). Though there exists one suitable pair for each round function on
average, there might be no pair or more than one pair that are compatible
with the pair (Z, Y ).

This issue already exists even in the classical setting, but it is trivially solved.
However, solving the issue in the quantum setting is non-trivial, and deserves
careful attention. In what follows, for simplicity, we describe the attack by assum-
ing that the above issue is naturally solved as in the classical setting. See this
paper’s full version [HS17] for details on how to deal with it.

Quantum Procedures and Complexity. Assume that f(Z, Y ) is uniquely deter-
mined for each (Z, Y ). Remember that the goal of the quantum distinguisher
analysis is to find Z such that ∃Y, f(Z, Y ) ∈ L. As discussed in Corollary 1,
suppose that a quantum circuit Cf that calculates f(Z, Y ) for a single choice of
(Z, Y ) in time TQ

f can be implemented by using O(n) qubits and we can use a
quantum computer with O(n2p) qubits. Then the time complexity to find such
Z becomes O(2n/4+n/2−p · TQ

f + 2n/2).
We construct Cf so that it runs the following steps:

1. Find the input/output pair of the 2nd round function F that has input dif-
ference X and output difference Z.

2. Find the input/output pair of the 3rd round function F that has input dif-
ference Z and output difference X ⊕ Y .

3. Find the input/output pair of the 4th round function F that has input dif-
ference Y and output difference Z.

4. Construct a δ-set and calculate the corresponding Δ-sequence, using the
result of Steps 1, 2, and 3.

5. Output the Δ-sequence obtained in Step 4.

Steps 1, 2, and 3 correspond to Problem 6, which was solved using an efficient
table look-up in the classical setting. However, in our circuit Cf , we use the
Grover search to find the input/output pairs, since there is an obstacle that
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quantum computer cannot perform an efficient table look-up. Because the input
and output sizes of F are n/2 bits, we can run Steps 1, 2, and 3 with Grover’s
algorithm in time O(2n/4), using O(n) qubits. The complexities of Steps 4 and
5 are much smaller than that of the application of Grover’s algorithm. Hence
the above Cf runs in time TQ

f = O(2n/4), using O(n) qubits. Note that Cf

may return an error with a small probability since we use the Grover search as
subroutines for a few times. However we can deal with this error, as explained
in Sect. 3.

As described in Corollary 1, if O(n2p) qubits are available (p ≤ n/2), then we
can find Z such that f(Z, Y ) ∈ L in time O(2n/4+n/2−p+n/4 + 2n/2) = O(2n−p).
Complexities are balanced at p = n/2. In summary, we can find a match with
time complexity O(2n/2), using O(n2n/2) qubits.

Complexity. The queried-data analysis requires O(2n/2) classical queries and
O(2n/2) computations, in addition to O(2n/2) classical memory. The quantum
distinguisher analysis requires O(n2n/2) qubits and O(n5/22n/2) offline com-
putations. In the end, all the complexities are balanced at Õ(2n/2), which is
significantly smaller than the classical attack that requires Õ(23n/4) queries and
offline computations.

5 Attacks Using Quantum Queries

This section discusses quantum attacks in the Q2 model. That is, an adver-
sary is allowed to make quantum superposition queries to online oracles. We
show that we can recover full keys of an r-round Feistel construction (r > 3) in
time O(n32n(r−3)/4), using O(n2) qubits. Our idea is to combine the trivial key-
recovery attack using Grover search with the quantum distinguisher of 3-round
Feistel construction by Kuwakado and Morii [KM10], which was later general-
ized by Kaplan et al. [KLLN16a]. To combine them, we apply the technique by
Leander and May [LM17], with a little adjustment. We also show in Sect. 5.2 how
to simulate the “half output oracle” given a usual complete encryption oracle,
which solves the controversial issue in the quantum distinguisher by Kuwakado
and Morii (see Problem 1).

Again, we consider n-bit Feistel constructions such that each n/2-bit round
key is added before round function F . We do not consider parallelization for
quantum query attacks, since it seems unreasonable to assume that there are
many copies of the online oracle and an adversary is allowed to parallelly access
to them.

5.1 Quantum Distinguisher of 3-Round Feistel Constructions

We briefly explain the quantum attack that distinguishes 3-round Feistel con-
structions from a random permutation π [KM10,KLLN16a]. The attack works
in the Q2 model, and runs in polynomial time due to Simon’s algorithm.
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Assume that we are given a quantum oracle that calculates W (x, y), the right
n/2-bits of the ciphertext which is encrypted with 3-round Feistel constructions
Then, W (x, y) = x ⊕ F (K1 ⊕ y ⊕ F (K0 ⊕ x)) holds. Now, fix two different
bit strings α, β ∈ {0, 1}n/2 and define f : {0, 1}n/2+1 → {0, 1}n/2 by f(0, x) :=
W (α, x)⊕β and f(1, x) := W (β, x)⊕α for x ∈ {0, 1}n/2. Then simple calculation
shows that f ((b, x) ⊕ (1, F (K0 ⊕ α) ⊕ F (K0 ⊕ β))) = f (b, x) holds, i.e., f has
a period (1, F (K0 ⊕ α) ⊕ F (K0 ⊕ β)).

On the other hand, if we are given a quantum oracle that calculates the right
n/2-bits of π(x, y) instead of W (x, y), and construct such a function f , then f
does not have such a period with high probability. Thus, roughly speaking, we
can distinguish 3-round Feistel constructions from a random permutation π with
high probability by using Simon’s algorithm.

5.2 Truncating Outputs of Quantum Oracles

The distinguishing attack described above is interesting, though, there is a con-
troversial issue. As pointed out by Kaplan et al. [KLLN16a], if we are only given
the complete encryption oracle (quantum oracle that returns n-bit output val-
ues (V (x, y),W (x, y)) or π(x, y)), then it is not trivial whether the above attack
works. In the classical setting, if we are given the complete encryption oracle
and want only the right half of outputs, then we can just truncate outputs of
the complete oracle. However, in the quantum setting, answers to queries are
in quantum superposition states, of which right n/2-bits and left n/2-bits are
entangled. Since the usual truncation destroys entanglements, it is not trivial
how to simulate the oracle that returns exactly the right half of the output,
from the complete encryption oracle. However, it is still possible, and below
we explain how to simulate truncation of outputs of quantum oracles without
destroying quantum entanglements.

Let O : |x〉 |y〉 |z〉 |w〉 �→ |x〉 |y〉 |z ⊕ OL(x, y)〉 |w ⊕ OR(x, y)〉 be the complete
encryption oracle, where OL, OR denote the left and right n/2-bits of the com-
plete encryption, respectively. Our goal is to simulate oracle OR : |x〉 |y〉 |w〉 �→
|x〉 |y〉 |w ⊕ OR(x, y)〉. Instead of simulating OR itself, it suffices to simulate
an operator O′

R : |x〉 |y〉 |w〉 |0n/2〉 �→ |x〉 |y〉 |w ⊕ OR(x, y)〉 |0n/2〉 using ancilla
qubits. Let |+〉 := Hn/2 |0n/2〉, where Hn/2 is an n/2-bit Hadamard gate. Then
O |x〉 |y〉 |+〉 |w〉 = |x〉 |y〉 |+〉 |w ⊕ OR(x, y)〉 holds for any x, y, w ∈ {0, 1}n/2.

Now, define O′
R := (I ⊗ Hn/2) · Swap · O · Swap · (I ⊗ Hn/2), where Swap is

an operator that swaps last n-qubits: |x〉 |y〉 |z〉 |w〉 �→ |x〉 |y〉 |w〉 |z〉. Then easy
calculations show that O′

R |x〉 |y〉 |w〉 |0n/2〉 = |x〉 |y〉 |w ⊕ OR(x, y)〉 |0n/2〉 holds.
Hence we can simulate OR given the complete encryption oracle O, using ancilla
qubits.

5.3 Combining the Quantum Distinguisher with Key Recovery
Attacks

To combine the quantum distinguisher described above with key recovery using
the Grover’s search, we use the technique proposed by Leander and May [LM17]
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which combines Grover’s algorithm with Simon’s algorithm. Intuition of our
attack is as follows.

Consider to guess subkeys for the last (r−3)-rounds K3, . . . ,Kr−1, given the
quantum encryption oracle of an r-round Feistel construction. Let us suppose
the guess is correct. Then we can implement a quantum circuit that calculates
the first three rounds of the Feistel construction. On the other hand, if the guess
is incorrect, then the corresponding quantum circuit will be the circuit that
calculates an almost random function. Hence we can check the correctness of
the guess by using the 3-round quantum distinguisher. We guess K3, . . . ,Kr−1

by using Grover’s algorithm, while we use Simon’s algorithm for the 3-round
distinguisher.

Precise description and details of our attack can be found in this paper’s
full version [HS17]. Since the original technique by Leander and May is very
specific to attack the FX constructions, some adjustments are required to apply
the technique to Feistel constructions.

Complexity. Consequently, we can recover K0, . . . Kr−1 in time O(n32(r−3)n/4),
using O(n2) qubits. In particular, for the case r = 6, all the complexities are bal-
anced at Õ(2n/2), which is the same as the attack in Sect. 4:

• The attack requires O((m + n2)2n) queries, O(n32n/2) computations, and
O(m + n2) qubits. No classical memory is required in this attack.

We do not consider parallelization here, since it seems unreasonable to assume
that there exist many copies of the online quantum oracle and adversaries can
parallelly access to them.
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Abstract. Every known construction of general indistinguishability
obfuscation (iO) is either based on a family of exponentially many
assumptions, or is based on a single assumption – e.g. functional encryp-
tion (FE) – using a reduction that incurs an exponential loss in security.
This seems to be an inherent limitation if we insist on providing indis-
tinguishability for any pair of functionally equivalent circuits.

Recently, Liu and Zhandry (TCC 2017) introduced the notion
of decomposable iO (dO), which provides indistinguishability for a
restricted class of functionally equivalent circuit pairs, and, as the
authors show, can be constructed from polynomially secure FE.

In this paper we propose a new notion of obfuscation, termed radiO
(repeated-subcircuit and decomposable obfuscation), which allows us to
obfuscate a strictly larger class of circuit pairs using a polynomial reduc-
tion to FE. Our notion builds on the equivalence criterion of Liu and
Zhandry, combining it with a new incomparable criterion to obtain a
strictly larger class.

1 Introduction

Indistinguishability obfuscation (iO) provides a way to obfuscate a circuit in a
way that preserves its functionality, but such that the obfuscated versions iO(C0)
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and iO(C1) for any two functionally equivalent circuits C0 and C1 are computa-
tionally indistinguishable. In the last several years, following the first candidate
construction by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13],
iO has become a central cryptographic primitive, with many results demon-
strating its extreme power and wide applicability in cryptography and beyond
(cf. [SW14,BZ14,BPR15,BPW16] and many more).

Constructions of general iO from various security assumptions can be divided
into two categories: constructions that rely on families of assumptions of
exponential size, one per pair of functionally equivalent circuits [GGH+13,
BGK+14,PST14], and constructions that incur exponential security loss in their
proof reduction and thus require their underlying assumptions to provide sub-
exponential hardness [GLSW15,BV15,AJ15,Lin16,LV16,LT17,AS17].

The most prominent example of the latter type of constructions is construct-
ing iO from functional encryption (FE). The works of Bitansky and Vaikun-
thanatan [BV15] and Ananth and Jain [AJ15] provided the first reductions from
iO to FE. While following papers have improved the requirements of compact-
ness [AJS15,Lin16,LV16,AS17] and the public key properties for the starting
functional encryption [BNPW16,KNT17], all known constructions of general iO
still require subexponential security for the starting FE scheme.

Given this state of affairs, an obvious goal is to achieve a construction of iO
from underlying primitives – such as FE – with polynomial security loss. However,
as discussed in several previous works [GGSW13,GPSZ17,LZ17], this goal is
likely unattainable for general iO. The argument can be informally summarized
as follows (see [LZ17] for a more comprehensive exposition and discussion).

Sub-exponential Barrier for General Obfuscation. A security reduction
proving indistinguishability obfuscation implicitly tests whether the two circuits
C0 and C1 are functionally equivalent: if they are, the reduction must go through,
but if they are not, an adversary with a hard-coded input where the circuits differ
can easily distinguish between the obfuscated circuits, and so the reduction will
fail. Thus, an efficient reduction would seemingly yield an efficient verification
of circuit equivalence, which in turn would imply that the polynomial hierarchy
collapses. We conclude that an exponential security loss seems unavoidable for
general iO. Note, however, that this barrier does not hold if the given reduction
only works for pairs of circuits in some class where equivalence is efficiently
verifiable (namely the language of circuit pairs is in NP).

With this barrier for general circuits in mind, and following the recent work
of Liu and Zhandry [LZ17] (discussed below), in this paper we focus on the
following goal:

Reduce iO to FE incurring only polynomial security loss, for as large a
class of circuits as possible.

This question is interesting not only as a goal on its own (namely, poly-
secure obfuscation for a restricted class), but also as a tool for other potential
applications. Indeed, when considering various applications that use iO as a
building block, the security proof for the constructed primitive relies on the
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security proof of the iO. If we instantiate iO using general constructions from
FE, the resulting schemes inherit the subexponential hardness requirement for
the underlying FE. However, this exponential security loss may not be inherent in
the application, even if it is inherent for general iO. This has been demonstrated
by several works, which provide constructions of a primitive directly from FE,
with polynomial security loss. Such applications include universal samplers and
trapdoor permutations [GPSZ17], multi-key functional encryption [GS16], and
proving the hardness for the complexity class PPAD [GPS16]. Roughly speaking,
these works looked at the generic composition of FE-to-iO and iO-to-application,
and combined, improved, and optimized it for the specific application, in order
to achieve polynomial security loss.

In a recent work, Liu and Zhandry [LZ17] introduce a new notion of obfus-
cation called decomposable obfuscation (dO),1 which aims to abstract and unify
the proof techniques from these works, and address the same goal as we do here
(iO from FE with polynomial loss, for a restricted class of circuits). The security
definition of dO requires further restrictions in addition to functional equivalence
of the two circuits, enabling the authors to prove dO security from FE incurring
only polynomial security loss. The authors also show that the dO notion can
replace the use of iO in the above applications, providing a direct polynomial
time reduction to the FE security (rather than the application specific tailoring in
previous works). However, there are other applications of iO where a polynomial
reduction to FE is not known, but where the general barrier we discussed does
not necessarily apply. Liu and Zhandry leave open the problem of obfuscating
larger classes of circuit pairs with only polynomially-hard primitives, which may
open the way to polynomial security proofs for new applications of iO.

1.1 Our Results

We present a new obfuscation construction from functional encryption that pro-
vides indistinguishability assuming only polynomial security for the underlying
FE, for a strictly larger class than the one handled by decomposable obfusca-
tion [LZ17].

We note that, similarly to [LZ17], if two circuits are functionally equiva-
lent but do not belong to our class, our construction is still a secure iO if the
underlying FE has subexponential security.

Below, we first provide a (very) rough description of the relevant aspects of
previous constructions of obfuscation from FE, and in particular the restriction
imposed by dO on two functionally equivalent circuits. We then outline our
restriction (which is weaker, thus allowing more circuit pairs), and discuss its
potential implications and open problems. A more detailed description is given in
our technical overview in Sect. 1.3, with a formal summary after the introduction,
leaving the detailed descriptions and proofs in the full version of the paper.

1 The authors originally called this exploding obfuscation, and this is the term they
use in the eprint version of their paper.



410 Y. Kang et al.

For a circuit C on n-bit inputs, consider the depth-n binary tree, where a
node at location x1 . . . xi is thought of as corresponding to the partial circuit, or
“fragment”, resulting from hard-coding into C the values of the corresponding
prefix. That is, the root node corresponds to C, its left child corresponds to C
with the first variable set to 0, its right child corresponds to C with the first
variable set to 1, and so on, with each leaf corresponding to a constant circuit
(0 or 1) based on the evaluation of C on the n-bit input leading to that leaf.
A “cover” of the tree is a set of nodes such that each leaf belongs to a unique
subtree rooted at one of the cover nodes (for example, the root is a cover of size
1, and the set of leaves is a cover of size 2n). With this terminology, it is easy to
see that two circuits are equivalent if and only if their trees have identical leaves,
which in turn happens if and only if their trees have any identical common cover.

From FE to iO: Previous Work. In the original constructions of iO from FE
[BV15,AJ15], the obfuscation of a circuit included a FE ciphertext, together
with FE decryption keys for specific functions, allowing to evaluate the circuit in
roughly the following way. The ciphertext corresponds to the root of the tree (the
obfuscated circuit), and each evaluation of the FE decryption allows to obtain
ciphertexts for each of the two children of that node. The evaluator uses one of
them depending on the input, and continues to apply FE decryption along a path
in the tree, until finally obtaining the value at the leaf, which is the output. The
proof of security utilizes the fact the leaves are identical in C0 and C1, and so the
proof hybrids can go through the entire tree starting from C0 to the leaves, then
go back up from the leaves to the root using C1, showing indistinguishability of
obfuscation of both circuits. This proof has exponentially many hybrids.

Decomposable Obfuscation Limitation. The dO notion puts an additional
restriction that the pair of circuits has an identical common cover of of polyno-
mial size. If we only require indistinguishability for circuit pairs satisfying this
restriction, then the proof of security needs only develop the tree up to the com-
mon cover, at which point C0 and C1, partially evaluated up to that point, are
identical circuits. This results in polynomially many hybrids, and thus can be
achieved from FE with a polynomial reduction.

Our Work: Loosening the Limitation. Our result expands that of dO, by
taking advantage of structural similarities within different circuits on the tree, so
we can consider common covers of exponential size, subject to some conditions.

We start by defining a notion we call repeated-subcircuit exploding iO, denoted
rescueiO, which is incomparable to that of dO. Specifically, we require that the
two circuits have a common cover such that each of the trees, from root to the
cover, satisfies: (1) there are only polynomially many different circuits assigned
to all nodes on or above the cover (for an exponential cover, this implies that
many of the nodes are assigned identical circuits); and (2) there is some “com-
mon structure” condition between the two trees. We will formalize the common
structure later, but intuitively it captures the fact that the patterns of the iden-
tical circuits in each level of the tree, and the relations between parent and child
on the tree, are the same in both trees.
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While the first condition strictly generalizes the dO condition of a polynomial
size common cover, the second condition adds an additional restriction that
makes the rescueiO class incomparable to dO.

To overcome the additional structural limitation we apply dO on top of
rescueiO. dO is independent of partial evaluations before the tree cover. So if
any such fragments violate the structural requirement of rescueiO, we can ignore
them. On the other hand, rescueiO lets us create a tree cover that includes a
potentially-exponential number of input prefixes. With this composition, we can
achieve obfuscation for a class strictly larger than the union of both individual
notions. This is our final radiO construction.

1.2 Potential Implications and Open Problems

We summarize the more detailed discussion in [LZ17], who posed interesting
open problems, and discuss how our results fit in this context.

As explained above, the subexponential barrier for obfuscation applies to any
class of equivalent circuit pairs for which verifying whether a pair of circuits is
in the class is hard, even given a witness (which the reduction may get). That is,
the barrier holds for any such class that is believed not to be in NP (for example,
the general class of all equivalent circuit pairs, which is not in NP unless the
polynomial hierarchy collapses). This suggests a way to bypass the barrier, by
considering a subclass of equivalent circuit pairs which is in NP.

The notion of dO, proposed by Liu and Zhandry, follows this path. In fact,
in their case, testing if two circuits are in the class is not only in NP, but even
in P, as the authors show. This avoids the barrier and can replace iO in several
applications (hence getting polynomial security for those applications). However,
the fact the class is in P hinders its applicability to other important applications
of iO, such as getting public key encryption from private key encryption, deni-
able encryption, and NIZK. For those applications, the known proofs rely on
indistinguishability of obfuscated pairs of circuits in a class that cannot possibly
be efficiently tested without a witness, and so dO could not be used in place of
general iO. On the other hand, all these applications can be tweaked so that the
pairs of circuits in the proof do in fact have a witness proving their equivalence.

One of the open problems proposed by Liu and Zhandry is thus to build iO
for a class of circuit pairs for which equivalence is efficiently verifiable (with a
witness) but not efficiently testable (without a witness), and which can be based
on polynomial hardness of a small number of assumptions (such as FE).

We show that our intermediate class of circuits, rescueiO, is efficiently
testable, thus suffering from the same limitation as dO (and not solving the
open problem). However, for our main, combined class, radiO, while verifying
with a witness is easy, we do not know how to test whether two circuits are
in the class, and conjecture that this may be hard. Further exploring this and
the implications for other potential applications of iO with polynomial security,
remains an interiguing open problem.
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1.3 Technical Overview

Decomposable Obfuscation. As mentioned before, the construction of dO
for n-bit inputs uses a binary tree of depth n as an underlying structure. Each
internal node is assigned a circuit that is the partial evaluation of C(x≤, ·), where
x≤ is an input prefix of length i bits equal to the index of the node in its level.
Thus the leaves of the tree contain the circuit evaluations on each possible input.

The obfuscated dO object consists of n pairs of FE decryption keys, each
pair corresponding to the two possible values of each input bit, and a starting
FE ciphertext pair corresponding to the original circuit, with no input, each one
decryptable by a different decryption key of the first pair. The dO evaluation
works by starting from the given ciphertext pair, and successively generating new
pairs of FE ciphertexts that correspond to partial evaluations of the obfuscated
function on each input prefix, using FE decryption, until revealing the output
at the leaf. In more detail, each FE ciphertext is an encryption of two data
fields: the partial circuit evaluation on a prefix of the input bits, and a string of
pseudorandom values. Depending on the value of the next bit of the input, the
evaluator chooses the decryption key indexed by the input bit, to decrypt the
corresponding ciphertext, which is encrypted with the matching FE encryption
key. The decryption algorithm applies the next bit to the partial circuit, and
uses a PRG to expand the pseudorandom values into the pseudorandom values
for plaintexts of the next FE ciphertext pairs, as well as the random coins for
their encryption algorithms.

But this version of the obfuscation appears to depend on the circuit itself. To
show that the obfuscation of two equivalent circuits is indistinguishable, Liu and
Zhandry use hybrids that decompose circuits using the notion of a tree cover. A
tree cover is a subset of input prefixes so that all full inputs are the extensions of
exactly one element in the tree cover. The proof hybrids obfuscate intermediate
circuit representations, called circuit assignments, which are a set of fragments,
representing partial evaluations of the starting circuit, generated and indexed
by a tree cover. For any input prefix that is an extension of a member of the
tree cover, the generated partial circuit will still be hidden in an FE ciphertext
pair, which is again generated by FE decryption, like the aforementioned default
case, i.e., plug in the input bit to generate the new fragment, and use the PRG
to expand the pseudorandom seed to generate a new pseudorandom seed, and
randomness for the FE encryption algorithm. The new feature is that if the
input prefix is a (possibly improper) prefix of a member of the tree cover, then
its FE ciphertext pair is precomputed, but hidden in an sk ciphertext, which
is also precomputed during obfuscation time, and the sk ciphertext is stored
in a random index in the function of the FE decryption key that would reveal
the FE ciphertext. To uncover this pair, the FE ciphertext corresponding to the
immediate prefix contains not a fragment and a random string, but the index
pointing to the position, and the sk decryption key. Since this prefix would also
be a prefix of an element in the tree cover, the index and key are also assigned
during obfuscation time. During evaluation time, when the FE decryption key
detects that the plaintext actually contains an index and an sk key, it will use the
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index to find the sk ciphertext stored in the decryption function, and decrypt
it using the sk key. The indexes are wholly independent of the actual circuit,
which means that the obfuscation only depends on the circuit assignment. Thus,
if we have a common tree cover between two circuits, the obfuscation of their
respective circuit assignments is statistically equivalent. So we need to prove
that the original obfuscation of a circuit, i.e, without the index-key ciphertexts,
is indistinguishable from that of the final circuit assignment.

To do so, we move between hybrids of circuits of “adjacent” circuit assign-
ments. That means that the two circuit assignments are identical, except that
in one hybrid, one input prefix is on the tree cover, and in the other hybrid, it is
the parent of two nodes on the tree cover. Proving indistinguishability between
adjacent circuit assignments relies on sk security to hide the existence of the
stored FE ciphertext pairs, which do not exist in the default case; FE security
to hide if an FE ciphertext generated the next ciphertext pair, as in the default
case, or revealed it, if it was stored, since the output is the same in both cases,
an pair of FE ciphertexts that encrypt the next fragment and a random string;
and PRG security to hide if the pseudorandom parts were generated from the
previous ciphertext, as in the default case, or were freshly generated, and stored
in the corresponding FE decryption key. If the common tree cover is only poly-
nomial size, then we only have a polynomial number of hybrid steps from the
default obfuscation to the obfuscation of the circuit assignment, e.g., by follow-
ing a depth first search order until reaching the tree cover. In this special case,
we therefore have polynomial security loss.

Our Results. We present a new obfuscation construction from functional
encryption that provides indistinguishability assuming only subpolynomial secu-
rity for the underlying FE for a larger class of circuits than the one handled by
decomposabe obfuscation. In particular, we no longer need to require that any
two circuits that have indistinguishability obfuscation have a common cover of
polynomial size. Instead we require that the number of fragments at and before
the common cover is polynomial, which still allows for a exponential size of
the cover, and in addition to that we need a common subcircuit, also called a
fragment, structure which we define precisely after the introduction. Our con-
struction proceeds in two steps.

Repeated Subcircuit Obfuscation (rescueiO). The goal for this obfuscation
construction is to relax the dO requirement for a polynomial size common tree
cover to a polynomial number of unique fragments on and before that cover. Our
construction follows closely the dO construction but we introduce new techniques
to obtain polynomial-hybrid security reductions between circuits that have this
property. In particular, instead of storing ciphertexts for every input prefix at
or before the tree cover, we only store a ciphertext for unique fragments.

But by reusing FE ciphertexts for the same fragments, the obfuscation, or
more specifically, its evaluation, could leak information about the obfuscated
circuit. For example if for one circuit, two input prefixes produce different frag-
ments, while for the second circuit, the two input prefixes produce the same
fragment, then a distinguisher can try evaluating up to those two prefixes. If the
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resulting FE ciphertexts are different, then the original circuit is the first one;
otherwise the original circuit is the second one.

To avoid such problems, we impose a new restriction on the pairs of circuits
that we can obfuscate. Unlike the requirements for dO, these new requirements
apply to the fragments before the tree cover. In short, we require a bijection
between fragments of the two circuits so that for any input prefix, we can apply
the bijection on the resulting fragment of the first circuit, and get the fragment
of the second circuit for the same prefix.

Hybrid rescueiO + dO Solution. As we mentioned above, the evaluation of
the rescueiO obfuscation reveals the structure of common fragments in a tree
cover. This means that we can transition between obfuscations of two differ-
ent circuits only if they have the same common fragment structure among the
nodes above the common tree cover. This requirement could be potentially more
restrictive than what is required by dO in the sense that there are circuits that
have a polynomial size common tree cover without having the common fragment
structure.

We remove this limitation in a construction that combines rescueiO and dO.
Our goal is to be able to use the dO proof techniques to replace the obfus-
cated circuit, with its fragment representation, by a polynomial size cover, which
removes any information about the circuit structure above the dO tree cover.
Then, we can use the techniques of rescueiO to move to a more fine-grained
fragment representation that only requires a polynomial number of unique cir-
cuits but allows a potentially exponential number of input prefixes. We achieve
this by composing the two obfuscation techniques, first applying rescueiO and
then obfuscating the resulting circuit using dO. With this construction and the
above proof approach we only need to require the common fragment structure
across circuits for nodes between the dO and rescueiO covers. This is enabled by
the fact that the partially evaluated circuits residing in the dO tree cover are
partial evaluations of the rescueiO obfuscation, which do not contain FE cipher-
texts used in nodes above the dO tree cover. This means that we do not need to
worry about the fragment structure in that part of the tree in the hybrid while
switching to obfuscation of the second circuit. Note that we do not avoid a sec-
ond restriction, which is that the number of unique circuits before the tree cover
must be polynomial. Nevertheless, our result produces a strictly larger class of
obfuscatable circuit pairs than dO.

2 Common Definitions

The work of Liu and Zhandry [LZ17] defines the notion of decomposable obfus-
cation, dO. In this section, we describe its properties and limitations.

It is based on a locally decomposable obfuscator, ldO that takes as input a
circuit assignment, which does not necessarily include the circuit itself, but a
set of partially-evaluated versions of the circuit, also known as fragments. These
fragments are exactly enough to calculate the output of the circuit for all possible
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inputs. In particular, the fragment with a matching input prefix is chosen, and
the remaining input bits are plugged in to calculate the final output.

To define ldO and dO, we first need to define circuit assignments, which
depend on tree covers, and fragments. We define a fragment as follows:

Definition 1. Let C be a circuit which takes as input {0, 1}n. For any string,
x≤ ∈ {0, 1}i∗

, where i∗ ≤ n, we define a fragment of C to be a circuit C(x≤, ·),
where ∀i ≤ i∗, the wires for input bit i are hardcoded with the bit value x≤[i], and
any circuit gates that have a constant input wire are simplified. If the fragment
is evaluated on inputs x≥ ∈ {0, 1}n−i∗

, then it outputs C(x≤||x≥).

We define a tree cover, which is a set of bit strings, so that every input string
is either in the tree cover, or has a unique prefix in it. For two strings, x≤, x, let
x≤ � x denote that x≤ is a (possibly improper) prefix of x. Then a tree cover is
defined as follows:

Definition 2. A tree cover, TC, is a subset of
⋃n

i∗=0{0, 1}i∗
, so that ∀x ∈

{0, 1}n, there exists exactly one x≤ ∈ TC, so that x≤ � x.

A circuit and a tree cover allow us to derive a circuit assignment, as follows:

Definition 3. For a circuit, C, and a tree cover, TC, a circuit assignment is
Assignment(C,TC): Assignment(C,TC) = {(x≤, C(x≤, ·)) : x≤ ∈ TC}.

Now we define ldO on a circuit assignment. Strictly speaking, its security is
not between two functionally equivalent circuits, but between two adjacent, or
locally decomposing equivalent, circuit assignments of the same circuit:

Definition 4. A locally decomposable iO algorithm, ldO is an obfuscation algo-
rithm that takes in a security parameter, a circuit assignment of C, a maximum
tree cover size, l, and a maximum fragment size, s, and outputs a new circuit.

For any x≤ ∈ TC, such that |x≤| < n, let TCx≤ = (TC \ {x≤}) ∪ {x≤||b : b ∈
{0, 1}}. Assignment(C,TCx≤) is a locally decomposing equivalent circuit assign-
ment of Assignment(C,TC), and vice-versa. Then if |TC| ≤ l, and |TCx≤ | ≤ l,
and ∀(C∗, x≤) ∈ Assignment(C,TC) ∪ Assignment(C,TCx≤), if |C∗| ≤ s, then
their local obfuscations are computationally equivalent:

ldO(1λ,Assignment(C,TC), l, s)
c≈ ldO(1λ,Assignment(C,TCx≤), l, s)

In general, obfuscation schemes only take in circuits, not circuit assignments.
Thus we define the top-level obfuscator, dO, on the root circuit assignment,
{(C, )}.

Definition 5. For a ldO scheme, a decomposable obfuscator, or dO, is an obfus-
cation scheme defined as dO(1λ, C, l, s) = ldO(1λ, {(C, )}, l, s).

In special cases, this definition of dO allows us to discuss indistinguishability
between two circuits, rather than circuit assignments of a single circuit. We can
transition between the obfuscation of two circuits by way of an identical circuit



416 Y. Kang et al.

assignment. If the circuit assignment has polynomial size, Liu et al. prove that
only subpolynomial security for ldO suffices for dO security [LZ17].

First we claim indistinguishability between the root and the common circuit
assignment.

Lemma 1. For any polynomial l ≥ 1, tree cover, TC ≤ l, and circuit size, s,
even if ldO is only subpolynomially secure, then:

dO(1λ, C, l, s) = ldO(1λ, {(C, )}, l, s)
c≈ ldO(1λ,Assignment(C,TC), l, s)

So we can claim indistinguishability between two different circuits:

Lemma 2. For any polynomial, l > 1, and two circuits, C0, C1, if there
exists a tree cover, TC ≤ l, and circuit size, s, so that Assignment(C,TC) =
Assignment(C ′,TC), then the dO obfuscations of the two circuits is computa-
tionally indistinguishable, i.e., dO(1λ, C0, l, s)

c≈ dO(1λ, C1, l, s).

3 dO Limitations

The limitation of dO is that two circuits are only equivalent if they have an
identical polynomia-size tree cover. We illustrate the cost of this limitation with
the following example, where the common tree cover is exponentially large, even
though there is only a very small number of unique circuits. Let n be even. The
circuits C0(x) =

⊕n
i=1 x[i] and C1(x) =

⊕n
i=1 x[i] are functionally equivalent.

But no fragments will be identical until all input bits have been plugged in. So
the common tree cover must have exponential size, as illustrated in Fig. 1.

Fig. 1. Case where dO requires an exponentially-sized tree cover for two circuits.

But if we look at what the fragments are for each input prefix, we notice
that the fragments repeat, and in fact, at every level, C0 and C1 each have only
at most two different kinds of fragments. Moreover, for every fragment of C0,
every input prefix that generates it generates exactly one fragment of C1. We
can consolidate these fragment pairs, as shown in Fig. 2, and our obfuscation
will take advantage of this property.
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Fig. 2. Case where the number of fragments is polynomial.

4 Obfuscating a Circuit Assignment with Repeated
Fragments

The example in the previous section shows that using dO, and looking for identi-
cal fragments between the two obfuscated circuits could lead to an exponential-
size tree cover, even for relatively simple circuits. But it also points out a useful
circuit property: a small number of repeated fragments. We introduce a technique
that adapts the proof approach from dO to take advantage of this property. This
technique follows the ideas of ldO, but we introduce a different way to construct
the hybrid sequence in the proof of indistinguishability, which leverages the cir-
cuit structure with repeated fragments. We thus call our algorithm REpeated
SubCircUit Exploding iO, or rescueiO for short.

Our new proof techniques allow the obfuscation size to depend only on the
total number of unique fragments rather than all input prefixes in and before a
tree cover, which could be exponential. We also show how we can argue indis-
tinguishability across hybrids where we partially evaluate a fragment that may
correspond to many input prefixes simultaneously. The novelty of our approach
allows us to transition even to tree cover assignments with exponential num-
ber of input prefixes, as long as the unique fragments at and before tree cover
are a polynomial number, while incurring only polynomial security loss. This
expands the capabilities of the ldO techniques that are the main tool for arguing
indistinguishability for dO.

Below, we summarize the construction of rescueiO, and define the concepts
and requirements necessary for its security. Due to space constraints, we will
give a complete description of the construction and proof in the full version of
the paper.

rescueiO produces an obfuscation that is evaluated similarly to dO: the obfus-
cation contains a set of FE decryption keys and a starting pair of FE ciphertexts.
For each input bit, the evaluator chooses the ciphertext for the input bit value,
and decrypts it using the corresponding decryption key. And like in dO, the
default case only obfuscates the original circuit. But already in this default case,
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we modified the function that the FE decryption key evaluates. Again, the plain-
text contains a partial circuit and a random seed, but the random seed does not
necessarily vary by input prefix, because we do not want visibly different cipher-
texts for the same fragment at different input prefixes. Instead, each input prefix
length has a single seed that is shared amongst all evaluations at that length.
To make it possible to have a per-level seed, and have the same pseuorandom
output for the same fragment at different input prefixes, we use a PRF instead of
a PRG: the PRF is evaluated on a constant to produce the key for the next level,
and on the next fragment and the input bit to produce the random coins for the
next FE encryptions. Inductively, by evaluating a PRF on a constant, each level
will have exactly one PRF key. As a result the random coins for FE encryption
will only depend on the fragment and the last input bit used to generate the
fragment. That means that for two partial evaluations of the obfuscation, if the
last bit is the same, and they result in the same underlying fragment of the
original circuit, then the resulting FE ciphertext is identical.

This property lets us obfuscate circuit assignments by storing FE ciphertexts
similar to dO. First, we need to define what ciphertexts we store, and what we
generate. Instead of an arbitrary tree cover, our analogue considers all prefixes
of a certain length:

Definition 6. ∀i∗ ∈ n, a level assignment, of circuit C for prefix length i∗ is a
set of unique fragments, LevelAssignment(C, i∗):

LevelAssignment(C, i∗) = {C(x≤, ·) : x≤ ∈ {0, 1}i∗}
Note, that for the purposes of our algorithm, we do not keep track of

which input prefixes give us which fragment, as the relation may be many-
to-one. For the rest of the paper, we consider the circuits, C, so that when
LevelAssignment(C, i∗) has polynomial size, it is known (which is true if all the
previous level assignments are polynomial-size and known).

In dO, the decryption functions store ciphertexts up to the tree cover; in
rescueiO, the decryption functions store ciphertexts for inputs whose lengths are
up to and including i∗ bits. The stored data of the two obfuscation schemes
are nearly identical. They are both FE ciphertext pairs encrypted by an sk key.
The main difference is how many ciphertexts are stored. In dO, there is a fresh
ciphertext for every input prefix. On the other hand, rescueiO contains only two
ciphertexts for each unique fragment, one for each input bit. This is mirrored
by the default evaluation of the obfuscation of the original circuit, in which
only two ciphertexts could ever be generated for a fragment. In fact, for input
prefixes whose lengths are strictly less than i∗, the plaintexts used to generate
the FE ciphertext pairs are identical between the two schemes: they contain
a pointer to the successor ciphertext, and the sk decryption key to uncover
the FE ciphertext. For input prefixes of length i∗, the syntax plaintexts of the
two schemes are similar: they contain a fragment and random coins. But for
rescueiO, the random coins are identical for the whole level, which ensures that
for the following levels, the random coins continue to be identical, like in the
aforementioned default evaluation mode.
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However, by generating or storing ciphertexts for unique fragments, the struc-
ture of the pointers is now dependent on how the original circuit generates those
fragments. That means that the obfuscation is dependent not only on the frag-
ments in the level assignment, but also on the fragments before it. Therefore, it
is not enough that two circuits have an identical level assignment. They require
a similar structure for the prior fragments, too. The requirement for two cir-
cuits to be indistinguishable under rescueiO is therefore defined as consistency,
as follows:

Definition 7 (Consistent Circuits). Two circuits, C0, C1, are consistent for
i∗, if there exists a bijection τ and a polynomial values l, s, so that

1. ∀x, where |x| ≤ i∗: τ(C0(x, ·)) = C1(x, ·)
2. ∀x ∈ {0, 1}i∗

: C0(x, ·) = C1(x, ·),
3. |⋃i∗

i=0 LevelAssignment(C0, i)| ≤ l and |⋃i∗

i=0 LevelAssignment(C1, i)| ≤ l

4. ∀C∗ ∈ ⋃i∗

i=0 LevelAssignment(C0, i) ∪ ⋃i∗

i=0 LevelAssignment(C1, i), |C∗| ≤ s.

The mapping requirement is the main property that would make rescueiO
inapplicable to certain cases that dO can obfuscate. Therefore, so far, even
though rescueiO can obfuscate some circuit pairs that dO cannot, the two
schemes are incomparable. Also note that even though the mapping property
is defined over a potentially-exponential number of input prefixes, it can be effi-
ciently checked, given the τ . In fact, we can show in Sect. 6 that if the two circuits
are consistent, we can efficiently check it with an iterative algorithm.

5 radiO: Combining dO and rescueiO
We can provide indistinguishability obfuscation for the class of consistent cir-
cuits that satisfy Definition 7. However, this requirement is restrictive, and could
exclude circuits that could be obfuscated in polynomial security loss with dO.

For a trivial example, assume some common subcircuit, C∗ that takes n − 3
bits as input, and the two functionally equivalent circuits:

C0(x) = x[1] ⊕ x[2] ⊕ x[3] ⊕ C∗(x[4], . . . , x[n])

C1(x) = Select(x[1], Select(x[2], x[3], x[3]), Select(x[2], x[3], x[3])) ⊕ C∗(x[4], . . . , x[n])

Note that the selection functions in C1 form a more complicated circuit that
also performs XOR.

Because the only difference between the two circuits is in the first, constant
number of bits, they can be obfuscated by dO. On the other hand, it cannot be
obfuscated using rescueiO, because in C0, the first two bits produce 2 fragments,
while in C1, the first two bits already produce 4, making a mapping impossible.

We show how we can overcome the restrictiveness of Definition 7 to obtain
an obfuscation construction that relies on a subpolynomial security assumption
for FE and can obfuscate an extended class of circuits that is a proper superset
of the class handled by dO. Our idea is to relax the bijection requirement from
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Definition 7 by applying ldO on the output of rescueiO, to hide inconsistencies
before the tree cover, TC, used to form the ldO circuit assignment.

In this way, we only require that the input prefixes of length at least i∗

produce identical fragments, not for the whole tree cover TC. Furthermore there
is no structural restriction on the input prefixes before TC. The tree cover TC
and length restriction i∗ will split the space of fragments into three regions,
which we will formalize in Sect. 5.1. In short, they are: all the fragments that are
only generated by input prefixes that are proper prefixes of those in TC, all the
fragments that have a prefix in each original tree cover (equivalently, they have
a prefix in the combined tree cover), and all of the remaining fragments. We
can remove any remaining dependencies on fragments in the first group. For two
circuits, the second group will be identical if we require that all the fragments
formed by the new tree cover are identical. The third group is the only one for
which the mapping applies.

Due to the security of rescueiO, we can increase i∗, until the fragments at
level i∗ are identical for the two circuits. Then, due to the security of ldO, we
can decompose the circuit assignment to TC, until it meets the new require-
ments. Then we are in a state, where the obfuscations of the two circuits are
indistinguishable, based on arguments we will make for each of the three regions.
Actually, the region of fragments beyond i∗ do not need to be hidden, as they
are identical.

5.1 Properties of Fragment Partitions

More precisely, we define the following three regions, which may only overlap at
their boundaries:

1. Before TC:

PreTCC,TC = {C∗ : �x ∈ {0, 1}∗, x≤ ∈ TC so that C∗ = C(x, ·) ∧ x≤ � x}
2. After TC and i∗: Define the set of input prefixes:

AfterInput(TC, i∗) = {x : |x| ≥ i∗ ∧ ∃x≤ ∈ TC so that x≤ � x}
We further define the boundary of AfterInput(TC, i∗):

MinAfterInput(TC, i∗) = {x ∈ TC : |x| ≥ i∗} ∪
{x ∈ {0, 1}i∗ : ∃x≤ ∈ TC so that |x≤| ≤ |x| ∧ x≤ 	 x}

We can see that any input prefix that has a prefix in MinAfterInput(TC, i∗) has
a prefix in TC, and has at least i∗ bits. The only difference between the two
subsets is which tree cover element comes first. Conversely, for every input
prefix x ∈ AfterInput(TC, i∗), either the prefix, x≤ ∈ TC has at least i∗ bits,
in which case that prefix would be in the first subset, or it is the prefix of
strings with i∗ bits. In the second case, since |x| ≥ i∗, x must have a prefix
of length i∗, which also has x≤ as a prefix.
This region also generates circuits, but we do not define them, as no algorithm
will use them explicitly.
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3. Between TC and i∗: Define the set of input prefixes:

InterInput(TC, i∗) = {x : |x| ≤ i∗ ∧ ∃x≤ ∈ TC so that x≤ � x}
Then the set of circuits is InterCirc(C,TC, i∗) = {C(x≤, ·) : x≤ ∈
InterInput(TC, i∗)}.

The input prefixes corresponding to the first and third regions are shown in
Fig. 3.

Fig. 3. The boundaries of the input prefix regions

The composed obfuscation requires that two circuits, C0, C1, be combined-
cover consistent, which is defined as follows:

Definition 8. Two circuits, C0, C1, are combined-cover consistent for tree
cover TC and length i∗, if there exist a polynomial size l and a bijection τ :
InterCirc(C0,TC, i∗) → InterCirc(C1,TC, i∗), so that:

1. ∀x ∈ TC ∪ InterInput(TC, i∗) : τ(C0(x, ·)) = C1(x, ·),
2. ∀x ∈ MinAfterInput(TC, i∗) : C0(x, ·) = C1(x, ·),
3. |⋃i∗

i=0 LevelAssignment(C0, i)| ≤ l and |⋃i∗

i=0 LevelAssignment(C1, i)| ≤ l

In the full version of the paper, we give a complete proof of the security of
the composition. In short, by applying dO, the final obfuscation only depends
on the partial circuits at the dO tree cover, which hides any violations of the
consistency property before it, thus reducing the number of input prefixes for
which the consistency property must hold. This relaxation indeed allows for the
obfuscation of circuit pairs that cannot be obfuscated by dO and rescueiO alone,
with an example shown in the full version.

6 Testing Consistency

Recall the Definition 7 of consistent circuits in rescueiO. In this case, testing
consistency means that, given two circuits, we have to find an i∗ and a bijection
τ such that,

– Two circuits are identical after partial evaluating with the same input prefix
of length i∗;
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– Informally speaking, τ is a bijection between two sets of unique partial eval-
uated circuits and matches them with the same input prefix.

We present an efficient iterative algorithm to solve this problem.

Theorem 1. There exists a deterministic algorithm that decides in polynomial
time whether these two give circuits C0 and C1 are consistent for some polyno-
mials l and s.

Proof. Initially, we have LevelAssignment(Cb, 0) = {Cb} for b ∈ {0, 1}, and τ
maps C0 to C1.

We iteratively generate LevelAssignment(Cb, i) for i = 1, 2, . . . , n and check
the existence of a good mapping τ :

– First generate LevelAssignment(Cb, i) using C∗ ∈ LevelAssignment(Cb, i − 1)}.
Return not consistent if |LevelAssignment(C0, i)| �= |LevelAssignment(C1, i)| or
the number of circuits exceeds the limit l or any of those circuits exceeds the
size limit s.

– Then we scan LevelAssignment(C0, i) to construct the bijection τ in the fol-
lowing way:
For each C∗

0 ∈ LevelAssignment(C0, i − 1), assign τ(C∗
0 (b, 0)) = τ(C∗

0 )(b, 0).
Return not consistent if there’s any conflict or τ is not bijective.

– Return consistent when C∗
0 = τ(C∗

0 ) for every C∗
0 ∈ LevelAssignment(C0, i).

Moreover, this i is our desired i∗.

The above algorithm takes time O(nl2s).
Then it’s sufficient to show that the constructed bijection τ satisfies that

τ(C0(x, ·)) = C1(x, ·) for every |x| ≤ i. We can show it by induction on i.
Clearly it holds when i = 0, and the construction above ensures that for every
C∗

0 ∈ LevelAssignment(C0, i − 1), τ(C∗
0 (b, 0)) = τ(C∗

0 )(b, 0). Which concludes the
result.

