
Chapter 4
Cost-Sensitive Learning

Abstract Cost-sensitive learning is an aspect of algorithm-level modifications for
class imbalance. Here, instead of using a standard error-driven evaluation (or 0–1
loss function), a misclassification cost is being introduced in order to minimize
the conditional risk. By strongly penalizing mistakes on some classes, we improve
their importance during classifier training step. This pushes decision boundaries
away from their instances, leading to improved generalization on these classes. In
this chapter we will discuss the basics of cost-sensitive methods, introduce their
taxonomy, and describe how to deal with scenarios in which misclassification
cost is not given beforehand by an expert. Then we will describe most popular
cost-sensitive classifiers and talk about the potential for hybridization with other
techniques. Section 4.1 offers background and taxonomy of cost-sensitive classifica-
tion algorithms. The important issue of how to obtain the cost matrix is discussed in
Sect. 4.2. Section 4.3 describes MetaCost, a popular wrapper approach for adapting
any classifier to a cost-sensitive setting, while Sect. 4.4 discusses various aspects of
cost-sensitive decision trees. Other cost-sensitive classification models are described
in Sect. 4.5, while Sect. 4.6 shows the potential advantages of using hybrid cost-
sensitive algorithms. Finally Sect. 4.7 concludes this chapter and presents future
challenges in the field of cost-sensitive solutions to class imbalance.

4.1 Introduction

Cost-sensitive learning refers to a specific set of algorithms that are sensitive to
different costs associated with certain characteristics of considered problems. These
costs can originate from various aspects related to a given real-life problem and be
provided by a domain expert, or learned during the classifier training phase. Two
distinct views on cost-sensitive classifiers exist in the literature. On the one hand
‘cost associated with features and, on the other hand cost associated with classes.

1. Cost associated with features. This scenario assumes that acquiring a certain
feature is connected with a given cost, being also known as test cost [47].
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This can be viewed from the monetary perspective (e.g., a feature is more
expensive to extract, as it requires additional resources or laboratory tests),
time perspective (e.g., a feature takes more time to extract and therefore may
cause a bottleneck in the classification system), or other difficulties perspective
(e.g., obtaining a feature involves invasive tests on humans, or the measurement
procedure is unpleasant, painful, or difficult to perform) [65].

This aspect of cost-sensitive learning aims at creating a classifier that obtains
the best possible predictive performance, while utilizing features that can be
obtained at lowest possible cost (or the sum of costs being below a given
threshold) [68].

This can be seen as a multi-objective learning, where we try to strike a balance
between performance and cost of used features [29, 60]. In many cases they more
costly features offer higher predictive power, leading to a problem of whether to
use several cheaper features or few more expensive ones [23].

This can also be viewed as a feature selection task, but many cost-sensitive
classifiers (e.g., decision trees) have the cost optimization procedure inbuilt [48].

2. Cost associated with classes. This scenario assumes that making errors on
instances coming from certain classes causes is connected with a higher cost.

This can be viewed from a monetary perspective (e.g., giving a credit to a
person with a bad credit score will potentially cause higher loses to a bank
than declining credit to a person with a good score), or priority/health/ethical
issues (e.g., sending a sick patient home is much more costly and dangerous for
a hospital than assigning additional tests to a healthy person) [32].

This aspect of cost-sensitive learning aims to train a classifier in such a way
that it will focus on classes that have higher costs assigned to them. They can be
seen as priority ones and we want to influence the training procedure by treating
them differently.

While over the last decade cost-sensitive learning gained most attention
for problems with skewed class distributions [39], it is also often used in
balanced scenarios, where incorrect classification outcomes may lead to severe
consequences.

