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Chapter 2
Human Pluripotent Stem Cells as In Vitro 
Models for Retinal Development and Disease
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Sarah K. Ohlemacher, and Jason S. Meyer

Abstract Human pluripotent stem cells (hPSCs) provide unprecedented access to 
the earliest stages of retinogenesis that remain inaccessible to investigation, thereby 
serving as powerful tools for studies of retinal development. Additionally, the abil-
ity to derive hPSCs from patient sources allows for the modeling of retinal degen-
erative diseases in vitro, with the potential to facilitate cell replacement strategies in 
advanced stages of disease. For these purposes, many studies over the past several 
years have directed the differentiation of hPSCs to generate retinal cells using sto-
chastic methods of differentiation, yielding all major cell types of the retina. In 
particular, these studies have favored the derivation of RPE, photoreceptors, and 
more recently retinal ganglion cells for disease modeling, drug screening as well as 
cell replacement purposes. More recently, advances in retinal differentiation meth-
ods have led to the generation of three-dimensional retinal organoids that recapitu-
late key developmental and morphological features of the retina, including the 
stratified organization of retinal cells into a tissue-like structure. This review pro-
vides an overview of retinal differentiation from hPSCs and their potential use for 
studies of retinogenesis as well as diseases that affect the retina.

A. Sridhar · K. B. Langer · C. M. Fligor · C. A. Miller · K. T. Ho-A-Lim · S. K. Ohlemacher 
Department of Biology, Indiana University Purdue University Indianapolis,  
Indianapolis, IN, USA
e-mail: akshsrid@uw.edu; klanger@iupui.edu; cfligor@iupui.edu; cam26@iu.edu; kth37@
case.edu; sarohlem@iupui.edu 

M. Steinhart 
Medical Science Training Program, Indiana University, Bloomington, IN, USA
e-mail: steinmat@iu.edu 

J. S. Meyer (*) 
Department of Biology, Indiana University Purdue University Indianapolis,  
Indianapolis, IN, USA 
e-mail: meyerjas@iupui.edu

Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA 

Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98080-5_2&domain=pdf
https://doi.org/10.1007/978-3-319-98080-5_2
mailto:akshsrid@uw.edu
mailto:klanger@iupui.edu
mailto:cfligor@iupui.edu
mailto:cam26@iu.edu
mailto:kth37@case.edu
mailto:kth37@case.edu
mailto:sarohlem@iupui.edu
mailto:steinmat@iu.edu
mailto:meyerjas@iupui.edu


18

Keywords Human pluripotent stem cells · Retina · Organoids · Development · 
Disease

2.1  Introduction

The human retina is a multilayered tissue composed of an intricate network of 
several types of retinal neurons that function in an integrated manner to convert 
the incoming light stimulus into an electrical impulse, which will be propagated 
to the brain to be converted into an image. Consequently, any disease or injury 
affecting retinal neurons disrupts this visual circuit, resulting in blindness. 
Hence, a thorough understanding of the development and functions of the human 
retina will facilitate the development of successful therapies for retinal degenera-
tive diseases. However, studies of the human retina are especially challenging as 
retinogenesis occurs early in gestation and remains largely inaccessible to inves-
tigation [1]. In this regard, human pluripotent stem cells (hPSCs), including 
human embryonic stem cells [2] and human induced pluripotent stem cells [3–5], 
provide a unique in vitro model capable of recapitulating the growth and diversi-
fication of developing retinal neurons.

hPSCs are self-renewing cells analogous to the inner cell mass/blastocyst 
stage of human development, which possess the ability to generate all cell types 
of the body. Therefore, hPSCs can be used to study even the earliest events of 
retinogenesis and generate limitless numbers of retinal neurons for translational 
applications [6–15]. While advancements in hPSC-retinal differentiation proto-
cols over the last decade have led to the successful generation of all types of reti-
nal neurons [9, 16–27], these cells have traditionally been differentiated in a 
manner that lacked the ability to assemble into a multilayered retinal-like struc-
ture. This lack of cellular organization not only affects the ability to faithfully 
recapitulate the events of retinogenesis as an in vitro model, but may also impact 
the quality and functionality of retinal cells generated for future translational 
applications, including disease modeling and cell replacement.

More recently, a fundamental shift in retinal differentiation protocols has 
developed which allows for the organization of hPSC-derived retinal neurons 
into an organized, multi-layered retinal-like structure [21, 28–30]. These resul-
tant populations, known as retinal organoids, are composed of retinal neurons 
arranged in a stratified manner that recapitulates the spatial and temporal pattern-
ing of native retinal tissue [21, 23, 28–39]. Thus, such hPSC-derived retinal 
organoids will likely serve as more effective in vitro models with which to reca-
pitulate earliest events of retinogenesis. Furthermore, these retinal organoids 
may enhance the application of hPSCs for disease modeling and cell replace-
ment. To serve in these capacities, however, refinements in the differentiation of 
retinal organoids will be needed, with improvements in these protocols likely to 
be inspired by our growing understanding of the regulatory factors at play in the 
developing retina in vivo.