In the composition of dO and rescueiO, we also defined the combined-cover
consistency in Definition 8. But unfortunately we didn’t come up with a poly-
nomial time algorithm to check whether two circuits are combined-cover consis-
tent. Like testing consistency in dO, the above algorithm takes advantages of the
existence of a minimum tree cover that satisfies certain properties. But in our
definition of combined-cover consistency, even if we know the length i∗, there
could be multiple (even exponentially many) minimal tree covers that satisfy
those properties. And it’s not easy to certify that all those minimal tree covers
exceed the size limit and hence two given circuits are not consistent.

We tried a modified version of the algorithm for testing consisntency in dO:
it keeps decomposing the tree covers (originally it contains only the root) until
all pairs of corresponding partial evaluated circuits are consistent in the rescueiO
definition, i.e., we found a good bijection τ and all pairs of corresponding par-
tial evaluated circuits after certain level i∗ are identical. But merging those τ ’s
doesn’t immediately give us our desired bijection τ in the definition of combined-
cover consistence. We are curious about whether we can tweak this algorithm
and make it work.
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ment as a public-key and use it to encrypt a message. If the statement
is true then it is possible to decrypt the message given a corresponding
witness, but if the statement is false then the message is computationally
hidden. Ideally, the encryption procedure should run in polynomial time,
but it is also meaningful to define a weaker notion, which we call non-
trivially exponentially efficient WE (XWE), where the encryption run-
time is only required to be much smaller than the trivial 2m bound for
NP relations with witness size m. We show how to construct such XWE
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that can be verified in NC1 (e.g., SAT) we can also construct such XWE
schemes under the sub-exponential Decisional Bilinear Diffie-Hellman
(DBDH) assumption. Although we find the result surprising, it follows
via a very simple connection to attribute-based encryption.

We also show how to upgrade the above results to get non-trivially
exponentially efficient indistinguishability obfuscation for null circuits
(niO), which guarantees that the obfuscations of any two circuits that
always output 0 are indistinguishable. In particular, under the LWE
assumptions we get a XniO scheme where the obfuscation time is 2n/2 for
all circuits with input size n. It is known that in the case of indistinguisha-
bility obfuscation (iO) for all circuits, non-trivially efficient XiO schemes
imply fully efficient iO schemes (Lin et al., PKC ’16) but it remains as
a fascinating open problem whether any such connection exists for WE
or niO.

Lastly, we explore a potential approach toward constructing fully effi-
cient WE and niO schemes via multi-input ABE.

1 Introduction

In the last few years, much research in cryptography has focused on exploring
powerful new cryptographic primitives such as witness encryption (WE) [7] and
indistinguishability obfuscation (iO) [1,6]. Although we have candidate construc-
tions of these primitives, they rely on a new class of assumptions over multilinear
maps (MMAPs) [5] whose computational hardness properties are poorly under-
stood and we lack a high degree of confidence in their security. The grand chal-
lenge is to construct WE and iO under standard and well established hardness
assumptions, such as the learning with errors (LWE) assumption [16]. In this
work we show that this is possible for a non-trivial relaxation of these primitives.
But first, let us review what these primitives are.

Witness Encryption. Witness encryption (WE), introduced by Garg et al. [7],
allows us to use an arbitrary NP statement x as a public key to encrypt a mes-
sage. If x is a true statement then any user who knows the corresponding witness
w for x will be able to decrypt the message, but if x is a false statement then the
encrypted message is computationally hidden. For example, we could encrypt a
bitcoin reward under the NP statement that corresponds to the Riemann hypoth-
esis being true and having a proof of some polynomially bounded size. If anyone
comes up with such a proof for the Riemann hypothesis, then they can use that
as the witness to decrypt the ciphertext and recover the bitcoin reward.

Indistinguishability Obfuscation (for Null Circuits). The goal of obfus-
cation [1] is to convert a program/circuit C into a functionally equivalent pro-
gram/circuit in a way that hides all aspects of the internal implementation of C,
but still allows to evaluate it on arbitrary inputs. Ideally, seeing an obfuscated
version of C would reveal nothing more than what one could learn via black-box
access to the functionality that C implements. Unfortunately, this strong defini-
tion of obfuscation, called virtual black box (VBB) is known to be unachievable
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in general for all programs [1]. A weaker variant called indistinguishability obfus-
cation (iO) [1,6] only insists that if two equal size circuits C,C ′ are functionally
equivalent, meaning that C(x) = C ′(x) for all inputs x, then their obfusca-
tions should be indistinguishable. A huge body of recent works starting with
[17] shows how to use iO to construct a plethora of advanced cryptographic
primitives for which no constructions were previously known. An even weaker
variant called null iO (niO, see [11,19]) only insists that the obfuscations of C
and C ′ are indistinguishable if the two circuits are both null circuits meaning
that C(x) = C ′(x) = 0 for all inputs x. Although security is only defined for
null circuits, we still require the niO obfuscator to work correctly and preserve
the functionality of all circuits, including ones that are not null.

It is obvious that iO implies niO and relatively easy to see that niO implies
WE. In particular, to encrypt a message b under an NP statement x we can
use an niO scheme to obfuscate the circuit C[x, b] that outputs b given a valid
witness w for x as an input and otherwise outputs 0; to argue security we rely
on the fact that when x is not in the language then this is a null circuit. The
works of [11,19] show that, under the Learning-With-Errors (LWE) assumption,
witness encryption (WE) also implies null iO (niO). It remains as a major open
problem whether niO implies full iO.

Non-trivially Exponentially-Efficient Schemes. In the standard definition
of witness encryption, the encryption procedure is required to run in polyno-
mial time. Indeed, otherwise there would be a trivial perfectly secure witness
encryption scheme where the encryption procedure simply checks whether the
statement x is true (by trying every possible witness) and if so it outputs the
message in the clear and otherwise it outputs a dummy value as the ciphertext.
For NP relations where the witness is of size m, the run-time of the trivial encryp-
tion procedure is ˜O(2m). Similarly, there are trivial perfectly secure iO and niO
schemes where, for circuits with input size n, the obfuscation procedure runs in
˜O(2n) time and outputs the entire truth table of the circuit. Such schemes are
trivially exponentially efficient.

We define the notion of non-trivially exponentially efficient WE (XWE) as a
relaxation of WE where we require that for NP relations with witness length m,
the encryption run-time is ˜O(2γm) for some constant γ < 1. Similarly, we define
non-trivially exponentially efficient niO (XniO) analogously by requiring that for
circuits with input size n the obfuscator run-time is ˜O(2γn) for some constant
γ < 1. We call γ the compression factor. The above notions are analogous to
the notion of non-trivially exponentially efficient iO (XiO) defined by Lin et al.
[15], which requires that the size of the obfuscated program is ˜O(2γn).1 In [15] it

1 One difference is that XiO only restricts the size of the obfuscated programs but
not the run-time of the obfuscation procedure, while XWE and XniO also restricts
the run-time of the encryption and obfuscation procedures (which then implicitly
restricts the size of the ciphertexts and obfuscated programs). This is important
since, without restricting the run-time, trivial WE and niO constructions can achieve
short ciphertext and obfuscated program sizes.
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was shown that XiO implies fully efficient iO under the sub-exponential LWE
assumptions. Unfortunately, we do not have any such connections showing that
XWE implies WE or that XniO implies niO and it remains as an open problem to
explore whether any such connections hold. Nevertheless, we believe that XWE
and XniO are interesting relaxations of WE and niO and are worthy of study.

Our Results. We show how to construct XWE and XniO with compression
factor γ = 1

2 under the sub-exponential LWE assumption. For NP relations that
can be verified in NC1 (e.g., SAT) we also get XWE with compression factor
γ = 1

2 under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. Our
constructions turn out to be extremely simple applications of attribute based
encryption (ABE) [3,4,9,18].

Improving on our result and pushing the compression factor further below 1
2

remains an open problem. Note that XWE and XniO with a sufficiently small
compression factor O(log m/m) is equivalent to the standard notions of WE
and niO respectively. Currently even achieving a compression factor of 1

3 would
be significant progress. Our only result in this direction is a scheme under the
sub-exponential LWE assumption which achieves ciphertext length as short as
˜O(2m/3), but at the cost of increasing the encryption complexity to ˜O(22m/3).
We also suggest an approach for getting smaller compression factors and ulti-
mately fully efficient WE and niO schemes via multi-input ABE. Unfortunately,
we currently do not have any instantiation of this primitive under standard
assumptions.

Our Techniques: From ABE to XWE. An (unbounded collusion) ABE
scheme allows us to create ciphertexts c = Enc(α, b) encrypting a message b
with respect to an attribute α. Furthermore, we can release secret keys skf

that are tied to some functions f . If f(α) = 1 then the secret key skf can
correctly decrypt c and recover b. However, given only secret keys skf1 , . . . , skfp

for functions such that f1(α) = · · · = fp(α) = 0, the ciphertext c cannot be
decrypted and the message b remains hidden. We can use ABE to construct an
XWE scheme for any NP language having witness size m where the running
time of the encryption procedure is ˜O(2m/2). To create a WE encryption of a
message b under a statement x, we create 2m/2 secret keys skfw1

for all choices
of w1 ∈ {0, 1}m/2 and we create 2m/2 ciphertexts cw2 = Enc(w2, b) for all choices
of w2 ∈ {0, 1}m/2, where we define the function fw1(w2) = 1 if w = w1w2 is a
valid witness for the statement x. Given a witness w = w1w2 we can recover b by
decrypting the ciphertext cw2 with the secret key skfw1

.2 However, if x is a false
statement, we can rely on sub-exponential ABE security to argue that the bit b is
computationally hidden. This gives us an XWE scheme with compression γ = 1

2
by instantiating the ABE with known constructions based on LWE and DBDH.
An analogous idea was used by Bitansky et al. [2] to go from symmetric-key

2 Notice that in the RAM model, decryption is very efficient as it requires accessing
only one key and one ciphertext.
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functional encryption to XiO, but we currently do not have any constructions
of the former primitive under any standard assumptions.

It turns out that the transformation from WE to niO from [11,19] also trans-
forms XWE to XniO while preserving the compression factor and therefore,
under the sub-exponential LWE assumption, the above technique also gives us
XniO schemes with compression γ = 1

2 . Alternately, if we apply the above tech-
nique but start with a predicate encryption (PE) [10] instead of ABE then the
above transformation gives an XWE scheme where the ciphertext also hides the
statement x (as long as it is a false statement) which is equivalent to XniO.

We show that the above technique can also be extended to get more general
tradeoffs between encryption time, ciphertext size and decryption time in XWE.
For example, under the sub-exponential LWE assumption, we can decrease the
ciphertext size to ˜O(2m/3) at the cost of increasing the encryption time to
˜O(22m/3).

In AppendixA, we also show that the above technique can be extended to
getting a better compression factor by relying on multi-input ABE. In particular,
if we had a k-input ABE scheme we would get an XWE scheme with compression
factor 1/(k+1) for languages with instances of size n and witnesses of size k·log n.

Paper Organization. The rest of the paper is organized as follows: In Sect. 2,
we recall basic cryptographic notions involved in this work. Our transform from
ABE to non-trivially exponentially efficient witness encryption is then described
in Sect. 3. The latter section also contains instantiations under standard assump-
tions and our extension to non-trivially exponentially efficient null-iO. Finally,
Section A details our generalized transform from multi-input ABE. Definitions
of null-iO and multi-input ABE are provided in the relevant sections.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0
there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. Throughout
this paper we denote by λ the security parameter.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
(t, ε)-computationally indistinguishable for t = t(λ) and ε = ε(λ), denoted by
X ≈t,ε Y , if for any probabilistic distinguisher D that runs in time t = t(λ),
it holds that

∣

∣Pr[D(1λ,Xλ) = 1] − Pr[D(1λ, Yλ) = 1]
∣

∣ ≤ ε(λ) for all sufficiently
large λ ∈ N. We say that X,Y are sub-exponentially indistinguishable if they
are (t, ε)-computationally indistinguishable with t(λ) = 2λδ

and ε(λ) = 2−λδ

for
some δ > 0.
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2.1 Attribute-Based Encryption

We provide a definition of (key-policy, unbounded collusion) attribute-based
encryption (ABE). We focus on the private-key variant which suffices for our
purposes. An ABE scheme is a standard (private-key) encryption scheme for
bits augmented with an additional key-generation procedure for an ensemble of
Boolean function families F = {Fλ}λ∈N each mapping X = {Xλ}λ∈N to {0, 1},
where X is some sequence of finite sets. Such a scheme is described by four
procedures (Setup,KG,Enc,Dec) with the following syntax:

1. Setup(1λ) gets as input a security parameter and outputs a master secret key
msk.

2. KG(msk, f) gets as input a master secret key msk and a function f ∈ Fλ and
outputs a key skf .

3. Enc(msk, α, b) gets as input a master secret key msk, an attribute α ∈ Xλ and
a message b ∈ {0, 1}, and outputs a ciphertext ctα,b. We assume, without loss
of generality, that ctα,b contains α in the clear.

4. Dec(skf , ctα,b) gets as input a key for the function f and ciphertext of (α, b)
and outputs a message b′.

The correctness and security of such a scheme are provided in the next
definition.

Definition 1. A tuple of four procedures (Setup,KG,Enc,Dec) is said to be a
(t, ε)-selectively-secure unbounded collusion ABE scheme if

1. Correctness: For every λ ∈ N, b ∈ {0, 1}, α ∈ X , f ∈ F , it holds that if
f(α) = 1, then

Pr[Dec(KG(msk, f),Enc(msk, α, b)) = b] = 1

where the probability if over the choice of msk ← Setup(1λ) and over the
internal randomness of KG and Enc.

2. Security: For every polynomial p = p(λ), every (selectively chosen) f1, . . . ,
fp ∈ F , and every α1, . . . , αp ∈ X , it holds that if fi(αj) = 0 for all i, j ∈ [p],
then

{KG(msk, fi),Enc(msk, αj , 0)}i,j∈[p] ≈t,ε {KG(msk, fi),Enc(msk, αj , 1)}i,j∈[p],

where the randomness is over the choice of msk ← Setup(1λ) and the internal
randomness of KG and Enc.

Known Instantiations. There are several known constructions of ABE
schemes based on different assumptions and offering various notions of efficiency.
Three of the most well-known schemes are those of Goyal et al. [12], of Gorbunov
et al. [9], and of Boneh et al. [3]. The work of Goyal et al. gives a construction
of an ABE scheme for all NC1 circuits based on the existence of a bilinear map
where the decisional bilinear Diffie-Hellman problem is hard.
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Theorem 1 ([12]). Assuming a group with a bilinear map in which the deci-
sional bilinear Diffie-Hellman problem is sub-exponentially hard, there exists a
sub-exponentially-secure ABE scheme for all NC1 circuits.

The works of Gorbunov et al. and of Boneh et al. achieved an ABE scheme for
all a-priori depth-bounded polynomial-size circuits based on the sub-exponential
hardness of the learning with errors assumption (LWE). Both of these ABE
schemes satisfy that the key generation algorithm runs in time |f | · poly(λ, d) on
input a function f of depth d. We call this property time-efficient key generation.
The scheme by Boneh et al. has an additional unique property that we will use:
The size of an ABE functional key is independent of the size of the function
and only depends on its depth. Specifically, given a function f ∈ F , the size of
a functional key for it is poly(d, λ) for some fixed polynomial function poly. We
henceforth call this property short functional keys. Note that in order to decrypt,
the description of f needs to be provided in addition to the key skf .

Theorem 2 ([3]). Assuming the sub-exponential hardness of LWE, there exists
a sub-exponentially-secure ABE scheme with time-efficient key generation and
short functional keys.

2.2 Witness Encryption for NP

Definition 2 (Witness encryption [7]). A witness encryption scheme for an
NP relation R ⊆ {{0, 1}n × {0, 1}m(n)

}

n∈N
with induced language L has the

following syntax:

– Enc(1λ, x, b): Takes as input a security parameter 1λ, a string x ∈ {0, 1}n and
a bit b ∈ {0, 1}, and outputs a ciphertext ctx,b.

– Dec(ct, w): Takes as input a ciphertext ctx,b and a string w ∈ {0, 1}m, and
outputs a bit b′ or the symbol ⊥.

These algorithms satisfy the following two conditions:

1. Correctness: For any security parameter λ, any b ∈ {0, 1} and any x ∈ L
with witness w, it holds that

Pr[Dec(Enc(1λ, x, b), w) = b] = 1,

where the probability is over the internal randomness of the encryption pro-
cedure.

2. Security: A witness encryption scheme is (t, ε)-secure if for every ensemble
x = {xλ} of false statements xλ /∈ L it holds that

Enc(1λ, xλ, 0) ≈t,ε Enc(1λ, xλ, 1)

where the randomness is over the internal randomness of the encryption pro-
cedure.
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3 Non-trivial Witness Encryption and ABE

In this section we show that any attribute encryption scheme directly implies
a non-trivially exponentially-efficient witness encryption scheme (XWE). This
gives us a construction of the latter under the DBDH or LWE assumptions.
Lastly, we recall the notion of null-iO, define non-trivially exponentially-efficient
null-iO (XniO) and construct it based on previously built XWE.

3.1 Non-trivially Exponentially-Efficient Witness Encryption

Our notion of exponentially-efficient witness encryption (XWE) allows the
encryptor to have running time almost as large as the brute-force algorithm
that solves the instance. This is analogous to the notion of XiO introduced by
Lin et al. [15] which requires the size of an obfuscation to be slightly smaller
than the truth-table of the function. See comparison below.

Definition 3. A witness encryption scheme for a relation R ⊆ {{0, 1}n ×
{0, 1}m(n)}n∈N with induced language L is said to be γ-exponentially-efficient if
for any λ, n ∈ N with m = m(n) and every instance x ∈ {0, 1}n and b ∈ {0, 1},
the run-time of Enc(1λ, x, b) is at most 2γm · poly(λ, n).

Comparison with XiO and SXiO. The notion of XiO, introduced by Lin et
al. [15], requires an obfuscator to output a circuit of size 2γn · poly(λ, |C|) given
a circuit C that accepts n bits as input. This notion has been proven to be very
useful in constructions of iO when combined with LWE. SXiO is a strengthening
of XiO in which we require not only the obfuscated circuit to be of non-trivial
size, but also the running time of the obfuscator.

Our notion of XWE only concerns the time it takes to encrypt a bit (which
gives an upper bound on the size of the obfuscation). The reason is that an
encryptor can always brute-force all possible witnesses and try each one to decide
whether the instance is in the language or not. If so, it can output the message
in the clear, and if not it can output some fixed output (recall that in WE
correctness holds only for instances that are in the language while security is
required only for instances that are not in the language).

3.2 From ABE to Non-trivial Witness Encryption

We observe a connection between ABE schemes and exponentially-efficient WE
schemes. This is similar to the observation of [2] in the context of functional
encryption and exponentially-efficient iO. However, in our case we will be able
to instantiate our ABE scheme based on somewhat standard assumptions.

Theorem 3. Let R ⊆ {{0, 1}n × {0, 1}m(n)
}

n∈N
be an NP relation with induced

language L. Assume the existence of a sub-exponentially-secure ABE scheme for
all circuits. Then, there exists a polynomial poly and a witness encryption scheme
for R with the following properties. For any λ, n ∈ N with m = m(n) and every
instance x ∈ {0, 1}n and b ∈ {0, 1}:
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1. The run-time of the encryption procedure Enc(1λ, x, b) is at most 2m/2 ·
poly(λ, n,m).

2. The ciphertext size is at most 2m/2 · poly(λ, n,m).
3. The decryption time is at most 2m/2 ·poly(λ, n,m). In particular, it is poly(λ,

n,m) in the RAM model.3

Proof. Assume that we have an ABE scheme ABE = (ABE.Setup,ABE.KG,
ABE.Enc,ABE.Dec) for all circuits. The ABE scheme is sub-exponentially-hard
so when instantiated with security parameter λ, no adversary that runs in time
2λτ

can break it for a constant τ > 0. We construct a witness encryption scheme
WE = (WE.Enc,WE.Dec).

Denote by V (L) the verification procedure of the NP language L. This pro-
cedure gets as input x and a possible witness w split into two parts w1 and w2,
and it outputs a bit that specifies whether w is a valid witness attesting to the
fact that x ∈ L. Given an instance x ∈ {0, 1}n and a message b ∈ {0, 1}, the
witness encryption WE.Enc(1λ, x, b) is computed as follows:

1. Sample a master secret key for the ABE scheme msk ← ABE.Setup(1λ̃), where
λ̃ = max{λ,m2/τ}.

2. For every w1 ∈ {0, 1}m/2, use the ABE scheme to generate a key for the
function V

(L)
x,w1(w2) = V (L)(x,w1w2):

skf,w1 ← ABE.KG(msk, V (L)
x,w1

).

3. For every w2 ∈ {0, 1}m/2, use the ABE scheme to encrypt b under
attribute w2:

ctw2,b ← ABE.Enc(msk, w2, b).

4. Output {skf,w1}w1∈{0,1}m/2 and {ctw2,b}w2∈{0,1}m/2 .

To decrypt WE.Dec(ct, w), where

ct = ({skf,w1}w1∈{0,1}m/2 , {ctw2,b}w2∈{0,1}m/2)

and w = w1w2 ∈ {0, 1}m, we execute the decryption procedure of the ABE
scheme as follows:

ABE.Dec(skf,w1 , ctw2,b).

Correctness immediately follows from the correctness of the underlying ABE
scheme. Security also easily follows from the security of the latter. Namely, if
x /∈ L, then for any w1w2 ∈ {0, 1}m, we have V (L)(x,w1w2) = 0. Let ct denote
an encryption of 0 for a statement x /∈ L, that is:

ct = WE.Enc(1λ, x, 0) = ({skf,w1}w1∈{0,1}m/2 , {ctw2,0}w2∈{0,1}m/2).

3 The property that in the RAM model our decryption is very efficient is common to
all of our results. We only state it here and avoid repeating it in the other results.
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For security, first observe that we instantiated our ABE scheme with security
parameter λ̃ = max{λ,m2/τ}. This means that our scheme is secure against
adversaries that run in time max{2λτ

, 2m2}. In particular, it is secure for all
adversaries running in time poly(2m) which is the size of our ciphertext (see
below). Moreover, since for any w1, w2 ∈ {0, 1}m/2, we have V (L)(x,w1w2) = 0,
it is clear that, assuming the security of ABE, ctw2,0 ≈c ctw2,1, and security
follows.

Let us analyze the complexity of the scheme and in particular the running
time of the encryption procedure. When encrypting a message b under instance
x our scheme generates and outputs 2m/2 functional keys (for a function whose
complexity is at most the complexity of V (L)) and 2m/2 ciphertexts of the under-
lying ABE scheme. This takes time at most

2m/2 · poly(λ, n,m)

for some fixed polynomial poly which depends on the complexity of encryption of
the underlying ABE scheme and the complexity of V (L). The same bound holds
for the ciphertext size. Decryption upon witness w = w1w2 requires reading the
functional key and ciphertext and a single invocation of the decryption procedure
of the underlying ABE scheme on the key for the function f(w1, ·) = V

(L)
x,w1(·)

and the ciphertext that corresponds to w2.

3.3 Instantiations

We instantiate Theorem 3 using known attribute-based encryption schemes men-
tioned in Sect. 2.1. The first construction of Goyal et al. [12] which works only for
NC1 circuits and is based on the decisional bilinear Diffie-Hellman assumption
leads to non-trivially exponentially-efficient witness encryption for any NP rela-
tion with verification in NC1. One can also instantiate a similar corollary based
on the LWE-based constructions of Gorbunov et al. [9] and of Boneh et al. [3]
and get a construction that works for all languages with a polynomial-size circuit
verifier, so for any NP relation.

Corollary 1. Let R ⊆ {{0, 1}n × {0, 1}m(n)
}

n∈N
be an NP relation with

induced language L. Assume the sub-exponential security of the learning with
errors assumption. Then, there exists a polynomial poly and a sub-exponentially-
secure witness encryption scheme WE = (WE.Enc,WE.Dec) for R with the fol-
lowing properties:

1. The time it takes to encrypt a bit is at most 2m/2 · poly(λ, n,m).
2. The ciphertext size is at most 2m/2 · poly(λ, n,m).
3. The decryption time is at most 2m/2 · poly(λ, n,m).

Moreover, assuming also that the verification for L is in NC1, the same is true
assuming the sub-exponential security of the decisional bilinear Diffie-Hellman
assumption.
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A Variant Based on ABE with Short Functional Keys. Below we provide
a variant of Theorem 3 in which we take advantage of an ABE scheme that has
a particular notion of succinctness we referred to as short functional keys4. This
property is satisfied by the LWE-based scheme by Boneh et al.

Theorem 4. Let R ⊆ {{0, 1}n × {0, 1}m(n)
}

n∈N
be an NP relation with

induced language L. Assume an attribute-based encryption scheme for all
circuits with time-efficient key generation and short functional keys. Let
m1(n),m2(n),m3(n) ≥ 0 be polynomials such that m1 + m2 + m3 = m. Then,
there exists a sub-exponentially-secure witness encryption scheme with the fol-
lowing properties:

1. The time it takes to encrypt a bit is at most 2max{m1+m3,m2} · poly(λ, n,m).
2. The ciphertext size is at most 2max{m1,m2} · poly(λ, n,m).
3. The decryption time is at most 2max{m1,m2,m3} · poly(λ, n,m).

Proof. Assume that we have a ABE scheme ABE = (ABE.Setup,ABE.KG,
ABE.Enc,ABE.Dec) with time-efficient key generation and short functional keys.
The ABE scheme is secure for adversaries running in time 2λτ

for a constant
τ > 0. We construct a witness encryption scheme WE = (WE.Enc,WE.Dec).

Given an instance x ∈ {0, 1}n and a message b ∈ {0, 1}, the witness encryp-
tion WE.Enc(1λ, x, b) is done as follows:

1. Sample a master secret key for the ABE scheme msk ← ABE.KG(1λ̃), where
λ̃ = max{λ,m2/τ}.

2. For every w1 ∈ {0, 1}m1 , use the ABE scheme to generate a key for the
function V

(L)
x,w1(w2) =

∨

w3∈{0,1}m3 V (L)(x,w1w2w3):

skf,w1 ← ABE.KG(msk, V (L)
x,w1

).

3. For every w2 ∈ {0, 1}m2 , use the ABE scheme to encrypt b under attribute w2:

ctw2,b ← ABE.Enc(msk, w2, b).

4. Output {skf,w1}w1∈{0,1}m1 and {ctw2,b}w2∈{0,1}m2 .

Correctness is immediate and security follows as in the proof of Theorem 3,
since for x /∈ L, there are no w1 and w2 for which V

(L)
x,w1(w2) evaluates to 1.

Thus, we can directly reduce security of our construction to the security of the
underlying ABE scheme.

Given x ∈ {0, 1}m and b ∈ {0, 1}, the time it takes to compute Enc(1λ, x, b)
is at most

2m1 · (|V (L)
x,w1

| · poly(λ, d)) + 2m2 · poly(λ, n,m),

4 Recall that a scheme with short functional keys has the property that the size of
a functional key for a function of size s and depth d is poly(d, λ) for some fixed
polynomial function poly.
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where d is the depth of the circuit V
(L)
x,w1 (recall that the LWE-based ABE scheme

has time-efficient key generation; see Theorem 2). Notice that d is bounded by
the depth of V (L) which is at most some polynomial in n and m. Furthermore,
notice that |V (L)

x,w1 |, the size of V
(L)
x,w1 , is at most 2m3 times some polynomial in n

and m. Overall, we get that the time it takes to generate a ciphertext is at most

2max{m1+m3,m2} · poly(λ, n,m).

The size of a ciphertext is shorter because the size of a key does not depend
on the size of the function but only on its depth (which is poly(n,m)). This
means that the ciphertext size is

(2m1 + 2m2) · poly(λ, n,m) = 2max{m1,m2} · poly(λ, n,m).

For decryption, one needs to read the whole ciphertext and perform a single
decryption operation of the underlying ABE scheme. However, notice that the
size of the function is 2m3 · poly(λ, n,m) which means that time to decrypt is at
most:

2max{m1,m2,m3} · poly(λ, n,m).

Note that for decryption, the description of the function must be known. This
can be done by providing a (single) generic description of

Vx,·(w2) =
∨

w3∈{0,1}m3

V (L)(x, ·||w2||w3)

as a public parameter.

We then obtain the following corollary using the construction by Boneh
et al. [3] in Theorem 4 with m1 = m2 = m3 = m/3.

Corollary 2. Let R ⊆ {{0, 1}n × {0, 1}m(n)
}

n∈N
be an NP relation with

induced language L. Assuming the sub-exponential hardness of the learning with
errors problem, there exists a sub-exponentially-secure witness encryption scheme
WE = (WE.Enc,WE.Dec) for R with the following properties:

1. The time it takes to encrypt a bit is at most 22m/3 · poly(λ, n,m).
2. The ciphertext size is at most 2m/3 · poly(λ, n,m).
3. The decryption time is at most 2m/3 · poly(λ, n,m).

3.4 A Similar Transformation for Null-iO

A similar result, i.e., a non-trivially exponentially-efficient construction based on
the LWE assumption, can be obtained for a weakening of iO called null-iO (niO,
see [11,19]). An niO is an obfuscation scheme which takes as input an arbitrary
circuit and outputs a functionally equivalent one but security only guarantees
that we cannot distinguish the obfuscations of any two circuits C,C ′ of the same
size such that C(x) = C ′(x) = 0 for all inputs x.
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Definition 4 (Null-iO). A null-iO (niO) obfuscation scheme is an efficient
compiler O for circuits that satisfies the following properties:

1. Correctness: For any security parameter λ and all circuits C : {0, 1}n →
{0, 1}:

Pr[∀x ∈ {0, 1}n : C(x) = C̃(x)|C̃ ← O(1λ, C)] = 1,

where the probability is taken over the randomness of O.
2. Security: Let C = {Cλ}, C ′ = {C ′

λ} be two ensembles of circuits with equal
input length n(λ) and circuit size, which satisfy Cλ(x) = C ′

λ(x) = 0 for all
x ∈ {0, 1}n(λ). Then, we have that:

O(1λ, Cλ) ≈t,ε O(1λ, C ′
λ).

It is natural to define the exponentially-efficient version of niO such that the
running time of the obfuscator (and thus the size of the obfuscated circuit as
well) is smaller than 2n.

Definition 5 (XniO). A null-iO is said to be γ-exponentially-efficient (XniO)
if for any security parameter λ ∈ N and every circuit C, the running time obfus-
cation O(1λ, C) is at most 2γn · poly(|C|).

In a recent work, Wichs and Zirdelis [19] showed that assuming LWE one can
generically translate any witness encryption scheme into a niO. Thus, using our
Theorem 1 (instantiated with LWE) together with their transformation, we get
a 1/2-XniO (for all polynomial-size circuits) assuming sub-exponentially-secure
LWE. Using our Corollary 2 together with their transformation, we get an XniO
whose running time is 22n/3 and such that the size of the obfuscated circuit is
2n/3, assuming sub-exponentially-secure LWE.

Remark 1. A different way to get the same result is to directly construct an XniO
based on any predicate encryption scheme [10], similarly to our construction of
an XWE based on any ABE scheme.

Acknowledgments. We thank Nir Bitansky for many initial discussions on the topics
of this work. We thank Antigoni Polychroniadou and Hoeteck Wee for their helpful
comments on a previous version of our work. We also thank the anonymous reviewers
for their remarks.

A Multi-input ABE and Non-trivial Witness Encryption

In this section, we introduce the notion of multi-input attribute based encryption
and show that, in the most general setting, it implies witness encryption for NP.

Recall that in a standard ABE scheme, one can encrypt a message b relative to
some attribute α to get ctα,b and independently generate keys for Boolean func-
tions f to get skf . Together, ctα,b and skf can be used to recover b if f(α) = 1,
and otherwise, b should remain computationally hidden. We extend this notion to
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the multi-input setting. Here f takes as input a sequence of attributes α1, . . . , αk

for k ≥ 1 and the encryption functionality takes an additional parameter i ∈ [k]
(it ignores b for i �= 1). Given ciphertexts ctα1,b, ctα2,·, . . . , ctαk

and a key skf

for such a function, one is able to recover b if f(α1, . . . , αk) = 1 while it should
remain hidden if f(α1, . . . , αk) = 0. Details follow.

A k-input ABE scheme is parametrized over an attribute space X = {Xλ}λ∈N

and function space {Fλ}λ∈N, where each function maps X = {(Xλ)k}λ∈N to
{0, 1}. Such a scheme is described by four procedures (Setup,KG,Enc,Dec) with
the following syntax:

1. Setup(1λ) gets as input a security parameter and outputs a master secret key
msk.

2. KG(msk, f) gets as input a master secret key msk and a function f ∈ Fλ and
outputs a key skf .

3. Enc(msk, α, b, i) gets as input a master secret key msk, an attribute α ∈ Xλ

and a message b ∈ {0, 1} and an index i ∈ [k], and outputs a ciphertext ctα,b,i.
4. Dec(skf , ctα1,b1,1, . . . , ctαk,bk,k) gets as input a key for the function f and a

sequence of ciphertext of (α1, b1), . . . , (αk, bk) and outputs a string b′.

The correctness and security of such a scheme are provided in the next
definition.

Definition 6. A tuple of four procedures (Setup,KG,Enc,Dec) is a k-input (t, ε)-
secure ABE scheme if

1. Correctness: For every λ ∈ N, b1, . . . , bk ∈ {0, 1}, α1, . . . , αk ∈ X , f ∈ F ,
it holds that if f(α1, . . . , αk) = 1, then

Pr[Dec(KG(msk, f),Enc(msk, α1, b1, 1), . . . ,Enc(msk, αk, bk, k)) = b1] = 1

where the probability if over the choice of msk ← Setup(1λ) and over the
internal randomness of KG and Enc. Note that only messages encrypted at
index 1 can be recovered, thus every message encrypted at a different index
could be set to ⊥ in our definition at the cost of a slightly more complex
syntax.

2. Security: For every polynomial p = p(λ), every �α1, . . . , �αp, where �αi =
(α(i)

1 , . . . , α
(i)
k ) ∈ X k for i ∈ [p], and every f1, . . . , fp ∈ F , it holds that if

fi(αi1
1 , . . . , αik

k ) = 0 for every i, i1, . . . , ik ∈ [p], then

{KG(msk, fi)}i∈[p] ,
{

Enc(msk, α
(i)
j , 0, j)

}

i∈[p],j∈[k]
≈t,ε

{KG(msk, fi)}i∈[p] ,
{

Enc(msk, α
(i)
j , 1, j)

}

i∈[p],j∈[k]
,

where the randomness is over the choice of msk ← Setup(1λ) and the internal
randomness of KG and Enc.
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In the next lemma we show that a general-purpose poly-input ABE scheme
implies a witness encryption scheme. This is similar to an analogous statement
in the functional encryption literature which says that a general purpose multi-
input functional encryption scheme implies indistinguishability obfuscation for
all circuits [8].

Lemma 1. Let L ∈ NP be a language where instances are of size n = n(λ) and
witnesses are of size m = m(λ). An m-input ABE scheme for all polynomial-size
circuits implies a witness encryption scheme for L.

Proof. Let MIABE = (Setup,KG,Enc,Dec) be the m-input ABE scheme. Denote
by V (L) the verification procedure of the NP language L. This procedure gets as
input x and a possible witness w split into m bits w1, . . . , wm, and it outputs a
bit that specifies whether w is a valid witness attesting to the fact that x ∈ L.
Given an instance x ∈ {0, 1}n and a message b ∈ {0, 1}, the witness encryption
Enc(1λ, x, b) is computed as follows:

1. Sample a master secret key for the multi-input ABE scheme msk ← KG(1λ).
2. Use the ABE scheme to generate a key for the function V

(L)
x (w1, . . . , wm) =

V (L)(x,w1 . . . wm):
skf ← KG(msk, V (L)

x ).

3. For 	 ∈ {0, 1} and i ∈ [m], use the ABE scheme to encrypt b under attribute
	 for the index i:

ct�,b,i ← Enc(msk, 	, b, i).

4. Output skf , {ct�,b,i}�∈{0,1},i∈[m]}.

To decrypt a ciphertext ct = (skf , {ct�,b,i}�∈{0,1},i∈[m]) with respect to a
witness w = w1 . . . wm ∈ {0, 1}m, we execute the decryption procedure of the
ABE scheme as follows:

Dec(skf , ctw1,b,1, . . . , ctwm,b,m).

The correctness and security of the witness encryption scheme follow imme-
diately from the correctness and security of the underlying multi-input ABE
scheme. Correctness holds since given a valid witness w for which V (L)(x,w) = 1,
the ABE decryption procedure will output b. Security holds since for any x /∈ L,
there is no witness for which V (L) accepts x and thus V

(L)
x is always 0, which

means that no combination of ciphertexts will lead to a successful decryption.
The latter, by the security of the underlying ABE scheme implies that b is com-
putationally hidden.

Using Fewer-Input ABE. Variants of the above theorem can be obtained
in case we only have an ABE scheme that supports less inputs. Specifi-
cally, similarly to the refinement of [2] of the result of [8] mentioned above
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(see [14, Lemma 4.2] for the precise statement), one can show that a k-input
ABE scheme for k = k(λ) implies a witness encryption scheme for languages
with instances of size n = n(λ) and witnesses of size k · log n. This means that
a k-input ABE scheme for any k = ω(1), is interesting as it could lead to non-
trivial constructions of secret sharing schemes for all NP based on somewhat
weaker assumptions than currently known [13].
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Abstract. We consider information-theoretic secure two-party compu-
tation in the plain model where no reliable channels are assumed, and all
communication is performed over the binary symmetric channel (BSC)
that flips each bit with fixed probability. In this reality-driven setting
we investigate feasibility of communication-optimal noise-resilient semi-
honest two-party computation i.e., efficient computation which is both
private and correct despite channel noise.

We devise an information-theoretic technique that converts any cor-
rect, but not necessarily private, two-party protocol that assumes reliable
channels, into a protocol which is both correct and private against semi-
honest adversaries, assuming BSC channels alone. Our results also apply
to other types of noisy-channels such as the elastic-channel.

Our construction combines tools from the cryptographic literature
with tools from the literature on interactive coding, and achieves, to our
knowledge, the best known communication overhead. Specifically, if f is
given as a circuit of size s, our scheme communicates O(s + κ) bits for
κ a security parameter. This improves the state of the art (Ishai et al.,
CRYPTO’ 11) where the communication is O(s) + poly(κ · depth(s)).

1 Introduction

Secure two-party computation (2PC) allows two parties, Alice and Bob, to
securely evaluate any given function on their private inputs. Informally, security
corresponds to satisfying two properties: (correctness) every party should com-
pute its correct output of the function; (privacy) any adversary corrupting a party
should learn nothing more than the input and output of the party it corrupts.

The problem of secure 2PC in its full generality, as well as first solutions,
were introduced by Yao [39] and has since received a lot of attention in the cryp-
tographic literature. Typically, one considers either a malicious adversary, who
has full control over the corrupted parties, or a semi-honest one, who allows the
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parties to faithfully execute their protocol on their actual inputs but might try to
extract information from their protocol view. Another distinction considers com-
putationally bounded adversaries—that are limited to efficient computation—vs.
computationally unbounded adversaries. The security in the former case is usu-
ally referred to as computational or cryptographic, while the latter is known as
the unconditional or statistical or information-theoretic.1 In this work we focus
on semi-honest, information-theoretic security.

Despite the massive attention that 2PC has attracted, most of the exist-
ing literature assumes that the parties communicate using reliable (noiseless)
channels: when Alice sends a message m to Bob, he receives exactly the infor-
mation m. However, since modern communication networks might be affected by
environmental (or even adversarial) interference, a more realistic case is that Bob
actually receives a message m′ �= m, subject to some bounded type of noise. A
natural question then is what happens when we execute 2PC protocols assuming
such unreliable (noisy) communication channels.

Clearly, given a protocol π0 designed to work (and proven secure) over reliable
channels, the execution of π0 over noisy channels may no longer be private, nor
correct (see, e.g. [8,14]). One may näıvly believe that if π0 is secure against a
malicious adversary over reliable channels, then it would be at least semi-honest
secure over (simple) noisy channels, because the “noise” in the latter setting
can be reduced to the malicious activity of the adversary in the first setting.
However, not even this is the case. Intuitively, the reason is that security against
a malicious adversary does not guarantee that the protocol outputs the correct
f(x, y) to a deviating corrupted party. In contrast, when the party is just semi-
honest, then it should receive the correct output even when the channel is noisy.

In this work we put forth the question of devising secure two-party com-
putation protocols over unreliable communication channels, while keeping the
communication complexity (in short, CC) of such protocols to a minimum. We
note that a natural approach to cope with the channels’ interference is to wrap
every message in π0 with a good error-correcting code (ECC) [37]. This has
the effect of reducing the noisy channel into a channel that is essentially noise-
less (i.e., it delivers the correct m with overwhelming probability per channel’s
instance), thus the execution of π0 should preserve its security guarantees. Unfor-
tunately, as simple and elegant as the above solution might be, it typically incurs
a heavy overhead on the communication-complexity. In the worst case, every
message m is very small compared to the length of the protocol (i.e., to its
round-complexity), and the blowup the ECC imposes would be at least poly-
logarithmic in the protocol’s length.2 Our goal is to devise secure protocols with
only a constant multiplicative overhead, independent of the protocol’s length.

1 Statistical security allows for some small (negligible) error probability; when this
error is 0 we speak of perfect security.

2 While cryptography typically allows negligible error (in a security parameter larger
than the protocol length), here we follow the coding community’s approach and
insist on obtaining exponentially small error probability; hence, the overhead implied
by the näıve approach is in fact linear in the protocol’s length, rather than
polylogarithmic.
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The “overhead” discussed in the above paragraph compares the communi-
cation of the secure protocol π0 that assumes reliable channels with the com-
munication of π that assumes a binary symmetric channel (BSCε) where each
bit is flipped with independent probability ε, yet it ignores a fundamental issue:
without additional cryptographic assumptions, most functions f don’t have any
secure protocol π0 that evaluates them [2,30]. On the other hand, the BSCε chan-
nel can be used as a cryptographic resource/setup [10], implying any function f
could have a secure protocol π evaluating it [28]. In that case, it is not even clear
how to define the “overhead” of π with respect to π0, as for many functions f ,
no secure π0 even exists.

Our main result is a compiler that takes any boolean circuit C for some
function f(x, y) and outputs a semi-honest secure two-party protocol π for f that
assumes that all the communication is sent over BSCε channels.3 The protocol π
has a “small” communication overhead, namely, linear in the size of the circuit C.

Theorem 1 (main, informal). Let ε ∈ (0, 1/2) be a given constant and let κ
be a security parameter. For any circuit C : {0, 1}n1 × {0, 1}n2 → {0, 1}m

there exists a two-party semi-honest statistically secure protocol πC that eval-
uates C(x, y) over BSCε. Furthermore, it holds that CC(πC) = Oε(|C| + κ).

When considering previous work for secure 2PC protocols over noisy channels,
the state of the art is a compiler by Ishai et al. [25] that converts a circuit of
size |C| into a two-party protocol that communicates only O(|C|) + poly(κ ·
depth(|C|)) bits assuming all communication is performed over BSC channels,
where κ is the security parameter. Their protocol works in the malicious setting
(with abort) and achieves statistical security by utilizing the strong machinery
of the IPS compiler [26]. In contrast, our result takes a completely different
approach (namely, using techniques from interactive coding, which are fairly
more simple), and achieves a reduced communication overhead, namely, O(|C|+
κ). On the other hand, our result applies only to the semi-honest setting, however
contrast to [25], we do not allow the parties to abort—they must complete the
protocol while maintaining its security.

Converting (Noiseless, Non-private) Protocols into Noise-Resilient
Secure Protocols. At times, the computation to be conducted is given as an
interactive protocol, rather than an optimal circuit that implements the same
functionality. Via relatively standard techniques we can extend our results so
that they apply to any protocol π0 which is correct over reliable channels (but
not necessarily secure!), and convert it into a semi-honest statistically-secure
protocol π over BSCε.

Specifically, assume π0 is given as a branching program BP0 (see Definition 6
for discussion on branching program representations of protocols), then we get

3 Using a recent result by Khurana et al. [27] we are able to extend our result also to
other types of noisy channels, such as the elastic channel (cf. [19]).
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Theorem 2 (informal). Let π0 be a protocol that is not necessarily private
over noiseless channels, and let BP0 denote a branching program representa-
tion of π0. There exists a compiler mapping π0 into a semi-honest statistically
secure protocol π over BSCε channels. The communication complexity of the
obtained protocol is CC(π) = Õ(width(BP0))·CC(π0)+O(κ), where κ is a security
parameter.

While it is unknown whether such a overhead of Õ(width(BP0)) is optimal or
even required, to our knowledge, the above factor is present in the state-of-the-
art work and may be an inherent property of the conversion from protocols to
circuits. Indeed, the trivial conversion (GMW [20], see also Sect. 1) converts BP0

into a boolean circuit (e.g., by Proposition 8) with |BP0|polylog(width(BP0))
gates. A different approach which directly (securely) evaluates each step of BP0

without converting it first into a boolean circuit [32], yields an overhead of

Õ(width(BP0)) · len(BP0) ≈ Õ(width(BP0)) · CC(π0),

which is similar to the overhead we obtain in Theorem2.
Notably, our result is asymptotically optimal when the protocol has an effi-

cient, i.e., constant-width, branching program representation.

Extensions to Other Unreliable Channels. We furthermore extend our
results (Theorems 1 and 2) to other types of unreliable channels, namely, elastic
channels (see, e.g., [12,27,38]). The (α, β)-elastic channel resemble to the binary
symmetric channel in the sense that every bit is flipped with some independent
probability α. However, one of the parties, either the receiver or the sender, but
not both, can increase their knowledge of the other party’s inputs and outputs
to the channel. This is modelled by reducing the flipping probability of each bit
received by that party to β < α.

The work of Khurana et al. [27] fully parametrize the conditions for which
an (α, β)-elastic channel can be used in order to perform secure computations.
Combining their result into our coding scheme allows secure computation over
(α, β)-elastic channel with linear overhead, extending our results to this setting
as well.