In the context of class imbalance, the cost-sensitive learning can be seen
as a specific type of algorithm-level approach [27, 42]. It assumes asymmetric
misclassification costs between classes, defined in a form of a cost matrix. Standard
machine learning methods most commonly use so-called 0–1 loss function, which
assigns value 0 to a correctly classified instance and value 1 to an incorrectly
classified one. Then the training procedure aims at minimizing the overall cost,
i.e., minimizing the number of wrong predictions. As 0–1 loss function uses the
same cost associated with a wrong classification for all classes considered, it
is highly susceptible to skewed class distributions [36]. The 0–1 loss function
over imbalanced data can be easily minimized by focusing on majority class and
overlooking (or in extreme cases even completely ignoring) minority class. This
problem is getting more prevalent with increasing imbalance ratio.
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Table 4.1 Cost matrix for a
two-class problem

True positive True negative

Predicted positive C(0, 0) C(0, 1)

Predicted negative C(1, 0) C(1, 1)

Cost-sensitive learning aims at alleviate this problem by adapting a different loss
function, with different costs associated with each class. Such a cost can be seen
as a penalty factor introduced during a classifier training procedure (or in some
cases during prediction step), aiming at increasing the importance of difficult (e.g.,
minority) classes. By stronger penalization of errors on a given class, we force
the classifier training procedure (aiming to minimize the overall cost) to focus on
instances coming from this distribution. An example of a cost matrix for a two-class
problem is given in Table 4.1.

With a provided cost matrix, a new instance should be classified as the one
belonging to a class characterized by the lowest expected cost. This is known as
the minimum expected cost principle. The expected cost (conditional risk) R(i|x)

of classifying instance x as belonging to i-th class can be expressed as:

R(i|x) =
M∑

j=1

P(j |x) · C(i, j), (4.1)

where P(j |x)is the probability estimation of classifying instance x as belonging to
class j from a set of M classes.

For a standard two-class problem a cost-sensitive classifier will classify given
instance x as belonging to positive class if and only if:

P(0|x) ·C(1, 0)+P(1|x) ·C(1, 1) ≤ P(0|x) ·C(0, 0)+P(1|x) ·C(0, 1), (4.2)

which is equivalent to:

P(0|x) · (C(1, 0) − C(0, 0)) ≤ P(1|x) · (C(0, 1) − C(1, 1)) . (4.3)

This shows that any cost matrix can work under an assumption that C(0, 0)

= C(1, 1) = 0 (and analogically for multi-class problems). This allows to reduce
the number of cost parameters to be established, as one is only interested in
misclassification cost among classes.

Following this assumption, a cost-sensitive classifier will classify given instance
x as belonging to positive class if and only if:

P(0|x) · C(1, 0) ≤ P(1|x) · C(0, 1). (4.4)

By following the fact that P(0|x) = 1 − P(1|x), we may obtain a threshold p∗
for classifying an instance x as belonging to positive class if P(1|x) ≥ p∗, where:
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p∗ = C(1, 0)

C(1, 0) − C(0, 1)
. (4.5)

Cost-sensitive learning algorithms can be separated into two main groups:

• Direct approaches. This methodology is based on directly introducing the
misclassification cost into the training procedure of a classifier. This directly
corresponds to other algorithm-level approaches, with difference of utilizing the
cost matrix.

• Meta-learning approaches. This methodology is based on modifying either the
training data or the outputs of a classifier. It does not modify the underlying
training algorithm, thus making this a suitable approach for almost any type of
a classifier. Meta-learning solutions can be applied during two different steps of
the classification process:

– Preprocessing. Here we aim at modifying the training set, similarly to data-
level solutions discussed in previous chapters. The most popular approach
includes weighting the instances according to a provided cost matrix, thus
allowing for assigning higher importance to minority objects.

– Postprocessing. Here we aim at modifying the outputs of a classifier during
the classification phase. It does not involve any modification before or during
training and the entire effort is moved to introducing the cost factor when a
decision about a new instance is being made.

