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Preface

Learning with imbalanced data refers to the scenario in which the amounts
of instances that represent the concepts in a given problem follow a different
distribution. The main issue when addressing such a learning problem is when the
accuracy achieved for each class is also different. This situation occurs since the
learning process of most classification algorithm is often biased toward the majority
class examples, so that minority ones are not well modeled into the final system.
Being a very common scenario in real-life applications, the interest of researchers
and practitioners on the topic has grown significantly during these years.

Based on the experience of the authors after several years focused on imbalanced
classification, this book aims at offering a general and comprehensible overview
for anyone interested in this area of study. It contains a formal description of the
problem and focuses on its main features and the most relevant proposed solutions.
Additionally, it considers the different scenarios in Data Science for which the
imbalanced classification can suppose a real challenge.

After a gentle introduction to the KDD process and current state of Data Science
in the first chapter, the book then stresses the gap with standard classification
tasks by establishing the foundations and reviewing the case studies with a direct
application in this area in Chap. 2. Then, Chap. 3 introduces the main ad hoc
evaluation metrics to be considered in this area of study. The book also covers
the different approaches that have been traditionally applied to address the binary
skewed class distribution. Specifically, it reviews cost-sensitive learning (Chap. 4),
data-level preprocessing methods (Chap. 5), and algorithm-level solutions (Chap. 6),
taking also into account those ensemble-learning solutions that embed any of the
former alternatives (Chap. 7). Furthermore, it focuses in Chap. 8 on the extension
of the problem for multi-class problems, where the former classical methods are no
longer to be applied in a straightforward way.

The book includes in Chap. 9 some notes on data reduction, being provided in
order to understand the advantages related to the use of this type of approaches.
Then, Chap. 10 focuses on the data intrinsic characteristics that are the main causes
which, added to the uneven class distribution, truly hinders the performance of
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classification algorithms in this scenario. Finally, this book introduces some novel
areas of study that are gathering a deeper attention on the imbalanced data issue.
Specifically, Chap. 11 considers the classification of data streams, Chap. 12 the
non-classical classification problems, and finally Chap. 13 discusses the scalability
related to Big Data. To sum up, some examples of software libraries and modules to
address imbalanced classification are given in Chap. 14.

This thorough review on the current and future state of imbalanced classification
aims giving this topic the significance it deserves. In particular, the interest of
research and academia is clearly shown by the rising number of publications
and citations year by year. In the foreseeable future, it predictably will continue
expanding with novel significant developments, as many contemporary real-world
applications must be addressed from the viewpoint of imbalanced classification.

The intended audience of this book are developers and engineers aiming to apply
imbalance-learning techniques to solve different kinds of real-world problems, as
well as researchers and students needing a comprehensive review on techniques,
methodologies, and tools for learning from imbalanced data.

We wish to thank all our collaborators of the research group “Soft Computing
and Intelligent Information Systems.” We are also thankful to our families for their
helpful support.

Granada, Spain Alberto Fernández
Granada, Spain Salvador García
Pamplona, Spain Mikel Galar
Santo Andre, Brazil Ronalo C. Prati
Richmond, VA, USA Bartosz Krawczyk
Granada, Spain Francisco Herrera
June 2018
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Chapter 1
Introduction to KDD and Data Science

Abstract Nowadays, the availability of large volumes of data and the widespread
use of tools for the proper extraction of knowledge information has become very
frequent, especially in large corporations. This fact has transformed the data analysis
by orienting it towards certain specialized techniques included under the umbrella
of Data Science. In summary, Data Science can be considered as a discipline for
discovering new and significant relationships, patterns and trends in the examination
of large amounts of data. Therefore, Data Science techniques pursue the automatic
discovery of the knowledge contained in the information stored in large databases.
These techniques aim to uncover patterns, profiles and trends through the analysis of
data using reconnaissance technologies, such as clustering, classification, predictive
analysis, association mining, among others. For this reason, we are witnessing the
development of multiple software solutions for the treatment of data and integrating
lots of Data Science algorithms. In order to better understand the nature of Data
Science, this chapter is organized as follows. Sections 1.2 and 1.3 defines the
Data Science terms and its workflow. Then, in Sect. 1.4 the standard problems
in Data Science are introduced. Section 1.5 describes some standard data mining
algorithms. Finally, in Sect. 1.6 some of the non-standard problems in Data Science
are mentioned.

1.1 Introduction

Recent technological advances imply that the capacities to generate and store
data are increased everyday. Among the factors that influence this reality we can
highlight the widespread use of bar codes and QR reading, the automation of all type
of transactions (commercial, business, economic, scientific) and the advances in data
collection, among others. In addition, the Internet has rapid access to information,
where both data and results can be easily obtained by others equipment. In this
sense, current organizations although distant in the space, are very close in the
cyberspace. All of these has led to strong economies of scale through the pooling
of databases, theoretical knowledge and successful results. Furthermore, in the last
decades there has been a change in the organizational environment that has caused
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a strong competition. This implies a need for organizations of all kinds to be able to
survive in such changing environments.

Besides, the evolution of mass storage devices (in relation to price – storage
capacity), such as hard disks that can store gigabytes of information at a reduced
price, has led to companies and organizations to store all kinds of information.
Citing some examples, we may refer to the data of customers and their transactions,
to telemetry data, patients, price evolution in markets, among others. In the
beginning, this information was stored in files that were difficult to handle, but with
the advent of database management systems this difficulty was reduced. With the
time, the amount of data that was stored began to grow and, although the tools to
perform the data management was suitable, the significant relationships existing
between them, began to surpass the human capacities for analysis. At the same
time, database systems had begun to be decentralized, hence the decisions lacked
credibility, inefficiency and lack of productivity.

All this explosive data growth generated, in the late 1980s, the emergence of a
new field of research called KDD [15]. Under these acronyms hides, as suggested
by Fayyad et al. [9], “the non-trivial process of discovering valid, new patterns,
potentially useful and understandable in large volumes of data”. The KDD process
has served to unite researchers from areas in principle dispersed as Artificial
Intelligence, Statistics, Visualization Techniques, Mathematics, Automatic Learning
or Databases in the search for efficient techniques and that help to find the potential
knowledge that is immersed in the large volumes of data stored by organizations on
a daily basis [10].

Although the name with which this area of research appeared was that of KDD,
other names have been used for this same concept. Some of them are Knowledge
Discovery, Data Discovery, Discovery Information, Knowledge Extraction, Data
Extraction, Pattem Discovery, DM, Data Science. At present the names that enjoy
greater acceptance have been the DM and Data Science [2, 29]. Both processes need
smart methods to extract information from data and to optimize the results. In the
beginning, DM was only used to refer to the stage of the process in which they are
applied techniques and pattern discovery algorithms. However, currently it is used
to refer to the overall process of extracting knowledge from the data. Similarly, the
term Data Science is currently used to generalize the DM and KDD terms into a
new discipline which encompasses techniques and theories drawn from many fields
within the broad areas of mathematics, statistics, information science, and computer
science.

The great increase of data that the organizations have to analyze not only resulted
in the appearance of Data Science, but at the same time Big Data concept emerges.
One of the great problems of Data Science is that the data was never stored thinking
that as a consequence, prior to the analysis, is necessary a process of integration and
cleaning of data that in many cases results more expensive than the analysis itself.
However, the appearance of the Data Warehouses as repositories of centralized
information allows the processes can not be performed on data sets that have been
previously integrated and subjected to cleaning processes.
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For researchers in the fields of knowledge named previously, these two recent
areas of research pose a great challenge to find a new way of thinking, designing,
and implementing both the basis as the data analysis.

1.2 A Definition of Data Science

The diagram in Fig. 1.1 illustrates the idea that the KDD is a process [22], that is, it
is a set of tasks or stages, which will be analyzed in detail throughout this chapter,
and among which include:

• Establishment of a relevant problem.
• Selection of the appropriate data to solve the problem.
• Exploration and cleaning of data.
• Processing and modification of data.
• Application of modeling techniques (algorithms for the discovery of patterns).
• Obtaining and interpreting the models obtained.
• Use of knowledge obtained.
• Generation of new data from your application in the real world.

But how does the Data Science process differ from the analysis that other
disciplines perform? Traditional systems of data exploitation are fundamentally
based on the existence of previous hypotheses or models. Once the hypothesis is
formulated, it is analyzed empirically from the information in the available data and
the results obtained are interpreted as a response to the initial hypothesis.

Fig. 1.1 KDD process
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However, in common use, this methodology raises two problems. On the one
hand, the individual who formulates the hypothesis must guess or know for certain
what is the necessary information to accomplish the task. On the other hand, given
the complexity of stored data and their interrelations, model verification is nowadays
inadequate in many fields for decision making. The interpretation of results will thus
be limited for its true quality.

Therefore, supplementing the above analysis with the possibility of discovering
in an inductive manner for information and key hidden patterns in data is the main
feature of Data Science. For instance, some examples are:

• Automatic prediction of trends and behaviors. Data Science automates the
process of obtaining predictive information in big databases. Some issues that
have traditionally required complex calculations can now be answered directly
and quickly from the data. A typical example of a predictive problem is targeted
marketing. Data Science uses data from past promotional campaigns to identify
the objectives that are most likely to make future campaigns. Other examples
of predictive problems include prediction of financial risk, identification of
segments of the population likely to respond identically to certain events, etc.

• Automatic discovery of previously unknown patterns. The Data Science tools
filter the data contained in large databases and identify previously hidden
patterns. An example of pattern discovery is the analysis of sales data to identify
apparently unrelated products that are often purchased together. Other problems
of pattern discovery include detection of fraudulent transactions with credit cards
and data identification anomalies that could represent input errors [7].

Data Science techniques can provide the benefits of automation on existing soft-
ware or hardware platforms and can be implemented over new systems as existing
platforms. When Data Science processes are implemented on high-performance
parallel process systems, they can analyze very large databases in a few seconds,
achieving the category of Big Data analytics.

1.3 The Data Science Process

In the initial definition of Data Science, the data refer to a set of facts or cases that
confound the database. A pattern does reference to an expression in some language
that serves to describe a subset of the data or a model applicable to that data. That is,
a pattern is an instance of a determined model. Therefore, the extraction of patterns
is understood as the extraction of a model for some data, that is, any high-level
description of the data.

This process implies that Data Science is a conjunction of steps, although it is
not trivial, because it is assumed to require a complex analysis. The patterns must
be valid, with some degree of certainty, and novel, at least for the system and,
preferably, for the user, to which should report some kind of benefit.
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Everything indicated above implies that some set of measures can be defined
to evaluate the patterns obtained. These measures may for instance to evaluate the
goodness, utility, simplicity and certainty of the patterns. The Data Science process,
as discussed above, is the process to apply in some database the required operations
of selection, exploration, sampling, transformation and modeling methods for
extracting interesting patterns that will represent knowledge.

The KDD process is an iterative and interactive process due to the fact it includes
numerous steps in which the user has to make decisions. It is iterative because it may
be necessary to access from any of the above, and interactive because the process is
monitored and controlled by the user in a direct way.

Even though there are different alternatives described in the literature, the process
consists of the following four main stages:

• Selection of Goals: in this phase, the problem has to be studied and we have to
decide what is the goal of the project. It is also desirable to have expectations
of success or failure of the project given that these concepts are relative. For
example, depending on the problem, a model capable of successfully predicting
the 70% of cases can be considered as a failure in absolute accuracy, but a great
success if the procedure used previously only achieved a correct prediction of the
60% of the cases. With a good approach of the problem, It is easier to discover the
data sources and the most suitable DM algorithms to be applied. A bad approach
to the problem can lead us to wrong results. At this stage, the costs and economic
benefits of the project have to be also estimated for the sake of achieving the best
solution as possible.

• Data preprocessing: this stage of the KDD process is the one that most effort
requires [25]. This phase consists of four main steps, although there could be
more interpretations:

– Selection of the data: the internal or external data sources are identified and
the necessary subset of data is selected, either relations of one database or text
files.

– Preparation of the data: once the data to be used have been identified, we
must understand the meaning of the attributes to detect integration errors,
such as the existence of repeated data with different names or same data
with different formats. These problems arise because the data may come from
different sources, and not all of them store the same information in the same
way. After this preprocess, what we will have is a data set suitable for the
correct functioning of the remaining phases of the Data Science process [13].

– Transformation of data: once analyzed the type of problem and the type of
available data, we have to choose the algorithm or set of algorithms to be
applied. As each algorithm requires a different format in the input data, we
must transform the data to adjust the requirements of the selected algorithm/s.

– Reduction of data: these techniques can be applied to achieve a reduced
representation of the data set which will be much smaller in volume and tries
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to keep most of the integrity of the original data [11]. The goal is to provide
to the later DM algorithms with a mechanism to produce the same (or almost
the same) outcome when it is applied over reduced data instead of the original
data, at the same time as when mining becomes efficient.

• Construction of the model: it is the main stage because it is where the different
data analysis algorithms are apply to the data, which were transformed, prepared
and possibly reduced in the previous stages. During this stage, the patterns
present in the data are searched. Depending on the algorithm selected, a different
form will be obtained at the output. At this stage it is possible to use several times
the same algorithm or even we can use different kinds of algorithms.

• Analysis of the results: it is the moment to interpret and evaluate the results
obtained in the previous stage. Different techniques for visualization are often
used to display the results obtained. Once the results are visualized, the user
must interpret them, and if they do not meet their expectations, she must reapply
the algorithms with other parameters, and even to run other algorithms to try to
obtain more desirable results. All this makes the process of Data Science iterative.
At this stage, we have to specify how to use the obtained results. They may
be either integrated into an expert system or implemented as procedures in a
database management system to make decisions.

1.3.1 Selection of the Data

At this stage, it is first necessary to assess the present problem we want to address.
We will thus have to study the antecedents on how the problem has been solved
by other organizations and to point out the advantages and shortcomings of the
procedure that it is currently applied. Then, the objectives we want to approach
with a Data Science process should be posed. Among others characteristics, we can
stress quantifiable, realistic, relevant, multiple objectives clearly defined with a list
of priorities.

Once the objectives have been defined, we must draw up an implementation plan
specifying: the temporal duration, a budget, an analysis of monetary and opportunity
costs as well as expectations of benefits, elaboration of a schedule and identification
of possible external factors that are key to the organization.

It is worth to recall that this phase is key to the success of the Data Science
process. Frequently, researchers and inexperienced analysts tend to think that
the data are the origin of a Data Science process. This error usually ends with
unproductive results and therefore a waste of time and resources. A thorough
knowledge of the problem and the formulation of objectives are therefore vital in
any Data Science task.
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Fig. 1.2 Effort required for each stage in KDD

1.3.2 Data Preprocessing

Often, in organizations involved in Data Science projects, there is an excessive rush
in the application of powerful analytical techniques for the extraction of hidden
knowledge in the data. To use such techniques and tools, as explained above, it
is necessary to develop one of the key parts of the project and of the longest
time, which is the phase of Preprocessing prior to the application of the analysis
algorithms [13]. Figure 1.2 shows the effort required at each stage of the KDD.

1.3.2.1 Why Is Preprocessing Required?

Inconsistencies, null values, extreme values and noise are properties of all data sets
and relations in data bases. Incomplete data are generated for different reasons, for
example, the attributes of interest are not always available or the information you
have is erroneous. Other data are not stored because at the time of entering the
data they were thought to be of no interest. Noise is again available for different
reasons such as a simple problem in data collection instruments and personnel, other
times it is due to transmission mechanisms or simple inconsistencies in code naming
and assignment policies. In this way, data cleansing routines (Fig. 1.2) will help fill
in the null values, identifying outliers and solving inconsistencies. Uncleaned data
creates confusion for the scanning procedures and although some algorithms include
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Fig. 1.3 Forms of data preprocessing

routines for cleaning these mechanisms are often not robust, so it is preferable to
clean them beforehand.

However, returning to the problem that we wanted to solve, it is important to
remember that we can have data from different sources, branches or organizations
and that in each one of them possibly have data in more than one database. As
a consequence we will need to integrate the data from multiple databases before
proceeding with the analysis (Fig. 1.3), otherwise we will encounter redundancies
and inconsistencies due to integration.

Finally, once we have the data ready for the analysis, we will find that we have
the algorithm that we were going to apply requires categorical input of data and that
our variables are given as numerical, which will lead us to transform the data before
proceeding (Fig. 1.3).

1.3.3 Stages of the Data Preprocessing Phase

Each of these subphases is explained in detail below, analyzing the techniques that
are applied to correct the defects that the data can present.
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1.3.3.1 Selection of Data

The target of the selection stage is the identification of the available data sources
and the extraction of the necessary data for a preliminary analysis, thus at the end
of the phase you have the data that will be prepared to be submitted to Data Science
techniques. It is obvious that the selection of the data depends on the type of problem
to be solved and the goal pursued. Assuming that the data are gathered, the first task
is to check the quantity and quality of the data. A good amount of data is needed to
build robust models. But having large amounts of data is not enough, you will have
to study each field, data types, maximum and minimum values in order to have large
amounts of data with the highest quality.

Since the set of data to be selected will consist of a series of samples that will
be described by means of a series of variables, it will be necessary to analyze the
metadata (data about the data) associated with each variable to understand what
each one means. Metadata not only provides a definition of the data or variable
from the perspective of the business, but must provide information about data types,
potential values, original source, format and other characteristics that have to do
with the definition of the variable.

All this information is very important to take into account as it will be
fundamental in later stages. Note that the type of algorithm to be applied will not
only depend on the type of problem to solve but will depend on the type of variables
used to describe the data. These types are usually divided into:

• Quantitative. They are subdivided into:

– Discrete (number of persons, number of vehicles . . . ).
– Continues (salary, length, benefits . . . ).

• Qualitative. You can distinguish:

– Nominal. Name the object to which they refer without being able to establish
an order (civil status, gender, colour, race, . . . )

– Ordinal. An order can be established in its values (high, medium, low).

In this way it is usual to speak of qualitative variables and quantitative variables
or of categorical and continuous variables. The nominal variables are at the most
qualitative end, while the continuous variables stand out on the more quantitative
side. Note that certain variables such as scales or rankings can be treated as discrete
or ordinal variables depending on the case and therefore their definition may be less
clear. When selecting the data, another important consideration is the life time of
the variable, that is, to establish the period of time from which the variable will have
lost its semantics or will no longer be significant.
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1.3.3.2 Exploration of Data

The purpose of this subphase is to ensure the quality of the data that has been
selected. As discussed above, the fact that data is clean and free from inconsistencies
is a prerequisite for a successful Data Science project. On the other hand, the more
and better the data is known, the easier it will be to know where to look in the
modeling phase. The first task that must be done is a supervision of the structure of
the data to be able to provide a first measure of the quality of the same.

In order to carry out this task, the visualization tools and statistical methods
are usually employed. For categorical variables, the estimation of the frequency
distributions of the values is the best way to understand the content. Simple tools like
histograms or pie charts can help you visualize the distribution of each variable iden-
tifying null values and values out of range. When dealing with quantitative variables,
it will be necessary to analyze measures such as the minimum and maximum values,
the mean, the variance, the mode (value that occurs more frequently), the median
(mean value), among others. Combining all these estimated, it will be possible to
establish if a variable should be analyzed before continuing. Other useful tools are
box-plots, histograms, or QQ-plot charts to study the distribution of variables and
to show the distribution of one variable agains another different variable to analyze
their relationship.

Once the data have been analyzed with the available tools, two of the tasks that
are most frequently performed for each variable are the elimination of noise values,
the processing of MVs and the detection of inconsistencies.

• Noise Data: noise is a random error or variance in a variable. Consequently, the
variables affected by the noise will have values that fall outside the expected
values for those variables. If these extreme values that are out of range are called
outliers. Outliers can represent an opportunity to continue searching or simply
be incorrect data. There are different types of and each one should be treated
differently. Thus, for example, an outlier possibility is due to human errors in
data collection. In this way an individual can appear with age over 1,000 years
or with the negative salary. This error must be corrected. Another type of outliers
is the one that is generated because certain operational changes have not been
reflected in the Data Science environment. Clearly in this case the only action
that has to be carried out is to update the metadata. Nevertheless, most of the
noise involves little changes in data and advanced techniques must be applied in
order to identify, remove or fix it [27].

• Missing Values: In most of the Data Science projects, when we face data analysis
we find that many of the tuples (samples) have no value for certain attributes.
Hence, two questions arise: what to do with that tuple? and, how can we fill
in those values that we do not have? For this there are techniques ranging
from ignoring the existence of these MVs, manually fill the data or use simple
statistics such as average or correlations to obtain new values. The most advanced
techniques and possibly the best approaches are the MV imputation based on
predictive DM techniques. However, it should be remembered that no technique
is perfect and that one has to be careful to avoid introducing more noise when
eliminating MVs [21].
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1.3.3.3 Transformation of Data

It represents a crucial phase because the success and accuracy of the models that will
be obtained in the DM phase depends on how the data analyst decides to structure
and present the input to the next phase. On the other hand, in this phase is when
the data have to be codified to be a suitable input for the DM algorithms that will
be used. In this way, if the algorithm to be used requires numerical input and the
data selected are categorical or vice versa, it will be at this stage when the data
is transformed so that they acquire the appropriate format. In addition, it is very
common for new variables to be derived at this stage.

1.4 Standard Data Science Problems

The modeling phase is the central stage of the discovery process in which knowledge
extraction algorithms are applied to previously preprocessed data. Actually, this
step is inseparable from the next step in the chain of results analysis. In fact,
often the analysis of the results obtained causes that it goes back again to the
preprocessing phase in order to obtain more data or more attributes. In order for
the process to be correct, it is essential that the analyst has the pre-processed data
set, the corresponding metadata and all the data information that has been previously
extracted in the previous steps of the analysis. What will happen in this stage will
depend on the type of goal to be achieved. That is, it is not the same if the final
result is a characterization of data or if the goal pursued is a predictive model where
possibly the process will be longer and more complicated. The analysis of the results
is one of the most important steps of the process.

For those who are first approaching a Data Science process, the number of
existing algorithms to solve the same type of problem can lead to many confusions.
Although it is difficult to establish a classification of the possible complications we
can find in Data Science, it is even more difficult to find a procedure that establishes
the algorithm suitable for each type of problem. In spite of all this, we will try
to establish a guide that will help us to find the best types of algorithms to apply
depending on the problem to be solved (goal) and the type of data that we are dealing
with in each moment.

A first and general categorization of the problems will lead us to distinguish
between descriptive problems (unsupervised learning) and predictive problems
(supervised learning). Nevertheless, there are more complex problems assumed to
be hybridizations, derivations or restricted formulations of the two mentioned basic
problems. More details about them can be found in Sect. 1.6 of this chapter.

1.4.1 Descriptive Problems

In this context, we understand as a descriptive problem that whose goal is simply to
find a description of the study data. These types of problems belong to the example
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of knowing the clients of an organization (characteristics of the customers), or
finding the products that are often bought together, or the symptoms of diseases
presented together. The goal of all these problems is a description of the source
data set. Nevertheless, analyzing these examples more in detail we observe that
although both try to discover characteristics of the set origin, in the first case,
(description of the clients) what is intended is to organize the clients into groups
more or less homogeneous and extract the characteristics of these objects. However,
in the second type of queries (products that are bought together or symptoms of
diseases presented together), although the problem remains descriptive, the type of
description required is different, since what is sought is to find associations between
the values of attributes or properties of these objects. This causes a more detailed
division of the descriptive problem into:

• Clustering Analysis: It refers to problems where the goal is to find homogeneous
groups in the source population. These problems are also called profile segmen-
tation. The typical example of segmentation is to segment customers.

• Association Analysis: It refers to the problems in which it is sought to obtain
relationships between the attribute values of a database. The most typical
example is to analyze the shopping cart.

1.4.2 Predictive Problems

On the other hand, there are problems of Data Science whose goal is to obtain
a model that in the future can be applied to predict behaviors. These types of
problems are called predictive or, in Artificial Intelligence environments, they are
called supervised learning problems because the analyst provides the system with
the desired response. However, once again we can analyze these problems with more
attention to observe that the variable to be predicted can be a categorical variable
(whether or not to buy a product). However, in the case of loans, the variable to be
predicted is the probability of delay in payment, which is a numerical variable.

This distinction in the type of variables that the model predicts leads us to
distinguish the predictive problems in:

• Classification Problems: They refer to the problems in which the variable to
be predicted has a finite number of values, i.e. the variable is categorical. An
example of such problems would be to find a model that, in the light of a history
of customers classified as “good”, “regular” and “bad”, establishes what type of
customer is a new one.

• Regression Problems: They refer to the problems in which the variable to be
predicted is numerical. As an example, we could have the case of finding a model
that establishes the likelihood that a client who is asking for a loan will repay it
or not, or the probability that some symptoms are described or may or may not
present a disease.
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1.5 Classical Data Mining Techniques

The techniques are specific implementations of the algorithms that are used to carry
out the operations of construction of the model. Not all algorithms designed to solve
a given DM problem are the same and each one will have a certain number of
advantages and disadvantages.

The convenience of applying a particular algorithm depends not only on the
type of problem we are facing but also to a great extent on the type of data being
processed. In this sense, it is convenient to analyze the different approaches and
algorithms that exist in the literature, because in real life we find that the publicly
available tools offer a whole range of possible algorithms and the end user is who
has to decide which one to use. So unless you have a knowledge of these algorithms
and an experience in their use, it will be very difficult to find the best solution to a
given problem.

The following is a brief list of the DM techniques that can be applied to solve the
described Data Science problems.

• Predictive Models. Classification: The classical supervised learning is used in
these models. Decision trees [26], rule induction [11], instance-based learning
[4], logistic regressions [30], SVMs [28] and ANNs [5] are often used. These
models use a set of training data to create the model, which is then used to classify
unknown individuals.

• Predictive Models. Regression: For the prediction of numerical values, linear
regression and non-linear regression are used, along with regression versions of
the previous methods seen in classification.

• Standard Clustering: Here, each data example is compared to all clusters by
using a certain distance measure among them with the clusters already created.
Then each input data example is assigned to the corresponding cluster. The
number of clusters can be either automatically adjusted or not. The K-means
algorithm is the best representative technique belonging to this family [3].

• Hiercharchical Clustering: This type of DM technique is appropriate when we
do not know or have any information about the groups in which the clusters are
classified. Hierarchical algorithms such as agglomerative or divisive are often
used. ANNs based on non-supervised learning, such as the Kohonen maps, are
also used.

• Analysis of relationships. Associations: The objective of this technique of DM
is to find elements that imply the presence of other elements within the same
transaction. The result of this technique are rules of the type “if X then Y”. In the
rules, X is called the antecedent of the rule and Y is called the consequent. One
of the most commonly used association algorithms is Apriori [1]. It is based on
counting the occurrences of all possible combinations of elements. What it does
is to count the occurrences of all the elements present in the transactions of the
database and to create a vector where each of its elements carries an account of
an element of the database. Those cells of the vector whose value is below the
support level (threshold) are ignored.
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• Analysis of relationships. Sequential patterns: It tries to discover patterns
between transactions in which one set of elements is followed by another set of
elements spaced apart for a given period of time [23].

• Time Series Forecasting: This technique is intended to discover occurrences
or sequences similar to those data that stores information that represents a time
series, such as the evolution of market prices or telemetry data from a sensor.

1.6 Non-standard Data Science Problems

Some Data Science problems clearly differ from the standard ones and even some
can not even be categorized into one of two possibilities of descriptive or predictive
problems. As a result, this section will provide a brief description of other important
non-standard problems that are well known and pose a challenge in the Data Science
community.

We establish a dichotomous division based on the nature of the Data Science
problem. When the problem involves a clear extension on the acquisition or
distribution of data, restrictions imposed on the models or the implication of more
complex procedures to obtain the adequate knowledge, we refer to a derivative
or more restrictive problem. On the other hand, when the problem can only be
understood as a mixture of descriptive and predictive problems, we refer to the
hybrid paradigm. Note that we only mention some learning paradigms of the
universe of possibilities and their interpretations, assuming that this section only
intends to introduce the theme.

1.6.1 Derivative Problems

This type of problems are those based on a extension or restriction of the original
Data Science problem.

1.6.1.1 Imbalanced Learning

It is an extended supervised learning paradigm, a classification problem where the
data has exceptional distribution on the target attribute [8, 16, 20]. This issue occurs
when the number of examples representing the class of interest is much lower than
that of the other classes. Its presence in many real-world applications has brought
along a growth of attention from researchers. This book is thought to give all the
insights on this topic and here is not the right moment to give more details. Maybe,
the impatient readers could jump to the rest of chapters to get into this exciting field.
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1.6.1.2 Multi-instance Learning

This problem assumes an extension based on constraints imposed on models in
which each instance is a bag of instances rather than an instance alone [19]. The
assignment of labels is done at the stock exchange and at the individual level. There
are two main ways to solve this problem, whether converting multiple instances to
single instances by data transformations or by updating single-case algorithms.

1.6.1.3 Multi-label Classification

It is a generalization of the traditional classification, in which each processed
instance is associated not to a single class, but to a subset of classes at the same
time [18]. In the last years have appeared different techniques that, through the
transformation of the data or the adaptation of classic algorithms, try to give a
solution to this problem.

1.6.1.4 Data Stream Learning

In some circumstances, not all data is available at a particular time, so it is necessary
to develop learning algorithms that treat the input as a continuous data stream [12].
The basis of this problem is to assume that each instance can be inspected only once
and then must be discarded to make room for incoming instances. This problem is
an extension in the way of processing the data in on-line mode and is oriented for
both descriptive and predictive problems.

1.6.2 Hybrid Problems

1.6.2.1 Semi-supervised Learning

This approach emerges as a hybrid between the task of predictive classification
and descriptive analysis based on clustering [31]. Here, the model design is
performed considering both labeled and unlabeled data. Mainly, developments in
this field use unlabeled samples to alter or re-change the formulation obtained
from the labeled samples. Both the semi-supervised classification and the semi-
supervised clustering emerged from the traditional perspectives including unlabeled
or supervised examples, respectively.

1.6.2.2 Subgroup Discovery

It is formed as the result of another hybridization between predictive and descriptive
tasks, namely between classification and association of patterns [17]. A method of



16 1 Introduction to KDD and Data Science

subgroup discovery aims to extract interesting rules focused on the examples that
belong to a particular class. Other terms denoting this problem are Contrast Set
Mining and Emergent Pattern Mining.

1.6.2.3 Ordinal Classification/Regression

In this context, labels present an ordering relation according to the variable meaning
[14]. For example, financial trading could be assisted by ordinal classification
techniques predicting the amount of investment according yo several categories
such as “no investment”, “low investment”, “medium investment” and “huge
investment”. Here, to make a wrong prediction of a no investment label with huge
investment must be associated a higher cost than with little investment. Thus, the
sense of ordinal classification is to accomplish this kind of problems by exploiting
the ordinal relations among the label values and forcing this constraint in the
modeling.

1.6.2.4 Transfer Learning

It aims to extract the knowledge from one or more origin sources and to apply
the knowledge obtained to a different destination task [24]. Traditional learning
algorithms assume that training data and test data are extracted from the same source
and they more or less maintain the same distribution and feature space. But if this
distribution changes, these methods need to rebuild or adapt the model in order to
work well. The so-called data set shift problem [6] is closely related to transfer
learning.
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Chapter 2
Foundations on Imbalanced
Classification

Abstract Class imbalance is present in many real-world classification datasets and
consists in a disproportion of the number of examples of the different classes in the
problem. This issue is known to hinder the performance of classifiers due to their
accuracy oriented design, which usually makes the minority class to be overlooked.
In this chapter the foundations on the class imbalance problem are introduced.
Section 2.1 gives a formal description to imbalanced classification and shows why
specific methods are required to deal with this problem. Section 2.2 is devoted to
an overview of different application domains where imbalanced classification is
present. Finally, Sect. 2.3 presents several case studies on imbalanced classification,
including several test beds where algorithms designed to address imbalanced
classification problems can be compared. Some of these case studies will be
considered in the remaining of this Book in order to analyze the behavior of the
different methods discussed.

2.1 Formal Description

Any dataset with an unequal class distribution is technically imbalanced. However, a
dataset is said to be imbalanced when there is a significant, or in some cases extreme,
disproportion among the number of examples of each class of the problem. In other
words, the class imbalance occurs when the number of examples representing one
class is much lower than the ones of the other classes. Hence, one or more classes
may be underrepresented in the dataset. Such a simple definition has brought along
a lot of attention from researchers and practitioners due to the number of real-
world applications where the raw data gathered fulfill this definition. For instance,
applications that are known to suffer from this problem are, fault diagnosis [84, 88],
anomaly detection [37, 74], medical diagnosis [54], e-mail foldering [10], face
recognition [49] or detection of oil spills [42], among others.

Most of the imbalanced classification literature has been devoted to binary
classification problems, where one class significantly outnumbers the other (which
is therefore underrepresented). Nevertheless, there are also multi-class problems
with skewed-class distributions [25, 79]. Chapter 8 addresses the imbalanced multi-
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Examples of a two-class problem
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Fig. 2.1 Example of a two-class imbalanced problem with ratio 1:100

class classification problems even though many of the concepts introduced in the
subsequent chapters focused on binary classification are also valid for multi-class
problems.

In two-class problems the minority (underrepresented) class is usually referred
to as the positive class, whereas the majority class is considered to be the negative
one. These terms are used interchangeably in the literature.

In the following, we will illustrate the problem of imbalanced classification with
a simple synthetic dataset, which is shown in Fig. 2.1. This is a two-class problem
with ratio 1:100, that is, for each positive/minority class example there are 100
negative/majority class examples. Positive examples are presented with a blue star
‘*’, whereas negative ones are represented by a red dot ‘.’. One can clearly observe
that the positive class is underrepresented and that one has serious difficulties to
define a decision boundary to separate both classes.

Different from the 1:100 notation, another common way of referring to the degree
of imbalance of a two-class problems is the Imbalance Ratio (IR) [57]. The IR is
defined as the number of negative class examples divided by the number of positive
class examples, and can be used to sort different datasets depending on their IR.
Hence, in the case of our example the IR is 100. Anyway, as we will explain later,
one must take into account that the IR does not always give a good estimation of the
difficulty of the dataset.

One of the main issues in imbalanced problems is that usually, the underrep-
resented class is the class of interest of the problem from the application point of
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view [12]. For example, following Fig. 2.1, one could think that we are dealing with
a medical application where we should differentiate between benign and malign
tumours of a specific type of cancer using two different features that have been
measured after a biopsy. In this case, it is much more important to correctly identify
malign tumours than benign ones, since the consequences of undetected malign
tumours can be fatal, whereas a false positive when the tumour is benign would not
be as harmful. Obviously, one would want a 100% of accuracy for both classes.
However, the truth is that classifiers are usually far from being perfect and they tend
to have a great accuracy for the majority class while obtaining poor results (closer
to 0%) for the minority class.

Standard classifier learning algorithms are usually biased toward the majority
class, since rules correctly predicting those instances are positively weighted in
favour of the accuracy metric or the corresponding cost function. Otherwise, specific
rules predicting examples from the minority class can be ignored (treating them as
noise), because more general rules are preferred. As a consequence, minority class
instances are more often misclassified than those from the majority one. In order
to illustrate this problem, Fig. 2.2 presents the decision boundaries obtained by two
models for the problem in Fig. 2.1. Notice that we have generated a test set for the
problem with the same data distribution and IR in order to properly estimate the
accuracy of each model. On the left side, Model 1 has learned that it should label
every example as negative, that is, it is a trivial model. In fact, such a simple model
achieves a 99.01% of accuracy (percentage of correctly classified examples) in test
data, but obtains a poor 0% of accuracy in the positive class examples. That is, all
the examples from the negative class are correctly classified while no example from
the positive one is correctly classified. On the right side, Model 2 is different, it
has learned that part of the feature space belongs to the positive class (as it can
be observed attending at the decision boundary), which seems to be much more
desirable given that the positive class is our class of interest. However, looking at
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Fig. 2.2 Example of two models learned from the data in Fig. 2.1. Test data is obtained from the
same distribution and with the same IR. The decision boundaries of each model are depicted



22 2 Foundations on Imbalanced Classification

its performance, the accuracy obtained over the test set is 98.61%, lower than that
obtained by Model 1. Despite being less accurate in terms of global accuracy, this
second model is able to distinguish both classes, which Model 1 was not able to do.

Two lessons can be learned from this example.

1. Accuracy is no longer a proper measure in the imbalance scenario, since it does
not distinguish between the numbers of correctly classified examples of different
classes. Hence, it may lead to erroneous conclusions, i.e., a classifier achieving
an accuracy of 90% in a data-set with an IR value of 9, is not accurate if it
classifies all examples as negatives. Therefore, more informative measures in
this context are required in order to assess the quality of the models, for instance,
ROC, geometric mean, f-measure, precision or recall. How to measure the quality
of the models in this framework is discussed in Chap. 3.

2. We need to somehow construct classifiers that are biased toward the minority
class, without being harmful to the accuracy over the majority class. Hence, this
book will show how this can be achieved in order to find meaningful models for
imbalanced data; for example, as the Model 2 obtained in our toy example.

A large amount of techniques have been developed in order to achieve the
objective of correctly distinguishing the minority class. These techniques can be
categorized into four main groups, depending on how they deal with the problem.

1. Algorithm level approaches (also called internal), try to adapt existing classifier
learning algorithms to bias the learning toward the minority class [7, 47, 50]. In
order to perform the adaptation a special knowledge of both the corresponding
classifier and the application domain is required so as to comprehend why the
classifier fails when the class distribution is uneven. More details about these
types of methods are given in Chap. 6.

2. Data level (or external) approaches aim at rebalancing the class distribution by
resampling the data space [9, 24, 56, 70]. This way, the modification of the
learning algorithm is avoided since the effect caused by imbalance is decreased
with a preprocessing step. These methods are discussed in depth in Chap. 5.

3. Cost-sensitive learning framework falls between data and algorithm level
approaches. Both data level transformations (by adding costs to instances) and
algorithm level modifications (by modifying the learning process to accept costs)
[13, 48, 86] are incorporated. The classifier is biased toward the minority class
by assuming higher misclassification costs for this class and seeking to minimize
the total cost errors of both classes. An overview of cost-sensitive approaches for
the class imbalance problem is presented Chap. 4.