Theorem 3 (informal). Let κ be a security parameter, and 0 < β < α < 1/2
such that α <

(
1 + (4β(1 − β))−1/2

)−1
. Let π0 be a deterministic correct pro-

tocol over noiseless channels, and let BP0 denote a branching program rep-
resentation of π0. Then, there’s a semi-honest statistically secure protocol π
over an (α, β)-elastic channel that computes π0 with simulation error 2−κc

for some constant c. The communication complexity of the obtained protocol
is CC(π) = Õ(width(BP0)) · CC(π0) + O(κ).

Most of the proofs of our theorems are deferred to the full version [19].

Overview of Our Techniques. As mentioned above, our result is two-folded:
(i) secure simulation of circuits over noisy channels; (ii) secure simulation of
(insecure, non-resilient) protocols over noisy channels.
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The second result consists of converting the input protocol (specified
as a branching program, BP ) into a boolean circuit of size |C| = |BP0|
polylog(width(BP0)) that contains NAND gates and computes the same func-
tion as the protocol. The conversion is quite straightforward: every node of the
branching program can be implemented as a multiplexer where one party’s input
selects the next node to transition to. Additionally, some preprocessing of the
inputs and the outputs is required, however these can be done locally and requires
no communication. See Sect. 3.1 for further details. Once we obtain a circuit, we
simply apply the simulation for circuits described below.

The more technically involved part is a secure simulation of boolean circuits
over BSC channels (Sect. 3.2). Here, we are given a circuit C(x, y) and the goal is
to construct a two-party protocol π that evaluates C on the parties inputs (x, y)
in a semi-honest, information-theoretic secure way, assuming only BSC channels
and no other cryptographic assumption.

The immediate approach is to perform GMW—i.e., compute the circuit gate-
by-gate where each gate is securely evaluated via a query to an OT oracle—yet
replacing each OT oracle call with an OT implementation from noisy channel,
e.g. [10–12,27,38]. However, this still falls short of reaching our goal, as the above
works treat the noisy channel as a resource rather than as the main communica-
tion channel; in particular, all the above works assume the parties share a reliable
channel in addition to the noisy channel. Again we stress that simulating a reli-
able channel over a BSCε by wrapping each message with a standard ECC incurs
a high communication overhead. A possible remedy would be to “group” many
instances of OT together and encode their communication as a single message.
For instance, group together each layer in the evaluated circuit. This approach
potentially allows a constant blowup, however the blowup is higher for various
circuit families, e.g., when the width of each layer in the circuit is smaller than
the security parameter.

Our solution to this conundrum is to employ a technique of precomputed OT,
first suggested by Beaver [3]. This method allows the parties to “perform” OT
before its inputs are known: in a pre-computation step the parties perform OT
on random bits and end up with correlated randomness which later allows them
to simulate an OT functionality on their real inputs by exchanging messages.
Following this idea our protocol begins by performing many OT instances on
random inputs, generating a large string of correlated randomness, where all
these instances are grouped and encoded together using standard ECC. We keep
the communication of this step low (i.e., with a constant blowup): � OT instances
can be computed with communication O(�) using a result by Harnik et al. [23].
Then, our protocol “consumes” parts of the correlated randomness for each OT
simulation used by the GMW procedure.

The last step takes care of channel-errors that may happen at the second part
of each precomputed OT instantiation, i.e., when the parties exchange messages
in order to simulate OT on the real input. Luckily, we prove that each such noise
causes a very specific leakage. When simulating OT(b, x0, x1) the receiver might
learn the incorrect input, x1−b, but if that happens, the receiver learns nothing
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about xb. Intuitively, this may compromise the correctness of the computation,
but not its privacy (recall that all computations in GMW are performed on inputs
that are secretly shared by the parties. The above error in the OT translates to
learning one share of a (wrong) gate output).

Then, in order to solve this breach in the correctness, we employ techniques
from the literature of interactive coding [4,5,18,35,36] (see [15] for a survey).
In particular, we use an interactive coding schemes by Haeupler [22] with linear
overhead and exponentially small error probability, assuming BSC channels. In a
nutshell, the scheme of [22] works by executing a constant number of rounds from
of the input protocol π0 without any coding, after which the parties exchange
information that allows them to reveal inconsistencies, specifically, the parties
exchange hash values of their observed transcripts. Based on these exchanges,
the parties decide whether to continue with running π0 (if everything seems cor-
rect), or delete a certain amount of rounds (if some error is observed), hopefully,
reverting the protocol into a state where both the observed transcripts are con-
sistent. Repeating the above enough times guarantees that both parties end up
with a correct transcript of π0 with overwhelming probability while communi-
cating only Oε(CC(π0)) bits over a BSCε.

Finally, we show how to tweak the above coding so it doesn’t compromise the
privacy of the computation. The main issue here is back-tracking: the noise may
cause the coding scheme to progress in one way, then back-track to a previous
round and progress in a different way—this is usually a source for privacy leakage.
We avoid such leakage and make the scheme secure via the common technique of
re-sharing intermediate values with fresh randomness every time the simulation
reverts to a previous point.

Related Literature. In his seminal paper, Yao [39] provided a semi-honest
computationally secure protocol, which can efficiently evaluate any given boolean
circuit in a constant number of rounds. Yao’s protocol assumes that the parties
can access an Oblivious-Transfer (OT) functionality [33]. This result was later
extended to the information-theoretic (IT) setting by Goldreich, Micali, and
Wigderson [20]. Their so called GMW protocol for the semi-honest case also
assumes that parties have ideal access to an OT functionality (cf. Sect. 2.3).4

Kilian [28] proved that OT is in-fact a complete primitive even against mali-
cious adversaries, a result made more efficient by Ishai et al. [26]. Crépeau and
Kilian [10] proved that OT can be implemented by an information-theoretic pro-
tocol using different types of channels, including the BSCε. Beaver [3] showed
how OT can be precomputed, i.e., how parties can, in an offline phase, com-
pute correlated randomness that allows, during the online phase, to implement
OT by simply communicating two messages (cf. Sect. 3.2.1). A fair amount of
work has been devoted to so-called OT combiners namely protocols that can
access several OT protocols out of which � might be insecure, and combine them
into a secure OT protocol, e.g., [23–25,31]. Furthermore, [23] showed how to

4 In fact, the original GMW paper claims only computational security, even for the
semi-honest case, as it uses a computational instantiation of OT; however, it is proved
to achieve IT security when given ideal access to an OT functionality [21].
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semi-honestly evaluate �-parallel OT’s from noisy channels with linear commu-
nication complexity O(�) and exponentially small error in �.

Closer in spirit to our work, Naor and Nissim [32] considered the task of con-
verting a (correct) protocol π0 into a secure (both correct and private) protocol π
(over noiseless channels), with minimal overhead. Similar to our work, their com-
piler takes as an input a branching-program BP0 for π0, rather than an arith-
metic circuit for f . Their obtained overhead is dominated by Õ(width(BP0));
for the computational setting their obtained overhead is polylogarithmic in
width(BP0). On the other hand, while our protocol assumes noisy channels,
the machinery of [32] assumes reliable channels and the existence of OT.

Secure Computation Over Noisy Channels. Some functions f can be
securely computed without any of the above cryptographic tools (assuming
reliable channels). Indeed, Kushilevitz [30] (also, Beaver [2]) gave a complete
specification of the class G of two-party functions that can be unconditionally
securely computed by a semi-honest 2PC protocol over reliable channels. More
recently, the question of secure 2PC over noisy channels was addressed, for
noisy all-powerful adversarial channels. In this case, a strong impossibility was
shown [8,14]. Specifically, it was shown that for any μ > 0, there exists f ∈ G,
for which there exists an adversarial channel that corrupts up to μ fraction of the
transmissions, over which f does not have a statistically secure protocol (despite
the fact that f ∈ G, so it can be privately computed over noiseless channels).

2 Model and Preliminaries

Throughout this paper we use (standard) asymptotical notations, in particular,
for functions f, g : R → R

+, we say that f = Õ(g) if f = O(g · logc(g)) for
some constant c > 0. We say that a function is negligible if it is sub-inverse-
polynomial, i.e., negl(x) = o(1/poly(x)). We denote x ∼ Ber(ε) for a random
variable x that satisfies Pr(x = 0) = 1 − ε and Pr(x = 1) = ε. Addition and
multiplication of bits are always to be interpreted as addition and multiplication
over GF (2).

2.1 Protocols, Correctness and Security

We consider interactive computations between two parties, Alice and Bob with
inputs xA ∈ {0, 1}n and xB ∈ {0, 1}n, respectively. The parties wish to compute
a given (deterministic) function f : {0, 1}n × {0, 1}n → {0, 1}ν .5 For simplic-
ity, we assume |xA| = |xB | throughout this work; however our results trivially
apply to |xA| �= |xB | as well. To compute the function f , the parties execute a
(potentially randomized) protocol π = (πA, πB) which defines, for each party,

5 As usual in the MPC literature, we restrict our handling to deterministic functions;
the more general case of randomized functions can be easily treated by standard
techniques (each of Alice and Bob inputs, in addition to their input xA and xB , a
random string and their sum is used as the random coins).
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the next message to send as a function of the party’s input, the party’s private
randomness, and all the messages received so far. The protocol, also determines
the output of each party (again, as a function of the party’s input and received
messages), denoted by outA, and outB for Alice and Bob, respectively. We will
denote by rA and rB the random coins of Alice and Bob, respectively, in π. The
view of Alice, viewA = (xA, rA, TA) consists of her input xA, randomness, rA,
and transcript TA; similarly, the view of Bob is viewB = (yB , rB , TB).

The communication complexity of π, denoted CC(π), is maximal number of
bits exchanges throughout the protocol. The length of π, denoted |π|, is the
number of rounds in the longest instance. For simplicity, we assume a single bit
is sent at each round, hence, |π| = CC(π).

We consider two types of protocols. Protocols that are only correct, i.e., com-
pute the correct input (but not necessarily private), and protocols that are secure
against a semi-honest adversary (i.e., both correct and private). The correctness
definition is rather straightforward:

Definition 4 (Correctness). A (randomized) protocol π for evaluating
f(x, y) : {0, 1}n × {0, 1}n → {0, 1}ν is δ-correct if at the end of π both par-
ties output f(x, y) with probability ≥ 1 − δ. The protocol is statistically correct
(in a given security parameter κ) if is negl(κ)-correct for some negligible func-
tion negl(·).

Correctness without privacy is easy to achieve over reliable networks: send
all inputs to Alice who conducts the computation. With unreliable communica-
tion this is no longer a straightforward task. Standard error-correction technique
would produce a correct protocol despite the noise, however, the cost in com-
munication complexity will be substantial. Achieving a correct protocol while
keeping its total communication complexity low is typically a challenging task.

Semi-honest Security. Our protocols are proven secure via the standard
simulation-based security notion against semi-honest adversaries. We will use
the formulation of [6] which follows the real-world/ideal-world paradigm, but,
as we are only considering semi-honest security, our results can be adapted to
work in the universal composition framework of Canetti [7].

Definition 5 (statistical, semi-honest security). Let π = (πA, πB) denote
a protocol for evaluating a function f(x, y) = (fA(x, y), fB(x, y)). For a given
x, y let V IEWA, V IEWB, OUTA, OUTB be the distribution of viewA, viewB,
outA, outB in π given those inputs (over the randomness of the parties and the
noise), when running over Ch. We say that π is a statistically secure protocol for
computing f(x, y) over Ch against semi-honest adversaries if there exist (possibly
inefficient) simulators SimA, SimB for Alice and Bob, respectively, such that
for all x, y, and κ a security parameter

(SimA(1κ, x, fA(x, y)), fB(x, y)) ≈exp(−κ) (V IEWA, OUTB), and
(SimB(1κ, y, fB(x, y)), fA(x, y)) ≈exp(−κ) (V IEWB, OUTA).



Secure Two-Party Computation over Unreliable Channels 453

Observe that the definition above captures both privacy and correctness,
since the ideal functionality’s output to the honest party in the ideal world is
indeed f(x, y). We require a simulation error of exp(−κ) (as opposed to the tra-
ditional negl(κ) for some negligible function negl(·)). This is because lowering
the error (even if it remains negligible) may affect the rate, so we want to care-
fully control this parameter (setting it to exp(−κ) is sufficiently low for most
applications). As common in the setting of coding for interactive communica-
tion, κ will typically equal �, the number of rounds in the protocol, but can be
set higher, if needed. Another difference between our definition and the MPC
definition is that the simulator, as well as π0 and the encoding scheme, do not
need to be efficient.

2.2 Noisy Networks and Coding Schemes

Protocols over Noisy Channels. We assume the communication channel con-
necting the parties is private—i.e., the adversary might only read messages trans-
ferred through the channel by corrupting the sender or the receiver and observing
the corrupted party’s channel interface—but is not reliable and might modify
arbitrary many of the transmitted bits but without reordering. Concretely, the
channel we assume stochastically flips each transmitted bit with a given con-
stant probability ε, independent of other bits. This corresponds to the multi-use
extension of the well-known, binary symmetric channel BSCε (see, e.g., [9,34]).

The notion of a protocol needs to be augmented to the above noisy-
communication model, keeping in mind that in this case Alice and Bob might
have inconsistent views of the transmitted messages, which depend on the noise.
For instance, if Alice inputs to the channel a sequence m

(A)
A,1, . . . , m

(A)
A,� of mes-

sages to send to Bob, then the sequence m
(B)
A,1, . . . , m

(B)
A,� which Bob receives might

be different than the original sequence, and vice versa for messages sent from
Bob to Alice. Hence, Alice’s view of the transcript corresponds to a sequence
TA = (m(A)

pid1,1, . . . , m
(A)
pid�,�), where each pidi is A or B depending on whether

the i-th bit mpidi,i was sent from Alice or Bob, respectively; Bob’s (view of the)
transcript TB = (m(B)

pid1,1, . . . , m
(B)
pid�,�) is defined analogously and may be differ-

ent. The (noisy) joint transcript of a given instance of the protocol consists of all
messages sent and received during that given instance T = (TA, TB). (For nota-
tional simplicity we will refer to the joint transcript simply as the transcript.)
We denote a prefix of Alice’s transcript of length � by TA[1, �] (resp., Bob’s by
TB [1, �]). Throughout this work we assume wlog that the length of the protocol
and the order of speaking is fixed, and in particular that Alice and Bob sends
messages in alternating rounds, where Alice is the first to speak (in Round 1).

Coding Schemes for Interactive Protocols. An interactive coding scheme C
[15] for a given unreliable channel Ch, e.g., over BSCε, transforms any correct
protocol π0 over noiseless channels, into a correct protocol π = C(π0) over the
channel Ch, that computes the same functionality as π0 with high probability
(usually, 1 − 2−Ω(|π0|)).
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2.3 Primitives, Boolean Circuits, and Branching Programs

Oblivious Transfer. Oblivious Transfer (OT) [33] is a two-party functionality
FOT (b, (x0, x1)) taking a pair of bits x0, x1 from Bob, and a bit b ∈ {0, 1} from
Alice. It outputs xb to Alice and nothing to Bob. A String-OT with string length
s (shortly s-OT ), is a functionality similar to OT , with the difference that x0, x1

are s-bit strings rather than bits. OT � is a functionality evaluating � instances
of OT on independent inputs. We say that a protocol π operates in the OT-
hybrid model, and denote πFOT if it is augmented to have (fixed) rounds where
both parties query an ideal OT functionality FOT and receive the corresponding
outputs at the end of the same round.

Branching Programs. We use a variant of Branching Programs (BPs) that is
convenient for representing 2-party protocols, defined as follows.

Definition 6. A (layered) BP on inputs (x, y) with depth t and width w is
represented as a directed acyclic graph in which the vertices are partitioned into
t disjoint sets V1, V2, . . . , Vt and edges go only from Vi to Vi+1. For any i, it
holds that wi = |Vi| ≤ w, and for the initial layer, V1 = {start}.

Every node v ∈ Vi in i < t is assigned to either Alice or Bob, and has a
transition function fv : {0, 1}n → Vi+1. The nodes of the last layer Vt are labeled
using some alphabet Σ. Without loss of generality, we assume |Vt| = |Σ|.

The output, BP (x, y), is evaluated by starting at v = start and following the
path induced by applying fv(·)’s on either x or y according to the party that owns
the current node, until reaching the last layer. The output is the label of the node
in Vt reached by the above process.

Using standard notation, we denote by |BP | the size of the BP, i.e., the
number of nodes in the BP graph. We also refer to w = maxiwi as the width of the
BP, and denote it as width(BP ). It is also easy to verify that the communication
of π is connected to the branching program by CC(π) =

∑
1<i≤t	log wi
, hence,

depth(BP ) ≤ CC(π) ≤ depth(BP ) · 	log(width(BP ))
 (1)

Boolean Circuits. We use standard Boolean circuits consisting only of NAND
gates6 with fan-in 2 and unbounded fan-out [1]. We assume all literals depend
on the input, i.e., we don’t allow constant inputs.7 We denote by |C| the size
of C, i.e, the number of its nodes/gates, and by depth(C) its depth.

3 Deterministic 2PC over BSCε with Linear Rate

In this section we prove our main results, Theorems 1 and 2, and show how to
simulate any (possibly non-private) protocol that assumes reliable communica-
tion over a BSCε.
6 Recall that NAND gates are universal logic gates, i.e., functionally complete.
7 This is wlog since we only consider semi-honest security (any of the two parties can

be requested to contribute any needed constants as part of its input).
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Theorem 7. Let f : {0, 1}n × {0, 1}n → {0, 1}ν , κ be a security parameter,
and ε ∈ (0, 1/2). Let π0 be a deterministic correct protocol for evaluating f over
noiseless channels, and let BP0 denote a branching program representation of π0.
Then, there exists a compiler mapping π0 into a (semi-honest) statistically secure
protocol π over BSCε channels. The communication complexity of the obtained
protocol is CC(π) = Õ(width(BP0)) · CC(π0) + O(κ).
Note that the above theorem considers only deterministic protocols. In [19] we
show how to extend our compiler to randomized protocols. The theorem is proved
in two steps. First, in Sect. 3.1 we argue one can convert a protocol π0 for which
we know a branching-program representation BP0, into a Boolean circuit C0 of
size |BP0| · polylog(width(BP0)). From Eq. (1), we conclude that

|C0| ≤ width(BP0)depth(BP0)polylog(width(BP0))
≤ width(BP0)CC(π0)polylog(width(BP0))

= CC(π0)Õ(width(BP0)).

Second, in Sect. 3.2 we show how to securely evaluate C0 over (only) a BSCε

channel. Our circuit-evaluation method has communication O(|C0|) + O(κ).

3.1 Reducing Protocols to Circuit Evaluation

Our first step is converting a protocol π0 given as the branching program BP0,
into a boolean circuit C0 of size |C0| = |BP0|polylog(width(BP0)), that imple-
ments the same functionality.

Proposition 8. Let f(x, y) : {0, 1}n × {0, 1}n → {0, 1}ν be a function, and
let π0 be a deterministic protocol for f over noiseless channels. The protocol
π0 is assumed to have perfect correctness (i.e., π0(x, y) = f(x, y) for all x, y ∈
{0, 1}n) but no privacy guarantees. Furthermore, let BP0 be a branching program
representation of π0.

Then, for some nA, nB , νAB there exists a circuit C0 : {0, 1}nA+nB →
{0, 1}νAB of size |C0| = |BP0|polylog(width(BP0)), and “translation” functions
τA : {0, 1}n → {0, 1}nA , τB : {0, 1}n → {0, 1}nB , and τout : {0, 1}νAB → {0, 1}ν ,
such that for all x, y ∈ {0, 1}n it holds that τout (C0 (τA(x), τB(y))) = f(x, y).

3.2 Secure Evaluation of Circuits over a BSCε

We proceed to the second part of the proof of Theorem7 and describe a protocol
for secure evaluation of circuits over a BSCε with communication complexity
O(|C| + κ). Formally,

Proposition 9. Let ε ∈ (0, 1/2) be a given constant and let κ be a security
parameter. For any circuit C : {0, 1}n1 × {0, 1}n2 → {0, 1}ν there exists a two-
party (semi-honest) statistically secure protocol πC that evaluates C(x, y) over
BSCε. Furthermore, it holds that CC(πC) = Oε(|C| + κ).

The above is the formal version of our main theorem (Theorem 1 from the
introduction). Note that Theorem7 follows as a corollary of Propositions 8 and 9.
The remainder of the section is dedicated to proving Proposition 9.
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3.2.1 Building Blocks
Towards proving Proposition 9, we start with a description of the tools that we
will combine into our final construction. Some of these tools come from the MPC
literature, while other come from the field of coding for interactive communica-
tion.

OT � over BSCε with Linear Communication Overhead. To facilitate the
privacy of our construction we rely on the following implementation of � parallel
OT’s over BSCε with communication linear in �.

Theorem 10 ([23, Theorem 9]). For any constant ε ∈ (0, 1/2), and any �,
there exists a two-party protocol πOT �

that assumes the parties are connected
(only) by an BSCε channel, which implements OT �. The protocol is statistically
secure against semi-honest parties with error 2−Ω(�), and has a communication
complexity of Oε(�) bits.

OT over a BSC with Limited Leakage, Provided Precomputed OT.
Another tool we will need, is a way to implement a specific type of “buggy OT”
over a BSC. In this “buggy” version of the OT protocol on input (b, x0, x1), with
constant probability p it may happen that the Alice (the receiver) learns the
wrong input x1−b instead of the correct value xb. Otherwise, the protocol works
as a standard OT, i.e., Alice learns xb. In both cases Bob (the sender) learns
nothing. The key property here is that in either case Alice learns exactly one of
the values x0, x1, and can never learn both.

Our OT implementation builds on a scheme by Beaver [3], and requires the
parties to already share correlated bits of special form: their correlation cor-
responds to outputs of OT on random inputs. In hindsight, those correlations
will be obtained by performing OT � (by Theorem 10) on random inputs in a
precomputation step. This precomputation step is instrumental to keep commu-
nication low assuming BSC channels. Indeed, it is more efficient to encode over
a noisy channel a large amount of OT instances, rather than encode them one
by one. On the other hand, most MPC protocols make sequential call to OT,
one-by-one, as the protocol progresses. Performing OT based on precomputed
bits allows us to benefit both worlds: the precomputation step creates a bulk of
correlated bits in a communication efficient way; then, each instantiation of OT
consumes bits from that bulk, without having large communication overhead,
and while keeping the privacy guarantees.

The protocol Π-OTε, described in Fig. 1, is such a “buggy-OT” where all
communication is done over BSCε. Our above buggy-OT discussion provides the
high level intuition for the usefulness of protocol Π-OTε as a building block
for our protocol. The formal statement (Lemma 11) and its proof use somewhat
different properties. Namely, we use the notion of weak security and of channel-
transparent security. The meaning of these new notions is roughy as follows:

Weak security against semi-honest adversaries relaxes standard semi-honest
security by requiring that the views of the parties are consistent with an
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Protocol Π-OTε

Inputs: Alice’s input is a bit b; Bob’s input is a pair of bits (x0, x1).
Pre-computation step: The parties are assumed to have (trusted) preshared bits sampled
as follows: Let (b′, x′

0, x′
1) be random independent bits. Bob gets x′

0, x′
1, while Alice gets

b′ and x′
b′ , that is, she either gets x′

0 or x′
1 according to the value of b′.

Alice and Bob perform as follows
1. Alice sends c = b + b′; Assume Bob receives c′

2. Bob sends (x0 + x′
c′ , x1 + x′

1−c′ ).
3. Let (y0, y1) denote the bits received by Alice in the second round. Alice outputs

yb + x′
b′ as her output.

Fig. 1. The Π-OTε protocol

execution where the corrupted party’s input z is replaced by some z′ (depend-
ing only on z), rather than with the original input z.

Channel-transparent security strengthens the standard notion of security,
by requiring that even if the adversary could see the messages received by the
honest party, it would not learn anything it was not supposed to learn.

Lemma 11. For any ε < 1/2, the protocol Π-OTε over BSCε is weakly,
channel-transparently, statistically secure in the semi-honest setting over BSCε

channels.

Computing NAND Gates via OT. Assume we wish to compute a NAND
gate over the inputs (a, b) where the parties secret-share the inputs, i.e., Alice
holds a1, b1 and Bob holds a2, b2 where a1, b2 are uniform independent random
bits and a = a1 +a2, b = b1 +b2. We wish to compute the bit c = NAND(a, b) so
that at the end of the computation the parties will hold a secret-sharing of c, i.e.,
Alice will hold a random bit c1, and Bob will hold c2 so that c = c1 + c2. This
task can easily be done assuming we can utilize two instances of an ideal OT
functionality. [The complete protocol in the OT-hybrid setting is given in Fig. 2.]
However, in our implementation we will not have an ideal OT, but instead we
utilize the protocol Π-OTε assuming pre-comupted correlated randomness. The
following lemma provides the security of the NAND computation protocol when
each OT is realized via the above Π-OTε.

Protocol NAND OT

Inputs: Alice holds a1, b1 ∈ {0, 1}, Bob holds a2, b2 ∈ {0, 1}.
Outputs: Alice gets c1 and Bob gets c2 so that c1 + c2 = 1 − (a1 + a2)(b1 + b2). I.e., if
a = a1 + a2, b = b1 + b2, and c = c1 + c2 then c = NAND(a, b).
Protocol’s Description:

1. Bob picks random bits r1, r2, and sets c2 = r1 + r2.
2. The parties query the OT oracle: OT (a1, (r1, b2 + r1)). Denote Alice’s OT output

by o1.
3. The parties query the OT oracle: OT (b1, (a2b2+r2, a2b2+a2+r2)). Denote Alice’s

OT output by o2.
4. Alice sets her output to c1 = 1 + a1b1 + o1 + o2.

Fig. 2. Shared-input shared-output NAND computation in the OT-hybrid setting
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Lemma 12. For any ε < 1/2, the protocol NANDΠ-OTε is weakly, channel-
transparently, statistically secure in the semi-honest setting, assuming all com-
munication is done over a BSCε.

A Coding Scheme for Interactive Communication with Linear Rate.
The last tool we need is taken from the literature of coding for interactive com-
munication and provides a way to fortify a given protocol π0 (that assumes
noiseless channels), resulting in a noise-resilient protocol π so that the output π
equals that of π0 with probability 1 − expε(−|π0|) assuming BSCε channels.

The general idea, often referred to as the rewind-if-error paradigm (see [15]),
is to run π0 as-is for several rounds, after which the coding scheme communicates
some consistency information to verify that both parties agree on the transcript.
In case the parties detect that they agree, they continue in running π0 for another
several rounds; Otherwise, they backtrack to some point in the past were they
are (hopefully) in agreement. Several coding schemes follow this paradigm and
achieve efficient schemes with good communication rate, e.g., [4,13,16,17,22,29,
35]. We will use one by Haeupler:

Theorem 13 ([22, Algorithm 3]). Given any ε < 1/2, any deterministic pro-
tocol π0 can be efficiently transformed into a randomized protocol π that com-
municates over BSCε, with CC(π) = Oε(CC(π0)). For any (x, y), it holds that
π(x, y) = π0(x, y) with probability at least 1 − expε(−|π0|).

Interactive Coding Scheme for BSC [22]

1. Let π0 be a deterministic �-round protocol, and ε < 1/2 the BSC error probability. Let
v = Ωε(1), �′ = Oε(�).

2. Run an initialization step (independent of π0), setting up a shared randomness re-
source sr.

3. Initialize the transcript (prefix) TA ← φ of the execution of π0 seen so far, and ini-
tialize some additional variables tracking statistics VA. The state of the protocol is
SA = (TA, VA).

4. For each iteration i ∈ [�′/v]
(a) Exchange verification information hA = Hi(SA, sr)
(b) Receive Bob’s possibly noisy verification information h′

B .
(c) As a function of SA, hA, h′

B , decide whether to:
i. Continue running the protocol: starting from TA for v steps (both sending and

receiving messages, as prescribed by π0). Append them to the transcript TA

ii. Backtrack: run the protocol as in the previous item, but send random bits
instead of the real protocol messages, and do not advance TA.a

(d) If backtracking, additionally truncate the suffix of TA by g · v steps, where g is an
integer determined by SA, h′

B .
(e) Update the statistics VA based on the current TA and hA, h′

B .
5. Output the value output by π0, based on TA[1, �].

a The concrete dummy values are different in [H14], but are immaterial for its correctness,
and these values are slightly more convenient in our case. Also, for correctness to hold,
the original protocol is padded to length �′ by appending dummy moves, say, exchanging
random bits.

Fig. 3. A simplified outline of algorithm 3 in [22]
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The outline of Alice’s behaviour in the resulting protocol π is given in Fig. 3.
Bob’s program is symmetric. In a nutshell, the parties in the above scheme
execute π0 but occasionally compare (hashes of) prefixes of their observed tran-
scripts. A hash mismatch is an indication for a possible inconsistency in π0’s exe-
cution due to channel errors, and the party that observes such a mismatch may
decide to backtrack. A careful choice of the protocol’s parameters—including the
number of steps to retract and the hash range—yields a constant rate.

Observe that the local transcripts have different lengths (e.g., if one party
backtracks while the other party does not), or may contain different information
(due to noise). The simulation makes real progress when the local transcripts of
both parties, TA, TB have the same length and content, and the parties perform
Step 4(c) in the algorithm. All the effort in the construction (and its correctness
proof) goes into making sure that � = |π0| many such progress steps are made
(and not undone by backtracking) with overwhelming probability at the end of
the �′ = O(�) rounds of π’s execution.

3.2.2 Circuit Simulation over a BSC

Our starting point toward devising a secure protocol for evaluating circuits, is
the classical GMW protocol [20]. GMW performs a secure evaluation of a given
circuit C0 on the parties’ (private) inputs, assuming the parties are connected
through a noiseless channel in the OT-hybrid setting (i.e., assuming they have
access to a perfect OT functionality). Concretely, GMW evaluates the circuit
C0 gate by gate according to a predetermined topological ordering of the circuit
graph. The inputs for each gate are secret-shared between the parties, and the
evaluation of the gate yields a secret-sharing of it’s output value. More precisely,
the activity of GMW can be described using the following three phases.

– Initialization: Alice shares every bit xi of her input into a simple (2, 2)-
additive sharing of xi (si,1, si,2) = (r, xi + r) where r is a uniform bit. Alice
keeps si,1 as her share of xi, and sends Bob si,2 as his share. Bob does the
same thing on his input bits yi.

– Evaluation: The parties evaluate each NAND gate on the shared inputs,
obtaining a randomly shared output (giving each party a share). The evalu-
ation of NAND gates is implemented using two calls to the OT oracle, where
Bob always plays the sender and Alice plays the receiver.

– Output Delivery: At the end of the evaluation phase, the parties hold
random shares of each output bit. The parties then send their share vectors
to each other, thereby each party learns exactly the values of the outputs.

We now discuss how to augment each one of the above phases, when the com-
munication channels are assumed to be BSCε, and argue that this augmentation
is statistically close to the original GMW, thus, it is statistically secure.

Initialization and Output Delivery. The initialization part consists of two
“rounds” (where in one round Alice communicates many bits, and then in the
second round Bob communicates many bits). Thus we can use a standard error
correction code of length Θε(m+κ) that decode correctly over BSCε except with
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Protocol Π2P C

Inputs: A public input circuit C0 and private inputs x and y held by Alice and Bob,
respectively.

Initialization:

Augment C0 by adding O(κ) dummy gates evaluating the length-κ vector 0. The output
of these added dummy gates is to be ignored by the parties. From here and on we assume
C is the augmented circuit.a

Alice sends her encoded shares of her inputs x for C using a standard error-correction
code of length O(|C|) with decoding error exp(−|C|). She also receives and decodes
the (encoded) shares of the y’s. Alice stores the resulting shares as the values of the
corresponding circuit wires.

Alice and Bob run πOT �′
(Theorem 10) on uniformly random inputs (we set �′ shortly).

The output is �′ pairs (b, x0, x1) where for each such pair Bob holds x0, x1 and Alice
holds b, xb. Denote these as precomputed correlations vectors vA, vB , respectively.

Evaluation:

Let π0 denote the protocol induced by running GMW on the augmented circuit C (recall
section 3.2.2). Namely, the parties evaluate each of the NAND gates on their input shares
(Figure 2) in a gate-by-gate fashion according to a predetermined topological ordering.
Each call for OT in the implementation of Figure 2 is replaced with an execution of
Π-OTε (Figure 1).
After evaluating the last gate, π0 is assumed to keep sending zeros indefinitely.
Apply the coding scheme of Theorem 13 onto the protocol π0 with the following aug-
mentations: each iteration of the coding scheme works in chunks that are aligned with
a complete evaluation of NAND gates; this way, backtracking is always aligned with a
beginning of evaluating a NAND gate.
Let π denote the resulting protocol. Let �′, v denote the parameters of π as defined in
Figure 3.
When evaluating the j-th NAND gate (1 ≤ j ≤ v) of the i-th iteration (1 ≤ i ≤ �′/v),
the following applies:
(1) First note that Alice does not use any randomness during the NAND evaluation.

Also recall that Bob’s randomness is rB and that vA, vB denote the pre-computed
OT pairs obtain in the initialization phase.

(2) Each NAND evaluation (Figure 2) requires 2 OT instantiation. The k’th OT in-
stantiation (k ∈ {1, 2}) uses the randomness rB [i][j][k] and the pre-comupted pairs
vA[i][j][k], vB [i][j][k].

(3) The inputs used by the parties to evaluate a given NAND gates are either those
stored at its input wires, or random values in case the coding scheme (Figure 3)
performs Step 4(c)ii and requires sending dummy value.

Output Delivery:

If |TA| < �, output ⊥.
Alice extracts her share vector soA of the output wires from her stored values. She sends
Bob ECC(soA) using a code with length O(soA + κ).
Alice receives (a noisy version of) Bob’s encoded share vector ECC(soB), and decodes it
to obtain so′

B . Alice outputs z = soA + so′
B .

a We add these gates because the correctness guarantee in Theorem 13 behaves like 1 −
exp(−|C0|), which is insufficient for small circuits. To improve this probability to a magni-
tude of exp(−|C|) = exp(−|C0| − κ) we increase the circuit size by adding κ dummy gates.
This is equivalent to running the coding scheme of Theorem 13 for O(κ) more rounds.

Fig. 4. Secure circuit evaluation protocol Π2PC

probability expε(−m − κ). The same holds for the output delivery phase. The
size of each such encoded message is Oε(|C0|+κ), so asymptotic communication
complexity does not change.
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The Evaluation Phase. Following the GMW approach, this phase computes
the NAND gates of C one by one. However, this approach hits two immediate
obstacles: (1) each NAND computation requires two OT instantiations, each
of which may take O(κ) communication leading to a global communication of
O(κ|C0|), rather than our aimed communication of O(|C0| + κ). (2) Due to
channel noise, some of the NAND gates (as well as the OT evaluations) will
be computed incorrectly. This may lead to information leak or to correctness
deficiency.

Our solution to the above hurdles is achieved by employing Beaver’s method
of precomputed OT in conjunction with Haeupler’s interactive coding scheme.
Since all the OTs are precomputed, constant overhead can be achieved. Correct-
ness is obtained due to the coding scheme and security is obtained by carfuly
analyzing the possible leakage in case a certain NAND gate evaluation fails due
to noise.

The complete construction, Π2pc, is depicted in Fig. 4.

Theorem 14. The protocol Π2PC satisfies Proposition 9.
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Abstract. Private Set-Intersection (PSI) is one of the most popular and
practically relevant secure two-party computation (2PC) tasks. There-
fore, designing special-purpose PSI protocols (which are more efficient
than generic 2PC solutions) is a very active line of research. In particular,
a recent line of work has proposed PSI protocols based on oblivious trans-
fer (OT) which, thanks to recent advances in OT-extension techniques,
is nowadays a very cheap cryptographic building block. Unfortunately,
these protocols cannot be plugged into larger 2PC applications since in
these protocols one party (by design) learns the output of the intersec-
tion. Therefore, it is not possible to perform secure post-processing of
the output of the PSI protocol. In this paper we propose a novel and
efficient OT-based PSI protocol that produces an “encrypted” output
that can therefore be later used as an input to other 2PC protocols. In
particular, the protocol can be used in combination with all common
approaches to 2PC including garbled circuits, secret sharing and homo-
morphic encryption. Thus, our protocol can be combined with the right
2PC techniques to achieve more efficient protocols for computations of
the form z = f(X ∩ Y ) for arbitrary functions f .

1 Introduction

Private Set-Intersection (PSI) is one of the most practically relevant secure two-
party computation (2PC) tasks. In PSI two parties hold two sets of strings X
and Y , respectively. At the end of the protocol one (or both) party should learn
the intersection of the two sets Z = X ∩ Y and nothing else about the input of
the other party. There are many real-world applications in which PSI is required.
As an example, when mobile users install messaging apps, they need to discover
whom among their contacts (from their address book) is also using the app, in
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order to be able to start communicating seamlessly with them. Doing so requires
users to learn the intersection of their contact list with the list of registered users
of the service which is stored at the server side. This is typically done by having
users send their contact list to the server that can then compute the intersection
and return the result to the user. Unfortunately this solution is very problematic
not only for the privacy of the user, but for the privacy of the users’ contacts as
well! In particular, some of the people in the contact list might not want their
phone number being transferred and potentially stored by the server, but they
have no control over this.1 Note that this is not just a theoretically interesting
problem and that Signal (one of the most popular end-to-end encrypted messag-
ing app) has recently recognized this as being a real problem and offered partial
solutions to it.2 PSI has many other applications, including computing intersec-
tions of suspect lists, private matchmaking (comparing interests), testing human
genome [3], privacy-preserving ride-sharing [16], botnet detection [32], adver-
tisment conversion rate [20] and many more. From a feasibility point of view,
PSI is just a special case of 2PC and therefore any generic 2PC protocol (such
as [15,43]) could be used to securely evaluate PSI instances as well. However,
since PSI is a natural functionality that can be applied in numerous real-world
applications, many efficient protocols for this specific functionality have been
proposed, with early results dating back to the 80s [30,40]. The problem was
formally defined in [13] and follow up work increased the efficiency of PSI pro-
tocols to have complexity only linear in the inputs of the parties [8,23]. A very
recent work shows how to obtain a protocol where communication complexity is
linear in the size of the smaller set and logarithmic in the larger set [5]. How-
ever, these protocols still require performing expensive public-key operations
(e.g., exponentiations) for every element in the input sets. As public-key opera-
tions are orders of magnitudes more expensive than symmetric key operations,
these protocols are not practically efficient for large input sets. In the mean-
while, generic techniques for 2PC had improved by several orders of magnitude
and the question of whether special purpose protocols or generic protocols were
most efficient has been debated in [9,19]. Due to its practical relevance, PSI pro-
tocols in the server-aided model have been proposed as well [24]. Independent
and concurrent works [11,35] (which were not publicly available at time we first
posted our paper on ePrint) consider the problem of using a PSI protocol to
construct more complex functionality in an efficient way. More specifically, [35]
provides a way to securely compute many variants of the set intersection func-
tionality using a clever combination of Cuckoo hashing and garbled circuit. The
work of Falk et al. [11] focuses on obtaining a PSI protocol that is efficient in

1 Some apps do not transfer the contact list in cleartext, but a hashed version instead.
However, since the domain space of phone numbers is small enough to allow for
brute forcing of the hashes, this does not guarantee any real privacy guarantee.

2 Unfortunately, the Signal team has concluded that current PSI protocols are too
inefficient for their application scenario and relied on trusted-hardware instead, in the
style of [41]. See https://signal.org/blog/private-contact-discovery/ for more details
on this.

https://signal.org/blog/private-contact-discovery/
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terms of communication. In addition, the authors of [11] propose a PSI protocol
where the output can be secret shared that has communication complexity of
O(mλ log log m), where λ is the bit-length of the elements and m is the set-size.
The techniques used in our paper significantly differ from the techniques used
in [11,35]. Our solution avoids the use of garbled circuits and rely on the security
and the efficiency of OT and symmetric key encryption schemes.

1.1 OT-Based PSI

The most efficient PSI protocols today are those following the approach of
PSZ [34,36]. These protocols make extensive use of a cryptographic primitive
known as oblivious transfer (OT). While OT provably requires expensive public-
key operation, OT can be “extended” as shown by [1,21,26] i.e., the few neces-
sary expensive public-key operations can be amortized over a very large number
of OT instances, and the marginal cost of OT is only a few (faster) symmetric
key operations instead. In particular, improvements in OT-extension techniques
directly imply improvements to PSI protocols as shown by e.g., [27,33]. In a
nutshell, the PSZ protocol introduced two important novel ideas to the state of
the art of PSI. First, they give an efficient instantiation of the private set mem-
bership protocol (PSM) introduced in [12] based on OT. Second, they show how
to efficiently implement PSI from PSM using hashing techniques. (An overview
of their techniques is given below).

1.2 Our Contribution

The main contribution of this paper is to give an efficient instantiation of PSM
that provides output in encrypted format and can therefore be combined with
further 2PC protocols. Our PSM protocol can be naturally combined with the
hashing approach of PSZ to give a PSI protocol with encrypted output achieving
the same favourable complexity in the input sizes. This enables the combination
the efficiency of modern PSI techniques with the potentials of general 2PC.
Combining our protocols with the right 2PC post-processing allows more effi-
cient evaluation of functionalities of the form Z = f(X ∩ Y ) for any function
f . Like in PSZ we only focus on semi-honest security. Instantiating our PSM
protocol together with an actively secure OT-extension protocol such as [2,25]
would result in a protocol with privacy but not correctness (i.e., the view of
the protocol without the output can be efficiently simulated), which is a mean-
ingful notion of security in some settings. PSI protocols with security against
malicious adversaries have been proposed in e.g., [17,38,39]. It is an interesting
open problem to design efficient protocols which are both secure against active
(or covert) adversaries and that produce encrypted output. Also, like in PSZ,
we only focus on the two-party setting. The recent result of [18] has shown that
multiparty set-intersection can be computed efficiently. Extending our result to
the multiparty case is an interesting future research direction. We also compare
the computation complexity of our scheme for PSM with all the circuit-based
PSI approaches (which can be combined with further postprocessing) proposed
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in [37]. More precisely, in Table 1 we compare our protocol with the protocols
of [37] in terms of number of symmetric key operations, and bits exchanged
between the parties. The result of this comparison is that our protocol has bet-
ter performance, in terms of computational complexity, than all the circuit-based
PSI approaches considered for our comparison3. We refer the reader to the full
version for more details about this comparison.

1.3 Improving the Efficiency of Smart Contract Protocols

Most of the cryptocurrency systems are built on top of blockchain technologies
where miners run distributed consensus whose security is ensured as long as the
adversary controls only a minority of the miners. Some cryptocurrency systems
allow to run complex programs and decentralized applications on the blockchain.
In Ethereum4 those programs are called smart contracts. Roughly speaking, the
aim of a smart contract is to run a protocol and start a transaction to pay a user
of the cryptocurrency systems according to the output of the protocol execution.
Unfortunately, this interesting feature of the smart contracts does not come for
free. Indeed, in order to execute a smart contract, it is required to pay a gas fee
that depends on the number of instructions of the protocol to be executed. So,
higher is the complexity of protocol, higher is the price to pay. In this context
a cryptographic protocol that outputs intermediate values in a secret shared
way is particularly useful. Suppose that two parties want to securely compute
f(X ∩ Y ) for arbitrary functions f , and reward another party depending on the
output of this computation. Instead of writing on a smart contract the entire
protocol to compute f(X ∩ Y ), the two parties could run a sub-protocol Π
to obtain a secret share of χ = X ∩ Y without using a smart contract, and
then run another sub-protocol Π ′ to compute f(χ), this time using a smart
contract to enforce the reward policy. Following this approach it is possible to
move part of the computation off-chain, thus increasing the performance and,
at the same time, decreasing the costs required to execute the smart contract.
Moreover, we observe that χ can be reused to compute different functions f ′.
The scenario described above is particularly interesting if one of the party can
be fully malicious, but in this work we will focus on semi-honest security leaving
the above as an open question.

2 Technical Overview

Why PSZ and 2PC Do Not Mix. We start with a quick overview of the PSM
protocol in PSZ [34,36], to explain why their protocol inherently reveals the
3 The complexity of the protocols proposed in [37] depends upon parameters that are

also related to the used hash function. In order to make our comparison fair, we
have set these parameters as showed in the first column in Table 10 of [37]. More
precisely, the authors of [37] show in that table which parameters are adopted for
their empirical efficiency comparison for the case where one set is much greater than
the other set (which is exactly the case of PSM).

4 http://www.ethereum.org.

http://www.ethereum.org
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Table 1. Computation and communication complexity comparison for the PSM case.
M represents the size of the set, s is the security parameter and λ is the bit-length of
each element.