A. Sridhar et al.
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2.2  Development and Organization of the Vertebrate Retina

The retina is a complex multilayered tissue that originates from the developing 
diencephalon and consists of six neuronal cell types that work in a coordinated 
fashion to perceive and interpret incoming visual information [40, 41]. Based on the 
orientation of retinal cells, the retina can be broadly classified into three layers: (1) 
the outer nuclear layer consisting of the photoreceptor cells, including the rods and 
cones, (2) the inner nuclear layer consisting of the interneurons, namely bipolar 
cells, amacrine cells, and horizontal cells, and (3) the ganglion cell layer consisting 
of the retinal ganglion cells whose axons extend to form the optic nerve [42, 43]. In 
addition to these neuronal cell types, Muller glia are the primary glial cells of the 
retina, with cell bodies in the inner nuclear layer and processes traversing the length 
of the retina, providing necessary architectural and functional support. Additionally, 
photoreceptors are supported and nourished by the retinal pigmented epithelium 
(RPE), a sheet-like layer of epithelium located below the photoreceptor layer. 
Retinal neurons are intricately connected through a network of synapses, with con-
nections between the photoreceptors, bipolar cells, and horizontal cells, referred to 
as the outer plexiform layer. Similarly, the inner plexiform layer represents the 
dense fibrils between the ganglion cells, bipolar cells, and amacrine cells.

This structure forms a highly regulated pathway for visual transduction, which is 
critical to the functioning of the retina [44]. Briefly, incoming light is focused onto 
the retina via the cornea and lens, where it first interacts with the photoreceptors in 
the outermost layers of the retinal tissue. These photoreceptors convert the visual 
light into an electrical stimulus via the phototransduction pathway, which is then 
transmitted to the retinal ganglion cells via the interneurons of the retina. Finally, 
the ganglion cells extend their long axons via the optic nerve and synapse with their 
postsynaptic targets, including the superior colliculus and the lateral geniculate 
nucleus. Relays to cortical areas responsible for signal integration enable vision. 
Overall, the function of the retina depends on all its components working in a 
sequential manner to integrate and transmit the visual information to the brain. 
Consequently, any disruption in this visual circuit due to injury or disease results in 
loss of vision or blindness. As such, the use of hPSCs provides a powerful tool with 
which to study the development of the retina, as well as disruptions to retinal func-
tion resulting in vision loss [45]. However, modeling the functions of the retina and 
its pathophysiology requires the differentiation and organization of these cells in a 
manner which closely recapitulates the native retina, necessitating a thorough 
understanding of mechanisms associated with retinal development in vivo.

Retinal development is determined by the combinatorial actions of growth fac-
tors as well as transcription factors, which not only specify retinal cell types but also 
determine their spatio-temporal location. Retinogenesis begins early in gestation 
and the first morphological evidence of the retina is seen during neurulation [46]. As 
the developing neural plate forms the neural tube, optic grooves emerge on either 
side of the diencephalon. These grooves, now known as optic vesicles, evaginate 
toward the surface ectoderm, resulting in reciprocal signaling between these struc-
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tures. This reciprocal exchange of signals leads to the induction of the retina from 
the distal optic vesicle and the formation of the lens placode from the ectoderm. 
Consequently, the proximal optic vesicle is induced by the surrounding mesen-
chyme to form the retinal pigmented epithelium (RPE). Following specification of 
the optic vesicle, these cells acquire a multipotent progenitor identity and will sub-
sequently multiply and differentiate into all cell types of the retina (Fig. 2.1). Retinal 
cell genesis is specified in an evolutionally-conserved order, which is dictated by the 
competence of retinal progenitors, and a combination of exogenous signaling gradi-
ents as well as endogenous transcriptional regulation [47–49]. Based on this model, 
studies of retinal development in model systems have demonstrated that ganglion 
cells, horizontal cells, and cone photoreceptors are the earliest-born retinal cell 
types. Amacrine cells are specified slightly later in development, followed by rod 
photoreceptors, while bipolar and muller glia cells are the last cell types to develop 
in the retina. Retinal development and maturation continues throughout gestation 
and visual synapses continue to mature after birth. Overall, the specification of the 
retina from its early diencephalic origins follows a tightly conserved order of events. 

Fig. 2.1 hPSCs generate retinal cells using stochastic methods of differentiation. hPSCs were 
directed to a retinal fate using a stepwise protocol, where retinal neurons were specified in a con-
served, temporal sequence. Within 70 days of differentiation, photoreceptors were readily identi-
fied by the expression of photoreceptor-specific markers CRX/RECOVERIN (a), while ganglion 
cells expressed BRN3 and extended MAP2 positive neurites (b). hPSCs-derived RPE demonstrate 
characteristic pigmentation and hexagonal morphology, seen via bright field microscopy (c). 
Additionally, hPSC-derived interneurons such as horizontal cells and amacrine cells could be iden-
tified via PROX1 and AP2α expression respectively. Scale bars equal 40 μm
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Likewise, to properly and reliably direct the differentiation of hPSCs to a retinal 
fate, knowledge and application of these developmental events to cellular differen-
tiation protocols is essential.

2.3  In Vitro Studies of Retinal Development Using hPSCs

The development of the human retina is initiated at some of the earliest stages of 
gestation, making the study of these critical cell fate determination events difficult. 
Given their pluripotent nature, hPSCs may provide a unique and novel tool for the 
study of these early developmental events by serving as comprehensive models of 
the major stages of human retinogenesis, even at stages that would be otherwise 
inaccessible to investigation in the embryo. With the resultant retinal cells, the 
potential then exists for their translational application, including cell replacement 
approaches as well as the ability to model and study retinal degenerative diseases in 
a dish when derived from specific patient sources. In order to serve in this capacity, 
however, these cells must be directed to differentiate toward a retinal lineage in a 
step-wise process that faithfully recapitulates the major stages of retinogenesis 
in vivo [50]. As such, numerous efforts have been made over the last decade focused 
on the derivation of retinal cells from hPSCs, often adopting critical principles of 
developmental biology to guide the differentiation process (Table 2.1). Initial work 
in this field focused upon the differentiation of retinal cells by inhibiting BMP and 
WNT signaling in the presence of IGF-1 [9, 19, 68]. Similarly, other groups have 
been successful in achieving retinal differentiation through the inhibition of WNT 
and Nodal signaling [17, 18, 24, 25, 69]. Subsequently, efforts relying upon the 
default adoption of a rostral neural fate in the absence of specific morphogenic fac-
tors led to the development of discrete retinal progenitor cell populations, which 
would later give rise to retinal neurons in a temporally appropriate manner [21–23, 
26, 27, 63].