4. Ensemble-based methods usually consist of a combination between an ensemble
learning algorithm [59] and one of the techniques above, specifically, data level
and cost-sensitive ones [27]. Adding a data level approach to the ensemble
learning algorithm, the new hybrid method usually preprocesses the data before
training each classifier, whereas cost-sensitive ensembles instead of modifying
the base classifier in order to accept costs in the learning process, guide the cost
minimization via the ensemble learning algorithm. Ensemble-based models are
thoroughly described in Chap. 7.
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(a) (b)

Fig. 2.3 Example of difficulties in imbalanced data-sets. (a) Class overlapping. (b) Small disjuncts

We have presented several ways in which the class imbalance problem can be
addressed. However, we must stress that skewed data distribution does not hinder
the learning task by itself [34, 71]. Hence, as mentioned earlier the IR is not truly
useful to understand the difficulty of an imbalanced problem. The real issue is that
usually a series of difficulties related with this problem turn up.

• Small sample size: generally imbalanced datasets have a lack of minority class
examples. In [36], the authors reported that the error rate caused by imbalanced
class distribution decreases when the number of examples of the minority class is
representative (fixing the ratio of imbalance). This way, despite the uneven class
distribution, the patterns defined by the positive class examples can be better
learned. However, this fact is usually unresolvable when dealing with real-world
problems.

• Overlapping or class separability (Fig. 2.3a): refers to the fact that examples
from both classes are, at some degree, mixed in the feature space, that is, the
decision boundary cannot be clearly established. When overlapping is present
in the dataset the induction of discriminative rules becomes harder. As a result,
more general rules are extracted, which misclassify a low number of instances
(minority class instances) [29]. One should take into account that in case of no
overlapping between classes, the class distribution of the instances becomes less
important, since any simple classifier learning algorithm would be capable of
solving the classification problem independently of the IR.

• Small disjuncts (Fig. 2.3b): this problem occurs when the concept represented by
the minority class is formed of subconcepts [81]. In most of the problems, small
disjuncts are implicit and their existence usually increases the complexity of the
problem because the amount of instances among them is not usually balanced.

In this chapter we have briefly introduced the problems arising in the class
imbalance framework. Due to the importance of these difficulties, all these problems
are discussed in depth in Chap. 9.
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2.2 Applications

In this section we review several application domains where class imbalance is
present. We will present the different use cases found in each area and refer to
the papers where specific techniques to handle class imbalance have been applied.
We acknowledge that this section is not intended to be a thorough review of all
the application papers dealing with class imbalance but rather an overview of them
in order to show the importance of this problem in real world application. For
an exhaustive review of application where the class imbalance problem is present
please see [33].

We have focused on the most recent publications except for the works of Kubat
et al. [40–42]. These papers are known to be the pioneers in dealing with the
class imbalance problem. They dealt with the detection of oil spills from satellite
radar images. In satellite images oil spills have less reflectance and hence, they can
be identified in the images. However, the problem is that there are other reasons
different from oil spills that cause the reflectance to become lower. This is the
case of rain, algae or wind, for example. This negative class is known as lookalike
and makes the differentiation of oil spills difficult. Moreover, there were many
more lookalikes (896) in their dataset than oil spills (41) reaching an IR of more
than 20. The authors described a series of difficulties found in the development of
their system and presented possible solutions. First, they proposed a data sampling
method named as one-side selection [40], which is a modification of Tomek Links
method [76]. Afterwards, kNN was applied. Second, they developed a specific algo-
rithm (internal approach) called SHRINK where the g-mean performance measure
was introduced in the learning algorithm in order to improve the performance on
imbalanced problems whose classes were overlapped [41].

The rest of the applications range from 2012 to 2018, we will describe them in
different sections depending on their application area. Before going through each
work, Table 2.1 presents a summary of the application papers considered. They are

Table 2.1 Applications of ML and DM where the class imbalance problem is present
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1997 Engineering Satellite radar
images

Detection of oil spills in
satellite radar images

× [40]

1997 Engineering Satellite radar
images

Detection of oil spills in
satellite radar images

× [41]

1998 Engineering Satellite radar
images

Detection of oil spills in
satellite radar images

× × [42]

2012 Information
technology

Software Software defect
prediction

× × [72]

(continued)
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Table 2.1 (continued)
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2013 Bioinformatics Protein
identification

MicroRNA precursor
classification

× × [45]

2014 Medicine Quality control Prediction of the
post-operative life
expectancy in lung cancer
patients

× × [91]

2014 Bioinformatics Protein
identification

Five datasets that
represent four different
bioinformatics
applications. These
include miRNA
identification, protein
localization prediction,
promoter identification
from DNA sequences,
kinase substrate
prediction from protein
phosphorylation
profiling.

× [85]

2014 Information
technology

Text mining Text categorization × × [82]

2014 Bioinformatics Cell recognition Mitotic cells recognition
in Hep-2 images

× × [35]

2014 Medicine Diagnosis Lung nodule detection × × [11]

2014 Information
technology

Software Software defect
prediction

× × × [62]

2014 Security Video surveillance Face re-identification × × [60]

2014 Information
technology

Network analysis Botnet traffic detection × × × [30]

2014 Information
technology

Network analysis Network traffic
classification

× [80]

2015 Medicine Diagnosis Breast cancer
classification from
thermogram images

× × [38]

2015 Information
technology

Software Software defect
prediction

× [43]

2015 Bioinformatics Protein
identification

Contact map prediction
in protein structure
prediction

× × [78]

2015 Business
management

Finance Stock market prediction,
credit card/loans
approval, fraud detection

× [64]

2015 Medicine Diagnosis Automatic polyp
detection

× × [6]

(continued)
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Table 2.1 (continued)
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2015 Medicine Quality control Prediction of long stay
patients in emergency
department

× [4]

2015 Bioinformatics Protein
identification

Protein data classification × [18]

2015 Medicine Diagnosis Diagnosis of diabetes
mellitus

× [14]

2016 Business
management

Customer
relationship
management

Customer churn
prediction

× [3]

2016 Medicine Diagnosis Breast cancer malignancy
classification

× [39]

2016 Medicine Diagnosis Bleeding detection in
endoscopic video

× × [20]

2016 Education High school Early dropout detection × × [53]

2016 Security Video surveillance Face re-identification × × [68]

2016 Engineering Semiconductors Fault detection in
semiconductors

× × × [44]

2016 Medicine Diagnosis Thyroid nodule
classification

× [1]

2016 Medicine Diagnosis Breast cancer
classification from
Magnetic Resonance
Images (MRIs)

× [52]

2016 Security Biometric
authentication

Multimodal biometric
authentication

× [77]

2017 Engineering Energy Short-term voltage
stability assessment

× × [90]

2017 Business
management

Customer
relationship
management

Customer churn
prediction

× × × [89]

2017 Information
technology

Network analysis Mobile malware
detection

× × [15]

2017 Engineering Semiconductors Fault detection in
semiconductors

× × [32]

2017 Medicine Quality control Prediction of the survival
status of poly-trauma
patients

× [65]

2017 Medicine Prognosis Prediction of bone
fractures to prevent
osteoporosis

× [5]

2017 Medicine Diagnosis Prediction of chronic
kidney disease
progression

× [16]

(continued)
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Table 2.1 (continued)

Year Domain Subcategory Application D
at

a-
le

ve
l

In
te

rn
al

C
os

t-
se

ns
iti

ve

E
ns

em
bl

e

R
ef

er
en

ce

2017 Medicine Prognosis Donor-recipient matching
prediction in liver
transplantation

× [58]

2017 Security Video surveillance Still-to-video face
recognition

× [8]

2017 Medicine Diagnosis Detection of
microaneurysm

× [61]

2018 Engineering Rotating machinery Fault diagnosis in wind
turbines

× × × [63]

2018 Information
technology

Computer vision Object recognition in
images

× [87]

2018 Engineering Rotating machinery Fault diagnosis in wind
turbines

× [73]

2018 Security Video surveillance Face re-identification × [69]

2018 Engineering Rotating machinery Fault diagnosis in wind
turbines

× [83]

sorted by year of publication. For each work, apart from the year of publication, the
application domain, its main objective, the kind of technique used to deal with the
class imbalance used, and the reference are presented.

2.2.1 Engineering

Apart from the work of Kubat et al. [42] aiming at detecting oil spills in satellite
radar images, there are other engineering applications requiring specific approaches
to handle data imbalance. Among them, defect detection in semiconductors have
been addressed in [32, 44]. Fault or defect prediction in general is another typical
example for the class imbalance problem, since there are usually much fewer faulty
products than correctly produced ones. However, in manufacturing industry it is
important to correctly detect which products are faulty in order to avoid customer
dissatisfaction and returns.

In the work of Lee et al. [44], a study over two different problems of defect
detection in semiconductors was developed. The first one consisted of etching
process data, whereas the second one dealt with chemical vapor deposition process
data. Several variations of kNN and SVMs were considered for the study. Three
types of methods were tested to tackle the skewed data distribution: data-level using
random undersampling, SMOTE and NCR; cost-sensitive approaches and ensemble
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based models such as SMOTEBoost. Additionally, one-class classification [75] was
considered as an alternative to learn from positive class data.

In the case of [32], the authors addressed defect detection from images, designing
a complete system to inspect semiconductors starting from their images. These
images were used to extract several features using different approaches. In order
to overcome class imbalance, a new modified version of SMOTE was proposed.
This modification was introduced into an ensemble mechanism where classifiers
were pruned and fused by the use of stacking.

Another challenging use case was published by Zhu et al. [90], where power
system short-term voltage stability assessment was considered. One should take into
account that these kind of prediction mechanism can help in avoiding blackouts
due to the dynamic load of power usage. Obviously, the misclassification of
power system instability can lead to irreversible voltage collapse or catastrophic
outage, whereas mislabeling stable cases has a much lower expense. That is, a
class imbalance problem must be tackled. To do so, a forecasting-based nonlinear
SMOTE was proposed together with a cost-sensitive decision tree algorithm so as
to bias the decision to those scarce, yet valuable unstable cases.

In [63], the authors dealt with wind turbine failure prediction. This is an
important task because most of the operational costs of wind farms are due to
their maintenance and the distance between farms and industrial areas. Being able
to automatically monitor, diagnose and predict the state of wind turbines is the
best way for reducing maintenance costs. In this work, the authors studied the
problem of class imbalance in this scenario, where usually there are much more
data available from normal functioning than from failures. To do so, different
models for addressing class imbalance were tested (data resampling, cost-sensitive
and ensembles). Their analysis focused on the influence of the imbalance ration
on the prediction capabilities of the system and showed that an ensemble based
on rotation forest modified with a cost-sensitive approach was the most robust
approach. The same engineering problem was considered in [73], however, in this
case the authors proposed a cost-sensitive large margin distribution machine to
alleviate the class imbalance problem. Otherwise, an hybridization between SMOTE
and EasyEnsemble was developed in [83].

2.2.2 Information Technology

We have differentiated the applications on information technology into four dif-
ferent subcategories: software defect prediction, network analysis, text mining and
computer vision.

Software defect prediction is becoming a necessary tool for quality assurance
teams in order to detect possible failures. Software size and complexity are
increasing and hence, efficient methods for inspection and testing are required. In
this case, the idea consists of obtaining different metrics from the source code in
order to differentiate between defective and non-defective components. The NASA
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published several datasets in their Metric Data Program in which a number of
metrics were considered as features for the classification problem. These datasets
have been used in the application papers we have reviewed due to the great
difference between the number of non-defective and defective modules[43, 62, 72].

In [72] the original imbalanced binary-class datasets were transformed into
several balanced multi-class datasets, which were afterwards addressed by decom-
position strategies [26] (three different decompositions are used, random correction
code, one-vs-one and one-vs-all). Differently, Rodriguez et al. [62] studied the effect
of different approaches for tackling class imbalance in software defect prediction.
At data-level, random undersampling and oversampling together with SMOTE
were considered. A cost-sensitive approach was also tested and the study was
completed with ensemble-based models (SMOTEBoost and RUSBoost). Rather
than considering a specific technique to deal with class imbalance, the authors of
[43] claimed that the average probability ensemble model (in which the probability
given by each base classifier is averaged) combined with a FS scheme was enough
so as to be robust in such a difficult scenario.

There are also a number of use cases dealing with network data analysis. In [30],
the authors dealt with the problem of differentiating P2P botnet network traffic from
normal traffic. The problem was imbalance because there were more normal traffic
examples than abnormal (botnet) traffic ones. They considered the use of Random
Forest together with random undersampling and cost-sensitive learning (introduced
into Random Forest) as a tool for overcoming class imbalance.

Network traffic classification, where the traffic over the Ethernet network should
be classified into different classes was considered in [80]. This problem is clearly
imbalanced because most of the network traffic is HTTP or HTTPS (web traffic),
whereas there are many other types of traces corresponding to different applications.
In order to improve the performance in this scenario, the authors proposed a new
ensemble strategy using Adaboost and balancing the dataset in each iteration.

The authors in [15] dealt with a challenging problem falling between network
analysis and information security. They designed a system for mobile malware
detection from network traffic analysis. To do so, different techniques for the class
imbalance were used such as SMOTE followed by a SVM, a cost-sensitive SVM
and a cost-sensitive C4.5 decision tree. Moreover, a new internal solution named as
Imbalanced Data Gratitation-based classification was presented.

In other respects, ForesTexter [82] was specifically developed to classify text
data. In text classification it is not uncommon to find datasets with 20–40 classes
and hence, the likelihood of one of them being underrepresented is high. In
this method the authors proposed a modification of RandomForest algorithm to
tackle imbalanced text mining problems. First, different features were sampled
depending on their discrimination capabilities for the majority and minority classes,
respectively. Then, instead of learning with the classical RandomForest algorithm,
a SVM classifier was used for the data partitioning in each node of the tree.

Computer vision is also affected by class imbalance in many of its applications.
In [87] the authors dealt with the problem of object recognition from images. The
solution proposed by the authors consisted of a combination of transfer AdaBoost
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and a modified weighted version of SMOTE. As it is usually done in many computer
vision tasks, transfer learning was considered requiring a proper adaptation of
SMOTE to this context.

2.2.3 Bioinformatics

In bioinformatics and biotechnology protein research is one of the fields to which
researchers have paid attention in recent years. The identification of the protein
structures and functions is a very important problem in this field of research since
they are directly related with the functioning of an organism. Protein classification
is one of the most efficient ways to solve the problem, but protein datasets
are always imbalanced and therefore specific techniques are required. However,
protein identification is not the only application where imbalance is present in
bioinformatics. As an example, we will also show an application of cell recognition
where class imbalance is found.

The detection of micro RNA (ribonucleic acid) precursors can be looked from
the classification point of view as it was done in [45]. Micro RNAs play a crucial
role in very complex genetic processes related with post-transcriptional regulation
of gene expression of plants and animals. In [45], after the process of creating the
classification problem from the data, the resulting dataset having a skewed class
distribution was preprocessed using a FS method in first place and followed by
an hybrid preprocessing (SMOTE + different runs of random undersampling) in
order to create several balanced datasets. Finally, three different base classifiers
were trained (SVMs, RF and kNN) to form an ensemble of 12 classifiers (since
4 different undersampled datasets were created with the different runs of random
undersampling).

Yang et al. [85] rather than focusing on a single bioinformatic problem,
considered several imbalanced bioinformatic problems in order to test their newly
developed method in imbalanced domains. More specifically, they considered four
different use cases: miRNA identification, protein localization prediction, promoter
identification from DNA sequences and kinase substrate prediction from protein
phosphorylation profiling. All these problems were treated with the sample-subset
optimization technique that was proposed by the authors. This method is an
undersampling model focused on selecting the most useful instances from the
majority class to intelligently undersample the dataset.

The authors of [78] dealt with a different problem known as contact map
prediction, which is a part of protein structure prediction with only around 2%
of positive examples. Given the number of examples in the dataset, the authors
considered a MapReduce [19] based system to overcome the problem that was
considered to be a big data problem. In several MapReduce phases an evolutionary
feature weighting approach was performed after extremely oversampling the dataset
with random oversampling. This extreme oversampling consisted of having a dataset
with many more instances from the minority class than then number of instances
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from the majority class due to the special characteristics of the dataset. Finally, a
RandomForest classifier was considered to learn the final model.

The work of Dai [18] was focused on protein data classification. Given that there
are a huge number of classes, the multi-class problem was reduced to multiple
binary classification problems (as many as the number of classes). Once this
transformation was performed, the imbalance ratio of each new binary problem was
highly increased given that one class should be distinguished from all the others
(whose total number of examples becomes much larger). In order to address this
problem, the authors considered the usage of inverse random undersampling, in
which the majority class is severely undersampled multiple times in such a way that
datasets with many more instances from the minority class are created. Afterwards,
each dataset is used to learn a new fuzzy SVM used to form an ensemble.

The last bioinformatic use case reviewed consists of a cell recognition prob-
lem [35], where mitotic cells (those which are in mitosis phase, that is, when
chromosomes are being separated into two nuclei) should be detected in HEp-2
images obtained after an indirect immunofluorescent assay. Such kind of analysis
is interesting in order to detect connective tissue diseases. Mitotic cell recognition
is an imbalanced problem because the most common state of a cell is not mitosis
but interphase. For example, the dataset considered in this work had 70 mitotic
cells, which contrasted with the 1457 interphase cells. The dataset was balanced
using different techniques such as random undersampling, SMOTE and one-side
selection; besides, specific ensemble methods were considered in their experiments.

2.2.4 Medicine

Applications dealing with medical problems are typical examples of imbalanced
class distributions. There are several subcategories where these types of problems
can be found such as diagnosis, prognosis, monitoring or quality control. Hereafter,
we review some examples where class imbalance plays a key role in order to obtain
a successful decision support system. We will start with quality control works,
followed by applications on prognosis and diagnosis.

2.2.4.1 Quality Control

Quality control refers to those problems aimed at improving health care services
by the usage of DM techniques. In [91], the authors developed a system aimed at
predicting the post-operative life expectancy of lung cancer patients. Considering
the sort period used for prediction (1 year), the number of patients surviving the
assumed interval was significantly higher than the number of deceases. Moreover,
the misclassification of deceases as survivals is much more harmful than making
the mistake in the opposite direction. These kind of systems can help clinicians
in deciding which patient should be selected for surgery and also to identify the
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patients with the greatest risk after surgery. This problem was addressed by the
authors using a modified SVM capable of managing costs for each example, which
was also introduced into a Boosting mechanism for addressing the imbalanced
classification problem. Authors put a great effort on extracting interpretable rules
from their model in order to obtain a white-box model.

The work of Azari et al. [4] was focused on emergency services. They developed
a system for predicting how long will a patient be in the emergency department of
a hospital. Patients staying long (more than 14 h) account for most of the beds and
costs, while being less than 10% of the patients. Hence, it is interesting to understand
who and why will stay for long in order to improve resource management in the
emergency department and the hospital. It is clear that the authors dealt with an
imbalanced problem for which they designed a new ensemble method where k-
means clustering was combined with random or SMOTE oversampling.

A way to evaluate the quality of emergency services is by means of comparing the
service outcome for poly-trauma patients with the expected outcome obtained by an
intelligent system. In order to improve these types of intelligent systems, in [65] the
authors developed a study of different data-level techniques to deal with the class
imbalance existing in the prediction of the survival status of poly-trauma patients
(where luckily, there are more patients that survive than those who die). The authors
mainly focused on developing an interpretable model by means of C4.5 decision
tree. However, they needed to take advantage of different external methods ranging
from SMOTE to Tomek Links in order to deal with the skewed class distribution in
the data.

2.2.4.2 Medical Diagnosis

Medical diagnosis is by far the application area and subcategory where more
imbalanced examples can be found. As a first example, in [11] a computer-
aided system for lung nodule detection in computer tomography images was
developed. Pulmonary nodules are important clinical indication for early-stage lung
cancer diagnosis. Fortunately, there are many more images where nodules are not
present, creating an imbalanced classification problem. The authors developed a
complete system where the combination of a hybrid probabilistic sampling using
oversampling and undersampling with random subspace method for constructing
classifier ensembles was proposed.

Similarly, in [1] the authors dealt with nodule classification, but in this case for
thyroid nodules. A complete system was developed were nodules were classified
into malign or benign classes. Again, this is the classical example of imbalanced
classification where there are much more patients with benign nodules than those
with malign ones. In order to balance the dataset before learning the different clas-
sifiers (SVMs, C4.5, kNN and MLPs) four preprocessing strategies (3 oversampling
and 1 oversampling) were considered, namely, SMOTE-TL, SPIDER, SMOTE-
RSB* and Safe-Level SMOTE.

The case of breast cancer detection considered in [38] is similar to the previous
ones, being many more examples from the benign class than from the malign one.
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Likewise, the cost associated with missing a cancer case are much higher than
those for mislabelling a benign case. In this work, the authors considered medical
thermography technology. In thermogram images an infrared camera is used to
study the region of interest. The authors tackled the skewed class distribution by
a cost-sensitive decision tree combined with a genetic algorithm that performed
simultaneous FS and classifier fusion.

Rather than focusing on the detection of breast cancer, the authors of [39] focused
on grading the breast cancer malignancy. This problem is unbalanced since the
highest malignancy grade is the most important even if it is the one with the lowest
number of cases. In order to handle the uneven class distribution, the authors made
use of EUSBoost, which is an evolutionary undersampling boosting method that
generates an ensemble of classifiers. Instead of using random undersampling inside
the boosting process, a genetic algorithm is considered to select the most appropriate
examples.

Breast cancer detection can also be performed from Magnetic Resonance Images
(MRI) as it was done in [52]. A new computer-aided diagnosis system for breast
cancer detection from MRI was presented in this work. After the feature extraction
phase from the MRI images, the resulting imbalanced dataset was addressed with
an ensemble of randomly undersampled datasets. Each one of the new datasets was
used to learn a model where FS and adaboost was used together with C4.5 decision
tree.

Polyp detection in endoscopic or colonoscopic images is another problem where
ML can help clinicians. However, due to the diversity of polyp types, expensive
inspection and the labor-intensive labeling tasks, polyp datasets tend to be imbal-
ance, with much greater number of examples from non-polyp class than from polyp
one. In the work by Bae and Yoon [6], a data sampling-based boosting framework
was proposed to learn a classifier managing the skewed class distribution. The
sampling scheme considered generates synthetic minority class examples (using
SMOTE) and then eliminates hard to classify majority class examples (using Tomek
Links). This resampling mechanism was introduced into AdaBoost algorithm in
order to create an ensemble of classifiers.

Capsule endoscopies are a patient friendly alternative to traditional wired
endoscopies and play a significant role in the diagnosis and management of
gastrointestinal tack diseases. However, during their battery lifespan they generate
thousands of images that require a lot of effort from the clinicians to be analysed.
For this reason, in this work the authors aimed at developing a system capable of
detecting bleeding in this kind of endoscopic videos. Since there are many images
but few where bleeding is present, the problem suffers from class imbalance. The
authors studied the influence of different degrees of imbalance. To simulate such
scenarios, they considered the random undersampling of the majority class. Several
classifications methods were tested such as SVMs, ANNs, decision trees and kNN.
They also compared the robustness of those methods against an ensemble based
model (RUSBoost).

Diabetes is known to be the most common endocrine disease across all popula-
tion and age groups, being one of the leading causes of death in developed countries.
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The authors of [15] designed a system to ease the diagnosis of this illness where
class imbalance took an important role. As in other medical problems, there are
more examples from people who is healthy than from those who are diabetic. Hence,
a new data-sampling technique based on a back-propagation ANN was developed,
whose resulting dataset was then used to learn a SVM classifier.

Also related with diabetes, the detection of microaneurysm is important in order
to reduce the possibility of a patient becoming blind due to diabetic retinopathy,
which is a progressive disease. In [61], the authors developed a computer-aided
detection system for microaneurysm detection aiming at reducing the number of
false positives present in previous works. In order to do so, the class imbalance
problem was addressed by over-sampling (an adaptive SMOTE was proposed)
the minority class in combination with different ensemble techniques (Boosting,
Bagging, RSM) using Extreme Learning Machines as base classifiers.

In other respects, the authors of [16] addressed the problem of predicting whether
a patient suffering from chronic kidney disease at stage 4 will advance to level 5 in
the next six months. This problem is unbalanced because there are more patients
staying in stage 4 than those progressing to stage 5. These kind of system do not
only allow one to predict the state of a patient in the future but it also helps in
understanding why a patient may progress from one stage to the next. In order to
cope with the data skew, the authors consider the usage of random undersampling.
The balanced dataset is used afterwards to learn a model with C4.5 and CART
decision trees, SVMs and Adaboost.

2.2.4.3 Medical Prognosis

Regarding medical prognosis, we have classified two works in this category. The
authors of [5] developed an study on over- and under-sampling techniques to deal
with the class imbalance problem that was present in their data in order improve
the screening of patients who may suffer from osteoporosis. In order to do so, they
gathered data from almost 1000 womens and they aimed at predicting whether they
had suffered any bone fracture or not. This system allows them to better select the
patients who may have osteoporosis problems. Since the people who had not had
bone fractures was much less than those who had it, the authors performed an study
of several data-level techniques (random undersampling, edited nearest neighbor
and SMOTE with different degrees of oversampling). After the preprocessing,
several classifiers were learned such as C4.5 decision tree, Naïve Bayes, kNN and
other ensemble models (Random Forest, Bagging and AdaBoost).

In the work by Prez-Ortiz et al. [58], a new donor-recipient allocation system for
liver transplantation was presented. In order to build such a complex system, the
authors developed a prediction model where the graft survival after transplantation
was predicted. In this way, not only the severity of the patient waiting for the
transplant was taken into account but also whether such a transplant will be
successful or not. The class distribution was skewed due to the fact that they had
recorded many more cases of successful transplants than those which did not ended
well. Aiming at tackling this problem, a new approach based on generating data
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(it can be considered as a data-level approach) was presented, but in this case,
the generated data was unlabeled and hence, they addressed the problem with
unsupervised classification.

2.2.5 Business Management

In this category we have gathered two different use cases where the distribution of
the classes becomes a problem that needs to be taken into account. On the one hand,
Sanz et al. [64] dealt with several finance problems where this problem affected
the accuracy and interpretability of fuzzy models. They designed a new interval-
valued fuzzy rule-based classification system capable of dealing with imbalanced
data without altering the rules extracted. The new system was capable of improving
performance in the problems at hand such as stock market prediction, credit
card/loans approval and fraud detection.

On the other hand, customer relationship management, and more specifically
customer churn prediction, is another important use case where skewed class
distributions are found. Customer churn prediction is imbalanced because most of
the customers tend to remain in the same company. However, detecting customer
churn is important in order to improve the relationships with customers and
target the right customers to retain. In [3] a comparison among six data sampling
techniques and four different rule induction methods for the churn prediction was
carried out. Similarly, a comprehensive study with sampling, cost-sensitive and
ensemble solutions for the class imbalance problem was developed in [89].

2.2.6 Security

Most of the security applications with imbalanced class distributions are found on
biometric authentication and video surveillance. Face recognition was addressed in
the work of Radtke et al. [60]. In video surveillance applications, face recognition is
used to detect the presence of target individuals of interest in complex and changing
scenarios. The problem is that usually, few reference target data is available at
learning time, which produces the undesirable class imbalance problem. The authors
proposed a new approach based on modifying how base classifiers are combined
in an ensemble with a skew-sensitive boolean combination scheme. The new
approach is also compared with the performance of two undersampling mechanisms
(random undersampling and one-side selection). Their work was focused on face re-
identification, which consists of matching facial regions captured in live or archived
video streams against facial models of individuals enrolled to a system.

The same face recognition problem was addressed in [68]. In this case, the
authors proposed a new way for computing the loss factors in Adaboost, which was
applied to existing ensemble-based approaches for the class imbalance problem.
The same authors developed a specifically designed Boosting approach named as
Progressive Boosting [69] so as to improve the classification performance in face
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re-identification. This approach was based on progressively inserting uncorrelated
groups of examples into the Boosting procedure, which was possible due to the type
of application they were dealing with.

Likewise, a similar approach for face recognition was developed in [8], where
the main difference laid on the fact that the faces used to learn the classifiers were
obtained from still images and hence, a still-to-video face recognition system was
designed. Therefore, the authors addressed the problem of detecting specific people
in video-cameras starting from images of the target individuals. The system should
learn the facial models to be detected from high-quality target face stills and then, it
should be able to detect this faces when they appear in videos. As in the case of face
re-identification, these kind of recognition systems are usually built as individual-
specific detectors, that is, a classifier is constructed for each individual to be tracked.
This is why class imbalance becomes a problem, many images and regions of
interest (ROIs) can be obtained from non-target persons, whereas the number of
images and ROIs from the target individual are scarce. In this work the authors
tackled this problem by means of cost-sensitive SVMs, which were then combined
with the Random Subspace Method to build an ensemble.

In [77], the problem of multimodal biometric authentication was considered.
In this scenario, a two-class classification problem is generated from the vector
of matching scores, which must be then classified into genuine user or impostor
user. In order to address this problem, the authors developed a model based on Real
AdaBoost and the usage of one-class classification instead of combining the ensem-
ble model with sampling strategies as many other authors have previously done.

2.2.7 Education

Educational DM is a recent research field where DM techniques are used to improve
such an important service for the society. In this field, there are also problems when
the class distribution is uneven, for example, in the problem of detecting early school
dropout [53]. In this work, several data gathered from the students at the start of the
course was used to learn a model able to detect whether students will leave the
school during the course or not. In order to build a interpretable rule-based model
they proposed the usage of genetic programming where the fitness function was
modified so as to manage the imbalance that was inherent to the problem (most of
the student do not dropout the school). Moreover, their algorithm was compared
with oversampling via SMOTE.

2.3 Case Studies on Imbalanced Classification

The ultimate goal of any DM process is to be applied to real life problems. Since
testing a technique in every existing problem is infeasible, the common procedure is
to evaluate the technique in a set of publicly available DM problems (or datasets). In
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this case, we are focused on the class imbalance problem and hence, these datasets
should have this property. In this section we will introduce the most commonly used
datasets for the comparison of the methods developed to address the class imbalance
problem.

The most well-known repository for imbalanced datasets is the KEEL dataset
repository [2], which supports the KEEL DM tool (that will be extensively used in
this book). The datasets that can be found in this repository were gathered from
different well-known sources such as UCI repository [46]. In order to facilitate
the comparison among proposals, datasets are provided with the cross-validation
partitions which helps in reducing the differences between algorithms that can be
attributed to the usage of different partitioning schemes. Moreover, in this repository
there is an specific section devoted to imbalanced problems. In fact, this is the one
in which we are interested.

In order to obtain two-class imbalanced problems, originally multi-class data-
sets were modified so that the union of one or more classes became the positive class
and the union of one or more of the remaining classes was labeled as the negative
class. This way, datasets with different IRs were obtained: from low imbalance to
highly imbalanced datasets. Table 2.2 summarizes the properties of the datasets in
this repository, including the most relevant information about the data set:

• The name of the dataset, which encodes how the dataset was obtained. For
example, pima dataset is originally a two-class imbalanced dataset and hence,

Table 2.2 Benchmark datasets in the KEEL dataset repository

Name #Atts. (R/I/N) #Ex. #Min. #Maj. IR

Imbalance ratio between 1.5 and 9

glass1 9 (9/0/0) 214 76 138 1.82

ecoli-0_vs_1 7 (7/0/0) 220 77 143 1.86

wisconsin 9 (0/9/0) 683 239 444 1.86

pima 8 (8/0/0) 768 268 500 1.87

iris0 4 (4/0/0) 150 50 100 2

glass0 9 (9/0/0) 214 70 144 2.06

yeast1 8 (8/0/0) 1484 429 1055 2.46

haberman 3 (0/3/0) 306 81 225 2.78

vehicle2 18 (0/18/0) 846 218 628 2.88

vehicle1 18 (0/18/0) 846 217 629 2.9

vehicle3 18 (0/18/0) 846 212 634 2.99

glass-0-1-2-3_vs_4-5-6 9 (9/0/0) 214 51 163 3.2

vehicle0 18 (0/18/0) 846 199 647 3.25

ecoli1 7 (7/0/0) 336 77 259 3.36

new-thyroid1 5 (4/1/0) 215 35 180 5.14

new-thyroid2 5 (4/1/0) 215 35 180 5.14

ecoli2 7 (7/0/0) 336 52 284 5.46

(continued)
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Table 2.2 (continued)

Name #Atts. (R/I/N) #Ex. #Min. #Maj. IR

segment0 19 (19/0/0) 2308 329 1979 6.02

glass6 9 (9/0/0) 214 29 185 6.38

yeast3 8 (8/0/0) 1484 163 1321 8.1

ecoli3 7 (7/0/0) 336 35 301 8.6

page-blocks0 10 (4/6/0) 5472 559 4913 8.79

Imbalance ratio higher than 9 – Part I

yeast-2_vs_4 8 (8/0/0) 514 51 463 9.08

yeast-0-5-6-7-9_vs_4 8 (8/0/0) 528 51 477 9.35

vowel0 13 (10/3/0) 988 90 898 9.98

glass-0-1-6_vs_2 9 (9/0/0) 192 17 175 10.29

glass2 9 (9/0/0) 214 17 197 11.59

shuttle-c0-vs-c4 9 (0/9/0) 1829 123 1706 13.87

yeast-1_vs_7 7 (7/0/0) 459 30 429 14.3

glass4 9 (9/0/0) 214 13 201 15.47

ecoli4 7 (7/0/0) 336 20 316 15.8

page-blocks-1-3_vs_4 10 (4/6/0) 472 28 444 15.86

abalone9-18 8 (7/0/1) 731 42 689 16.4

glass-0-1-6_vs_5 9 (9/0/0) 184 9 175 19.44

shuttle-c2-vs-c4 9 (0/9/0) 129 6 123 20.5

yeast-1-4-5-8_vs_7 8 (8/0/0) 693 30 663 22.1

glass5 9 (9/0/0) 214 9 205 22.78

yeast-2_vs_8 8 (8/0/0) 482 20 462 23.1

yeast4 8 (8/0/0) 1484 51 1433 28.1

yeast-1-2-8-9_vs_7 8 (8/0/0) 947 30 917 30.57

yeast5 8 (8/0/0) 1484 44 1440 32.73

ecoli-0-1-3-7_vs_2-6 7 (7/0/0) 281 7 274 39.14

yeast6 8 (8/0/0) 1484 35 1449 41.4

abalone19 8 (7/0/1) 4174 32 4142 129.44

Imbalance ratio higher than 9 – Part II

ecoli-0-3-4_vs_5 7 (7/0/0) 200 20 180 9

ecoli-0-6-7_vs_3-5 7 (7/0/0) 222 22 200 9.09

ecoli-0-2-3-4_vs_5 7 (7/0/0) 202 20 182 9.1

glass-0-1-5_vs_2 9 (9/0/0) 172 17 155 9.12

yeast-0-3-5-9_vs_7-8 8 (8/0/0) 506 50 456 9.12

yeast-0-2-5-7-9_vs_3-6-8 8 (8/0/0) 1004 99 905 9.14

yeast-0-2-5-6_vs_3-7-8-9 8 (8/0/0) 1004 99 905 9.14

ecoli-0-4-6_vs_5 6 (6/0/0) 203 20 183 9.15

ecoli-0-1_vs_2-3-5 7 (7/0/0) 244 24 220 9.17

ecoli-0-2-6-7_vs_3-5 7 (7/0/0) 224 22 202 9.18

glass-0-4_vs_5 9 (9/0/0) 92 9 83 9.22

ecoli-0-3-4-6_vs_5 7 (7/0/0) 205 20 185 9.25

ecoli-0-3-4-7_vs_5-6 7 (7/0/0) 257 25 232 9.28

ecoli-0-6-7_vs_5 6 (6/0/0) 220 20 200 10

(continued)
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Table 2.2 (continued)

Name #Atts. (R/I/N) #Ex. #Min. #Maj. IR

ecoli-0-1-4-7_vs_2-3-5-6 7 (7/0/0) 336 29 307 10.59

led7digit-0-2-4-5-6-7-8-9_vs_1 7 (7/0/0) 443 37 406 10.97

glass-0-6_vs_5 9 (9/0/0) 108 9 99 11

ecoli-0-1_vs_5 6 (6/0/0) 240 20 220 11

glass-0-1-4-6_vs_2 9 (9/0/0) 205 17 188 11.06

ecoli-0-1-4-7_vs_5-6 6 (6/0/0) 332 25 307 12.28

cleveland-0_vs_4 13 (13/0/0) 177 13 164 12.62

ecoli-0-1-4-6_vs_5 6 (6/0/0) 280 20 260 13

Imbalance ratio higher than 9 – Part III

dermatology-6 34 (0/34/0) 358 20 338 16.9

zoo-3 16 (0/0/16) 101 5 96 19.2

shuttle-6_vs_2-3 9 (0/9/0) 230 10 220 22

lymphography-normal-fibrosis 18 (0/3/15) 148 6 142 23.67

flare-F 11 (0/0/11) 1066 43 1023 23.79

car-good 6 (0/0/6) 1728 69 1659 24.04

car-vgood 6 (0/0/6) 1728 65 1663 25.58

kr-vs-k-zero-one_vs_draw 6 (0/0/6) 2901 105 2796 26.63

kr-vs-k-one_vs_fifteen 6 (0/0/6) 2244 78 2166 27.77

winequality-red-4 11 (11/0/0) 1599 53 1546 29.17

poker-9_vs_7 10 (0/10/0) 244 8 236 29.5

kddcup-guess_passwd_vs_satan 41 (26/0/15) 1642 53 1589 29.98

abalone-3_vs_11 8 (7/0/1) 502 15 487 32.47

winequality-white-9_vs_4 11 (11/0/0) 168 5 163 32.6

kr-vs-k-three_vs_eleven 6 (0/0/6) 2935 81 2854 35.23

winequality-red-8_vs_6 11 (11/0/0) 656 18 638 35.44

abalone-17_vs_7-8-9-10 8 (7/0/1) 2338 58 2280 39.31

abalone-21_vs_8 8 (7/0/1) 581 14 567 40.5

winequality-white-3_vs_7 11 (11/0/0) 900 20 880 44

winequality-red-8_vs_6-7 11 (11/0/0) 855 18 837 46.5

kddcup-land_vs_portsweep 41 (26/0/15) 1061 21 1040 49.52

abalone-19_vs_10-11-12-13 8 (7/0/1) 1622 32 1590 49.69

kr-vs-k-zero_vs_eight 6 (0/0/6) 1460 27 1433 53.07

winequality-white-3-9_vs_5 11 (11/0/0) 1482 25 1457 58.28

poker-8-9_vs_6 10 (0/10/0) 1485 25 1460 58.4

shuttle-2_vs_5 9 (0/9/0) 3316 49 3267 66.67

winequality-red-3_vs_5 11 (11/0/0) 691 10 681 68.1

abalone-20_vs_8-9-10 8 (7/0/1) 1916 26 1890 72.69

kddcup-buffer_overflow_vs_back 41 (26/0/15) 2233 30 2203 73.43

kddcup-land_vs_satan 41 (26/0/15) 1610 21 1589 75.67

kr-vs-k-zero_vs_fifteen 6 (0/0/6) 2193 27 2166 80.22

poker-8-9_vs_5 10 (0/10/0) 2075 25 2050 82

poker-8_vs_6 10 (0/10/0) 1477 17 1460 85.88

kddcup-rootkit-imap_vs_back 41 (26/0/15) 2225 22 2203 100.14
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it has not suffered any transformation. However, the name glass1 indicates that
class 1 is used as the minority class whereas the union of the rest of the classes
is used as majority class. Similarly, in the case of yeast-2_vs_4 only two of
the classes of the originally multi-class dataset are considered in a one-vs-one
manner. The same nomenclature is used for the rest of the datasets.