# of sym. key operations Communication [bits]

Yao SCS [19] 12λM log M + 3λM 2λMs(1 + 3 log M)

GMW SCS [19] 12λM log M 6λM(s + 2) log M

Yao PWC [37] 4λM + 6393λ λ(M3s + 3198s + 15, 6)

GMW PWC [37] 6λM + 9594λ λ(M4 + 6396 + 2sM + 6396s)

This work 4λM + 3λ 2λMs + Ms

intersection to one of the parties. From a high-level point of view, the protocol is
conceptually similar to the PSM protocol from oblivious pseudorandom function
(OPRF) of [12], except that the OPRF is replaced with a similar functionality
efficiently implemented using OT. For simplicity, here we will use the OPRF
abstraction. The goal of a PSM protocol is the following: the receiver R has input
x, and the sender S has input a set Y ; at the end of the protocol the receiver
learns whether x ∈ Y or not while the sender learns nothing. The protocol starts
by using the OPRF subprotocol, so that R learns x∗ = Fk(x) (where k is known
to S), whereas S learns nothing about x. Now S evaluates the PRF on her own
set and sends the set Y ∗ = {y∗ = Fk(y)|y ∈ Y } to R, who checks if x∗ ∈ Y ∗

and concludes that x ∈ Y if this is the case. In other words, we map all inputs
into pseudorandom strings and then let one of the parties test for membership
“in the clear”. Since the party performing the test doesn’t have access to the
mapping (e.g., the PRF key), this party can only check for the membership
of x and no other points (i.e., all elements in Y ∗ \ {x∗} are indistinguishable
from random in R’s view). From the above description, it should be clear that
the PSZ PSM inherently reveals the output to one of the parties. Turning this
into a protocol which provides encrypted output is a challenging task. Here is
an attempt at a “strawman” solution: we change the protocol such that R still
learns the pseudorandom string x∗ = Fk(x) corresponding to x, but now S sends
a value for every element in the universe. Namely, for each i (in the domain of
Y ) S sends an encryption of whether i ∈ Y “masked” using Fk(i) e.g., S sends
ci = Fk(i) ⊕ E(i ∈ Y )5. Now R can compute cx ⊕ x∗ = E(x ∈ Y ) i.e., an
encrypted version of whether x ∈ Y , which can be then used as input to the
next protocol. While this protocol produces the correct result, its complexity is
exponential in the bit-length of |x|, which is clearly not acceptable. Intuitively,
we know that only a polynomial number of ci’s will contain encryptions of 1, and
therefore we need to find a way to “compress” all the ci corresponding to i �∈ Y
into a single one, to bring the complexity of the protocol back to O(|Y |). In the
following, after defining some useful notation, we give an intuitive explanation
on how to do that.
5 The exact format of the “encryption” E(·) would depend on the subsequent 2PC

protocol and is irrelevant for this high-level description.
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2.1 Our Protocol

We introduce some useful (and informal) notation in order to make easier to
understand the ideas behind our construction. We let Y = {y1, . . . , yM} be the
input set of the sender S, and we assume w.l.o.g., that |Y | = M = 2m.6 All
strings have the same length e.g., |x| = |yi| = λ.7 We will use a special symbol
⊥ such that x �= ⊥ ∀x. We use a function Prefix(x, i) that outputs the i most
significant bits of x (Prefix(x, i) �= Prefix(x, j) when i �= j independently of the
value of x) and for simplicity we define Prefix(Y, i) to be the set constructed
by taking the i most significant bits of every element in Y . The protocol uses
a symmetric key encryption scheme Sym = (Gen,Enc,Dec) with the additional
property that given a key k ← Gen(1s) it is possible to efficiently verify if a given
ciphertext is in the range of k (see Sect. 3 for a formal definition). Finally, the
output of the protocol will be one of two strings γ0, γ1 chosen by S, respectively
denoting x �∈ Y and x ∈ Y . The exact format of the two strings depends on the
protocol used for post-processing. For instance if the post-processing protocol
is based on: (1) garbled circuits, then γ0, γ1 will be the labels corresponding to
some input wire; (2) homomorphic encryption, then γb = Enc(pk, b) for some
homomorphic encryption scheme Enc; (3) secret-sharing, then γb = s2 ⊕ b where
s2 is a uniformly random share chosen by S, so that if R defines its own share
as s1 = γb then it holds that s1 ⊕ s2 = b.8 In order to “compress” the elements
of Y we start by considering an undirected graph with a level structure of λ + 1
levels. The vertices in the last level of this graph will correspond to the elements
of Y . More precisely, we associate the secret key kbλbλ−1...b1 of a symmetric key
encryption scheme Sym to each element y = bλbλ−1 . . . b1 ∈ Y . The main idea
is to allow the receiver to obliviously navigate this graph in order to get the
key kbλbλ−1...b1 if x = y, for some y = bλbλ−1 . . . b1 ∈ Y , or a special key k�

otherwise. Moreover we allow the receiver to navigate the graph efficiently, that
is, every level of the graph is visited only once. Once a key k is obtained by
the receiver, the sender sends O(|Y |) ciphertexts in a such a way that the key
obtained by the receiver can decrypt only one ciphertext. Moreover the plaintext
of this ciphertext will correspond to γ0 or γ1 depending on whether x ∈ Y or
not.

First Step: Construct the Graph G. Each graph level i ∈ {0, . . . , λ} has
size at most |Prefix(Y, i)| + 1. More precisely, for every t = bλbλ−1 . . . bλ−i ∈
Prefix(Y, i) there is a node in the level i of G that contains a key kbλbλ−1...bλ−i

.
In addition, in the level i there is a special node, called sink node that contains
6 Sets can always be padded with dummy elements, but the complexity of the protocol

can match M that in practice can be M ≈ 2m−1.
7 We can assume λ to be smaller than the (statistical) security parameter s and we

will denote the bit decomposition of x by x = xλ . . . x1. Otherwise before running
the protocol the parties can hash their input down and run the protocol with inputs
h(x) and h(Y ) = {h(y1), . . . , h(yM )}. Clearly if x = yi then h(x) = h(yi), and for
correctness we need that Pr[h(x) ∈ h(Y ) ∧ x �∈ Y ] < 2−s.

8 Here we use ⊕-secret sharing without loss of generality. Any 2-out-2 secret sharing
would work here.
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a key k�
i (which we refer to as sink key). The aim of k�

i is to represent all the
values that do not belong to Prefix(i, Y ). Let us now describe how the graph G
is constructed. First, for i = 1, . . . , λ the key (for a symmetric key encryption
scheme) k�

i is generated using the generation algorithm Gen(·). As discussed
earlier the aim of these keys is to represent the elements that do not belong to
Y . More precisely, the sink key k�

i , with i ∈ {1, . . . , λ} represents all the values
that do not belong to Prefix(Y, i) and the key k�

λ (the last sink key) will be used
to encrypt the output γ0 corresponding to non-membership in the last step of our
protocol. Note that if Prefix(x, i) �∈ Prefix(Y, i) then Prefix(x, j) �∈ Prefix(Y, j) for
all j > i. Therefore, once entered in a sink node, the sink path is never abandoned
and thus the final sink key k�

λ, will be retrieved (which allows recovery of γ0).
Let us now give a more formal idea of how G is constructed.

– The root of G is empty, and in the second level there are two vertices k0 and
k1 where9, for b = 0, 1

kb =

{
k ← Gen(1s), if b ∈ Prefix(Y, 1)
k�
1 , otherwise

– For each vertex kt in the level i ∈ {1, . . . , λ} and for b = 0, 1 create the node
kt||b as follows (if it does not exists) and connect kt to it.

kt||b =

⎧⎪⎨
⎪⎩

k ← Gen(1s), if t||b ∈ Prefix(Y, i + 1)
k�

i+1, if t||b /∈ Prefix(Y, i + 1)
k�

i+1, if kt = k�
i

We observe that a new node kt||b is generated only when t||b ∈ Prefix(Y, i).
In the other cases the sink node k�

i+1 is used.

In Fig. 1 we show an example of what the graph G looks like for the set Y =
{010, 011, 110}. In this example it is possible to see how, in the 2nd level, all
the elements that do not belong to Prefix(Y, 2) are represented by the sink node
k�
2 . Using this technique we have that in the last level of G one node (k�

3 in
this example) is sufficient to represent all the elements that do not belong to Y .
Therefore, we have that the last level of G contains at most |Y | + 1 elements.
We also observe that every level of G cannot contain more than |Y | + 1 nodes.

Second Step: Oblivious Navigation of G. Let x = xλxλ−1 . . . x1 be the
receiver’s (R’s) private input and Y be the sender’s (S’s) private input. After S
constructs the graph G we need a way to allow R to obtain kxλxλ−1...x1 if x ∈ Y
and the sink key k�

λ otherwise. All the computation has to be done in such a way
that no other information about the set Y is leaked to the receiver, and as well
that no information about x is leaked to the sender. In order to do so we use
λ executions of 1-out-of-2 OT. The main idea is to allow the receiver to select

9 In abuse of notation we refer to a vertex using the key represented by the vertex
itself.
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Fig. 1. Example of how the graph G appears when the sender holds the set Y .

which branch to explore in G depending on the bits of x. More precisely, in the
first execution of OT, R will receive the key kxλ

iff there exists an element in
Y with the most significant bit equal to xλ, the sink key k�

1 otherwise. In the
second execution of OT, R uses xλ−1 as input and S uses (c0, c1) where c0 is
computed as follows:

– For each key in the second level of G that has the form kt||0, the key kt||0 is
encrypted using the key kt.

– For every node v in the first level that is connected to a sink node k�
2 in the

second level, compute an encryption of k�
2 using the key contained in v.

– Pad the input with random ciphertexts up to the upper bound for the size of
this layer (more details about this step are provided later).

– Randomly permute these ciphertexts.

The procedure to compute the input c1 is essentially the same (the only dif-
ference is that in this case we consider every key with form kt||1 and encrypt
it using kt). Roughly speaking, in this step every key contained in a vertex
u of the second level is encrypted using the keys contained in the vertex v
of the previous level that is connected to u. For example, following the graph
provided in Fig. 1, c0 would be equal to {Enc(k0, k�

2),Enc(k1, k
�
2)} and c1 to

{Enc(k0, k01),Enc(k1, k11)}. Thus, after the second execution of OT R receives
cxλ−1 that contains the ciphertexts described above where only one of these can
be decrypted using the key k obtained in the first execution of OT. The obtained
plaintext corresponds to the key kxλxλ−1 if Prefix(x, 2) ∈ Prefix(Y, 2), to the sink
key k�

2 otherwise. The same process is iterated for all the levels of G. More gen-
erally, if Prefix(x, j) ∈ Prefix(Y, j) then after the j−th execution of OT R can
compute the key kxλxλ−1...xλ−j

using the key obtained in the previous phase.
Conversely if Prefix(x, j) /∈ Prefix(Y, j) then the sink key k�

j is obtained by R.
We observe that after every execution of OT R does not know which ciphertext
can be decrypted using the key obtained in the previous phase, therefore he will
try to decrypt all the ciphertext until the decryption procedure is successful.
To avoid adding yet more indexes to the (already heavy) notation of our pro-
tocol we deal with this using a private-key encryption scheme with efficiently
verifiable range. We note that this is not necessary and that when implementing
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the protocol one can instead use the point-and-permute technique [4]. This, and
other optimisations and extensions of our protocol, are described in Sect. 5.

Third Step: Obtain the Correct Share. In this step S encrypts the output
string γ0 using the key k�

λ and uses all the other keys in the last level of G to
encrypt the output string γ1.10 At this point the receiver can only decrypt either
the ciphertext that contains γ0 if x /∈ Y or one (and only one) of the ciphertexts
that contain γ1 if x ∈ Y . In the protocol that we have described so far R does
not know which ciphertext can be decrypted using the key that he has obtained.
Also in this case we can use a point-and-permute technique to allow R to identify
the only ciphertext that can be decrypted using his key.

On the Need for Padding. As describe earlier, we might need to add some
padding to the OT sender’s inputs. To see why we need this we make the follow-
ing observation. We recall that in the i-th OT execution the sender computes an
encryption of the keys in the level i of the artificial graph G using the keys of
the previous level (i − 1).11 As a result of this computation the sender obtains
the pair (ci

0, c
i
1), that will be used as input of the i-th OT execution, where ci

0

(as well as ci
1) contains a number of encryptions that depends upon the number

of vertices on level (i − 1) of G. We observe that this leaks information about
the structure of G to the receiver, and therefore leaks information about the
elements that belong to Y . Considering the example in Fig. 1, if we allow the
receiver to learn that the 2nd level only contains 3 nodes, then the receiver would
learn that all the elements of Y have the two most significant bits equal to either
t or t′ for some t, t′ ∈ {0, 1}2 (in Fig. 1 for example we have t = 01 and t′ = 11;
note however that the receiver would not learn the actual values of t and t′).

We note that the technique described in this section can be seen as a special
(and simpler) example of securely evaluating a branching program. Secure eval-
uation of branching programs has previously been considered in [22,31]: unfortu-
nately these protocols cannot be instantiated using OT-extension and therefore
will not lead to practically efficient protocols (the security of these protocols is
based on strong OT which, in a nutshell, requires the extra property that when
executing several OTs in parallel, the receiver should not be able to correlate
the answers with the queries beyond correlations which follow from the output).

Finally, we note that the work of Chor et al. [6] uses a data structure similar
to the one described here to achieve private information retrieval (PIR) based on
keywords. The main difference between keyword based PIR and PSM is that in
PSM the receiver should not learn any other information about the data stored
by the sender, so their techniques cannot be directly applied to our setting.

3 Definitions and Tools

We denote the security parameter by s and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of
10 The key k�

λ could not exists; e.g. if Y contains all the strings of λ bits.
11 The only exception is the first OT execution where just two keys are used as input.
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a and b). For a finite set Q, x ← Q denotes a sampling of x from Q with
uniform distribution. We use the abbreviation ppt that stands for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function. We
assume the reader to be familiar with standard notions such as computational
indistinguishability and the real world/ideal world security definition for secure
two-party computation (see the full version [7] for the actual definitions).

3.1 Special Private-Key Encryption

In our construction we use a private-key encryption scheme with two additional
properties. The first is that given the key k, it is possible to efficiently verify
if a given ciphertext is in the range of k. With the second property we require
that an encryption under one key will fall in the range of an encryption under
another key with negligible probability As discussed in [28], it is easy to obtain
a private-key encryption scheme with the properties that we require. According
to [28, Definition 2] we give the following definition.

Definition 1. Let Sym = (Gen,Enc,Dec) be a private-key encryption scheme
and denote the range of a key in the scheme by Ranges(k) = {Enc(k, x)}x∈{0,1}s .

1. We say that Sym has an efficiently verifiable range if there exists a ppt algo-
rithm M such that M(1s, k, c) = 1 if and only if c ∈ Ranges(k). By conven-
tion, for every c /∈ Ranges(k), we have that Dec(k, c) = ⊥.

2. We say that Sym has an elusive range if for every probabilistic
polynomial-time machine A, there exists a negligible function ν(·) such that
Probk←Gen(1s)[A(1s) ∈ Ranges(k)] < ν(s).

Most of the well known techniques used to construct a private-key encryption
scheme (e.g. using a PRF) can be used to obtain a special private-key encryption
scheme as well. The major difference is that a special encryption scheme has (in
general) ciphertexts longer than a standard encryption scheme.

4 Our Protocol Π∈

In this section we provide the formal description of our protocol Π∈ = (S,R) for
the set-membership functionality F∈ = (F∈

S ,F∈
R ) where

F∈
S :

({{0, 1}λ}M × (γ0, γ1)
) × {0, 1}λ −→ ⊥ and

F∈
R :

({{0, 1}λ}M × (γ0, γ1)
) × {0, 1}λ −→ {γ0, γ1}

(
Y, (γ0, γ1), x

) 
−→
{

γ1 if x ∈ Y

γ0 otherwise

where γ0 and γ1 are arbitrary strings and are part of the sender’s input. There-
fore our scheme protects both Y and γ1−b, when γb is received by R.

For the formal description of Π∈, we collapse the first and the second step
showed in the information description of Sect. 2 into a single one. That is, instead
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of constructing the graph G, the sender only computes the keys at level i in order
to feed the i-th OT execution with the correct inputs. The way in which the keys
are computed is the same as the vertices for G are computed, we just do not
need to physically construct G to allow S to efficiently compute the keys. In our
construction we make use of the following tools.

1. A protocol ΠOT = (SOT ,ROT ) that securely computes the following func-
tionality

FOT : ({0, 1}� × {0, 1}�) × {0, 1} −→ {⊥} × {0, 1}�

((c0, c1), b) 
−→ (⊥, cb).

2. A symmetric key encryption scheme Sym = (Gen,Enc,Dec) with efficiently
verifiable and elusive range.

3. In our construction we make use of the following function: δ : i 
−→
min{2i, |Y |}.

This function computes the maximum number of vertices that can appear in the
level i of the graph G. As discussed before, the structure of G leaks information
about Y . In order to avoid this information leakage about Y , it is sufficient to
add some padding to the OT sender’s input so that the input size become |Y |.
Indeed, as observed above, every level contains at most |Y | vertices. Actually, it
is easy to see that min{|Y |, 2i} represents a better upper bound on the number
of vertices that the i-th level can contain. Therefore, in order to compute the
size of the padding for the sender’s input we use the function δ.

4.1 Formal Description

Common input: security parameter s and λ.
S’s input: a set Y of size M , γ0 ∈ {0, 1}s and γ1 ∈ {0, 1}s.
R’s input: an element x ∈ {0, 1}λ.

First stage
1. For i = 1, . . . , λ, S computes the sink key k�

i ← Gen(1s).
2. S computes k0 ← Gen(1s), k1 ← Gen(1s). For b = 0, 1, if b /∈ Prefix(Y, 1)

then set kb = k�
1
12. Set (c10, c

1
1) = (k0, k1).

3. S and R execute ΠOT , where S acts as the sender SOT using (c10, c
1
1)

as input and R acts as the receiver ROT using xλ as input. When the
execution of ΠOT ends R obtains κ1 := c1xλ

.
Second stage. For i = 2, . . . , λ:
1. S executes the following steps.

1.1 Define the empty list ci
0 and for all t ∈ Prefix(Y, i − 1) execute the

following steps.

12 We observe that if Y is not empty (like in our case) then there exists at most one
bit b s.t. b ∈ Prefix(Y, 1).
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– If t||0 ∈ Prefix(Y, i) then compute kt||0 ← Gen(1s) and add
Enc(kt, kt||0) to the list ci

0. Otherwise, if t||0 /∈ Prefix(Y, i) then
compute and add Enc(kt, k

�
i ) to the list ci

0.
1.2 If |ci

0| < δ(i − 1) then execute the following steps.
– Compute and add Enc(k�

i−1, k
�
i ) to the list ci

0.
– For j = 1, . . . , δ(i − 1) − |ci

0| compute and add Enc(Gen(1s), 0) to
ci
0.

13

1.3 Permute the elements inside ci
0.

1.4 Define the empty14 list ci
1 and for all t ∈ Prefix(Y, i − 1) execute the

following step.
– If t||1 ∈ Prefix(Y, i) then compute kt||1 ← Gen(1s) and add

Enc(kt, kt||1) to the list ci
1. Otherwise, if t||1 /∈ Prefix(Y, i) compute

and add Enc(kt, k
�
i ) to the list ci

1.
1.5 If |ci

1| < δ(i − 1) then execute the following steps.
– Compute and add Enc(k�

i−1, k
�
i ) to the list ci

1.
– For j = 1, . . . , δ(i − 1) − |ci

1| compute and add Enc(Gen(1s), 0) to
ci
1.

1.6 Permute the elements inside ci
1.

2. S and R execute ΠOT , where S acts as the sender SOT using (ci
0, c

i
1) as

input and R acts as the receiver ROT using xλ−i+1 as input. When the
execution of ΠOT ends, R obtains ci

xλ−i+1
.

Third stage
1. S executes the following steps.

1.1 Define the empty list l.
1.2 For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ

1) to l.
1.3 If |l| < 2λ then compute and add Enc(k�

λ, γ0) to l.
1.4 Permute the elements inside l and send l to R.

2. R, upon receiving l acts as follows.
2.1 For i = 2, . . . , λ execute the following steps.

– For every element t in the list ci
xλ−i+1

compute κ ← Dec(κi−1, t).
If κ �= ⊥ then set κi = κ.

2.2 For all e ∈ l compute out ← Dec(κλ, e) and output out if and only if
out �= ⊥.

Theorem 1. Suppose ΠOT securely computes the functionality FOT and Sym
is a special private-key encryption scheme, then Π∈ securely computes F∈.

We refer the reader to the full version of this work [7] for the formal proof.

13 In this step, as well as in the step 1.5 of this stage, the function δ is used to compute
the right amount of fake encryption to be added to the list that will we used as input
of ROT .

14 The following three steps are equal to the previous three steps (1.1, 1.2 and 1.3), the
only difference is that t||1 is considered instead of t||0.
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Round Complexity: Parallelizability of Our Scheme. In the description of our
protocol in Sect. 4.1 we have the sender and the receiver engaging λ sequential
OT executions. We now show that this is not necessary since the OT executions
can be easily parallelized, given that each execution is independent from the
other. That is, the output of a former OT execution is not used in a latter
execution. For simplicity, we assume that ΠOT consists of just two rounds, where
the first round goes from the receiver to the sender, and the second goes in the
opposite direction. We modify the description of the protocol of Sect. 4.1 as
follows. The Step 3 of the first stage and step 2 of the second stage are moved to
the beginning of the third stage. When S sends the last round of ΠOT , he also
performs the step 1 of the third stage. Therefore the list l is sent together with
the last rounds of the λ ΠOT executions. Roughly speaking, in this new protocol
S first computes all the inputs (k0, k1, c10, c11, . . . , c

λ
0 , cλ

1 ) for the OTs. Then, upon
receiving the λ first rounds of ΠOT computed by R using as input the bits of x,
S sends λ second round of ΠOT together with the list l. We observe that in this
case the S’s inputs to the λ executions of ΠOT can be pre-computed before any
interaction with R begins.

5 Optimisations and Extensions

Point and Permute. In our protocol the receiver must decrypt every ciphertext
at every layer to identify the correct one. This is suboptimal both because of
the number of decryptions and because encryptions that have efficiently verifi-
able range necessarily have longer ciphertexts. This overhead can be removed
using the standard point-and-permute technique [4] which was introduced in the
context of garbled circuits. Using this technique we can add to each key in each
layer a pointer to the ciphertext in the next layer which can be decrypted using
this key. This has no impact on security.

One-Time Pad. It is possible to reduce the communication complexity of our
protocol by using one-time pad encryption in the last log s layers of the graph,
in the setting where the output values γ0, γ1 are such that |γb| < s. For instance,
if the output values are bits (in case we combine our PSM with a GMW-style
protocol), then the keys (and therefore the ciphertexts) used in the last layer of
the graph only need to be 1 bit long. Unfortunately, since the keys in the second
to last layer are used to mask up to two keys in the last layer, the keys in the
second to last layer must be of length 2 and so on, which is why this optimisation
only gives benefits in the last log s layer of the graph.

PSM with Secret Shared Input. Our PSM protocol produces an output which
can be post-processed using other 2PC protocols. It is natural to ask whether
it is possible to design efficient PSM protocols that also work on encrypted or
secret-shared inputs. We note here that our protocol can also be used in the
setting in which the input string x is bit-wise secret-shared between the sender
and the receiver i.e., the receiver knows a share r and the sender knows a share
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s s.t., r ⊕ s = x. The protocol does not change for the receiver, who now inputs
the bits of r = rλ, . . . , r1 to the λ one-out-of-two OTs (instead of the bits of x
as in the original protocol). The sender, at each layer i, will follow the protocol
as described above if si = 0 and instead swap the inputs to the OT if si = 1. It
can be easily verified that the protocol still produces the correct result and does
not leak any extra information.

Keyword Search. Our PSM protocol outputs an encryption of a bit indicating
whether x ∈ Y or not. The protocol can be easily modified to output a value
dependent on x itself and therefore implement “encrypted keyword search”. That
is, instead of having only two output strings γ1, γ0 representing membership and
non-membership respectively, we can have |Y |+1 different output strings (one for
each element y ∈ Y and one for non-membership). This can be used for instance
in the context where Y is a database containing id’s y and corresponding values
v(y), and the output of the protocol should be an encryption of the value v(x)
if x ∈ Y or a standard value v(⊥) if x �∈ Y . The modification is straightforward:
instead of using all the keys in the last layer of the graph to encrypt the same
value γ1, use each key ky to encrypt the corresponding value v(y) and the sink
key (which is used to encrypt γ0 in our protocol) to encrypt the value v(⊥).

PSI from PSM. We can follow the same approach of PSZ [34,36] to turn our PSM
protocol into a protocol for PSI. Given a receiver with input X and a sender with
input Y the trivial way to construct PSI from PSM is to run |X| copies of PSM,
where in each execution the receiver inputs a different x from X and where the
sender always inputs her entire set Y . As described above, the complexity of our
protocol (as the complexity of the PSM protocol of PSZ) is proportional in the
size of |Y |, so this näıve approach leads to quadratic complexity O(|X|·|Y |). PSZ
deals with this using hashing i.e., by letting the sender and the receiver locally
preprocess their inputs X,Y before engaging in the PSM protocols. The different
hashing techniques are explained and analysed in [37, Sect. 3]. We present the
intuitive idea and refer to their paper for details: in PSZ the receiver uses Cuckoo
hashing to map X into a vector X ′ of size 	 = O(|X|) such that all elements
of X are present in X ′ and such that every x′

i ∈ X ′ is either an element of X
or a special ⊥ symbol. The sender instead maps her set Y into 	 = |X ′| small
buckets Y ′

1 , . . . , Y
′
� such that every element y ∈ Y is mapped into the “right

bucket” i.e., the hashing has the property that if y = x′
i for some i then y will

end up in bucket Y ′
i (and potentially in a few other buckets). Now PSZ uses

the underlying PSM protocol to check whether x′
i is a member of Y ′

i (for all
i’s), thus producing the desired result. The overall protocol complexity is now
O(

∑l
i=1 |X ′| · |Y ′

i |) which (by careful choice of the hashing parameters) can be
made sub-quadratic. In particular, if one is willing to accept a small (but not
negligible) failure probability, the overall complexity becomes only linear in the
input size. Since this technique is agnostic of the underlying PSM protocol, we
can apply the same technique to our PSM protocol to achieve a PSI protocol
that produces encrypted output.
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6 Applications

The major advantage provided by Π∈ is that the output of the receiver can be an
arbitrary value chosen by the sender as a function of x for each value x ∈ Y ∪{⊥}.
This is in contrast with most of the approaches for set membership, where the
value obtained by the receiver is a fixed value (e.g. 0) when x ∈ Y , or some
random value otherwise. We now provide two examples of how our protocol can
be used to implement more complex secure set operations. The examples show
some guiding principles that can be used to design other applications based on
our protocol. Without loss of generality in the following applications only the
receiver will learn the output of the computation. Moreover we assume that
the size of X and Y is equal to the same value M .15 Also for simplicity we
will describe our application using the näıve PSI from PSM construction with
quadratic complexity, but using the PSZ approach, as described in Sect. 5, it is
possible to achieve linear complexity using hashing techniques. Finally, in both
our applications we exploit the fact that additions can be performed locally
(and for free) using secret-sharing based 2PC. In applications in which round
complexity is critical, the protocols can be redesigned using garbled circuits
computing the same functionality, since the garbled circuit can be sent from the
sender to the other messages of the protocol. However in this case additions have
to be performed inside the garbled circuit.

Computing Statistics of the Private Intersection. Here we want to construct a
protocol where sender and receiver have as input two sets, X and Y respec-
tively, and want to compute some statistics on the intersections of their sets. For
instance the receiver has a list of id’s X and that the sender has a list of id’s
Y and some corresponding values v(Y ) (thus we use the variant of our protocol
for keyword search described in Sect. 5). At the end of the protocol the receiver
should learn the average of v(X ∩ Y ) (and not |X ∩ Y |). The main idea is the
following: the sender and the receiver run M executions of our protocol where
the receiver inputs a different xi from X in each execution. The sender always
inputs the same set Y , and chooses the |Y | + 1 outputs γy

i for all y ∈ Y ∪ {⊥}
for all i = 1, . . . , M in the following way: γy

i is going to contain two parts,
namely an arithmetic secret sharing of the bit indicating whether xi ∈ Y and an
arithmetic secret sharing of the value v(y). The arithmetic secret sharing will be
performed using a modulo N large enough such that N > M and N > M · V
where V is some upper bound on v(y) so to be sure that no modular reduction
will happen when performing the addition of the resulting shares. Concretely
the sender sets γy

i = (−u2
i + 1 mod N,−v2

i + v(y) mod N) for all y ∈ Y and
γ⊥

i = (−u2
i mod N,−v2

i mod N). After the protocol the receiver defines her
shares u1

i , v
1
i to be the shares contained in her output of the PSM protocol, and

then both parties add their shares locally to obtain secret sharing of the size
of the intersection and of the sum of the values i.e., U1 =

∑
i u1

i , V 1 =
∑

i v1
i ,

15 We assume this only to simplify the protocol description, indeed our protocol can
be easily instantiated when the two sets have different size.
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U2 =
∑

i u2
i , and V 2 =

∑
i v2

i . Now the parties check if (U1, U2) is a sharing
of 0 and, if not, they compute and reveal the result of the computation V 1+V 2

U1+U2 .
Both these operations can be performed using efficient two-party protocols for
comparison and division such as the one in [10,42].

Threshold PSI. In this example we design a protocol Πt = (P t
1 , P

t
2) that securely

computes the functionality F t = (F t
P t

1
,F t

P t
2
) where

F t
P t

1
: {{0, 1}λ}M × {{0, 1}λ}M −→ ⊥ and

F t
P t

2
: {{0, 1}λ}M × {{0, 1}λ}M −→ {{0, 1}λ}�

(S1, S2) 
−→
{

S1 ∩ S2 if |S1 ∩ S2| ≥ t

⊥ otherwise

That is, the sender and the receiver have on input two sets, S1 and S2 respec-
tively, and the receiver should only learn the intersection between these two sets
if the size of the intersection is greater or equal than a fixed (public) threshold
value t. In the case that the size of the intersection is smaller that t, then no
information about S1 is leaked to P t

2 and no information about S2 is leaked to P t
1 .

(This notion was recently considered in [16] in the context of privacy-preserving
ride-sharing). As in the previous example, the sender and the receiver run M
executions of our protocol where the receiver inputs a different xi from S2 in
each execution. The sender always inputs the same set S1, and chooses the two
outputs γ0

i , γ1
i in the following way: γb

i is going to contain two parts, namely an
arithmetic secret sharing of 1 if xi ∈ Y or 0 otherwise, as well as encryption
of the same bit using a key k. The arithmetic secret sharing will be performed
using a modulus larger than M , so that the arithmetic secret sharings can be
added to compute a secret-sharing of the value |S1 ∩S2| with the guarantee that
no overflow will occur. Then, the sender and the receiver engage in a secure-two
party computation of a function that outputs the key k to the receiver if and
only if |S1 ∩ S2| > t. Therefore, if the intersection is larger than the threshold
now the receiver can decrypt the ciphertext part of the γ values and learn which
elements belong to the intersection. The required 2PC is a simple comparison
with a known value (the threshold is public) which can be efficiently performed
using protocols such as [14,29].
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Abstract. Password-Authenticated Key Exchange (PAKE) establishes
a shared key between two parties who hold the same password, assur-
ing security against offline password-guessing attacks. The asymmetric
PAKE (a.k.a. augmented or verifier-based PAKE) strengthens this notion
by allowing one party, typically a server, to hold a one-way hash of the
password, with the property that a compromise of the server allows the
adversary to recover the password only via the offline dictionary attack
against this hashed password. Today’s client-to-server Internet authen-
tication is asymmetric, with the server holding only a (salted) password
hash, but it relies on client’s trust in the server’s public key certificate.
By contrast, cryptographic PAKE literature addresses the password-only
setting, without assuming certified public keys, but it commonly does
not address the asymmetric PAKE setting which is required for client-
to-server authentication.

The asymmetric PAKE (aPAKE) was defined in the Universally Com-
posable (UC) framework by the work of Gentry et al. [15], who also
provided a generic method of converting a UC PAKE to UC aPAKE, at
the cost of two additional communication rounds. Motivated by practical
applications of aPAKEs, in this paper we propose alternative methods
for converting a UC PAKE to UC aPAKE, which use only one addi-
tional round. Moreover, since this extra message is sent from client
to server, it does not add any round overhead in applications which
require explicit client-to-server authentication. Importantly, this round-
complexity reduction in the compiler comes at virtually no cost, since
with respect to local computation and security assumptions our con-
structions are comparable to that of Gentry et al. [15].
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1 Introduction

Symmetric PAKE and Its Limitations. In the cryptographic literature pass-
word authentication is modeled as a Password-Authenticated Key Exchange
(PAKE) [4,5,9], a protocol which allows two parties who share only a password
to establish a shared cryptographic session key. The main challenge in designing
a secure PAKE is the fact that passwords have low entropy and are therefore
subject to so-called dictionary attacks, a.k.a. password guessing attacks, where
the adversary searches a moderate-sized dictionary from which the user’s pass-
word is typically chosen. Every password-authentication protocol is subject to
on-line guessing attacks, where the adversary runs the prescribed PAKE proto-
col on a password guess with either the client or the server, and succeeds if its
guess was correct. While such attack is unavoidable, its effect can be reduced by
limiting the number of unsuccessful authentication session each party is willing
to run. However, a PAKE protocol must be secure against an off-line dictio-
nary attack, i.e. no efficient adversary can verify any password guess without the
on-line interaction described above. Informally, a PAKE protocol is secure if a
successful on-line guessing attack is the only way to learn information about the
established session keys.

The PAKE security model was introduced by Bellovin and Merritt [5] and
was formalized by Bellare et al. [4] and Boyko et al. [9] via a game-based defini-
tion, and then by Canetti et al. [12], who formalized PAKE in the Universally
Composable (UC) framework [11]. The UC definition of PAKE has become a de
facto standard in the cryptographic literature on PAKEs because it is widely rec-
ognized as capturing several security issues pertinent to PAKEs which the game-
based PAKE notions of [4,9] do not cover. Specifically, apart of standard UC
guarantee of security under arbitrary protocol composition, UC PAKE implies
forward-security, i.e. security of past protocol sessions in case of password com-
promise, and security for arbitrary password distribution, which implies security
for password mistyping and for related passwords.

Most of cryptographic PAKE literature focuses on the symmetric PAKE
setting, where both parties hold the password. However, if the client-to-server
password authentication was implemented with a symmetric PAKE, a com-
promise of the server would leak the passwords of all the users who authen-
ticate to that server. By contrast, the standard Internet password authentica-
tion, password-over-TLS, works in an asymmetric setting, where the server holds
only a (randomized) one-way hash of the password, and if an adversary compro-
mises the server, the only way it can recover any user’s password is by mounting
an exhaustive off-line dictionary attack using an exhaustive search over some
implicit password dictionary, and the attack succeeds only on the passwords
which this dictionary included. While this level of protection is far from per-
fect, as many users choose passwords with too low entropy, it still raises the bar
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for the attacker, and protects at least those users whose passwords are hard to
guess. This security advantage of an asymmetric password authentication essen-
tially makes symmetric PAKEs not applicable to the client-server setting. On the
other hand, the password-over-TLS authentication has weaknesses as well. First,
TLS relies on integrity of PKI, and breaks down under various PKI attacks, e.g.
human-engineering phishing attacks where the user is tricked to authenticate to
a malicious site. Secondly, while the server does not permanently store the user’s
password in the clear, it does hold it in the clear during an authentication ses-
sion, which makes the password vulnerable to server-side insider attacks, virus
attacks, and insecure memory and storage management.

State of Knowledge on Asymmetric PAKE. Cryptographic PAKE liter-
ature recognized the need to bridge between the password-authentication the-
ory, i.e. the symmetric but PKI-independent PAKE model, and the password-
authentication practice, i.e., the security requirements of client-to-server authen-
tication. The first formalization of asymmetric PAKE (aPAKE), a.k.a. aug-
mented or verifier-based PAKE, was introduced by Bellovin and Merritt [6] and
formalized in the game-based approach by Boyko et al. [9]. Subsequently, Gen-
try et al. [15] extended the UC PAKE model of [12] to the case of an adaptive
server compromise, and forcing the adversary to stage an off-line dictionary
attack to recover the password after such compromise. While several aPAKE
protocols were proven in game-based models, some argued only informally, e.g.
[2,7,9,10,22–24], the UC aPAKE notion is stronger than game-based aPAKE for
the same reasons that UC PAKE notion is stronger than game-based PAKE, thus
ideally we would like to know protocols which realize the UC asymmetric PAKE
notion of [9] and are comparable in efficiency and cryptographic assumptions to
standard authenticated key agreement protocols used in TLS.

However, there is not much known about provably secure UC aPAKEs. One
construction is the Ω-method due to Gentry et al. [15], shown in Fig. 1, which
transforms any UC PAKE protocol into a UC aPAKE secure in the Random
Oracle Model (ROM). The Ω-method compiler adds (up to) two communica-
tion rounds to the underlying PAKE, and its computation overhead is domi-
nated by a signature generation for the client and signature verification for the
server. Instantiated with ECDSA signatures, both these costs are only 1 (multi-
)exponentiation per party.

However, since the Ω-method is a compiler, the exact costs of UC aPAKE
it produces depend on the costs of the UC PAKE with which it is instanti-
ated. While there is very active research on standard-model UC PAKEs, includ-
ing round-minimal PAKEs [14,17,20,21], these constructions are typically more
expensive and require stronger assumptions than protocols satisfying game-based
PAKE notions [4,9] in ROM. Since any UC aPAKE construction requires non-
black-box assumptions, it makes sense to instantiate the Ω-method with a UC
PAKE secure in ROM. However, while there are many 2-round game-based
PAKEs whose cost is close to (intuitively minimal) 2 exponentiations/party of
Diffie-Hellman Key Exchange (see e.g. [3] and references therein), we know of
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only one UC PAKE with comparable efficiency, by Abdala et al. [1], which relies
on the DDH assumption in ROM and Ideal Cipher (IC) models, and uses 3 pro-
tocol rounds and 2 exponentiations per party. Combined with the Ω-method of
Gentry et al. the UC symmetric PAKE of [1] implies a UC asymmetric PAKE
with 5 rounds, 3 exponentiations per party, secure under the DDH assumption
in ROM+IC model.

Fig. 1. The Ω-method by Gentry-MacKenzie-Ramzan [15]: H is a hash function, and
(E, D) and (E′, D′) are symmetric encryption schemes (see [15] for their specification).
The server-held password file created for password π is (r, pk, c) where r = H(π),
c = E′

π(sk), and (sk, pk) is a private, public key pair in a signature scheme.

We know of only two further UC aPAKE constructions in addition to the Ω-
method of [15]. First, Jutla and Roy [19] proposed a round-minimal UC aPAKE
in ROM, i.e. client and server send a single message and they can do so simul-
taneously, but their scheme requires groups with bilinear maps, uses signifi-
cantly more exponentiations (and bilinear maps) per party. Secondly, Jarecki et
al. [16] proposed a strong UC aPAKE protocol called OPAQUE, where hashed
passwords are privately salted (see Sect. 2 for further discussion), which requires
only 2 rounds of communication, and only 3 or 4 exponentiations per each party,
but it relies on the somewhat non-standard and interactive assumption of One-
More Diffie-Hellman. This leaves open the possibility of similarly low-round UC
aPAKE relying on static assumptions.

Note on Verifier-Based PAKEs. We note that Benhamouda and Pointcheval
[7] upgraded the game-based definition of aPAKE, called verifier-based PAKE
therein, by strengthening the game-based aPAKE model of [9] to arbitrary pass-
word distributions and related passwords. One point of strengthening game-
based aPAKE notion given that a UC aPAKE notion exists is a potential for
better efficiency, but the other is that the UC aPAKE model of Gentry et al. [15]
seems not to be realizable without some non-black-box assumption on the adver-
sary’s local computation, like ROM, IC, or a generic group model. Indeed, the
UC aPAKE model [15] requires the simulator to extract off-line password tests
from adversary’s local computation of the hash function applied to password
guesses. However, [7] relies on the tight one-wayness requirement on the hash



Round-Reduced Modular Construction of Asymmetric PAKE 489

function applied to passwords when creating the hashed password on the server,
namely that given hash of a password chosen with δ min-entropy, the adversary
has to compute 2δ hash function instances to find it. Unfortunately, this notion
also seems impossible to realize without similar non-black-box assumptions on
the adversary, and [7] also rely on ROM to argue that this property is satisfied.
Regarding computational costs, by avoiding random oracles on the protocol level
(but not on the level of the underlying hash function), the aPAKE’s of [9] are
significantly more expensive than either the UC aPAKE resulting from [1,15] or
the UC aPAKE of [16]. Their 2-round scheme uses significantly more exponen-
tiations per party, and the 1-round scheme requires groups with bilinear maps
and has a still higher local computation cost.

Our Results. We show two new compilers which convert any UC-secure sym-
metric PAKE protocol into a UC-secure asymmetric PAKE. Our constructions
rely on ROM, as do all UC asymmetric PAKE schemes proposed so far [15,16,19],
and either the Computational Diffie-Hellman (CDH) or the Discrete Logarithm
(DL) assumption. The main point of both compilers is that they add only a
single additional message to the underlying PAKE, in contrast to the Ω-method
of Gentry et al. [15] which adds two messages. Moreover, this single extra mes-
sage is sent from client to server, and therefore in an application where the
aPAKE instance, which establishes a secure session key for both parties, is fol-
lowed by an explicit client-to-server entity authentication, e.g. the client uses
the session key output by PAKE to send a MAC on the aPAKE transcript to
the server, this additional message can be piggybacked with the client’s explicit
entity authentication flow. Likewise, if the last message of the symmetric UC
PAKE is client-to-server, our compilers also add no additional communication
flow to the protocol. By contrast, the Ω-method would add 2 message flows in
the latter case.

We note that if the last round in the symmetric UC PAKE was server-to-
client, then our compilers would offer no advantage over the Ω-method: Our
compilers would add one client-to-server round, and so would the Ω-method
because its first message c′ (see Fig. 1) would be piggybacked on the last server-
to-client flow of the underlying UC PAKE. Moreover, note that the symmetric
UC PAKE, by its very nature has no fixed roles, therefore every UC PAKE
protocol can be executed so that the last message flow is server-to-client. Indeed,
if the underlying n-round UC PAKE is executed in this way then the UC aPAKE
resulting from both our compilers and the Ω-method would have n + 1 rounds,
with the last flow being client-to-server. However, the optimal way to arrange
the n-round UC PAKE for the purpose of our compiler is so that its last flow is
client-to-server, in which case our compilers output n-round UC aPAKE, while
the Ω-method outputs an (n+2)-round UC aPAKE. Finally, note that sometimes
one will not have the flexibility of arranging the underlying PAKE in a way
that optimizes the resulting aPAKE, because sometimes the choice of party who
starts the interaction, i.e. whether it is the client or the server, will be fixed by
an application.
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We show two compilers, one utilizing a parallel round of a Diffie-Hellman
Key Exchange, shown in Sect. 3, and one utilizing a NIZK of discrete logarithm
knowledge, shown in Sect. 4. We refer to these constructions as respectively CDH-
based and DL-based because these are the assumptions they require for security.
The computational costs of the first compiler is 1 exponentiation per client and 2
per server, while for the second compiler it is 1 (multi-)exponentiation per both
parties, which matches the computational costs of the Ω-method instantiated
with ECDSA signature. Looking a little closer, the costs of each option can be
affected by the fact that in our DL-based compiler, exactly as in the Ω-method
instantiated with ECDSA signature, the client’s exponentiation is fixed-base, and
therefore can be sped-up by pre-computation, while the server’s exponentiation
is variable-base, while in the CDH-based compiler the client’s exponentiation is
variable-base and the two server’s exponentiations are fixed-base, with one base
fixed globally and the second base fixed per each user account. We summarize
this discussion in Table 1 below.

Table 1. Comparison of PAKE-to-aPAKE compiler costs

Exponentiation cost Number of added rounds

Client Server

Our CDH-based compiler 1 var. base 2 fixed base 0 or 1

Our DL-based compiler 1 fixed base 1 var. base 0 or 1

Ω method + ECDSA [15] 1 fixed base 1 var. base 1 or 2

Since just like [15] our UC aPAKE constructions are compilers from any UC
PAKE, the efficiency and security assumptions of the resulting aPAKE depend
also on the underlying UC PAKE. Since our compilers require ROM it makes
sense to instantiate them with a low-cost UC PAKE secure in ROM. However,
as mentioned above, we know only one UC PAKE constructed along these lines,
namely the protocol of Abdalla et al. [1]. Because the last message of this PAKE
is a client-to-server flow, the UC aPAKE’s which result from our compilers
applied to UC PAKE of [1] will take 3 rounds and use 3 exponentiations per
client and either 3 or 4 exponentiations per server. We include a specification of
the UC aPAKE resulting from applying our CDH-based compiler to UC PAKE
of [1] in Sect. 5.

We note that theoretically our compiler can also be instantiated with any
minimum-round UC PAKE, e.g. [18], but it would result in a 2-round UC
aPAKE, and the computation cost of the resulting protocol would be close to
(and thus probably not competitive with) the 1-round UC aPAKE of [19].

2 Security Model

Our protocols convert any UC-secure symmetric PAKE into a UC-secure asym-
metric PAKE, exactly like the protocol of [15], and we assume the same
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models of universally composable symmetric PAKE and asymmetric PAKE as
in [15], denoted respectively FrpwKE and FapwKE. For completeness we include the
full description of both functionalities in AppendixA, in Figs. 5 and 6. Below
we sketch the most important points in which these functionalities differ from
the standard UC PAKE functionality of [11], and we refer to [15] for their full
exposition.

The Revised Symmetric PAKE Functionality [15]. The symmetric PAKE
functionality FrpwKE defined by [15] is a revision of the original PAKE functional-
ity defined by Canetti et al. [12]. Namely, it allows the functionality to produce
a bitstring representing a transcript of the real-world execution of the PAKE
protocol. Clearly, every real-world protocol has a transcript, but a typical UC
functionality is concerned only with its “functional” input/output behavior and
often omits the fact that various “objects” involved in protocol operation, e.g.
private keys, public keys, transcripts, have physical encodings as bitstrings. This
is unfortunate (and it is often not easy to do) because in protocol composition
it can be very useful to process such objects through other cryptographic mech-
anisms, e.g. to sign them, encrypt them, secret-share them, etc. The idea of
the PAKE-to-aPAKE compiler of Gentry et al. [15] was for the client to sign the
PAKE transcript using a key encrypted by the server using the session key output
by the symmetric PAKE. This signature acts in the Gentry et al. construction
as a proof of possession of the password. However, for this modular construc-
tion to work, the UC symmetric PAKE functionality must expose some bitstring
as the transcript to the environment. This is the sole point of the revised UC
PAKE functionality FrpwKE compared to the one defined in [12], and we adopt
this revision because our compilers will likewise use the transcript of the symmet-
ric PAKE to bind the proof-of-password-possession to the underlying symmetric
PAKE instance, although we will implement this proof-of-password-possession
using different cryptographic mechanisms than the encrypted-key/signature-on-
transcript protocol of Gentry et al.

The Asymmetric PAKE Functionality. The asymmetric functionality
FapwKE is a more fundamental modification of the symmetric PAKE function-
ality [12], which models password authentication in the setting where only one
party, the client, authenticates using a password, while the other, the server,
uses a bitstring called a password file, which without loss of generality is an out-
put of some (randomized) one-way function applied to the password during the
initialization procedure. For example, in the standard password-over-TLS imple-
mentation the password file is a pair consisting of a random nonce known as salt
and a hash of the password concatenated with this salt value. In the FapwKE

functionality, Fig. 6, creation of the password file on the server is modeled by
command StorePWfile, and note that the server-side invocation of the authenti-
cation protocol instance, via command SvrSession, does not take the password
as an input because its implicit input is the stored password file corresponding
to session ID sid of this aPAKE instance. (It is assumed that a unique sid would
be assigned to each user account held by a given server.)
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The other fundamental difference between the asymmetric PAKE function-
ality FapwKE and a symmetric PAKE is that an adversary may adaptively com-
promise the server and learn the stored password file, which is modeled by
query StealPWfile. Such adaptive server compromise allows the adversary to
then impersonate the server to the client, modeled via the Impersonate com-
mand, because a real-world adversary could use the stolen password file to emu-
late the server in the authentication protocol. Finally, since the password file is
w.l.o.g. an output of some one-way function applied to the password, an adaptive
server compromise allows the adversary to stage an off-line dictionary attack:
The adversary can compute the same one-way function, a.k.a. password hash,
on any password guess, which is modeled by the OfflineTestPwd query: If the
password file is stolen, this computation allows the adversary to test if its pass-
word guess is correct, because then the password hash would match the one
in the password file. If the password file is not stolen yet, the adversary can
store these pre-computed hashes, which FapwKE models by storing the password
guesses made by the adversary via the OfflineTestPwd command, and learn if any
of these guesses were correct at the moment of server corruption. This is modeled
by functionality FapwKE checking after the StealPWFile command whether any of
the password guesses made via OfflineTestPwd queries is equal to the password
used in to create the password file.