While these protocols provided the ability to generate all the major cell types of 
the retina, most of the early focus has favored the generation of RPE and photore-
ceptor cells as many retinal diseases primarily affect these outer retinal cells, result-
ing in their degeneration and subsequent loss of vision. Additionally, RPE and 
photoreceptors possess unique phenotypic markers and functional properties that 
enables their ease of identification in vitro, which is often lacking for other cell 
types of the retina. Among the earliest retinal differentiation studies, RPE was first 
observed to be spontaneously differentiated from hPSCs in relatively high numbers 
[51]. These cells were initially identifiable in cultures of differentiating stem cells 
due to the accumulation of melanin pigment within these cells that could be readily 
visualized. Further confirmation of RPE differentiation was provided by their char-
acteristic hexagonal shape and upon isolation of these cells, they commonly 
expressed a full complement of RPE-associated features [21, 52, 54–56, 59, 60, 
70–77]. Similarly, photoreceptors were among the first retinal neurons to be 
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Table 2.1 Summary of stochastic methods of retinal differentiation from hPSCs

Authors
Cell types 
observed Signaling factors Functional characteristics

Klimanskaya 
et al. [51]

RPE bFGF
LIF
KOSR

Lamba et al. 
[19]

Amacrine cells
Bipolar cells
Horizontal cells
Photoreceptors
Retinal ganglion 
cells

Dkk1
IGF1
Noggin

Calcium response to glutamate and 
NMDA

Banin et al. [16] Photoreceptors bFGF
EGF
Noggin

Osakada et al. 
[24]

Amacrine cells
Bipolar cells
Horizontal cells
Immature muller 
cells
Photoreceptors
RPE
Retinal ganglion 
cells

Activin-A
aFGF
bFGF
DAPT
Dkk1
FBS
Lefty
Retinoic acid
Shh
Taurine

Carr et al. [7, 
52]

RPE bFGF
Hydrocortisone
KOSR
Taurine
T3

Photoreceptor outer segment 
phagocytosis

Meyer et al. [22] Photoreceptors
RPE

Default neural 
specification

Idelson et al. 
[53]

RPE KOSR
Activin-A
TGFβ1
SB431542
bFGF

Buchholz et al. 
[54]

RPE bFGF
KOSR
FBS

Photoreceptor outer segment 
phagocytosis

Mellough et al. 
[20]

Photoreceptors
RPE

Activin A
bFGF
Dkk1
IGF1
Lefty
Noggin
Retinoic acid
Shh
T3
Taurine

(continued)
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Table 2.1 (continued)

Authors
Cell types 
observed Signaling factors Functional characteristics

Singh et al. [55, 
56]

RPE bFGF
EGF
FBS
FGF2

Photoreceptor outer segment 
phagocytosis
Polarized secretion of growth factors
Calcium responses to ATP
ATP, TER measurements

Tucker et al. 
[57]

Photoreceptors
RPE

aFGF
bFGF
DAPT
Dkk1
IGF1
Lefty
Noggin
Retinoic acid
Shh
T3
Taurine

Riazifar et al. 
[58]

Retinal ganglion 
cells

bFGF
DAPT
FBS
KOSR

Inward/outward currents
Action potential response to CNQX

Ferrer et al. [59] RPE Activin A
Hydrocortisone
KOSR
Nicotinamide
Noggin
SB431542
Taurine
Triiodothyronine

Intracellular calcium responses
Respond to changes in potassium and 
ATP concentrations

Maruotti et al. 
[60]

RPE Chetomin
Nicotinamide

Zhou et al. [61] Photoreceptors COCO
Dkk1
FGF2
IGF1
Noggin
T3

Sluch et al. [62] Retinal ganglion 
cells

FGF-A
FBS
Forskolin
Taurine

Firing of action potentials
Response to AMPA/NBQX
Mitochondrial movement through 
RGC axons

Ohlemacher 
et al. [63]

Retinal ganglion 
cells

Default neural 
specification

Firing of action potentials
Hyperpolarized resting membrane 
potential
Inward/outward ionic currents

(continued)
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 identified due to the large number of photoreceptor-specific markers that have been 
previously identified in retinal development studies [9, 19, 20, 22, 24, 25, 78].

More recently, some efforts have focused upon the differentiation of retinal gan-
glion cells from hPSCs. These cells have been somewhat more difficult to definitively 
identify in differentiating cultures as they lack any truly specific markers to separate 
them from some other neuronal populations. However, the ability to identify these 
cells has been facilitated in recent years by following their differentiation through a 
retinal progenitor intermediary or via the use of fluorescent reporters [58, 62, 63, 65, 
79–82]. Additionally, some studies have demonstrated the ability to derive all the 
major neuronal cell types of the retina, including interneurons, although these cells 
have not been extensively characterized to date [21, 22, 25–27, 29, 61, 63, 68, 69, 83].