4.2 Obtaining the Cost Matrix

The effectiveness of cost-sensitive learning relies strongly on the supplied cost
matrix. Parameters provided there will be of crucial importance to both training and
predictions steps. Incorrectly initialized costs can impair the learning process [64].
Too low costs will not allow to properly adjust the classification boundaries, while
too high cost will lead to loss of generalization capabilities on the remaining classes.
In case of class imbalance wrongly set costs can actually mirror a bias towards the
majority class into a bias towards minority class – while we should aim to get a
balanced performance on both of them. But how does one obtain such a cost matrix?
There are two possible scenarios:

1. Cost matrix provided by an expert. In this case the supplied data is accompa-
nied by the cost matrix that comes directly from the nature of a problem. This
usually requires an access to a domain expert that can assess the most realistic
cost values. As an example of an application with a predefined cost matrix we
may take credit card fraud detection [45]. Here cost is given directly as an average
monetary loss in a case of accepting a fraudulent transaction (this is C(i, j)) and
in case of losing a customer after rejecting a valid transaction (this is C(j, i)).
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2. Cost matrix estimated using training data. In many cases we do not have an
access to a domain expert and no a priori information on cost matrix is available
during classifier training. This is a common scenario when we want to apply
cost-sensitive learning as a method for solving imbalanced problems, especially
over a wide range of different datasets. This requires either heuristic setting of
cost values or learning them from training data.

The most popular heuristic approach lies in utilizing the IR as a direct way to
estimate the cost. In this set-up C(i, j) = IR and C(j, i) = 1, where minority is the
i-th and majority is the j -th class (to allow for cases with multiple classes). The
reasoning behind this approach is that the higher IR the more difficult the learning
problem. While this is very easy to apply and gives the cost matrix very quickly,
one must be aware of significant limitations of it. The major one lies in the fact that
IR is not the sole source of learning difficulties in imbalanced data [27]. One must
take into an account instance-level characteristics, such as small sample size, class
overlapping [56], or presence of noisy and borderline instances [58]. Therefore, two
problems with similar IR may pose drastically different challenges to a classifier
and using similar cost matrices for them will be an oversimplification.

Popular way of training a cost-sensitive classifier without know cost matrix is
to put emphasis on modifying the classification outputs when predictions are being
made on new data. This is usually done by setting a threshold on the positive class,
below which the negative one is being predicted. The value of this threshold is
optimized using a validation set and thus the cost matrix can be learned from training
data [18]. This approach has been criticized for creating a division between training
and cost-sensitive evaluation, as the trained classifier in the first phase (when costs
are unknown) is error-driven and not cost-driven [6]. Therefore, the estimation of
the cost parameters is initialized with a method that is not cost-sensitive and the
outcome may be biased.

This problem has been addressed by incorporating ROC-based criterion for
classifier training. As ROC analysis allows to handle performance on both classes
simultaneously, it is a highly suitable tool for cost-sensitive learning. Values of cost
matrix are then found using a ROC space with iso-performance lines [17]. The
best threshold (cost parameter) is defined by the operating point for which the iso-
performance line is tangent to the ROC curve. ROC-based training can be easily
applied to various classification algorithms, making their cost-sensitive adaptations
possible in scenarios without explicitly stated cost matrix [19, 46]. At the same
time, we must remember that ROC-based cost tuning is sub-optimal, as there are no
guarantees for the obtained classifier to be optimal over all possible misclassification
costs.

This problem can be alleviated by using an ensemble-based strategy and training
a pool of classifiers, where each individual one is being specialized in a given
misclassification cost settings. Additionally, this allows to predict multiple potential
scenarios in the prediction phase, allowing for handling cases where testing set has
different properties than training set (which is known as dataset shift). Then we
may select single best classifier that is most suitable for discovered cost matrix, or
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combine more classifiers to achieve better classification performance by exploring
diversity among their cost settings [31]. One of the first ensemble approaches was
based on generating a grid of cost pairs and training an individual classifier on
each of them [3]. A multi-objective genetic algorithm is applied for optimizing
base classifiers with respect to estimated cost matrix. This idea was extended as
ROC Front [8], where authors proposed to use multi-objective optimization to train
ensemble of SVMs by adapting hyperparameter values to the misclassification cost.
An interesting alternative was proposed in [53], where authors used Precision-Recall
Operating Characteristic (P-ROC).