Deterministic vs. Salted Hash in Asymmetric PAKE. We note that the
above processing of off-line computation of password hashes models asymmetric
PAKE protocols where the one-way function used in computation of the pass-
word file, a.k.a. password hash, is either deterministic or its randomness, a.k.a.
password salt, is revealed in the protocol. Recently Jarecki et al. [16] proposed a
strengthening of the UC aPAKE notion of [15] to a privately salted UC aPAKE,
where the password hash is a randomized function of the password and the ran-
domness stays private until server compromise. This strengthening is modeled
by a modified UC aPAKE functionality which allows the adversary to compute
relevant password hashes only after server compromise. We note that [16] shows
a generic compiler from unsalted or “publicly salted” UC aPAKE, satisfying
functionality FapwKE which is the target of aPAKE constructions of this paper,
to a privately salted UC aPAKE, using an Oblivious Pseudorandom Function
(OPRF) scheme. Since the latter can be realized e.g. under the One-More Diffie
Hellman assumption using 2 exponentiations for the client and 1 for the server,
in ROM, every aPAKE construction satisfying the weaker aPAKE notion of
[15], e.g. the aPAKE protocols presented in this paper, implies privately-salted
aPAKE satisfying the stronger aPAKE notion of [16], at this modest increase in
computational cost.1

1 The compiler of [16] also adds up to 2 extra rounds to the aPAKE protocol, but for
example in the case of any of our aPAKE constructions instantiated with the PAKE
of Abdalla et al. [1] (see Fig. 4), the OPRF instance in the compiler of [16] would be
piggybacked with the first two protocol flows, so the resulting privately salted UC
aPAKE would have the same 3 rounds.
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3 Asymmetric PAKE Construction Based on CDH

Our first construction converts a symmetric UC PAKE protocol Π to an asym-
metric UC PAKE, just as the compiler of Gentry et al. [15], but using a different
method.

Our construction, shown in Fig. 2, runs the symmetric PAKE protocol Π
on hashed password r = H1(π), but in parallel it also runs a Diffie-Hellman
Key Exchange (DH-KE) where the client’s contribution is fixed as V = gz for
z = H0(π), i.e. an independent password hash. The server’s contribution is
Y = gy for random y is the only message transferred in this DH-KE instance,
because the client’s contribution V = gH0(π) is part of the password file stored
on the server. The key K0 = V y = Y z = gH0(π)·y resulting from this DH-KE
could be computed in an off-line dictionary attack given the DH-KE transcript
Y , so we hash it together with key K1 output by symmetric PAKE Π to derive
an authenticator t = H2(K0||K1||[. . .]) which is sent from the client to the server
before another hash of key K1 is used as the session key. Note that security of
PAKE Π implies that key K1 is pseudorandom except if the adversary learns
r = H1(π) and succeeds in an on-line dictionary attack on Π, hence t is safe
from off-line dictionary attacks.

The role key K0 plays in the derivation of authenticator t is to force the
adversary to perform an off-line attack against password π after compromise
of the server. Note that protocol Π plays no security role after server compro-
mise because the adversary can then execute the symmetric PAKE Π on the
correct input r = H1(π). However, the DH-KE key K0 = Y H0(π) is pseudoran-
dom unless the adversary queries H0 on π, an event which the UC simulator
(assuming ROM) can catch and identify as an off-line password test. Note that
the adversary who learns the server-stored values r = H1(π) and V = gH0(π)

can also perform an off-line test by hashing its password guesses via H0 and H1,
but the point is that our DH-KE instance key K1 does not offer any easier way
for the adversary to find a password than an off-line dictionary attack, which is
unavoidable in the asymmetric PAKE setting after server compromise.

Detailed Description of CDH-Based aPAKE Construction. The result-
ing protocol is shown in Fig. 2, and here we go over this construction in more
details. Let Π be an arbitrary secure symmetric PAKE protocol, G be a finite
cyclic group of order q, and g ∈ G be its generator, and triple (G, g, q) is a
public parameter of the scheme. Let H0 be a hash function with range Zq, and
let H1,H2,H3 be three independent hash functions with range {0, 1}� where �
is the security parameter.

Password Enrollment. The user’s password file stored on the server is a pair (r, V )
which is formed given the user’s password π as r = H1(π) and V = gH0(π).
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Fig. 2. Construction I: CDH-based compiler from symmetric PAKE to asymmetric
PAKE

Protocol Description.

• Client Part 1: The client runs the client-side protocol in the symmetric PAKE
Π on input H0(π).

• Server Part 1: The server runs the server-side protocol in the symmetric PAKE
Π on input r. In parallel, the server picks a random exponent y in Zq and
sends Y = gy to the client along with the last message MSGPAKE

L,Server of Π. Let
K1 be the server’s session key output by protocol Π.

• Client Part 2: Upon receiving message (Y , MSGPAKE
L,Server) from the server, the

client aborts if Y = 1G or Y /∈ G. If the check passes, the client completes
its Π instance, and let K1 be the client’s session key output by Π. The client
computes K0 = Y H0(π) and t = H2(K1||K0||Y ||tr) where tr is the client’s
transcript of the symmetric PAKE instance Π, sends t to the server, and
outputs ssk = H3(K1) as its session key.

• Server Part 2: Upon receiving message t from the client, the server computes
K0 = V y and aborts if t �= H2(K1||K0||Y ||tr) where tr is the server’s tran-
script of the symmetric PAKE instance Π. If the check verifies, the server
outputs ssk = H3(K1) as its session key.

Cost Discussion. The key import of our compiler construction shown in Fig. 2
is that it adds only one message to the underlying symmetric PAKE Π. Moreover,
if the last message of Π is from the client to the server, which happens whenever
Π provides explicit entity authentication, then this additional message t can be
piggy-backed with the last flow of Π. An example of the latter UC PAKE is
the construction of Abdalla et al. [1], and as can be seen in Fig. 4 in Sect. 5,
our PAKE-to-aPAKE compiler applied to this UC PAKE does not increase its
message complexity. By contrast, the same cannot be done in the Ω-method of
Gentry et al. [15], because it adds two messages, server-to-client and client-to-
server to the symmetric PAKE (see Fig. 1), and the server-to-client message can
be sent only after the server finalizes the PAKE instance Π because it requires



Round-Reduced Modular Construction of Asymmetric PAKE 495

server’s session key output by Π. Therefore, if the final flow of Π is client-to-
server the Ω-method would add two messages to the underlying symmetric PAKE
protocol Π.

In terms of computational costs, as discussed in the introduction
the Ω-method instantiated with ECDSA [25] signatures requires one
(multi)exponentiation per party for resp. signature creation and verification,
where client’s exponentiation is fixed-base and server’s (multi)exponentiation
is variable-base, while our compiler requires one variable-base exponentiation
for the client and two fixed-base exponentiations for the server, for computing
Y = gy and K0 = V y, although base V is not fixed globally but only per user
account.

3.1 Security Argument for Our CDH-Based aPAKE Construction

We state the security of our asymmetric PAKE protocol in Theorem1 below.
In the security argument we model hash functions H0,H1,H2,H3 used by this
protocol as random oracles. For lack of space, we only include an informal sketch
of the simulator, and the full formal proof of this theorem is deferred to the full
version.

Theorem 1. If (G, g, q) is a cyclic group in which CDH assumption holds and
if protocol Π realizes the revised symmetric UC PAKE functionality FrpwKE then
the protocol in Fig. 2 securely realizes the UC aPAKE functionality FapwKE in the
random oracle model for hash functions H0,H1,H2,H3.

Simulator Construction. Let A be an adversary that interacts with the par-
ties running the protocol. In the proof we will assume that the execution of
the symmetric PAKE protocol Π and calls to hash functions H0,H1,H2,H3 are
replaced by an interaction with, respectively, an ideal functionality FrpwKE and
ideal functionality FRO modeling (four instances of) a random oracle. We con-
struct a simulator S interacting with the ideal functionality FapwKE such that no
probabilistic polynomial time environment Z can distinguish an interaction with
A in the (FrpwKE,FRO)-hybrid real world (henceforth real world) from an interac-
tion with S in the simulated ideal world (henceforth ideal world). Without loss
of generality, we assume that A is a “dummy” adversary that merely passes all
messages from and to Z, and all computations to Z.

In the following argument, we will use π to denote the original password input
to Pj while the password file was stored, i.e. that Z sends (StorePWfile, sid, Pi, π)
to Pj , we will use π′ to denote the password which Pi uses on its authentication
session, i.e. that Z sends (CltSession, sid, ssid, Pj , π

′) to Pi, and we will use w to
denote any other password candidate, e.g. in adversary’s off-line password test
queries.

S’s essential tasks are as follows:

– Dealing with server compromise and offline attacks: When A compromises
(sid, Pj), S must come up with r which is supposed to be H1(π), and V which
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is supposed to be gH0(π), yet S may not know π. In this case, S chooses r
and v (supposed to be H0(π) = logg V ) at random, and whenever S learns π
(this occurs when A queries H1(π) or H0(π) and S sends an OfflineTestPwd
message on π to FapwKE), S “programs” the random oracle results. (If S knows
π, it is trivial to compute r and V .)

– Pi’s message and output: When Pi’s PAKE session is completed and A sends
Y ′, S must come up with t which is supposed to be H2(K1||K0||Y ′||tr) and
let Pi output its session key which is supposed to be H3(K1). t is random
to Z unless it knows both K1 and K0; Pi’s output is random to Z unless it
knows K1. The only way for Z to learn K1 is via compromising Pi’s PAKE
session using the correct r′ = H1(π′), which in turn can be learned via (a)
compromising (sid, Pj) to get r = H1(π) and then setting π′ = π, or (b)
querying H1(π′). In case (a), Z also gets V = gH0(π), thus it can compute
K0 as V y′

(where y′ = log Y ′ and can be chosen by Z). In case (b), Z must
explicitly query H0(π′) in order to learn K0. In sum, there are four subcases:

• Case (a) above: S sets t as H2(K1||K0||Y ′||tr), and compromises Pi’s
session in FapwKE via an Impersonate message. Then S is able to set Pi’s
output, so it sets ssk as H3(K1).

• Case (b) above, and Z queries H0(π): Same as above, except that S com-
promises Pi’s session in FapwKE via a TestPwd message on π′, which can
be extracted by observing all H1(w) queries and checking which one was
used by A to compromise Pi’s PAKE session.

• Case (b) above, and Z does not query H0(π): Then Z learns K1, but K0 is
random to it. So S chooses t at random, but still compromises Pi’s FapwKE

session and sets ssk as H3(K1).
• Neither case (a) nor case (b) above holds: Then both K1 and K0 are

random to Z. So S chooses t at random and does not compromise Pi’s
session in FapwKE (so Pi’s output is a random string chosen by FapwKE).

– Pj ’s output: When Pj ’s PAKE session is completed and A sends t′, S must
let Pj abort, or output its session key which is supposed to be H3(K1). As
discussed in Sect. 3, Pj aborts unless (a) A merely passes all messages between
the client and the server, or (b) A knows both K1 and K0, which in turn
renders S’s ability to extract Pj ’s password π and use it to compromise Pj ’s
session in FapwKE. So there are three subcases:

• Case (a) above: If Pj ’s PAKE session is compromised, Z knows K1, so
S compromises Pj ’s session in FapwKE and sets ssk as H3(K1); otherwise
Pj ’s output is random to Z, so S does not compromise Pj ’s session in
FapwKE (so Pj ’s output is a random string chosen by FapwKE).

• Case (b) above: S extracts π as described in Sect. 3 and compromises Pj ’s
session in FapwKE via a TestPwd message on π. Then S sets ssk as H3(K1).

• Neither case (a) nor case (b) above holds: Then S lets Pj abort.

4 Asymmetric PAKE Construction Based on NIZK

Our second aPAKE construction is based on a non-interactive zero-knowledge
proof of knowledge (NIZK-PK) of Discrete Logarithm (DL). The construction
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is shown in Fig. 3, and it runs an instance of a symmetric PAKE, just like our
construction in Sect. 3 and the construction of Gentry et al. [15], but here the
symmetric PAKE instance is followed by the client sending to the server a NIZK-
PK of the password hash v = H0(π), where the verification value V = gH0(π) is
held by the server. Transmitting such NIZK-PK in the clear would enable off-line
dictionary attacks, so the NIZK-PK should be encrypted under the session key
output by the underlying symmetric PAKE. However, a low-cost implementation
of this NIZK-PK in ROM via the Fiat-Shamir heuristic [13] can be effectively
encrypted if the session key K output by the symmetric PAKE is hashed to
derive the verifier’s challenge in this NIZK.

Recall that a Fiat-Shamir NIZK-PK of the DL v = DL(g, V ) in ROM is
implemented by a pair (X, z) s.t. X = gx for x randomly chosen in Zq and
z = x + v · c mod q, where the verifier’s challenge c is computed as a hash of
X and the DL instance V , i.e. c = H2(X||V ). However, here we modify this
challenge-derivation in several ways: First, as mentioned above we include in
the hash input key K output by the symmetric PAKE instance Π. This has an
effect of encrypting this NIZK proof because if c = H2(K||[. . .]) then (X, z) is
distributed uniformly in G × Zq to an adversary for whom K is pseudorandom.
Secondly, we omit the DL challenge V from the hash, to save one exponentiation
from the client who would otherwise have to compute it as V = gH0(π). This
removal endangers the proof-of-knowledge property of this NIZK, but we replace
V with the transcript tr of the symmetric PAKE instance Π. This inclusion has an
effect of binding the NIZK to the PAKE instance, including its input r = H1(π),
and it suffices to show that the adversary cannot create such NIZK unless it
queries H0 on π or computes the DL v = DL(g, V ).

In effect, similarly as in construction of Sect. 3, to generate a valid last mes-
sage an adversary must either merely pass all messages between the client and
the server, or it must know both v = H0(π) and K. To know K, the adversary
must learn H1(π) via compromising the server or querying it, and then inter-
fering with the symmetric PAKE using H1(π). If adversary compromises the
server and learns r = H1(π), then the NIZKs (X, z) is sees by interacting with
the client leak no information because they can be simulated from V = gH0(π).
Conversely, if the adversary actively engages the server on any session then it
must produce such NIZK-PK itself, and by the similar argument as use in the
standard implementation of this proof of knowledge, i.e. when c = H2(K||V ),
this is impossible unless adversary either queries H0 on π or computes the dis-
crete logarithm v = DL(g, V ). In each of these cases the simulator can observe
what the adversary queries and react respectively.

Detailed Description of NIZK-Based aPAKE Construction. The result-
ing protocol is shown in Fig. 3, and here we explain it in more details. The setting
is exactly the same as in the protocol of Sect. 3 in Fig. 2, except that here H2 is
a hash function onto range Zq.
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Password Enrollment. As in the DH-based construction of Fig. 2, the password
file is a pair (r, V ) where r = H1(π) and V = gH0(π), where π is the user’s
password.

Protocol Description.

• Client Part 1: As in the construction of Fig. 2, the client runs the client-side
protocol in the symmetric PAKE Π on input H0(π). Let K be the client’s
session key output by this instance of Π.

• Server Part 1: The server runs the server-side protocol in the symmetric PAKE
Π on input r. Let K be the server’s session key output by this instance of Π.

• Client Part 2: The client picks random x in Zq, computes v = H0(π), X = gx,
and z = x+v ·c mod q for c = H2(K||X||tr) where tr is the client’s transcript
of Π. The client sends (X, z) to the server, and outputs ssk = H3(K) as its
session key.

• Server Part 2: Upon receiving (X, z) from the client, the server verifies if
X = gz · V −H2(K||X||tr) where tr is the server’s transcript of Π. If the check
fails, the server aborts, and otherwise it outputs ssk = H3(K) as its session
key.

Fig. 3. Construction II: NIZK-based compiler from symmetric PAKE to asymmetric
PAKE

Cost Discussion. The added cost of the construction in Fig. 3 is the cost of
the NIZK prover and the NIZK verifier. Implemented as above, these require
one exponentiation with fixed-base for the client, and one variable-base (multi-
)exponentiation for the server. These computational costs are exactly the same
as in the Ω-method instantiated with the ECDSA signature, because ECDSA
signature is indeed a version of the same NIZK-PK of discrete logarithm as we use
here. However, the construction in Fig. 3 has the same communication pattern as
the construction in Fig. 2, and hence saves two communication rounds compared
to the Ω-method if the last message in the underlying symmetric PAKE goes
from the client to the server.
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4.1 Security Argument for aPAKE Construction Based on NIZK

As in the first compiler, we state the security of our second compiler as well as
a sketch of the simulator below, and defer the full proof to the full version.

Theorem 2. If (G, g, q) is a cyclic group in which the DL assumption holds and
if protocol Π realizes the FrpwKE functionality, then the protocol in Fig. 3 securely
realizes the FapwKE functionality in the random oracle model for hash functions
H0, H1, H2, H3.

Simulator Construction. The simulator S is very similar to that in the proof
of Theorem 1. Indeed, since Pj ’s password file is identical to that in the previous
protocol, how S deals with server compromise and offline attacks is exactly the
same with the previous simulator.

When Pi’s PAKE session is completed, S must come up with X and z,
which are supposed to be gx for x random in Zq and x + H0(π′) · H2(K||X||tr),
respectively. Value X is a random group element, so S can simply choose it at
random; z is random to Z (independent of X) unless Z knows K. As analyzed
in Theorem 1, Z gets to know K via either of the following two approaches:
(a) compromising (sid, Pj) and then setting π′ = π, or (b) querying H1(π′). In
case (a), S chooses v = H0(π) when A compromises (sid, Pj), so it computes
z = x + v · H2(K||X||tr). In case (b), S computes z = x + H0(π′) · H2(K||X||tr),
where H0(π′) is chosen at random if undefined yet. Finally, if neither (a) nor (b)
holds, K is random to Z, so S chooses z at random.

When Pj ’s PAKE session is completed and A sends X ′ and z′, S must let
Pj abort, or output its session key which is supposed to be H3(K). Pj aborts
unless (a) A merely passes all messages between the client and the server, or

Fig. 4. A two-round UC asymmetric PAKE using compiler of Sect. 3 instantiated with
UC-Secure protocol of [1]. (E, D) is a symmetric encryption modeled as ideal cipher
over group G as the message space, g1 is another generator of the same group G, and
H ′ and H ′′ are hash functions with range {0, 1}�.
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(b) Z knows K and queries H0(π) (and thus can choose a random x′ in Zq and
set X ′ = gx′

and z = x′ + H0(π) · H2(K||X ′||tr′)). Case (a) is similar to the
corresponding case in the previous simulator. S can tell case (b) by checking
whether X = gz−H0(π)·H2(K||X′||tr′). If neither (a) nor (b) holds, S forces Pj to
abort.

5 An Efficient Instantiation of Our Method

To exemplify the practical implications of our reduced-round PAKE-to-aPAKE
compilers, we present a concrete instantiation of our aPAKE construction of
Sect. 3 where the PAKE subprotocol is instantiated with the UC PAKE of
Abdalla et al. [1] (henceforth referred to as the ACCP protocol), which is a
variant of the encrypted key exchange (EKE) of Bellovin and Merritt [5]. The
ACCP protocol is proven secure in the UC framework under the DDH assump-
tion in the Ideal Cipher (IC) model and ROM, where the Ideal Cipher assumption
is posited on a symmetric cipher with cyclic group G as a message space. The
ACCP protocol uses three rounds and 2 exponentiations per party. By combining
this protocol with our PAKE-to-aPAKE compiler in Fig. 2, we obtain a highly
efficient UC asymmetric PAKE, depicted in Fig. 4, with the same 3 rounds as
the underlying symmetric PAKE protocol, because in the ACCP protocol the
last message goes from the client to the server, and therefore our client-to-server
message t (see Fig. 2) can be piggybacked onto it. Note that the Ω-method of
[15] would instead result in a 5-round protocol, because its two-message inter-
action, server-to-client and client-to-server, can start only when the server in
the underlying symmetric PAKE outputs a session key, which is round 3 in the
ACCP protocol.

Cost Discussion. The computational cost of the asymmetric PAKE of Fig. 4 is
3 exponentiations per client (one fixed-base, two variable-base) and 4 per server
(three fixed-base, one variable-base), and the cost of the ideal-cipher encryption
and decryption. (See e.g. [8,26] on how an ideal cipher can be implemented over
an elliptic curve group.) Note that if we instantiate the PAKE-to-aPAKE con-
struction of Fig. 3 with the same ACCP symmetric PAKE protocol, the resulting
asymmetric PAKE would have the same communication pattern and 3 expo-
nentiations per client (two fixed-base, one variable-base) and 3 per server (one
fixed-base, two variable-base).
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A UC Password Authentication Functionalities

For reference we include the specification of functionalities FrpwKE and FapwKE

introduced by [15] for modeling resp. symmetric PAKE and asymmetric PAKE
protocols. We refer to Sect. 2 for an overview of these functionalities, and to [15]
for their full discussion.

Fig. 5. The revised symmetric PAKE functionality FrpwKE [15]
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Fig. 6. The asymmetric PAKE functionality FapwKE [15]
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1 Introduction

An electronic voting (e-voting) system is a salient instance of a network protocol
where verifying the correctness of the execution is of critical importance. One
can argue that if the concerned parties can not agree on the election transcript,
then the voting process itself is meaningless. Besides e-voting, verifiability of the
execution is desired in applications such as auctions and blockchain transactions.

It becomes apparent that in any protocol where consensus on the outcome
is essential, the protocol infrastructure must guarantee a consistent view to all
involved parties as far as auditing is concerned. Consistency here informally
suggests that any two auditors engaging in the verification process on the same
input but from possibly different network locations, should agree on their verdict,
i.e. they both accept or reject the execution outcome. If this guarantee cannot
be provided, then an adversary controlling the network could easily partition the
parties into small “islands”, such that each island has access to a partial, and
possibly (partially) fake, view of the execution. By doing this, the adversary can
undermine the auditors’ consensus on the outcome.

Consistency in voting may be realized in various ways depending on the elec-
tion setting. In small-scale elections (e.g. board elections) a consistent view can
be achieved by executing a consensus protocol by the voters themselves, even
without encrypting the votes if privacy is not a concern. However, when consider-
ing the large scale setting (e.g., national elections) where complete connectivity
among the participants is unrealistic, a publicly accessible and reliable method
is required for posting and reading all necessary election information. This is
provided by an electronic bulletin board (BB) which, abstractly, encompasses
two types of operations: (1) a posting operation involving users who make post
requests for items of their choice, potentially subject to some access policy, and
a subsystem of item collectors (ICs) that receive and store the submitted items.
(2) A publishing operation, where the IC subsystem publishes the stored items
on an audit board (AB) from where any party can read. The IC and the AB could
be distributed or centralized, or even managed by the same entity. Nonetheless,
the above description typifies the way BB’s are treated in the e-voting literature.

It is of high importance that the BB functionality implemented by the IC and
AB should function as an immutable database, so that submitted items cannot be
erased or changed. The desired features of such a database include: (a) the ability
to authenticate item contributors, (b) distributed operations to protect against
attacks on availability, (c) a predetermined time-span where item submission is
enabled, (d) resilience to modification so as to facilitate verifiability.

The necessity of a consistent BB has been stressed many times in e-voting
literature. In his PhD thesis, Benaloh [3] assumes BBs with append-only write
operations for auditing, also stressing that “implementing such bulletin boards
may be a problem unto itself.” Subsequently, most verifiable e-voting systems
proposed (e.g. [1,4,5,7–9,11,17,23,25]) refer to the notion of BB as a fundamen-
tal component of their infrastructure without explicitly realizing it.

Despite the widely accepted critical importance of building reliable BBs for
e-voting, the literature on proposals of secure and efficient BB constructions
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is scarce. Outside a limited number of early works [15,21,26,28,29], the most
concrete examples include the BB applied in the vVote e-voting system [14]
(cf. [6,12]) and the BB of the D-DEMOS Internet-voting (i-voting) system [10].
In all these cases, the introduced BB was either an integral part of a specific e-
voting system [10,15], or, even though modular, lacked formal treatment under
a comprehensive security model [14,21,26,28,29].

In this work, we focus on the functionality of the BB as used in e-voting
systems, yet we note that our approach can be extended to other applications
where a public reliable auditing system is needed. We aim to establish a com-
plete formal treatment of a BB and propose an efficient and provably secure
construction that can be deployed in a wide class of e-voting designs.

Initially, we are motivated by the security requirements proposed by Culnane
and Schneider [14], suggesting that a secure BB should prevent data injection
and removal, while allowing only the publishing of non-clashing items. On top of
these properties, [14] prescribes a liveness guarantee of the eventual publishing
of all submitted items for which got a receipt for correct recording. Taking a step
further, we introduce a framework for the formal study of the BB concept and its
security. Our framework is inspired by the notion of a robust public transaction
ledger (RPTL) defined by Garay et al. [18] and the security model presented
by Chondros et al. [10], thereby utilizing the connection between blockchain
and BB systems, which, albeit being folklore, was never formalized. We define
a secure BB system in a way that it can be seen as an RPTL that additionally
supports the generation of receipts for successful posting. Expanding the security
model for blockchain protocols of [18], we divide security into properties named
Persistence and Confirmable Liveness. Confirmability in liveness captures the
receipt generation capability. Persistence can also be Confirmable, meaning that
dishonest AB behavior is detectable via verification of published data.

Next, we apply our framework for the security analysis of the BB system
of [14], which we refer to as the CS BB, that utilizes standard signature and
threshold signature schemes (TSS) as cryptographic building blocks. In the
threat model of [14], an adversary may corrupt less than Nc/3 out-of the total
Nc IC peers, hence we also assume this fault-tolerance threshold.

We find that CS is not secure in our framework for the < Nc/3 threshold.
Specifically, we demonstrate an attack showing that CS with Nc IC peers does
not achieve Confirmable Liveness. Our attack falls outside the threat model
of [14] but raises a discussion about its plausibility. In particular, the threat
model of [14] relies on a “fear of detection” (cf. the full version of [14], [13,
Sect. 8]), to exclude certain adversarial protocol deviations in the IC subsys-
tem. Nevertheless, such covert security reasoning (cf. [2]) is not formalized or
implemented in [13] and as our attack demonstrates, the detection of protocol
deviation is impossible by IC peers themselves given their local protocol view.

A second, though less crucial, finding for the security of CS concerns its Con-
firmable Persistence. Namely, we show that for CS to achieve Confirmable Per-
sistence under the <Nc/3 fault tolerance threshold, the underlying TSS should
not be applied as ‘black-box’ and care should be taken for the choice of the
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TSS construction. We briefly describe the issue in Sect. 4.3, but leave a more
thorough treatment for the full version of this paper [24].

Based on our analysis, we modify CS by designing a new Publishing protocol
that achieves consensus among the honest IC peers on the posted items that
should be published. Combined with the CS Posting protocol, we obtain a new
BB system that achieves Persistence and Confirmable Liveness for <Nc/3 cor-
rupted IC peers. Persistence can also be Confirmable, if we distribute the AB,
such that data posting is done by broadcasting to all AB peers and data reading
is done by honest majority. The new BB system is secure against (i) any compu-
tationally bounded Byzantine adversary, (ii) in a partially synchronous setting
(cf. [16]), where the message delivery delay and the synchronization loss among
the entities’ clocks are bounded, and the bounds themselves can be unknown
within a given wide range of protocol parameters.

Summary of Contributions. Our contributions are as follows:

– The first complete framework for the study of e-voting BBs captured by the
properties of Confirmable Liveness and (Confirmable) Persistence.

– Analysis of the CS BB system [14] in our security framework that reveals
two vulnerabilities. In particular, one of the vulnerabilities challenges the
reasoning of liveness in the threat model provided in [13, Sect. 8].

– A modified variant of the CS protocol that restores Confirmable Liveness. We
prove security in our framework with an Nc/3 threshold for the IC subsystem
against computationally bounded Byzantine adversaries. In particular, (i)
Persistence holds in the asynchronous model and can be also Confirmable
given honest majority of AB peers, while (ii) Confirmable Liveness holds in
the partially synchronous model.

Related Work. In a wide range of state-of-the-art e-voting systems, such
as [1,5,8,9,23,25], the BB is a centralized single point of failure for security
analysis. Dini [15] proposed a distributed e-voting service based on [17], focusing
on the service in general rather on the BB system. Several works on distributed
e-voting BB solutions lacked formal security analysis, providing only construc-
tions without proof [21,26,28,30], a study of requirements [20] or being appli-
cable only to the kiosk-voting based setting [4]. D-DEMOS [10] is a distributed
internet-voting system which adopts [25] to the distributed setting. The security
in [10] is studied in a model that is a stepping stone for our framework, yet secu-
rity argumentation targets specifically the D-DEMOS requirements. The CS BB
system [14] is a reference point for our work, and will be analyzed in Sect. 4.

2 Preliminaries

We use κ as the security parameter. We write f(κ) = negl(κ) if function f is
negligible in κ. We denote [N ] := {1, 2, . . . , N} for any N ∈ N.
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Signature Schemes. A signature scheme DS = (KGen,Sig,Vf) consists of: (i)
the key generation algorithm (pk, sk) ← KGen(1κ) that generates a signing key
sk and a verification key pk; (ii) the signing algorithm Sig that for message m
returns σ ← Sigsk(m); (iii) the verification algorithm Vfpk(m,σ) that returns 0 or
1. DS is correct if Vfpk(m,Sigsk(m)) = 1. The security of DS is formalized via the
notion of existential unforgeability against chosen message attacks (EUFCMA).

Threshold Signature Schemes. Let ts < N be two positive integers and
P1, . . . , PN be a set of peers. A (non-interactive) threshold signature scheme
(TSS) TSS = (DistKeygen,ShareSig,ShareVerify,Combine,TVf) consists of: (i)
the distributed key generation algorithm DistKeygen(1κ, ts, N) that generates a
keypair (tski, pki) for each peer Pi and a public key pk; (ii) the signing algorithm
ShareSigtski(m) that returns a signature share σi of the message m; (iii) the share
verification algorithm ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi)) that returns 0 or 1;
(iv) the share combining algorithm Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S) that
if |S| ≥ ts + 1, outputs a full signature σ ← TSign(tsk,m) on m; (v) the verifi-
cation algorithm TVfpk(m,σ) that returns 0 or 1.

The correctness of TSS requires that for (tsk, pk, tsk1, . . . , tskN , pk1, . . . , pkN )
output by DistKeygen(1κ, ts, N), if S ⊆ [N ] s.t. |S| = ts + 1, it holds that (i)
σi = ShareSigtski(m), and (ii) if σ = Combine(pk, pk1, . . . , pkN ,m, (i, σi)i∈S),
then ShareVerify(pk, pk1, . . . , pkN ,m, (i, σi)) = 1 for i ∈ S and TVfpk(m,σ) = 1.

TSS is (ts, N)-EUFCMA-secure if every PPT adversary A has negl(κ) advan-
tage in performing a successful EUFCMA forgery for a message m∗, even when
the sum of (i) the number of the parties A corrupts, and (ii) the number of
parties for which A made a signing query for m∗, is no more than ts.

TSS is said to be (ts, N)-robust, if A controlling ts peers, can not prevent
honest peers from creating a valid signature. Robustness can only be achieved
for ts < N/2 (cf., Gennaro et al. [19]).

3 Framework

We introduce a formal framework for secure e-voting BB systems. First, we
provide an abstract description of the consisting entities and protocols. Then,
building upon the requirements stated in [14] and the modeling approach of [10,
18], we formalize BB security via the notions of (Confirmable) Persistence and
Confirmable Liveness.

3.1 Syntax of a Bulletin Board System

Entities. A BB system involves the following entities: (1) a setup authority SA
that generates the setup information and initializes all other entities with their
private inputs; (2) the users that submit post requests for items of their choice.
An item can be any data the user intends to be published, e.g., the voters’
ballots, the election results or any necessary audit information; (3) a subsystem
of item collection (IC) peers P1, . . . , PNc

that are responsible for (i) interacting
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with the users for posting all submitted items, and (ii) interacting with the AB
(see below) to publish the recorded items; (4) a subsystem of audit board (AB)
peers AB1, . . . , ABNw

where all the posted items are published.

Setup. During setup, SA specifies a posting policy P = (Accept,Select(·)), where

(1) Accept = {(U, x)} is a binary relation over pairs of user IDs and items.
For a user U that wants to post item x, (U, x) ∈ Accept is a check the IC
peers execute to initiate interaction with U for posting x. E.g., a user that
is authenticated as a voter may be accepted to post a vote, but nothing else.

(2) Select(·) is a selection function over sets of items defined as follows: let XU

be the set of published items associated with posts from user U . Then,
Select(XU ) ⊆ XU contains all valid published items posted by U , resolv-
ing any conflict among clashing items. E.g., in Estonian e-voting [22], only
voter’s last vote must count. Thus, if the votes were submitted in time
ascending order as x1, x2, . . . , xm, then we set XU = {x1, x2, . . . , xm} and
Select(XU ) = {xm}.

The SA initializes other entities with the description of P. Next, all entities
engage in a setup interaction such that when finalized, each entity has a pri-
vate input (e.g., a signing key or an authentication password) and some public
parameters params.

BB Protocols. The BB functionality comprises the Posting and Publishing
protocols, accompanied by two verification algorithms: (i) VerifyRec, run by the
users to verify the successful posting of their items, and (ii) VerifyPub, run by
any party for auditing the validity of the data on the AB.

The Posting protocol is initiated by a user U that on private input sU

submits a post request for item x. Namely, U uses sU to generate a credential
crU

1. Then, the user and the IC peers engage in an interaction that results in U
obtaining a receipt rec[x] for the successful posting of x. Upon receiving rec[x],
and using public election parameters params, U may run the algorithm VerifyRec
on input (rec[x], x, sU , params), that either accepts or rejects.

In the Publishing protocol, the IC peers upload their local records of posted
items to the AB subsystem. The protocol may encompass a consensus protocol
among the AB peers to agree whether a local record is admissible. In addition,
any auditor may run VerifyPub on input params and (a subset of the) published
data to check consistency of AB.

3.2 Introducing Our Security Framework

Culnane and Schneider [14] propose 4 properties that a secure BB must satisfy:

1 E.g., if sU is a signing key, then crU could be a valid signature under sU ; if sU is a
password, then crU can be the pair (U, sU ).
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(bb.1). Only items that have been posted may appear on the AB. This property
expresses safety against illegitimate data injection.

(bb.2). Any item that has a valid receipt must appear on the AB.
(bb.3). No clashing items must both appear on the AB.
(bb.4). Once published, no items can be removed from the AB. According to this

property, the AB subsystem is an append-only posting site.

In this section, we integrate the above 4 properties into a security framework.
At a high level, our framework conflates the formal approach in distributed e-
voting security of Chondros et al. [10] with the notion of a robust public trans-
action ledger (RPTL) proposed by Garay et al. [18]. Namely, we view a secure
BB as an RPTL that additionally provides receipts of successful posting for hon-
estly submitted items. The security properties of an RPTL stated in [18] are
informally expressed as follows:

• Persistence: once an honest peer reports an item x as posted, then all honest
peers either (i) agree on the position of x on AB, or (i) not report x.

• θ-Liveness: honest peers report honestly submitted items in a delay bound θ.

Persistence and Liveness in the e-Voting Scenario. In the e-voting setting,
honest users should get a valid receipt when engaging at the Posting protocol
(within some time θ) that confirms the eventual publishing of the respective
item. An important observation is that this property that we call θ-Confirmable
Liveness and (bb.3) can not be satisfied concurrently if we assume that honest
users may submit post requests for clashing items (e.g., multiple voting in Esto-
nia [22]). To resolve this conflict, we do not require that (bb.3) holds and the
subset of valid published items is specified via the selection function Select(·).
Given the above, we require that Persistence encompasses (bb.1) and (bb.4),
and conflict resolution is achieved by applying Select(·) on the AB view. Fur-
thermore, we extend Persistence by taking into account an AB subsystem that is
fully controlled by the adversary. This is formalized by the Confirmable Persis-
tence property, where we require that any malicious AB behavior will be detected
via the VerifyPub algorithm.

System Clocks. Like in [10], we assume that there exists a global clock variable
Clock ∈ N, and that every system entity X is equipped with an internal clock
variable Clock[X] ∈ N. We define the following two events:

• The event Init(X): Clock[X] ← Clock, that initializes X by synchronizing its
internal clock with the global clock.

• The event Inc(Clock[X]): Clock[X] ← Clock[X] + 1, that causes a clock
Clock[X] to advance by one time unit.

Synchronicity and Message Delay. We parameterize our threat model by (i)
an upper bound δ on the delay of message delivery, and (ii) an upper bound Δ on
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the synchronization loss of the nodes’ internal clocks w.r.t. the global clock. By
convention, we set Δ = ∞ to denote the fully asynchronous setting and δ = ∞,
to denote that the adversary may drop messages. Values δ,Δ ∈ [0,∞) refer to
partially synchronous model, if δ,Δ are unknown.

Notation. We denote by Nc, Nw the number of IC and AB peers, respectively,
and by n (an upper bound) on the number of users. In our security analysis,
the parameters Nc, Nw, n are assumed polynomial in security parameter κ. Let
E := {SA} ∪ {U�}�∈[n] ∪ {Pi}i∈[Nc] ∪ {ABj}j∈[Nw] be the set of all involved BB
system entities. We denote by tc (resp. tw) the number of IC (resp. AB) peers
that the adversary may statically corrupt out of the total Nc (resp. Nw) peers.
We denote the local record of IC peer Pi at global time Clock = T as the set
of accepted and confirmed items Lpost,i,T := {x1, . . . , xKi,T

}, where Ki,T ∈ N.
Similarly, the AB view of peer ABj at global time Clock = T is denoted as the
set of items Lpub,j,T := {x1, . . . , xMj,T

}, where Mj,T ∈ N.

3.3 (Confirmable) Persistence Definition

We define Persistence via a security game GA,δ,Δ,tc,tw
Prst

(
1κ,E

)
between the chal-

lenger C and an adversary A. The game is also parameterized by the eventual
message delivery and synchronization loss upper bounds δ and Δ. The adversary
A may statically corrupt up to tc out-of the Nc total IC peers and tw out-of the
Nw total AB peers, and may also choose to corrupt users. C initializes the BB
system on behalf of the SA. Then, C and A engage in the Setup phase and
the Posting and Publishing protocols, where C acts on behalf of the honest
entities. Intuitively, the goal of A is to successfully attack the (bb.1) property
(condition (P.1) in Fig. 1) or the (bb.4) property (condition (P.2) in Fig. 1).

We extend the Persistence notion by defining Confirmable Persistence. Now,
the entire AB may be malicious and deviate from the Publishing protocol, yet
the adversary fails if its attack is detected via the VerifyPub algorithm, on the
input view of any AB peer. Formally, Confirmable Persistence is defined via the
game GA,δ,Δ,tc

C.Prst (1κ,E) that follows the same steps as GA,δ,Δ,tc,tw
Prst (1κ,E), for the

special case tw = Nw, except the following differences in the winning conditions
for A: (i) for every k ∈ [Nw], the published data on ABk should always verify
successfully, and (ii) the inconsistent ABj referred in the winning conditions
may be any (malicious) AB peer. Detailed description of both games is given in
Fig. 1. We define Persistence and Confirmable Persistence as follows.

Definition 1 ((Confirmable) Persistence). Let κ be the security parameter,
Nc, Nw, tc, tw ∈ N, δ,Δ ∈ [0,+∞], and BB be a BB system with Nc IC peers and
Nw AB peers. We say that BB achieves Persistence for fault-tolerance thresholds
(tc, tw), delay message bound δ and synchronization loss bound Δ, if for every
PPT adversary A it holds that Pr

[GA,δ,Δ,tc,tw
Prst (1κ,E) = 1

]
= negl(κ).

We say that BB achieves Confirmable Persistence for fault tolerance thresh-
old tc, delay message bound δ and synchronization loss bound Δ, if for every
PPT adversary A, it holds that Pr

[GA,δ,Δ,tc
C.Prst (1κ,E) = 1

]
= negl(κ).
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Fig. 1. Security games for (Confirmable) Persistence, and θ-Confirmable Liveness.
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3.4 θ-Confirmable Liveness Definition

We define θ-Confirmable Liveness via a security game GA,δ,Δ,tc,tw
θ−C.Live (1κ,E) between

the challenger C and an adversary A, where A statically corrupts up to tc (resp.
tw) out-of the Nc (resp. Nw) total IC (resp. AB) peers, while C plays the role
of SA and all peers and users that A does not corrupt. The adversary wins
if it prevents the generation of a valid receipt for an item x or the eventual
publishing of x, given that x has been submitted at least θ time prior to the
nearest Publishing protocol execution. The game is described in detail in Fig. 1.

Definition 2 (θ-Confirmable Liveness). Let κ be the security parameter,
Nc, Nw, tc, tw, θ ∈ N, δ,Δ ∈ [0,+∞] and let BB be a BB system with Nc IC and
Nw AB peers. We say that BB has θ-Confirmable Liveness for fault-tolerance
thresholds (tc, tw), delay message bound δ, and synchronization loss bound Δ, if
for every PPT adversary A, it holds that Pr

[GA,δ,Δ,tc,tw
θ−C.Live (1κ,E) = 1

]
= negl(κ).

4 The Culnane-Schneider (CS) BB system

In this section, we outline the CS BB system as presented in [14] adopted in
our terminology, and analyze its security guarantees and weaknesses under the
framework introduced in Sect. 3. The CS BB system comprises the setup author-
ity SA, the users, the IC peers P1, . . . , PNc

and a single trusted AB (called WBB
in [14]), i.e., Nw = 1. The fault-tolerance threshold on the number of corrupted
IC peers, tc, that CS requires is tc < Nc/3 and ts + 1 = Nc − tc.

4.1 Overview of the CS BB System

Setup. Upon specifying the posting policy P =
(
Accept,Select(·)), the SA pro-

vides all entities with the description of an EUFCMA-secure signature scheme
DS = (KGen,Sig,Vf) and a (ts, Nc)-EUFCMA-secure TSS TSS = (DistKeygen,
ShareSig, ShareVerify, TVf, Combine). Then, each IC peer Pi runs KGen(1κ) to
get a signing key ski and a verification key vki, while IC peers jointly execute
DistKeygen(1κ, ts, Nc) to produce secret keys {tski}i, implicitly defining tsk, and
the corresponding public output pk, {pki}i. Finally, the IC peers broadcast all
public keys and every user U interacts with SA to obtain her private input crU .

The CS BB system runs in consecutive periods. Each period p is a time
interval [Tbegin,p, Tend,p] between two fixed global time values Tbegin,p and Tend,p,
and the end of a period matches the beginning of the next one. For each IC peer
Pi, we denote by Bi,p the local record of Pi including all items x recorded as
posted and by Di,p the database of received items x together with other peers’
signatures on them, for the period p. In the beginning of p, Pi sets Bi,p,Di,p ← ∅.

Posting. If a user U wants to post item x during period p, then she broadcasts
x to all IC peers, along with her credential crU . Upon receiving and verifying the
validity of (x, crU ), each peer Pi broadcasts a signature on (p, x, crU ) under its
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singing key ski. When Pi receives Nc−tc valid signatures on (p, x, crU ) (including
its own) from Nc − tc different peers, it threshold signs (p, x) and sends it to U .
Finally, when U receives Nc − tc ≥ ts +1 valid TSS shares from Nc − tc different
peers, it combines them to obtain a threshold signature on (p, x), as her receipt.
We define VerifyRec(rec[x], x, crU , params) := TVfpk((p, x),TSign(tsk, (p, x))).

Publishing. Given a period p = [Tbegin,p, Tend,p], all IC peers stop item recording
and begin publishing their local records at a fixed time Tbarrier,p ∈ (Tbegin,p, Tend,p).
The Publishing protocol includes two subprotocols: initially, the IC peers run
an Optimistic protocol that results in the publishing of a BB record, if at least
Nc − tc local BB records agree. We note that the Optimistic protocol always
terminates successfully if all peers are honest. If the Optimistic protocol check
fails, then IC peers engage in the Fallback protocol, where they exchange their
databases of collected signatures for posted items. The Fallback protocol is essen-
tially one round of the Floodset agreement algorithm [27, Sect. 6.2] with the fol-
lowing characteristic: if all users posted their items honestly, then Fallback need
to run only once. Otherwise, as in standard Floodset, it needs to be executed
up to Nc − tc + 1 times in the synchronous setting.

When consensus is reached, the IC peers provide the AB with their records
along with corresponding TSS shares. The AB sets the agreed record as its
view for period p along with the reconstructed TSS signature from the collected
shares. The total view of AB at some moment T , denoted by Lpub,T , is the union
of the agreed and published BB records for all periods preceding moment T .

4.2 Attacking the Liveness of the CS BB System

As informally argued in [13, Sect. 8] (the full version of [14]), the liveness in
CS can be achieved if one of the following conditions hold: (1) all the peers are
following the protocol honestly and are online, (2) a threshold of tc < Nc/3 peers
is malicious, but all users are honest, or (3) the more general condition that not
all users are honest and the malicious peers may choose any database in their
capability, but do not change their database once it has been fixed, and will not
send different databases to different peers. The argument is that one can easily
detect in practice if malicious peers send different databases to different peers.

We demonstrate an attack against the Confirmable Liveness of CS in our
framework. Although our attack falls outside the threat model of [14], it reveals
that the presumed “fear of detection” that justifies the said threat model, and
especially the more general condition (3) described above, is not rigorously
addressed. In particular, we show that the liveness adversary may choose to
split the honest peers into two groups, and yet not be detected by being con-
sistent w.r.t. to the peers in the same group. This way, the adversary manages
a liveness breach, while the honest IC peers cannot detect the attack relying
on the protocol guidelines and their local views. As a result, our attack shows
that the original description of CS must be enhanced with an explicit detection
mechanism against any deviation from the IC consensus protocol specifications,
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in order for the threat model in [14] to be properly justified. On the other hand,
as we describe in Sect. 5 and prove in Sect. 6, enhancing CS with our novel Pub-
lishing protocol completely overcomes such issues, by achieving Confirmable
Liveness even against a general Byzantine adversary.