• #Atts. (R/I/N) is the number of attributes/features in the problem and their type.
R stands for the number of real-valued attributes, I refers to the number of integer
attributes and N indicates the number of nominal attributes.

• #Ex. is the number of examples/instances in the data set.
• #Min. indicates the number of minority class examples in the dataset.
• #Maj. is the number of majority class examples in the dataset.
• IR is the ratio of imbalance in the dataset.

All datasets are publicly available on the corresponding web-page.1

For the sake of completeness, the complete list of available datasets is listed
(Table 2.2). Notice that the table is divided into four groups. The first one corre-
sponds to datasets with imbalance ratio between 1.5 and 9, which are considered
to have a moderate degree of imbalance. The rest of the groups correspond to the
datasets with imbalance ratio greater than 9, but they are separated because they
have been made available at different times. In fact, the last one corresponds to the
latest addition to the KEEL dataset repository and has not been extensively used in
the literature yet.

We should recall that all the datasets listed in this section are binary datasets with
only two classes. The KEEL dataset repository also has a section devoted to multi-
class imbalanced datasets, which is introduced in the corresponding chapter, that is,
Chap. 8.

Apart from the KEEL dataset repository, there is another complementary bench-
mark set with fewer datasets. The HDDT collection2 contains 20 binary imbalanced
datasets that were originally used in [17] to validate the proposed model. Most of
these datasets are also transformations of multi-class datasets. Table 2.3 summarizes
the properties of these datasets following the same scheme as in Table 2.2.

Comparing the KEEL dataset repository and the HDDT collection, the former
one is the most extended in the literature for the comparison of algorithms, for
instance, see [21–23, 27, 28, 51]. Anyway, HDDT collection has also been used
in several works [17, 21, 22].

Apart from these datasets, there is also another repository containing several
specific datasets for defect prediction in software development, an application
that we have already reviewed in Sect. 2.2.2. These datasets were originally made
available by the NASA Metrics Data Program. However, we do not report their
complete details because there is some controversy regarding the different versions
of these datasets that can be found in the literature [67] and the misuse that they

1http://www.keel.es/dataset.php
2https://www3.nd.edu/~dial/hddt/

http://www.keel.es/dataset.php
https://www3.nd.edu/~dial/hddt/
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Table 2.3 Benchmark datasets in the HDDT collection

Name #Atts. (R/I/N) #Ex. #Min. #Maj. IR

boundary 175 (0/0/175) 3505 123 3382 27.5

breast-y 9 (0/0/9) 286 85 201 2.36

cam 132 (0/0/132) 18,916 942 17,974 19.08

compustat 20 (20/0/0) 13,657 520 13,137 25.26

covtype 10 (10/0/0) 38,500 2746 35,754 13.02

credit-g 20 (7/0/13) 1000 300 700 2.33

estate 12 (12/0/0) 5322 636 4686 7.37

german-numer 24 (24/0/0) 1000 300 700 2.33

heart-v 13 (5/0/8) 200 51 149 2.92

hypo 25 (7/0/18) 3163 151 3012 19.95

ism 6 (6/0/0) 11,180 260 10,920 42

letter 16 (16/0/0) 20,000 789 19,211 24.35

oil 49 (49/0/0) 937 41 896 21.85

optdigits 64 (64/0/0) 5620 554 5066 9.14

page 10 (10/0/0) 5473 560 4913 8.77

pendigits 16 (16/0/0) 10,992 1141 9851 8.63

phoneme 5 (5/0/0) 5404 1585 3819 2.41

PhosS 480 (480/0/0) 11,411 613 10,798 17.62

satimage 36 (36/0/0) 6430 625 5805 9.29

segment 19 (19/0/0) 2310 330 1980 6

have suffered [31]. That is, there is no a clear benchmark where all the algorithms
are tested with exactly the same datasets. There exist different versions of the
same datasets with different preprocessing, which makes it difficult to use them
as a common benchmark. One should use these datasets carefully and attending at
their specific properties. Anyway, since they can be of interest for the analysis or
development of new methods on this area, we refer the reader to the current [55]
and also the old [66] PROMISE dataset repository, where different versions of these
datasets can be found.
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5. Bach, M., Werner, A., Źywiec, J., Pluskiewicz, W.: The study of under- and over-sampling
methods utility in analysis of highly imbalanced data on osteoporosis. Inf. Sci. 384, 174–190
(2017)

6. Bae, S.H., Yoon, K.J.: Polyp detection via imbalanced learning and discriminative feature
learning. IEEE Trans. Med. Imaging 34(11), 2379–2393 (2015)

7. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance
problems. Pattern Recogn. 36(3), 849–851 (2003)

8. Bashbaghi, S., Granger, E., Sabourin, R., Bilodeau, G.A.: Dynamic ensembles of exemplar-
svms for still-to-video face recognition. Pattern Recogn. 69, 61–81 (2017)

9. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for
balancing machine learning training data. SIGKDD Explor. Newslett. 6, 20–29 (2004)

10. Bermejo, P., Gámez, J.A., Puerta, J.M.: Improving the performance of naive bayes multinomial
in e-mail foldering by introducing distribution-based balance of datasets. Expert Syst. Appl.
38(3), 2072–2080 (2011)

11. Cao, P., Yang, J., Li, W., Zhao, D., Zaiane, O.: Ensemble-based hybrid probabilistic sampling
for imbalanced data learning in lung nodule CAD. Comput. Med. Imaging Graph. 38(3), 137–
150 (2014)

12. Chawla, N.V., Japkowicz, N., Kolcz, A. (eds.): Special issue on learning from imbalanced
datasets. ACM SIGKDD Explor. Newslett. 6(1), 1–6 (2004)

13. Chawla, N., Cieslak, D., Hall, L., Joshi, A.: Automatically countering imbalance and its
empirical relationship to cost. Data Min. Knowl. Disc. 17, 225–252 (2008)

14. Chen, L.S., Cai, S.J.: Neural-network-based resampling method for detecting diabetes mellitus.
J. Med. Biol. Eng. 35(6), 824–832 (2015)

15. Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., Yang, B.: Machine learning based
mobile malware detection using highly imbalanced network traffic. Inf. Sci. 433–434, 346–364
(2018)

16. Cheng, L.C., Hu, Y.H., Chiou, S.H.: Applying the temporal abstraction technique to the
prediction of chronic kidney disease progression. J. Med. Syst. 41(5), 85 (2017)

17. Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees
are robust and skew-insensitive. Data Min. Knowl. Disc. 24(1), 136–158 (2012)

18. Dai, H.L.: Imbalanced protein data classification using ensemble FTM-SVM. IEEE Trans.
NanoBiosci. 14(4), 350–359 (2015)

19. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

20. Deeba, F., Mohammed, S.K., Bui, F.M., Wahid, K.A.: An empirical study on the effect of
imbalanced data on bleeding detection in endoscopic video. In: 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando,
pp. 2598–2601 (2016)

21. Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C., Kuncheva, L.I.: Random balance: ensem-
bles of variable priors classifiers for imbalanced data. Knowl. Based Syst. 85, 96–111 (2015)

22. Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C.I., Kuncheva, L.I.: Diversity techniques
improve the performance of the best imbalance learning ensembles. Inf. Sci. 325, 98–117
(2015)

23. Fernández, A., García, S., del Jesus, M.J., Herrera, F.: A study of the behaviour of linguistic
fuzzy rule based classification systems in the framework of imbalanced data–sets. Fuzzy Sets
Syst. 159(18), 2378–2398 (2008)

24. Fernández, A., García, S., del Jesus, M.J., Herrera, F.: A study of the behaviour of linguistic
fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets
Syst. 159(18), 2378–2398 (2008)

25. Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A.: A dynamic over-sampling proce-
dure based on sensitivity for multi-class problems. Pattern Recogn. 44(8), 1821–1833 (2011)



References 43

26. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble
methods for binary classifiers in multi-class problems: experimental study on one-vs-one and
one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

27. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles
for class imbalance problem: bagging, boosting and hybrid based approaches. IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

28. Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: Eusboost: enhancing ensembles for
highly imbalanced data-sets by evolutionary undersampling. Pattern Recogn. 46(12), 3460–
3471 (2013)

29. García, V., Mollineda, R., Sánchez, J.: On the k-nn performance in a challenging scenario of
imbalance and overlapping. Pattern. Anal. Appl. 11, 269–280 (2008)

30. Garg, S., Sarje, A.K., Peddoju, S.K.: Improved detection of p2p botnets through network
behavior analysis. In: Martínez Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds.) Recent Trends
in Computer Networks and Distributed Systems Security: Second International Conference,
SNDS 2014, Trivandrum, 13–14 Mar 2014, Proceedings, pp. 334–345. Springer, Berlin/Hei-
delberg (2014)

31. Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The misuse of the nasa metrics data
program data sets for automated software defect prediction. In: 15th Annual Conference on
Evaluation Assessment in Software Engineering (EASE 2011), Durham, pp. 96–103 (2011)

32. Haddad, B.M., Yang, S., Karam, L.J., Ye, J., Patel, N.S., Braun, M.W.: Multifeature, sparse-
based approach for defects detection and classification in semiconductor units. IEEE Trans.
Autom. Sci. Eng. 15(1), 144–159 (2017)

33. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-
imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

34. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

35. Iannello, G., Percannella, G., Soda, P., Vento, M.: Mitotic cells recognition in HEp-2 images.
Pattern Recogn. Lett. 45, 136–144 (2014)

36. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal.
6, 429–449 (2002)

37. Khreich, W., Granger, E., Miri, A., Sabourin, R.: Iterative boolean combination of classifiers
in the ROC space: an application to anomaly detection with hmms. Pattern Recogn. 43(8),
2732–2752 (2010)
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Chapter 3
Performance Measures

Abstract Analyzing the performance of learning algorithms under presence of
class imbalance is a difficult task. For some widely-used measures, such as accuracy,
the prevalence of more frequent classes may mask a poor classification performance
in infrequent classes. To alleviate this problem, the choice of suitable measures
is of fundamental importance. This chapter presents some performance measures
that can be used to evaluate classification performance under presence of class
imbalance, highlighting their advantages and drawbacks. With aims at presenting
this content, the chapter is organized as follows: First, Sect. 3.1 sets the background
on the evaluation procedure. Then, Sect. 3.2 presents performance measures for
crisp, nominal predictions. Section 3.3 discuss evaluation methods for scoring
classifiers. Finally, Sect. 3.4 discuss probabilistic evaluation, and Sect. 3.5 concludes
the chapter.

3.1 Introduction

The quality of learning algorithms is generally evaluated by analyzing how well
they perform on test data [18]. To this end, the predictions of the learned classifiers
are compared to the true classes of test data (which are hidden from the models for
evaluation purposes), and some performance measures are calculated. Depending
on the scale of information given by the classifiers, or how do we interpret them, we
have three possible cases:

1. Nominal class predictions: in which the predicted class labels are compared to
the actual true class values for evaluating the model.

2. Numerical scoring predictions: considers some numerical score associated to
the predictions to grade test examples according to the likelihood of pertaining
to a class.

3. Probabilistic predictions: where the numerical outputs associated to the predic-
tion are interpreted as probabilities of the examples belonging to the class.

Some scales are intrinsically related to some classifiers. For instance, the NN
classifier [8] only make nominal predictions (the class of the nearest example in
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the training set). Standard SVM predictions [5] are a scoring function related to the
distance of the new instance to the hyperplane which maximizes the margin between
classes. Naïve Bayes [21] predictions are the posterior probability of the instance
belonging to a class, under the naive assumption of independence among features.
However, some post-processing techniques can be used to convert from one scale
to another. For example, one can use the distance to the NN [13] as a score in the
classifier; use of scaling [23] to convert SVM outputs to probabilities; or use the
argmax function to convert from probabilities to nominal class predictions in Naïve
Bayes [11], among other possible alternatives.

Regarding evaluation, considering only the nominal predictions in the evaluation
is the simplest approach. However, it is not possible to differentiate predictions
within the same class, as there is no way to differentiate between more or less likely
nominal predictions with the same class value. Probabilistic output allows to think
probabilistically, adding some degree of confidence on the prediction. However,
this requires the probabilistic output to be well calibrated.1 Scoring information is
between these two approaches, where the scores given by classifiers are used to give
some ordering among instance predictions, without committing to a probabilistic
interpretation. However, there is no a standard way to interpret the scores, as in the
case of probability outputs.

3.2 Nominal Class Predictions

When considering nominal class predictions, a convenient way to summarize the
performance of classifiers is to do a cross-tabulation between actual and predicted
classes. The resulting cross-tabulation is a matrix, called confusion matrix. The
columns of the confusion matrix represent the counts of instances in the predicted
classes while the rows represent the counts of instances in the actual classes (or
vice versa). An example of a confusion matrix for a binary class problem (where
without loss of generality classes are generically named positive and negative, and
the minority class is the negative one) is shown in Table 3.1. In this matrix, T P and

Table 3.1 Confusion matrix
for a binary class problem

Predicted class

Positive Negative Total

Actual class Positive T P FN POS

Negative FP T N NEG

Total PPOS PNEG N

1In a well calibrated classifier, the percentage of examples with a similar predicted probability
value should approximately match the probability value (e.g., among the samples to which the
classifier give a probability value of 0.8 of being of some class, 80% of the instances should belong
to that class).
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T N (for true positives/true negatives) indicate correct classification of positive and
negative instances, respectively, and FN and FP (for false negatives/false positives)
indicate positive/negative instances misclassified as negative/positive, respectively.

Different performance measures can be derived based on the confusion matrix.
These measures correspond to different views of what constitute a good classifier,
aiming to summarize the confusion matrix into performances metrics so that they
can be used in the assessment of the strengths and weakness of the classifiers.

A common performance metric and widely used to evaluate classification
performance is accuracy (or its complement, the error rate). Accuracy (Eq. 3.1)
is the percentage of correctly classified instances. It corresponds to the sum of
diagonal elements in the confusion matrix (which in the binary case is T P + T N )
divided by the total number of instances. Error rate (Eq. 3.2) is the percentage of
incorrectly classified instances. It corresponds to the sum of off-diagonal elements
in the confusion matrix (in the binary case is FP +FN ) divided by the total number
of instances.

Acc = TP + TN

N
(3.1)

Error = 1 − Acc = FP + FN

N
(3.2)

Although accuracy and error rate are widely used and are easy to calculate and
interpret, it has some drawbacks in imbalanced data sets [26]. Firstly, it is easy to
obtain high accuracy (or low error rate) under highly imbalanced problems. For
example, a trivial classifier which systematically assign the majority class to new
instances will achieve 99% of accuracy (1% error rate) in a problem where the
majority class is 99% prevalent. Secondly, it assumes that errors are equally cost.
However, in imbalanced classification, misclassifying instances of the minority class
is generally much costlier than misclassifying instances of the majority class. In a
medical domain, for instance, failing to predict a rare disease is costlier (the patient
may die) than a false alarm (the false diagnostic may be revised in the future).
Finally, it assumes that the class proportion is static, and may not change. In a
classifier for SPAM filtering, for instance, the percentage of SPAM may vary from
user to user or may change over time.

To illustrate these drawbacks, consider the three confusion matrices shown in
Fig. 3.1. The three matrices lead to the same accuracy value: 99%. The matrix to
the left (M1) corresponds to the trivial classifier of always predicting the majority
class. The matrix in the center (M2) correctly classify all the 10 minority instances,
although it trespasses into 10 false positives (i.e., 10 negative instances which are
mistakenly classified as positives). The matrix to the right (M3) have a different
class proportion than the other two. It also correctly classifies 10 positive instances,
although other 10 are mistakenly classified as negative (i.e., they are false negatives).

The Cohen’s kappa could be used to reduce some of these drawbacks [2]. The
main idea of kappa is to “compensate” from the accuracy the portion due to chance,
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M1 =
0 10
0 990 M2 =

10 0
10 980 M3 =

10 10
0 980

Fig. 3.1 Three confusion matrices with the same accuracy

i.e., the portion that a random classifier would achieve. This portion is called
expected accuracy, as shown in Eq. 3.3,

Acce = E(TP) + E(TN)

N
(3.3)

where E(TP) and E(TN) are the product of their marginal distributions, as shown in
Eqs. 3.4 and 3.5.

E(TP) = POS*PPOS

N
(3.4)

E(TN) = NEG*PNEG

N
(3.5)

In the kappa metric, defined in Eq. 3.6, the accuracy2 is subtracted from the
expected accuracy (Eq. 3.3). This value is then normalized by 1 − Acce. The
values of kappa ranges from −1 to 1, and values lower than zero indicate that the
performance of the classifier is lower than random guessing.

κ = Acco − Acce

1 − Acce

(3.6)

The values of kappa for the matrices M1, M2 and M3 in Fig. 3.1 are 0, 0.66 and
0.66, respectively. Observe that by using kappa, it is possible to differentiate the
performance of the classifier which confusion matrix is M1 in Fig. 3.1. However,
the performance of classifiers with matrices M2 and M3 have the same kappa value.
This is because the same misclassification costs and hit rewards are being applied to
both types of errors/hits.

Unsymmetrical costs/rewards can be incorporated by means of a cost matrix, as
shown in Table 3.2 for binary classification problems. C(+|+) and C(−|−) repre-
sents the rewards of correctly classifying positive/negative instances, respectively,
while C(−|+) and C(+|−) corresponds the costs of misclassifying positive and
negative instances, respectively.

By multiplying each cell of the cost matrix by the corresponding cell in the
confusion matrix we can define a loss function L (Eq. 3.7). Observe that accuracy

2In Eq. 3.6, the accuracy as defined in Eq. 3.1 is designed as Acco (for observed accuracy) to
distinguish from expected accuracy Acce.
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Table 3.2 Cost matrix for a
binary class problem

Predicted class

Positive Negative

Actual class
Positive C(+|+) C(−|+)

Negative C(+|−) C(−|−)

and error rate are special cases of the loss function by setting costs/rewards to 0 and
1 for accuracy or 1 and zero for error rate.

L = TP · C(+|+) + FP · C(+|−) + FN · C(−|+) + TN · C(−|−)

N
(3.7)

Similarly, it is possible to define a weighted kappa version [3], in which the
values from the cost matrix are the weights, as shown in Eq. 3.9. The expected loss
(Le), shown in Eq. 3.8, is calculated by multiplying each cell of the cost matrix by
the corresponding expected values (Eq. 3.8).

Le = E(TP) · C(+|+) + E(FP) · C(+|−) + E(FN) · C(−|+) + E(TN) · C(−|−)

N
(3.8)

κw = 1 − Lo

Le

(3.9)

Although costs and rewards in the cost matrix are domain specific, with their
values defined by the end-user, a possible approach is to set the rewards as zero (i.e.,
there is any reward by correct classifying an instance) and misclassification costs
proportional to the inverse of class proportion: C(+|−) = N/NEG and C(−|+) =
N/POS. The idea of these values is that the weighted proportion matches a balanced
class distribution. By using these cost values for the matrices in Fig. 3.1, L assume
the values 1, 0.1, and 0.5 (the lower, the better), and κw assume the values 0, 0.98,
0.5 (the higher, the better).

The MCC [20] is a measure that comes from the field of Bioinformatics, where
class imbalance occurs very often. It is also used in text classification. It is an
adaptation of the Pearson correlation coefficient to evaluate the correlation in
confusion matrices, and it related to the χ2 statistic for contingency tables. It is
a measure that takes into account all values of the confusion matrix, considering
errors and correct classification in both classes. The formulation of MCC is shown
in Eq. 3.10. MCC ranges from 1 (when the classification is always wrong) to 0 (when
it is no better than random) to 1 (when it is always correct).

MCC = TP · TN + FP · FN√
POS · NEG · PPOS · PNEG

(3.10)

Another possibility is to use measures which focus in single classes, separately.
Basic measures that do this divide each cell in the confusion matrix by their marginal
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distributions. For binary class problems, the measures in Eqs. 3.11, 3.12, 3.13
and 3.14 divides the cells row-wise. These measures are named as True Positive
Rate (TPR—Eq. 3.11), False Positive Rate (FPR—Eq. 3.12), False Negative Rate
(FNR—Eq. 3.13) and True Negative Rate (TNR—Eq. 3.14). On the other hand, the
measures in Eqs. 3.15, 3.16, 3.17, and 3.18 divides the cells column-wise. These
measures are named Positive Predictive Value (PPV—Eq. 3.15), False Discovery
Rate (FDR—Eq. 3.16), False Omission Rate (FOR—Eq. 3.17) and Negative Predic-
tive Value (NPV—Eq. 3.18).

TPR = TP/POS (3.11)

FPR = FP/NEG (3.12)

FNR = FN/POS (3.13)

TNR = TN/NEG (3.14)

PPV = TP/PPOS (3.15)

FDR = FP/PPOS (3.16)

FOR = FN/PNEG (3.17)

NPV = TN/PNEG (3.18)

Considering the classes individually allow the analysis of particular aspects of
each class. However, it is difficult to analyze them separately, as there are several
measures for each class, which difficulties the analysis of possible compromises
among classes. Some performance measures which combine these basic measures
were designed summarize different compromises among the individual performance
measures for each class.

F-measure is a measure that focus on the analysis of positive class, and is widely
used in information retrieval [1]. Its objective is to analyze the trade-offs between
correctness and coverage in classifying positive instances. To this end, the measure
uses a weighed harmonic mean between positive predictive value and true positive
rate, also known as precision and recall, respectively, in the literature. Precision
evaluates the fraction of correct classified instances among the ones classified as
positive, while recall is the fraction of total positive instances correctly classified as
positive. Equation 3.19 shows the general Fβ formulation of F-measure, where β is
a parameter that controls the importance given to each term. A common choice is
setting β = 1, leading to the F1 measure, shown in Eq. 3.20.

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall
(3.19)

F1 = 2
precision · recall

precision + recall
(3.20)
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A variation of F-Measure is G-Measure, which uses the geometric mean instead
of the harmonic mean to trade-off precision and recall. The formula for G-measure
is shown in Eq. 3.21.

G-measure = √precision · recall (3.21)

Another measure that uses the geometric mean, but uses information from both
classes, is the geometric mean of true positive and true negative rates (G-mean) [19].
This measure aims at a balance between classification performances on the majority
and minority classes. A poor performance in prediction of the positive examples
will lead to a low G-mean value, even if the negative examples are correctly
classified. G-mean formulation is shown in Eq. 3.22. A simpler version is the
balanced accuracy [6, 30], which is the arithmetic average of true positive and true
negative rates, as shown in Eq. 3.23. When the classifier has equal performance in
both classes, or when the classes are equally balanced, this measure is equivalent to
conventional accuracy (Eq. 3.1). However, if the conventional accuracy is high only
because the classifier takes advantage of an imbalanced test set, then the balanced
accuracy will be lower.

G-mean = √
TPR · TNR (3.22)

BAC = TPR + TNR

2
(3.23)

3.3 Scoring Predictions

Let’s consider a classifier that gives a numeric score for an instance to be classified
in the positive class. Therefore, instead of a simple positive or negative prediction,
the score introduces a level of granularity: instances with a higher score are more
likely to have to be classified as positive. Indeed, almost all classifiers generate
positive or negative predictions by applying a threshold to a score. The choice of
this threshold will have an impact in the trade-offs of positive and negative errors.
A higher threshold will reduce the false positive rate, as less instances will be
classified as positive. However, the false negative rate would increase, as we are
very restrictive in classifying an instance as positive. On the other hand, a lower
threshold will reduce the false negative rate, as more instances are classified as
positive. However, a larger false positive rate is expected, as we are more lenient
in classifying instances as positive.

For evaluating a scoring classifier, we may choose an arbitrary threshold and
use the metrics discussed in Sect. 3.2. However, by using this approach, we throw
away the granularity given by the scores, as we cannot differentiate between more
or less likely instances within each class, and we are committed to this arbitrary
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threshold. To avoid these drawbacks, it would be interesting to evaluation the
scoring classifications without having to select a specific threshold.

The methods discussed in this section uses the ordering given by the score to rank
the instances. For doing this, the instances are ordered according to the decreasing
predicted likelihood (the score) of being positive. This ranked list is compared to the
true class of the test instances, and graphical performance evaluation methods [24]
are often used to evaluated classification performance.

The ROC curve [14] is a graphical evaluation method that is not dependent
of a specific threshold. A ROC graph is a plot of False Positive Rate (FPR) on
the x-axis, and True Positive Rate (T PR) on the y-axis. Given the ranked list of
instances according to scores, to draw the graph, the threshold is varied from the
most restrictive (highest score) to the most lenient (lowest score). For each possible
value of the threshold, there is a point in the ROC space based on the values of FPR

and T PR for that threshold. The curve is drawn by linear interpolation among these
points. Table 3.3 shows an example of ranked list of instances according to the
predicted score, together to the true actual class value, the corresponding FPR and
FPR values, and an identifier to the point in the ROC space. The corresponding
ROC curve is shown in Fig. 3.2.

In the ROC space, a good classifier should reach as close to the top left corner
as possible. This corner corresponds to perfect classification. The upward diagonal
indicates random performance. Ideally, all points in the ROC curve should lie
above this diagonal, as points below the diagonal indicates performance worse than
random. The lower left corner corresponds to a classifier which always predict
the wrong class. The lower left corner (origin) corresponds to always predicting
the negative class, while the top right corner corresponds to always predicting the
positive class.

The AUCROC , highlighted in gray in the Fig. 3.2, is a summary index about the
ROC graph. AUCROC can be interpreted as the probability that the scores given by
a classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one. AUCROC is also related to the MannWhitney U statistic,
which tests to what extent positives are ranked higher than negatives. The AUCROC

can be calculated using the trapezoidal rule. The AUCROC of random guessing is

Table 3.3 Ranked instances
for drawing a ROC graph

Rank Score Actual class FPR TPR ROC point

#1 1.0 Positive 0.0 0.2 p1

#2 0.9 Positive 0.0 0.4 p2

#3 0.85 Negative 0.2 0.4 p3

#4 0.7 Positive 0.2 0.6 p4

#5 0.6 Positive 0.2 0.8 p5

#6 0.45 Negative 0.4 0.8 p6

#7 0.35 Positive 0.4 1.0 p7

#8 0.3 Negative 0.6 1.0 p8

#9 0.2 Negative 0.8 1.0 p9

#10 0.05 Negative 1.0 1.0 p10
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Fig. 3.2 Example of a ROC graph

0.5, so it is expected that AUCROC for useful classifier is higher than 0.5. However,
it should be noted that AUCROC does not necessarily means random classification.
The ideal classifier would achieve an AUCROC equals to 1.

Although ROC graphs are widely used to evaluate classifiers under presence of
class imbalance, it has a drawback: under class rarity, that is, when the problem
of class imbalance is associated to the presence of a low sample size of minority
instances, as the estimates can be unreliable [16]. Some researchers have argued the
Precision-Recall (PR) graphs are more adequate under this context [27].

The process of drawing the PR graphs are similar to ROC graphs, but uses in the
x-axis the Recall (also known as T PR), and Precision (also known as PPV ) in
the y-axis. PR curves are often used in information retrieval, and focus only in the
positive class. Table 3.4 shows the same instances used in drawing the ROC graph,
with the metrics modified for drawing the PR graph. The corresponding PR graph
is shown in Fig. 3.3.

The interpretation of PR graph is slightly different from the ROC graph. Good
classifiers should be as close as possible to the top right, as this corner represents
the best trade-off between precision and recall. As can be seen from the Fig. 3.3,
the PR curve is not monotone. Furthermore, the interpolation between consecutive
points could not be linear when the classes are not balanced [9, 28].
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Table 3.4 Ranked instances
for drawing a
Precision-Recall graph

Rank Score Actual class Precision Recall point

#1 1.0 Positive 1.0 0.2 p1

#2 0.9 Positive 1.0 0.4 p2

#3 0.85 Negative 0.66 0.4 p3

#4 0.7 Positive 0.75 0.6 p4

#5 0.6 Positive 0.8 0.8 p5

#6 0.45 Negative 0.66 0.8 p6

#7 0.35 Positive 0.71 1.0 p7

#8 0.3 Negative 0.63 1.0 p8

#9 0.2 Negative 0.55 1.0 p9

#10 0.05 Negative 0.5 1.0 p10
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Fig. 3.3 Example of a Precision-Recall graph

As in the ROC case, the AUCPR can be used as a summary statistic for the PR
graph. AUCPR does not have a probabilistic interpretation as AUCROC does. The
AUCPR of the random classifier varies with the prevalence of the positive class,
and its expected value is close to the proportion of positive instances in the test set.
It should be keep in mind that, although AUCROC and AUCPR are useful summary
index, visually inspecting the curves are more informative.
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3.4 Probabilistic Predictions

The methods discussed in Sect. 3.3 only uses the scores to rank the instances.
Nonetheless, in some applications, it is interesting to interpret the scores as
probabilities. A necessary but not sufficient requirement for this is that the scores
are within the range 0–1. Furthermore, to be usefully interpreted as probabilities,
the scores should be calibrated. In a well calibrated classifier, the proportion of
proportion of instances with score similar score should closely match the score
value. For instance, in the subset of instances whose predicted score is near 0.8,
the proportion of positive instances should be close to 0.8. Some approaches have
been proposed in the literature to transform uncalibrated scores into calibrated
probabilities [22, 23, 33].

The evaluation of probabilistic scores is generally performed by means of the
Brier Score. The basic idea is to compute the mean squared error (MSE) between
predicted probability scores and the true class indicator, where the positive class is
coded as 1, and negative class 0. The most common formulation of the Brier Score
is shown in Equation 3.24.

BS = 1

N

N∑

i=1

(pi − oi)
2 (3.24)

The Brier score is a loss function, meaning the lower its value, the better. It
is a proper scoring rule [25], meaning that the expected accuracy is maximized if
the true distribution probability is used for prediction. If a positive instance has a
predicted probability of being positive, its Brier score is 0 (the best score for a single
instance. On the other hand, if the predicted probability is 0, its Brier score is 1 (the
worst value score for a single instance). If a negative instance is predicted with a
0.7 probability of being positive, its Brier score is 0.49. The same negative instance
with 0.3 predicted probability of being positive has a Brier score of 0.09. An 0.5
of predicted probability has a Brier score of 0.25, no matter the class. The overall
Brier score index is the average over all instances. These values can be understood
as a “penalty” to the confidence in which the classifier asserts its prediction. If
the classifier predicts the wrong class with high probability, it should be heavily
penalized. Thus, the lower the Brier score, the lower the average penalties imposed
to the classifier.

The Brier score can be decomposed into calibration and refinement [7, 10].
Roughly speaking, the calibration term indicates how close is the evaluation of
the probabilities predicted by the classifier for the positive class to the observed
frequency of actual positive instances. In a well-calibrated classifier is one with
the calibration term close to 0. The refinement term is linked to the utility of the
predictions. If a classifier always predicts a probability score equal to the percentage
of the positive instances in the test set, the classifier is well calibrated although
useless for classifying new instances. The more concentrated the predicted scores
towards 0 or 1, the more refined the classifier. To minimize the overall Brier score,
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the predicted probabilities of the classifier should minimize both calibration and
refinement terms. Therefore, for two classifiers with the same calibration term, the
one with lower refinement will have lower Brier score [7]. The decomposition of
Brier score in calibration and refinement is shown in Eq. 3.25, where K is the
total number of unique probabilistic score predictions, nk is the number of instances
with score k, fk the vector of instances with score k, and ok is the ratio of positive
instances with score k.

BS = 1

N

K∑

k=1

nk(fk − ok)2

︸ ︷︷ ︸
calibration

+ 1

N

K∑

k=1

nk(ok(1 − ok))

︸ ︷︷ ︸
refinement

(3.25)

The two components of the Brier score can be visualized in two graphs The
Reliability diagram [24], also known as probability classification diagram, is a
relatively simple technique for visualizing the quality of the calibrated scores. To
plot the diagram, the scores are first discretized into bins (generally 10 bins). For
each bin, the mean predicted value is plotted against the true fraction of positive
cases. In a well calibrated model, the points will fall near the upward diagonal line.
The refinement term can be visualized by a histogram of the score. A classifier with
good resolution will have an “U”-shaped aspect. An example of these plots is shown
in Fig. 3.4.

Bin Mean score # instances Fraction of positives

[0–0.1) 0.07 100 0.10

[0.1–0.2) 0.16 20 0.10

(0.2–0.3) 0.25 10 0.20

(0.3–0.4) 0.37 16 0.32

(0.4–0.5) 0.48 15 0.33

(0.5–0.6) 0.55 10 0.40

(0.6–0.7) 0.68 15 0.66

(0.7–0.8) 0.75 20 0.80

(0.8–0.9) 0.85 33 0.91

(0.9–1.0) 0.96 45 0.93

3.5 Summarizing Comments

In this section, we pose a discussion on some issues related to the evaluation of
a classifier’s performance in the presence of class imbalance. Our intent was to
introduce the most commonly used approaches, so that the reviewed measures and
evaluation procedures presented here are not an exhaustive list. This section was
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Fig. 3.4 Visualizing the calibration and refinement terms of the Brier score. (a) Reliability
(calibration) diagram. (b) Histogram of scores

also focused on binary classification performance, as these problems appear more
often in the literature. For details on Multi-class evaluation reader could refer to
Chap. 8.

Regarding the evaluation of nominal class predictions, other measures are also
suggested in the specialized literature [15, 29]. Furthermore, it should be keep in
mind that there is no universally performance measure, as they consider different
and often conflicting criteria. The choice of adequate performance measure is
domain dependent, and it should take into account the adequate objectives in the
comparison. Different approaches have also been proposed for evaluating ranked
predictions. With respect to graphical-based evaluating techniques we have stressed
the use of Cost curves [12] and Lift charts [24], together with other alternative
summary measures [17, 31]. Finally, we must refer to few works that use different
measures to evaluate probabilistic scores [4, 32], although their use is less frequent
in ML community.
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Chapter 4
Cost-Sensitive Learning

Abstract Cost-sensitive learning is an aspect of algorithm-level modifications for
class imbalance. Here, instead of using a standard error-driven evaluation (or 0–1
loss function), a misclassification cost is being introduced in order to minimize
the conditional risk. By strongly penalizing mistakes on some classes, we improve
their importance during classifier training step. This pushes decision boundaries
away from their instances, leading to improved generalization on these classes. In
this chapter we will discuss the basics of cost-sensitive methods, introduce their
taxonomy, and describe how to deal with scenarios in which misclassification
cost is not given beforehand by an expert. Then we will describe most popular
cost-sensitive classifiers and talk about the potential for hybridization with other
techniques. Section 4.1 offers background and taxonomy of cost-sensitive classifica-
tion algorithms. The important issue of how to obtain the cost matrix is discussed in
Sect. 4.2. Section 4.3 describes MetaCost, a popular wrapper approach for adapting
any classifier to a cost-sensitive setting, while Sect. 4.4 discusses various aspects of
cost-sensitive decision trees. Other cost-sensitive classification models are described
in Sect. 4.5, while Sect. 4.6 shows the potential advantages of using hybrid cost-
sensitive algorithms. Finally Sect. 4.7 concludes this chapter and presents future
challenges in the field of cost-sensitive solutions to class imbalance.

4.1 Introduction

Cost-sensitive learning refers to a specific set of algorithms that are sensitive to
different costs associated with certain characteristics of considered problems. These
costs can originate from various aspects related to a given real-life problem and be
provided by a domain expert, or learned during the classifier training phase. Two
distinct views on cost-sensitive classifiers exist in the literature. On the one hand
‘cost associated with features and, on the other hand cost associated with classes.

1. Cost associated with features. This scenario assumes that acquiring a certain
feature is connected with a given cost, being also known as test cost [47].
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This can be viewed from the monetary perspective (e.g., a feature is more
expensive to extract, as it requires additional resources or laboratory tests),
time perspective (e.g., a feature takes more time to extract and therefore may
cause a bottleneck in the classification system), or other difficulties perspective
(e.g., obtaining a feature involves invasive tests on humans, or the measurement
procedure is unpleasant, painful, or difficult to perform) [65].

This aspect of cost-sensitive learning aims at creating a classifier that obtains
the best possible predictive performance, while utilizing features that can be
obtained at lowest possible cost (or the sum of costs being below a given
threshold) [68].

This can be seen as a multi-objective learning, where we try to strike a balance
between performance and cost of used features [29, 60]. In many cases they more
costly features offer higher predictive power, leading to a problem of whether to
use several cheaper features or few more expensive ones [23].

This can also be viewed as a feature selection task, but many cost-sensitive
classifiers (e.g., decision trees) have the cost optimization procedure inbuilt [48].