ROC-based tuning of cost matrix has also been considered in multi-class
scenarios, by working in a M × (M − 1) dimensional ROC space (for M classes).
Then weights are assigned to individual outputs per class in order to control
the decision making process and make it cost-sensitive. However, the number of
possible weight combinations with different values of thresholds becomes computa-
tionally prohibitive [5, 35]. Therefore, using the divide-and-conquer approach with
a pairwise combination of classes attracted more attention [26]. This approach has
been used for Volume Under the Surface estimation [21], as well as for optimization
of parameters used in classifier training [33, 34]. Ensemble-based approaches for
multi-class cost matrix estimation are not that popular, yet one should point out to
very interesting works by Everson and Fieldsen [16], as well as by Bernard et al. [4]

4.3 MetaCost

MetaCost algorithm [12] will be discussed firstly, due to its unique flexibility in
adapting classifiers to cost-sensitive scenarios. It works as a wrapper method that
can be applied to any type of classifier, regardless of the type of output it returns
(either class labels or probability estimates). This makes it stand out from the
remaining algorithms discusses in this chapter, as they are focusing on modifying
only a specific type of classifiers.

MetaCost is based on the assumption that with the introduction of a cost matrix,
the classification boundary should be adapted in favor of the classes with a higher
cost assigned. This translates to expanding regions in the decision space assigned to
these classes, even if the a priori probabilities do not change. Hence, class labels
provided for the instances in the training set may in fact coincide with optimal
predictions for them according to a provided cost matrix. MetaCost postulates that
if these instances would be relabeled to their optimal classes suggested by the cost
matrix, then there is no further need for data preprocessing and a standard classifier
using 0–1 loss function can be used. Modified training set should allow any classifier
to find optimal decision boundaries that will minimize the misclassification cost.

MetaCost is a preprocessing meta-learning approach that utilizes ensemble-based
data manipulation [20]. The original training set is used to learn multiple classifiers
by bootstrapping instances (following Bagging idea). Then a probability for each
instance belonging to each of classes is being estimated using a fraction of votes
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Algorithm 1 MetaCost algorithm
Require: S: Training set; S′: relabeled training set; L: Number of Bagging iterations; n: Bootstrap

size; Ψ : classification algorithm; M: # of classes.
1:
2: for l = 1 to L do
3: Sl ← RandomSampleReplacement(n,S)
4: Ψl ← train Ψ on Sl

5: end for
6:
7: for s = 1 to |S| do
8: for i = 1 to M do
9: if Ψ returns probabilistic outputs then

10: obtain P(i|xs, Ψl)

11: else
12: P(i|xs, Ψl) = 1 for the class predicted and 0 for others
13: end if
14: if use all bootstraps for each instance then
15: l ranges over all Ψl

16: else
17: l ranges over all Ψl such that xs /∈ Sl

18: end if
19: P(i|xs) = 1∑

l 1

∑
l P (i|xs, Ψl)

20: end for
21: x′

s ← relabel xs according to argminl

∑M
j P (m|xs)C(i, j)

22: S′ ← S′ ∪ x′
s

23: end for
24:
25: Ψf inal ← train Ψ on S′

it receives from the ensemble. Then training instances are relabeled to minimize
the conditional risk (see Eq. 4.1). Finally, the ensemble is being discarded (as it
was used only for preprocessing step) and a new classifier is being trained on the
modified set of instances. The pseudo-code of MetaCost is given in Algorithm 1.

4.4 Cost-Sensitive Decision Trees

Among all of the classifiers, induction of cost-sensitive decision trees has arguably
gained the most attention [13, 37, 52, 57]. This can be attributed to the ease
of modification of their training [38, 59] and pruning algorithms [14, 25, 66],
as well as plethora of ways to apply meta-learning principles. Let us provide
general frameworks for two most important approaches to cost-sensitive decision
tree induction: splitting criterion modification (Sect. 4.4.1) and instance weighting
(Sect. 4.4.2).
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4.4.1 Direct Approach with Cost-Sensitive Splitting

Induction of a cost-sensitive tree takes into account two different costs – test cost of
a-th feature tc(a) and misclassification cost of instance mc(x) [38]. Both of these
costs are to be minimized, allowing to eliminate the skew towards majority class,
while reducing the cost of used features [40, 41]. As for many imbalanced problems
we do not have costs assigned to features, then one should assume an uniform value
of tc(a), which will allow for the training algorithm to focus on minimization of
mc(x). The following five-step process allows for the computation of the average
total cost associated with a given decision tree.