Table 2.1 (continued)

Authors
Cell types 
observed Signaling factors Functional characteristics

Barnea-Cramer 
et al. [64]

Photoreceptors BDNF
CNTF
DAPT
Insulin
Noggin
Retinoic acid

Gill et al. [65] Retinal ganglion 
cells

bFGF
Dkk1
IGF1
KOSR
Noggin

Firing of action potentials
Inward/outward currents
Axonal transport of mitochondria

Teotia et al. 
(2017)

Retinal ganglion 
cells

BDNF
cAMP
CNTF
Cyclopamine
DAPT
FGF8
Follistatin
Forskolin
NT4
Shh
Y27632

Inward/outward currents
Fire action potentials

Sluch et al. [66] Retinal ganglion 
cells

DAPT
Dorsomorphin
Forskolin
Glutamax
IDE2
LDN-193189
Nicotinamide
Noggin
SB431542

Efficient immunopurification of 
RGCs
In vitro axonal injury model

Langer et al. 
[67]

Retinal ganglion 
cells

Default neural 
specification

Identification of RGC subtypes
Use of single cell RNAseq to 
elucidate RGC subtypes and novel 
subtype markers

A. Sridhar et al.
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While the above methodologies have been highly successful for the derivation of 
all of the major types of retinal neurons, this differentiation often occurred as a 
somewhat heterogenous population of retinal cells. This differentiation allows for 
the ability to study many features within individual cells, but does not account for 
the critical interactions between neurons of the retina which are necessary for their 
proper maturation and function. Furthermore, many disorders of the retina result 
from the loss of connectivity between cells, making the study of these disorders 
more difficult in heterogeneously arranged cultures. To overcome these shortcom-
ings, efforts have been directed toward the differentiation of retinal cells from 
hPSCs in a manner which closely mimics the development and three-dimensional 
organization of the retina. Initially, studies described the ability of hPSCs to differ-
entiate toward a retinal lineage in a step-wise fashion, yielding three-dimensional 
structures closely resembling the optic vesicle and optic cup stages of retinogenesis 
[21–23, 29]. Subsequently, further efforts expanded upon these early results to gen-
erate three-dimensional structures termed retinal organoids that were found to effec-
tively recapitulate the spatial and temporal organization of the various neuronal cell 
types of the retina, resulting in a stratified, multilayered structure [28, 30, 34–38].

2.4  Applications of Retinal Organoids for Modeling Human 
Development

With the goal of effectively recapitulating the complex organization and interplay 
between the different types of neurons of the retina, studies within the past few 
years have described the ability of hPSCs to differentiate toward a retinal lineage in 
a step-wise fashion [17, 22, 68]. The resultant populations of cells have yielded 
structures that closely resemble the developing optic cup, with enriched populations 
of retinal progenitor cells discretely arranged into a cup-like structure (Fig. 2.2). 
Subsequent efforts have expanded upon these early results to generate retinal organ-
oids that effectively recapitulate the spatial and temporal organization of the various 
neuronal cell types of the retina (Table  2.2). As a result, these retinal organoids 
provide a powerful and novel tool for studies of the earliest stages of human retinal 
development.

As compared to early methods of retinal differentiation from pluripotent cells, 
retinal organoids offer several advantages as an in  vitro model of retinogenesis. 
Importantly, these organoids can self-assemble into discrete three-dimensional 
structures with major classes of retinal neurons arranged into distinct layers similar 
to their organization within the retina [21, 28–31, 33, 35–39]. The differentiation of 
these retinal organoids progresses through all the major stages of retinogenesis, 
including stages analogous to the eye field, optic vesicle, and optic cup, thereby 
allowing for the ability to visualize some of the earliest events of human retinal 
development. Similar to embryonic retinogenesis [50], differentiation of resultant 
cells within retinal organoids has been demonstrated to follow a conserved sequence 
of events, with early-born cell types such as RGCs among the first retinal neurons 
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to be specified, while later-born cell types such as rod photoreceptors among the last 
[21, 23, 28–31, 33, 34, 37, 85].

Retinal cells occupy strategic positions within the adult retina, with ganglion cells 
residing in the innermost layers of the retina, whereas photoreceptor cells closely 
associate with RPE and form the outermost layers. The spatial arrangement of retinal 
neurons and their synaptic connections linking them together are critical to their 
proper function and as such, retinal cells derived from hPSCs should similarly reca-
pitulate this level of organization. While traditional methods of differentiation have 
allowed for the successful generation of all the major cell types of the retina, these 
approaches have lacked the ability of retinal cells to assemble into a layered struc-
ture. These shortcomings of traditional approaches have been overcome by the devel-
opment of retinal organoids, which allow for the maintenance of cell–cell contacts 
between retinal neurons [21, 23, 28–30, 32, 33, 35, 37, 38, 85]. These organoids 
formed a pseudostratified epithelium-like structure which allows the retinal cells to 

Fig. 2.2 hPSCs can be directed to generate retinal organoids using three-dimensional differentia-
tion approaches. hPSCs were directed to generate retinal organoids in a stepwise manner analo-
gous to major stages of retinogenesis. Optic vesicle-like retinal organoids expressed retinal 
progenitor markers, CHX10, PAX6, and cell proliferation marker Ki67 after 1 month of differen-
tiation (a–d) while photoreceptor marker RECOVERIN and ganglion cells marker BRN3 were 
seldom seen at this early stage of development. After 2 months of differentiation, retinal organoids 
acquired a cup-like appearance and retinal cells were arranged in a stratified manner. Photoreceptor 
markers (CRX, RECOVERIN, OTX2, and ND1) occupied apical layers of the organoids (e–i), 
horizontal and amacrine cells (PROX1, AP2α) in the middle and ganglion cells (BRN3, SV2) 
occupied basal layers within the organoids (e–j). Scale bars equal 150 μm for a–d and 100 μm for 
e–j

A. Sridhar et al.
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mature in both a temporal and spatial fashion, with ganglion cells specified in basal 
laminae of the organoids while photoreceptors occupy apical regions.