2. Cost associated with classes. This scenario assumes that making errors on
instances coming from certain classes causes is connected with a higher cost.

This can be viewed from a monetary perspective (e.g., giving a credit to a
person with a bad credit score will potentially cause higher loses to a bank
than declining credit to a person with a good score), or priority/health/ethical
issues (e.g., sending a sick patient home is much more costly and dangerous for
a hospital than assigning additional tests to a healthy person) [32].

This aspect of cost-sensitive learning aims to train a classifier in such a way
that it will focus on classes that have higher costs assigned to them. They can be
seen as priority ones and we want to influence the training procedure by treating
them differently.

While over the last decade cost-sensitive learning gained most attention
for problems with skewed class distributions [39], it is also often used in
balanced scenarios, where incorrect classification outcomes may lead to severe
consequences.

In the context of class imbalance, the cost-sensitive learning can be seen
as a specific type of algorithm-level approach [27, 42]. It assumes asymmetric
misclassification costs between classes, defined in a form of a cost matrix. Standard
machine learning methods most commonly use so-called 0–1 loss function, which
assigns value 0 to a correctly classified instance and value 1 to an incorrectly
classified one. Then the training procedure aims at minimizing the overall cost,
i.e., minimizing the number of wrong predictions. As 0–1 loss function uses the
same cost associated with a wrong classification for all classes considered, it
is highly susceptible to skewed class distributions [36]. The 0–1 loss function
over imbalanced data can be easily minimized by focusing on majority class and
overlooking (or in extreme cases even completely ignoring) minority class. This
problem is getting more prevalent with increasing imbalance ratio.
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Table 4.1 Cost matrix for a
two-class problem

True positive True negative

Predicted positive C(0, 0) C(0, 1)

Predicted negative C(1, 0) C(1, 1)

Cost-sensitive learning aims at alleviate this problem by adapting a different loss
function, with different costs associated with each class. Such a cost can be seen
as a penalty factor introduced during a classifier training procedure (or in some
cases during prediction step), aiming at increasing the importance of difficult (e.g.,
minority) classes. By stronger penalization of errors on a given class, we force
the classifier training procedure (aiming to minimize the overall cost) to focus on
instances coming from this distribution. An example of a cost matrix for a two-class
problem is given in Table 4.1.

With a provided cost matrix, a new instance should be classified as the one
belonging to a class characterized by the lowest expected cost. This is known as
the minimum expected cost principle. The expected cost (conditional risk) R(i|x)

of classifying instance x as belonging to i-th class can be expressed as:

R(i|x) =
M∑

j=1

P(j |x) · C(i, j), (4.1)

where P(j |x)is the probability estimation of classifying instance x as belonging to
class j from a set of M classes.

For a standard two-class problem a cost-sensitive classifier will classify given
instance x as belonging to positive class if and only if:

P(0|x) ·C(1, 0)+P(1|x) ·C(1, 1) ≤ P(0|x) ·C(0, 0)+P(1|x) ·C(0, 1), (4.2)

which is equivalent to:

P(0|x) · (C(1, 0) − C(0, 0)) ≤ P(1|x) · (C(0, 1) − C(1, 1)) . (4.3)

This shows that any cost matrix can work under an assumption that C(0, 0)

= C(1, 1) = 0 (and analogically for multi-class problems). This allows to reduce
the number of cost parameters to be established, as one is only interested in
misclassification cost among classes.

Following this assumption, a cost-sensitive classifier will classify given instance
x as belonging to positive class if and only if:

P(0|x) · C(1, 0) ≤ P(1|x) · C(0, 1). (4.4)

By following the fact that P(0|x) = 1 − P(1|x), we may obtain a threshold p∗
for classifying an instance x as belonging to positive class if P(1|x) ≥ p∗, where:
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p∗ = C(1, 0)

C(1, 0) − C(0, 1)
. (4.5)

Cost-sensitive learning algorithms can be separated into two main groups:

• Direct approaches. This methodology is based on directly introducing the
misclassification cost into the training procedure of a classifier. This directly
corresponds to other algorithm-level approaches, with difference of utilizing the
cost matrix.

• Meta-learning approaches. This methodology is based on modifying either the
training data or the outputs of a classifier. It does not modify the underlying
training algorithm, thus making this a suitable approach for almost any type of
a classifier. Meta-learning solutions can be applied during two different steps of
the classification process:

– Preprocessing. Here we aim at modifying the training set, similarly to data-
level solutions discussed in previous chapters. The most popular approach
includes weighting the instances according to a provided cost matrix, thus
allowing for assigning higher importance to minority objects.

– Postprocessing. Here we aim at modifying the outputs of a classifier during
the classification phase. It does not involve any modification before or during
training and the entire effort is moved to introducing the cost factor when a
decision about a new instance is being made.

4.2 Obtaining the Cost Matrix

The effectiveness of cost-sensitive learning relies strongly on the supplied cost
matrix. Parameters provided there will be of crucial importance to both training and
predictions steps. Incorrectly initialized costs can impair the learning process [64].
Too low costs will not allow to properly adjust the classification boundaries, while
too high cost will lead to loss of generalization capabilities on the remaining classes.
In case of class imbalance wrongly set costs can actually mirror a bias towards the
majority class into a bias towards minority class – while we should aim to get a
balanced performance on both of them. But how does one obtain such a cost matrix?
There are two possible scenarios:

1. Cost matrix provided by an expert. In this case the supplied data is accompa-
nied by the cost matrix that comes directly from the nature of a problem. This
usually requires an access to a domain expert that can assess the most realistic
cost values. As an example of an application with a predefined cost matrix we
may take credit card fraud detection [45]. Here cost is given directly as an average
monetary loss in a case of accepting a fraudulent transaction (this is C(i, j)) and
in case of losing a customer after rejecting a valid transaction (this is C(j, i)).
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2. Cost matrix estimated using training data. In many cases we do not have an
access to a domain expert and no a priori information on cost matrix is available
during classifier training. This is a common scenario when we want to apply
cost-sensitive learning as a method for solving imbalanced problems, especially
over a wide range of different datasets. This requires either heuristic setting of
cost values or learning them from training data.

The most popular heuristic approach lies in utilizing the IR as a direct way to
estimate the cost. In this set-up C(i, j) = IR and C(j, i) = 1, where minority is the
i-th and majority is the j -th class (to allow for cases with multiple classes). The
reasoning behind this approach is that the higher IR the more difficult the learning
problem. While this is very easy to apply and gives the cost matrix very quickly,
one must be aware of significant limitations of it. The major one lies in the fact that
IR is not the sole source of learning difficulties in imbalanced data [27]. One must
take into an account instance-level characteristics, such as small sample size, class
overlapping [56], or presence of noisy and borderline instances [58]. Therefore, two
problems with similar IR may pose drastically different challenges to a classifier
and using similar cost matrices for them will be an oversimplification.

Popular way of training a cost-sensitive classifier without know cost matrix is
to put emphasis on modifying the classification outputs when predictions are being
made on new data. This is usually done by setting a threshold on the positive class,
below which the negative one is being predicted. The value of this threshold is
optimized using a validation set and thus the cost matrix can be learned from training
data [18]. This approach has been criticized for creating a division between training
and cost-sensitive evaluation, as the trained classifier in the first phase (when costs
are unknown) is error-driven and not cost-driven [6]. Therefore, the estimation of
the cost parameters is initialized with a method that is not cost-sensitive and the
outcome may be biased.

This problem has been addressed by incorporating ROC-based criterion for
classifier training. As ROC analysis allows to handle performance on both classes
simultaneously, it is a highly suitable tool for cost-sensitive learning. Values of cost
matrix are then found using a ROC space with iso-performance lines [17]. The
best threshold (cost parameter) is defined by the operating point for which the iso-
performance line is tangent to the ROC curve. ROC-based training can be easily
applied to various classification algorithms, making their cost-sensitive adaptations
possible in scenarios without explicitly stated cost matrix [19, 46]. At the same
time, we must remember that ROC-based cost tuning is sub-optimal, as there are no
guarantees for the obtained classifier to be optimal over all possible misclassification
costs.

This problem can be alleviated by using an ensemble-based strategy and training
a pool of classifiers, where each individual one is being specialized in a given
misclassification cost settings. Additionally, this allows to predict multiple potential
scenarios in the prediction phase, allowing for handling cases where testing set has
different properties than training set (which is known as dataset shift). Then we
may select single best classifier that is most suitable for discovered cost matrix, or
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combine more classifiers to achieve better classification performance by exploring
diversity among their cost settings [31]. One of the first ensemble approaches was
based on generating a grid of cost pairs and training an individual classifier on
each of them [3]. A multi-objective genetic algorithm is applied for optimizing
base classifiers with respect to estimated cost matrix. This idea was extended as
ROC Front [8], where authors proposed to use multi-objective optimization to train
ensemble of SVMs by adapting hyperparameter values to the misclassification cost.
An interesting alternative was proposed in [53], where authors used Precision-Recall
Operating Characteristic (P-ROC).

ROC-based tuning of cost matrix has also been considered in multi-class
scenarios, by working in a M × (M − 1) dimensional ROC space (for M classes).
Then weights are assigned to individual outputs per class in order to control
the decision making process and make it cost-sensitive. However, the number of
possible weight combinations with different values of thresholds becomes computa-
tionally prohibitive [5, 35]. Therefore, using the divide-and-conquer approach with
a pairwise combination of classes attracted more attention [26]. This approach has
been used for Volume Under the Surface estimation [21], as well as for optimization
of parameters used in classifier training [33, 34]. Ensemble-based approaches for
multi-class cost matrix estimation are not that popular, yet one should point out to
very interesting works by Everson and Fieldsen [16], as well as by Bernard et al. [4]

4.3 MetaCost

MetaCost algorithm [12] will be discussed firstly, due to its unique flexibility in
adapting classifiers to cost-sensitive scenarios. It works as a wrapper method that
can be applied to any type of classifier, regardless of the type of output it returns
(either class labels or probability estimates). This makes it stand out from the
remaining algorithms discusses in this chapter, as they are focusing on modifying
only a specific type of classifiers.

MetaCost is based on the assumption that with the introduction of a cost matrix,
the classification boundary should be adapted in favor of the classes with a higher
cost assigned. This translates to expanding regions in the decision space assigned to
these classes, even if the a priori probabilities do not change. Hence, class labels
provided for the instances in the training set may in fact coincide with optimal
predictions for them according to a provided cost matrix. MetaCost postulates that
if these instances would be relabeled to their optimal classes suggested by the cost
matrix, then there is no further need for data preprocessing and a standard classifier
using 0–1 loss function can be used. Modified training set should allow any classifier
to find optimal decision boundaries that will minimize the misclassification cost.

MetaCost is a preprocessing meta-learning approach that utilizes ensemble-based
data manipulation [20]. The original training set is used to learn multiple classifiers
by bootstrapping instances (following Bagging idea). Then a probability for each
instance belonging to each of classes is being estimated using a fraction of votes
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Algorithm 1 MetaCost algorithm
Require: S: Training set; S′: relabeled training set; L: Number of Bagging iterations; n: Bootstrap

size; Ψ : classification algorithm; M: # of classes.
1:
2: for l = 1 to L do
3: Sl ← RandomSampleReplacement(n,S)
4: Ψl ← train Ψ on Sl

5: end for
6:
7: for s = 1 to |S| do
8: for i = 1 to M do
9: if Ψ returns probabilistic outputs then

10: obtain P(i|xs, Ψl)

11: else
12: P(i|xs, Ψl) = 1 for the class predicted and 0 for others
13: end if
14: if use all bootstraps for each instance then
15: l ranges over all Ψl

16: else
17: l ranges over all Ψl such that xs /∈ Sl

18: end if
19: P(i|xs) = 1∑

l 1

∑
l P (i|xs, Ψl)

20: end for
21: x′

s ← relabel xs according to argminl

∑M
j P (m|xs)C(i, j)

22: S′ ← S′ ∪ x′
s

23: end for
24:
25: Ψf inal ← train Ψ on S′

it receives from the ensemble. Then training instances are relabeled to minimize
the conditional risk (see Eq. 4.1). Finally, the ensemble is being discarded (as it
was used only for preprocessing step) and a new classifier is being trained on the
modified set of instances. The pseudo-code of MetaCost is given in Algorithm 1.

4.4 Cost-Sensitive Decision Trees

Among all of the classifiers, induction of cost-sensitive decision trees has arguably
gained the most attention [13, 37, 52, 57]. This can be attributed to the ease
of modification of their training [38, 59] and pruning algorithms [14, 25, 66],
as well as plethora of ways to apply meta-learning principles. Let us provide
general frameworks for two most important approaches to cost-sensitive decision
tree induction: splitting criterion modification (Sect. 4.4.1) and instance weighting
(Sect. 4.4.2).
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4.4.1 Direct Approach with Cost-Sensitive Splitting

Induction of a cost-sensitive tree takes into account two different costs – test cost of
a-th feature tc(a) and misclassification cost of instance mc(x) [38]. Both of these
costs are to be minimized, allowing to eliminate the skew towards majority class,
while reducing the cost of used features [40, 41]. As for many imbalanced problems
we do not have costs assigned to features, then one should assume an uniform value
of tc(a), which will allow for the training algorithm to focus on minimization of
mc(x). The following five-step process allows for the computation of the average
total cost associated with a given decision tree.

Step 1. Denote the inducted decision tree as T , training set as S, selected training
instance as x ∈ S, and set of features describing this instance as B(x).

Step 2. Calculate the test cost associated with x using the subset of features B ′(x)

that are used by path from the root of T to one of its leaves to which x belongs:

tc(x) = tc
(
B ′(x)

) =
∑

a∈S′
tc(a). (4.6)

Step 3. Denote the set of instances in a given leaf node l as S′(l) and the
decision value of instance x ∈ S′(l) as d(x). Let |S′

i (l)| and |S′
j (l)| be the

number of instances from i-th and j -th class in this l-th node. To minimize the
misclassification cost, a one class dc(x) is assigned for all of instances in S′(l),
based on:

mc(S′(l)) = min(|S′
i (l)| × C(i, j), |S′

j (l)| × C(j, i)). (4.7)

Then for any x ∈ S′(l) the assigned class is calculated as:

dc(x) =
{

i-th class if |S′
j (l)| × C(j, i),

j -th class if |S′
i (l)| × C(i, j).

(4.8)

Step 4. Calculate the misclassification cost. Despite each leaf node l is now being
associated with only a single class label, there still may be instances within it that
have their true class labels different. We denote the true class label of x as dt (x),
while the label assigned to it by a given leaf node as dc(x). For each instance x

in S′ that has different true class label than the label associated with this node,
calculate:

mc(x) =
{

C(i, j) if dt (x) = i and dc(x) = j,

C(j, i) if dt (x) = j and dc(x) = i.
(4.9)

Step 5. Calculate the average total cost AT C that takes into account both the
cost associated with misclassified instances (mc(x)) and features used by them
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(tc(x)). This metric is calculated for the entire training set U :

AT C(U) =
∑

x∈U (tc(x) + mc(x))

|S| . (4.10)

This approach can be used with any splitting measure that has been adapted to
take into account feature costs.

4.4.2 Meta-learning Approach with Instance Weighting

An alternative solution to using the cost directly when creating splits lies in
weighting the training instances [59]. Higher weights is assigned to instances
coming from the class with higher value of misclassification cost. This is done
instead of sampling procedures, thus the size of the training set is not altered.
The following four-step process allows for modifying any decision tree induction
scheme to take into account misclassification costs expressed as weighted instances.

Step 1. Convert the cost matrix into a cost parameter for each class. For a two-class
problem Ci = C(i, j) and Cj = C(j, i), while for multi-class problems with M

classes one may use the following conversion:

C(i) =
M∑

j

C(i, j). (4.11)

Step 2. Calculate weight associated to instances coming from i-th class:

wi = Ci

|S|
∑

j Cj |Sj | , (4.12)

where |Sj | is the number of training instances belonging to j -th class and∑
i w(i)|Si | = |U |. For C(i) ≥ 1, wi takes the smallest value bounded within

0 ≤ |S|∑
j Cj |Sj | ,≤ 1 when Ci = 1, and takes the following largest value when

Ci = maxj Cj :

wi = Ci |Si |∑
j Cj |Sj | ≥ 1. (4.13)

Step 3. Calculate the ratio of the total weight of i-th class in leaf node l to the
overall total weight of all instances in l:

pw(i|l) = Wi(l)∑
j Wj (l)

= wi |S′
i (l)|∑

j wj |S′
j (l)|

. (4.14)
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Step 4. Use any selected training procedure for induction decision trees. Wi(l)

must be used instead of |S′
j (l)| when calculating splitting criterion value in each

node in the tree growing process, as well as and the error estimation in the
pruning process. Therefore, no algorithm-level modifications are required.

4.5 Other Cost-Sensitive Classifiers

While MetaCost and decision trees are the most popular approaches to cost-sensitive
classification, plethora of other methods have also been adapted to work with
varying misclassification costs [10, 15, 43]. Below we will shortly discuss the most
important cost-sensitive versions of popular classification models, namely SVMs
(Sect. 4.5.1), ANNs (Sect. 4.5.2), and NN classifiers (Sect. 4.5.3).

4.5.1 Support Vector Machines

SVMs can be easily adjusted to work with cost-sensitive setting [11, 24]. One of the
main reasons behind their sensitivity to skewed datasets lies in soft margin objective
function assigning identical costs (parameter C) for both positive and negative class.
Different Error Cost (DEC) approach [61] uses the provided (or estimated) cost
matrix to assign separate misclassification costs to each of classes. Therefore, for
positive class we use parameter C+ = C(1, 0) and for negative we use C− =
C(0, 1). This modifies the calculation of soft margin objective function to:

min

⎛

⎝1

2
w · w + C+

l∑

i|yi=+1

ξi + C−
l∑

i|yi=−1

ξi

⎞

⎠

subject to ∀
i=1,··· ,l ∀

ξi≥0
yi (w · Φ(xi) + b) ≥ 1 − ξi,

(4.15)

The dual Lagrangian optimization problem can be then represented as follows:

max
αi

⎛

⎝
l∑

i=1

αi − 1

2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi, xj )

⎞

⎠

subject to ∀
i=1,··· ,l ∀

0≤α+
i ≤C+

∀
0≤α−

i ≤C−

l∑

i=1

yiαi = 0,

(4.16)

where α+
i and α−

i stand for Lagrangian multipliers for positive and negative classes.
When misclassification costs are unknown DEC uses the IR to initialize C+ and C−.
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4.5.2 Artificial Neural Networks

Cost-sensitive modifications of ANNs [67] involve alternation of weight update
functions [7], sampling solutions [2], and moving threshold approaches. The latter
one is a post-processing meta-learning solution to cost-sensitive learning. We denote
the real-valued output of an ANN if a form of support for instance x belonging to
i-th class as Oi(x)(fori ∈ M), where

∑M
i=1 Oi(x) = 1 and 0 ≤ Oi(x) ≤ 1.

Standard ANNs use Winner-Take-All approach for determining the final predicted
class: argmaxiOi(x). However, moving threshold approach modifies the values of
outputs by including the misclassification cost:

O∗
i (x) = η

M∑

j=1

Oi(x)C(i, j), (4.17)

where eta is a normalization term in order to scale cost-sensitive outputs to∑M
i=1 O∗

i = 1 and 0 ≤ O∗
i ≤ 1. A cost-sensitive ANN with moving threshold

makes its predictions based on argmaxiO
∗
i (x). Threshold-moving approaches for

ANNs have been overlooked for a long time and are not as popular as sampling-
based methods for class imbalance. However, some studies report its high usefulness
for dealing with datasets with skewed distributions [30, 44, 67]. Other works
report that simply changing the data distribution without considering the imbalance
effect on the classification threshold (and thus adjusting it properly) may be
misleading [50].

4.5.3 Nearest Neighbors

The popular k-NN classifier also finds its usage in cost-sensitive learning [22, 51].
It uses the minimization of conditional risk, similarly to decision tree approaches,
as cost parameter modifies the probabilities of assigning new instance x to each of
classes. However, k-NN utilizes the proportion of k-NN of x belonging to i-th class
to estimate P(i|x). Cost-sensitive k-NN rescales the cost matrix parameters, so that
for a two-class problems we have C(1, 0) + C(0, 1) = 1. Then the classification
rule assigns x to class 1 if k1/k > C(0, 1) and to class 0 otherwise, where k1 is the
number of instances from class 1 among k-NN of x.

4.6 Hybrid Cost-Sensitive Approaches

While sampling methods seem attractive due to their requirements of modifying
(rebalance) only training set (and thus a flexibility of applying any type of classifier
afterwards), they may suffer from problems related to loss of information after
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removing some instances, increasing noise or overlapping with introduction of new
instances, or even causing a data set shift (more details on data-level approaches can
be found at Chap. 5). Cost-sensitive methods may suffer from incorrectly estimated
parameters of cost matrix. This tend to happen when the search procedure get stuck
in a local minimum, or the search space is too big to efficiently find a (sub)optimal
solution.

A potentially attractive solution lies in using a hybrid approach that will combine
advantages of its components, while alleviating their drawbacks. One idea lies in
conducting a small-scale sampling of the training set before learning a cost-sensitive
classifier. This will reduce the IR, leading to a reduction of misclassification
costs for minority instances and thus making the search process less biased. As
we introduce/remove lower number of instances, we reduce the risk of deleting
important information or introducing noise. Finally, cost-sensitive classifiers are
usually faster than sampling approaches. Thus a hybrid methodology allows for a
computational speed-up when compared with a scenario that uses only sampling.

Abkani et al. [1] proposed SMOTE with Different Costs (SDC) algorithm that
works in three steps. Firstly, no undersampling of the majority class is conducted,
thus not allowing for any loss of information. Secondly, a SVM with different
misclassification costs is being trained on supplied dataset in order to reduce the
bias towards the majority class. Finally, SMOTE is applied on minority distances
in order to improve the definition of the learned class boundary. Similar idea was
proposed by Wang et al. [62].

Chawla et al. [9] developed a wrapper approach that automatically learns sam-
pling ratios individually for each dataset via evaluation function optimization. One
can plug-in misclassification cost into this evaluator. An internal cross-validation on
training data is used to establish undersampling and oversampling ratios, apply it to
all instances and train a classifier on the modified data set.

Peng [49] proposed an adaptive undersampling and oversampling, where a
pool of classifiers is being trained using different sampling ratios and estimated
misclassification costs, and a weighted combination function is used for fusion of
base classifiers.

4.7 Summarizing Comments

This chapter discussed the idea of cost-sensitive learning in the context of varying
misclassification costs and class imbalance. Taxonomy of cost-sensitive approaches
was presented and most representative algorithms were described in details, with
a special emphasis on meta-learning solutions and decision trees. Despite over
two decades of progress in this field, there are many directions to be pursued
by researchers in this domain. Let us conclude this chapter by discussing the
most important open issues and future challenges that cost-sensitive learning from
imbalanced data must face in years to come.
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• Cost-sensitive solutions for data-level difficulties: cost-sensitive solutions used
so far associate on the level of classes. Yet, instances within the minority class
may pose different levels of difficulty and mistakes on some of them should be
penalized stronger than on the others. Developing methods that could induce
cost-sensitive classifiers that take into account intrinsic data characteristics seems
as a promising direction.

• Hybrid cost-sensitive learning: combining cost-sensitive approaches with sam-
pling (please refer to Chap. 5), or potentially other algorithm-level solutions, is
a worthwhile, yet larger unexplored area. It is necessary to gain a deeper insight
into scenarios in which one of these approaches outperforms the other, in order
to be able to create a more versatile compound algorithm.

• Cost matrix estimation from non-stationary data: learning misclassification
costs is challenging on its own, but is even more challenging when conducted on
non-stationary data streams [28] (see also Chap. 11). There is a need to develop
new online cost-sensitive approaches that can combine advantages of ROC-based
analysis with low computational complexity and capabilities of tackling concept
drift.

• Cost-sensitive approaches for other learning paradigms: cost-sensitive learn-
ing should be expanded to other learning domains where class imbalance is
present, such as multi-label/multi-instance problems [63], regression [54], or
time-series analysis [55]. A complete description of these areas can be found
at Chap. 12.

We envision that next decade will bring significant developments in this area,
as many contemporary real-world applications call for existence of such machine
learning methods.
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Chapter 5
Data Level Preprocessing Methods

Abstract The first mechanism to address the problem of imbalanced learning was
the use of sampling methods. They consists of modifying a set of imbalanced
data using different procedures to provide a balanced or more adequate data
distribution to the subsequent learning tasks. In the specialized literature, many
studies have shown that, for several types of classifiers, rebalancing the dataset
significantly improves the overall performance of the classification compared to a
non-preprocessed data set. Over the years, this procedure has been common and
the use of sampling methods for imbalanced learning has been standardized. Still,
classifiers do not always have to use this kind of preprocessing because many of
them are able to directly deal with imbalanced datasets. There is no clear rule that
tells us which strategy is best, whether to adapt the behavior of learning algorithms
or to use data preprocessing techniques. However, data sampling and preprocessing
techniques are standard techniques in imbalanced learning, they are widely used in
Data Science problems. They are simple and easily configurable and can be used
in synergy with any learning algorithm. This chapter will review the techniques of
sampling, undersampling (the classical ones in Sect. 5.2 and advanced approaches
in Sect. 5.3) and oversampling such as SMOTE in Sect. 5.4, as well as the most-
known algorithm SMOTE and its derivatives in Sect. 5.5. Some hybridizations
of undersampling and oversampling are described in Sect. 5.6. Experiments with
graphical illustrations will be carried out to show the behavior of these techniques.

5.1 Introduction

The hitch with imbalanced datasets is that standard classification learning algo-
rithms are often biased towards the majority classes (known as “negative”) and
therefore there is a higher misclassification rate in the minority class instances
(called the “positive” class) [15, 19]. Therefore, throughout the last years, many
solutions have been proposed to deal with this problem, both for standard learning
algorithms and for ensemble techniques [44, 75]. They can be categorized into three
major groups [5, 21, 55]:
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• Data sampling: in which the training instances are modified in such a way as to
produce a more balanced class distribution that allow classifiers to perform in a
similar manner to standard classification.

• Algorithmic modification: this procedure is oriented towards the adaptation of
base learning methods to be more attuned to class imbalance issues

• Cost-sensitive learning: this type of solutions incorporate approaches at the data
level, at the algorithmic level, or at both levels jointly, considering higher costs
for the misclassification of examples of the positive class with respect to the
negative class, and therefore, trying to minimize higher cost errors.

In the specialized literature, we can find some papers about resampling tech-
niques studying the effect of changing the class distribution to deal with imbalanced
datasets. Those works have proved empirically that, applying a preprocessing step
in order to balance the class distribution, is usually an useful solution [22, 30, 39].
Furthermore, the main advantage of these techniques is that they are independent of
the underlying classifier.

Resampling techniques can be categorized into three groups or families [10]:

• Undersampling methods, which create a subset of the original dataset by
eliminating instances (usually majority class instances).

• Oversampling methods, which create a superset of the original dataset by
replicating some instances or creating new instances from existing ones.

• Hybrids methods, which combine both sampling approaches.

Among these categories, there are several proposals where the simplest pre-
processing are non heuristic methods such as random undersampling and random
oversampling. In the first case, the major drawback is that it can discard poten-
tially useful data, that could be important for the induction process. For random
oversampling, several authors agree that this method can increase the likelihood of
occurring overfitting, since it makes exact copies of existing instances. Section 5.2
is devoted to describe all the basic techniques for undersampling and oversampling
in imbalanced learning.

Regarding undersampling, most of the proposed approaches are based in data
cleaning techniques [54]. Some representative works in this area include the
Wilson’s edited nearest neighbor (ENN) rule [81], which removes examples that
differ from two of its three NNs, the OSS [50], an integration method between the
condensed NN rule and Tomek Links [79] and the NCR, which is based on the ENN
technique [81]. In addition, there are many advanced approaches for undersampling
that deserve to be mentioned here. Section 5.3 will be devoted to this goal.

According to the previous facts, more sophisticated methods have been proposed.
Among them, the “Synthetic Minority Oversampling Technique” (SMOTE) [20] has
become one of the most renowned approaches in this area. Briefly, its main idea is to
create new minority class examples by interpolating several minority class instances
that lie together for oversampling the training set. More insight about SMOTE will
be given in this chapter, please see the Sect. 5.4.
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Fig. 5.1 Chessboard data set

As a drawback, in oversampling techniques, and especially for the SMOTE
algorithm, the problem of over generalization is largely attributed to the way
in which it creates synthetic samples. Precisely, SMOTE generates the same
number of synthetic data samples for each original minority example and does
so without consideration to neighboring examples, which increases the occurrence
of overlapping between classes. To this end, various adaptive sampling methods
have been proposed to overcome this limitation; some representative works include
the Borderline-SMOTE [42], Adaptive Synthetic Sampling (ADASYN) [45], Safe-
Level-SMOTE [16] and MWMOTE [8] algorithms. More details will be given in
Sect. 5.5.

Finally, the combination of different data preprocessing such as undersampling
and oversampling or even cleaning techniques could lead to diminish the overlap-
ping that is introduced from sampling methods, i.e. the integrations of SMOTE with
ENN [81] and SMOTE with Tomek links [79], or a wrapper technique introduced in
that defines the best percentage to perform both undersampling and oversampling.
These hybridizations will be considered in Sect. 5.6 of this chapter.

Throughout this chapter, we will resort to figures representing a simple data
set whose examples belong to two classes and are distributed as a 5 × 5 squares
chessboard.1 The original data set, depicted in Fig. 5.1, contains 1,000 data points
and it is 100% balanced, hence it has 500 examples per class. In addition, the borders
and areas modeled by a decision tree (more specifically, the CART algorithm
[14, 82]) are drawn to make easier the visualization of the shape and possible loss
of information in the chessboard. In fact, CART is not able to perfectly model the
chessboard, as we can see in Fig. 5.1, due to lack of some critical data points in
certain places.

1We would like to thank Sergio González for the development of a visualization module for this
task. See more at https://github.com/sergiogvz/imbalanced_synthetic_data_plots

https://github.com/sergiogvz/imbalanced_synthetic_data_plots
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Fig. 5.2 Imbalanced chessboard data set

By using the chessboard data set, we can see the effects of the imbalanced
learning problem once a class is assumed to be underrepresented regarding to the
other. If we reduce the class represented by white points (from now, the minority
or positive class) to only a 10% by using a random sampling, the outcome can be
visualized in Fig. 5.2. Now, the chessboard shape is practically lost with CART, only
five white squares are partially maintained. Another major fact is that many white
points are completely ignored, indicating that they have been considered as harmful
data points to avoid the overfitting of the model.

The data set depicted in Fig. 5.2 will be the basis from which we set out to
illustrate the behavior of other data level techniques we will see in this chapter.

5.2 Undersampling and Oversampling Basics

As we mentioned before, sampling approaches can be categorized into two
approaches: undersampling, that consists of reducing the data by eliminating
examples belonging to the majority class with the objective of equalizing the
number of examples of each class; and oversampling, that aims to replicate or
generate new positive examples in order to gain importance.

As classical methods, we consider a total of nine techniques. Two of these meth-
ods, random undersampling and random oversampling, are non-heuristic methods
that were initially included in this evaluation as baseline methods. However, they
usually obtain good results in a very low response time [10].
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• Random Undersampling (RUS): It is a non-heuristic method that aims to
balance class distribution through the random elimination of majority class
examples to get a balanced instance set. The final ratio of balancing can be
adjusted.

• Random Undersampling (ROS): It is another non-heuristic method that aims
to balance class distribution through the random replication of minority class
examples.

The major drawback of random undersampling is that this method can discard
potentially useful data that could be important for the induction process. The
removal of data is a critical decision to be made, hence many the proposal of
undersampling use heuristics in order to overcome the limitations of the non-
heuristics decisions. On the other hand, the random oversampling may increase the
likelihood of occurring overfitting, since it makes exact copies of the minority class
examples. In this way, a symbolic classifier, for instance, might construct rules that
are apparently accurate, but actually cover one replicated example.

Next, we will describe other classical undersampling techniques which use
heuristic procedures to decide the data points to be removed. The well-known
SMOTE oversampling and hybridizations will be presented in Sects. 5.4 and 5.5
of this chapter.

Regarding the notation used, let us assume that there is a training set T R with
N instances which consists of pairs (xi, yi), i = 1, . . . , N , where xi defines an
input vector of attributes and yi defines the corresponding class label. Each of
the N instances have M input attributes and they should belong to the positive or
negative class. Let Ê ⊆ E be the subset of selected examples resulted in the run of
a undersampling technique.

• Tomek Links (TL): TL [79] can be defined as follows: given two examples
Ei = (xi, yi) and Ej = (xj , yj ) where yi �= yj and d(Ei, Ej ) being the
distance between Ei and Ej . A pair (Ei, Ej ) is called Tomek link if there is
not an example El , such that d(Ei, El) < d(Ei, Ej ) or d(Ej ,El) < d(Ei, Ej ).
Tomek links can be used as an undersampling method eliminating only examples
belonging to the majority class in each Tomek link found.

• Condensed Nearest Neighbor Rule (US-CNN): Hart’s CNN[43] is used to find
a consistent subset of examples. A subset Ê ⊂ E is consistent with E if using a
1-nearest neighbor [25], Ê correctly classifies the examples in E. An algorithm
to create a subset Ê from E as an undersampling method is the US-CNN. First, it
randomly draws one majority class example and all examples from the minority
class and put these examples in Ê. Afterwards, use a 1-NN over the examples in
Ê to classify the examples in E. Every misclassified example from E is moved to
Ê. It is important to note that this procedure does not find the smallest consistent
subset from E. The idea behind this implementation of a consistent subset is
to eliminate the examples from the majority class that are distant from the
decision border, since these kind of examples might be considered less relevant
for learning.
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• One-Sided Selection (OSS): OSS [50] is an undersampling method resulting
from the application of Tomek links [79] followed by the application of US-
CNN. Tomek links are used as an undersampling method and removes noisy
and borderline majority class examples. Borderline examples can be considered
“unsafe” since a small amount of noise can make them fall on the wrong side of
the decision border. US-CNN aims to remove examples from the majority class
that are distant from the decision border. The remainder examples, i.e. “safe”
majority class examples and all minority class examples are used for learning.

• US-CNN + TL: This hybridization [10] is similar to OSS, but the method
US-CNN is applied before the Tomek links [79]. As finding Tomek links is
computationally demanding, it would be computationally cheaper if it was
performed on a reduced data set.

• Neighborhood Cleaning Rule (NCL): NCL [51] uses the Wilson’s Edited
Nearest Neighbor Rule (ENN) [81] to remove majority class examples. ENN
removes any example whose class label differs from the class of at least two
of its three NNs. NCL modifies the ENN in order to increase the data cleaning.
For a two-class problem the algorithm can be described in the following way:
For each example Ei = (xi, yi) in the training set, its three nearest neighbors are
found. If Ei belongs to the majority class and the classification given by its three
NNs contradicts the original class of Ei , then Ei is removed. If Ei belongs to the
minority class and its three NNs misclassify Ei , then the NNs that belong to the
majority class are removed.

• Class Purity Maximization (CPM): CPM [87] attempts to find a pair of centers,
one being a minority class instance while the other is a majority class instance.
Using these centers, it partitions all the instances into two clusters C1 and C2.
If either of the clusters have less class impurity than its parent’s impurity (Imp)
then we have found our clusters. The impurity of a set of instances is simply the
proportion of minority class instances. It then recursively partitions each of these
clusters into subclusters. Thus, it forms a hierarchical clustering. If the impurity
cannot be improved then we stop the recursion. The algorithm is described in the
algorithm described in the Fig. 5.3.

• Undersampling Based on Clustering (SBC): It was proposed in [84, 85].
Considering that the number of samples in the class-imbalanced data set is N ,
within it, the number of samples belonging to the majority class is N− and the
number of minority class samples is N+. SBC first clusters all samples in the data
set into K clusters. The number of majority class and minority class samples is
N−

i and N+
i , respectively. Therefore, the ratio of the number of majority class

samples to the number of minority class samples in the i-th cluster is N−
i /N+

i .
If the ratio of N−

i to N+
i in the training data set is set to be m : 1, the number of

selected majority class samples in the i-th cluster is shown in expression (5.1):

SN−
i = (m · N+) · N−

i /N+
i∑K

i=1(N
−
i /N+

i )
(5.1)
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Input: Imp

parent

Ci

CPM(Imp,parent)

1. impurity

Imp impurity

parent

C1 andC2

6. impurity min(impurity (C1), impurity (C2))

7. CPM(impurity (C1),C1)

: cluster impurity of parent cluster

: parent cluster ID

Output: subclusters rooted at parent

2.While

3. If all the instance pairs in were tested then return

4. Pick a pair of majority and minority class instances as centers

5. Partition all instances into 2 clusters

according to nearest center

8. CPM(impurity (C2),C2)

Fig. 5.3 Pseudocode of CPM algorithm

After determining the number of majority class samples in each cluster, it
randomly chooses majority class samples in the i-th cluster.

• NearMiss approaches: This is a family of four methods based on informed
heuristics [90]. The first “NearMiss-1” method selects samples from the majority
class that are close to some of the minority class samples. In this way, samples
of the majority class are selected when their average distances to three samples
of the closest minority class are the smallest. The second “NearMiss-2” method
selects the samples of the majority class, when their average distances to the three
samples of the most distant minority class are the smallest. The third “NearMiss-
3” method extracts a given number of the closest majority class samples for each
sample of the minority class. Finally, the fourth “More distant” method selects
the majority class samples whose mean distances to the three nearest minority
class samples are the largest.