Step 1. Denote the inducted decision tree as T , training set as S, selected training
instance as x ∈ S, and set of features describing this instance as B(x).

Step 2. Calculate the test cost associated with x using the subset of features B ′(x)

that are used by path from the root of T to one of its leaves to which x belongs:

tc(x) = tc
(
B ′(x)

) =
∑

a∈S′
tc(a). (4.6)

Step 3. Denote the set of instances in a given leaf node l as S′(l) and the
decision value of instance x ∈ S′(l) as d(x). Let |S′

i (l)| and |S′
j (l)| be the

number of instances from i-th and j -th class in this l-th node. To minimize the
misclassification cost, a one class dc(x) is assigned for all of instances in S′(l),
based on:

mc(S′(l)) = min(|S′
i (l)| × C(i, j), |S′

j (l)| × C(j, i)). (4.7)

Then for any x ∈ S′(l) the assigned class is calculated as:

dc(x) =
{

i-th class if |S′
j (l)| × C(j, i),

j -th class if |S′
i (l)| × C(i, j).

(4.8)

Step 4. Calculate the misclassification cost. Despite each leaf node l is now being
associated with only a single class label, there still may be instances within it that
have their true class labels different. We denote the true class label of x as dt (x),
while the label assigned to it by a given leaf node as dc(x). For each instance x

in S′ that has different true class label than the label associated with this node,
calculate:

mc(x) =
{

C(i, j) if dt (x) = i and dc(x) = j,

C(j, i) if dt (x) = j and dc(x) = i.
(4.9)

Step 5. Calculate the average total cost AT C that takes into account both the
cost associated with misclassified instances (mc(x)) and features used by them
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(tc(x)). This metric is calculated for the entire training set U :

AT C(U) =
∑

x∈U (tc(x) + mc(x))

|S| . (4.10)

This approach can be used with any splitting measure that has been adapted to
take into account feature costs.

4.4.2 Meta-learning Approach with Instance Weighting

An alternative solution to using the cost directly when creating splits lies in
weighting the training instances [59]. Higher weights is assigned to instances
coming from the class with higher value of misclassification cost. This is done
instead of sampling procedures, thus the size of the training set is not altered.
The following four-step process allows for modifying any decision tree induction
scheme to take into account misclassification costs expressed as weighted instances.

Step 1. Convert the cost matrix into a cost parameter for each class. For a two-class
problem Ci = C(i, j) and Cj = C(j, i), while for multi-class problems with M

classes one may use the following conversion:

C(i) =
M∑

j

C(i, j). (4.11)

Step 2. Calculate weight associated to instances coming from i-th class:

wi = Ci

|S|∑
j Cj |Sj | , (4.12)

where |Sj | is the number of training instances belonging to j -th class and∑
i w(i)|Si | = |U |. For C(i) ≥ 1, wi takes the smallest value bounded within

0 ≤ |S|∑
j Cj |Sj | ,≤ 1 when Ci = 1, and takes the following largest value when

Ci = maxj Cj :

wi = Ci |Si |∑
j Cj |Sj | ≥ 1. (4.13)

Step 3. Calculate the ratio of the total weight of i-th class in leaf node l to the
overall total weight of all instances in l:

pw(i|l) = Wi(l)∑
j Wj (l)

= wi |S′
i (l)|∑

j wj |S′
j (l)|

. (4.14)
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Step 4. Use any selected training procedure for induction decision trees. Wi(l)

must be used instead of |S′
j (l)| when calculating splitting criterion value in each

node in the tree growing process, as well as and the error estimation in the
pruning process. Therefore, no algorithm-level modifications are required.