The three-dimensional nature of organoids also likely aids in the functional mat-
uration of retinal neurons, which has been largely limited in retinal cells derived 
using traditional differentiation methods. While these retinal cells differentiated by 
traditional approaches commonly express a variety of features associated with all of 
the major cell types of the retina, these cells lacked the structural and functional 
differentiation typically associated with more mature retinal neurons. The use of 
three-dimensional retinal organoids allows for the acquisition of more advanced 
features of differentiation within these cells including enhanced outer segments and 
the ability to respond to light stimuli, presumably due to their ability to interact and 
self-organize with neighboring cells. Further refinements of these organoid cultures 
have also involved the addition of external signaling molecules in long-term cul-
tures to further guide their differentiation [28, 30, 32]. This has been particularly 
true for photoreceptors, which have been the most extensively studied cell type 
derived within retinal organoids. The experimental manipulation of critical signal-
ing pathways within retinal organoids has led to refinements in photoreceptor dif-
ferentiation, including accelerated differentiation as well as increased expression of 
phototransduction proteins. Photoreceptors derived in this fashion exhibited charac-
teristic bulb-like structures at their tips, demonstrated membranous disc-like struc-
tures in regions resembling outer segments, and occasionally displayed 
electrophysiologic responses to light stimuli [30, 38].

2.5  Application of hPSC-Derived Cells for Retinal Disease 
Modeling

Beyond the applications of hPSCs for modeling retinal development, these cells 
also serve as powerful and unique platforms for the study of human retinal degen-
erative diseases. Due to the degeneration of specific populations of retinal neurons, 
these diseases are characterized by loss of vision and eventual blindness. Retinal 
degenerative diseases can be most readily classified into diseases that affect cells of 
the outer retina or those affecting the inner retina, most notably age-related macular 
degeneration and glaucoma, respectively [86, 87]. Traditionally, the ability to study 
the progression of these disease states has been limited to animal models. While 
these animal models have led to significant advances in our understanding of retinal 
disease progression [88–94], important differences exist between the retinas of ani-
mal models and humans, including the prevalence of rods and cones as well as the 
presence of a macula in humans. Furthermore, studies in humans have been largely 
limited to postmortem retinal tissue or to retinal imaging approaches that lack the 
resolution to examine individual cells. While these studies have been informative 
about the end-result of disease pathology, the approach necessarily limits the ability 
to better understand disease progression within individual cells.
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Table 2.3 Selected demonstrations of retinal disease modeling with hPSCs

Authors
Disease 
modeled

Cell types 
studied Disease phenotype

Therapeutic approach
Gene 
correction

Drug 
screening

Jin et al. [95] Retinitis 
Pigmentosa

Photoreceptors ER stress
Oxidative stress

✓

Meyer et al. 
[21]

Gyrate Atrophy RPE Enzymatic defect ✓ ✓

Tucker et al. 
[96]

Retinitis 
Pigmentosa

Photoreceptors Alu mutation in MAK 
gene

Singh et al. 
[55, 56]

Best disease RPE Phagocytosis defects
Oxidative stress
Altered calcium 
homeostasis

Minegishi 
et al. [97]

Glaucoma Neural cells Increased protein 
deposits and 
insolubility

✓

Lustremant 
et al. [98]

LCA RPE Gene polymorphism
Oxidative stress

Tucker et al. 
[99]

Glaucoma Retinal 
ganglion cells

Autophagy defects

Yang et al. 
[100]

AMD RPE Oxidative stress

(continued)

In order to overcome these shortcomings for studies of retinal degenerative dis-
eases, recent research has focused on the use of hPSCs to model and understand 
disease progression (Table 2.3). When generated from patients with a known genetic 
basis for retinal degeneration, hPSCs provide an infinite supply of cells for the deri-
vation of the affected cell type, and can thereby serve as powerful tools to study the 
disease phenotype [85, 110, 111]. Over the last several years, studies have utilized 
hPSCs for studies of degenerative diseases of the retina, with a particular focus on 
those diseases that affect RPE and photoreceptors [11, 15, 21, 56, 60, 70–72, 95, 96, 
98, 101, 105, 109, 112–119]. These cells are often affected in retinal degenerative 
diseases such as age-related macular degeneration, and the derivation of these cells 
has been extensively characterized through hPSC retinal differentiation protocols. 
Such approaches have helped to demonstrate the improper function and/or reduced 
survival of RPE and photoreceptors in patient-derived cells, thereby providing 
insight into potential mechanisms underlying the loss of these retinal cell types [11, 
21, 53, 56, 101, 105, 115, 116]. Furthermore, patient-derived hPSCs have also been 
utilized to identify novel genetic variants underlying retinal degeneration, highlight-
ing the potential to target this area for the development of therapies [96, 98].