We want to show the results offered by two of these classical methods applied
on the imbalanced chessboard data set. The first technique is OSS [50], Fig. 5.4
illustrates the final outcome after OSS was run. As you can see, many black dots are
removed, belonging either to the borderline places or internal parts of the chessboard
squares. The first part of this method runs a Tomek Links procedure [79], which
achieves the removal of some examples closer to minority examples. This procedure
does not produce a very high reduction, only few examples are removed. The second
step is accomplished by a condensation process taken by CNN, which removes
several examples placed in internal parts of the squares. Here, we started with 100
negative examples in order to have enough representatives in all the black squares
of the data set. In spite of this, the quantity of examples removed is higher, reducing
the density of black dots within the squares. The final results is quite accurate, eight
squares are almost recovered and other four squares are partially recovered with the
CART decision tree.
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Fig. 5.4 Imbalanced chessboard treated with OSS

The second technique we want to illustrate is NCL [51]. Figure 5.5 depicts
the results of applying NCL on the imbalanced chessboard data set. As we have
mentioned, NCL is an editing-based technique that works similarly to ENN [81], but
focused on majority examples. In order to exaggerate the results, the neighborhood
considered during its run is large: 20 neighbors to perform majority voting. The
graphic shows how the density of black dots are reduced and they almost maintain
the decision frontiers given by CART. However, it is not enough for the positive
class, only four squares are more or less completely modeled by CART and the
final frontiers lose the initial form of a chessboard. This is a symptom of that
this mechanism works in detrimental to the majority class, extending the decision
borderlines for the positive class in some cases. As recommendation, a fine-grained
NCL with small neighborhoods (3 or 5 neighborhood) may be very useful to
be applied after some oversampling procedure which generates noisy examples.
Section 5.6 will refer to the benefits of combining oversampling and undersampling
as a unique treatment.

5.3 Advanced Undersampling Techniques

In this section, we will review the advanced undersampling techniques which
use more complex mechanism to address the data sampling, such as evolutionary
algorithms, ensembles or clustering. The most representative techniques will be
described in detail for each group mentioned.
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Fig. 5.5 Imbalanced chessboard treated with NCL

5.3.1 Evolutionary Undersampling

Undersampling can be considered as a search problem in which Evolutionary
Algorithms (EAs) can be applied [29]. To accomplish this, two important issues
must be taken into account: the specification of the representation of the solutions,
the definition of the fitness function and the description of the main evolutionary
scheme used, which will be the CHC model.

• Representation of solutions: The search space associated is constituted by all
the subsets of T R. This is accomplished by using a binary representation. A
chromosome consists of N genes (one for each instance in T R) with two possible
states: 0 and 1. If the gene is 1, its associated instance is included in the subset of
T R represented by the chromosome. If it is 0, this does not occur.

• Fitness Function: Let S be a subset of instances of T R and be coded by
a chromosome. Classically, we define a fitness function that combines two
values: the classification rate (clas_rat) associated with S and the percentage
of reduction (perc_red) of instances of S with regards to T R.

Fitness(S) = α · clas_rat + (1 − α) · perc_red. (5.2)
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Any classifier can be used as wrapper for measuring the classification rate,
clas_rat , associated with S. It denotes the percentage of correctly classified
objects from T R using only S to train the learner. perc_red is defined as

perc_red = 100 · |T R| − |S|
|T R| . (5.3)

The objective of the EAs is to maximize the fitness function defined, i.e.,
maximize the classification rate and minimize the number of instances obtained.

• As the evolutionary computation method, the CHC model was chosen to perform
the selection of data examples.

– CHC is a classical evolutionary model that introduces different features
to obtain a trade-off between exploration and exploitation; such as incest
prevention, reinitialization of the search process when it becomes blocked and
the competition among parents and offspring into the replacement process.
During each generation the CHC develops the following steps.

· It uses a parent population of size N to generate an intermediate population
of N individuals, which are randomly paired and used to generate N

potential offspring.
· Then, a survival competition is held where the best N chromosomes

from the parent and offspring populations are selected to form the next
generation.

CHC also implements a form of heterogeneous recombination using HUX,
a special recombination operator. HUX exchanges half of the bits that differ
between parents, where the bit position to be exchanged is randomly deter-
mined. CHC also employs a method of incest prevention. Before applying
HUX to the two parents, the Hamming distance between them is measured.
Only those parents who differ from each other by some number of bits (mating
threshold) are mated. The initial threshold is set at L/4, where L is the length
of the chromosomes. If no offspring are inserted into the new population then
the threshold is reduced by one.
No mutation is applied during the recombination phase. Instead, when the
population converges or the search stops making progress (i.e., the difference
threshold has dropped to zero and no new offspring are being generated
which are better than any member of the parent population) the population
is reinitialized to introduce new diversity to the search. The chromosome
representing the best solution found over the course of the search is used as
a template to reseed the population. Reseeding of the population is accom-
plished by randomly changing 35% of the bits in the template chromosome to
form each of the other N − 1 new chromosomes in the population. The search
is then resumed.

In [35], we presented a taxonomy for Evolutionary Undersampling methods,
identifying the main issues used for the classification of the respective models
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and including each method in its corresponding place. We established two ways
of division, the objective that they pursue and the way they do the selection of
instances. Regarding the main objective, there are two goals of interest in these
methods:

• Aiming for an optimal balancing of data without loss of effectiveness in classi-
fication accuracy. Evolutionary undersampling models that follow this tendency
are called Evolutionary Balancing undersampling (EBUS).

• Aiming for an optimal power of classification without taking into account the
balancing of data, considering the latter as a sub-objective that may be an
implicit process. The models that follow this tendency are called Evolutionary
undersampling guided by Classification Measures (EUSCM).

With respect to the types of IS that can be carried out in evolutionary undersam-
pling [18], we distinguished:

• If the selection scheme proceeds over any kind of instance, then it is called
Global Selection (GS). That is, the chromosome contains the state of all instances
belonging to the training data set and removals of minority class instances (those
belonging to positive class) are allowed.

• If the selection scheme only proceeds over majority class instances then it is
called Majority Selection (MS). In this case, the chromosome saves the state of
instances that belong to the negative class and a removal of a positive or minority
class instance is not allowed.

This categorization produced a total number of eight evolutionary undersampling
methods based on the CHC algorithm. More details on the taxonomy and their
reported performance can be found in [35] for KNN classifiers, [37] for decision
trees based classifiers and [38] for nested generalized learning algorithms.

5.3.1.1 ACOSampling

In the study [88], a meta-heuristic based undersampling method was introduced
based on the idea of ant colony optimization (ACO), which is called ACOSampling.
First, the original training data set is randomly and repeatedly divided into two
groups: training data set and validation data set. Then, for each partition, ACOSam-
pling is performed to find the subset of the corresponding optimal majority class
examples. Unlike traditional ACO, ACOSampling forces the ants to leave the nest,
then pass all samples of the majority class one by one, either by a value of 0 or a
value of 1, to reach the food source, where 0 indicates that the corresponding sample
is useless and should be removes, and 1 indicates that it is important and should be
selected. Taking into account the particularity of the imbalanced classification tasks,
the overall precision is calculated by three weighted indicative metrics, namely
F-measure, G-mean and AUC [13, 47, 65]. Then, many subsets of local optimal
majority samples can be generated by iterative partitions, so the significance of
each major sample must be estimated according to its selection frequency; i.e.,
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the higher the selection frequency, the more information the sample will provide.
Finally, you can then create a globally balanced sample set by combining the highly
sorted samples from the majority class with all minority class examples. The fitness
function used in ACOSampling is:

fitness = α × F-measure + β × G-mean + γ × AUC (5.4)

subject to α + β + γ = 1.

5.3.1.2 IPADE-ID

Instance generation has been also applied to perform undersampling tasks with EAs.
The original purpose of instance generation is to obtain an instance generated set
GS, which consists of r, r < n, instances pu where pu = (pu1, pu2, . . . , pum, puω),
which are either selected or generated from the examples of T R. The instances
of the generated set are determined to efficiently represent the distributions of the
classes and to discriminate well when used to classify the training objects.

IPADE-ID [56] is an extension of the IPADE instance generation algorithm to
imbalanced domains. It follows an iterative scheme, in which it determines the most
appropriate number of instances per class and their best positioning for a determined
classifier, focusing on the positive class. In particular, IPADE-ID is organized into
three different stages: initialization, optimization and addition of instances.

1. Initialization: Although IPADE-ID iteratively learns instances to find the most
appropriate structure of GS, a good initialization process can lead the search
to better results specially when it is dependent on the target classifier. IPADE-
ID develops two different initialization processes for KNN and decision tress
respectively.

2. Optimization: In IPADE-ID, a Differential Evolution algorithm (specifically, it
is a DE/CurrentToRand/1 strategy) is employed to optimize the outcome. Here,
each individual in the population encodes a single instance without the class label
and, as such, the dimension of the individuals is equal to the number of attributes
of the specific problem. The fitness function used to guide the search process is
measured as the AUC obtained with the target classifier using GS as training set
and T R as validation set.

3. Addition of Instances: In order to reduce the classification error of the minority
class, IPADE-ID extracts a random example of this class from T R and adds
this to the current GS in a new trial set. This addition forces the re-positioning
of the instances by using the optimization process again and its corresponding
evaluation of predictive AUC.
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Fig. 5.6 CBEUS algorithm flowchart

5.3.1.3 CBEUS: Cluster-Based Evolutionary Undersampling

The CBEUS method is a undersampling technique that combines clustering and
genetic algorithms to address the data imbalance problem [49]. The general process
of this algorithm is shown in Fig. 5.6. The process of this method consists of
the following steps: The first step is to divide the examples of the majority class
into several clusters using the k-means clustering. Next, we calculate the distance
between an instance and centroid within each cluster using the Euclidean distance
function. The second step is to find the thresholds that represent the distance from
the centroid of each group using a genetic algorithm.

CBEUS selects relevant instances of the majority class based on the assumption
of removing noisy instances that are far from the centroid of the cluster. This
approach is expected to have advantages over previous undersampling techniques.
First, it eliminates noisy instances by considering distances between an instance
of a majority class and the centroid of each group. The data set that eliminates
noisy instances results in improved and stable classification performance. Second,
a relatively intelligent undersampling technique is used based on the survival of the
most suitable cases in the optimization. The disadvantage of random undersampling
is that potentially useful instances can be discarded. Thus, CBEUS uses the
geometric mean, which considers the balance and precision of both the majority
and minority classes to compensate for these drawbacks.
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5.3.2 Undersampling by Cleaning Data

This section will review the most representative undersampling methods based on
cleaning harmful majority samples by different criteria, mainly in similarities and
other data related measures.

5.3.2.1 Weighted Sampling

In [3] a weighted sampling based approach was proposed. Instances located far
from decision limits are more likely to be classified correctly. The examples of
the two classes close to each other are more likely to be misclassified by any
classifier and the decision boundary is also likely to be in the neighborhood of these
border examples. This approach uses this property to select representative negative
samples. If the chosen instances are far from the decision limit and if the instances
located near the true decision boundary are not chosen by a random selection
process, the optimal separation hyperplane obtained by a typical statistical classifier
may be wrongly positioned resulting in an increased number of misclassifications.
The weighted sampling proposed is described as follows:

1. Calculate the weighted Euclidean distance of each negative sample from each
of the positive samples. All features are weighted by its Fishers discriminant
score, which measures the overlapping per attribute and it is usually known as F1
measure [9].

2. For each positive sample, sort negative samples in ascending order of distance
from the positive sample.

3. For each positive sample, select a user-defined number of negative samples. The
user-defined number indicates the desired ratio of negative samples to positive
samples. At this stage, special care is taken to avoid repetitive selection of
negative samples. If a particular negative sample has been already selected, the
next available negative sample is selected.

5.3.2.2 IHT: Instance Hardness Threshold

The article [73] presents a way to compute the difficulty of classifying an instance
and provide a measure called instance hardness that can be used with a set of
thresholds to decide when and why filter a certain instance depending on the training
data and the classifier to be used.

Table 5.1 lists the hardness measures considered in [73]. For more details, it is
convenient to read the original paper.

Figure 5.7 depicts the result of the method IHT implemented in Imbalanced-
learn [52] by using the default configuration applied on the imbalanced chessboard
data set. As we can see, many black spots have been removed to increase the easiness
of classifation for the surrounding white points. The majority examples removed
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Table 5.1 List of hardness measures and what they measure. The “+” and “−” symbols distin-
guish which hardness measures are positively and negatively correlated with instance hardness

Abbr. +/− Measure Insight

kDN + k-disagreeing neighbors Overlap of an instance using all of the data
set features on a subset of the instances

DS − Disjunct size Complexity of the decision boundary for
an instance

DCP − Disjunct class percentage Overlap of an instance using a subset of
the features and a subset of the instances

TD + Tree depth The description length of an instance in an
induced C4.5 [67] decision tree

CL − Class likelihood Overlap of an instance using all of the
features and all of the instances

CLD − Class likelihood difference Relative overlap of an instance using all of
the features and all of the instances

MV + Minority value Class skew

CB − Class balance Class skew

Fig. 5.7 Imbalanced chessboard treated with IHT

were mainly located in the overlapping regions, near to the square limits. Five white
squares are perfectly recovered by CART on the left side and two on the right side.
The rest of white squares are partially recovered motivated by the lack of positive
examples and the overfitting avoiding mechanism of CART. The final outcome is
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Fig. 5.8 Hybrid undersampling algorithm flowchart

very promising, indicating us that IHT is a very successful undersampling approach
which combines local data complexity with class skewing.

5.3.2.3 Hybrid Undersampling

In [76], the authors proposed a hybrid undersampling method by removing the
atypical values first from the majority class using a k reverse NNs technique.
After, from the resulting dataset without outlier data [4] it extracts the support
vectors using an one-class SVMs. They particularly chose SVM, as it performs
an IS (through the collection of support vectors), while classifying the data sets.
Therefore, they implicitly carry out the undersampling by selecting some important
samples from the majority class. These resulting samples are merged with samples
from the minority class, resulting in a modified balanced data set. The block diagram
of the proposed approach is showed in Fig. 5.8.

5.3.3 Ensemble Based Undersampling

Another trend to carry out undersampling is through the combination of multiple
designs in form of ensembles [33, 71]. These distinct designs can be achieved by
changing the distribution of the training data set or some parameters that configure
them.
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5.3.3.1 IRUS: Inverse Random Undersampling

IRUS [77] is a method based on Bagging [28] motivated by the following facts.
Suppose we manipulate the data set to the extreme and reverse the imbalance
between the two classes. Indeed, we would have to draw sets of negative class
samples of proportional size to P 2 where P is the previous probability of the
positive class. This would lead to very small sample sets for the negative class and,
therefore, a poor definition of the boundary between the two classes. However, the
frontier would favor the positive class with a high rate of true positives since the
number of negative class samples is much lower than the number of positive class
samples. Moreover, since the number of samples of the negative class is very small
relative to the dimensionality of the feature space, the ability of each boundary to
completely separate the classes is high. In addition, since the number of samples
drawn is proportional to P 2, the number of independent sets that can be drawn will
be of the order of 1 = P 2. This large number of designs could be used to control the
rate of false positives using a completely different mechanism. By combining the
detectors designed by fusion, we can control the false positive error rate. In short,
the main idea behind IRUS is to maintain a very high positive rate by reversing the
imbalance, that is, by making the majority (negative) subsets of classes have fewer
examples than the (positive) minority class. Then to control the rate of false positives
by a bagging classifier, i.e. by creating several subsets with each subset having all
examples of the positive class and very few samples of the negative class.

The pseudocode presented in Algorithm 1 describes the IRUS algorithm in detail.

Algorithm 1 IRUS algorithm
1: function IRUS(T RN+ , T RN− , S, Sets, t)

Require:T RN+; T RN−; S; Sets; t � Training set with N+ minority samples and N−
majority samples; S is the number of samples from T RN− for each model, S < N+; Sets is
the number of classifiers, default is 1.5 × ceil(N−/S); t is a test sample
Ensure: conf (t) � confidence score of t

2: conf (t) = 0
3: for i = 1 to Sets do
4: T R′

N− ⇐ Randomly pick S samples without replacement from T RN−
5: Ts ⇐ T R′

N− ∪ T RN+
6: Train base classifier hi using Ts samples
7: D = Probability of positive class assigned by hi to the test sample t

8: Dnorm = z-score normalization of D

9: conf (t) = conf (t) + Dnorm

10: end for
11: conf (t) = conf (t)/Sets

12: end function
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Algorithm 2 OligoIS algorithm
1: function OLIGOIS(T R, s, r)

Require: T R; s; r � A training set T R; s is the subset size and r the number of rounds
Ensure: S � Set of selected instances S ⊂ T R

2: for i = 1 to r do
3: Divide instances into ns disjoint subsets
4: Di :⋃i Di = T R of size s

5: for j = 1 to ns do
6: Apply IS algorithm to Dj

7: Store votes of selected instances from Dj

8: end for
9: end for

10: Obtain thresholds of votes to keep an instance from the minority, t+, and the majority, T −,
classes

11: S = {xi ∈ T R|(votes(xi) ≥ t+ and xi ∈ C+) or (votes(xi) ≥ t− and xi ∈ C−)}
12: Undersample the class with more instances in S to obtain Sbalanced removing instances

with fewer votes
13: if f (Sbalanced ) ≥ f (S) then
14: S = Sbalanced

15: end if
16: return S

17: end function

5.3.3.2 OligoIS: Oligarchic Instance Selection

This technique is mainly based on the divide and conquer approach [40]. Instead
of applying an IS method to the entire data set, it first randomly partitions the
instances and applies the selection to each of the obtained subsets. This partition is
repeated for several rounds, and the results are combined through a voting process.
To account for the imbalanced class property of the datasets, the subsets used always
contain the same number of instances of both classes. Any IS method can be used
in the subset in the same way that any classifier can be used in a set. Because of
this method unfairly treats the examples of the majority class, favoring instances of
minority classes, it is called oligarchic IS. By itself, each round would not be able
to achieve a good performance. However, combining several rounds using a voting
scheme is able to improve the performance of an IS algorithm applied to the entire
dataset with a large reduction in runtime of the algorithm.

The pseudocode presented in Algorithm 2 describes the OligoIS method.

5.3.4 Clustering Based Undersampling

Clustering becomes a successful technique to address sampling processes. They take
into account both inter and intra-class imbalance distribution and are supported by
the borderlines given by a set of clusters and the examples belonging to them.
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5.3.4.1 ClusterOSS

It arises as an enhancement of the OSS procedure [6]. OSS [50] assumes that it is
sufficient to choose only one random majority instance to initiate the undersampling
process. However, the final result of the undersampling method will depend on that
random choice. More importantly, OSS does not explicitly take into account the fact
that there may be subsets within the majority class, and that subsampling might not
work as well on all these subsets, given its random start.

The first difference with respect to OSS is that ClusterOSS can initiate the
undersampling process from more than one instance. This already addresses the
drawback of OSS that quality results depend heavily on the choice of the instance
chosen to initiate the subsampling. The second difference is that it does not start
the random undersampling process. Instead, the algorithm defines how many and
which instances will be chosen to initiate that process. More specifically, it looks
for subsets in the majority class, applying a clustering procedure. Then, the instance
in the center of each subset is chosen to be one of the instances that will initiate the
subsampling. By doing this, we improve the effectiveness of undersampling, since
undersampling will start from points in different regions in the feature space.

ClusterOSS is described in these three steps:

1. At the beginning of the algorithm, a clustering procedure (for example, k-means)
is used to group the instances belonging to the majority class.

2. Then, for each group, it finds the instances closest to the center. These instances
are used to initiate the undersampling process, which is identical to the OSS.

3. Finally, as in OSS, the Tomek Links [79] data cleansing technique is used.

5.3.4.2 DSUS: Diversified Sensitivity Undersampling

DSUS consists of three main components [62]: (1) clustering samples in the major-
ity class; (2) undersampling through a selection of samples using the stochastic
sensitivity measure (SM); And (3) a trained Radial-basis function neural network
(RBFNN) using training samples selected by the SM. Figure 5.9 shows the DSUS
workflow. Both clustering and RBFNN use off-the-shelf methods. In addition, k-
means is used although it could be replaced by other clustering methods. The
number of clusters k was set to k = √

N+ for the minority class and N+ for the
majority class.

DSUS selects a sample closer to the center of each of these N+ clusters as
representative samples and then calculates their SM values. The k samples that
produce the highest values of SM will be selected from the majority class. Likewise,
k samples that produce the highest values of SM are also selected from the minority
class. These 2k samples are added to the initial training set to form a balanced
training data set for the RBFNN. At each iteration turn, the training dataset consists
of samples 2tk, where t denotes the number of iterations including the initial spin.
The value of t is at most equal to k. The SM measure was proposed in [86].



98 5 Data Level Preprocessing Methods

Fig. 5.9 DSUS algorithm flowchart

Fig. 5.10 An illustration of
how to create the synthetic
data points in the SMOTE
algorithm

5.4 Synthetic Minority Oversampling TEchnique (SMOTE)

The SMOTE algorithm carries out an oversampling approach to rebalance the
original training set [20]. Instead of applying a simple replication of the minority
class instances, the key idea of SMOTE is to introduce synthetic examples. These
new examples are created by interpolation between several positive instances that
lie together. For this reason, the procedure is said to be focused on the “feature
space” rather than on the “data space”. A simple example of this oversampling
process is illustrated in Fig. 5.10. An xi positive instance is selected as basis to
create new synthetic data points. Based on a distance metric, several NNs of the
same class (points xi1 to xi4) are chosen from the training set. Finally, a randomized
interpolation is carried out in order to obtain new instances r1 to r4.

The formal procedure works as follows. First, the total amount of oversampling
N (an integer value) is set up, which usually is defined to obtain an approximate
1:1 class distribution. Then, an iterative process is carried out, composed of several
steps. First, a positive class instance is selected at random from the training set. Next,
its KNN (5 by default) are obtained. Finally, N of these K instances are randomly
chosen to compute the new instances by interpolation. To do so, the difference
between the feature vector (sample) under consideration and each neighbor is taken.
This difference is multiplied by a random number drawn between 0 and 1, and then
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Algorithm 3 SMOTE algorithm
1: function SMOTE(T ,N, k)

Input: T ; N ; k � #minority class examples, Amount of oversampling, #NNs
Output: (N /100) * T synthetic minority class samples
Variables: Sample[][]: array for original minority class samples;
newindex: keeps a count of number of synthetic samples generated, initialized to 0;
Synthetic[][]: array for synthetic samples

2: if N < 100 then
3: Randomize the T minority class samples
4: T = (N /100)*T

5: N = 100
6: end if
7: N = (int)N/100 � The amount of SMOTE is assumed to be in integral multiples of 100.
8: for i = 1 to T do
9: Compute KNN for i, and save the indices in the nnarray

10: POPULATE(N, i, nnarray)
11: end for
12: end function

Algorithm 4 Function to generate synthetic samples
1: function POPULATE(N, i, nnarray)

Input: N ; i; nnarray � #instances to create, original sample index, array of NNs
Output: N new synthetic samples in Synthetic array

2: while N �= 0 do
3: nn = random(1,k)
4: for attr = 1 to numattrs do � numattrs = Number of attributes
5: Compute: dif = Sample[nnarray[nn]][attr] − Sample[i][attr]
6: Compute: gap = random(0, 1)

7: Synthetic[newindex][attr] = Sample[i][attr] + gap · dif

8: end for
9: newindex + +

10: N − −
11: end while
12: end function

it is added to the previous feature vector. This causes the selection of a random
point along the “line segment” between the features. In case of nominal attributes,
one of the two values are selected at random. The whole process is summarized in
Algorithm 3.

Finally, Fig. 5.11 shows a simple example of the SMOTE application in order to
understand how synthetic instances are computed.

As we mentioned before, SMOTE has served as inspiration for almost all
the oversampling methods proposed for imbalance learning. In [31], the authors
surveyed all the issues and further developments based on SMOTE in recognition
of the 15 years since the original proposal.

Continuing with the graphical representations of the data-level algorithms,
Fig. 5.12 depicts the results of the imbalanced chessboard data set after running
SMOTE by using its standard configuration (k = 5, 100% of balancing). The results
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Fig. 5.11 Example of the SMOTE application

Fig. 5.12 Imbalanced chessboard treated with SMOTE

is quite surprising, due to the fact that the complete chessboard seems to be totally
recovered by the CART decision tree. Only three white squares are partially drawn
and all the remaining black squares are almost maintained from the original data
set. This shows the usefulness of SMOTE, although the algorithm is not perfect
[57]. Several drawbacks, which have been pointed out since the development of
SMOTE, can be easily exhibited in this figure. First, the modeling of these three
partial white squares is due to the location of the positive examples. Each white
square in a chessboard has from two or four diagonal adjacent white squares. If
the positive examples are distributed or oriented by a certain side of the square, the
interpolations will be done focusing on creating new synthetic points in the middle
of this adjacent points. This produces the negative effect of keeping away when no
points are closer in two diagonal adjacent squares. This explains the three half white
squares modeled by CART. Secondly, lots of new artificial examples are created in
the same direction, that is, following an artificial connecting line between diagonal
squares. This may complicate the modeling of decision surfaces because it produces
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lots of borderline examples. Finally, SMOTE clearly generates noisy points. They
can be easily identified due to they fall into black squares and they are surrounded
by black dots.

Motivated by the drawbacks of the original SMOTE idea, many extensions have
been proposed to fix and obtain a more robust oversampling mechanism based on
the generation of synthetic examples. The next chapter of this book is devoted to
describe and show the most relevant SMOTE extensions proposed in the specialized
literature.

5.5 Extensions of SMOTE

In this section, we present the most significant SMOTE-based extensions proposed
in the specialized literature. Currently, there are more than 90 extensions published
in scientific journals and conferences. Here, we will give all the details of the most-
known and used extensions of SMOTE as oversampling approach. Other SMOTE
extensions proposed for the interested reader are: LLE-SMOTE [80], Distance-
SMOTE [26], Polynom-Fit-OS [41], MSMOTE [53], CE-SMOTE [23], Edge-
Det-SMOTE [48], CBSO [7], DSRBF [32], TRIM-SMOTE [66], NRSBoundary-
SMOTE [46], LVQ-SMOTE [61], BKS [63], PDFOS [34], RWO-Sampling [89],
NEATER [2], DAE [11], wRACOG [27], MOT2LD [83], OEFS [64], OUPS
[70], SMOTE-FRST-2T [69], CURE-SMOTE [58], among many others. For an
exhaustive list, reader may refer to [31].

5.5.1 Borderline-SMOTE

To achieve a better prediction, most of the classification algorithms try to learn the
limit of each class as accurately as possible in the training process. Examples at the
border and boundary examples are more likely to be misclassified than those that
are far from the border, and therefore more important for classification.

Based on the above analysis, those examples away from the borders may
contribute little to classification. Therefore, two new methods of oversampling of
minority examples, Borderline-SMOTE1 and Borderline-SMOTE2 were proposed
[42], in which only the limit examples of the minority class will be oversampled.
These methods are different from the existing ones of oversampling in which all
minority examples or a random subset of the minority class are oversampled.

These methods are based on SMOTE. SMOTE generates synthetic minority
examples to oversample the minority class. For each minority example, its k (which
is set to 5 in standard SMOTE) NNs of the same class are estimated, then some
examples are randomly selected from them according to the oversampling rate.
After that, new synthetic examples are generated along the line between the example
of the minority and their closest selected neighbors. Like existing methods of
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oversampling, these new methods only strengthen minority limit examples. First
the borderline minority examples are found; then, synthetic examples are generated
from them and added to the original training set.

Let us assume that the whole training set is denoted by T R, the set of minority or
positive class examples is P and the set of majority examples is M . The number
of minority and majority examples is denoted by N+ and N− respectively. the
procedure Borderline-SMOTE1 is as follows:

1. For every pi , (i = 1, 2, . . . , N+) in P , we calculate its KNN from the whole
training set T R. The number of majority examples among the m NNs is denoted
by m′ (0 ≤ m′ ≤ m).

2. If k′ = k i.e. all the m nearest neighbors of pi are majority examples, pi is
considered to be noise and is not operated in the following steps. If m/2 ≤
m′ ≤ m, namely the number of pi’s majority NNs is larger than the number
of its minority ones, pi is considered to be easily misclassified and put into a
set DANGER. If 0 ≤ m′ ≤ m/2, pi is safe and needs not to participate in the
follows steps.

3. The examples in DANGER are the borderline data of the minority class P ,
and we can see that DANGER ⊂ P . We set DANGER = {p′

1, p
′
2, . . . , p

′
D},

0 ≤ D ≤ N+. For each example in DANGER, we calculate its KNN from P .
4. In this step, D × s synthetic positive examples are generated from the data in

DANGER, where s is an integer between 1 and k. For each (p′
i ), it randomly

selects s NNs from its KNN in P . Firstly, it calculates the differences, difj , (j =
1, 2, . . . , s) between p′

i and its s NNs from P , then multiply difj by a random
number rj (j = 1, 2, . . . , s) between 0 and 1, finally, s new synthetic minority
examples are generated between p′

i and its NNs: syntheticj = p′
i + rj × difj ,

(j = 1, 2, . . . , s).

The algorithm repeats the above mechanism for each p′
i in DANGER and it can

at tain D × s synthetic examples. This step is similar to SMOTE’s one.
According to the authors, Borderline-SMOTE2 does not only generate synthetic

examples from each example in DANGER and its positive NNs in P , but also
does that from its nearest negative neighbor in M . The difference between it and its
nearest negative neighbor is multiplied a random number between 0 and 0.5, thus
the new generated examples are closer to the minority class.

We can see the effects of Borderline-SMOTE1 on the imbalanced chessboard
data set in Fig. 5.13. The differences in the outcome with respect to the original
SMOTE (Fig. 5.13) are evident in the sense of the change of distribution of the
synthetic white points generated. The points are generated especially following the
lines accross the diagonals of the squares, even drawing a circular shape. The denser
an area, the higher the number of points are generated around. This explains how
some white squares located in external places have been missed or reduced during
the learning of CART decision tree, producing a less accurate chessboard modeling.
It is also interesting to note that the number of white dots generated in black squares
is less than that generated by SMOTE.
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Fig. 5.13 Imbalanced chessboard treated with borderline-SMOTE1

5.5.2 Adjusting the Direction of the Synthetic Minority ClasS
Examples: ADOMS

According to the authors [78], when analyzing the SMOTE algorithm, the impact
of the synthetic examples on the original feature space is restricted to the local
space by interpolating the synthetic between the minor class example processing and
one of its NNs. When the neighbor is far from the center, which means that there
are only few examples in the local space near the center and the true underlying
distribution of the class will simply be expressed unreliable, the example of the
synthetic minority class should be inserted in the space from the center to occupy
the space comparatively better defined. In contrast, when the neighbor is near the
center, which means that there are already enough examples in the local space
to finely express the underlying class distribution, the synthetic example must be
inserted closer to the center to avoid disrupting the well definite space. The previous
generation mechanism of examples of synthetic minority classes sounds reasonable,
however in SMOTE, only one of the neighbors of the center is chosen at random
to represent the local space, and the mechanism is performed only in 1-dimension
defined by the center and the selected neighbor. It is obvious that the mechanism
must be performed in all space more appropriately.

Note that the real-world data space is little isotropic, and the interpolation
mechanism must be considered in all directions in the feature space, respectively.
When a synthetic example is generated in the direction in which the projections of
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the local data are scarce, the projection of the synthetic must be further from the
center and; on the contrary, in the direction in which the projections of the local
data are dense, the projection of the synthetic examples must be closer to the center.

The local space could be rebuilt using PCA. The first axis of the main component
retains the maximum variance, and the next axis of the main component retains
the largest of the remainder, and so on. Therefore, the synthetic example must be
furthest from the center in the direction of the first axis of the main component, and
must therefore be closer in the direction in which its occupied variance is smaller,
to the nearest to the center in the direction of the last axis of the main component.
When the synthetic is generated directly on the first axis of the main component
through the center, its projection on the first axis of the main component must be
itself and also the farthest from the center, and then its projection will be closer to
the center in which it has a smaller variance, so it is easy to see that the generation
of the synthetic minority class example along the axis of the first major component
of the local data distribution would fit better with the interpolation mechanism.

Following this motivation, the ADOMS algorithm can be described in the next
steps:

1. Randomly select one of the minority class examples pi in the original training
data as the processing example.

2. Define the neighbor number k, (k = 1, 2, 3, . . .), and calculate the KNN of pi in
the feature space using the Euclidean distance.

3. Calculate the first principal component axis of local data distribution which
composed of pi and its k neighbors in the feature space.

4. Select one of its neighbors mj randomly and calculate the Euclidean distance d

between pi and mj , then a scaling is obtained from Random(0, 1).
5. Generate a new synthetic minority class example p′

i in the feature space, where
p′

i is generated along the direction from pi to the projection of mj on the first
principal component axis through pi , and the Euclidean distance between p′

i and
pi is scaling × d.

5.5.3 ADASYN: Adaptive Synthetic Sampling Approach

ADASYN [45] is based on the idea of adaptively generating minority examples
according to their distributions: more synthetic data are generated for samples of
minority classes that are more difficult to learn compared to samples of minorities
that are easier to learn. The ADASYN method can not only reduce the learning
bias introduced by the original unbalance data distribution, but can also adaptively
change the decision boundary to focus on those samples difficult to learn.

The algorithm ADASYN is described next.
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Input

Training data set T R with N samples {xi, yi}, i = 1, . . . , N , where xi is an instance
in the m dimensional feature space M and yi ∈ C = {pos, neg} is the class
identity label associated with xi . Define N+ and N− as the number of minority
class examples and the number of majority class examples, respectively. Therefore,
N+ ≤ N− and N+ + N− = N .

Procedure

1. Calculate the degree of class imbalance as d = N+/N−, where d ∈ (0, 1].
2. Set dth a preset threshold for the maximum tolerated degree of class imbalance

ratio. If d < dth:

(a) Calculate the number of synthetic data examples that need to be generated
for the minority class as G = (N− − N+) × β, where β ∈ [0, 1] is a
parameter used to specify the desired balance level after generation of the
synthetic data. β = 1 means a fully balanced data set is created after the
generalization process.

(b) For each minority example pi , find KNN based on the Euclidean distance
in m dimensional space, and calculate the ratio ri defined as ri = Δi/k,
i = 1, . . . , N+, where Δi is the number of examples in the KNN of pi that
belong to the majority class, therefore ri ∈ [0, 1].

(c) Normalize ri according to r̂i = ri/
∑N+

i=1 ri , so that r̂i is a density distribution
(
∑

i r̂i = 1).
(d) Calculate the number of synthetic data examples that need to be generated

for each minority example pi as gi = r̂i × G, where G is the total number
of synthetic data examples that need to be generated for the minority class as
defined in step 2a.

(e) For each minority class data example pi , generate gi synthetic data examples
according to the next loop. Do the Loop from 1 to gi :

i. Randomly choose one minority data example, pzi , from the KNN for data
pi .

ii. Generate the synthetic data example si with si = pi + (pzi − pi) × Λ,
where (pzipi) is the difference vector in the m dimensional space, and Λ

is a random number Λ ∈ [0, 1].
In Fig. 5.14 we can appreciate the result of applying ADASYN with its standard

configuration on the imbalanced chessboard data set. Here, the synthetic points
are generation with a more suitable distribution. The first effect we can observe
is that the previous behavior of generating new points following the diagonals of
connected squares is not present. CART is not able to model full-connected squares,
but the chessboard is almost completely restored. It is important to mention that
there are some isolates minority points created within the black squares and that it
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Fig. 5.14 Imbalanced chessboard treated with ADASYN

is noticeable to see a considerable separation between the points of different classes,
which supports significantly to the later learning tasks.

5.5.4 ROSE: Random Oversampling Examples

ROSE provides a unified framework to deal simultaneously with the model estima-
tion and accuracy evaluation in imbalanced learning [60]. It builds on the generation
of new artificial examples from the classes, according to a smoothed bootstrap
approach.

Let be a training data set T R with N samples {xi, yi}, i = 1, . . . , N , where
xi is an instance in the m dimensional feature space M and the class label yi ∈
C = {Y0, Y1}. xi are some related attributes supposed to be realizations of a random
vector x defined on Rd , with an unknown probability density function f (x). Let Nj

the number of examples belonging to the class Yj . ROSE consists of the following
steps:

1. Select y∗ = Yj with probability πj .
2. Select {xi, yi} ∈ T R, such that yi = y∗, with probability 1/Nj .
3. Sample x∗ from KHj

(·, xi), with KHj
a probability distribution centered at xi

and covariance matrix Hj .
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Basically, it draws from the training set an observation belonging to one of the
two classes, and generate a new example {x∗, y‘∗} in its neighborhood, where the
shape of the neighborhood is determined by the shape of the contour sets of K and
its width is governed by Hj . The generation of new examples from Yj , corresponds
to the generation of data from the kernel density estimate of f (x|Yj ), with kernel K

and smoothing matrix Hk . The choices of K and Hk may be then addressed by the
large specialized literature on kernel density estimation. The repetition of steps from
1 to 3 allows you to generate as many new instances as you want, and changing the
value of the probability πj associated with the class choice allows you to balance
the new data set as desired.

The behavior of ROSE is depicted in Fig. 5.15. The values of the optional shrink
factor to be multiplied by the smoothing parameters to estimate the conditional
kernel density of both the majority and minority classes was set to 0.15. For
illustration purposes on how ROSE works, this graphic only shows the artificial gen-
erated points for both classes, and the original points coming from the imbalanced
chessboard data sets are not included. Thus it is not a real scenario in which we can
only generate synthetic points from the minority class and a small set of points from
the majority class. The result is very satisfactory, allowing us to sample a new data
set from lots of possible configurations depending on the later DM algorithm to be
applied.

Fig. 5.15 Imbalanced chessboard created with ROSE (the original points are not included)
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5.5.5 Safe-Level-SMOTE

Inspired on SMOTE, Safe-Level-SMOTE assigns each positive instance its safe
level before generating synthetic instances [16]. Each synthetic instance is posi-
tioned closer to the highest secure level, so all synthetic instances are generated
only in secure regions.

The safe level (sl) is defined as formula (5.5). If the safe level of an instance is
close to 0, the instance is almost noise. If it is near k, the instance is considered
safe. The safe level relationship is defined as formula (5.6). It is used to select safe
positions for generating synthetic instances. The algorithm Safe-Level-SMOTE is
describe in Algorithm 5.

safe level(sl) = the number of a positive instances in k nearest neighbours.
(5.5)

safe level ratio = sl of a positive instances/sl of a NNs. (5.6)

The result of applying Safe-Level-SMOTE (default parameters) to the imbal-
anced chessboard data set is depicted in Fig. 5.16. Its behavior is quite similar
to BorderLine-SMOTE [42], although the performance is clearly inferior in this
case. The shape of the chessboard is not completely recovered and the generation
of new synthetic points is more intensive in certain places where we can find a
greater density of white points. Even though the idea behind safe level instances
sounds interesting, the algorithm does not worry about the quantity of examples to
be generated as ADASYN does. Furthermore, some noisy synthetic instances can
be also viewed in the graphic, hence a complementary edition process may be very
useful to be combined with it.