Description of the Liveness Attack. Our attack works under fault tolerance
threshold Nc > 3tc, as required in [14], and consists of the steps below.

Step 1: Let p be a period where the set of honestly posted items is non-
empty. For simplicity, we assume that there is a single honest user Uh who
broadcasts xh to all IC peers Pi, i ∈ [Nc], and obtains a valid receipt rec[xh].

Step 2: A malicious user Uc deviates from broadcasting and sends xc to
all tc corrupted peers and Nc − 2tc honest peers. Denote the latter set of honest
Nc − 2tc peers by Hin. The malicious peers engage in the Posting protocol by
interacting only with the peers in Hin. Observe that even if tc honest peers do not
participate in the post request of xc, the collaboration of tc+(Nc−2tc) = Nc−tc
peers is enough so that Uc obtains a valid receipt rec[xc], yet (p, xc) ∈ Bi,p only
for honest peers Pi ∈ Hin. Denote by Hout the tc honest peers s.t. xc 	∈ Bi,p.

Step 3: Another malicious user Ûc deviates from broadcasting and, like Uc,
sends item x̂c to all tc corrupted peers and the Nc − 2tc honest peers in Hin.
However, now the malicious peers do not engage in the Posting protocol, so the
peers in Hin do not suffice for a receipt for x̂c.

Step 4: When Publishing protocol starts, the honest peers in Hin and
Hout engage in the Optimistic protocol by sending their signed local records
Rc

h := {(p, xh), (p, xc)} and Rh := {(p, xh)} respectively. From their side, the
malicious peers sign their records as Rc,ĉ

h := {(p, xh), (p, xc), (p, x̂c)}. As a result,
none of the three records Rh, Rc

h and Rc,ĉ
h is signed by at least Nc − tc peers

(recall that |Hin| = Nc − 2tc and |Hout| = tc). Therefore, the malicious peers
force all honest peers to engage in the Fallback protocol.

Step 5: During Fallback, all honest peers exchange their collection of signa-
tures. At this step, each peer in Hin sends to each peer in Hout (i) its signature on
(p, xc), (p, xh) and (p, x̂c) and (ii) the tc signatures on (p, xc) that it received from
the malicious peers. This way, each peer in Hout receives (Nc −2tc)+tc = Nc −tc
signatures on (p, xc) but only Nc−2tc signatures on (p, x̂c), so it updates its local
record to Rc

h. Malicious peers send their signatures on (p, xc), (p, xh) and (p, x̂c)
only to the peers in Hin. Therefore, each peer collects (Nc − 2tc) + tc = Nc − tc
signatures on (p, x̂c) and updates its local record to Rc,ĉ

h .
Step 6: When the Fallback round above is completed, all peers restart

the Optimistic protocol. However, now the peers in Hin and Hout send their
signed local records Rc,ĉ

h and Rc
h respectively. The malicious peers resend their

records Rc,ĉ
h only to the peers in Hin, which now have Nc − tc signatures on Rc,ĉ

h .
Thus, they finalize their engagement in the Publishing protocol for period p
by sending their TSS shares for Rc,ĉ

h to the AB.
Step 7: After forcing the peers in Hin to termination, the malicious peers

become inert. This causes the peers in Hout to remain pending for a new Fallback
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round that no other peer will follow. Moreover, the AB can not obtain Nc − tc
TSS shares on some agreed record, and thus it can not publish anything. This
violates the property (bb.2) in [14] (expressed via condition (L.3) in Fig. 1),
which dictates that since xh is an honestly posted item that has a receipt, it
must be published to the AB. Thus, liveness is breached.

4.3 TSS Fault-Tolerance Requirements for Confirmable Persistence

In [14] no concrete recommendations are given for which TSS to use. For liveness
to be achieved, TSS should be robust, i.e., malicious peers cannot block signature
creation. However, robustness is feasible only if ts < Nc/2 [19], which contradicts
the CS requirement tc < Nc/3 and ts + 1 = Nc − tc > 2Nc/3. Given that ts <
Nc/2, we can still prove the CS BB system to achieve Confirmable Persistence,
but for a smaller bound of tc < Nc/4. This bound is tight, in the sense that
if tc ≥ Nc/4, then there exists an attack. Thorough treatment of this issue is
provided in the full version [24].

5 A New Publishing Protocol for the CS BB System

We present a new Publishing protocol that, when combined with the CS Post-
ing protocol, results in a BB system that achieves Confirmable Liveness in par-
tially synchronous and Persistence in asynchronous model, against a general
Byzantine adversary, assuming a threshold of tc < Nc/3 corrupted IC peers.
Persistence can also be Confirmable, if we distribute the AB subsystem such
that no more than tw < Nw/2 out of the Nw AB peers are corrupted, as in [10].
Namely, the distributed AB runs as a replication service; data posting is done
by broadcasting to all AB peers, while data reading is done by honest majority.

The public parameters params include the identities of the IC and AB
peers, the description of DS,TSS (cf. Sect. 2), a collision resistant hash function
(CRHF) Hκ(·), and all public and verification keys. All peers know consecu-
tive periods p = [Tbegin,p, Tend,p], as well as the following moments per period
p: (a) a moment Tbarrier,p ∈ (Tbegin,p, Tend,p), when item collection stops and the
Publishing protocol is initiated; (b) a moment Tpublish,p ∈ (Tbarrier,p, Tend,p),
where the AB peers publish their records for period p, and (c) a moment
Trequest,p ∈ (Tbarrier,p, Tpublish,p), where IC peers force exchange of information to
finalize their records. For each period p, the phases of the Publishing protocol
are as follows:
� Initialization phase: each IC peer Pi initializes the following vectors:

(i) Its direct view of local records, denoted by Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉:
namely, it sets B̃i,j,p ← ⊥, for j 	= i, and B̃i,i,p ← Bi,p.

(ii) For every j ∈ [Nc] \ {i}, its indirect view of local records as provided by
Pj , denoted by Viewi,j,p := 〈B̃i

j,1,p, . . . , B̃
i
j,Nc,p〉, by setting Viewi,j,p ←

〈⊥, . . . ,⊥〉.
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(iii) A variable vector 〈bi,1, . . . , bi,Nc
〉, where bi,j is a value in {?, 0, 1} that

expresses the opinion of Pi on the validity of P ′
js behavior. Initially, bi,i

is fixed to 1, while for j 	= i, bi,j is set to the “pending” value ‘?’. When
Pi fixes bi,j to 1/0 for all j ∈ [Nc], it engages in the Finalization phase
described shortly.

(iv) A vector 〈di,1, . . . , di,Nc
〉, where di,j is the number of P ′

is (direct or indi-
rect) views that agree on P ′

js record. Initially, di,j = 0, for j 	= i, and
di,i = 1.

� Collection phase: upon initialization, Pi signs its local record Bi,p, followed
by a tag record, and broadcasts

(
(record, Bi,p),Sigski(record, Bi,p)

)
to all

IC peers. Then, Pi updates its direct and indirect views of other IC peers’ records
and fixes its opinion bit for their behavior, depending on the number of consistent
signed messages it receives on each peer’s record. In particular,

– When Pi receives a message
(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
signed

by peer Pj that was never received before, then it acts as follows: if Ri,j,p is
formatted as a non-⊥ record and the “opinion” bit bi,j is not fixed (i.e. bi,j =
‘?’), then it checks if Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 1. If

the latter holds, then Pi operates according to either of the following two
cases:

1. If B̃i,j,p 	= ⊥, then it marks Pj as malicious, that is, it sets B̃i,j,p ← ⊥ and
fixes bi,j to 0. Observe that since Pj is authenticated (except from some negl(κ)
error), it is safe for Pi to mark Pj as malicious, as an honest peer would never
send two different versions of its local records.
2. If B̃i,j,p = ⊥, then Pi updates Viewi,p as B̃i,j,p ← Ri,j,p, and Viewi,j,p as
B̃i

j,j,p ← Ri,j,p and increases the di,j by 1. Next, it signs and re-broadcasts to
all IC peers the received message in the format

(
Vi,j ,Sigski(Vi,j)

)
, where Vi,j :=(

(view, j), ((record, B̃i,j,p),Sigskj (record, B̃i,j,p))
)

. Upon fixing bi,j to 1/0,
Pi ignores any further message for the record of Pj .

– When Pi receives a message
(
Vk,j ,Sigskk(Vk,j)

)
signed by peer Pk for some

peer Pj different than Pi and Pk, where Vk,j =
(
(view, j), ((record, Rk,j,p),

Sigskj (record, Rk,j,p))
)
, and the message was never received before, then it

acts as follows: if Rk,j,p is formatted as a non-⊥ record and bi,j = ‘?’, then it
executes verification Vfpkk(Vk,j ,Sigskk(Vk,j)). If Vfpkk(Vk,j ,Sigskk(Vk,j)) = 1,
then Pi operates according to either of the following two cases:

1. If Vfpkj
(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 0 or B̃i

k,j,p 	= ⊥, then Pi

sets B̃i,k,p ← ⊥, fixes the bit bi,k to 02.
2. If Vfpkj

(
(record, Ri,j,p),Sigskj (record, Ri,j,p)

)
= 1 and B̃i

k,j,p = ⊥, then
Pi updates Viewi,k,p by setting B̃i

k,j,p ← Rk,j,p. and Viewi,p as shown below:

2 Observe that it is safe for Pi to mark Pk as a malicious, since an honest Pk would
neither send two non-⊥ views for Pj , nor accept an invalid signature from Pj .
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(C.1). If for every k′ ∈ [Nc] \ {i} such that B̃i
k′,j,p �= ⊥, it holds that B̃i

k′,j,p =

B̃i
k,j,p := B̃i

j,p (i.e. all non-⊥ records for j agree on some record B̃i
j,p), then it

increases the value of di,j by 1. Moreover, if di,j = tc + 1, (i.e., there are tc + 1
matching non-⊥ records) and B̃i,j,p = ⊥, then it updates as B̃i,j,p ← B̃i

j,p and
fixes the bit bi,j to 1.

(C.2). If there is a k′ ∈ [Nc] such that B̃i
k′,j,p �= ⊥ and B̃i

k,j,p �= B̃i
k′,j,p, then it

updates as B̃i,j,p ← ⊥ and fixes the bit bi,j to 0.

In either case, upon fixing bi,j , Pi ignores any further message for Pj ’s record3.

– When its local clock Clock[Pi] reaches Trequest,p, Pi broadcasts a request mes-
sage

(
(request view, j),Sigski(request view, j)

)
, for every Pj that it has

not yet fixed the opinion bit bi,j . This step is executed to ensure that Pi will
eventually fix its opinion bits for all IC peers. Upon receiving Pi’s request, Pk

replies with a signature for a response message
(
Wk,j ,Sigskk(Wk,j)

)
, where

Wk,j :=
(
(response view, j), ((record, Rk,j,p),Sigskj (record, Rk,j,p))

)
.

Note that here Rk,j,p may be ⊥, reflecting the Pk’s lack of direct view
for Pj ’s record. For every Pj that Pi has broadcast

(
(request view, j),

Sigski(request view, j)
)
, Pi waits until it collects Nc − tc − 1 distinct valid

signed responses. During this wait, it ignores any message in a format other
than

(
Wk,j ,Sigskk(Wk,j)

)
or

(
(request view, j),Sigskk(request view, j)

)
.

When Nc − tc −1 distinct valid responses are received, it parses the collection
of the Nc − tc − 1 responses and its current direct view of Pj ’s record, B̃i,j,p,
to update B̃i,j,p and fix bi,j as follows:

(R.1). If B̃i,j,p �= ⊥, and all responses for non-⊥ records are at least tc and all
match B̃i,j,p, then Pi fixes bi,j to 1.
(R.2). If B̃i,j,p = ⊥, and all responses for non-⊥ records are at least tc + 1 and
all refer to the same record denoted as B̃i

j,p, then Pi sets B̃i,j,p ← B̃i
j,p and fixes

bi,j to 1.

(R.3). Otherwise, Pi sets B̃i,j,p ← ⊥ and fixes bi,j to 0.

In any case, upon fixing bi,j , Pi ignores any further message for Pj ’s record4. At
the end of the Collection phase, Pi will have fixed bi,j for all j ∈ [Nc].
� Finalization phase: having fixed bi,1 . . . , bi,Nc

and updated its direct view
Viewi,p := 〈B̃i,1,p, . . . , B̃i,Nc,p〉, peer Pi proceeds as follows: for every pair (p, x) ∈⋃

j:B̃i,j,p �=⊥ B̃i,j,p, Pi defines the set Ni,p(x) that denotes the number of IC peers
that, according to its view, have included (p, x) in their records. Formally, we

3 The security of DS ascertains Pi that with 1 − negl(κ) probability, only if Pj is
malicious, two non-equal records can be valid under Pj ’s verification key. Thus, in
case (C.2), Pi can safely fix the bit bi,j to 0.

4 Since there are Nc−tc ≥ tc+1 honest peers, Pi will obtain at least tc+1 all matching
non-⊥ views for every honest’ peers record (including its own). Thus, in case (R.3),
Pi can safely fix bi,j to 0 if it receives inconsistent non-⊥ views or less than tc + 1
matching non-⊥ views for Pj .
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write Ni,p(x) := #{j ∈ [Nc] : (p, x) ∈ B̃i,j,p}. Then, Pi updates its original
record Bi,p as follows:

(F.1). If (p, x) /∈ Bi,p, but Ni,p(x) ≥ tc + 1, then it adds (p, x) in Bi,p.

(F.2). If (p, x) ∈ Bi,p, but Ni,p(x) < tc + 1, then it removes (p, x) from Bi,p.

In any other case, Bi,p becomes unchanged5. As shown in Theorem 2, at the end
of the Finalization phase, all honest peers have included all honestly posted
items for which a receipt has been generated in their local records. Then, they
advance to the Publication phase described below.
� Publication phase: each peer Pi threshold signs its record Bi,p, as it
has been updated during the Finalization phase, by threshold signing each
item in Bi,p individually. Formally, ShareSig(tski, (p,Bi,p)) :=

⋃
(p,x)∈Bi,p

ShareSig(tski, (p, x)). Then, Pi broadcasts the message
(
(p,Bi,p),ShareSig

(tski, (p,Bi,p))
)

to all peers AB1, . . . , ABNw
of the AB subsystem.

In turn, each peer ABj , j ∈ [Nw] receives and records threshold signature
shares for posted items. For every item (p, x) that ABj receives Nc − tc valid
signatures shares (k, σk)k∈S , where S is a subset of Nc − tc IC peers, it adds
(p, x) to its record Bp[j], initialized as empty, and computes a TSS signature on
(p, x) as TSign(tsk, (p, x)) ← Combine

(
pk, pk1, . . . , pkNc

, (p, x), (k, σk)k∈S

)
. Upon

finalizing Bp[j], ABj executes the following steps:

1. It sets TSign(tsk, (p,Bp[j])) :=
⋃

(p,x)∈Bp[j]
TSign(tsk, (p, x)) and when its

local clock Clock[ABj ] reaches Tpublish,p, it publishes the signed record

ABreceipt[p,Bp[j]] :=
(
(p,Bp[j]),TSign(tsk, (p,Bp[j]))

)
.

2. By the time that the period p ends (i.e., Clock[ABj ] = Tend,p), for k ∈
[Nw] \ {j}, it performs a read operation on ABk and reads its record for
period p denoted by Bp[j, k] (possibly empty). Then, it publishes the hash
Hκ

(
Bp[j, k]

)
of the read record.

The VerifyPub Algorithm. Let Prec[p] be the set of all periods preceding p.
The total view of ABj at some moment T during period p, denoted by Lpub,j,T ,
is the union of the published BB records Bp̃[j] for all periods p̃ ∈ Prec[p].

On input
(〈Lpub,j,T 〉j∈[Nw], params

)
, the algorithm VerifyPub outputs accept

iff for every j ∈ [Nw] and every p̃ ∈ Prec[p] the following hold:

(a) More than Nw/2 AB peers that agree on the consistency of the data that
ABj publishes (including ABj). Formally, there is a subset Ij ⊆ [Nw] such
that |Ij | > Nw/2 and ∀k ∈ Ij \ {j} : Hκ

(
Bp̃[k, j]

)
= Hκ

(
Bp̃[j]

)
.

(b) For every (p̃, x) ∈ Bp̃[j], it holds that TVf
(
pk,

(
p̃, x),TSign(tsk, (p̃, x)

))
= 1.

5 In case (F.2), removal is a safe action for Pi, as every honestly posted item for which
a receipt has been generated, is stored in the records of at least Nc − 2tc ≥ tc + 1
honest peers during the Posting protocol. Thus, Ni,p(x) < tc +1 implies that either
(i) (p, x) was maliciously posted, or (ii) a receipt for (p, x) was not generated.
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An item belongs in the published data of the whole AB system by moment
T , denoted by Lpub,T , if it appears on more than half of the AB peers. Formally,

Lpub,T :=
⋃

p̃∈Prec[p]

{
(p̃, x)

∣
∣
∣#

{
j ∈ [Nw] : (p̃, x) ∈ Bp̃[j]

}
> Nw/2

}
.

Complexity of the New Publishing Protocol. Our protocol has a constant
number of rounds per period, where the size of transmitted messages is equal to
the signature on records of items posted on the said period. In particular, the
Collection phase has cubic (∼(Nc)3) communication complexity (the IC peers
exchange their views), while the Publication phase has quadratic (∼Nc · Nw)
communication complexity (the IC peers broadcast their updated records to the
AB peers). Overall, the complexity of the new Publishing protocol matches
the one of the original CS system (cf. Sect. 4.1), as in general, the Floodset
algorithm must run in Nc − tc + 1 rounds, where in each round a full quadratic
communication for mutual information exchange is required.

6 Properties of the New BB System

In this section, we analyze the security of the BB system that comprises the
Setup and the Posting protocol of CS combined with our novel Publish-
ing protocol described in Sect. 5. For simplicity, we will refer to this BB sys-
tem as the system described in Sect. 5. We write TB to denote the running
time of algorithm B, omitting parameterization by the security parameter κ
for brevity. The parameters Nc, tc are considered polynomial in κ. In our set-
ting, we assume that the message delivery delay δ and the synchronization loss
bound Δ are small enough with respect to the protocol steps and the intervals
[Tbegin,p, Tbarrier,p], [Tbarrier,p, Trequest,p], [Trequest,p, Tpublish,p], [Tpublish,p, Tend,p] that
determine phase switching in each period p. We consider that this restriction
does not effectively violate partial synchrony, as the actual δ,Δ need not to be
known to the IC peers for executing the protocol. Due to space limitations, we
only provide the theorem statement and leave proofs for the full version [24]. In
Table 1, we provide a brief comparison between the original CS BB system and
its improved variant over the new Publishing protocol. For better comparison,
we also consider CS BB in the setting where the AB is distributed.

Theorem 1 (Confirmable Persistence). Let Nc, Nw, tc, tw, ts ∈ N, such that
(a) tc < Nc/3, (b) tw < Nw/2 and (c) ts ≥ Nc − tc − 1, and let δ = Δ = ∞.
Let TSS be a (ts, Nc)-EUFCMA-secure TSS and Hκ be a CRHF. Then, the BB
system described in Sect. 5 with Nc IC peers and Nw AB peers over TSS and Hκ

achieves (i) Persistence for tolerance thresholds (tc, Nw), and (ii) Confirmable
Persistence for tolerance thresholds (tc, tw).

Theorem 2 (Confirmable Liveness). Let Nc, Nw, tc, tw, ts ∈ N such that (a)
tc < Nc/3, (b) tw < Nw, and (c) tc ≤ ts < Nc−tc, and δ,Δ ∈ R≥0. Let DS be an
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EUFCMA-secure signature scheme and TSS be a robust and (ts, Nc)-EUFCMA-
secure TSS. Then, the BB system described in Sect. 5 with Nc IC peers and Nw

AB peers over DS and TSS achieves θ-Confirmable Liveness for fault tolerance
thresholds (tc, tw), delay message bound δ and synchronization loss bound Δ, and
for every θ ≥ Δ + 3δ + 2Nc · TVf + TSig + TShareSig + TCombine.

Table 1. Comparison of CS BB and the new BB with Nc IC peers and Nw AB peers.

BB Complexity Persistence Con. Persistence Con. Liveness

[14] ∼(Nc)
3 Asynchronous Asynchronous Synchronous

tc < Nc
3

, tw ≤ Nw tc < Nc
3

, tw ≤ Nw tc = 0, tw < Nw
2

This work ∼(Nc)
3 Asynchronous Asynchronous Part. Synchronous

tc < Nc
3

, tw ≤ Nw tc < Nc
3

, tw < Nw
2

tc < Nc
3

, tw < Nw
2
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5. Burton, C., et al.: Using Prêt à voter in Victoria state elections. In: EVT/WOTE

(2012)
6. Burton, C., Culnane, C., Schneider, S.: vVote: verifiable electronic voting in prac-

tice. IEEE Secur. Priv. 14(4), 64–73 (2016)
7. Chaum, D.: SureVote: technical overview. In: WOTE (2001)
8. Chaum, D., et al.: Scantegrity: end-to-end voter-verifiable optical-scan voting.

IEEE Secur. Priv. 6(3), 40–46 (2008)
9. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election

scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

10. Chondros, N., et al.: D-DEMOS: a distributed, end-to-end verifiable, internet vot-
ing system. In: ICDCS (2016)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: EUROCRYPT, pp. 103–118 (1997)

12. Culnane, C., Ryan, P.Y.A., Schneider, S.A., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

13. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. CoRR abs/1401.4151 (2014)

14. Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable
voting systems. In: CSF (2014)

https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8


On the Security Properties of e-Voting Bulletin Boards 523

15. Dini, G.: A secure and available electronic voting service for a large-scale dis-
tributed system. Future Gener. Comput. Syst. 19(1), 69–85 (2003)

16. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

17. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

18. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of
RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 13

20. Hauser, S., Haenni, R.: A generic interface for the public bulletin board used in
UniVote. In: CeDEM (2016)

21. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01465-9 16

22. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: EVOTE (2014)
23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:

WPES (2005)
24. Kiayias, A., Kuldmaa, A., Lipmaa, H., Siim, J., Zacharias, T.: On the security

properties of e-voting bulletin boards. Cryptology ePrint Archive, Report 2018/567
(2018)

25. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

26. Krummenacher, R.: Implementation of a web bulletin board for e-voting applica-
tions. Institute for Internet Technologies and Applications (2010)

27. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
28. Peters, R.A.: A secure bulletin board. Master’s thesis. Eindhoven UT (2005)
29. Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: Birman,

K.P., Mattern, F., Schiper, A. (eds.) Theory and Practice in Distributed Systems.
LNCS, vol. 938, pp. 99–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60042-6 7

30. Sandler, D., Wallach, D.S.: Casting votes in the auditorium. In: EVT (2007)

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/978-3-642-01465-9_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/3-540-60042-6_7
https://doi.org/10.1007/3-540-60042-6_7


Encryption II



Function-Revealing Encryption

Definitions and Constructions

Marc Joye1 and Alain Passelègue2(B)
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Abstract. Multi-input functional encryption is a paradigm that allows
an authorized user to compute a certain function—and nothing more—
over multiple plaintexts given only their encryption. The particular case
of two-input functional encryption has very exciting applications, includ-
ing comparing the relative order of two plaintexts from their encrypted
form (order-revealing encryption).

While being extensively studied, multi-input functional encryption
is not ready for a practical deployment, mainly for two reasons. First,
known constructions rely on heavy cryptographic tools such as multilin-
ear maps. Second, their security is still very uncertain, as revealed by
recent devastating attacks.

In this work, we investigate a simpler approach towards obtain-
ing practical schemes for functions of particular interest. We introduce
the notion of function-revealing encryption, a generalization of order-
revealing encryption to any multi-input function as well as a relaxation
of multi-input functional encryption. We then propose a simple construc-
tion of order-revealing encryption based on function-revealing encryption
for simple functions, namely orthogonality testing and intersection cardi-
nality. Our main result is an efficient order-revealing encryption scheme
with limited leakage based on the standard DLin assumption.

Keywords: Order-revealing encryption
Property-preserving encryption · Multi-input functional encryption
Function-revealing encryption

1 Introduction

The growing reliance on numerous cloud-based services for storing and process-
ing sensitive data demonstrated limitations of traditional encryption techniques.
Specifically, traditional encryption is an all-or-nothing notion: informally, an
unauthorized user (i.e., who has not access to the decryption key) should not
learn any information whatsoever about a plaintext given its encryption. But in
many use cases, there is often a need to get a much more fine-grained control of
the decryption policy.

c© Springer Nature Switzerland AG 2018
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(Multi-Input) Functional Encryption. The paradigm of functional
encryption [9,30] is an extension of traditional encryption that enables an autho-
rized user to compute a certain function of the plaintext. Each decryption key skf

corresponds to a specific function f . Informally, this private key skf , given the
encryption of a plaintext x, allows her holder to learn f(x), and nothing more.
An important subclass of functional encryption is predicate encryption [10,24].
A plaintext x is viewed as pair (I, ẋ) where I is some attribute (associated to
the message) and ẋ is the message itself; functionality f is then defined as

f(I, ẋ) =

{
ẋ if P (I) = 1, and
⊥ otherwise

for a given predicate P .
The function can be defined over multiple plaintexts given their correspond-

ing ciphertexts. This gives rise to multi-input functional encryption introduced
in [8,19]. Of particular interest is the case of two-input functional encryption.
Suppose that given two encrypted plaintexts, a cloud-based service wishes to
compute their respective ordering. For a public comparison function, such a
functionality is offered by order-revealing encryption (ORE) [6,8]. We note that
order-revealing encryption necessarily requires secret-key encryption as other-
wise a binary search from the encryption of chosen plaintexts would yield bit-
by-bit the decryption of a given target ciphertext using the ORE comparison
procedure. ORE can thus be seen as a secret-key two-input functional encryp-
tion for (public) comparison. It is a very useful primitive as it allows one to
answer queries over encrypted data, including range queries, sorting queries,
searching queries, and more [1,5].

From OPE to ORE. Order-revealing encryption evolved from order-preserving
encryption (OPE) [5,6], an encryption primitive that preserves the relative order-
ing of the plaintexts. Clearly, an OPE scheme cannot achieve the standard secu-
rity notion of indistinguishability under chosen-plaintext attacks (IND-CPA).
The best we can hope from an OPE scheme is that the encryption of a sequence
of plaintexts reveals nothing beyond their relative ordering, the resulting security
notion is termed IND-OCPA. Unfortunately, Boldyreva et al. showed in [5] that
it is impossible to efficiently meet this natural security notion of IND-OCPA,
even when the size of the ciphertext space is exponentially larger than that of
the message space.

The situation for ORE schemes is different. In [8], Boneh et al. present an
ORE scheme actually meeting the analogue of IND-OCPA security. But their
construction is mostly of existential nature and as such should be considered
as a possibility result. The candidate ORE scheme presented in [8] is hardly
implementable since it relies on heavy cryptographic tools, namely (�/2 + 1)-
way multilinear maps for comparing �-bit values. Furthermore, and maybe more
importantly, the underlying security assumption is questionable owing to the
recent attacks mounted against multilinear maps [15,16].

ORE in Practice. A practical construction for order-revealing encryption is
proposed in [14]. It merely requires a pseudorandom function F with output
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space {0, 1, 2}. The encryption under secret key K of an �-bit plaintext x =
m1m2 · · · m� with mi ∈ {0, 1}, ct = (c1, c2, . . . , c�), is obtained iteratively as

ci =
[
F

(
K, (i,m1m2 · · · mi−1‖0�−i)

)
+ mi

]
mod 3, for 1 ≤ i ≤ �.

The comparison of two ciphertexts ct = (c1, c2, . . . , c�) and ct′ = (c′
1, c

′
2, . . . , c

′
�),

corresponding to plaintexts x and x′, is conducted by finding the first index i,
1 ≤ i ≤ �, such that c′

i �= ci. Then,{
x < x′ if there exists such an index i and if c′

i ≡ ci + 1 (mod 3)
x ≥ x′ otherwise

.

While this construction is very efficient, it has the drawback of leaking an
important amount of information, as one obtains immediately, given two cipher-
texts, the size of the largest common prefix of the two corresponding plaintexts.
In particular, this provides an upper bound on the distance separating the two
plaintexts.

Our Contributions. In this work, we investigate a new approach towards
building efficient secret-key multi-input functional encryption. We propose the
notion of function-revealing encryption, which can be viewed both as a general-
ization of the notion of property-preserving encryption [13,29] and as a special-
ization of the notion of multi-input functional encryption. Basically, a function-
revealing encryption scheme is a secret-key encryption scheme associated to a
k-ary function f . The encryption algorithm takes as input a secret key, a mes-
sage, and some index i ∈ [k] and outputs a ciphertext. Moreover, there exists
a public procedure such that, given k ciphertexts ct1, . . . , ctk, each correspond-
ing to an encryption of a message xi at index i, for i ∈ [k], one can compute
f(x1, . . . , xk). In particular, considering the comparison function defined as:

f< : (x, y) 	→
{

1 if x < y

0 otherwise
,

our notion matches precisely the notion of order-revealing encryption.
We note that our general framework slightly generalizes the definition of

order-revealing encryption, since the original definition is “symmetric” and ours
is “asymmetric” (in the sense that our definition only allows to compare a cipher-
text with index 1 with a ciphertext with index 2). This is without loss of gener-
ality since a symmetric scheme results immediately from an asymmetric scheme.

We consider two (indistinguishability-based and simulation-based) security
notions that take into account a possible leakage. The leakage comprises at least
the information resulting from the evaluation function, which is unavoidable.
However, contrary to a perfect solution that would only permit this unavoidable
leakage (as the one offered in [8]), we allow for additional leakage, provided it is
very limited. Doing so, we are able to devise constructions that can be used in
practical applications.

We then focus on the particular case of 2-ary functions (so the index is
1 or 2) and specifically on building efficient order-revealing encryption. Our
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main construction is an efficient order-revealing encryption scheme with limited
leakage, under standard assumptions.

Our Techniques. We first show that one can build an order-revealing encryp-
tion scheme given only a function-revealing encryption scheme for the function
computing the cardinality of the intersection of two sets f#: (S, T ) 	→ #(S∩T ).
This result follows from a fairly simple technique to compare two bitstrings. Con-
sider two bitstrings of same length x = x1 ‖ . . . ‖ xn and y = y1 ‖ . . . ‖ yn, then
we have x < y if and only if there exists i ∈ [n] such that xj = yj for every
j < i and xi = 0 and yi = 1. Thus, we have x < y if and only if there exists
a prefix z ‖ 0 of x with z ∈ {0, 1}∗ such that z ‖ 1 is a prefix of y, and one can
then compare x and y by checking if the sets {z ‖ 1 | z ‖ 0 is a prefix of x} and
{z ‖ 1 | z ‖ 1 is a prefix of y} are disjoint.

The next step is then to construct a function-revealing encryption scheme
for intersection cardinality. We show that one can build such a scheme with
only limited leakage based on the existence of function-revealing encryption for
the function checking the orthogonality of two vectors f⊥: (�a,�b) 	→ 〈�a,�b〉 = 0
(this function outputs the value of the predicate 〈�a,�b〉 = 0). This transformation
relies on the following technique to compute the cardinality of the intersection.
Consider two sets A = {a1, . . . , an} and B = {b1, . . . , bm}. A simple way to
compute #(A ∩ B) is to evaluate the polynomial

∏n
i=1(X − ai) whose roots

are the elements of A on every bj for j ∈ [m], and to return the number of
times this evaluates to 0. This can be done by computing inner products, since∏n

i=1(X − ai) is a degree n polynomial that can be written as
∑n

i=0 αiX
i and

thus, we have

n∏
i=1

(b − ai) = 〈(α0, . . . , αn), (1, b, b2, . . . , bn)〉,

so checking if this evaluates to 0 corresponds precisely to checking if the above
vectors are orthogonal.

Finally, we show that one can build a function-revealing encryption scheme
for f⊥ under the standard DLin assumption. In particular, we show that any
fully-secure predicate encryption scheme for a class of predicate P = {Pa :
b 	→ P (a, b)} can be turned into a function-revealing encryption scheme for the
function P .

Yet, there is a small catch in our transform from orthogonality to intersec-
tion cardinality. Indeed, the above function-revealing encryption scheme for f#
not only reveals the cardinality of the intersection, but also the elements of B
that are in A, as each element bi of B is encrypted separately (by encrypting
the corresponding vector (1, bi, b

2
i , . . . , b

n
i )). In particular, even if bi is hidden,

intersecting A with B and A′ with B might also reveal some information about
the intersection of A and A′ (for instance, if bi ∈ A and bi ∈ A′, then we also
learn that A ∩ A′ �= ∅ which should not have been revealed). Thus, our con-
struction reveals a bit more than what we would like ideally. We briefly discuss
how one can reduce this leakage by reducing the efficiency of our construction
(though the only way to obtain ideal leakage with our technique is by having
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exponential-size ciphertexts). Also, we note that our leakage is ideal if there
is only one set A that is encrypted at index 1, whatever the number of sets
B,C, . . . encrypted at index 2 (or more generally for bounded ciphertexts at
index 1 and unbounded ciphertexts at index 2). Finally, since our transforma-
tion from intersection cardinality to relative order is generic, any improvement
on the security of the underlying scheme for intersection cardinality (both in
terms of efficiency and of leakage) would immediately results in an improved
construction of order-revealing encryption.

Of independent interest, we also provide a very simple order-revealing encryp-
tion scheme achieving the best possible security for short messages, assuming
only the existence of one-way functions.

Related Works. Order-revealing encryption has been an subject to several
improvements in the last years. In a recent work by Lewi and Wu [27], the authors
proposed a similar construction for short messages and extended it to larger
domains by adding leakage and using random oracles. Intuitively, for plaintexts
of length n ·k, they encrypt small blocks of k bits with the perfect scheme (whose
complexity is exponential in k), and then compose with the scheme from [14]
for each of the n blocks. Thus, the ciphertexts reveal the position of the first
differing blocks of k bits.

Another recent work by Durak, DuBuisson, and Cash [18] analyzed what is
revealed by perfect order-revealing encryption. They show that the ideal func-
tionality already reveals important information for certain applications of ORE
(e.g., when plaintexts come from particular distributions). This work emphasizes
that an important leakage could be devastating, so reducing the leakage as much
as possible (while preserving good efficiency due to the practical importance
of ORE) is of prime interest. Our work proposes a first step towards obtain-
ing smaller leakage (in particular achieving ideal leakage in restricted cases). A
recent work by Cash, Liu, O’Neill, and Zhang [12] also makes a step in this direc-
tion. In this work, the authors construct an order-revealing encryption scheme
with limited leakage under SXDH. Their construction is more efficient than ours
(basing our construction on current state-of-the-art fully-secure IPE [25]) but
their leakage is slightly worse than ours, our construction beneficing from its
asymmetry. They obtain a construction, based on pairings, that only leaks the
equality pattern of the most significant differing bit (that is, for any 3 plaintexts
m0,m1,m2, whether the most significant differing bit of m0 and m1 is the same
as the one of m0 and m2), while the construction from [14] reveals the position
of the most significant differing bit. Despite the similarity of our results, both
constructions are significantly different in terms of techniques, as [12] is based
on the work by Chenette et al. [14] while our work opens a new path. In par-
ticular, any improvement of our building blocks (e.g., more efficient fully-secure
IPE or construction for cardinality of intersection with smaller leakage, or for
disjointness, as we explain in Remark 8) would immediately benefit to our ORE
scheme.

Concerning multi-input functional encryption, a recent work by Brakerski,
Komargodski, and Segev [11], improved in [26], propose a more general approach
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that allows going from single-input functional encryption to t-input functional
encryption in the private key-setting, as long as t is constant (or poly-logarithmic
assuming quasi-polynomial security). In particular, this allows one to obtain
function-revealing encryption scheme for functions with t-arity from LWE [20]
(or from low-complexity PRG and public-key encryption [21]) for a bounded
number T of ciphertexts for one index and unbounded ciphertexts for the others
(where the size of the ciphertexts grow with T and the depth of the circuit
computing the function). A similar result for the case of 2-arity functions can also
be obtained directly from the reusable garbled circuits construction from [20].
The general case with unbounded ciphertexts at both indexes remains out of
reach since it requires unbounded-collusion functional encryption, which is not
known from standard assumptions (and implies iO [4,26] up to subexponential
security).

Finally, our notion of function-revealing encryption has also been defined
in a recent work (as “revealing encryption”) by Haagh, Ji, Li, Orlandi, and
Song [22]. In this paper, the authors also propose a function-revealing scheme
for the comparison of two vectors (xi < yi or xi ≥ yi for all i or �x and �y are
incomparable). Their construction is obtained by extending the order-revealing
construction from [14] and thus implies as well an important leakage.

2 Definitions

2.1 Function-Revealing Encryption

We introduce the paradigm of function-revealing encryption (FRE), as a general-
ization of property-preserving encryption defined by Pandey and Rouselakis [29]
as well as a weakening of the general notion of multi-input functional encryp-
tion [8,19]. Our notion assumes the private-key setting [31] and corresponds to
dedicated multi-input functional encryption schemes where the evaluation of the
function is public (i.e., no functional secret key is involved).

Definition 1 (Function-Revealing Encryption). A function-revealing
encryption scheme for a k-ary function f consists of a tuple of algorithms
FRE = (Setup,Enc,Evalf ), defined below.

– Setup(1κ) is a probabilistic algorithm that takes as input the security param-
eter 1κ and outputs a secret key sk (and public parameters pp—including the
message space M).

– Enc(i, sk, x) takes as input an index i ∈ [k], a key sk, and a message x ∈ M.
It outputs a ciphertext ct.
Index i indicates that the output ciphertext ct constitutes the i-th input to
function f .

– Evalf (ct1, . . . , ctk) takes as input k ciphertexts ct1, . . . , ctk and outputs a
value y in the range of f .

For correctness, it is required that for all sk
$← Setup(1κ) and all (x1, . . . , xk) ∈

Mk:

Evalf (ct1, . . . , ctk) = f(x1, . . . , xk) where cti = Enc(i, sk, xi).
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Remark 2. 1. Definition 1 is “asymmetric” in the sense that a given ciphertext
is bound to a specific input position in the Evalf procedure. We could define
a “symmetric” version of function-revealing encryption where the encryption
algorithm Enc no longer takes in an index i ∈ [k] so that a ciphertext can
be used in any input position for the Evalf procedure. We do not study this
symmetric version further since, as stated in Lemma 5, it is implied by the
asymmetric version.

2. We choose not to include a decryption algorithm in our definition, since this
omission is without loss of generality. Indeed, if necessary, one could just
augment the encryption of a message x with an encryption of x with a CPA-
secure symmetric encryption scheme under a specific secret-key. Via CPA-
security, this additional information does not compromise the security of the
construction.

3. As specified in the introduction, we focus on the three following functions:

– f⊥: (�a,�b) 	→
{

1 if 〈�a,�b〉 = 0
0 otherwise

;

– f#: (S, T ) 	→ #(S ∩ T ) ;

– f<: (x, y) 	→
{

1 if x < y

0 otherwise
.

2.2 Two Security Flavors

We examine two different security notions and explore the relations between
them. The first notion is defined as an indistinguishability-based security game,
while the second (and stronger) one as a simulation-based security game. These
are generalizations of classical notions considered in the case of property-
preserving encryption, e.g. in [3,13,17,29].

The two notions are defined relatively to a leakage function L. As a FRE
scheme for a function f has to reveal, via the Evalf procedure, at least the
values of the function f according to any tuple of k messages x1, . . . , xk such
that xi is encrypted for index i ∈ [k], L will contain at least this information.
This leakage is written Lf and is defined below.

Definition 3 (Leakage of a Function). The leakage Lf of a k-ary func-
tion f with respect to k vectors �x1, . . . , �xk of q1, . . . , qk messages respectively—
one vector of messages per position in the input of the function, so �xi =
(xi,1, . . . , xi,qi)—is defined as:

Lf (�x1, . . . , �xk) = (f(x1,i1 , . . . , xk,ik))i1∈[q1],...,ik∈[qk].

L-Indistinguishability Security. A FRE scheme (Setup,Enc,Evalf ) for a
k-ary function f is L-indistinguishability secure if, for any two sequences of
plaintexts with the same leakage, the corresponding sequences of ciphertexts
are computationally indistinguishable. Security is defined by a variant of the
standard semantic security game and is depicted in Fig. 1.
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Fig. 1. Game defining the L-indistinguishability security of a FRE scheme.

Specifically, the adversary has black-box access to a left-or-right encryption
oracle LoR. This oracle can be adaptively queried with an index i and a pair of
messages (x(0), x(1)) to get Enc(i, sk, x(b)) with b being a fixed bit and sk being
a secret key, initialized by the Initialize procedure. At the end, the adversary
outputs a bit b′ and wins if b = b′; namely, Finalize(b′) = 1. In order to prevent
trivial attacks (i.e., attacks resulting from the leakage function), the adversary is
restricted as follows. If ((x(0)

i,1 , x
(1)
i,1 ), . . . , (x(0)

i,qi
, x

(1)
i,qi

)) denotes the sequence of qi

queries made with index i to the LoR oracle then, letting �x
(t)
i = (x(t)

i,1, . . . , x
(t)
i,qi

)
for t ∈ {0, 1}, the sequence of queries made by the adversary has to satisfy:

L
(
�x
(0)
1 , . . . , �x

(0)
k

)
= L

(
�x
(1)
1 , . . . , �x

(1)
k

)
.

L-Simulation Security. A FRE scheme (Setup,Enc,Evalf ) for a k-ary func-
tion f is L-simulation secure if, for any efficient adversary A = (A0,A1, . . . ,Aq)
which is given black-box access to encryption oracle Enc that it queries q times,
there exists an efficient stateful simulator S = (S0,S1, . . . ,Sq) such that the out-
puts of the two distributions RealFREA (κ) and SimFRE

A,S,L(κ), described in Fig. 2,
are computationally indistinguishable.

Fig. 2. Game defining the L-simulation security of a FRE scheme
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2.3 Relations Between These Security Notions

As one could expect, simulation security implies indistinguishability security, as
stated in the following lemma. Moreover, as already mentioned in Remark 2, for
both security notions, the existence of a secure “asymmetric” FRE implies the
existence of secure “symmetric” FRE, as stated in Lemma 5. Proofs are detailed
in the full version [23].

Lemma 4. Assuming FRE is an L-simulation secure function-revealing encryp-
tion scheme, then FRE is an L-indistinguishability secure function-revealing
encryption scheme.

Lemma 5. Assuming there exists an L-indistinguishability (resp. L-simulation)
secure asymmetric function-revealing encryption scheme for a function f ,
there exists a symL-indistinguishability (resp. symL-simulation) secure symmet-
ric function-revealing encryption scheme for the function f , with symL(�x) =
L(�x, . . . , �x).

3 Order-Revealing Encryption with Simulation-Security
for Polynomial-Size Message Space

Before starting to build our main construction, which is an efficient function-
revealing encryption scheme for the function f< (i.e., order-revealing encryp-
tion scheme) with limited leakage, we would like to start with a simple remark.
While it seems extremely hard to obtain an Lf<

-indistinguishability secure order-
revealing encryption scheme from standard assumptions, there is actually a very
simple construction that even achieves simulation-based security assuming only
one-way functions. However, this construction is only efficient for polynomial-
size message space. To improve efficiency, our construction can be instantiated
using a pseudorandom permutation, such as AES. This leads to a very efficient
construction for small message spaces (e.g., 10-bit integers).

Let {0, . . . , N − 1} denote the message space, and let F : {0, 1}κ × D → R
be a pseudorandom function such that its domain D contains {0, . . . , N − 1} ×
{0, . . . , 2(N − 1)}.

Construction 1. We define FRE< = (Setup<,Enc<,Evalf<
) as follows:

– Setup<(1κ) picks K
$← {0, 1}κ at random and returns it as the secret key sk;

– Enc<(i, sk, x) with x ∈ {0, . . . , N − 1} is defined as:

Enc<(i,K, x) =

{
shuffle(FK(x, x + 1), . . . , FK(x, x + N − 1)) if i = 1
shuffle(FK(0, x), . . . , FK(N − 1, x)) if i = 2

;

[Here shuffle is a randomized algorithm that returns a random shuffling of its
inputs.]

– Evalf<
(ct1, ct2) checks whether there is a common value in ct1 and ct2. If so,

it outputs 1 (“<”); if not, it outputs 0 (“≥”).



536 M. Joye and A. Passelègue

Correctness. It is clear that if there is no common value, the output of the
evaluation algorithm, “≥”, is correct. However, it might happen that there is a
common value due to a collision. Hence, to ensure that this does not happen, we
might want FK to be injective (e.g., using a pseudorandom permutation instead
of a pseudorandom function, e.g. AES), but one could simply make the range R
big enough so that the probability of a collision is negligible.

Construction 1 being deterministic, it reveals if two ciphertexts encrypted
with the same index corresponds to the same plaintext. This is the only extra
information, beyond the relative order, that is leaked. However, this extra-
information is always leaked in the “symmetric” case, as one can always check,
given two ciphertexts ct1, ct2 corresponding to plaintexts x1, x2, whether x1 ≥ x2

and x2 ≥ x1. Thus, if x1 = x2, the equality is revealed. For this reason, we claim
that Construction 1 achieves ideal security, and we define its leakage L<,= as:

L<,=(�x1, �x2) = (Lf<
(�x1, �x2),L=(�x1, �x2)),

with L=(�x1, �x2) = (1=(xb,ib , xb,jb))ib,jb∈[|�xb|],b∈{1,2} where 1=(a, b) returns 1 if
and only if a = b. Precisely, Lf<

(�x1, �x2) reveals exactly the relative order of
messages encrypted with index 1 relatively to messages encrypted with index 2,
while L=(�x1, �x2) reveals exactly the pairs of equal messages encrypted with the
same index.

Theorem 6. Assuming one-way functions exist, there exists an L<,=-
simulation secure function-revealing encryption scheme for the function f<, for
polynomial-size message spaces.

The proof of the above theorem is detailed in the full version [23].

4 Order-Revealing Encryption with Limited Leakage

We now describe how to build an order-revealing encryption scheme (a.k.a.
function-revealing encryption scheme for f<) from any function-revealing
encryption scheme for f#. As a preliminary, we explain how one can compare
two integers by simply checking the disjointness of two sets.