While diseases affecting cells of the outer retina have been extensively studied 
with hPSCs, studies related to diseases affecting inner retinal neurons have been 
largely limited. Of the diseases affecting inner retinal neurons, the most common is 
glaucoma with a current incidence of greater than 60 million people worldwide 
[120, 121]. Glaucoma results in the degeneration of retinal ganglion cells (RGCs), 
leading to a decreased connectivity between the eye and the brain and subsequent 
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Table 2.3 (continued)

Authors
Disease 
modeled

Cell types 
studied Disease phenotype

Therapeutic approach
Gene 
correction

Drug 
screening

Cereso et al. 
[101]

Choroideremia RPE Biochemical defect
Under prenylation of 
protein

✓

Yoshida 
et al. [102]

Retinitis 
pigmentosa

Photoreceptors Increased ER stress
Increased apoptosis
Autophagy defects

✓ ✓

Burnight 
et al. [6]

LCA Photoreceptors Fewer and shorter 
cilia

✓

Li et al. 
[103]

Retinitis 
pigmentosa

RPE Disorganized RPE
Loss of apical 
microvilli
Reduced pigmentation

✓

Lukovic 
et al. [11]

Retinitis 
pigmentosa

RPE Phagocytosis defects

Schwarz 
et al. [104]

Retinitis 
pigmentosa

RPE Trafficking defects in 
cilia
Loss of protein
Disrupted golgi 
cohesion

✓

Singh et al. 
[36, 76]

Best disease RPE Increased oxidation
Phagocytosis defects

✓

Moshfegh 
et al. [105]

Best disease RPE Chloride channel 
defect

Chen at al. 
[106]

Dominant optic 
atrophy

RGCs Increased apoptosis ✓

Ohlemacher 
et al. [63]

Glaucoma Retinal 
ganglion cells

Increased apoptosis ✓

Parfitt et al. 
[84]

LCA RPE
Photoreceptors

Cilia defects
Abnormal protein 
splicing

✓

Saini et al. 
[107]

AMD RPE Upregulated 
complement and 
inflammatory markers

✓

Ramsden 
et al. [108]

Retinitis 
pigmentosa

RPE Phagocytosis defects ✓ ✓

Teotia et al. 
[82]

Glaucoma Retinal 
ganglion cells

Shortened neurites, 
immature activity, 
reduced expression of 
guidance cues

Hallam et al. 
[109]

AMD RPE Increased 
inflammation and cell 
stress, accumulation 
of liquid droplets, 
impaired autophagy

2 Human Pluripotent Stem Cells as In Vitro Models for Retinal Development…



34

loss of vision. The ability to derive RGCs from hPSCs has been a more recent area 
of investigation, which now allows for the application of these cells for studies of 
retinal degenerative diseases affecting the inner retina [58, 62, 63, 81, 82, 97, 99, 
122]. Recently, efforts have focused on the use of hPSCs from patients with genetic 
determinants of degenerative diseases that directly affect the RGCs, such as gene 
mutations underlying some forms of normal tension glaucoma and dominant optic 
atrophy. Interestingly, upon the differentiation of these cells, RGCs from patient 
sources exhibited increased apoptosis, thereby allowing for subsequent studies of 
disease mechanisms leading to degeneration of RGCs [63, 106].

While traditional retinal differentiation protocols have been highly successful in 
modeling certain features of some retinal degenerative diseases, the resultant retinal 
cells differentiate in a manner that lacks any three-dimensional organization that 
mimics how cells are arranged into retinal tissue. Retinal organoids may serve as an 
improved model for studies of retinal disease modeling, allowing for the interaction 
between different cell types and therefore providing the ability to assess the effects 
of degeneration on the entire tissue. While such an ability has yet to be demon-
strated for retinal organoids, the use of cerebral organoids for disease modeling has 
provided an important proof of principle and have been particularly successful for 
some of the effects of cerebral diseases, such as microcephaly and lissencephaly 
[123–125]. In the near future, it is likely that retinal organoids will be applied for the 
study of retinal degenerative diseases. As recent studies have demonstrated the suc-
cessful organization and maturation of photoreceptors within retinal organoids [21, 
29, 30, 34, 38, 76], disease-modeling approaches will most likely be applied for 
outer retinal diseases. Recent studies utilizing hPSC-derived retinal organoids have 
primarily utilized a genetic basis versus an idiopathic basis for retinal degenerative 
diseases [39, 76, 84]. Additionally, further improvements to retinal organoids will 
likely be necessary to be able to apply them to a wide variety of retinal degenerative 
diseases. For example, hPSC-derived retinal organoids do not demonstrate a 
macula- like region or a functioning RPE layer, they are currently suited to model 
diseases that affect peripheral photoreceptors [39, 76, 84]. Further improvements in 
the differentiation methods to also include the characterization and maturation of 
inner retinal neurons will enable the study of diseases to affect ganglion cells with 
retinal organoids.

2.6  Drug Screening with hPSC-Derived Retinal Cells

When derived from individual patient populations, particularly those with a known 
genetic basis underlying retinal disease, hPSCs possess the ability to recreate cer-
tain features of the disease phenotype and model the degeneration associated with 
retinal diseases. With the resulting data accumulated from such studies, these cells 
can then be utilized for the development of therapeutic approaches for retinal degen-
erative diseases [111, 119, 126–129]. Following the directed differentiation of 
patient-derived hPSCs to a retinal fate, drug screening efforts can be targeted to an 
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affected retinal cell type, providing a platform for assessing the ability of candidate 
compounds to rescue the disease phenotype.

The use of patient-derived hPSCs for drug screening has been particularly suc-
cessful for degenerative diseases that affect the outer retina, whose cells have been 
routinely derived and extensively characterized from hPSCs [6, 11, 21, 76, 84, 102–
104, 107, 108, 116, 117, 130]. Photoreceptors and RPE are the most common cell 
types affected in many retinal degenerative diseases such as age-related macular 
degeneration (AMD), where the loss of photoreceptors combined with dysfunctions 
in RPE leads to loss of vision. As patient-derived RPE has been shown to recapitu-
late some of the hallmark features of AMD, including elevated expression of inflam-
matory factors and defective oxidative stress responses, recent studies have utilized 
hPSC-derived RPE as a platform for the screening of candidate drugs to assess the 
ability to improve their survival [56, 59, 76, 100, 131]. The results of these studies 
have enabled the identification of select compounds as potential neuroprotective 
agents that can alleviate RPE degeneration [107]. Similarly, hPSC-derived retinal 
cells have also been utilized for drug screening purposes as a means to alleviate 
photoreceptor loss due to retinitis pigmentosa, with results indicating that hPSC- 
derived photoreceptors were able to recapitulate the disease phenotype and upregu-
late markers of oxidative stress, lipid oxidation, and apoptosis [11, 57, 102, 103, 
108]. Treatment of the degenerating rod photoreceptors with antioxidant vitamins 
effectively increased photoreceptor survival.