5.5.6 DBSMOTE: Density-Based SMOTE

The DBSMOTE [17] development was inspired by several consistent and para-
doxical concepts in Borderline-SMOTE [42]. DBSMOTE broadly follows the
Borderline-SMOTE approach, which operates in an overlapping region [36], but
DBSMOTE over-examines this region to maintain the majority class detection
rate. However, DBSMOTE also incorporates a different approach than Borderline-
SMOTE, which does not work in secure regions. Instead, DBSMOTE overviews
this region to improve detection rates for minority examples.

This algorithm is supported by a data structure called the directly density-
reachable graph associated with a cluster C which can be discovered by the
DBSCAN clustering algorithm. Algorithm 6 represents the pseudocode of the
DBSMOTE method.

DBSCAN begins to produce l disjoint clusters C1, C2, . . . , Cl , and detects a
set of noise instances, which reduces in the next step from a minority class D+.
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Algorithm 5 Safe-level-SMOTE algorithm
1: function SAFE-LEVEL-SMOTE(P )

Input: P � a set of all original positive instances
Output: P ′ � a set of all synthetic positive instances

2: P ′ = ∅
3: for each positive instance p in P do
4: compute KNN for p in P and select a random neighbor n from the k nearest neighbours
5: slp = the number of positive instances in k nearest neighbours for p in P

6: sln = the number of positive instances in k nearest neighbours for n in P

7: if sln �= 0 then � sl is safe level
8: sl_ratio = slp/sln � sl_ratio is safe level ratio
9: else

10: sl_ratio = ∞
11: end if
12: if sl_ratio = ∞ and slp = 0 then
13: does not generate positive synthetic instance
14: else
15: for mi = 1 to M do � M is the total number of attributes
16: if sl_ratio = ∞ and slp �= 0 then
17: gap = 0
18: else if sl_ratio = 1 then
19: gap = random(0, 1)

20: else if sl_ratio > 1 then
21: gap = random(0, 1/sl_ratio)

22: else if sl_ratio < 1 then
23: gap = random(1 − sl_ratio, 1)

24: end if
25: dif = n[mi ] − p[mi ]
26: s[mi ] = p[mi ] + gap × dif

27: end for
28: P ′ = P ′ ∪ {s}
29: end if
30: end for
31: return P ′
32: end function

DBSMOTE subsequently generates l sets of synthetic instances C′
1, C

′
2, . . . , C

′
l .

Eventually, these l sets are merged with an original dataset T R to create an
oversampled dataset T R′.

Figure 5.17 draws the outcome as a consequence of running DBSMOTE over
the imbalanced chessboard data set. After DBSMOTE the picture is again similar
to a original chessboard once modeled by CART. Almost all the white squares
have been recovered although the located in the center of the grid present some
deficiencies. the picture clearly shows how the graph guides and determines the
interpolation of synthetic examples in this algorithm. Note that the graph usually
connects the diagonals of the squares as expected, but it obviously depends on the
quantity and distribution of points. Curiously, we can observe that the graph draw a
line intersecting a black square, producing harmful white dots that fortunately were
ignored by CART.
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Fig. 5.16 Imbalanced chessboard treated with Safe-Level-SMOTE

Algorithm 6 DBSMOTE algorithm
1: function DBSMOTE(Ci, ε, k)

Input: Ci; ε; k � a cluster i of positive instances, Eps and MinP ts parameters for the
construction of the graph
Output: C′

i � a set i of synthesis instances
2: C′

i = ∅
3: G = construct_directly_density-reachable_graph(Ci, ε, k)

4: c = determine_pseudo-centroid(Ci) � the nearest instance from a mean of Ci

5: π = Dijkstra(G, c) � to build a predecessor list π where a given source node is c in G

6: for each p ∈ Ci do
7: § = retrieve_shortest_path(π, p, c)

8: e = select_random_edge(§)

9: (v1, v2) = get_connected_nodes(e)

10: for mj = 1 to M do � M is the total number of attributes
11: diff = v2[mj ] − v1[mj ]
12: gap = random(0, 1)

13: s[mj ] = v1[mj ] + gap × diff

14: end for
15: C′

i = C′
i ∪ {s}

16: end for
17: return C′

i

18: end function
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Fig. 5.17 Imbalanced chessboard treated with DBSMOTE

5.5.7 MWMOTE: Majority Weighted Minority Oversampling
TEchnique

The authors claimed that in some circumstances, many of the previous extensions
of SMOTE become inappropriate and do not generate useful synthetic minority
class samples [8]. For instance, the parameter dth of ADASYN defining the number
of the majority class samples among the KNN of the minority class example may
encounter the some problems, like:

• It is inappropriate for assigning weights to the minority class samples located
near the decision boundary.

• It is insufficient to distinguish the minority class samples with regard to their
importance in learning.

• It may favor noisy samples.

Also, the authors criticize the KNN based interpolation employed in SMOTE,
alleging that this approach may create duplicate and wrong synthetic minority class
examples coming from the members of dense and small-sized clusters.

Motivated by the problems mentioned above, a new oversampling method
called MWMOTE is developed. The aim of the method is twofold: to improve
the sample selection scheme and to improve the synthetic sample generation
scheme. MWMOTE is organized around three phases. In the first phase, MWMOTE
identifies the most important and difficult-to-learn minority class samples of the
original minority set and constructs a new set for the identified samples. In the
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second phase, each member of the new set is given a selection weight according to
its importance within the set. In the third stage, MWMOTE generates the synthetic
samples using the previous weights and produces the output set resulting from the
addition of the synthetic samples to the original set. The MWMOTE algorithm is
described next:

Input

1. Smaj : Set of majority class examples.
2. Smin: Set of minority class examples.
3. N : Number of synthetic samples to be generated.
4. k1: Number of neighbors used for predicting noisy minority class samples.
5. k2: Number of majority neighbors used for constructing informative minority

set.
6. k3: Number of minority neighbors used for constructing informative minority

set.

Procedure

1. For each minority example xi ∈ Smin, compute the NN set, NN(xi) consisting
of the nearest k1 neighbors of xi according to euclidean distance.

2. Construct the filtered minority set, Sminf by removing those minority class
samples which have no minority example in their neighborhood: Sminf =
Smin − {xi ∈ Smin : NN(xi) contains no minority example}.

3. For each xi ∈ Sminf , compute the nearest majority set, Nmaj (xi) consisting of
the nearest k2 majority samples from xi according to euclidean distance.

4. Find the borderline majority set, Sbmaj =⋃xi∈Sminf
Nmaj (xi).

5. For each majority example yi ∈ Smaj , compute the nearest minority set,
Nmin(yi) consisting of the nearest k3 minority examples from yi according to
euclidean distance.

6. Find the informative minority set, Simin =⋃yi∈Sbmaj
Nmin(yi).

7. For each yi ∈ Sbmaj and for each xi ∈ Simin, compute the information weight,
Iw(yi, xi). This measure is directly proportional to a closeness factor and a
density factor explained in the original paper.

8. For each xi ∈ Simin, compute the selection weight Sw(xi) =∑yi∈Sbmaj
Iw(yi, xi)).

9. Convert each Sw(xi) into selection probability Sp(xi) = Sw(xi)/
∑

zi∈Simin
Sw(zi).

10. Find the clusters of Smin. Let, M clusters are formed which are L1, L2, . . . , LM .
11. Initialize the set Soamin = Smin.
12. Do for j = 1 . . . N .

(a) Select a sample x from Simin according to probability distribution Sp(xi).
x is a member of the cluster lk , 1 ≤ k ≤ M .

(b) Select randomly another sample y, from the members of the cluster Lk .
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(c) Generate one synthetic data s, according to s = x + α × (y − x), where α

is a random number in the range [0, 1].
(d) Somin = Somin ∪ {s}

13. End For.

Output: The oversampled minority set Somin.
Figure 5.18 depicts the result of MWMOTE applied on the imbalanced chess-

board data set after generating 400 minority synthetic examples. The picture show
how this technique is able to recover almost the original chessboard shape with
a complete balanced data set. The use of clustering is easily observed as there
are very few white spots out of place, suggesting that the drawback on the use of
KNN pointed out by the authors is well addressed. Besides, the quantity of points
generated in each place seems to be accurate because all the white squares are
recovered. It is true that three of have been partially extracted, but this is due to the
original localization of the minority examples in the imbalanced data set. MWMOte
os quite conservative and prefer not to generate points in the line intersection of two
remote points, explaining why these three squares are partially modeled by CART.
In summary, Fig. 5.18 shows us that MWMOTE is one of the best extensions of
SMOTE.

Fig. 5.18 Imbalanced chessboard treated with MWMOTE
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Fig. 5.19 MDO algorithm flowchart

5.5.8 MDO: Mahalanobis Distance-Based Oversampling
Technique

This algorithm is inspired by the distance of Mahalanobis[59]. MDO [1] over-
samples the minority examples by considering each sample of the minority class
to generate a new synthetic instance that has the same Mahalanobis distance as
the average of the class considered with the sample chosen. It generates synthetic
samples towards the variation of the corresponding class and helps to reduce the
overlap between different class regions. In multi-class problems, it is very common
to find overlapping between different regions. By preserving the covariance struc-
ture of data in minority classes, MDO can create new suitable examples that are very
useful in learning algorithms. MDO selects those minority class candidates who are
placed in the dense areas of the corresponding class. In other words, new synthetic
samples are generated towards the probability boundaries of samples that have more
neighbors in the same class.

A general scheme describing the MDO framework is showed in Fig. 5.19.
For more details on its implementation, please consult the original paper of
MDO.

5.6 Hybridizations of Undersampling and Oversampling

Hybridizations of undersampling and oversampling arise from the drawbacks
mentioned in the previous sections associated with each family of methods. They
pursue the optimal balance of removing majority examples and generating new
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minority examples to achieve the best possible performance in any imbalance data
set.

As classical methods, we consider 2 techniques proposed in the early study of
Batista et al. [10] in which SMOTE is linked with two classical undersampling
approaches. Over the years, they have become a standard because they almost
always enhance the performance of the original SMOTE by using a very simple
extra step.

• SMOTE + Tomek Link: Although oversampling minority class examples can
balance class distributions, some other problems usually present in data sets with
skewed class distributions are not solved [10]. Frequently, class clusters are not
well defined since some majority class examples might be invading the minority
class space. The opposite can also be true, since interpolating minority class
examples can expand the minority class clusters, introducing artificial minority
class examples too deeply in the majority class space. Inducing a classifier under
such a situation can lead to overfitting. In order to create better-defined class
clusters, Tomek links [79] can be applied to the oversampled training set as a data
cleaning method. Thus, instead of removing only the majority class examples that
form Tomek links, examples from both classes are removed. Thus, this method
works as follows: first, the original data set is oversampled with SMOTE, and
then Tomek links are identified and removed, producing a balanced data set with
well-defined class clusters.

• SMOTE + ENN: The motivation behind this method is similar to SMOTE + Tomek
links [10]. ENN [81] tends to remove more examples than the Tomek links
does [79], so it is expected that it will provide a more in depth data cleaning.
Differently from NCL which is an undersampling method [51], ENN is used to
remove examples from both classes. Thus, any example that is misclassified by
its KNN is removed from the training set.

Both algorithms work similarly, they can remove examples belonging to either
the majority or minority class. Figure 5.20 represents the effects of applying ENN
after SMOTE in the chessboard data set (the result offered by Tomek Links after
SMOTE is more or less similar, thus we do not draw it). At first glance, the
result seems to be a bit worse than using SMOTE isolate, but this is mainly
motivated by the data set characteristics and CART modeling. We can see that the
previous existing points connecting the diagonals between squares have completely
disappeared, which limitates an accurate modelling of the squares. The area devoted
to white points is significantly reduced in general, showing us the negative effects
that can be achieved if some important minority examples are removed. This
is a defect of ENN, it may consider as noisy points some positive points that
support the modeling of correct decisions boundaries. In addition, all the white
dots falling inside the black squares are removes without any undesired effect. It
is noteworthy to mention that both ENN and Tomek Links are basic approaches and
more sophisticated hybridizations have been proposed to overcome the problems
drawn from this figure.
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Fig. 5.20 Imbalanced chessboard treated with SMOTE + ENN

Next, we will describe other hybrid sampling methods utilizing more complex
mechanisms:

• Agglomerative Hierarchical Clustering (AHC): AHC was one of the first
attempts to use clustering to balance the data [24]. The K-means algorithm
was used to undersample the majority examples and agglomerative hierarchical
clustering was used to oversample the minority examples. Here, the clusters
are gathered from all levels of the resulting dendograms and their centroids are
interpolated with the original positive examples.

• SPIDER: It is an original method for selective preprocessing [12, 74]. It
combines the elimination of these objects from the majority classes that can result
in the misclassification of objects of the minority class, with local sampling of
these objects of the minority class that are “overwhelmed” by objects surrounding
the majority classes. On the one hand, this filtering is less greedy than the one
used by NCL, and on the other hand, the oversampling is more focused than
that used by SMOTE. SPIDER offers three filtering options that affect minority
class modification and lead to ever greater degree and scope changes: weak
amplification, weak amplification and re-labeling, and strong amplification.

• SMOTE-RSB∗: Here, a new hybrid proposal is introduced based on two steps
[68]: (1) constructing new synthetic examples of the minority class using
SMOTE, (2) improving the quality of these new samples through editing
techniques based on Rough Set Theory (RST) and the smaller approximation
of a subset, acting on the artificial instances of the minority class created by the
SMOTE algorithm. The main contribution is to introduce a new preprocessing
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method using SMOTE to generate synthetic examples and RST as a cleaning
method. The elimination of any synthetic example that does not belong to the
lower approximation (B∗) of the minority class is encouraged, considering these
examples in the boundary region as noisy and not useful for classification.

• SMOTE-IPF: It is a SMOTE hybridization in which the IPF noise filter is
applied as post-processing [72]. Their suitability to handle noisy and minority
examples in imbalanced data was a particular focus of evaluation as these are
one of the main sources of difficulty for the learning algorithms. The IPF method
eliminates noisy examples in multiple iterations until a stopping criterion is
reached. The iterative process stops when, for a series of consecutive iterations,
the number of noisy examples identified in each of these iterations is less than a
percentage of the size of the original training dataset.

5.7 Summarizing Comments

In this chapter, data preparation level solutions for class imbalance were presented
and analyzed as a useful and widely used alternative for treatment in classification
with imbalanced classes. The approaches we have presented are organized around
two main trends: undersampling and oversampling. We have also seen several
hybrid techniques and how they can offer better performance and more targeted
assistance to the problem of imbalance learning.

Although many data level techniques have been introduced, new challenges
remain. In the paper [31], a detailed overview is made of the oversampling
techniques that have emerged from SMOTE as inspiration. It is easy to see how
there are many mechanisms that have been previously incorporated in derivatives
techniques that have not yet been merged or explored into new algorithms. Likewise,
undersampling techniques and their hybrids with oversampling are maturing and
much remains to be explored. Moreover, the study of the intrinsic properties of data
(which we will also study in this book) can incorporate interesting mechanisms
for the creation of new data level strategies. There is still a long way to go in this
field and this is shown by the interest of the scientific community in proposing
new techniques at the data level that are increasingly achieving better results in
imbalanced learning.
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Chapter 6
Algorithm-Level Approaches

Abstract Algorithm-level solutions can be seen as an alternative approach to data
pre-processing methods for handling imbalanced datasets. Instead of focusing on
modifying the training set in order to combat class skew, this approach aims
at modifying the classifier learning procedure itself. This requires an in-depth
understanding of the selected earning approach in order to identify what specific
mechanism may be responsible for creating the bias towards the majority class.
Algorithm-level solutions do not cause any shifts in data distributions, being more
adaptable to various types of imbalanced datasets – at the cost of being specific only
for a given classifier type. In this chapter we will discuss the basics of algorithm-
level solutions, as well as review existing skew-insensitive modifications. To do so,
the background will be introduced first in Sect. 6.1. Then, special attention will be
given to four groups of methods. First, modifications of SVMs will be discussed
in Sect. 6.2. Section 6.3 will focus on skew-insensitive decision trees. Variants of
NN classifiers for imbalanced problems will be presented in Sect. 6.4 and skew
insensitive Bayesian in Sect. 6.5. Finally, one-class classifiers will be discussed
in Sect. 6.6, whereas Sect. 6.7 will conclude this chapter and will present future
challenges in the field of algorithm-level solutions to class imbalance.

6.1 Introduction

Algorithm-level methods concentrate on modifying existing learners to alleviate
their bias towards majority class instead on altering the supplied training set [35].
This requires a good insight into the modified learning algorithm and a precise
identification of reasons for its failure in mining skewed distributions. While pre-
processing algorithms can be seen as more general ones, as any learning algorithm
can be trained afterwards such balancing, the group of methods discussed in this
chapter is specific to a selected model. This reduces their flexibility, but offers higher
specialization potential in tuning the method to the problem at hand.

In order to propose an algorithm-level modification one must firstly understand
what hinders the performance of a given classifier on imbalanced data. Often the
classification bias is caused by more than a single factor, forcing researchers to
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Fig. 6.1 Different decision boundaries given by Support Vector Machine for an imbalanced
dataset: (left) standard approach; (right) instance-level weighting

understand how strong influence holds each of them independently and how their
interplay with each other. Usually one of the characteristics of a given learner is
most prone to be skewed towards the majority class. An example of this would be
a splitting criteria used for decision tree induction. Imbalanced training data may
lead to selecting such a criteria that favors majority class instead of minority one.
Therefore, to counter this one must analyze the splitting mechanism and decide what
can be done to avoid such a scenario. Support Vector Machines are another popular
example of algorithm-level solutions. An example of modifying such a classifier by
assigning higher importance to minority class instances is depicted in Fig. 6.1.

Algorithm-level solutions are not as popular in the literature, as they are arguably
more difficult to design and implement than pre-processing methods [6, 35]. Despite
this there exist a number of efficient solutions for class imbalance that rely on
direct modifications of learners. Many of popular machine learning algorithms have
been subject to such alternations, including SVMS [1] and their variants [52, 73],
Decision Trees [11], NN approaches [7], Bayesian classifiers [16], ANNs [17], or
kernel machines [62].

In the following sections we will discuss selected skew-insensitive algorithm-
level modifications of popular classification algorithms.

6.2 Support Vector Machines

SVMs are among the most popular algorithms for pattern classification, due to their
powerful generalization abilities, convergent properties and flexibility in adapting to
various learning difficulties. However, in their original form they are highly prone
to imbalanced class distributions. There was a substantial effort in understanding
what causes such shortcoming and how to alleviate it. This spawned a number of
alternative solutions that modified the underlying mechanisms of SVMs in order
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to make them skew-insensitive. Before discussing them in detail, let us revise the
basics behind this classifier.

SVM algorithm aims at finding the optimal hyperplane which separates instances
into two classes. As traditional linear classifiers offer many desirable properties,
while not being able to cope with complex data structures, a transformation of input
instances into higher dimensional artificial feature spaces is being used. Thus by
using a non-linear mapping Φ, we are able to achieve a linear separation between
classes in the new space, which in turn translates to a non-linear decision boundary
in the original feature space. We may represent the potential separating hyperplane
constructed in the mentioned higher dimensional space as:

w · Φ(x) + b = 0, (6.1)

where w stands for a weight vector normal to this hyperplane. In case of considered
data are linearly separable, the decision hyperplane characterized by a maximum
margin (highest possible intra-class distance) can be obtained by the following

optimization of margin: min
(

1
2w · w

)
, subject to ∀i=1,··· ,lyi (w · Φ(xi) + b) ≥ 1,

where l stands for the number of training instances.
However, contemporary datasets are rarely linearly separable, thus forcing us to

modify the previous statement to include the possibilities of classifying some of
training instances, thus achieving greater generalization purposes and reducing the
overfitting issue. This is done by using slack variable associated with i-th instance
ξi ≥ 0. This allows to rewrite the margin optimization problem as soft margin:

min

(
1

2
w · w + C

l∑

i=1

ξi

)

subject to ∀
i=1,··· ,l ∀

ξi≥0
yi (w · Φ(xi) + b) ≥ 1 − ξi,

(6.2)

where C stands for the regularization parameter that controls the trade-off between
maximizing the separation margin between classes and minimizing the number
of misclassified instances. The penalty term

∑l
i=1 ξi depicts how many training

instances may lie on the wrong side of the decision boundary during the classifier
learning procedure.

This is a quadratic optimization problem that can be solved by transforming it
into Lagrangian optimization problem with the following dual form:

max
αi

⎧
⎨

⎩

l∑

i=1

αi − 1

2

l∑

i=1

l∑

j=1

αiαjyiyjΦ(xi) · Φ(xj )

⎫
⎬

⎭

subject to ∀
i=1,··· ,l ∀

0≤αi≤C

l∑

i=1

yiαi = 0,

(6.3)
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where αi are Lagrange multipliers that must satisfy the following Karush-Kuhn-
Tucker conditions:

∀
i=1,··· ,l αi (yi (w · Φ(xi) + b) − 1 + ξi) = 0, (6.4)

∀
i=1,··· ,l (C − αi)ξi = 0. (6.5)

As learning the mapping functionΦ(x) may be difficult or even impossible,
SVMs use kernel functions K(xi, xj ) = Φ(xi) · Φ(xj ), we are able to write the
dual optimization problem in its kernelized form as:

max
αi

⎛

⎝
l∑

i=1

αi − 1

2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi, xj )

⎞

⎠

subject to ∀
i=1,··· ,l ∀

0≤αi≤C

l∑

i=1

yiαi = 0.

(6.6)

Solving this kernelized dual optimization form and finding optimal values of αi

allows us to calculate w =∑ i = 1lαiyiΦ(xi) and determine value of parameter b

from Karush-Kuhn-Tucker conditions. Training instances with associated non-zero
values of αi are known as support vectors and deemed as sufficient to represent the
training set. Therefore, SVMs achieve instance reduction by relying only on support
vectors.

The previous equations allow us to write the SVM classification function as:

f (x) = sign (w · Φ(x) + b) = sign

(
l∑

i=1

αiyiK(xi, x) + b

)

. (6.7)

While this solution is suitable for roughly balanced datasets, it tends to fail for
skewed class distributions. As we want to propose an algorithmic-level solution
to this problem, we must understand what hinders the performance of SVMs in
imbalanced domains. The first answer comes from the soft margin optimization
task defined in Eq. (6.2). Here, the regularization parameter C may be seen as a
misclassification cost for penalizing errors on the training set. However, it assumes
identical cost assigned to both of classes. Therefore, learning algorithm will favor
the majority class, as concentrating on it will lead to a better trade-off between
classification error and margin maximization. This will come at the expense of
minority class, especially when the imbalance ratio is high, as then ignoring the
minority class will lead to better optimization results. Therefore, the resulting
hyperplane will be shifted towards minority class.

Another potential drawback of SVMs is connected with support vectors derived
from imbalanced data. As one may recall, only instances with αi ≥ 0 will be
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preserved and used as support vectors. As this process is also skew-insensitive,
the larger imbalance ratio will lead to bigger disproportions in number of support
vectors associated to each class. Therefore, trained SVM will display reduced (if
any) generalization capabilities on the minority class, caused by further increased
disproportion between class instances.

Additional problem may lie in difficult types of minority class instances. Not
only the sole disproportion between class distributions may play role in SVM bias.
Small number of minority class instances, combined with the fact that they are
often overlapping with majority class or distributed in small chunks, will lead to an
insufficient density around the area where the actual classification boundary should
be estimated.

SVMs have been often combined with dedicated sampling solutions [67] and
feature selection [53] to tackle class imbalance, but their true potential lies in
modifying their underlying mechanisms. Let us now discuss the algorithm-level
approaches to making SVMs skew-insensitive. They are divided into four cate-
gories: using specific kernel modifications, weighting training instances according
to their importance, using active learning paradigm to select a subset of training
instances, and other approaches that do not fit into previous groups.

6.2.1 Kernel Modifications

Used kernel functions play crucial role in the performance of SVMs. Therefore,
it seems natural that modifying these underlying functions may alleviate the
bias towards the minority class. Let us now discuss several most popular kernel
modifications that allow us to train skew-insensitive SVMs.

6.2.1.1 Kernel Boundary and Margin Shift

First possible kernel modification is to directly influence the kernel matrix given by
a selected kernel function on training data [87]. The main advantage of this lies in
relying directly on the information coming from instances in the transformed feature
space, thus making it more flexible. Given kernel modification should improve
the spatial resolution along the decision boundary, thus leading to a better intra-
class separatio. As it works in the mapped space, it can easily identify the learned
boundary as the center hyperplane in the estimated margin. Then, in order to reduce
the bias, the boundary between the center hyperplane and the hyperplane formed
by majority class support vectors is being magnified [88]. This leads to reduced
number of majority class support vectors, and hence alleviates the classification
bias. Authors of [92] postulate to shift the margin in order to reduce the classification
bias. Their modification re-weights the classes via inversed proportional regularized
penalty. Then, a margin compensation is being conducted which leads to lopsided
margin. This forces a shift of the decision boundary in favor of minority class.
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Similar approach is adopted by [78], where authors use the margin alignment
to obtain skew-insensitive ensemble of classifiers. Decision boundary and margin
shifts have recently attracted a lot of attention in various different formulations of
classifiers based on SVMs. Yu et al. [93] enhanced SVM with optimized decision
threshold adjustment strategy that allowed for a self-adaptive decision boundary
alignment. Maximum margin and minimum volume hyper-spheres machine with
pinball loss, based on twin hyper-sphere SVMs were proposed in [90]. The idea
was based on constructing two hyperspheres, one for majority and one for minority
class. Then the margin between them was subject to maximization, while pinball
loss function was use to combat the presence of potential overlapping and noise.
This approach was extended in [89], where authors proposed a new version of
their twin hyper-sphere SVM that avoids the matrix inverse operation and offers
significant training speed-up compared to other solutions.

6.2.1.2 Kernel Target Alignment

While training SVMs one may use a kernel-alignment approach for model selection
purposes [13]. It is a measure of similarity between two kernel functions or between
a kernel and a target function. It allows us to quantify the level of agreement between
the used kernel and the classification problem at hand. It can be used instead of
other measures (such as margins), leading to efficient and simpler SVM tuning.
In order to calculate if the used kernel obtains the correct data representation one
needs to check the difference between the sum of the inter-class distances with the
sum of the intra-class distances. Such a difference can be directly translated into the
obtained alignment between the used kernel and a theoretical ideal one (oracle) and
thus check the fitness of currently used kernel. This approach was further extended
in [98], where authors merged the EulerMaclaurin formula with local and global
extremal properties derived from the approximate kernel separability criterion. This
allowed to calculate a determined global minimum point for the approximation
function. After this, the SVM optimization is being solved without continuously
repeating the search with varying starting points to obtain local minimums. Further
works examined the applicability of kernel target alignment to optimization of
multi-scale kernels, where a different width is chosen for each feature independently
[65]. Kernel alignment may be used for class imbalance learning, by taking into
account the skewed distributions while calculating the fitness of the kernel [33].
Thus, kernels leading alleviating the bias towards the majority class will be preferred
instead of skew-sensitive ones.

6.2.1.3 Kernel Scaling

Yet another approach to improving the performance of SVMs on imbalanced data
lies in scaling the underlying kernel. This allows to take as an input the initial
approximate solution and then modify such model to better adjust to skewed
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class distributions. While traditional kernel functions offer some possibilities of
feature space geometry re-shaping, applying a conformal transformation leads to
an even greater adaptability. A conformal transformation of any geometrical space
(like considered here feature space) is defined as such a function that maps given
space into a new one, while locally preserving angles between curves. Maratea
et al. [56] proposed to use asymmetric kernel scaling based on such a conformal
transformation in order to enlarge areas on both sides of the decision boundary
in an independent manner. This allows for reducing the bias towards the majority
class. Any SVM solution can be used to compute the initial decision boundary and
obtained predictions are used to divide the instance set into positive χ+ and negative
χ− groups. Then a following kernel transformation is used:

D(x) =
{

e−k1f (x)2
if x ∈ χ+

e−k1f (x)2
if x ∈ χ− , (6.8)

where k1 and k2 are free scaling parameters that are responsible for the size of
the decision area enlargement associated with positive and negative classes. While
one can easily see how significant impact their values will have on the final scaled
classifiers, only an empirical value selection was presented in [56]. Therefore, a
grid-search or other automated parameter tuning procedure must be used in order to
determine the proper parameter values. This leads to an increased computational
complexity of this method. This was addressed by Zhang et al. [95, 96], where
authors used the same transformation as in Eq. (6.8), but added a Chi-Squared test
for calculating the scaling parameters, as well as weights associated with training
instances. Furthermore, authors showed how to extend their model to multi-class
imbalanced problems.

6.2.2 Weighted Approaches

This approach assumes that one may assign higher importance to given training
instances (usually to the ones coming from the minority class) in order to boost their
influence on the SVM training procedure and increase their chances of becoming
support vectors. Additionally, some approaches apply the weighting scheme directly
to support vectors to reshape the decision boundary. Let us take a closer look on the
most popular weighting-based solutions.

6.2.2.1 Instance Weighting

Standard SVM formulations assume that all of training instances are of equal
importance for the training process. This is not a valid assumption in case of
imbalanced data. There are several reasons behind such a reasoning. Firstly, as
classes are skewed minority instances should compensate in their importance what
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their lose in their numbers [6]. Secondly, imbalanced datasets are often composed
of instances posing various difficulties to learners, such as borderline cases or small
disjuncts [77]. Finally, outliers may also come into the scenario, as some imbalanced
datasets may consist of many rare examples [69]. To accommodate these factors in
SVMs an instance-level weighted modification was proposed [91].

The underlying assumption behind this approach is to assign different weights
or penalties to each training instance. This may be achieved by re-writing the soft
margin optimization task (see Eq. (6.2)) as:

min

(
1

2
w · w +

l∑

i=1

Ciξi

)

subject to ∀
i=1,··· ,l ∀

ξi≥0
∀

Ci≥0
yi (w · Φ(xi) + b) ≥ 1 − Ciξi,

(6.9)

where Ci is the penalty/weight associated with given training instance xi . Values
of weights may be given depending on the imbalance ratio between classes or
individual instance complexity factors [75].

While this approach seems highly attractive, one must be aware of its potential
limitations. Proper setting of weights plays a crucial role in obtained performance
and thus is a highly sensitive and data-dependent process. Additionally, importance
of instances may change over time due to non-stationary nature of data [36], or
even during the training process as geometry of decision space is being altered
[63]. Recalculating weights may be computationally expensive, especially for large-
scale datasets. To address this issue a multi-parametric solution-path algorithm
for weighted SVMs was proposed in [34]. Authors have extended the standard
solution-path algorithm, which was used for single-parameter problems, to multiple
parameter formulation (as each weight can be considered as an independent param-
eter). Additionally, they have dealt with the issue of high-dimensional breakpoints
that arise during the parameter search procedure. Another work by Wang et al.
proposed weighted SVMs with both 1-norm and 2-norm for imbalanced datasets,
where instance weights were derived from boosting procedure [85]. A distributed
version of their approach using MapReduce approach for large-scale imbalanced
problems was discussed in [84]. An interesting solution to calculating instance
weights was proposed by Zhu et al. [100], where authors used extended nearest
neighbor chains to locate objects that may potentially lie close to the decision
boundary before SVM training. SVMs were also used to determine the difficulty
of training instances in imbalanced datasets in order to adjust instance-level weights
in AdaBoost ensemble learning [43].

6.2.2.2 Support Vector Weighting

Alternative approach assumes using the original imbalanced dataset to train a SVM
classifier and then apply weighting to obtained support vectors in order to shift the
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decision boundary. One of the first algorithms following this idea was zSVM [31].
It is based on modifying the original SVM decision function (see Eq. (6.7)) in the
following way:

f (x) = sign

⎛

⎝
l1∑

i=1

α+
i yiK(xi, x) +

l2∑

j=1

α−
j yjK(xj , x) + b

⎞

⎠ , (6.10)

where α+
i and α−

j are coefficients of support vectors of positive and negative class
respectively (usually minority class is considered as a positive one here) and l1
and l2 stand for the number of training instances in each class. The zSVM method
postulates to increase the importance of support vectors assigned to minority class
by re-weighting them. This is achieved by multiplying them by a user-set positive-
valued parameter z (hence the name of the method). This allows us to rewrite the
decision function as:

f (x) = sign

⎛

⎝z ·
l1∑

i=1

α+
i yiK(xi, x) +

l2∑

j=1

α−
j yjK(xj , x) + b

⎞

⎠ . (6.11)

This will increase the impact of minority class support vectors on the formed
decision boundary and thus effectively alleviate the classification bias. As the value
of z parameter plays a crucial role in the performance of this method, it must be
carefully tuned. Authors [31] propose to tune it independently for each dataset by
using performance on training data.

6.2.2.3 Fuzzy Approaches

Alternative formulation to instance-weighting solution was developed with the
usage of fuzzy logic. Fuzzy SVM (FSVM) [45] allowed to assign different levels
of importance to each training instance by associating them with fuzzy membership
functions. FSVM was originally developed to deal with datasets containing noisy
instances and outliers [46, 47]. However, the fuzzy membership mechanism became
highly attractive for imbalanced domain.

FSVM reformulates the soft margin optimization problem (see Eq. (6.2)) as:

min

(
1

2
w · w + C

l∑

i=1

miξi

)

subject to ∀
i=1,··· ,l ∀

ξi≥0
yi (w · Φ(xi) + b) ≥ 1 − ξi .

(6.12)

This allows to adjust to embed the membership function mi associated with an
instance xi into the SVM penalty function. Therefore, with smaller values of mi the



132 6 Algorithm-Level Approaches

effects of slack variable ξi on the objective function are reduced. A less important
object will then have associated smaller values of fuzzy membership, to reduce their
impact or even completely exclude them from the decision boundary calculation.
This may also be viewed as adding a soft misclassification cost to each training
instance, allowing to differentiate the error penalty associated with them [81]. This
method was later combined with rough set approach to allow utilizing information
granules [8].

While this methods works very well for noisy datasets, it will still be subject to
classification bias present in imbalanced domain. Therefore, a modification know
as FSVM-CIL was proposed in [3]. Here authors proposed three different strategies
for calculating the membership functions in a way that will be relevant for skewed
datasets. Fuzzy membership for i-th minority class instance is denoted as m+

i , while
for j -th majority class instance as m−

j . FSVM-CIL proposes to calculate these
membership functions as follows:

m+
i = f (x+

i )r+, (6.13)

m−
j = f (x−

j )r−, (6.14)

where f (x) is a specified decaying function returning values in range [0,1], allowing
to calculate the importance of a given instance according to a selected criterion.
Parameters r+ and r− are used to reflect the disproportion between classes, where
r+ = 1 and r− is set to the minority to majority imbalance ratio.

The decaying function f (x) plays a crucial role in the performance of FSVM-
CIL algorithm. As it gives significant freedom in designing the mechanism to
reduce the influence of majority instances, several different mechanisms were
proposed. First solution associates the value of f (xi) for i-th instance using the
distance from its own class center. Here examples closer to the class centroid
have assigned a higher membership function value. Therefore, outliers and noisy
instances will be effectively filtered out. One must notice that this strategy may fail
for many imbalanced scenarios, as minority classes tend to be characterized by non-
homogeneous structure and presence of small disjuncts. Therefore, minority class
centroid may not be the most suitable representation.

Second solution associates the value of f (xi) for i-th instance using the distance
from the pre-estimated decision boundary. This step is applied before actual FSVM
training and hence requires an estimation of where the decision boundary is most
likely to be localized. This is achieved by finding a hyper-sphere covering the
overlapping region between classes, as the decision boundary most likely to be put.
The distance between a point xi and a center of this hypersphere is used to calculate
f (xi) using linear or exponential functions. Disadvantage of this approach will lie
in potential miscalculations of the overlapping hypersphere, especially in cases of
minority classes consisting of many borderline or noisy instances.

The third solution associates the value of f (xi) for i-th instance using the
distance from the calculated decision boundary. This is a post-training approach
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and requires an input a standard crisp SVM. Then the decision boundary is fuzzified
using membership functions calculated for instances. Therefore, it can be seen as a
boundary shift method. Here, instances lying closer to the crisp decision boundary
are assigned higher weights and later guide the construction of the fuzzy decision
boundary. Disadvantage of this approach lies in using a crisp SVM boundary for
membership calculations. In case of severely imbalanced datasets it may lay too far
within the minority class structure, thus rendering the boundary shift not significant
enough.

Fuzzy SVMs for imbalanced data were further developed by the research
community. Let us look at some of the most important modifications. A fuzzy total
margin based support vector machine was introduced in [14]. Instead of relying
on soft margin, a total margin approach was incorporated into the FSVM training
procedure. Additionally, authors combined membership function instance weighting
with different values of parameter C associated with minority and majority class
independently. Another modification known as IBFSVM was developed in [9],
where authors calculated membership functions using denoising factors and class
compensation factors. The former one allowed to handle differing distributions of
objects in minority and majority classes with respect to underlying class structures,
while the latter one allowed to incorporate the class imbalance ratio into the decision
boundary computation. In [21] authors used entropy to calculate fuzzy membership
functions for instances. Additionally, they proposed an automatic solution for
automatically associating sufficiently large membership function values to minority
class instances in order to effectively alleviate the class bias.

6.2.3 Active Learning

Active learning methods [2] are used to select instances for label query when
labeling costs must be taken into account [104], or to select most informative
instances from the training set to improve the quality of obtained classifier [24].
In the context of imbalanced data, active learning may be utilized to balance the
training set by selecting the most representative instances from majority class [20],
removing noisy minority class examples [97] and reducing the overall imbalance
ratio [23]. Example of training set selection with active learning from imbalanced
dataset and its effect on borderline and overlapping instances is given in Fig. 6.2.