4.1 From Bitstrings to Sets

We define functions Σ0 and Σ1, taking as input an n-bit string x and returning
a set of prefixes, as follows:

Σb : x ∈ {0, 1}n 	−→ Σb(x) =
{
xn−1 ‖ . . . ‖ xi+1 ‖ 1 | xi = b

}
0≤i≤n−1

, (1)

for b ∈ {0, 1}. That is, Σ1(x) returns the set of every prefix of x that ends with
a 1, and Σ0(x) returns the set of every z ‖ 1 such that z ‖ 0 is a prefix of x. It
is easily seen that #Σ1(x) = hw(x) and that #Σ0(x) = hw(x̄). In particular,
we have Σ0(1n) = Σ1(0n) = ∅ and thus #Σ0(1n) = #Σ1(0n) = 0. It is also
immediate that #Σ1(x ‖ x̄) = #Σ0(x ‖ x̄) = n, for every x ∈ {0, 1}n.

Functions Σ0 and Σ1 are useful as they allow computing the relative order
of two integers [28]. More precisely, we have:
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Lemma 7. Let x, y be two integers such that 0 ≤ x, y < 2n and viewed as n-bit
strings. Then

x < y ⇐⇒ #
(
Σ0(x) ∩ Σ1(y)

)
= 1 and x ≥ y ⇐⇒ #

(
Σ0(x) ∩ Σ1(y)

)
= 0.

Please refer to the full version [23] for the proof.

Remark 8. Since the cardinality of the intersection is always 0 or 1, one could also
base our order-revealing encryption scheme on any function-revealing scheme for
the disjointness (i.e., that only reveals if two sets intersect or not).

4.2 A Generic Transform from FRE# to FRE<

Our transform simply relies on the above technique. Let FRE# = (Setup#,Enc#,
Evalf#) be a function-revealing encryption scheme for the function f#. For sim-
plicity, instead of directly encrypting the sets Σ0(x) or Σ1(x), one encrypts the
sets Σ0(x ‖ x̄) or Σ1(x ‖ x̄), which are both of size n if x is an n-bit integer. This
allows us to assume that the sets encrypted by FRE# all have the same size. It
is very easy to see that Lemma 7 still holds even if we replace Σ0(x) and Σ1(y)
by Σ0(x ‖ x̄) and Σ1(y ‖ ȳ) respectively.

Construction 2. We build a function-revealing encryption scheme FRE< =
(Setup<,Enc<,Evalf<

) for the function f< as follows:

– Setup< takes as input the security parameter κ and outputs Setup#(1κ) = sk;
– Enc< takes as input an index i ∈ {1, 2}, a secret key sk, and a message x and

outputs:

Enc<(i, sk, x) =

{
Enc#(1, sk, Σ0(x ‖ x̄)) if i = 1
Enc#(2, sk, Σ1(x ‖ x̄)) if i = 2

;

– Evalf<
takes as input a pair of ciphertexts (ct1, ct2) encrypted with index 1

and 2 respectively, and returns Evalf#(ct1, ct2).

Correctness. The correctness easily follows from the correctness of FRE# and
from Lemma 7.

Security. Security immediately follows from the security of FRE# and the
leakage is simply the leakage associated of FRE# applied to the encrypted sets,
which are either Σ0(x ‖ x̄) or Σ1(x ‖ x̄).

Let L denote a leakage such that FRE# is L-indistinguishability secure.
Then, we define the leakage of Construction 2 as:

LL(�x1, �x2) = L(Σ0(�x1), Σ1(�x2)),

where �xi = (xi,1, . . . , xi,qi) is the sequence of integers encrypted with index i,
for i ∈ {1, 2}, and where Σ0(�x1) = (Σ0(x1,1 ‖ x̄1,1), . . . , Σ0(x1,q1 ‖ x̄1,q1)), and
Σ1(�x2) = (Σ1(x2,1 ‖ x̄2,1), . . . , Σ1(x2,q2 ‖ x̄2,q2)).
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Theorem 9. Assuming there exists an L-indistinguishability secure function-
revealing encryption scheme for the function f#, then there exists an LL-
indistinguishability secure 2-input functional encryption scheme for the func-
tion f<.

Please refer to the full version [23] for the proof.

Remark 10. One could also prove in a very similar manner that the obtained
construction is simulation-secure assuming the underlying scheme FRE# is
simulation-secure.

4.3 Computing Cardinality of Intersection with Limited Leakage

We now describe the second step in building our efficient order-revealing encryp-
tion scheme with limited leakage, which is to build a function-revealing encryp-
tion scheme for computing the cardinality of intersection. Specifically, the mes-
sages are sets of fixed size n and the function f we target is the function
f#: (S1,S2) 	→ #(S1∩S2). Our construction relies on the existence of a function-
revealing encryption scheme for f⊥.

In order to ease the reading, we assume that every set in the message space
has a fixed size n. One could circumvent this condition as long as the maximal
size of a set is known and fixed in advance, but this is not useful for our purpose.

We compute the cardinality of the intersection of two sets as follows: given
two sets of integers A = {a1, . . . , an} and B = {b1, . . . , bn}, one can compute the
polynomial PA(X) =

∏n
i=1(X − ai) such that b ∈ A ⇔ PA(b) = 0. The problem

is that this technique does not hide anything about elements in A and B. To
address this issue, one simply notices that, given PA(X) =

∑n
i=0 αi · Xi, testing

PA(b) = 0 simply consists in checking if 〈�α, �β〉 = 0, with �α = (α0, . . . , αn) and
�β = (1, b, b2, . . . , bn). Therefore, this can be tested privately using a function-
revealing encryption for orthogonality testing.

We denote by coef(S) the vector (α0, . . . , αn) such that
∏

s∈S(X − s) =∑n
i=0 αi ·Xi and by exp(s) the vector (1, s, s2, . . . , sn). It is straightforward that,

for n being polynomial, computations of coef(S) and exp(s) are polynomial-time.
Let FRE⊥ = (Setup⊥,Enc⊥,Evalf⊥) be a function-revealing encryption scheme
for orthogonality testing.

Construction 3. We build a function-revealing encryption scheme FRE# =
(Setup#,Enc#,Evalf#) for the function f# as follows:

– Setup# takes as input the security parameter κ and outputs Setup⊥(1κ) = sk;
– Enc# takes as input an index i ∈ {1, 2}, a secret key sk, and a set S =

{s1, . . . , sn} and outputs:

Enc#(i, sk,S) =

⎧⎪⎨
⎪⎩

Enc⊥(1, sk, coef(S)) if i = 1;
shuffle(Enc⊥(2, sk, exp(s1)), . . . ,

Enc⊥(2, sk, exp(sn))) if i = 2.
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– Evalf# takes as input a pair of ciphertexts (ct1, ct2) encrypted with index 1 and
2 respectively and with ct2 = (ct2,1, . . . , ct2,n), computes yi = Evalf⊥(ct1, ct2,i)
for i = 1, . . . , n and outputs

∑n
i=1 yi.

Correctness. Correctness follows immediately from the correctness of FRE⊥.

Security. To compute the size of the intersection of a set S encrypted with
index 1 with a set T encrypted with index 2, one checks, for every element
t ∈ T , if t ∈ S. Therefore, while it clearly allows to compute the size of the
intersection, this also leaks more information. Indeed, consider two sets S1 and
S2 encrypted with index 1 and another set T encrypted with index 2. Then, for
every t ∈ T , one can check if t ∈ S1 and if t ∈ S2. Hence, not only the cardinality
T ∩S1 and T ∩S2 is revealed, but also the one of T ∩S1 ∩S2. More generally, if
k sets S1, . . . ,Sk are encrypted with index 1 and a set T is encrypted with index
2, their encryptions reveal the size of the intersection of T with any intersection
of 1 to k different sets from {S1, . . . ,Sk}.

We prove that this is exactly the information that is leaked by our construc-
tion and define the leakage of our construction, denoted L#∗ , as follows. For two
sequences of sets �S = (S1, . . . ,Sq1) and �T = (T1, . . . , Tq2) encrypted respectively
with index 1 and 2, we define:

L#∗( �S, �T ) = (#(I ∩ Ti))I∈ �S∩,i∈[q2]
, (2)

where �S∩ = {Si1 ∩· · ·∩Sij | j ∈ [q1], ij ∈ [q1]}, so �S∩ contains every intersection
of 1 to q1 different sets encrypted at index 1. In particular, every set Si is in �S∩.

Theorem 11. Assuming there exists an L⊥-indistinguishability secure function-
revealing encryption scheme for orthogonality testing, then there exists an L#∗-
indistinguishability secure function-revealing encryption scheme for cardinality
of intersection.

The proof of the above theorem is detailed in the full version [23]. Note that,
even if L#∗ is formally an exponential-size vector, checking whether a query
made by an adversary is valid or not remains polynomial.

4.4 Orthogonality Testing and Relation with Predicate Encryption

We finally describe how we obtain a function-revealing encryption for orthogo-
nality testing, namely for the function

f⊥: (�a,�b) ∈ Z
n
p 	→

{
1 if 〈�a,�b〉 = 0
0 otherwise

.

This is the last step in building our efficient order-revealing encryption scheme
with limited leakage and from standard assumptions.

The existence of such a scheme is actually implied by the existence of a fully-
secure secret-key inner-product encryption scheme, which in particular exists
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under the DLin assumption [7]; e.g., [25]. More generally, we describe a trans-
formation from any fully-secure secret-key predicate encryption for a class of
predicate Ff = {fa : b ∈ M 	→ f(a, b) ∈ {0, 1} | a ∈ M} to a function-revealing
encryption scheme for the function f . A very similar result was already proposed
in the case of property-preserving encryption in [2,13]. For completeness, defini-
tions of the DLin assumption and of fully-secure secret-key predicate encryption
and inner-product encryption are recalled in the full version [23]. In particular,
note that by fully-secure, we mean predicate-hiding and attribute-hiding.

Theorem 12. Let f : M × M → {0, 1} be any function. Assuming there
exists a fully-secure secret-key predicate encryption scheme for the class of pred-
icates Ff = {fa : b ∈ M 	→ f(a, b) ∈ {0, 1} | a ∈ M}, then there exists
an Lf -indistinguishability secure function-revealing encryption scheme for the
function f .

Please refer to the full version [23] for the proof.

5 Putting Everything Together

We conclude by assembling all our results and obtain an order-revealing encryp-
tion scheme with limited leakage assuming the standard DLin assumption. We
denote by L⊥ the (ideal) leakage of the function f⊥ (so L⊥ = Lf⊥ in the sense
of Definition 3).

Corollary 13. Assuming DLin, there exists an L⊥-indistinguishability secure
function-revealing encryption scheme for orthogonality testing.

Corollary 14. Assuming DLin, there exists an L#∗-indistinguishability secure
function-revealing encryption scheme for the function f#.

Corollary 15. Assuming DLin, there exists a LL#∗ -indistinguishability secure
function-revealing encryption scheme for the function f< (a.k.a. order-revealing
encryption scheme).

A more detailed explanation of our leakage as well as a detailed compari-
son with the main concurrent work by Cash et al. [12] are provided in the full
version [23].

5.1 Applications

To conclude this paper, we propose two applications of our constructions. In
particular, these applications do not suffer much from our additional leakage.

Membership Testing on a Database and Searchable Encryption. Our
notion of function-revealing encryption for the function f# naturally yields a
solution to test whether some private data is already in a database stored by a
given server. Indeed, one could split the database into distinct sets S1, . . . ,Sq
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of fixed size n and storing encryptions Enc#(1, sk, coef(Si)) for i ∈ [q]. Then,
one can simply send to the server Enc#(2, sk, exp(a)) so it can learn whether a
is already in the database. One could also use this method with a plaintext x
being a tag used to ask the server to return every encrypted data with the same
tag.

Similarly, one could associate a vector �x to a data and perform search-
able encryption using our function-revealing encryption scheme for orthogonality
(whose leakage is ideal). Doing so, one could query all the data whose tag �x is
orthogonal to some vector �y.

Range Queries. Our notion of function-revealing encryption for the function
f< allows one to perform efficient range queries on a database. One could indeed
store encryptions Enc<(1, sk, x) on the server, and makes queries of the form
Enc<(2, sk, a),Enc<(2, sk, b) to get encrypted data x ∈ [a; b). In particular, as
our notion is “asymmetric”, the server learns only a few extra information, while
classical order-revealing encryption let the server knows the complete order of
the elements. Due to the form of our leakage, the leaked informationis ideal
if only one such query is made by the user. Moreover, as explained above, the
asymmetry of our construction benefits to this application. In particular, a fully-
secure secret-key IPE scheme with constant-size tokens or ciphertexts would
imply a very efficient solution for range queries.
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Abstract. In a functional encryption scheme, secret keys are associ-
ated with functions and ciphertexts are associated with messages. Given
a secret key for a function f , and a ciphertext for a message x, a decryp-
tor learns f(x) and nothing else about x. Inner product encryption is a
special case of functional encryption where both secret keys and cipher-
text are associated with vectors. The combination of a secret key for a
vector x and a ciphertext for a vector y reveal 〈x,y〉 and nothing more
about y. An inner product encryption scheme is function-hiding if the
keys and ciphertexts reveal no additional information about both x and
y beyond their inner product.

In the last few years, there has been a flurry of works on the con-
struction of function-hiding inner product encryption, starting with the
work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more
recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work,
we focus on the practical applications of this primitive. First, we show
that the parameter sizes and the run-time complexity of the state-of-the-
art construction can be further reduced by another factor of 2, though
we compromise by proving security in the generic group model. We then
show that function privacy enables a number of applications in biometric
authentication, nearest-neighbor search on encrypted data, and single-
key two-input functional encryption for functions over small message
spaces. Finally, we evaluate the practicality of our encryption scheme
by implementing our function-hiding inner product encryption scheme.
Using our construction, encryption and decryption operations for vec-
tors of length 50 complete in a tenth of a second in a standard desktop
environment.

1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to
data access: users can either fully recover the data, or recover none at all. In
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the last fifteen years, numerous primitives such as identity-based encryption [17,
25], attribute-based encryption [11,36,60] and predicate encryption [37,41,53]
have been introduced to provide more fine-grained control to encrypted data.
Recently, these works have been unified under the general umbrella of functional
encryption (FE) [21,56,59]. In a functional encryption scheme, the holder of the
master secret key is able to delegate arbitrary decryption keys that allow users
to learn specific functions of the data, and nothing else. Specifically, given an
encryption of a message x and a secret key for a function f , a decryptor only
learns the value f(x).

Functional Encryption for Inner Products. In the last few years, a consid-
erable amount of effort has been dedicated to constructing functional encryption.
Currently, we can realize FE for general functions in a restricted setting (i.e.,
security against “bounded collusions”) [34,36,59] from standard assumptions as
well as fully-secure FE for general functions [30,31,66]. However, all of these
aforementioned works have focused on the theoretical feasibility or existence of
FE. And in fact, all of these general-purpose schemes are far too inefficient to be
viable for practical scenarios. Thus, there is currently a significant gap between
the kinds of FE that are realizable in theory and what practitioners for concrete
applications. In this paper, we take a step towards bridging this gap. We focus
on building practical functional encryption for a particular class of function-
alities, namely the inner product functionality [1,6,12,28], and show that our
construction is both efficient enough for practical deployments while remaining
expressive enough to support many interesting applications.

In an inner product encryption (IPE) scheme, both secret keys and cipher-
texts are associated with vectors x ∈ Z

n
q and y ∈ Z

n
q of length n over a ring Zq.

Given a secret key skx for x and a ciphertext cty for y, the decryption function
outputs the value 〈x,y〉 ∈ Zq, which is the inner product of their associated
vectors. We emphasize that this definition of IPE is different from the notion
of inner product predicate encryption from [41,53–55,62]. In an inner product
predicate encryption scheme, a message m is encrypted with a tag y ∈ Z

n
q .

Decryption keys are still associated with vectors x ∈ Z
n
q . When a secret key for

x is used to decrypt a ciphertext with tag y, the output is m if 〈x,y〉 = 0 and
⊥ otherwise. In other words, decryption recovers the message only if the vectors
of the secret key and ciphertext are orthogonal. In contrast, decryption in our
setting outputs the actual value of the inner product.

Function-Hiding IPE. Functional encryption enables delegation of decryp-
tion capabilities by issuing different function keys to users. In many appli-
cations, however, we require the additional property that the function keys
themselves also hide the underlying function. This problem was first consid-
ered by Shen, Shi, and Waters [62] for inner-product predicate encryption in
the secret-key setting, and subsequently by many others in both the secret-
key setting [4,23] and the public-key setting [19,20]. Bishop, Jain, and Kowal-
czyk [12] were the first to give a direct construction of secret-key function-hiding
IPE under an indistinguishability-based definition from the Symmetric External
Diffie-Hellman (SXDH) assumption in bilinear groups. However, their security
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model imposes a somewhat unrealistic admissibility constraint on the adversary’s
queries.1 Subsequently, Datta, Dutta, and Mukhopadhyay [28] showed how to
construct a secret-key function-hiding IPE from the SXDH assumption that
removes the need for that additional constraint on the adversary’s queries. In
their construction, secret keys and ciphertexts of n-dimensional vectors consist
of 4n+8 group elements. This was further improved upon in a work by Tomida,
Abe, and Okamoto [65] who gave a construction of a secret-key function hiding
IPE from the DLIN assumption where the secret keys and ciphertexts consist of
2n+5 group elements. Recently, Kim, Kim, and Seo [42] also gave a construction
of function-hiding IPE from the SXDH assumption where the secret keys and
ciphertexts consist of 2n + 8 group elements. Notably, the master secret key in
their construction is much smaller and just contains 6n + 4 field elements (in all
previous constructions, including this one, the master secret key contains O(n2)
elements).

Additional Related Work. Recently, Ramanna [58] proposed new construc-
tions for inner product encryption from the SXDH assumption, with applications
to identity-based broadcast encryption. However, this construction also requires
the use of quasi-adaptive non-interactive zero knowledge proofs. In addition,
Abdalla, Raykova, and Wee [2] as well as Lee and Lee [45] study how to use con-
crete assumptions on bilinear maps to obtain multi-input FE for inner products,
but in a non-function-hiding setting.

1.1 Our Contributions

In this work, we give a new construction of a function-hiding inner product
encryption where secret keys and ciphertexts of n-dimensional vectors contain
just n + 1 group elements. This corresponds to a noticeable reduction (by a
factor of 4, 2, and 2, respectively) in parameter sizes (specifically, in the size
of the secret keys and the ciphertexts) compared to the existing schemes of
Datta et al. [28], Tomida et al. [65], and Kim et al. [42]. We prove the security
of our construction under a stronger simulation-based notion of security in the
generic group model. We then describe a number of new applications enabled by
inner product encryption. We highlight two of these applications here and give
the full description in Sect. 4:

– Biometric authentication: Biometric-based authentication has grown in
popularity to both augment and replace password-based authentication.
Unlike the passwords in password-based authentication, biometrics are inher-
ently noisy, so requiring exact matches between a supplied biometric and a
user’s ground truth credential generally does not work. A more appropriate
metric is the closeness of the supplied biometric to the ground truth. We

1 Lin and Vaikuntanathan [47] subsequently showed how to generically boost function-
hiding IPE schemes that satisfy this weaker notion of security to one that satisfies
the full notion of security. Their generic transformation introduces a factor of 2
overhead in the length of the secret keys and ciphertexts.
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show that inner product encryption can be used to compute Hamming dis-
tances between bitstrings. This gives a simple biometric-based authentication
system.

– Nearest-neighbor search on encrypted data: Consider an encrypted
database of documents D. Given a document d, the problem of k-nearest-
neighbor search is that of finding the top-k documents in D that are most
similar to the query document d (for some definition of document similarity).
A commonly used metric for document similarity is �2 distance between a
vectorial representation of documents. We show that inner product encryp-
tion provides an efficient method to perform nearest-neighbor search over
an encrypted database. Our work contrasts with existing works on search-
able symmetric encryption (SSE) [10,27,32,64] in that our protocols focus
on retrieving similar documents, while SSE primarily deals with retrieving
documents based on exact or partial keyword matches.

In addition to the above applications, we also show how to build a fully-secure
single-key, two-input functional encryption scheme in the “small-message” set-
ting (i.e., for schemes over a polynomial-sized plaintext space) using function-
hiding IPE. Compared to existing functional encryption schemes that do not rely
on heavy machinery such as multilinear maps or indistinguishability obfuscation,
our scheme achieves significantly shorter ciphertexts.

IPE to Two-Input Functional Encryption. Multi-input functional encryp-
tion (MIFE) [33] generalizes FE to the setting where decryption keys are asso-
ciated with functions of several inputs. A special case of MIFE is two-input
functional encryption where the decryption function takes a secret key skf for a
binary function f and two encryptions ctx and cty of messages x and y, respec-
tively, and outputs f(x, y). Notably, two-input functional encryption (for just a
single function2 f) suffices to construct property-preserving encryption [57] for
binary properties. Such a property-preserving encryption scheme is defined with
respect to a Boolean predicate P on two inputs. Then, there exists a publicly
computable function that takes encryptions of messages x and y and decides
whether P (x, y) is satisfied. A special case of property-preserving encryption
(for the comparison predicate) that has been extensively studied in recent years
is order-preserving encryption (OPE) [3,13,14], and its generalization, order-
revealing encryption (ORE) [18,24]. Property-preserving encryption for binary
properties can be easily constructed from a two-input functional encryption
scheme by simply publishing a function key skP for the predicate P . Checking
whether two ciphertexts satisfy the predicate simply corresponds to decryption
in the underlying functional encryption scheme. In this work, we show that inner-
product encryption can be used very naturally to build a single-key, two-input
FE scheme in the secret key setting for polynomially-sized domains. This gives a
property-preserving encryption scheme for arbitrary binary properties over small
domains.

2 This setting where the functionality f is fixed in advance is referred to as the single-
key setting.
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Currently, all alternative constructions of general-purpose MIFE rely on
strong primitives such as indistinguishability obfuscation [33] or multilinear
maps [18]. While recent results show how to transform any functional encryption
scheme into a MIFE scheme [8,22], applying these transformations to single-
input functional encryption schemes based on standard assumptions [34,35]
yields schemes that are secure only if the adversary obtains an a priori bounded
number of secret keys and ciphertexts.3 This means that even in the single-key
setting, the adversary is still restricted to making an a priori bounded number
of message queries. Moreover, in these existing constructions, the length of the
ciphertexts is at least Ω(Q4) where Q is the bound on the number of message
queries the adversary makes.

In this work, we give an efficient construction of a single-key, two-input func-
tional encryption scheme for general functions in the secret-key setting where
the message space is small.4 Because the function f is a function of two inputs,
there are two types of ciphertexts: “left” encryptions of messages for the first
input to f and “right” encryptions of messages for the second input to f . The
reduction to function-hiding inner product encryption is very simple and resem-
bles the “brute-force” construction of functional encryption from [21, Sect. 4.1].
Specifically, if the message space is the set {m1, . . . ,mn}, a “left” encryption of
a message mi is just an IPE function key skei

for the basis vector ei (eii = 1 and
eij = 0 for all i �= j). A right encryption of a message mj is an IPE ciphertext for
the vector fj of functional evaluations where fjk = f(mk,mj). By construction,
〈ei, fj〉 = fji = f(mi,mj). Security of our construction follows from the fact
that the IPE scheme is function-hiding. In contrast to existing constructions of
MIFE from standard assumptions, the size of the ciphertexts in our two-input
functional encryption scheme is independent of the number of ciphertext queries
the adversary makes.

Our Construction. The starting point for our function-hiding IPE scheme
is the constructions of [12,28,65] which all leverage the power of dual pairing
vector spaces developed by Okamoto and Takashima [52]. The master secret key
in their constructions [12,28] consists of a random basis for a dual pairing vector
space. In our work, we scale this basis by a fixed value (dependent on the basis).
We correspondingly scale the components of the secret key. Our final scheme

3 This limitation arises because the underlying FE scheme is only secure against
“bounded collusions,” i.e., secure if the adversary makes a bounded number of key
generation queries. After applying the single-input-to-multi-input transformation,
this translates into an additional restriction on the number of ciphertexts the adver-
sary can request.

4 Recently, Lewi and Wu [46] along with Joye and Passelègue [40] independently gave
constructions of order-revealing encryption from one-way functions in the small-
message-space setting. While the techniques of [46] can be further extended to work
for any two-input functionalities, their construction necessarily reveals whether two
ciphertexts encrypt the same underlying value. The construction we propose applies
more generally to arbitrary two-input functionality without this limitation.
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achieves shorter secret keys and ciphertexts, with no loss in security. We give a
formal security proof in the generic bilinear group model.

Although achieving security in the standard model is important, we are able
to obtain a significantly more efficient inner product encryption scheme (with full
security) compared to all previous constructions [12,28] by relying on idealized
assumptions. A series of works [9,26,29] in the last 15 years have focused on con-
structing and characterizing pairing-friendly elliptic curves where the complexity
of all known non-generic attacks over these curves is extremely high. The heuris-
tic evidence thus suggests that if we instantiate our construction using one of
these pairing-friendly elliptic curves, the best attacks will be generic in nature.5

Though a proof in the generic group model is generally less satisfying than one
in the standard model, for most practical applications, using a scheme whose
security analysis leverages an idealized model is not a severe limitation. In fact,
by considering constructions whose security relies on the generic group model,
we obtain a function-hiding IPE scheme whose secret keys and ciphertexts are
much shorter than those of existing schemes, and hence, quite efficient.

Implementation. To assess the practicality of our inner product encryption
scheme, we provide a complete and open-source implementation6 of our scheme
in Python. We also perform a series of micro-benchmarks on our inner product
encryption scheme for a wide range of parameter settings. Our results show that
our encryption scheme is practical for a wide variety of real-world scenarios. For
example, encrypting vectors of length 50 completes in about a tenth of a second
on a typical desktop. Ciphertexts in our scheme are just a few KB. We describe
our implementation and the micro-benchmarks we perform in Sect. 5.

2 Preliminaries

2.1 Notation

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S,
we write x

r←− S to denote sampling x uniformly at random from S. We use
bold lowercase letters (e.g., v,w) to denote vectors and bold uppercase letters
(e.g., B, B∗) to denote matrices. For a matrix B, we use B� to denote the
transpose of B and det(B) to denote its determinant. We recall that GLn(Zq)
is the general linear group of (n × n) matrices over Zq (i.e., invertible matrices
over Zq). We write λ for the security parameter. We say a function ε(λ) is
negligible in λ, if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote
a negligible function in λ. We say that an event occurs with negligible probability
if the probability of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

5 On certain classes of pairing curves, there are indeed non-generic attacks [44].
Nonetheless, there still remains a large class of pairing curves where there are no
known non-generic attacks that perform significantly better than the generic ones.

6 Our open-source implementation is available at https://github.com/kevinlewi/fhipe.

https://github.com/kevinlewi/fhipe
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2.2 Bilinear Groups

In this section, we recall some basic definitions on (asymmetric) bilinear
groups [17,39,49]. Let G1 and G2 be two distinct groups of prime order q,
and let g1 ∈ G1 and g2 ∈ G2 be generators of G1 and G2, respectively. Let
e : G1 ×G2 → GT be a function that maps two elements from G1 and G2 onto a
target group GT , also of prime order q. In this work, we write the group operation
in G1, G2, and GT multiplicatively and write 1 to denote their multiplicative
identity. We say that the tuple (G1,G2,GT , q, e) is an asymmetric bilinear group
if the following properties hold:

– The group operations in G1, G2, and GT , as well as the map e, are efficiently
computable.

– The map e is non-degenerate: e(g1, g2) �= 1.
– The map e is bilinear: for all x, y ∈ Zq, we have that e(gx

1 , gy
2 ) = e(g1, g2)xy.

In this work, we will often work with vectors of group elements. Let G be a
group of prime order q. Then, for any group element g ∈ G, and row vector
v = (v1, . . . , vn) ∈ Z

n
q , where n ∈ N, we write gv to denote the vector of group

elements (gv1 , . . . , gvn). Moreover, for any scalar k ∈ Zq and vectors v,w ∈ Z
n
q ,

we write
(gv)k = g(kv) and gv · gw = gv+w.

The pairing operation over groups is naturally extended to vectors as follows:

e(gv1 , gw2 ) =
∏

i∈[n]

e(gvi
1 , gwi

2 ) = e(g1, g2)〈v,w〉.

2.3 Function-Hiding IPE

A (secret-key) inner product encryption (IPE) scheme is a tuple of algorithms
Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) defined over a message
space Z

n
q with the following properties:

– IPE.Setup(1λ, S) → (pp,msk): On input a security parameter λ and a set
S ⊆ Zq, the setup algorithm IPE.Setup outputs the public parameters pp and
the master secret key msk.

– IPE.KeyGen(msk,x) → skx: On input the master secret key msk and a vector
x ∈ Z

n
q , the key generation algorithm IPE.KeyGen outputs a functional secret

key skx.
– IPE.Encrypt(msk,y) → cty: On input the master secret key msk and a vector

y ∈ Z
n
q , the encryption algorithm IPE.Encrypt outputs a ciphertext cty.

– IPE.Decrypt(pp, sk, ct) → z: On input the public parameters pp, a functional
secret key sk, and a ciphertext ct, the decryption algorithm IPE.Decrypt either
outputs a message z ∈ Zq or a special symbol ⊥.

Correctness. An IPE scheme Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.
Decrypt) defined over a message space Z

n
q is correct if for all sets S where
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|S| = poly(λ), and all non-zero vectors x,y ∈ Z
n
q \ {0}, where 〈x,y〉 ∈ S,

the following conditions holds. Letting (pp,msk) ← IPE.Setup(1λ, S), skx ←
IPE.KeyGen(msk,x), cty ← IPE.Encrypt(msk,y), then

Pr [IPE.Decrypt(pp, skx, cty) = 〈x,y〉] = 1 − negl(λ).

Indistinguishability-Based Security. Previous works [1,6,12,28] on inner
product encryption considered an indistinguishability notion of security. We
review this definition here.

Let Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) be an inner
product encryption scheme. We now define the following experiment between
a challenger and an adversary A that can make key generation and encryption
oracle queries. In the following, we let Zq be our message space and S ⊆ Zq be
any polynomial-size subset of the message space.

Definition 1 (Experiment Exptipe-indb ). Let b ∈ {0, 1}. The challenger com-
putes (pp,msk) ← IPE.Setup(1λ, S), gives pp to the adversary A, and then
responds to each oracle query type made by A in the following manner.

– Key generation oracle. On input a pair of vectors x0,x1 ∈ Z
n
q \ {0}, the

challenger computes and returns sk ← IPE.KeyGen(msk,xb).
– Encryption oracle. On input a pair of vectors y0,y1 ∈ Z

n
q \ {0}, the chal-

lenger computes and returns ct ← IPE.Encrypt(msk,yb).

Eventually, A outputs a bit b′, which is also the output of the experiment, denoted
by Exptipe-indb (A).

Definition 2 (Admissibility). For an adversary A, let Q1 and Q2 be the total
number of key generation and encryption oracle queries made by A, respectively.
For b ∈ {0, 1}, let x(1)

b , . . . ,x(Q1)
b ∈ Z

n
q \ {0} and y(1)

b , . . . ,y(Q2)
b ∈ Z

n
q \ {0} be

the corresponding vectors that A submits to the key generation and encryption
oracles, respectively. We say that A is admissible if for all i ∈ [Q1] and j ∈ [Q2],
we have that 〈

x(i)
0 ,y(j)

0

〉
=

〈
x(i)
1 ,y(j)

1

〉
.

Definition 3 (IND-Security for IPE). We define an inner product encryp-
tion scheme denoted as Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt)
as fully-secure if for all efficient and admissible adversaries A,

∣∣∣Pr[Exptipe-ind0 (A) = 1] − Pr[Exptipe-ind1 (A) = 1]
∣∣∣ = negl(λ).

Simulation-Based Security. Next, we strengthen the indistinguishability
based notion of security by introducing a simulation-based definition.7 In the
7 There are many lower bounds [5,21] for the types of functional encryption that

can be achieved under a simulation-based definition in the standard model. These
lower bounds do not apply in idealized models such as the generic group model. See
Remark 6 for additional details.
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simulation-based definition, we require that every efficient adversary that inter-
acts with the real encryption and key generation oracles can be simulated given
only oracle access to the inner products between each pair of vectors the adver-
sary submits to the key generation and encryption oracles.

Definition 4 (SIM-Security for IPE). Let Πipe = (IPE.Setup, IPE.KeyGen,
IPE.Encrypt, IPE.Decrypt) be an inner product encryption scheme over a message
space Z

n
q . Then Πipe is SIM-secure if for all efficient adversaries A, there exists

an efficient simulator S = (S1,S2,S3) such that the outputs of the following
experiments are computationally indistinguishable:

RealA(1λ):
1. (pp,msk) ← IPE.Setup(1λ)
2. b ← AOKeyGen(msk,·), OEnc(msk,·)(1λ)
3. output b

IdealA,S(1λ):
1. initialize X ← ∅ and Y ← ∅
2. (pp, st) ← S1(1λ)
3. b ← AO′

KeyGen(·), O′
Enc(·)(1λ, pp)

4. output b

where the oracles OKeyGen(sk, ·), OEnc(sk, ·), O′
KeyGen(·), O′

Enc(·) are defined as
follows:

– Oracles OKeyGen(sk, ·) and OEnc(sk, ·) represent the real encryption and key
generation oracles, respectively. Specifically, OKeyGen(sk,x) = IPE.KeyGen
(sk,x) and OEnc(sk,y) = IPE.Encrypt(sk,y).

– Oracles O′
KeyGen(·) and O′

Enc(·) represent the ideal encryption and key gener-
ation oracles, respectively. The two oracles are stateful and share counters i
and j (initialized to 0 at the beginning of the experiment) a simulator state
st (initialized to the state output by S1), and a collection of mappings

Cip =
{

(i′, j′) �→ 〈x(i′),y(j′)〉 : i′ ∈ [i], j′ ∈ [j]
}

,

where x(i) ∈ Z
n
q and y(j) ∈ Z

n
q are the inputs for the ith invocation of

O′
KeyGen(·) and the jth invocation of O′

Enc(·) by the adversary, respectively.
At the beginning of the experiment, the set Cip is initialized to the empty set.

• On the adversary’s ith invocation of O′
KeyGen(·) with input vector x(i) ∈

Z
n
q , the oracle O′

KeyGen sets i ← i + 1, updates the collection of mappings
Cip, and invokes the simulator S2 on inputs Cip and st. The simulator
responds with a tuple (skx, st′) ← S2 (Cip, st). The oracle updates the state
st ← st′ and replies to the adversary with the secret key skx.

• Similarly, on the adversary’s jth invocation of O′
Enc(·) with input vector

y ∈ Z
n
q , the oracle O′

Enc sets j ← j + 1, updates the collection of map-
pings Cip, and invokes the simulator S3 on input Cip and st. The simulator
responds with a tuple (cty, st′) ← S3 (Cip, st). The oracle updates the state
st ← st′ and replies to the adversary with the ciphertext cty.

Remark 5 (SIM =⇒ IND). It is straightforward to see that an IPE scheme that
is secure under the simulation-based definition (Definition 4) is also secure under
the indistinguishability-based definition (Definition 3).
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Remark 6 (SIM-Security Lower Bound). While the simulation-based notion
of security (Definition 4) is very natural and captures the security guarantees
we desire from a function-hiding inner-product encryption scheme, simulation-
security is impossible in the standard model. This lower bound follows from the
same argument made to show impossibility of non-interactive non-committing
encryption [51] and of simulation-secure functional encryption in the public-key
setting [21, Sect. 5.1]. We note that this lower bound only applies to function-
hiding inner-product encryption. These lower bounds do not hold in idealized
models such as the random oracle or the generic group model.

2.4 The Generic Group Model

In this work, we prove the security of our construction in a generic model of
bilinear groups [15,16], which is an extension of the generic group model [50,
63]. In the generic group model, access to the group elements is replaced by
“handles.” An adversary in the generic group model is also given access to a
stateful oracle which implements the group operation, and in the bilinear group
setting, the pairing operation. The generic group oracle maintains internally a
mapping from handles to group elements, which it uses in order to consistently
answer the oracle queries. Thus, when a scheme is shown to satisfy some security
property in the generic group model, it means that no efficient adversary that
only applies the group operations as a black-box can break that security property.
As noted in Sect. 1, there is strong heuristic evidence that suggests that the
best known attacks on existing pairing-friendly elliptic curves will be generic
in nature. In the full version of this paper [43], we provide a more extensive
description of the generic group model.

3 Construction

In this section, we give our construction of function-hiding inner-product encryp-
tion. We then show that the scheme is simulation-secure (Definition 4) in the
generic group model. Fix a security parameter λ ∈ N, and let n be a positive
integer. Let S be a polynomial-sized subset of Zq. We construct a function-hiding
IPE scheme Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) as follows.

– IPE.Setup(1λ, S): On input the security parameter λ, the setup algorithm
samples an asymmetric bilinear group (G1,G2,GT , q, e) and chooses genera-
tors g1 ∈ G1 and g2 ∈ G2. Then, it samples B ← GLn(Zq) and sets B� =
det(B) · (B−1)�. Finally, the setup algorithm outputs the public parameters
pp = (G1,G2,GT , q, e, S) and the master secret key msk = (pp, g1, g2,B,B�).

– IPE.KeyGen(msk,x): On input the master secret key msk and a vector x ∈ Z
n
q ,

the key generation algorithm chooses a uniformly random element α
r←− Zq

and outputs the pair

sk = (K1,K2) =
(
g

α·det(B)
1 , gα·x·B

1

)
.

Note that the second component is a vector of group elements.
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– IPE.Encrypt(msk,y): On input the master secret key msk and a vector y ∈ Z
n
q ,

the encryption algorithm chooses a uniformly random element β
r←− Zq and

outputs the pair
ct = (C1, C2) =

(
gβ
2 , gβ·y·B�

2

)
.

– IPE.Decrypt(pp, sk, ct): On input the public parameters pp, a secret key sk =
(K1,K2) and a ciphertext ct = (C1, C2), the decryption algorithm computes

D1 = e(K1, C1) and D2 = e(K2, C2).

Then, it checks whether there exists z ∈ S such that (D1)z = D2. If so,
the decryption algorithm outputs z. Otherwise, it outputs ⊥. Note that this
algorithm is efficient since |S| = poly(λ).

Correctness. As in [12,28], correctness holds when the plaintext vectors x and
y satisfy 〈x,y〉 ∈ S, for a polynomially-sized S. The correctness of Πipe follows
from the fact that for any secret key skx = (K1,K2) corresponding to a vector
x and any ciphertext cty = (C1, C2) corresponding to a vector y, we have that

D1 = e(K1, C1) = e(g1, g2)αβ·det(B)

and

D2 = e(K2, C2) = e(g1, g2)αβ·xB(B�)�y�
= e(g1, g2)αβ·det(B)·〈x,y〉,

where the last equality holds by the relation B(B�)� = det(B) · I, where I is the
identity matrix. Therefore, if 〈x,y〉 ∈ S, the decryption algorithm will correctly
output 〈x,y〉.
Security. To prove security of Πipe in the generic group model, we construct a
simulator which, given only the inner products of the vectors corresponding to
the key generation and encryption queries, is able to correctly simulate the real
distribution of the secret keys and ciphertexts. We state the theorem here and
defer the proof to the full version of this paper [43].

Theorem 7. The inner product encryption scheme Πipe is SIM-secure in the
generic group model.

4 Applications

In this section, we describe several applications of function-hiding IPE to bio-
metric authentication and performing nearest-neighbor searches on an encrypted
database. In the full version of this paper [43], we describe an additional applica-
tion to secure linear regression. Then, as noted in Sect. 1, function-hiding inner
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product encryption naturally yields a two-input FE scheme for small domains.
Due to space limitations, we defer the formal description of this scheme to the full
version of the paper [43]. A high-level overview of the construction is provided
in Sect. 1.

Biometric Authentication. Suppose an organization wants to deploy a
biometric-based authentication system (e.g., fingerprint readers, iris scanners)
to restrict access to certain areas within a complex. The biometric scanner is
interfaced to an external authentication server that enforces the authorization
policies. By offloading the authentication to a central server, it is no longer neces-
sary for every biometric scanner to store the list of employee biometric signatures
or their authorization policies. However, as with password-based authentication,
it is a security risk to store each employee’s biometric information in the clear on
the server. In password-based authentication, the server typically stores a salted
hash of each user’s password, which allows it to check whether or not a user
has provided the correct password without needing to store the user’s password
in the clear. In contrast to passwords, biometrics are noisy by nature. In the
biometrics setting, authentication should succeed when the provided biometric
is “close” to a user’s stored credential. Consequently, hash-based methods are
inappropriate in our setting. A better approach computes a Hamming distance
between the biometric and a user’s stored credential, where authentication passes
only if this Hamming distance is small.

Inner product encryption provides an efficient way to compute Hamming
distances between pairs of secret vectors. Given two binary vectors x,y ∈ {0, 1}n,
let x′,y′ ∈ {−1, 1}n be the vectors where each 0-entry in x and y is mapped
to −1 in x′ and y′, and each 1-entry of x and y is mapped to 1 in x′ and y′,
respectively. Then, by construction, 〈x′,y′〉 = n − 2 · d(x,y), where d(x,y) is
the Hamming distance between x and y. Thus, given only the encryptions of x
and y, a decryptor can compute their Hamming distance using only the public
parameters and without learning anything else about x and y.

In our biometric authentication example, each biometric scanner is given
the master secret key for a function-hiding IPE scheme. The authentication
server stores an encryption of each user’s biometric under the master secret
key (but does not store the master secret key itself). When an employee tries
to authenticate using a biometric scanner, the scanner reads the employee’s
biometric, encrypts it using the secret key, and sends it to the authentication
server. The server computes the Hamming distance of the encrypted biomet-
ric with the stored biometric for the employee. Authentication succeeds if the
resulting Hamming distance is small. Since the authentication server only stores
encrypted credentials, a compromise of the authentication server does not result
in a compromise of any employees’ biometric information.

Nearest-Neighbor Search on Encrypted Data. Another application of
inner product encryption is in performing nearest-neighbor search over an
encrypted database. A simple way of measuring document similarity is to first
embed the documents into an Euclidean space and then measure the �2-distance
between the vectors corresponding to the documents. Suppose an organization
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has an encrypted set of documents and wants to allow employees to search for
similar documents. With each document, the server stores an encryption of the
vector representation of the document. Then, each employee who is authorized
to search for documents in the database is given the master secret key for the
IPE scheme. When an employee wants to find the set of documents that most
closely matches her query, she first projects her query into the feature space,
encrypts the resulting query vector, and sends the encrypted query vector to
the database. The database then computes the �2-distance between the query
vector and each document, and returns the set of documents with the smallest
�2-distance (i.e., the nearest neighbors).

Using an IPE scheme, it is straightforward to construct an encryption scheme
that allows a decryptor to compute the �2-distance between two encrypted vec-
tors. Specifically, given two vectors x,y ∈ Z

n
q , their �2-distance is given by

‖x − y‖2 = ‖x‖2−2〈x,y〉+‖y‖2. Now, define the vectors x′ = (‖x‖2 ,−2x1, . . .−
2xn, 1) ∈ Z

n+2
q and y′ = (1, y1, . . . yn, ‖y‖2) ∈ Z

n+2
q . By construction, we have

that 〈x′,y′〉 = ‖x − y‖2. Thus, an inner product encryption scheme yields a
scheme that supports computing the �2-distance between encrypted vectors,
which yields a solution for nearest-neighbor search over encrypted documents.

5 Implementation and Evaluation

To evaluate the practicality of our main construction, we implemented our
function-hiding IPE as well as our two-input functional encryption scheme. Our
library is publicly available under a standard open-source license. Our imple-
mentation uses the Charm [7] library to implement the pairing group operations
(backed by PBC [48]), and FLINT [38] for the finite field arithmetic in Zq. In our
benchmarks, we measure the time needed to encrypt, issue keys for, and compute
the inner product for N -dimensional binary vectors for several different values
of N . We run all of our benchmarks on a Linux desktop with an 8-core Intel
Core i7-4790K 4.00 GHz processor and 16 GB of RAM.

In our implementation, the running time of the setup algorithm is dominated
by the inversion of a random n×n matrix in Zq, where q is either a 160-bit or 224-
bit prime, corresponding to 80 and 112 bits of security, respectively. The inverse
computation was done näıvely in O(n3) time in C. Although this procedure
is quite computationally expensive, we note that it only needs to be performed
once, and can be done offline on a more powerful machine. As a point of reference,
at the 80-bit security level, the setup algorithm completes in about 5 minutes
on the desktop for vectors of dimension N = 100. Since all of the other IPE
operations are agnostic to the actual values in the matrices B and B�, for the
benchmarks with higher-dimensional vectors (that is, N > 100), we measure the
performance with respect to matrices B and B� that are sampled uniformly at
random (rather than setting B� to be a scaled inverse of B� as in the normal
setup algorithm). Using simulated rather than real matrices has no effect on the
micro-benchmarks of the underlying IPE operations.
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Table 1. Micro-benchmarks for our inner product encryption scheme over two different
pairing curves: MNT159 (for 80 bits of security) and MNT224 (for 112 bits of security).
For N > 100, we used a simulated setup procedure where the matrices B and B� that
would normally be generated by the setup procedure are instead sampled uniformly at
random. For the run-time measurements of the basic IPE operations (Keygen, Encrypt,
and Decrypt), we average the performance over 10 runs. We also measure the size |ct|
of the IPE ciphertexts.

N MNT159 (λ = 80) MNT224 (λ = 112)

Keygen Encrypt Decrypt |ct| Keygen Encrypt Decrypt |ct|
5 0.8ms 2.6ms 9.9ms 791B 1.4ms 3.9ms 20.2ms 990B

10 1.2ms 4.5ms 24.1ms 1.4KB 1.9ms 7.5ms 40.1ms 1.9KB

30 2.4ms 12.5ms 67.1ms 4.0KB 4.1ms 21.1ms 112.3ms 5.4KB

50 4.0ms 20.7ms 110.2ms 6.6KB 6.6ms 34.9ms 184.4ms 9.0KB

100 9.8ms 43.2ms 217.8ms 13.0KB 14.5ms 71.4ms 366.4ms 17.7KB

250 40.9ms 124.4ms 540.9ms 32.3KB 52.2ms 194.6ms 907.0ms 44.1KB

500 140.6ms 310.5ms 1.1 s 64.6KB 163.0ms 447.7ms 1.8 s 88.0KB

750 303.7ms 555.9ms 1.6 s 96.8KB 333.3ms 753.3ms 2.7 s 132.0KB

Recall from Sect. 3 that the decryption routine in our IPE scheme requires
computing a discrete logarithm. We implemented the baby-step giant-step algo-
rithm [61] for computing discrete logs. In our benchmarks, we measured the
runtime of each of the elementary IPE operations as well as the size of the
IPE ciphertexts for vectors of varying dimension N . The concrete performance
numbers are summarized in Table 1 and Fig. 1.