4.5 Other Cost-Sensitive Classifiers

While MetaCost and decision trees are the most popular approaches to cost-sensitive
classification, plethora of other methods have also been adapted to work with
varying misclassification costs [10, 15, 43]. Below we will shortly discuss the most
important cost-sensitive versions of popular classification models, namely SVMs
(Sect. 4.5.1), ANNs (Sect. 4.5.2), and NN classifiers (Sect. 4.5.3).

4.5.1 Support Vector Machines

SVMs can be easily adjusted to work with cost-sensitive setting [11, 24]. One of the
main reasons behind their sensitivity to skewed datasets lies in soft margin objective
function assigning identical costs (parameter C) for both positive and negative class.
Different Error Cost (DEC) approach [61] uses the provided (or estimated) cost
matrix to assign separate misclassification costs to each of classes. Therefore, for
positive class we use parameter C+ = C(1, 0) and for negative we use C− =
C(0, 1). This modifies the calculation of soft margin objective function to:

min

⎛

⎝1

2
w · w + C+

l∑

i|yi=+1

ξi + C−
l∑

i|yi=−1

ξi

⎞

⎠

subject to ∀
i=1,··· ,l ∀

ξi≥0
yi (w · Φ(xi) + b) ≥ 1 − ξi,

(4.15)

The dual Lagrangian optimization problem can be then represented as follows:

max
αi

⎛

⎝
l∑

i=1

αi − 1

2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi, xj )

⎞

⎠

subject to ∀
i=1,··· ,l ∀

0≤α+
i ≤C+

∀
0≤α−

i ≤C−

l∑

i=1

yiαi = 0,

(4.16)

where α+
i and α−

i stand for Lagrangian multipliers for positive and negative classes.
When misclassification costs are unknown DEC uses the IR to initialize C+ and C−.
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4.5.2 Artificial Neural Networks

Cost-sensitive modifications of ANNs [67] involve alternation of weight update
functions [7], sampling solutions [2], and moving threshold approaches. The latter
one is a post-processing meta-learning solution to cost-sensitive learning. We denote
the real-valued output of an ANN if a form of support for instance x belonging to
i-th class as Oi(x)(fori ∈ M), where

∑M
i=1 Oi(x) = 1 and 0 ≤ Oi(x) ≤ 1.

Standard ANNs use Winner-Take-All approach for determining the final predicted
class: argmaxiOi(x). However, moving threshold approach modifies the values of
outputs by including the misclassification cost:

O∗
i (x) = η

M∑

j=1

Oi(x)C(i, j), (4.17)

where eta is a normalization term in order to scale cost-sensitive outputs to∑M
i=1 O∗

i = 1 and 0 ≤ O∗
i ≤ 1. A cost-sensitive ANN with moving threshold

makes its predictions based on argmaxiO
∗
i (x). Threshold-moving approaches for

ANNs have been overlooked for a long time and are not as popular as sampling-
based methods for class imbalance. However, some studies report its high usefulness
for dealing with datasets with skewed distributions [30, 44, 67]. Other works
report that simply changing the data distribution without considering the imbalance
effect on the classification threshold (and thus adjusting it properly) may be
misleading [50].

4.5.3 Nearest Neighbors

The popular k-NN classifier also finds its usage in cost-sensitive learning [22, 51].
It uses the minimization of conditional risk, similarly to decision tree approaches,
as cost parameter modifies the probabilities of assigning new instance x to each of
classes. However, k-NN utilizes the proportion of k-NN of x belonging to i-th class
to estimate P(i|x). Cost-sensitive k-NN rescales the cost matrix parameters, so that
for a two-class problems we have C(1, 0) + C(0, 1) = 1. Then the classification
rule assigns x to class 1 if k1/k > C(0, 1) and to class 0 otherwise, where k1 is the
number of instances from class 1 among k-NN of x.