Active learning is a popular addition to SVMs [26, 32], especially in applications
where one cannot afford a fully labeled dataset [29, 79]. Although active learning
does not directly modify the SVM training procedure, we will consider it as an
algorithm-level solution. It is embedded in the training process, as opposite to pre-
processing approaches that are executed before the training begins.

First skew-insensitive active learning solution for SVMs was proposed in [19].
This approach starts with small subset of the training set and iteratively selects from
the set of unused instances the nearest one to the decision boundary. Then it is
added to the training set and SVM is being retrained. This allows to select only the
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Fig. 6.2 Active learning applied to training set selection for imbalanced dataset with borderline
and overlapping instances: (left) skewed decision boundary; (right) corrected decision boundary
after instance selection

most relevant instances and by suing an early stopping criterion achieve a significant
training speed up for large-scale datasets. Zieba and Tomczak [103] proposed a
combination of SVMs, Boosting and active learning to achieve better elimination of
irrelevant instances and better estimation of misclassification costs for each of the
base classifiers in the ensemble.

6.3 Decision Trees

Decision trees are highly popular classification algorithms due to their efficiency,
simplicity, low computational complexity and interpretability. However, they are
highly prone to skewed class distributions and therefore fail in learning from
imbalanced data. There is a number of modifications available [11, 64, 71], most
of which concentrate on cost-sensitive solutions. From the algorithm-level point
of view the most straightforward approach to improving decision trees lies in
modifying their key component – split function.

The most efficient solution lies in using Hellinger distance for creating splits
proposed by Cieslak et al. [11]. Hellinger distance is a measure of distributional
divergence [10] that could be used to measure the distance between two probability
distributions P1 and P2. In order to calculate it, one must derive the Bhattacharyya
coefficient with assumption of working on a measure space (Ω,B, v), where P is a
set of all measures on B that are absolutely continuous with respect to v:

p(P1, P2) =
∫

Ω

√
dP1

dv

dP2

dv
dv. (6.15)
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This allows to derive the Hellinger distance as:

hH (P1, P2) = 2

[

1 −
∫

Ω

√
dP1

dv

dP2

dv
dv

]

=
√√√√
∫

Ω

(√
dP1

dv
−
√

dP2

dv

)2

dv.

(6.16)
As in machine learning we usually deal with countable and not continuous space

we may switch to a summation of all values and re-express this for a two-class
problems as:

dH (P (m+), P (m−)) =
√
∑

i∈v

(√
P(Y+|Xi) −

√
P(Y−|Xi)

)2
. (6.17)

One may translate this into a confusion matrix for a two-class problem, obtaining
the final formulation of Hellinger distance for binary imbalanced domain:

dH (T PR,FPR) =
√(√

T PR − √
FPR

)2 +
(√

1 − T PR − √
1 − FPR

)2
.

(6.18)
Hellinger allows for an induction of skew-insensitive trees. In [10] this was

proven by analyzing the shape of this function. Further proofs are given in
[11]. Experimental results back-up these claims, showing that Hellinger Distance
Trees built upon a C4.4 algorithm (unpruned and uncollapsed C4.5 with Laplace
smoothing at the leaves) leads to much better performance on minority class without
sacrificing the effectiveness on majority instances. An example of differences
between decision trees using Gini and Hellinger criteria is presented in Fig. 6.3.
Hellinger trees tend to form broader, yet enclosed decision boundaries around
minority class instances. This allows them to achieve a better generalization over
the minority class, without losing the predictive power on majority class.

Limitation of Hellinger distance lies in its binary nature, as it cannot be directly
applied to multi-class imbalanced problems. In [28] authors proposed to used a
one-vs-all approach to estimate the split value for multi-class cases. However,
the obtained results were moderate, as this approximation often failed to properly
capture complexities of multiple skewed distributions.

Other splitting criteria were developed as well. Lenca et al. [44] proposed to
use an off-centered entropy. This specific formulation takes its maximum value for
a distribution fixed by the user. This distribution can be the a priori distribution
of the class variable modalities or a distribution taking into account the costs of
misclassification. This allows to embed either standard imbalance ratio or user
preferences into the tree induction procedure. The use of entropy was further studied
by Boonchuay et al. [5]. Here a new impurity measure named minority entropy was
proposed. It is based on the information derived from the minority class. Shannon’s
entropy is applied on a local subset of minority instances, effectively defining the
local space for decision tree induction that takes into account given minority class
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Fig. 6.3 Comparison between decision trees trained using Gini and Hellinger splitting criteria
on yeast6 dataset with IR 41.6. (a) Differences between learned decision boundaries over entire
dataset. (b) Detailed look on differences between learned decision boundaries over a part of the
decision space

characteristics. Class Confidence Proportion split function was proposed by Liu et
al. [50]. A top-down and bottom-up approach using Fisher’s exact test to prune
branches of the tree was used to develop statistically significant decision rules.
Experimental results showed that this algorithm-level modification outperforms
decision trees balanced with pre-processing algorithms.

6.4 Nearest Neighbor Classifiers

Lazy classifiers, including the most popular NN approach, offer interesting prop-
erties from the imbalanced data classification point of view [25]. However, they
seem unlikely to become subject of algorithm-level modifications for imbalanced
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data domain. They do not create a classification model until a new test instance
becomes available, and even then use straightforward approaches to determine its
label. Although there is a plethora of works for NN classifiers for imbalanced
data, they usually concentrate on prototype selection [83] or prototype generation
[51]. As they directly manipulate the training set, they should be considered as
pre-processing solutions rather than algorithm-level approaches. However, there
exist several solutions for NN classifiers that make them skew-insensitive without
referring to prototype modifications.

Cano et al. [7] proposed a gravitational-based algorithm for NN classifier with
emphasis on imbalanced data. It aimed to modify the distance function by using
a gravitational approach, assuming that the gravitation of minority class instances
would be eclipsed by instances belonging to the majority class. Authors proposed to
alleviate this problem by weighting a gravitation of each class by the ratio between
the number of instances belonging to given group and the total number of instances.
This allows to calculate the gravitation function for a given instance as:

g(x,m) =
(

1 − Nm − 1

N

) N∑

i=1

1

d(x, xi,m)
| ∀

xi∈m
, (6.19)

where N and Ni stand for the number of training instances and number of instances
in m-th class respectively, and d(x, xi,m) is a distance function proposed by authors
[7]. It takes into account weights assigned to each feature to control its importance,
while an evolutionary optimization is being used to automatically adapt these
weights to the dataset at hand. This is embedded into a standard NN framework,
allowing skew and noise insensitive classification.

The idea of combining gravitation-based computations with NN classifiers was
continued in [99]. Instead of relying on popular k-NN solution authors proposed
to use fixed-radius NN approach [59]. This was enhanced with pairwise class
gravitation calculation in order to remove the class bias.

Another weighted k-NN modification was proposed by Liu and Chawla [48].
Here, prototypes are individually weighted instead of the classes. Their parameters
are calculated using the probability of attribute values for a given class. Similar
solution was proposed in [18], where weights are assigned to each of the class
based on how instances belonging to it are classified in the neighborhood of the test
instance by a standard k-NN classifier. Positive-biased NN algorithm [94] postulated
not to influence the k-NN classification by the overall imbalance ratio, but rather by
the local class distributions in each neighborhood.

NN approaches were also coupled with fuzzy and rough set approaches in order
to improve their responsiveness to skewed datasets. Han and Mao proposed a fuzzy-
rough k-NN that took into account the fuzziness and roughness of the NNs of a
given test instance into consideration [27]. Their solution defines fuzzy membership
function that favors the minority class and allows to form a fuzzy equivalent relation
between the new instance and its k-NNs. Ramentol et al. [68] extended this idea by
proposing Imbalanced Fuzzy-Rough Ordered Weighted Average NN Classification
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(IFROWANN). Several strategies for OWA weight vectors were proposed that
allowed to better model the neighborhood of the minority class.

Finally, it is important to notice that k-NN method is also frequently used with
other classifiers in order to determine the class structure [41] and types of minority
class instances in both binary [60] and multi-class imbalanced scenarios [70]. Such
an information may be then used to improve the performance of any classifier and
to gain a deeper insight into the considered problem.

6.5 Bayesian Classifiers

Bayesian approaches are very popular in data classification, due to their excellent
theoretical background, low computational complexity and good performance. They
offer an attractive possibility for adaptation to imbalanced data by manipulating
class prior probabilities in order to alleviate the class bias. Furthermore, they are
very popular in text classification [80], where uneven class distributions are bound to
appear [40, 57]. Therefore, several Bayesian-based approaches for skewed datasets
were proposed in last years. Let us discuss the most important ones.

Frank et al. developed Locally Weighted Naïve Bayes [22]. Their version of
relaxed the standard independence assumption by learning local models at predic-
tion time. Therefore, this is a lazy learning solution that stores the training instances
and does not train any model until classification time. For each tested instance a new
Naïve Bayes is being constructed using a weighted set of training instances from the
neighborhood of the test instance. Although not directly used for imbalanced data,
one may see many similarities between this solution and instance-level weighted
SVMs (see Sect. 6.2.2). A Bayesian network tuned for imbalanced text classification
was proposed in [55]. Authors proposed new structure, which they called mixed
Gaussian Bayesian Augmented Naïve Bayes that was able to process both discrete
and continuous variables a need for discretization procedure. An undersampling
with Tomek links was embedded in the training procedure of this classifier in order
to handle skewed classes. An active instance selection method with Naïve Bayes
classifier for imbalanced problems was proposed by Lee et al. [42]. Their method
trained a Naïve Bayes classifier in an incremental manner, starting with a balanced
training subset. Then it proceeds by sequentially adding such informative instances
that are characterized by high error rates outputted by the current classifier. A
skew-insensitive smoothing method for multinomial Naïve Bayes was introduced
in [49]. Their approach was less affected by imbalanced class distributions, leading
to improved generalization performance of obtained classifiers. Another skew-
insensitive solution is Bayes Vector Quantizer for imbalanced data [16] that aims
at minimizing the average misclassification risk, offering an theoretically-sound
approach rooted in statistical decision theory.

Interesting usage of Bayesian approaches for improving the interpretability of
rule-based classifiers on imbalanced data was developed in [61]. Authors introduced
three different approaches for selecting classification rules with descriptive charac-
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teristics. They are based on combining Bayesian confirmation measures with rule
support. This allows to extract more useful information about the minority class and
improve the knowledge discovery from imbalanced datasets.

Bayesian approaches have also been a base for hybrid-based solutions [86] to
learning from imbalanced data. Bayesian Support Vector Machines [30] offered an
attractive pragmatic expansion scheme of the Bayesian approach to SVM learning
and assessing how well the underlying classifier is aligned with the considered
imbalanced dataset. This was achieved by developing a model selection scheme that
took into account probability estimates, corresponding decision costs, and quadratic
program of optimal margin classifier. Another hybrid SVM for imbalanced data
was proposed in [15]. Authors introduced Near-Bayesian Support Vector Machines
that combined decision boundary shift with varying regularization parameter values
for each class. Their approach was further extended to the multi-class scenario and
allowed to take into account multi-class cost-sensitive cases.

6.6 One-Class Classifiers

One-class classification (OCC) [72], also known as learning in the absence of
counterexamples, was designed for scenarios in which during the training step we
have access only to objects coming from a single class. A one-class classifier aims
at capturing characteristics of training instances, in order to be able to distinguish
between them and potential outliers to appear. OCC assumes that we have no access
to any representatives of outliers during training. This may be caused by high cost
or difficulty in gathering a meaningful instance set, or because one cannot define the
precise nature of outliers. Therefore, OCC finds use in important domains such as
novelty detection, fault diagnosis, or target detection. Yet its areas of applicability
extend beyond that [4].

In cases when one of the classes is highly underrepresented, or collected samples
are far from sufficiently representing the underlying class distribution, training a
binary classifier may be difficult [54]. Instead, one may train a one-class classifier
on the better represented class and treat the remaining one as outliers [76]. This
approach may be directly utilized in imbalanced scenarios, where a majority class
will be treated as the target concept and minority class as outliers. This solution
has proven to be especially useful when the minority class lack any structure, being
predominantly composed of small disjuncts or noisy instances. One-class classifiers
are naturally skew-insensitive, as by utilizing only a single class during training
they concentrate on creating its data description. Additionally, most of one-class
classifiers have inbuilt mechanism to handle noisy instances, thus further increasing
their robustness in imbalanced problems. There are three main approaches for
tackling imbalanced datasets with OCC:

• Training a one-class classifier on the majority class;
• Training a well-tuned one-class classifier on the minority class;
• Training one-class classifiers on both classes and combining their outputs.
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One must remember that the advantages of one-class classifiers come at a price
of discarding all of available information about the majority class. Therefore, this
solution should be used carefully and may not fit some specific applications.

One of the first works of using OCC for skewed datasets was developed by Cohen
et al. [12], where authors proposed to combine one-class SVM with a conformal
kernel. Experimental results proven this approach to deliver the best sensitivity
among all of tested methods. However, this came at a price of reduced specificity on
majority class. This problem is prevailing in many works using OCC for imbalanced
data and shows how important a proper tuning of one-class classifiers is. This
issue was addressed later [101, 102] by proposing a two-step approach for kernel
one-class classifiers, where classifier parameters were established on the basis of
minority class instances, but both minority and majority cases were used to tune the
classification threshold.

A one-class rule-based symbolic classifier for imbalanced medical datasets was
proposed in [58]. Authors showed that it was able to return improved perfor-
mance than cost-sensitive and data pre-processing methods, while offering good
interpretability of decision. An improved one-class rule-based classifier was later
developed by Villar et al. [82]. The proposed method used a genetic-fuzzy system
to tune rules for target class. The outputted set of rules was characterized by not
only good generalization capabilities, but also by its compactness.

Krawczyk et al. [38] proposed a weighted modification of one-class SVM trained
on the minority class. A neighborhood-based analysis of the training set was done
in the pre-processing step in order to associate minority instances with one of
the four predefined difficulty levels. This was used to derive weights for these
instances in order to empower the most difficult cases such as small disjuncts or
rare examples. Experimental study showed that such an approach in many cases
leads to a better performance than training a one-class classifier on the majority
class. The importance of proper selection of either majority or minority class as the
target concept for OCC was further discussed in [66].

One of the problems in imbalanced class learning is the presence of sub-concepts
or class disjuncts within both the majority and minority classes. This, combined with
limited number of minority class instances, is the source of a significant learning
difficulty for many classifiers. Either decision boundary becomes too complex and
generalization capabilities are being lost, or minority sub-concepts are ignored due
to not providing enough discriminative information to the classifier. Krawczyk et
al. [37] proposed an ensemble approach for one-class classifiers that was able to
automatically identify these sub-concepts in all of supplied classes, regardless of
their imbalance ratio. Each class was clustered independently with an automatic
detection of the proper number of clusters. Then local one-class learners were
trained on these concepts in order to encompass complex structure of each class.
Authors showed that combining kernel fuzzy clustering with weighted one-class
SVMs returns the best performance. Learning over subconcepts with one-class
classifiers was later discussed by Sharma et al. [74], where authors proposed to
learn one-class classifiers along the lines of underlying domain concepts.
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One-class classifiers were also discussed as a tool for solving multi-class
imbalanced problems [39], where a separate model was trained on each class.
Then a combination solution such as Error-Correcting Output Codes was used to
reconstruct the original problem from one-class outputs. Authors stated that such
an approach allows to preserve the skew-insensitive advantages of OCC approach,
while effectively utilizing information regarding all of available classes.

6.7 Summarizing Comments

This chapter discussed algorithm-level solutions for class imbalance as an alterna-
tive to data pre-processing approaches. They required a more in-depth knowledge
about the used classifier in order to identify which underlying mechanisms hinder its
performance when classes are unequally distributed. Although such modifications
are less flexible than data manipulation approaches, they may offer improved
performance and more directed alleviation of the imbalance problem.

Although many algorithm-level modifications have been introduced, still new
challenges lie ahead. It is important to propose new classifiers that can either directly
or indirectly incorporate this background knowledge about objects into their training
procedure. Thus, when designing an efficient classifier one must not only alleviate
the bias towards the majority class, but also pay attention to difficulties of individual
minority examples. Additionally, proposing methods that are able to combine pre-
processing and algorithm-level solutions in a guided manner seem as a highly
attractive direction.
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Chapter 7
Ensemble Learning

Abstract In this chapter existing ensemble solutions for the class imbalance
problems are reviewed. In Data Science, classifier ensembles, that is, the combi-
nation of several classifiers into a single one, are known to improve the accuracy
in comparison with the usage of a single classifier. However, ensemble learning
techniques by themselves are neither able to solve the class imbalance problem.
To deal with the problem in question, ensemble learning algorithms need to be
specifically adapted. This is usually done by combining an ensemble learning
strategy with any of the methods presented in the previous chapters to deal with
the class imbalance such as data-level preprocessing methods or cost-sensitive
learning. Different solutions mainly differ on how this hybridization is done and
which ones are the methods considered for the construction of the new model.
In order to present these models, we first introduce the foundations of ensemble
learning and the most commonly considered ensemble methods for imbalanced
problems, that is, Bagging and Boosting (Sect. 7.2). Then, we review the existing
ensemble techniques in the framework of imbalanced datasets, focusing on two-
class problems. Each model is described and classified in a taxonomy depending
on the inner ensemble methodology in which it is based (Sect. 7.3). In Sect. 7.4 we
develop a brief experimental study aimed at showing the advantages of ensemble
models and contrasting the behavior of several representative ensemble approach.
Finally, Sect. 7.5 concludes this chapter.

7.1 Introduction

Traditionally, solutions for the class imbalance problem have been divided into
three groups. Algorithm level (internal) approaches modify existing algorithms
or create new ones to take consider class imbalance inside the learning algorithm
itself [90, 122, 126]. Data level (external) techniques carry out a preprocessing step
where the data distribution is balanced so as to decrease the influence of the skewed
class distribution during the learning phase of the subsequent classifier [5, 19, 21].
Finally, cost-sensitive methods are a combination of both algorithm and data level
approaches, which incorporate different misclassification costs for each class in the
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learning phase [22, 31]. Any of these approaches to deal with class imbalance can
be integrated into an ensemble of classifiers to improve the final performance. This
type of approaches are known as ensemble-based solutions for the class imbalance
problem and has been widely applied with success [35, 78]

Ensembles [67, 121] are designed to improve the performance of a single
classifier by training several different classifiers and combining their outputs to
make the final decision. Ensemble methods are well-known in data mining and
machine learning for their excellent performance in a wide variety of applications
and the class imbalance problem is not an exception (see Chap. 2).

However, ensembles learning algorithms are usually designed to optimize accu-
racy. Hence, applying them directly to imbalanced datasets do not solve the
underlying problem in the classifiers themselves with skewed class distributions.
For this reason, they need to be combined with other techniques to tackle class
imbalance problem. The resulting ensemble solutions are in some sense algorithm
level methods (since the ensemble learning algorithm is slightly modified), but
there is no change in the underlying base classifier (used to learn each component
classifier of the ensemble), which is one of their advantages. The most common
approach for modifying ensemble learning algorithms to deal with class imbalance
consists in including a data level approach to preprocess the data before learning
each classifier [9, 20, 77, 99]. Another type of hybridization introduces the usage of
costs in the ensemble learning process [30, 104, 108]. All the possibilities for using
ensembles to deal with imbalanced datasets are described in the rest of this chapter.

7.2 Foundations on Ensemble Learning

In this section we give a brief introduction to the foundations on ensemble learning
and also present several classical learning algorithms for constructing sets of
classifiers, whose classifiers are complementary.

The main objective of ensemble learning is to improve the performance of single
classifiers by constructing several classifiers whose combination, which can be seen
as a new classifier, is able to outperform every one of its counterparts. Hence, the
basic idea consists of constructing several classifiers from the original data and
then combining or aggregating their predictions when classifying new previously
unknown examples. That is, in order to classify a new example, it is submitted to
all the ensemble members (classifiers); then, the predictions of all the classifiers
are considered in the combination phase, which also known as classifier fusion or
aggregation [121]. Both the way in which the classifiers are constructed and how
they are combined are key factors in ensembles. We should notice that the classifiers
of an ensemble are usually referred to as base classifiers.

In the literature, the term “ensemble methods” usually refers to those collection
of classifiers that are minor variants of the same classifier, whereas “multiple
classifier systems” is a broader category that also includes those combinations
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considering the hybridization of different models [51, 52]. In this chapter, we only
cover ensemble methods since all the reviewed approaches for the class imbalance
problem are based on classifier ensembles.

This idea of ensembles follows the human natural behavior before making any
important decision. It is not uncommon when one has to decide among several
alternatives to seek for several experts opinions and to consider all of them in order
to take the most suitable alternative. The main motivation for combining classifiers
in redundant ensembles is to improve their generalization ability: each classifier is
known to make errors, and if we are able to generate classifiers making different
errors (e.g., by training them on different datasets or by making them work on
different parts of the input space), misclassified examples will not be necessarily
the same [59]. Therefore, one can take advantage of this idea and make use of them
to complement each other.

This fact directly leads us to one of the key issues when forming an ensemble,
the way the base classifiers are constructed. If we are combining several decision
trees built with the same learner (e.g., C4.5 or CART) and using the same data, it is
clear that all the trees will be equal and hence, their combination will not lead to an
improvement of the results, but to the same results as using a single decision tree.
This is why creating diverse classifiers (but maintaining their consistency with the
training set) is a very important issue to obtain accurate models. This is the only way
to create classifiers that can be complementary. Diversity is the term used to refer
to ensembles where the outputs of their base classifiers differ. However, one should
take into account that greater diversity does not always mean greater accuracy.

In the literature, the need of diverse classifiers to compose an ensemble is studied
in terms of the statistical concepts of bias-variance decomposition [43, 109] and the
related ambiguity [65] decomposition. The bias can be characterized as a measure of
the ability of the classifier to correctly generalize to a test set; otherwise, the variance
can be characterized as a measure of how sensitive are the classifier’s prediction to
the data on which it was trained. Hence, variance is related to overfitting, whereas
bias is related to underfitting. Generally, the performance improvement in ensembles
comes from a reduction of variance, because the usual effect of ensemble averaging
is to reduce the variance of a set of classifiers. Anyway, there are also some ensemble
learning algorithms that are capable of reducing bias, for instance, Boosting [34],
which is presented in Sect. 7.2.2. On the other hand, ambiguity decomposition
shows that, taking the combination of several predictors is better on average, over
several patterns, than a method selecting one of the predictors at random. In any
case, these concepts are clearly defined in regression problems where the output
is real-valued and the mean squared error is used as loss function. However, in the
classification context, those terms are still ill-defined [15, 68], since different authors
provide different assumptions [11, 33, 61, 62, 107] and there is no agreement on their
definition for generalized loss functions [57].

In addition, there have been several recent advances on the effect of diversity in
the ensemble for single class performance measures in the imbalance framework
[115]. Wang and Yao extended the work of Kuncheva et al. [70] were the pattern
of success and the pattern of failure were studied, also known as the good and the
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bad pattern, respectively. These patterns were defined in a majority voting scenario.
The former one refers to cases were no votes are wasted in the ensemble, the perfect
case where all the correctly classified examples are correctly classified by exactly
half of the classifiers plus one, and incorrectly classified examples are incorrectly
classified by every ensemble member. The latter case is the other extreme case, were
all correctly classified examples are correctly classified by all the classifiers and
incorrectly classified ones are correctly classified by half of the classifiers. These
patterns were related to Q-statistic diversity measure [125] (the greater the value of
Q, the lower the diversity is) and showed that diversity is not always beneficial . In
the pattern of success, the overall accuracy is a decreasing function of Q, meaning
that diversity is beneficial. Otherwise, in the pattern of failure, the overall accuracy
is an increasing function of Q and hence, in this case negatively related classifiers
are not beneficial.

In the imbalance scenario, Wang and Yao [115] developed a thorough theoretical
study on the effect of Q on single class performance measures such as Recall,
Precision and F-measure, which was complemented with an empirical study where
the effect of diversity on the GM and the AUCROC was also considered. In
the study, the two original cases from Kuncheva were further divided into three
difference scenarios leading to a total of six different patterns were the effect of
Q on the three mentioned measures was studied. Mainly, the best and the worst
cases remain the same, showing that greater diversity is beneficial in the best case
of the good pattern and not beneficial in the worst case of the bad pattern, but
intermediate cases were also considered. Anyway, the experimental analysis showed
that diversity has a positive effect in classifying imbalanced datasets in general;
the performance of both classes is better balanced between recall and precision,
identifying more minority class examples. Besides, diversity was shown to be
beneficial to the accuracy of the minority class, but harmful to that of the majority
class. Interestingly, the last part of the study showed that there was a strong negative
correlation between Q and GM and AUCROC performance measures. Hence, in
this imbalanced framework, classifier ensembles with greater diversity should be
preferred as they should provide better performance.

Once we have stated the importance of diversity in classifier ensembles, and more
specifically in the imbalanced scenario, the different ways to reach the required
diversity can be presented. Different ensemble learning mechanisms are simply
different ways of generating diverse classifiers. An important point when aiming at
constructing a diverse ensemble is that the base classifiers should be weak learners;
a classifier learning algorithm is said to be weak when low changes in data produce
big changes in the model obtained. This is why the most commonly used base
classifiers are tree induction algorithms.

Considering a weak learning algorithm, different techniques can be used to
construct an ensemble. The most widely used ensemble learning algorithms are
AdaBoost [32] and Bagging [10], whose applications in several classification
problems have led to significant improvements [87]. These methods provide a way
in which the classifiers are strategically generated to reach the diversity needed, by
manipulating the training set before learning each classifier. For this reason, they
are also known as data variation-based ensembles.
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In the next sections, we describe the most well-known ensemble techniques,
that is, Bagging (including the modification called pasting small votes with
importance sampling) and Boosting (AdaBoost and its variants AdaBoost.M1 and
AdaBoost.M2) ensemble learning algorithms. We put our focus on this alternatives
because they have been the most used ones to deal with imbalanced datasets.
Moreover, we also introduce other techniques to increase diversity in classifier
ensembles as they will be considered later in this chapter.

Before introducing the ensemble learning techniques, we should mention the
other key point in classifier ensembles, that is, classifier combination or classifier
fusion [121]. How to combine the classifiers in an ensemble can greatly modify its
output. However, few algorithms in our framework have considered the modification
of this component. Hence, we refer the reader to [67] for a deeper discussion on the
topic. Briefly, in classifier combination techniques can be divided into two groups:

• Classifier fusion: In this case, all the classifiers of the ensemble are aggregated to
obtain the final decision. All classifiers are supposed to be competent in the whole
feature space and expected to misclassify different examples. Two different types
of classifier fusion can be considered.

1. Non-trainable combiners, where the way to combine the classifiers is prefixed,
for example, the majority or weighted majority voting. In this cases, each
classifier gives a vote (or a weighted vote) for the predicted class, all the
votes are summed up and the class achieving the largest number of votes is
predicted.

2. Trainable combiners, where the combiner itself is trained aiming at improving
accuracy, for instance, Decision Templates [69] or Stacking [119].

• Classifier/ensemble selection: These methods [46] perform the combination in a
different way. Instead of combining all the classifiers of the ensemble, classifier
selection tries to select only those (or that) leading to the best classification
performance. Hence, classifier selection assumes that the classifiers are comple-
mentary, being experts on classifying the instances from a part of the input space;
therefore, when a new instance is submitted, the most competent classifiers (one
or more) are selected, which are the ones used to perform the classification. Also
in this case two types of selections are commonly distinguished [66].

1. Static: A region of competence is defined in training time for each classifier.
Then, before classifying a new example, its region is found and the corre-
sponding classifier is used to decide its class [3, 76, 110].

2. Dynamic: In this case, the classifier that classify the new instance is decided
during the classification [14]. First, the competence (accuracy) of each
classifier for classifying the instance is estimated, and only the winner’s output
will be used to label the instance [6, 28, 60, 118, 120].

Anyway, both types can be seen as a unique classifier selection paradigm
where, in the first case, the classification phase is accelerated by pre-computing
the competence of the classifiers. These selection procedures mainly focus on
defining the competence of the classifiers by its accuracy [100, 120] or by the
region of the input space in which they are the experts [3, 66].
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In any case, it should be mentioned that data variation-based ensembles are
more commonly used in conjunction with classifier fusion strategies, whereas
classifier/ensemble selection strategies are usually designed in conjunction with the
ensemble creation model.

Additionally ensemble pruning [80] is another topic very related to classifier
combination. Classifier pruning can be considered as a classifier selection technique,
which is done prior to be used for testing. In this case, unnecessary, redundant
or inaccurate classifiers are removed from the ensemble aiming at improving the
generalization performance, reducing the storage necessity and the testing times.
As we explain in Sect. 7.3 (Other family), pruning techniques have already been
successfully applied to ensembles for the class imbalance problem [37, 63].

7.2.1 Bagging

Breiman [10] introduced the concept of bootstrap aggregating to construct ensem-
bles. These ensemble learning model consists of training several classifiers with
different bootstrapped replicas of the original training dataset. That is, to train each
classifier a new dataset is formed by randomly drawing (with replacement) instances
from the original dataset. The most usual practice is to maintain the original dataset
size, which means that approximately 63.2% of the instances will be present in each
bag (with some of them appearing more than once)

Hence, in Bagging diversity is obtained through the resampling procedure by
training each classifier with a different data subset. Assuming that the corresponding
classifier is weak, the resulting models should differ due to the changes in the data.

Finally, when an unknown instance is going to be classified, a majority or
weighted vote is used to obtain the class. Weighted majority voting is usually
performed by using the confidence given by each classifier in the prediction. One
of the advantages of Bagging is its simplicity. Moreover, Bagging reduces variance,
since the effect of voting is similar to that of averaging in regression where the
reduction of overfitting becomes easier to be observed.

The complete pseudo-code of Bagging is shown in Algorithm 1.

Algorithm 1 Bagging
Input: S: Training set; T : Number of iterations; n: Bootstrap size; I : Weak learner

Output: Bagged classifier: H(x) = sign

(
T∑

t=1

ht (x)

)

where ht ∈ [−1, 1] are the induced

classifiers
1: for t = 1 to T do
2: St ← RandomSampleReplacement(n,S)
3: ht ← I(St )
4: end for
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Fig. 7.1 Traning (left) and testing (right) sets for the illustrative examples on Bagging and
Boosting. Both sets have been generated from the same distribution

For the sake of understanding of the two principal ensemble learning methods
that are considered in this chapter, we consider an illustrative example for each one
considering the same bi-dimensional two-class problem. We have generated two
different datasets of 200 examples coming from the same distribution so as to be
used as training and testing sets for our toy example. Both datasets are shown in
Fig. 7.1.

Since the effect of Bagging is to reduce variance, the base classifiers considered
are expected to overfit the training data (different from AdaBoost, Bagging does not
tend to work well with high bias classifiers). For this reason, we have considered
a Decision Tree without pruning to show its behavior. Figure 7.2 presents the five
base classifiers trained using Bagging technique (i.e., each classifier has been trained
using a different boostrap replica of the original dataset) and also the final result of
the ensemble. This last result is computed using the weighted majority voting where
the weights are based on the proportion of instances falling in the leave that made the
prediction. Notice that the data presented in the figures corresponds to the training
data, but we have computed both the accuracy for the training and testing data.

Figure 7.2 illustrates how Bagging works. It can be observed that most of the base
classifier has overtrained a part of the data, whereas Bagging has produced a less
overfitted result, achieving the best accuracy both in training and testing (which need
not occur in all cases). Notice also that even if the decision trees are overtraining the
data, their training accuracy is not as high as that of Bagging because they have not
used all the data to be trained, but a boostrap replica with approximately 63.2% of
the examples (some of them being repeated).

Pasting Small Votes is a variation of Bagging originally designed for large
datasets [12] that has also been applied in the imbalance framework. Large datasets
are split into smaller subsets that are used to train different classifiers. There are two
variants: (1) Rvotes that creates the data subsets at random; (2) Ivotes that creates
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Fig. 7.2 Decision boundaries obtained by the bagged base classifiers (decision trees) learned from
the training data (depicted). The last (bottom right) figure corresponds to the ensemble model. For
each model, the accuracy in training and testing are presented
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consecutive datasets based on the importance of the instances; important instances
are those that increase diversity. The way used to create the datasets consists of using
a balanced distribution of easy and difficult instances. In order to detect difficult
instances out-of-bag classifiers [10] are considered. An instance is considered to
be difficult when it is misclassified by the ensemble classifier formed of those
classifiers which did not use the instance for training. These difficult instances are
always added to the next data subset, whereas easy instances have a low chance to
be included. The pseudo-code for Ivotes is shown in Algorithm 2.

Algorithm 2 Ivotes
Input: S: Training set; T : Number of iterations; n: Bootstrap size; I : Weak learner

Output: Bagged classifier: H(x) = sign

(
T∑

t=1

ht (x)

)

where ht ∈ [−1, 1] are the induced

classifiers
1: enew ← 0.5
2: repeat
3: eold ← enew

4: St ← ∅
5: while size(St ) < n do � Importance sampling
6: x ← RandomInstance(S)
7: if x misclassified by out-of-bag classifier then
8: St ← St ∪ {x}
9: else

10: St ← St ∪ {x} with probability eold

1−eold

11: end if
12: end while
13: ht ← I(St )
14: enew ← error of out-of-bag classifier
15: until enew > eold

7.2.2 Boosting

Boosting (also known as ARCing, Adaptive Resampling and Combining) was
introduced by Schapire in 1990 [96]. Schapire proved that a weak learner (which is
slightly better than random guessing) can be turned into a strong learner in the sense
of probably approximately correct (PAC) learning framework. AdaBoost [32] is the
most representative algorithm in this family. It was the first applicable approach of
Boosting, and it has been appointed as one of the top ten DM algorithms [123].

In contrast to Bagging, which is only capable of reducing variance, AdaBoost is
also known to reduce bias (besides from variance) [34], and similarly to SVMs
boosts the margins [95]. Therefore, AdaBoost can allow low bias classifiers to
be boosted, highly increasing their performance. The only condition AdaBoost
requires to the classifier is that it must be slightly better than a random classifier.
In order to understand the power behind AdaBoost, in Fig. 7.3 we have replicated
the same experiment as we have done with Bagging in Fig. 7.2. In this case, we
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Fig. 7.3 Decision boundaries obtained by the boosted base classifiers (decision stumps) learned
from the training data (depicted). The last (bottom right) figure corresponds to the ensemble model.
For each model, the accuracy in training and testing and its weight in the final ensemble are
presented
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have considered decision stumps [56] as base classifiers, that is, decision trees with
a single internal node (the root node). Hence, their prediction is based on the value
of a single feature. As a result, their bias is high since they lack of flexibility so as
to get adapted to the whole training data.

Looking at the different figures one can observe that the decision stumps were
far from being accurate classifiers. In fact, their accuracy is a only a bit more than
60%, i.e., they are slightly better than a random classifier (whose accuracy would be
50% as we have a balanced dataset). However, even with these poor base classifiers,
AdaBoost has been able to boost their performance achieving an accuracy of 95%
in training and 90% in test when all the classifiers are combined in the ensemble.
Hence, it has clearly improved the high bias of the base algorithm. Next, we explain
how this effect is achieved, because in this case, different from Bagging, classifiers
are learned sequentially depending on how well the previous ones has performed in
classifying each example. Besides, not all the classifiers vote with the same weight
and therefore, in Fig. 7.3, we should not assume that all the classifiers are equally
weighted in the final ensemble. In fact, the term αt (where t is the classifier number)
that appears together with the accuracy in training and testing of each classifier
is the weight assigned to each base classifier by AdaBoost. Moreover, notice that
classifiers 2, 4 and 6 are apparently totally trivial classifiers, classifying everything
as class 1. Even with that behavior, the final ensemble is able to achieve a result
almost as accurate as Bagging in this dataset. We will explain the reason why these
classifiers are learned this way after introducing the complete algorithm.

Unlike Bagging, AdaBoost does not introduce diversity by resampling. It works
with weighted examples, where each example is assigned a weight that measures
its importance or difficulty in being learned. Initially, all examples are given
the same weight. AdaBoost then uses the whole dataset to train each classifier
iteratively, but after each iteration, the weights given to each example are modified.
More focus is given to difficult instances, with the goal of correctly classifying
examples in the next iteration which were incorrectly classified during the current
iteration. Hence, the main objective of the next classifier is to better learn the
examples that were harder to classify in previous iterations. In order to give more
focus to these instances, after each iteration, the weights of misclassified instances
are increased; on the contrary, the weights of correctly classified instances are
decreased. Furthermore, another weight is assigned to each individual classifier
depending on its overall accuracy (αt ) which is then used in test phase to perform
a weighted voting; more confidence is given to more accurate classifiers. It is
interesting to note that the classifier confidence is estimated with the weights of
the instances in the current iteration and hence, it need not reflect the accuracy over
the global training set. Finally, when a new instance is submitted, each classifier
gives a weighted vote, and the class label is selected by majority.

In this chapter, we will use the original two-class AdaBoost (show in Algo-
rithm 3) and two of its very-well known modifications [32, 97] that have been
employed in imbalanced domains: AdaBoost.M1 and AdaBoost.M2.