From Table 1, we see that key generation and encryption operations complete
in just a few hundred milliseconds, even for high-dimensional vectors. Decryption
is slightly slower, requiring on the order of a few seconds for vectors containing
500 components. The difference in run-times is due to the fact that decryption
require N pairing operations, while key generation and encryption only require
group exponentiation. On the desktop, a single group exponentiation takes about
0.6 ms, while a pairing takes about 2 ms. It is also worth noting that while
the only essential difference between key generation and encryption in our IPE
scheme is that key generation operates over G1 while encryption operates over
G2, there is a fairly substantial difference in the run-times of the two operations
(generally speaking, at least a factor of 2x). This is an artifact of using an
asymmetric pairing group. Group operations in G1 are faster than those in G2,
so as a result, key generation is much faster than encryption in our IPE scheme.

5.1 Applications

In the full version of this paper [43], we revisit our candidate applications from
Sect. 4, and show how our function-hiding inner product encryption can be
applied in those scenarios.
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Fig. 1. Micro-benchmarks of each of the elementary operations of our function-hiding
IPE scheme over the MNT159 curve (provides λ = 80 bits of security).
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Abstract. We propose new constructions for identity-based broadcast
encryption (IBBE) and fuzzy identity-based encryption (FIBE) in bilin-
ear groups of composite order. Our starting point is the IBBE scheme
of Delerablée (Asiacrypt 2007) and the FIBE scheme of Herranz et
al. (PKC 2010) proven secure under parameterised assumptions called
generalised decisional bilinear Diffie-Hellman (GDDHE) and augmented
multi-sequence of exponents Diffie-Hellman (aMSE-DDH) respectively.
The two schemes are described in the prime-order pairing group. We
transform the schemes into the setting of (symmetric) composite-order
groups and prove security from two static assumptions (subgroup deci-
sion).

The Déjà Q framework of Chase et al. (Asiacrypt 2016) is known to
cover a large class of parameterised assumptions (dubbed über assump-
tion), that is, these assumptions, when defined in asymmetric composite-
order groups, are implied by subgroup decision assumptions in the under-
lying composite-order groups. We argue that the GDDHE and aMSE-
DDH assumptions are not covered by the Déjà Q über assumption
framework. We therefore work out direct security reductions for the
two schemes based on subgroup decision assumptions. Furthermore, our
proofs involve novel extensions of Déjà Q techniques of Wee (TCC 2016-
A) and Chase et al.

Our constructions have constant-size ciphertexts. The IBBE has
constant-size keys as well and guarantees stronger security as compared
to Delerablée’s IBBE, thus making it the first compact IBBE known to
be selectively secure without random oracles under simple assumptions.
The fuzzy IBE scheme is the first to simultaneously feature constant-size
ciphertexts and security under standard assumptions.
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1 Introduction

Identity-based encryption (IBE) [55] is a public-key paradigm where users’ pri-
vate keys are generated by trusted authorities and derived from some easy-to-
remember string (like an email address) that serves as a public key so as to
simplify key management. Attribute-based encryption (ABE) [36,54] is a pow-
erful extension of IBE where ciphertexts are labeled with a set of descriptive
attributes (e.g., “hiring committee”, “admin”, . . . ) in such a way that decryp-
tion works whenever these attributes satisfy an access policy which is hard-coded
in the decryption key.

Functional encryption (FE) [15,54] is an extreme generalization of IBE, where
a master private key SK allows deriving sub-keys SKF associated with functions
F . Given an encryption C of a message X, a sub-key SKF allows computing
F (X) while revealing nothing else about X. The message X = (ind,M) usually
consists of an index ind, which is essentially a set of attributes, and a message M ,
which is sometimes called “payload”. While the latter is always computationally
hidden, the index ind of a ciphertext may be public or private. Not surprisingly,
schemes in the public index setting tend to be significantly more efficient in
terms of ciphertext and key sizes.

In the private-index setting, anonymous IBE [10,17] is an example of func-
tional encryption for the equality testing functionality. In the public [36,54] and
private-index [39] cases, ABE can be cast as another particular flavour of FE,
where private keys are associated with expressive access policies. These primi-
tives provide fine-grained access control [54] or privacy-preserving searches over
encrypted data [1,10]. In its key-policy (KP-ABE) flavour, ABE involves private
keys associated with a possibly complex Boolean expression F and, if the cipher-
text encrypts the message X = (ind,M), the private key SKF reveals M if and
only if F (ind) = 1. Ciphertext-policy ABE (CP-ABE) schemes proceed the other
way around: ciphertexts are labeled with a policy F ; private keys are associated
with an attribute set ind and decryption succeeds whenever F (ind) = 1.

The usual “collusion-resistance” requirement captures the intuition that no
collection of private keys should make it possible to decrypt a ciphertext that
none of these keys can individually decrypt. While properly defining the security
of FE turns out to be non-trivial [15], the literature usually distinguishes selective
adversaries [18] – that have to declare the index of the challenge ciphertext ind�

upfront (even before seeing the master public key) – from adaptive adversaries,
which can choose ind� after having made a number of private key queries for
functions of their choice.

In terms of expressiveness, a major challenge is certainly to efficiently eval-
uate any polynomial-time-computable function F over encrypted data. While
theoretical solutions achieve this goal using the obfuscation machinery [32], prac-
tical instantiations of functional encryption are only known for very restricted
classes of functions (such as IBE [11,58] or ABE [39]) for the time being.

Even for particular functionalities and selective adversaries, proving security
is challenging when we seek to optimise the size of ciphertexts and keys. For
example, squeezing many attributes in the same ciphertext component often
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comes at the price of larger private keys [4,6] or security proofs under fancy
q-type assumptions [9,13] (or both). Likewise, short private keys and public
parameters [40,51] often entail strong, variable-size assumptions. Eventually,
constant-size ciphertexts or keys (“constant” meaning that it only depends on
the security parameter and not on the number of adversarial queries or features
of the system) often translate into non-constant-size assumptions. In some sit-
uations, information theoretic arguments [31] even rule out the possibility of
simultaneously achieving constant-size ciphertexts and keys, no matter which
assumption is considered.

Here, we restrict ourselves to specific functionalities for which we are inter-
ested in proving the security of compact schemes under well-studied, constant-
size assumptions. By “compact”, we mean that ciphertexts can be comprised of
a constant number of group elements – no matter how many attributes or users
are associated with them – without inflating the private key size. In particular,
private keys should be no longer than in realisations of the same functionality
without short ciphertexts. Finally, we aim at avoiding the caveat of relying on
variable-size, q-type assumptions, which should notoriously be used with cau-
tion [24].

We achieve this goal for two natural extensions of IBE, which are known
as identity-based broadcast encryption (IBBE) [2,52] and fuzzy identity-based
encryption (FIBE) [54]. In the former, ciphertexts are encrypted for a list of
identities. The latter is an ABE for policies consisting of a single threshold gate:
i.e., ciphertexts and private keys both correspond to a set of attributes and
decryption succeeds whenever the two sets have a sufficiently large intersection.
In fact, IBBE and FIBE can both be seen as special cases of CP-ABE for policies
consisting of a single gate: an IBBE is nothing but a CP-ABE for one OR gate,
which is implied by FIBE for 1-out-of-n gates. However, considering the two
primitives separately allows obtaining shorter private keys in the IBBE case.

1.1 Our Contribution

We describe the first IBBE system with a security proof under constant-size
assumptions and that simultaneously features constant-size ciphertexts and pri-
vate keys. In our scheme, only the size of public parameters depends on the
maximal number n of receivers per ciphertext. Users’ private keys only consist
of a single(!) group element while ciphertexts are only longer than plaintexts by 2
elements of a composite-order group. We prove selective security in the standard
model under subgroup assumptions [42] in bilinear groups of order N = p1p2p3.
In comparison, all earlier IBBE realisations with short ciphertexts either incur
O(n)-size private keys [2,5,14,47] or combine the random oracle model [8] with
very ad hoc assumptions [26,52] tailored to the result to be proved.

As a second contribution, we extend our IBBE scheme into a fuzzy IBE
system with O(1)-size ciphertexts and private keys made of O(�) group elements,
where � is the maximal number of attributes per identity. Our FIBE scheme
thus asymptotically achieves the same private key size as [54] with the benefit of
constant-size ciphertexts, regardless of the number of ciphertext attributes. In



566 J. Gong et al.

contrast, except [37], previously known KP-ABE systems with short ciphertexts
either inflate private keys by a factor O(�) [6,7,47,49] or are restricted to small
attribute universes [38].

While our constructions rely on composite order groups where pairings are
rather expensive to compute [30], they only require two pairing evaluations on
behalf of the receiver (and no pairing on the sender’s side). Our schemes are
proved selectively secure using the Déjà Q technique of Chase and Meiklejohn
[22], which was re-used by Wee [62] and refined by Chase et al. [23]. A detailed
comparison is shown in Table 1. See the full paper [33] for more discussion.

Table 1. Comparison among compact IBBE and FIBE. For IBBE, n is the maximum
number of recipients; for FIBE, n is the maximum size of attribute set and τ is the
threshold. We use notations—CT: ciphertext; SK: secret key; #dec: cost of decryption;
GN : symmetric pairing group with composite order N ; G1, G2: source groups of an
asymmetric pairing group of prime order p; [P]: a pairing operation; [M]: scalar multi-
plication on source groups; aID: adaptive/full security; sID: selective security; na-sID:
selective security with non-adaptive key extraction queries; saID: semi-adaptive secu-
rity; Static: static assumption in GN ; GGM: generic group model; RO: random oracle
model.

|CT| |SK| #dec Security Assumption

IBBE [26]-1 |G1| + |G2| |G1| 2[P] + O(n)[M] sID GDDHE,RO

[26]-2 |G1| + |G2| |G1| + |Zp| 2[P] + O(n)[M] na-sID O-GDDHE

[52] 2|G1| |G2| 2[P] + O(n)[M] aID GGM,RO

Ours 2|GN | |GN | 2[P] + O(n)[M] sID Static

FIBE [37] 2|G1| n|G1| + n|G2| 2[P] + O(τ2 + n)[M] sID aMSE-DDH

[4,6] 2|G1| (n2 + n)|G2| 2[P] + O(nτ)[M] sID DBDHE

[21] 2|GN | (n2 + n)|GN | 2[P] + O(nτ)[M] saID Static

[56] 17|G1| (6n2 + 5)|G2| 17[P] + O(nτ)[M] saID DLIN

[7] 6|GN | (n2 + 2n + 3)|GN | 6[P] + O(nτ)[M] aID Static

Ours 2|GN | 2n|GN | 2[P] + O(τ2 + n)[M] sID Static

1.2 Overview of Our Techniques

Our identity-based broadcast encryption scheme is obtained by instantiating (a
variant of) Delerablée’s IBBE [26] in composite order groups and providing a
direct security proof, analogously to Wee’s IBE [62]. In prime order groups, Del-
erablée’s construction [26] is proved selectively secure in the random oracle model
under a highly non-standard q-type assumption, where q simultaneously depends
on the number of private key queries and the maximal number of receivers per
ciphertext. While this assumption is a special case of the Uber assumption of
Boneh, Boyen and Goh [9], it seems to escape the family of assumptions that
reduce the constant-size subgroup assumptions via the framework of Chase,
Maller and Meiklejohn [23]: in Sect. 3.1, we indeed explain why the results of
[23] alone do not immediately guarantee the security of Delerablée’s IBBE in
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composite order groups.1 Moreover, even if they did, a direct instantiation of
[26] in composite order groups would only be guaranteed to be secure in the
random oracle model.2 In contrast, we give a direct proof of selective security in
the standard model.

Just like [26,62], our scheme uses the private key generation technique of the
Sakai-Kasahara IBE [53], which computes inversions in the exponent. Letting G

be a cyclic group of order N = p1p2p3 with subgroups Gpi
of order pi for each

i ∈ {1, 2, 3}, if gγ ∈ Gp1 and Gi = g(α
i) ∈ Gp1 are part of the public param-

eters, a private key for the identity id consists of SKid = uγ/(α+id) · Xp3 , where
u ∈ Gp1 belongs to the master secret key and Xp3 ∈R Gp3 . If S = {id1, . . . , id�}
denotes the set of authorised receivers, one of the ciphertext components packs
their identities into one group element gs·∏id∈S(α+id), which can be seen as a
randomised version of Nguyen’s accumulator [45]. As shown in [26], by intro-
ducing gγ·s in the ciphertext and blinding the message as M ⊕H(e(g, u)γ·s), we
can enable decryption by exploiting the divisibility properties of the polynomial
pS(α) =

∏
id∈S(α + id), analogously to [45]. Like the security proof of Wee’s

IBE [62], our proof proceeds by first introducing Gp2 components in ciphertexts.
Then, following the technique of [22], it uses the entropy of α, γ mod p2 – which
are information theoretically hidden by gγ and Gi = g(α

i) – to gradually intro-

duce Gp2 components of the form g
∑k

j=1 γ̃·rj ·pS(αj)/(αj+id)

2 , where {rj}k
j=1 are

shared by all private keys. At each step, we can increase the number of terms
in the exponent so that, when k is sufficiently large, all keys SKid have indepen-
dent random components of order p2. At this point, an information theoretic
argument shows that the ciphertext statistically hides the plaintext.

The crucial step of the proof consists of arguing that the newly introduced
term in the sum

∑k
j=1 rj · pS(αj)/(αj + id) is statistically independent of the

public parameters. At this step, our information theoretic argument differs
from Wee’s [62] because, in our IBBE system, public parameters contain addi-
tional group elements of the form Ui = uαi · R3,i, which inherit Gp2 compo-
nents that depend on

∑k
j=1 rj · αi

j mod p2, for the same coefficients rj ∈ Zp2

as those showing up in private keys. Since private keys and public key compo-
nents {Ui}n

i=1 have correlated semi-functional components3 that share the same
{rj mod p2}k

j=1, we have to consistently maintain this correlation at all steps of
the sequence of game and argue that, when we reach the final game, the Gp2

components of SKid1 , . . . ,SKidq
and {Ui}n

i=1 are uncorrelated in the adversary’s

1 We believe our arguments showing that the assumptions under question are not
covered by the Déjà Q framework are sufficient. Also, we do not know if there exist
other parameterised assumptions in this class that could possibly be used to prove
security of the IBBE and FIBE schemes.

2 Alternatively, the scheme of [26] can be proved secure in the standard model if the
adversary also announces all its private keys queries (in addition to the target set of
identities) before seeing the public parameters.

3 The proof of Wee’s broadcast encryption [62, Sect. 4] has a similar correlation
between the Gp2 components of private keys and public parameters but, in the final
step, the statistical argument involved simpler-to-analyse Vandermonde matrices.
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view. In Wee’s constructions [62], this is done by arguing that matrices of the
form (αi

j)i,j∈[q] or
(
1/(αj + idi)

)
i,j

are invertible. Here, we are presented with
more complex square matrices that involve the two kinds of entries and also
depend on the polynomial pS�(α) =

∏
id∈S�(α + id), where S� is the set of the

target identities. More precisely, these matrices contain sub-matrices of the form(
pS�(αi)/(αi + idj)

)
i,j

, where idj denotes the j-th private key query. We use
the property that the overall square matrices are invertible over Zp2 as long as
none of the first-degree (α + idj) divides pS�(α) (i.e., idj �∈ S� for all private key
queries idj). When this is the case, we are guaranteed that the Gp2 components
of ciphertexts, private keys and public parameters are i.i.d. in the adversary’s
view.

Our fuzzy IBE construction is an adaptation of the system described by
Herranz, Laguillaumie and Ràfols [4,37] in prime order groups, which is itself
inspired by the dynamic threshold encryption primitive of Delerablée and
Pointcheval [27] and relies on a similarly strong assumption. The FIBE system
of [37] modifies [26,27] by randomizing the generation of private keys. In our
construction, private keys for an attribute set {id1, . . . , id�} similarly consist of

(
Ki = u

γ
α+idi · X3,i

)�

i=1
,

(
K ′

i = uαi · X ′
3,i

)n−1

i=1
, K0 = u · u0 · X3,0,

where u ∈R Gp1 and X3,i ∈R Gp3 are freshly chosen for each key and u0 ∈ Gp1

is a master secret key component which is committed via e(g, u0)γ in the master
public key. Intuitively, the public parameters uαi

0 · R3,i of Delerablée’s IBBE
are now replaced by similar-looking private key components K ′

i = uαi · X ′
3,i for

random u ∈R G1 that are used in K0 to blind the master secret key u0 (collusion-
resistance is ensured by the fact that distinct keys involve fresh randomizers u).

Due to the strong structural similarity, the proof for the selective security
of our fuzzy IBE can be viewed as an extension of that for our IBBE system.
From the viewpoint of reduction, the fresh u ∈ Gp1 in each secret key allows us
to correspond each secret key to a fresh IBBE instance and analyse them in an
independent fashion. In particular, by considering Ki as SKidi

and K ′
i as Ui, we

can apply the proof method of our IBBE to introduce independent random Gp2

components in all these components and K0 (with u0 ·X3,0). As discussed earlier,
the core step is again to argue the invertibility of a matrix of some special form
for each secret key. Although the matrices we are considering now look like those
for the IBBE system, the situation is actually more complex. More specifically,
the matrices contain sub-matrices of the form (pS�,τ�(αi)/(αi + idj))i,j where
pS�,τ�(α) =

∏
id∈S�(α+ id) ·∏i∈[δ](α+di) where S� is the set for the target fuzzy

identity, (di)i is a set of dummy identities and δ depends on the target threshold
τ∗. Unlike the IBBE case, there can be an idj ∈ {id1, . . . , id�} such that idj ∈ S�

so that (α+idj) divides pS�,τ�(α) in the FIBE case. This prevents us from directly
applying our previous result on the matrices. Instead, we will prove the property
that these matrices are still invertible as long as the number of such idj do not
exceed the target threshold τ∗. Inspired by the recent proof for IBE in the multi-
instance setting [19], we can in fact change the distributions of all secret keys
independently but simultaneously using the random self-reducibility of decisional
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subgroup assumptions. Once we have independent random Gp2 component in K0

in each secret key, we then introduce semi-functional component (in Gp2) for the
master secret key component u0 and show that it will be hidden by the random
Gp2 component in K0. This means the semi-functional component of u0 will only
appear in the challenge ciphertext which is adequate for proving the selective
security of our fuzzy IBE system.

1.3 Related Work

Broadcast encryption was introduced by Fiat and Naor [29] and comes either in
combinatorial [43] or algebraic flavors [13,34,40,44,59]. One of the most appeal-
ing tradeoffs was given in the scheme of Boneh, Gentry and Waters [13], which
features short ciphertexts and private keys but linear-size public keys in the total
number of users. While its security was initially proved under a parameterised
assumption, recent extensions [23,62] of the Déjà Q framework [22] showed how
to prove the security (against static adversaries) of its composite-order-group
instantiations under constant-size subgroup assumptions. Boneh et al. suggested
a variant [16] of the BGW scheme [13] with polylogarithmic complexity in all
metrics using multi-linear maps. Unfortunately, the current status of multi-linear
maps does not enable secure instantiations of [16] for now (see, e.g., [25]).

Identity-based broadcast encryption was formally defined by Abdalla, Kiltz
and Neven [2] and independently considered by Sakai and Furukawa [52]. One
of the salient advantages of IBBE over traditional public-key broadcast encryp-
tion is the possibility of accommodating an exponential number of users with
polynomial-size public parameters. IBBE was recently used [28] in the design
of efficient 0-RTT key exchange protocols with forward secrecy. Abdalla et al.
[2] gave a generic construction with short ciphertexts and private keys of size
O(n2), where n is the maximal number of receivers. Sakai and Furukawa [52] sug-
gested a similar construction to [26] with security proofs in the generic group and
random oracle model. Boneh and Hamburg [14] obtained a system with O(1)-
size ciphertexts and O(n)-size keys. Using the Déjà Q technique, Chen et al.
[20] described an identity-based revocation mechanism [40] with short cipher-
texts and private keys under constant-size assumptions. The aforementioned
constructions were all only proven secure against selective adversaries. Gentry
and Waters [34] put forth an adaptively secure construction based on q-type
assumptions while Attrapadung and Libert [5] showed a fully secure variant of
[14] under simple assumptions. To our knowledge, the only IBBE realisations
that simultaneously feature constant-size ciphertexts and private keys are those
of [26,52], which require highly non-standard assumptions and the random ora-
cle model. As mentioned by Derler et al. [28], the short ciphertexts and private
keys of Delerablée’s scheme [26] make it interesting to instantiate their generic
construction of Bloom Filter Encryption, which in turn implies efficient 0-RTT
key exchange protocols. Until this work, even for selective adversaries, it has
been an open problem to simultaneously achieve short ciphertext and private
keys without resorting to variable-size assumptions.
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Attribute-based encryption was first considered in the seminal paper by Sahai
and Waters [54]. Their fuzzy IBE primitive was later extended by Goyal et al.
[36] into more expressive forms of ABE, where decryption is possible when the
attribute set of the ciphertext satisfies a more complex Boolean formula encoded
in the private key. After 2006, a large body of work was devoted to the design
of adaptively secure [7,41,46–49,57] and more expressive ABE systems [12,35,
40,50,60,61]. In contrast, little progress has been made in the design of ABE
schemes with short ciphertexts. The first reasonably expressive ABE systems
with constant-size ciphertexts were given in [4,6,37] under q-type assumptions.
The solution of Herranz et al. [37] is a fuzzy IBE (i.e., a CP-ABE system for one
threshold gate) with private keys of size O(n) where n is the maximal number of
attributes per ciphertext. The more expressive KP-ABE systems of [4,6] support
arbitrary Boolean formulas, but enlarge the private keys of [36] by a factor n.
The construction of [38, Sect. 3.4] eliminates the upper bound on the number
of ciphertext attributes, but lengthens private keys by a factor |U |, where U is
the universe of attributes. Several follow-up works improved upon [6] by proving
security under simple assumptions [21,56] or achieving full security [7]. However,
all known KP-ABE schemes with short ciphertexts under simple assumptions
suffer from similarly large private keys. While our scheme only supports one
threshold gate, it turns out to be the first solution with short ciphertexts under
simple assumptions that avoids blowing up private keys by a factor O(n).

2 Preliminaries

Notation. We write x1, . . . , xk
R←− X to indicate that x1, . . . , xk are sampled

independently and uniformly from the set X . For a PPT algorithm A, y
R←− A(x)

means that y is chosen according to the output distribution of A on input x. For
integers a < b, [a, b] denotes the set {x ∈ Z : a ≤ x ≤ b} and we let [b] = [1, b].
If G is a cyclic group, G× denotes the set of generators of G.

2.1 Composite-Order Pairings and Hardness Assumptions

A (symmetric) composite-order pairing ensemble generator GroupGen() is an
algorithm that inputs a security parameter η and an integer m and returns an
(m + 3)-tuple G = (p1, . . . , pm,G,GT , e) where G and GT are cyclic groups of
order N = p1 · · · pm (a square-free, hard-to-factor integer) and e : G×G → GT is
a non-degenerate and efficiently computable bilinear map. The primes are chosen
so that pi > 2η for i ∈ {1, 2, . . . ,m}. We will use hardness assumptions which
require the factorisation of N to remain hidden. Given G = (p1, . . . , pm,G,GT , e),
let Gpub = (N,G,GT , e) denote the public description of G where N = p1 · · · pm

and we assume that G,GT contain respective generators (of the full groups).
Letting Gpi

be the subgroup of order pi of G, we denote elements of Gpi
with

subscript i for i ∈ [m]. We now describe decisional subgroup (DS) assumptions
w.r.t. (G = (p1, p2, p3,G,GT , e)) ←− GroupGen(η, 3), which is stated in terms of
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two distributions: D, T1 and D, T2. We define AdvBG,DS(η) = |Pr[B(D, T1) =
1] − Pr[B(D, T2) = 1]| to be the advantage of a distinguisher B against DS. We
now describe D, T1, T2 for the assumptions we use.

Assumption DS1. Pick generators g1
R←− G

×
p1

and g3
R←− G

×
p3

. Define D =
(Gpub, g1, g3), T1

R←− Gp1 and T2
R←− Gp1p2 . DS1 holds if for all PPT B,

AdvBG,DS1(η) is negligible in η.

Assumption DS2. Pick g1
R←− G

×
p1

, g3
R←− G

×
p3

, h12
R←− Gp1p2 and h23

R←−
Gp2p3 . Define D = (Gpub, g1, g3, h12, h23), T1

R←− Gp1p3 and T2
R←− Gp1p2p3 . The

DS2 assumption holds if for all PPT B, AdvBG,DS2(η) is negligible in η.

2.2 Identity-Based Broadcast Encryption (IBBE)

Definition 1 (IBBE). An IBBE scheme is defined by probabilistic algorithms
Setup, KeyGen, Encrypt and Decrypt. The identity space is denoted by I and the
message space is denoted by M.

Setup(1λ, 1n): Takes as input a security parameter λ, the maximum number
n (= poly(λ)) of recipient identities in a broadcast and generates the pub-
lic parameters PP and the master secret MSK. The algorithm also defines the
identity space I and message space M.

KeyGen(MSK, id): Inputs an identity id and MSK; outputs a key SKid for id.
Encrypt(PP, S ⊆ I,m ∈ M): Takes as input the public parameters and a set

of identities S intended to receive the message m. If |S| ≤ n, the algorithm
outputs the ciphertext CT.

Decrypt(PP, S,CT, id,SKid): Inputs PP, a set S = {id1, . . . , id�}, an identity id,
a secret key SKid for id, a ciphertext CT and outputs a message m′ ∈ M if
id ∈ S and otherwise outputs ⊥.

Correctness. The IBBE scheme satisfies correctness if, for all sets S ⊆ I
with |S| ≤ n, for all identities idi ∈ S, for all messages m ∈ M, if
(PP,MSK) R←− Setup(1λ, 1n), SKidi

R←− KeyGen(MSK, idi) and CT
R←− Encrypt

(PP, S,m), then we have Pr[m = Decrypt(PP, S,CT, idi,SKidi
)] = 1.

Definition 2 (IBBE Security). An IBBE system IBBE = (Setup,KeyGen,
Encrypt,Decrypt) provides selective security if no PPT adversary A has non-
negligible advantage in the following game.

Initialise: A commits to a target set of identities S∗ = {id∗
1, . . . , id

∗
�∗}.

Setup: The challenger runs the Setup algorithm of IBBE and gives PP to A .

Key Extraction Phase 1: A makes key extraction queries. For a query on an
identity vector id such that id /∈ S∗, the challenger runs IBBE .KeyGen algorithm
and responds with a key SKid.
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Challenge: A provides two messages m0,m1. The challenger chooses a bit β

uniformly at random from {0, 1}, computes CT∗ R←− IBBE .Encrypt(PP, S∗,mβ)
and returns CT∗ to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any identity in S∗.

Guess: A outputs a bit β′. If β = β′, then A wins the game. The adversary
A ’s advantage is given by the distance AdvAIBBE,sid-cpa(λ) = |Pr[β = β′] − 1/2|.

2.3 Fuzzy Identity-Based Encryption (FIBE)

Definition 3 (FIBE). A fuzzy IBE scheme is defined by probabilistic algo-
rithms – Setup, KeyGen, Encrypt and Decrypt. The identity space is denoted
by I and the message space is denoted by M.

Setup(1λ, 1n): Takes as input a security parameter λ, the maximum size n (=
poly(λ)) of sets associated with ciphertexts and generates the public parame-
ters PP and the master secret MSK. The algorithm also defines the identity
space I and message space M.

KeyGen(MSK, S ⊆ I): Inputs a set S and MSK; outputs a secret key SKS for S.
Encrypt(PP, S ⊆ I, τ,m ∈ M): Takes as input the public parameters PP, a set

of identities S along with a threshold τ and a message m. If τ ≤ |S| ≤ n, the
algorithm outputs the ciphertext CTS,τ .

Decrypt(PP, S, τ,CTS,τ , S′,SKS′): This algorithm inputs the public parameters
PP, a set S ⊆ I with a threshold τ and a ciphertext CTS,τ associated with
them, another set S′ ⊆ I and its corresponding secret key SKS′ , outputs a
message m′ ∈ M if |S ∩ S′| ≥ τ and ⊥ otherwise.

Correctness. The FIBE scheme is correct if, for all sets S ⊆ I, all
thresholds τ ≤ |S| ≤ n, all S′ ∈ I satisfying |S ∩ S′| ≥ τ ,
all m ∈ M, when (PP,MSK) R←− Setup(1λ, 1n), SKS′

R←− KeyGen(MSK, S′)
and CTS,τ

R←− Encrypt(PP, S, τ,m), then Pr[m = Decrypt(PP, S, τ,CTS,τ ,
S′,SKS′)] = 1.

Definition 4 (FIBE Security). A FIBE system FIBE = (Setup,KeyGen,
Encrypt,Decrypt) provides selective security if no PPT adversary A has non-
negligible advantage in the following game.

Initialise: A commits to a target set S∗ ⊆ I and threshold τ∗ satisfying τ∗ ≤
|S∗| ≤ n.

Setup: The challenger runs the Setup algorithm of FIBE and gives PP to A .

Key Extraction Phase 1: A makes a number of key extraction queries. For a
query on S ⊆ I such that |S∗∩S| < τ∗, the challenger runs SKS ← FIBE .KeyGen
and outputs SKS.
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Challenge: A provides two messages m0,m1. The challenger chooses
β

R←− {0, 1}, computes CT∗ R←− FIBE .Encrypt(PP, S∗, τ∗,mβ) and returns CT∗

to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any set S such that |S∗ ∩ S| ≥ τ∗.

Guess: A outputs a bit β′. We say A wins the game if β = β′. The advantage
of A in winning the sid-cpa game is defined to be AdvAFIBE,sid-cpa(λ) = |Pr[β =
β′] − 1/2|.

3 Compact IBBE from Subgroup Decision Assumptions

This section describes our IBBE scheme with short ciphertexts and keys. The
structure is similar to Delerablée’s IBBE [26] in asymmetric prime-order groups.

3.1 Déjà Q Framework and Its Implications on Delerablée’s IBBE

The scheme proposed by Delerablée in [26] is based on prime-order asymmet-
ric pairings and offers constant-size ciphertexts and keys. However, its proof of
security relies on random oracles and a parameterised assumption called gener-
alised decisional Diffie-Hellman exponent (GDDHE) with instances containing
O(q + n) group elements. A scheme/proof without random oracles is also sug-
gested but at the cost of an interactive GDDHE-like assumption and a more
restrictive security definition (called IND-na-sID-CPA) in which the adversary
has to commit to the identities for key extract queries during the initialisation
phase (in addition to the challenge identity set).

It is natural to ask whether the scheme can be lifted to the composite-order
setting and proved secure based on subgroup decision assumptions via the Déjà Q
framework [22,23]. That is, we ask whether the Uber assumption in asymmetric
composite-order bilinear groups defined in [23] covers the GDDHE assumption
or not? The answer is negative. To see why, let us take a closer look at the Uber
assumption of [23] and the (asymmetric) GDDHE-assumption. For clarity, we
avoid formal descriptions of assumptions and other details.

Uber Assumption [23]. Assume G = (N, p1, p2, p3,G1,G2,GT , e) be an asym-
metric composite-order pairing group. Let R(x), S(x), V (x) denote sets of poly-
nomials in n variables x = (x1, . . . , xn) and let z(x) be a polynomial in x. Let
g be a generator of G1 and h, ĥ be two independent generators of G2. The uber
assumption states that given

g, ĥ, gR(x), hS(x), e(g, h)V (x), T

it is hard to decide if T = e(g, ĥ)z(x) or T ∈R GT . It is known [23] that the
uber assumption is implied by constant-size subgroup decision assumptions in
G1 and G2 if R(x), z(x) are linearly independent along other requirements (see
[23, Proposition 3.9] for a formal statement).
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In order to simplify our analysis, we may let ĥδ = h for an independent
exponent δ

R←− ZN and re-state the uber assumption as: given

g, ĥ, gR(x), ĥδ·S(x), e(g, ĥ)δ·V (x), T

it is hard to decide if T = e(g, ĥ)z(x) or T ∈R GT . Here, δ · S(x) = {δ · s(x) :
s ∈ S(x)} and δ · V (x) = {δ · v(x) : v ∈ V (x)}. We highlight that the Déjà Q
framework in [23] requires the polynomials in the exponents of ĥ to be in the
form of δ · poly(x) with an independent δ.

Déjà Q Framework Does Not Cover GDDHE Assumption [26]. Let an
asymmetric prime-order pairing configuration G = (p,G1,G2,GT , e). Let g0, h0

be the respective generators of G1,G2. Pick k, γ
R←− Zp and let f, g be two co-

prime polynomials with pairwise distinct roots of respective orders q, n. The
GDDHE assumption states that given

g0, g
γ
0 , gγ2

0 , . . . , gγq−1

0 , g
γf(γ)
0 , g

kγf(γ)
0 , h0, h

γ
0 , hγ2

0 , . . . , hγ2n

0 , h
kg(γ)
0 ,

along with T ∈ GT , it is hard to determine whether T = e(g0, h0)kf(γ) or
T ∈R GT .

As a direct attempt to put GDDHE into the Déjà Q framework, we can let
g = g0 and ĥ = h0. This means we are considering x = (γ, k) and

z(γ, k) = kf(γ), V = ∅, R(γ, k) = {1, γ, γ2, . . . , γq−1, γf(γ), kγf(γ)}.

In this case, polynomials in the exponents of ĥ include {1, γ, γ2, . . . , γ2n, kg(γ)}.
Since both γ and k has appeared in z(x) and R(x), there’s no means to write
these polynomials in the form of δ · poly(x) with an independent variable δ.

With our current choice of g, all polynomials in the exponents of g fit the Déjà
Q framework quite well. To get around this problem, we try another definition
of ĥ. The best choice can be setting ĥ = hk

0 , x = γ and z(γ) = f(γ). The basic
idea is to set δ = k−1. However, the polynomials in the exponents of ĥ become

k−1, k−1 · γ, k−1 · γ2, . . . , k−1 · γ2n, g(γ)

where the last polynomial is still in the wrong form and we can not publish
ĥ itself this time. Even worse, δ will also appear in the exponent of g = g0
since the input to the adversary contains gkγf(γ) (in the original assumption)
which will become gδ−1γf(γ) in the current setting. We can make this argument
more general. If we want to borrow δ from kf(γ), which seems to be the unique
random source we can use in the challenge, it will finally appear (in some form)
in the term gkγf(γ). Therefore, the Déjà Q transform fails.

In this forthcoming sections, instead of trying to reduce subgroup decision
to the GDDHE, we give direct security reductions (via Déjà Q techniques) for
constructions in composite-order groups (similar to [26]) from subgroup decision
assumptions. Our construction has constant-size ciphertexts and keys and is
selectively secure under the static subgroup decision assumptions, thus achieving
a stronger security guarantee as compared to [26].
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3.2 Construction

We now describe the construction IBBE = (Setup,KeyGen,Encrypt,Decrypt).

Setup(1λ, 1n): Let M = {0, 1}ρ where ρ ∈ poly(λ). Generate a composite-
order pairing ensemble (G = (p1, p2, p3,G,GT , e)) ←− GroupGen(ρ + 2λ, 3).
Set N = p1p2p3 and I = ZN . Pick generators g, u

R←− G
×
p1

and g3
R←− G

×
p3

.
Sample R3,i

R←− Gp3 for i ∈ [n] using g3. Also, choose α, γ
R←− ZN . Let H :

GT → {0, 1}ρ be a universal hash function with output length ρ. Define the
master secret as MSK = (u, α, γ, g3) while the public parameters consist of

PP =
(Gpub, g, gγ , (Gi = gαi

, Ui = uαi · R3,i)n
i=1, e(g, u)γ , H

)
.

KeyGen(MSK, id): Pick X3
R←− Gp3 (using generator g3) and generate the key

for identity id as

SKid = u
γ

α+id · X3.

Encrypt(PP, S = {id1, . . . , id�},M): To encrypt M ∈ {0, 1}ρ for the set S, expand
the polynomial pS(x) =

∏�
i=1(x+ idi) =

∑�
j=0 cjx

j ∈ ZN [x]. Choose s R← ZN

and output

CT =
(
C0 = M ⊕ H(e(g, u)sγ), C1 = gsγ , C2 =

(
gc0 · ∏�

j=1 G
cj

j

)s

= gs·pS(α)
)
.

Decrypt(PP, S,CT, id,SKid): If id �∈ S, return ⊥. Otherwise, pS(x)/(x + id) =
pS\{id}(x) =

∑�−1
i=0 zix

i is a polynomial, where z0 =
∏

idi∈S\{id} idi. Output
M = C0 ⊕ H

(
(A2/A1)1/z0

)
, where

A1 = e(C1,

�−1∏

j=1

U
zj

j ) = e(gsγ , upS\{id}(α)−z0) = e(g, u)sγ(pS\{id}(α)−z0),

A2 = e(C2,SKid) = e(gspS(α), u
γ

α+id · X3) = e(g, u)sγpS\{id}(α).

The correctness of the scheme follows from the divisibility properties of pS(x)
and is easy to verify.

3.3 Proof of Security

We give the following theorem and refer to the full version [33] for the proof.

Theorem 1. For any adversary A attacking IBBE in the sid-cpa model making
at most q key extraction queries, there exist algorithms B1,B2 such that

AdvAIBBE,sid-cpa(λ) ≤ 2 · AdvB 1
G,DS1(λ) + (q + n + 2) · AdvB 2

G,DS2(λ) +
(q + n + 1)2

p2
+

1

p2
+

1

2λ
.
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4 Fuzzy IBE with Short Ciphertexts

We now present a fuzzy IBE scheme obtained by transposing the prime-order
construction of Herranz et al. [4,37] to composite order groups. The security
of their scheme relies on the augmented multi-sequence of exponents decisional
Diffie-Hellman (aMSE-DDH) assumption. As in Sect. 3, we start with an expla-
nation of why this assumption is not covered by the Uber assumption of [23].

Déjà Q Framework Does Not Cover aMSE-DDH Assumption [4,37].
Let an asymmetric prime-order pairing configuration G = (p,G1,G2,GT , e). We
describe an asymmetric version of the (�,m, t)-aMSE-DDH assumption.4 With a
length-(� + m) vector y = (y1, . . . , yl+m), define functions f(Y ) =

∏�
i=1(Y + yi)

and g(Y ) =
∏�+m

i=�+1(Y + yi). Let g0, h0 be generators of G1 and G2 and pick
k, γ, α, β

R←− Zp. The (�,m, t)-aMSE-DDH assumption states that given

g0, g
γ
0 , . . . , gγ�+t−2

0 , g
kγf(γ)
0 , h0, h

γ
0 , . . . , hγm−2

0 , h
kg(γ)
0 ,

gβγ
0 , . . . , gβγ�+t−2

0 , hβ
0 , hβγ

0 , . . . , hβγm−1

0 ,

gα
0 , gαγ

0 , . . . , gαγ�+t

0 , hα
0 , hαγ

0 , . . . , hαγ2(m−t)+3

0 ,

and T ∈ GT , it is hard to determine whether T = e(g0, h0)kf(γ) or T ∈R GT .
We observe that the first line of the input is quite similar to the input of

the GDDHE assumption [26] (cf. Sect. 3.1). We can transpose the discussion in
Sect. 3.1 to the aMSE-DDH assumption. As we have shown, the gap between the
uber assumption [23] and the aMSE-DDH assumption is due to the structures
of polynomials in the exponents of h0 and the entry g

kγf(γ)
0 which shares kf(γ)

with the challenge. We therefore conclude that the Déjà Q framework [23] does
not subsume the (�,m, t)-aMSE-DDH assumption.

In this section as well, we are not going to start from the aMSE-DDH assump-
tion. Instead, we will try to adapt Herranz et al.’s prime-order construction [37]
into composite-order groups and analyse its selective security directly. Our fuzzy
IBE scheme preserves the advantages of Herranz et al.’s [37] such as constant-size
ciphertexts and can now be proved secure under static assumptions.

4.1 Construction

Before presenting the construction, we describe algorithm Aggregate of [4,27].

Aggregate Algorithm. The Aggregate algorithm of [27] was given for elements
in GT , but it carries over to any prime order group [4]. Our construction requires
it to work in composite order groups. Let a cyclic group G of composite order

4 The assumption is originally given in symmetric groups. In order to work with the
Déjà Q framework, one must transform it into asymmetric groups (using Abe et al.’s
method [3] as suggested in [23]) which depends on the scheme and the reduction.
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N . Given a set of pairs {u
1

α+xi , xi}n
i=1, where u ∈ G and α ∈ ZN are unknown

and x1, . . . , xn ∈ ZN are pairwise distinct elements such that

gcd(xi − xj , N) = 1 for all i �= j, (1)

the algorithm computes the value Aggregate({u
1

α+xi , xi}n
i=1) = u

1∏n
i=1(α+xi) using

O(n2) exponentiations. (See the full version [33] for details.) It is unlikely to
encounter a pair (xi, xj) violating restriction (1) since it exposes a non-trivial
factorisation of N and violates the decisional subgroup assumption.

Our Fuzzy IBE Construction. In the description hereunder, we denote by
n an upper bound on the number � of attributes per identity. The construction
goes as follows.

Setup(1λ, 1n): Choose ρ ∈ poly(λ) and define M = {0, 1}ρ. Gener-
ate a composite-order pairing ensemble (G = (p1, p2, p3,G,GT , e)) ←−
GroupGen(ρ+2λ, 3) and set N = p1p2p3. Then, arbitrarily select n−1 distinct
dummy identities d1, . . . , dn−1 ∈ ZN . Define the set I = ZN \ {d1, . . . , dn−1}.
Pick g, u0

R←− G
×
p1

and g3
R←− G

×
p3

and choose α, γ
R←− ZN . Let H : GT →

{0, 1}ρ be a universal hash function. Define MSK = (u0, α, γ, g3) while the
public parameters consist of

PP =
(Gpub, g, gγ ,

(
Gi = gαi)2n−1

i=1
, e(g, u0)γ , (di)n−1

i=1 , H
)
.

KeyGen(MSK, S = {id1, . . . , id�}): Pick u R← Gp1 ,X3,1, . . . , X3,�,X
′
3,1, . . . ,

X ′
3,n−1, X3,0

R← Gp3 (using generator g3) and output the secret key

SKS =
( (

Ki = u
γ

α+idi · X3,i

)�

i=1
,

(
K′

i = uαi · X ′
3,i

)n−1

i=1
, K0 = u · u0 · X3,0

)
.

Encrypt(PP, S = {id1, . . . , id�}, τ ≤ �,M): To encrypt M ∈ {0, 1}ρ for the set S
with threshold τ , compute coefficients {cj}j∈[0,n+τ−1] for the polynomial

pS,τ (x) =
∏�

i=1(x + idi) · ∏n+τ−1−�
i=1 (x + di) =

∑n+τ−1
i=0 cix

i ∈ ZN [x].

Choose s
R←− ZN and output the ciphertext CTS,τ consisting of

C0 = M ⊕ H(e(g, u0)sγ), C1 = gsγ , C2 =
(
gc0 ·

n+τ−1∏

i=1

Gci
i

)s = gs·pS,τ (α).

Decrypt(PP, S, τ,CT, S′,SKS′): If |S ∩ S′| < τ , return ⊥. Otherwise, we can find
a set S̄ ⊆ I satisfying S̄ ⊆ S ∩ S′ and |S̄| = τ . Note that the choice of S̄ is
arbitrary. By invoking algorithm Aggregate, we can compute

KAgg = u
γ∏

id∈S̄(α+id) · X3,Agg

for some X3,Agg ∈ Gp3 . Let

opS,S̄,τ (x) = pS,τ (x)/
∏

id∈S̄(x + id) =
∑n−1

i=0 zix
i
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where z0 =
∏

id∈S\S̄ id · ∏n+τ−1−|S|
i=1 di. We can compute

A1 = e(C1,
∏n−1

i=1 (K ′
i)

zi) = e(gsγ , upS,S̄,τ (α)−z0) = e(g, u)sγ(pS,S̄,τ (α)−z0),

A2 = e(C2,KAgg) = e(gs·pS,τ (α), u
γ∏

id∈S̄(α+id) · X3,Agg) = e(g, u)sγpS,S̄,τ (α),

A3 = e(C1,K0) = e(gsγ , u · u0 · X3,0) = e(g, u)sγ · e(g, u0)sγ ,

and recover the message as M = C0 ⊕ H
(
A3/(A2/A1)1/z0

)
.

The scheme is easily seen to be correct. We note that Decrypt can be opti-
mized to consume only 2 pairing operations by recovering e(g, u)sγ = e(C1,K0 ·
(
∏n−1

i=1 (K ′
i)

zi)1/z0)/e(C2,K
1/z0
Agg ).

4.2 Proof of Security

We give the following theorem and refer to the full version [33] for the proof.

Theorem 2. For any adversary A attacking FIBE in the sid-cpa model making
at most q key extraction queries, there exist algorithms B1,B2 such that

AdvAFIBE,sid-cpa(λ) ≤ 2 · AdvB 1
G,DS1(λ) + (� + n + 2) · AdvB 2

G,DS2(λ) +
q · (� + 2n)2

p2
+

1

p2
+

1

2λ
.

where � is maximum size of attribute sets.
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37. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 2

38. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 11

39. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

40. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: 2010 IEEE Symposium on Security and Privacy (2010)

41. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

42. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

43. Naor, M., Naor, D., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

44. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45472-1 1

45. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

46. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

47. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25513-7 11

48. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

https://hal.inria.fr/hal-01686690/
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/978-3-642-36362-7_11
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-45472-1_1
https://doi.org/10.1007/3-540-45472-1_1
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-25513-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22


582 J. Gong et al.

49. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. Des. Codes Crypt. 77(2–3),
725–771 (2015)

50. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007 (2007)

51. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCCS 2013 (2013)

52. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. In: Cryptology ePrint
Archive: Report 2007/217 (2007). http://eprint.iacr.org/2007/217

53. Sakai, R., Kasahara, M.: ID-based cryptosystems with pairing on elliptic curve. In:
Cryptology ePrint Archive: Report 2003/054 (2003). http://eprint.iacr.org/2003/
054

54. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

55. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

56. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10879-7 17

57. Takashima, K.: New proof techniques for DLIN-based adaptively secure attribute-
based encryption. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342,
pp. 85–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 5

58. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

59. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

60. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

61. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14
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