4.6 Hybrid Cost-Sensitive Approaches

While sampling methods seem attractive due to their requirements of modifying
(rebalance) only training set (and thus a flexibility of applying any type of classifier
afterwards), they may suffer from problems related to loss of information after
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removing some instances, increasing noise or overlapping with introduction of new
instances, or even causing a data set shift (more details on data-level approaches can
be found at Chap. 5). Cost-sensitive methods may suffer from incorrectly estimated
parameters of cost matrix. This tend to happen when the search procedure get stuck
in a local minimum, or the search space is too big to efficiently find a (sub)optimal
solution.

A potentially attractive solution lies in using a hybrid approach that will combine
advantages of its components, while alleviating their drawbacks. One idea lies in
conducting a small-scale sampling of the training set before learning a cost-sensitive
classifier. This will reduce the IR, leading to a reduction of misclassification
costs for minority instances and thus making the search process less biased. As
we introduce/remove lower number of instances, we reduce the risk of deleting
important information or introducing noise. Finally, cost-sensitive classifiers are
usually faster than sampling approaches. Thus a hybrid methodology allows for a
computational speed-up when compared with a scenario that uses only sampling.

Abkani et al. [1] proposed SMOTE with Different Costs (SDC) algorithm that
works in three steps. Firstly, no undersampling of the majority class is conducted,
thus not allowing for any loss of information. Secondly, a SVM with different
misclassification costs is being trained on supplied dataset in order to reduce the
bias towards the majority class. Finally, SMOTE is applied on minority distances
in order to improve the definition of the learned class boundary. Similar idea was
proposed by Wang et al. [62].

Chawla et al. [9] developed a wrapper approach that automatically learns sam-
pling ratios individually for each dataset via evaluation function optimization. One
can plug-in misclassification cost into this evaluator. An internal cross-validation on
training data is used to establish undersampling and oversampling ratios, apply it to
all instances and train a classifier on the modified data set.

Peng [49] proposed an adaptive undersampling and oversampling, where a
pool of classifiers is being trained using different sampling ratios and estimated
misclassification costs, and a weighted combination function is used for fusion of
base classifiers.

4.7 Summarizing Comments

This chapter discussed the idea of cost-sensitive learning in the context of varying
misclassification costs and class imbalance. Taxonomy of cost-sensitive approaches
was presented and most representative algorithms were described in details, with
a special emphasis on meta-learning solutions and decision trees. Despite over
two decades of progress in this field, there are many directions to be pursued
by researchers in this domain. Let us conclude this chapter by discussing the
most important open issues and future challenges that cost-sensitive learning from
imbalanced data must face in years to come.
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• Cost-sensitive solutions for data-level difficulties: cost-sensitive solutions used
so far associate on the level of classes. Yet, instances within the minority class
may pose different levels of difficulty and mistakes on some of them should be
penalized stronger than on the others. Developing methods that could induce
cost-sensitive classifiers that take into account intrinsic data characteristics seems
as a promising direction.

• Hybrid cost-sensitive learning: combining cost-sensitive approaches with sam-
pling (please refer to Chap. 5), or potentially other algorithm-level solutions, is
a worthwhile, yet larger unexplored area. It is necessary to gain a deeper insight
into scenarios in which one of these approaches outperforms the other, in order
to be able to create a more versatile compound algorithm.

• Cost matrix estimation from non-stationary data: learning misclassification
costs is challenging on its own, but is even more challenging when conducted on
non-stationary data streams [28] (see also Chap. 11). There is a need to develop
new online cost-sensitive approaches that can combine advantages of ROC-based
analysis with low computational complexity and capabilities of tackling concept
drift.

• Cost-sensitive approaches for other learning paradigms: cost-sensitive learn-
ing should be expanded to other learning domains where class imbalance is
present, such as multi-label/multi-instance problems [63], regression [54], or
time-series analysis [55]. A complete description of these areas can be found
at Chap. 12.

We envision that next decade will bring significant developments in this area,
as many contemporary real-world applications call for existence of such machine
learning methods.
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