While hPSC differentiation strategies initially emphasized the cells of the 
outer retina, recent refinements in differentiation protocols have enabled the 
stepwise differentiation and identification of inner retinal neurons, particularly 
RGCs [58, 62, 63, 79, 81, 82, 106]. RGCs serve as the critical connection between 
the eye and the brain to transmit visual information, and their degeneration is 
part of a spectrum of diseases known as optic neuropathies, resulting in vision 
loss and eventual blindness. RGCs differentiated from hPSCs, particularly when 
derived from patient- specific sources, allow for the ability to screen new drug 
compounds and develop personalized treatment profiles for optic neuropathies 
[63, 106]. As a proof of principle, recent studies have successfully demonstrated 
the ability to faithfully recapitulate some of the degenerative processes associ-
ated with optic neuropathies in hPSC-derived RGCs, with subsequent drug 
screening approaches enabling the identification of neurotrophic factors capable 
of rescuing RGC degeneration [63].

While a number of studies have successfully demonstrated the ability to screen 
compounds for their neuroprotective effects on hPSC-derived retinal cells, these 
approaches have focused on isolated cells lacking any three-dimensional organiza-
tion reminiscent of retinal tissue. With the advent of retinal organoids, hPSCs can be 
directed to differentiate in a manner that recapitulates the architecture, spatial con-
nectivity and functioning of the retina, and may therefore be better suited for drug 
screening purposes. Given the more detailed demonstration to date of photoreceptor 
differentiation and organization in the outer layers of retinal organoids, these cells 
are likely better suited for drug screening applications for photoreceptor diseases. In 
contrast to outer retinal diseases, retinal organoids can also be used to test and 

2 Human Pluripotent Stem Cells as In Vitro Models for Retinal Development…



36

develop therapies for inner retinal neurons such as RGCs, which are primarily 
affected in optic neuropathies.

2.7  hPSC-Derived Retinal Cells as a Vehicle for Cell 
Replacement

While early stages of retinal degenerative diseases may be effectively studied 
with hPSCs, and subsequently drug screening approaches may aid in the neuro-
protection of these degenerating cells, the irreversible loss of retinal neurons in 
later stages renders such measures ineffective, resulting in severe vision loss and 
blindness. In such cases, attempts to replace degenerated cells through trans-
plants of healthy retinal cells constitute the only remaining effective option to 
restore some visual function [129, 132]. The transplantation of cells into the 
retina represents a more feasible option for cell replacement when compared to 
other cells of the nervous system, as the relative ease of accessibility of the retina 
and its reduced immunological response will likely facilitate cell replacement 
[133, 134]. To aid in this goal, hPSCs can serve as a renewable source of stem 
cells for the differentiation of retinal cells for a variety of translational approaches 
to retinal repair. Transplants of hPSC- derived retinal cells can assist in neuropro-
tection, particularly at earlier stages of the disease process, and can lead to poten-
tial delay in disease progression. At later stages of the degenerative process, 
hPSC-derived retinal cells can serve as a source for repopulation of the retina 
following the loss of host neurons.

Several studies have examined the use of hPSC-derived photoreceptors for cell 
replacement in diseases that affect the outer retina, with the goal to replace the 
degenerating neurons with their functional equivalents [9, 39, 64, 135, 136]. Initial 
studies focused on transplantation of undifferentiated retinal stem cells into animal 
models, which could integrate into many layers of the retina and exhibit neuronal 
morphologies [137–139]. However, these cells were often limited in number and 
their ability to be expanded, and rarely exhibited any ability to give rise to photore-
ceptor cells. As an alternative, more recent efforts have focused upon the ability of 
hPSC-derived photoreceptor cells for cell replacement. Upon transplantation, sev-
eral groups have demonstrated the ability of these cells to integrate into the host 
retina and form connections with other retinal neurons, in some cases leading to 
improved visual function and restoration of light sensitivity [135, 140, 141]. Further 
investigations into the transplantation of hPSC-derived photoreceptors have demon-
strated the use of immunodeficient mouse models to improve survival of hPSC- 
derived photoreceptors [136].

As the RPE provides essential support for photoreceptors, similar approaches 
for cell replacement have also been developed for RPE loss in retinal degenera-
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tive diseases, often associated with the secondary loss of photoreceptors. hPSC-
derived RPE has been utilized in the development of cell replacement strategies 
for diseases such as age-related macular degeneration [15, 21, 76, 107, 109, 114, 
131]. In this capacity, the transplant of RPE cells has been accomplished by 
either subretinal injection as a cell suspension or as RPE sheet transplantation 
[142–151]. The latter approach may offer numerous advantages, as the cells 
retain their polarization and are arranged in a discrete monolayer, allowing better 
integration within the host retina. The success of the above-named transplanta-
tion strategies has paved the way for hPSC-derived RPE in clinical trials for 
AMD and Stargardt’s disease, where transplanted cells were shown to improve 
visual acuity in patients, illustrating the ability of hPSCs to rescue visual defects 
in retinal degenerative diseases [14, 152].

Many of the cell replacement strategies developed to date have focused on the 
transplantation of RPE and/or photoreceptors due to their ease of differentiation and 
more limited need of these cells to extend neurites to form synaptic connections, 
which will likely make replacement efforts easier. However, the development of 
replacement strategies for inner retinal neurons such as RGCs is more complicated, 
largely due to their more elaborate nature and need to extend long axonal projec-
tions to form synaptic connections in the optic tectum [153–155]. As such, pharma-
cologic strategies to combat RGC degeneration have focused on early stages of the 
disease process where neuroprotection is feasible [63, 106]. The goal is both to 
improve RGC survival, as well as potentially regrow axons to reestablish central 
synaptic connections. Similar efforts have not been widely adopted yet for hPSC- 
derived RGCs, although early studies have demonstrated the ability of hPSC-derived 
RGCs to survive following intravitreal transplantation [80]. Further studies into the 
use of hPSC-derived RGCs are certainly warranted, as several recent reports have 
demonstrated the differentiation and enrichment of RGCs from hPSCs in vitro [63, 
66, 67, 80, 82].

Efforts for cell replacement to date have often focused on the transplantation 
of a single type of retinal neuron. At late stages of retinal degeneration, other 
retinal neurons are often damaged and lost, leading to the need to replace multi-
ple types of cells. Retinal organoids represent an exciting option for cell replace-
ment at these late stages of retinal degeneration, as these organoids possess the 
relevant retinal cells pre-assembled into a stratified structure, and can serve as 
“mini-retinas” for replacement of retinal tissue [21, 23, 28–30, 32, 39, 63]. Early 
attempts at these strategies have recently been demonstrated in mouse models of 
retinitis pigmentosa, where retinal organoids were transplanted and retained 
transplants of retinal organoids in mice led to the retention of their three-dimen-
sional architecture and formed presumptive synaptic connections with host bipo-
lar cells [142]. Similar experiments have also been conducted in nonhuman 
primates, with the transplantation of hPSC- derived retinal organoids resulting in 
increased visual acuity [156].
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2.8  Conclusions and Future Directions

Overall, research over the past several years has established hPSCs as a powerful 
tool for studying some of the earliest stages of human development that would 
otherwise remain inaccessible to investigation [19, 22, 23, 25, 27, 37]. This has 
encouraged the establishment of efficient differentiation protocols to generate all 
major cell types of the retina, including photoreceptors, RPE, and retinal ganglion 
cells [9, 20, 21, 30, 53, 55, 58, 61, 63, 70, 78, 81, 82, 113, 157, 158]. These hPSC-
derived retinal cells have assisted in modeling retinal degenerative diseases, espe-
cially when generated from patients with inherited retinal dystrophies. For this 
purpose, patient-derived hPSCs have helped in understanding disease progression 
and mechanisms, and have subsequently enabled the identification of candidate 
neuroprotective factors to combat the degeneration of retinal neurons [11, 21, 39, 
56, 57, 63, 76, 84, 98, 100, 103, 106, 115, 116, 128, 148]. However, these mea-
sures have limited utility at late-stage disease, where the loss of multiple retinal 
cell types is irreversible, resulting in severe loss of vision. As a source of cell 
replacement therapies, hPSC-derived retinal cells have been shown to integrate 
within the host retina, form synaptic connections as well as demonstrate func-
tional rescue. Such strategies have been extensively studied in the context of RPE 
and photoreceptor degeneration [6, 7, 10, 39, 136, 141, 142, 149, 156, 159–161], 
and is finding application in current clinical trials in AMD and Stargardt’s disease 
using hPSC-derived RPE [14, 152].

While tremendous progress has been made in the differentiation of retinal neu-
rons from hPSCs [17, 19, 20, 22, 26, 53, 63, 69, 71, 81, 162], these cells often fail 
to fully differentiate into functionally relevant phenotypes which would better 
mimic the structure and functionality of the retina. Therefore, recent advances have 
led to the development of a three-dimensional approach to retinal differentiation, 
where hPSCs are directed to yield discrete populations closely analogous to the 
developing optic cup and eventually giving rise to a pseudostratified structure 
resembling the retina [21, 28–31, 33, 35–39]. With these advances, retinal organoids 
follow predicted stages of retinal development, and have led to enhanced differen-
tiation and maturation of photoreceptors, facilitating the application of these 
approaches for studies of retinal development and pathogenesis in both normal and 
diseased states.

Patient-derived organoids may be best suited for assessing the effects of 
disease- related neurodegeneration on specific retinal cell types, as well as their 
interactions with each other. Currently, retinal organoids are likely better suited 
for studies of photoreceptor diseases, as photoreceptor development and matura-
tion has been extensively characterized in retinal organoids, leading to rod-dom-
inant retinal domains similar to peripheral regions of the retina [29, 30, 35, 38, 
39]. Therefore, rod-cone dystrophies like retinitis pigmentosa, which begins as a 
peripheral retinal degeneration, can be most effectively modeled with retinal 
organoids, with the goal of developing neuroprotective strategies. Moreover, 
future efforts to characterize inner retinal neurons within retinal organoids will 
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help to model and develop therapies for RGC degeneration in optic neuropathies. 
In addition to studies of retinal development and disease, the most exciting fea-
ture of retinal organoids may be their ability to serve as a replacement for retinal 
tissue in severely degenerated retinas. The interconnected structure composed of 
multiple retinal neurons may facilitate integration and replacement of multiple 
cell types within the degenerated retina.
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