We first focus on AdaBoost algorithm in Algorithm 3. The first step corresponds
to the initialization of the weight distribution (Dt , where t is the current iteration
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Algorithm 3 AdaBoost
Input: Training set S = {xi , yi}, i = 1, . . . , N; and yi ∈ {−1,+1}; T : Number of iterations; I :

Weak learner

Output: Boosted classifier: H(x) = sign

(
T∑

t=1

αtht (x)

)

where ht , αt are the induced classifiers

(with ht (x) ∈ {−1, 1}) and their assigned weights, respectively
1: D1(i) ← 1/N for i = 1, . . . , N

2: for t = 1 to T do
3: ht ← I (S,Dt )

4: εt ←
∑

i,yi �=ht (xi )

Dt (i)

5: if εt > 0.5 then
6: T ← t − 1
7: return
8: end if
9: αt = 1

2 ln
(

1−εt

εt

)

10: Dt+1(i) = Dt(i) · e(−αt ht (xi )yi ) for i = 1, . . . , N

11: Normalize Dt+1 to be a proper distribution
12: end for

or classifier number). Afterwards, a weak learner is used to obtain a classifier using
Dt . The error is computed as the weighted sum of misclassified instances and the
condition in line 5 refers to the fact that AdaBoost requires that the base classifiers
should be slightly better than random ones. Finally, the weight for each classifier
is computed depending on the error committed in the weighted training set and the
new distribution of weights is assigned. With this algorithm in mind, we can analyze
the behavior of AdaBoost in Fig. 7.3. One can better understand why classifiers 2,
4 and 6 are trivial classifiers. The first classifier has correctly classified almost all
examples from class 0, whereas many examples from class 1 are misclassified. As a
consequence, these examples will get their weights increased, whereas those of class
0 and the ones from class 1 correctly classified will get their weights decreased.
Hence, classifier 2 needs to focus on correctly classifying the Class 1 examples
misclassified in the first iteration; due to the spherical shape of the classes and
the high bias of decision stumps, the way to minimize the weighted error is to
classify every example as from Class 1. Notice that even if the accuracy in training is
50%, the weighted error leading to a classifier weight (α2) of 0.48 is 0.3817, which
is better than a random classifier. Hence, AdaBoost can continue working on the
problem. The case with classifiers 4 and 6 is similar to the one explained. In fact,
in this example, AdaBoost is focused on learning the examples from Class 0 in the
odd classifiers, whereas the focus changes to Class 1 in the even classifiers.

Regarding AdaBoost.M1 and AdaBoost.M2, the former is the first extension to
multi-class classification where a different weight changing mechanism is applied.
The pseudo-code of AdaBoost.M1 is presented in Algorithm 4.

The latter is the second extension to multi-class, which is reduced to
AdaBoost.M1 when two classes are considered except for one interesting
characteristic. In this case, AdaBoost makes use of base classifiers’ confidence
rates. The pseudo-code of this method is shown in Algorithm 5.
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Algorithm 4 AdaBoost.M1
Input: Training set S = {xi , yi}, i = 1, . . . , N; and yi ∈ C,C = {c1, . . . , cm}; T : Number of

iterations; I : Weak learner

Output: Boosted classifier: H(x) = arg max
y∈C

T∑

t=1

ln

(
1

βt

)
[ht (x) = y] where ht , βt are the

induced classifiers (with ht (x) ∈ C) and their assigned weights, respectively
1: D1(i) ← 1/N for i = 1, . . . , N

2: for t = 1 to T do
3: ht ← I (S,Dt )

4: εt ←
N∑

i=1

Dt(i)[ht (xi ) �= yi ]
5: if εt > 0.5 then
6: T ← t − 1
7: return
8: end if
9: βt = εt

1−εt

10: Dt+1(i) = Dt(i) · β
1−[ht (xi ) �=yi ]
t for i = 1, . . . , N

11: Normalize Dt+1 to be a proper distribution
12: end for

Algorithm 5 AdaBoost.M2
Input: Training set S = {xi , yi}, i = 1, . . . , N; and yi ∈ C,C = {c1, . . . , cm}; T : Number of

iterations; I : Weak learner

Output: Boosted classifier: H(x) = arg max
y∈C

T∑

t=1

ln

(
1

βt

)
ht (x, y) where ht , βt (with ht (x, y) ∈

[0, 1]) are the classifiers and their assigned weights, respectively
1: D1(i) ← 1/N for i = 1, . . . , N

2: w1
i,y ← D(i)/(m − 1) for i = 1, . . . , N, y ∈ C − {yi}

3: for t = 1 to T do
4: Wt

i ← ∑

y �=yi

wt
i,y

5: qt (i, y) ← wt
i,y

W t
i

for y �= yi

6: Dt(i) ← Wt
i∑N

i=i W t
i

7: ht ← I (S,Dt )

8: εt ← 1
2

N∑

i=1

Dt(i)

⎛

⎝1 − ht (xi , yi ) +
∑

i,y �=yi

qt (i, y)ht (xi , y)

⎞

⎠

9: βt = εt

1−εt

10: wt+1
i,y = wt

i,y · β
1
2 (1+ht (xi ,yi )−ht (xi ,y))

t for i = 1, . . . , N, y ∈ C − {yi}
11: end for

Notice that neither of these algorithms by itself deals with the imbalance problem
directly; all of them have to be changed or combined with another technique, since
they focus their attention on difficult examples without differentiating the class they
belong to. In an imbalanced dataset, majority class examples contribute more to
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the accuracy measure, so the likelihood of being considered as difficult examples is
greater than that of minority class instances. Hence, rather than trying to improve the
True Positives, it is easier to improve the True Negatives that also leads to increasing
the False Negatives, which is not a desired characteristic in the class imbalance
framework. Therefore, in the Sect. 7.2.2 the different work that have tackled this
aspect to deal with class imbalance using classifier ensembles are reviewed.

7.2.3 Techniques to Increase Diversity in Classifier Ensembles

Bagging and Boosting are the most commonly used techniques in the imbalance
framework for constructing ensembles. However, there are many other ways of
achieving the required diversity. In fact, many of those techniques can be considered
together with the mentioned methods. Even thought these diversity enhancing
techniques has not been widely applied in the imbalance framework, a recent work
[27] showed that their usage in existing ensemble models can lead to more accurate
models. Hence, hereafter we briefly review these kind of techniques, which can be
divided into four main groups depending on how they try to add diversity to the
ensemble [27]:

• Guided random sampling – In the Random Oracle ensemble [71] diversity is
added by dividing the instances into two groups using a random hyperplane. This
way, in each iteration, instead of learning a single classifier, two classifiers are
learned, one for each group of instances. The hyperplanes considered can be
either linear or spherical.

• New attributes – In this type of methods, the feature space is expanded by adding
new attributes to the dataset that were not originally present. For example, in the
Disturbing Neighbors (DNs) method [81] before learning each base classifier N

randomly instances are selected, which are named as DNs. Then these instances
are used together with a 1-NN classifier to create N + 1 new binary attributes.
The first N attributes codifies whether the corresponding DN is the NN to the
corresponding instance (1) or not (0). Otherwise, the last attribute is a nominal
attribute with the predicted class for the instance by the 1-NN classifier only
using the DNs.

• Random weights – Another way of introducing diversity is by modifying the
importance/weight of each attribute before learning each classifier in the ensem-
ble. The well-known Random Subspace Method (RSM) [50] can be considered
in this category. In the RSM, each classifier is learned using a random set of
attributes; that is, random binary weights are considered for each base classifier.
Notice that RSM is usually combined with bagging. Another popular ensemble
method in this category is Random Forest (RF) [13], which also considers
bagging but combined with random trees. RF is similar to RSM but instead of
randomly selecting attributes for each base classifier, the attributes are randomly
selected in each node when constructing the decision tree. That is, a random tree
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is a standard decision tree where a random subset of attributes is considered for
splitting in each node. Random Feature Weights (RFWs) ensemble [82] considers
real-valued weights instead of binary ones to randomly vary the importance of
the attributes for learning each base decision tree. The dataset is not directly
modified, but the weights are used when the merit function of the attributes is
computed by weighting the merit of each attribute by the corresponding weight.
As a result, a bias is introduced in favor of attributes with higher weights, which
combined with the usage of different weights for each classifier produces the
expected diversity. The weights are randomly drawn for each base classifier.

• Projections – These methods are based on modifying the dataset by creating
a dataset composed of a new set of features obtained as a transformation of
the original ones. Therefore, projections can be used as a source of diversity if
different projections of the data are considered for each base classifier. Rotation
Forest [92] is an ensemble models making use of Principal Component Analysis
(PCA) to project different groups of attributes for each base classifier. Differently,
supervised projections combined with boosting has also been proposed [41].
Finally, random projections have also demonstrated their ability to boost diversity
[98]. Notice that the RSM could also be considered in this category.

7.3 Ensemble Learning for Addressing the Class Imbalance
Problem

Proposals to deal with imbalanced classes have been traditionally classified into
three categories, depending on how they deal with the skewed class distribution. As
stated in Chap. 2, Algorithm level (internal) approaches create or modify existing
algorithms to take into account the significance of positive examples [90, 122, 126].
Data level (external) techniques add a preprocessing step where the data distribution
is rebalanced in order to decrease the effect of the skewed class distribution in the
learning process [5, 19, 21]. Finally, cost-sensitive methods combine both algorithm
and data level approaches to incorporate different misclassification costs for each
class in the learning phase [22, 31].

Ensemble-based methods techniques dealing with imbalanced classes usually
consist in a combination between an ensemble learning algorithm and one of
the techniques above, specifically, data level and cost-sensitive ones. Adding a
data level approach to the ensemble learning algorithm, the new hybrid method
usually preprocesses the data before training each classifier. On the other hand,
cost-sensitive ensembles instead of modifying the base classifier in order to accept
costs in the learning process, guide the cost minimization via the ensemble learning
algorithm. This way, the modification of the base learner is avoided, but the major
drawback (i.e., costs definition) is still present.

For the sake of completeness of this chapter, since many of the ensemble methods
are based on combining a data preprocessing method with an ensemble learning
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model, we briefly recall most of the preprocessing methods used in conjunction
with ensemble models. For more details we refer the reader to Chap. 5.

• Random Undersampling (RUS): It aims at balancing class distribution through
the random elimination of majority class examples. Its major drawback is that it
can discard potentially useful data, which could be important for the induction
process.

• Random Oversampling (ROS): In the same way as random undersampling, it tries
to balance class distribution, but in this case, randomly replicating minority class
instances.

• Synthetic Minority Oversampling Technique (SMOTE) [19]: It is an oversam-
pling method, which main idea is to create new minority class examples by
interpolating several minority class instances that lie together. SMOTE creates
instances by randomly selecting one (or more depending on the oversampling
ratio) of the KNN of a minority class instance and generating the new instance
values from a random interpolation of both instances.

• Modified Synthetic Minority Oversampling Technique (MSMOTE) [55]: It is a
modified version of SMOTE. This algorithm divides the instances of the minority
class into three groups, safe, border and latent noise instances by calculating
the distances among all examples. When MSMOTE generates new examples,
the strategy to select the NNs is changed with respect to SMOTE depending on
the group previously assigned to the instance. For safe instances, the algorithm
randomly selects a data point from the kNN (same way as SMOTE); for border
instances, it only selects the NN; finally, for latent noise instances, it does
nothing.

• Selective Pre-processing of Imbalanced Data (SPIDER) [102]: It combines
local oversampling of the minority class with filtering difficult examples from
the majority class. It consists in two phases, identification and preprocessing.
The first one identifies which instances are flagged as noisy (misclassified) by
kNN. The second phase depends on the option established (weak, relabel or
strong); when weak option is settled, it amplifies minority class instances; for
relabel, it amplifies minority class examples and relabels majority class instances
(i.e., changes class label); finally, using strong option, it strongly amplifies
minority class instances. After carrying out these operations, the remaining noisy
examples from the majority class are removed from the dataset.

• Random Balance (RB) [26]: It is a data level algorithm oriented to the con-
struction of ensembles. The total number of instances of the sampled dataset is
always the same as that of the original dataset. The number of examples that are
going to be taken from the minority class is decided randomly and therefore, the
remaining examples until reaching the number of the original dataset examples
are obtained from the majority class. In order to carry out this sampling, the
examples from the class from which more examples are needed to reach the
specified number are created with SMOTE. In the case of the other class from
which more examples than the required ones are available, RUS is applied.
Notice that both cases may occur with both classes.
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From this point, our aim is to review the different ensemble learning methods
designed to deal with the class imbalance problem. In order to do so, we will com-
plete the taxonomy presented in [35], where all these techniques were categorized
and compared in a thorough experimental study.

To start with the description of the taxonomy, we show its categories and the
methods in each category in Table 7.1. Next, these categories are described.

• Cost-Sensitive Ensemble. In this type of ensembles, combinations of classifiers
learned with the usage of costs for each classes in the problem are considered.
Two different ways to manage these costs have been considered in the litera-
ture.

– Cost-Sensitive Boosting: These approaches are similar to cost-sensitive meth-
ods, but instead of introducing the management of the costs into the classifier
learning algorithm the costs minimization is guided by the boosting algorithm.

– Ensembles with Cost-Sensitive Base Classifiers: Different from cost-sensitive
boosting approaches, these ensemble models make use of cost-sensitive
classifiers in order to make the ensemble capable of dealing with imbalanced
classes.

• Data Preprocessing + Ensemble Learning. Ensembles in this category share a
common characteristic. All of them consist of embedding a data preprocessing
technique in an ensemble learning algorithm. The main difference lies in the
base ensemble learning algorithm considered and the preprocessing method
selected.

– Boosting-based: These methods use AdaBoost or any of its variants as
ensemble method where a data level technique is introduced.

– Bagging-based: In this case, Bagging is the ensemble method considered to
be combined with a data level technique.

– Hybrid: In hybrid approaches both Bagging and Boosting are considered
together and in combination with preprocessing mechanisms.

• Other. This last category groups the proposals that do not fall in any of the
previous groups. They are mainly ways of improving ensembles from the rest
of the categories by adding some extra feature to their working procedure.

Next, we look over these families, reviewing the existing works.

7.3.1 Cost-Sensitive Boosting

As we have already explained, AdaBoost is an accuracy-oriented algorithm. Hence,
when the class distribution is uneven, this strategy biases the learning (i.e., the
weights) toward the majority class, since it contributes more to the overall accuracy.
For this reason, there have been several proposals modifying the weight update of
AdaBoost, which corresponds to line 10 in Algorithm 3 and, as a consequence, the
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Table 7.1 Applications of ML and DM where the class imbalance problem is present

Ensembles to address class imbalance problem

Main category Subcategory Method

Cost-sensitive Cost-sensitive AdaCost [30]

Ensembles Boosting CSB1, CSB2 [108]

RareBoost [58]

AdaC1 [104]

AdaC2 [104]

AdaC3 [104]

Ensembles with BoostedCS-SVM [112]

Cost-sensitive BoostedWeightedELM [75]

Base classifiers CS-DT-Ensemble [64]

BayEnsBNN [72]

AL-BoostedCS-SVM [127]

IC-BoostedCS-SVM [73]

Data preprocessing + Boosting-based SMOTEBoost [20]

Ensemble learning MSMOTEBoost [55]

MSMOTEBoost [55]

RUSBoost [99]

DataBoost-IM [47]

RAMOBoost [23]

Adaboost.NC [114]

EUSBoost [36]

GESuperPBoost [42]

BalancedBoost [116]

RB-Boost [26]

Balanced-St-GrBoost [8]

RHBoost [44]

Bagging-based OverBagging [113]

− SMOTEBagging [113]

UnderBagging [4]

− QuasiBagging [18]

− Asymetric Bagging [106]

− Roughly Balanced Bagging [49]

− Partitioning [17, 124]

− Bagging Ensemble Variation [74]

− IRUS [105]

− α-TreeEnsembles [88]

− PUSB [63]

UnderOverBagging [113]

IIVotes [9]

(continued)
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Table 7.1 (continued)

Ensembles to address class imbalance problem

Main category Subcategory Method

RB-Bagging [26]

EPRENNID [111]

USwitchingNED [45]

Hybrid EasyEnsemble [77]

BalanceCascade [77]

HardEnsemble [86]

StochasticEnsemble [8]

Other MOGP-GP [7]

RandomOracles [93]

Loss factors [101]

GOBoost [79]

OrderingBasedPruning [37]

Diversity enhancing techniques for improving
ensembles [27]

PT-Bagging [24]

IMCStacking [16]

DynamicSelection [94]

modification of line 9 is also required. In such a way, the algorithm is modified
so that examples from the different classes are unequally treated. To reach this
unequal treatment, cost-sensitive boosting approaches keep the general learning
framework of AdaBoost, but at the same time introduce cost items into the weight
update formula. This way, they also avoid the modification of the weak learner.
However, as in any other cost-sensitive approach, the main problem is that the costs
that should be assigned to each class are not predefined, being a difficult choice in
practical applications. The proposals in this category usually differ in the way that
they modify the weight update rule. Among this family AdaCost [30], CSB1, CSB2
[108], RareBoost [58], AdaC1, AdaC2 and AdaC3 [104] are the most representative
approaches that we describe hereafter.

7.3.1.1 AdaCost

In this algorithm [30], the weight update is modified by adding a cost adjustment
function ϕ. This function, for an instance with a higher cost factor increases its
weight “more” if the instance is misclassified, but decreases its weight “less”
otherwise. Being Ci the cost of misclassifying the ith example, the authors provide
their recommended function as: ϕ+ = −0.5Ci + 0.5 and ϕ− = 0.5Ci + 0.5.
The weighting function and the computation of αt are replaced by the following
formulas:
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Dt+1(i) = Dt(i) · exp(−αtyiht (xi )ϕsign(ht (xi ),yi )) (7.1)

αt = 1

2
ln

1 +
∑

i

Dt (i) · exp(−αtyiht (xi )ϕsign(ht (xi ),yi ))

1 −
∑

i

Dt (i) · exp(−αtyiht (xi )ϕsign(ht (xi ),yi ))
(7.2)

7.3.1.2 CSB

Two methods were proposed inside CSB family [108], but neither CSB1 nor CSB2
use an adjustment function as AdaCost does. Moreover, these approaches only
consider the costs in the weight update formula, avoiding any changes in the
computation of αt . In the case of CSB1, because it does not use αt anymore (αt = 1),
whereas in CSB2, because it uses the same αt computed by AdaBoost (this is the
different between both methods). In these cases, the weight update is replaced by:

Dt+1(i) = Dt(i)Csign(ht (xi ),yi ) · exp(−αtyiht (xi )) (7.3)

where C+ = 1 and C− = Ci ≥ 1 are the costs of misclassifying a positive and a
negative example, respectively.

7.3.1.3 RareBoost

RareBoost [58] is a modification of AdaBoost that tries to tackle the class imbalance
problem by simply changing the computation of αt term (Algorithm 3, line 9).
In order to do so, RareBoost make use of the confusion matrix in each iteration.
Moreover, two different values of αt are computed in each iteration. This way,
False Positives (FPt is the weights’ sum of FP in the t th iteration) are scaled in
proportion to how well they are distinguished from True Positives (T Pt ), whereas
False Negatives (FNt ) are scaled in proportion to how well they are distinguished
from True Negatives (T Nt ). On the one hand, α

p
t = T Pt/FPt is computed for

examples predicted as positives. On the other hand, αn
t = T Nt/FNt is computed for

the ones predicted as negatives. Finally, the weight update is done separately using
both factors depending on the predicted class of each instance. Therefore, even if the
weight update formula is not changed, the resulting weights will be different since
the αt term is considered inside the formula. Notice that, despite we have include
RareBoost in cost-sensitive boosting family, it does not directly make use of costs,
which can be an advantage, but it modifies AdaBoost algorithm in a similar way to
the rest of the approaches in this family. In any case, this algorithm has a handicap,
T Pt and T Nt are reduced, and FPt and FTt are increased only if T Pt > FPt and
T Nt > FNt , that is equivalent to require an accuracy of the positive class greater
than 50%:
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T Pt/(T Pt + FPt) > 0.5 (7.4)

This constraint is not trivial when dealing with class imbalance problem; moreover,
it is a strong condition. Without satisfying this condition, the algorithm will collapse.

7.3.1.4 AdaC1

This algorithm is one of the three modifications of AdaBoost that were proposed in
[104]. The authors proposed different ways in which the costs could be embedded
into the weight update formula (Algorithm 3, line 10). As a result, they derived
different wasy of computing αt depending on where they introduced the costs. In
the case of AdaC1, the cost factors are introduced within the exponent part of the
formula:

Dt+1(i) = Dt(i) · exp(−αtCiht (xi )yi) (7.5)

where Ci ∈ [0,+∞). Hence, the computation of the classifiers’ weight is done as
follows:

αt = 1

2
ln

1 +
∑

i,yi=ht (xi )

CiDt (i) −
∑

i,yi �=ht (xi )

CiDt (i)

1 −
∑

i,yi=ht (xi )

CiDt (i) +
∑

i,yi �=ht (xi )

CiDt (i)
(7.6)

Notice that AdaCost is a variation of AdaC1 where there is a cost adjustment
function instead of a cost item inside the exponent. Though, in the case of AdaCost,
it does not reduce to AdaBoost algorithm when both classes are equally weighted
(contrary to AdaC1).

7.3.1.5 AdaC2

Similarly to AdaC1, AdaC2 [104] integrates the costs in the weight update formula.
But the procedure is different; the costs are introduced outside the exponent part:

Dt+1(i) = CiDt(i) · exp(−αtht (xi )yi) (7.7)

In consequence, αt ’s computation is changed:

αt = 1

2
ln

∑

i,yi=ht (xi )

CiDt (i)

∑

i,yi �=ht (xi )

CiDt (i)
(7.8)
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7.3.1.6 AdaC3

This modification [104] considers the idea of AdaC1 and AdaC2 at the same time.
The weight update formula is modified by introducing the costs both inside and
outside the exponent part:

Dt+1(i) = CiDt(i) · exp(−αtCiht (xi )yi) (7.9)

In this manner, over again αt changes:

αt = 1

2
ln

∑

i

CiDt (i) +
∑

i,yi=ht (xi )

C2
i Dt (i) −

∑

i,yi �=ht (xi )

C2
i Dt (i)

∑

i

CiDt (i) −
∑

i,yi=ht (xi )

C2
i Dt (i) +

∑

i,yi �=ht (xi )

C2
i Dt (i)

(7.10)

7.3.2 Ensembles with Cost-Sensitive Base Classifiers

This is a new category that was not considered in [35]. In fact, in this category
ensembles are considered, but the ensembles are not really the ones adapted to
the class imbalance scenario; the base classifiers used under Boosting framework
are the ones managing the costs in this case. Hence, they consider the original
structure of AdaBoost algorithm but uses cost-sensitive base classifiers that are
not only capable of dealing with the weights of AdaBoost algorithm, but they can
also make use of the costs assigned to each class. One of the disadvantages of the
algorithms in this category is that they are less versatile than cost-sensitive Boosting
approaches as they are oriented to the usage of a specific base classifier, whereas
in the previous category the algorithms were developed independently of the base
classifier considered. The main difference between these proposals lie in the cost-
sensitive approach considered to be used inside Boosting. The most representative
methods in this category are BoostedCS-SVM [112], BoostedWeightedELM [75],
CS-DT-Ensemble [64], BayEnsBNN [72], AL-BoostedCS-SVM [127] and IC-
BoostedCS-SVM [73], which are described next.

7.3.2.1 BoostedCS-SVM

In [112], the authors propose to introduce a cost-sensitive SVM into the Adaboost
algorithm. This was aimed at reducing the overfitting found in previous cost-
sensitive SVM models. Moreover, the new algorithm modifies Adaboost algorithm
by considering a specific empirical parameter λ used to tune the magnitude of the
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penalty for each iteration. In this way, the new computation of alphat considering
the new term is as follows.

αt = λ ln
1 − εt

εt

with λ ∈ (0, 1]. (7.11)

Moreover, the original stopping criterion of AdaBoost is also modified. In this
method, the g-mean is considered to stop the algorithm. The new criterion considers
the g-mean performance on a validation set, and the algorithm is stopped when the
g-mean on this set was no longer improved. Furthermore, the weights of correctly
classified examples is never explicitly decreased.

7.3.2.2 BoostedWeightedELM

An extension of the weighted Extreme Learning Machine (ELM) is proposed
and named as BoostedWeightedELM in [75]. In this method, the weighted ELM
classifier is used inside the Adaboost.M1 algorithm to overcome the class imbalance
problem. This way, the costs of AdaBoost are directly considered in the weighted
ELM. Moreover, AdaBoost is also modified in two ways: (1) The initial distribution
of weights is modified so as to give more weights to the instance of the minority
class and less to those of the majority class; (2) the weight update is done separately
for each class. Hence, an alpha is computed for each class and applied in the weight
update such that the weights examples of each class sum up the same weight in the
final distribution of AdaBoost (in each iteration). For the classifier aggregation, the
same formula to compute alphat as in AdaBoost.m1 is considered.

7.3.2.3 CS-DT-Ensemble

The authors of this work presents a new ensemble model formed of cost-sensitive
decision trees [64]. In this case, first, a pool of classifiers is constructed following
the RSM method after which decision trees are learned with the predefined costs.
Finally, a classifier selection/weighting step is performed by meas of a genetic
algorithm.

7.3.2.4 BayEnsBNN

A Bayesian Ensemble of Bayesian Neural Networks (BayEnsBNNs) [72] is pro-
posed in this work. Even though cost-sensitive learning is not mentioned, it could
be considered a kind of cost-sensitive approach. Several Bayesian Neural Networks
are learned using different costs for each one. Afterwards, a Bayesian combination
is considered, where another term for managing the imbalance is introduced.
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7.3.2.5 AL-BoostedCS-SVM

This is a improvement of cost-sensitive SVMs where the authors aimed at avoiding
the setting of the costs for each class [127], which is a very difficult task and one of
the main drawbacks of cost-sensitive approaches. In order to do so, they introduced
AL strategies into the learning framework to select the most informative examples
and more accurately estimate the costs. In this way, each base learner was trained on
a reduced number of instances, which were labeled as significant by the previously
created classifier (for the first iteration OSS was performed). Since the considered
dataset is composed only of examples situated near the borderline, the training sets
becomes more balanced and avoids redundant and noisy cases.

7.3.2.6 IC-BoostedCS-SVM

IC-BoostedCS-SVM (Instance Categorization BoostedCS-SVM) [73] introduces an
additional weighting procedure to estimate the weights of each example in Adaboost
before using these weights to learn the next classifier. This new adjustment factor
is applied to instances that are inside the margin of the previously learned SVM
(initially they are set to 1) and those who are on the margin boundaries. This new
factor is afterwards multiplied by the original weights of Adaboost and used to
learn the next cost-sensitive SVM. The adjustment factors are only used for the
classifier learning and not in the rest of the AdaBoost algorithm in order to preserve
the theoretical foundations of AdaBoost.

7.3.3 Boosting-Based Ensembles

In this family, we review those algorithms which embed techniques for data
preprocessing into Boosting algorithms. This way, these methods alter and bias the
weight distribution used to train the next classifier toward the minority class every
iteration. Inside this family, we include SMOTEBoost [20], MSMOTEBoost [55],
RUSBoost [99], DataBoost-IM [47], GESuperPBoost [42], BalancedBoost [116],
RB-Boost [26], Balanced-St-GrBoost [8] and RHBoost [44] algorithms.

7.3.3.1 SMOTEBoost/MSMOTEBoost

Both SMOTEBoost [20] and SMOTEBagging [55] introduce synthetic instances
just before Step 4 of AdaBoost.M2 (Algorithm 5), using the SMOTE and MSMOTE
data preprocessing algorithms, respectively. The weights of the new instances are
proportional to the total number of instances in the new dataset. Hence, their
weights are always the same (in all iterations and for all new instances), whereas
original dataset’s instances weights are normalized in such a way that they form
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a distribution with the new instances. After training a classifier, the weights of
the original dataset instances are updated, then another sampling phase is applied
(again, modifying the weight distribution). The repetition of this process also brings
along more diversity in the training data, which generally benefits the ensemble
learning.

7.3.3.2 RUSBoost

RUSBoost [99] performs similarly to SMOTEBoost, but it removes instances from
the majority class by random undersampling the dataset in each iteration. In this
case, it is not necessary to assign new weights to the instances. It is enough with
simply normalizing the weights of the remaining instances in the new dataset with
respect to their total sum of weights. The rest of the procedure is the same as in
SMOTEBoost.

7.3.3.3 DataBoost-IM

This approach [47] is slightly different to the previous ones. Its initial idea is not
different, it combines AdaBoost.M1 algorithm with a data generation strategy. Its
major difference is that it first identifies hard examples (seeds) and then carries out
a rebalance process, always for both classes. At the beginning, the Ns instances (as
many as misclassified instances by the current classifier) with the largest weights
are taken as seeds. Considering that Nmin and Nmaj are the number of instances
of the minority and majority class, respectively; whereas Nsmin and Nsmaj are
the number of seed instances of each class; ML = min(Nmaj /Nmin,Nsmaj ) and
MS = min((Nmaj · ML)/Nmin,Nsmin) minority and majority class instances are
used as final seeds. Each seed produce Nmaj or Nmin new examples, depending on
its class label. Nominal attributes’ values are copied from the seed and the values of
continuous attributes are randomly generated following a normal distribution with
the mean and variance of class instances. Those instances are added to the original
dataset with a weight proportional to the weight of the seed. Finally, the sums of
weights of the instances belonging to each class are rebalanced, in such a way that
both classes’ sum is equal. The major drawback of this approach is its incapability
to deal with highly imbalanced datasets, because it generates an excessive amount
of instances which are not manageable for the base classifier (i.e., Nmaj = 3000
and Nmin = 29 with Err = 15%, there will be 100 seed instances, which 71
have to be from the majority class and at least 71 · 3000 = 213,000 new majority
instances are generated in each iteration). For this reason, we will not analyze it in
the experimental study.
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7.3.3.4 RAMOBoost

RAMOBoost [23] stands for Ranked Minority Oversampling in Boosting. It is
similar to SMOTEBoost, but it is based on the instance generation mechanism
of ADASYN [48], where the number of instances to be generated depends on
how many instances from the majority class are in the KNN of each minority
class instance. The more instances from the majority class are, the more synthetic
examples will be generated, since the instance is assumed to be nearer to the
decision boundary. In summary, RAMOBoost uses AdaBoost.M2; first, it carries out
a sampling of the dataset following the weight distribution Dt of AdaBoost; then, the
instances from the minority class are oversampled by generating synthetic examples
depending on the number of examples from the majority class in their neighborhood.
That is, the more neighbors from the other class, the more probability the instance
has to be used for oversampling. This is achieved by resampling with replacement
the minority class examples, giving more probability of being selected to those with
greater number of majority class NNs. Afterwards, for each instance selected to be
oversampled, new instances are generated by interpolation as in SMOTE in order
to balance the dataset (a predefined number of instances are generated in this case).
Finally, the base classifier is learned using the dataset resampled using Dt and the
generated minority class examples. Afterwards, AdaBoost.M2 algorithm continues
its execution without the synthetic examples.

7.3.3.5 Adaboost.NC

Adaboost.NC [114] was developed aiming at combining the benefits of Negative
Correlation Learning (NCL) and Boosting. The same authors extended the usage
of this method to two-class imbalanced problems by randomly oversampling the
dataset before applying the Adaboost.NC algorithm. In order to improve diversity
and performance at the same time, Adaboost.NC introduces a penalty term pt =
1 − |ambt | for each training example where ambt assesses the disagreement degree
of the classification within the ensemble in iteration t :

ambt = 1

t

t∑

i=1

(||Ht = y|| − ||hi = y||) (7.12)

The magnitude of ambt indicates a “pure” disagreement. This penalty term is
then introduced into the alphat computation as well as in the weight update giving
more attention to examples with small |ambt | in order to force negative correlation.
Notice that although this method is classified in this category as it is using Boosting
and data preprocessing, they are combined one after the other and not one inside the
other as in the rest of the methods.
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7.3.3.6 EUSBoost

EUSBoost (Evolutionary Undersampling Boosting) [36] is similar to RUSBoost
model, but evolutionary undersampling (EUS) is considered instead of RUS in order
to select the majority class instances to be used in each iteration in a supervised
manner. In this way, both the classification performance can be improved as well
as the diversity of the classifiers, which is promoted by a mechanism introduced in
the fitness function of EUS. This way, not only the best subset of majority class
instances is selected in each phase but also the subset with the greatest diversity
compared with the ones already selected.

7.3.3.7 GESuperPBoost

The idea of the GESuperPBoost (Genetically Evole Supervised Projection Boost-
ing) [42] algorithm is based on AdaBoost. However, instead of optimizing the
weights of AdaBoost in an aggressive manner (learning a classifier that minimizes
the cost), the authors propose to transform the dataset in each iteration by non-linear
projections. That is, no data-preprocessing method for the class imbalance problem
is considered (such as undersampling or oversampling) but data is transformed
to a new feature space where examples become more separable. This is done by
learning an adequate non-linear transformation using a genetic algorithm which
takes into account the weight distribution of Adaboost in a weighted g-mean
measure (the one optimized by the genetic algorithm). Afterwards, a classifier is
learned in the new feature space without considering the weights of AdaBoost
(which were considered for the feature transformation). Hence, supervised non-
linear projections are considered as a data preprocessing step. These types of
projections are constructed using both the inputs and the label of the patterns and
with the aim of improving the classification accuracy of any given learner.

7.3.3.8 BalancedBoost

BalancedBoosts [116] consists of a modification of RUSBoost, where instead of
applying RUS, the authors consider the undersampling of the majority class and the
oversampling of the minority one in such a way that the new dataset is balanced
and has the same number of majority and minority class instances. Moreover, the
sampling process is carried out following the weights of AdaBoost.M2 algorithm,
which is the one considered by the authors.

7.3.3.9 RB-Boost

RandomBalanace Boosting [26] is based on the same idea as RUSBoost and
SMOTEBoost, but in this case RandomBalance data level technique is considered.
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That is, an hybrid between RUSBoost and SMOTEBoost is achieved because
RandomBalance randomly selects the number of instances from each class to be
present in the dataset and then, RUS or SMOTE are applied depending on the
necessity. As it is done in RUSBoost or SMOTEBoost, RandomBalance sampling
is also combined with Adaboost.M2 algorithm to create an ensemble capable of
dealing with imbalanced classes. To do so, RandomBalance preprocessing was
introduced just before step 4 of Adaboot.M2 (Algorithm 5). New instances in the
dataset receive a weight of 1/N (the weight initially given to all instances), whereas
the instances remaining in the dataset maintain their original weights.

7.3.3.10 Balanced-St-GrBoost

Focused on high dimensional datasets where class imbalance is present, the
authors considered the usage of Gradient Boosted Trees [8]. Gradient Boosted
Trees generalize the idea of Boosting by allowing the optimization of an arbitrary
differentiable loss function. However, as many other classifiers they are also biased
toward the majority class. Hence, they proposed three different variations, which
were analogous to existing methods for the class imbalance but changing the inner
classification method. In the case of Boosting-based family, they proposed the
Balanced-St-GrBoost method, which is an Stochastic Gradient Boosting ensemble
that uses RUS to balance the dataset in each iteration.

7.3.4 Bagging-Based Ensembles

Due to its simplicity and good generalization ability many approaches have been
developed using bagging ensembles to deal with class imbalance problems. The
integration of data preprocessing techniques in bagging is usually simpler than their
hybridization with boosting. In bagging, in contrast to boosting, there is no need of
recompute any kind of weights; therefore, neither is necessary to adapt the weight
update formula nor to change the computations in the algorithm. In bagging-based
methods, the key factor is the way in which each bootstrap replica is obtained (Step
2 of Algorithm 1), that is, how the class imbalance problem is dealt to obtain a useful
classifier in each iteration without forgetting the importance of the diversity. Many
of the algorithms in this category have proposed to change the original bootstrapping
of Bagging by the usage of a data preprocessing method, which by itself should also
be able to provide the required diversity.

In this category, we distinguish two main algorithms because they have been
the basis for many others: OverBagging [113] and UnderBagging [4]. More-
over, algorithms such as UnderOverBagging [113], IIVotes [9], RB-Bagging [26],
EPRENNID [111] or USwitchingNED [45] also belong to this family. Notice that,
there are other algorithms that have being grouped into OverBagging and Under-
Bagging due to their similarity, for instance, SMOTEBagging [113], QuasiBagging
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[18], Asymetric Bagging [106], Roughly Balanced Bagging [49], Partitioning
[17, 124], Bagging Ensemble Variation [74], IRUS [105], α-TreeEnsembles [88]
and PUSB [63]. Hereafter, we explain all these approaches.

7.3.4.1 OverBagging

An easy way to overcome class imbalance problem when facing the resampling
stage in bagging is to take the classes of the instances into account when they are
randomly drawn from the original dataset. Hence, instead of performing a random
sampling (with replacement) of the whole dataset, an oversampling process can be
carried out before training each classifier (OverBagging). This procedure can be
developed in at least two ways. Oversampling consists in increasing the number
of minority class instances by their random replication. Regarding majority class
instances, they can directly be included in the new bootstrap, but another option
is to resample with replacement them aiming at increasing diversity. Notice that
in OverBagging all instances will probably take part in at least one bag, but each
bootstrapped replica will contain many more instances than the original dataset.

• SMOTEBagging [113]. The oversampling of the minority class instances can
also be carried out using a different algorithm such as SMOTE preprocessing
algorithm. Nevertheless, SMOTEBagging [113] differs from OverBagging not
only due the usage of a different preprocessing method (SMOTE instead of ROS),
it also follows a significantly different strategy to create each bag. As well as
in OverBagging, in this method both classes contribute to each bag with Nmaj

instances. But, a SMOTE resampling rate (a%) is set in each iteration (ranging
from 10% in the first iteration to 100% in the last, always being multiple of 10)
and this ratio defines the number of positive instances (a% · Nmaj ) randomly
resampled (with replacement) from the original dataset in each iteration. The rest
of the positive instances are generated by SMOTE algorithm. Besides, the set
of negative instances is bootstrapped in each iteration in order to form a more
diverse ensemble.

7.3.4.2 UnderBagging

In contrast to OverBagging, UnderBagging procedure uses undersampling instead
of oversampling. However, in the same manner as OverBagging, it can be developed
in at least two ways. The undersampling procedure is usually only applied to the
majority class; however, a resampling with replacement of the minority class can
also be applied in order to obtain a priori more diverse ensembles. Nonetheless,
doing so can be more risky as relevant information from the minority class may be
lost (which in OverBagging is unlikely to happen with the majority class). Also,
point out that, in UnderBagging it is more probable to ignore some useful negative
instances, but each bag has less instances than the original dataset (on the contrary
to OverBagging).
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In the following, we also describe different variations of UnderBagging that can
be found in the literature.

• Asymmetric Bagging [106]/QuasiBagging [18]. Even if these methods are
named differently, these methods maintain the same functional structure of
UnderBagging and can be therefore considered to be the same algorithm.

• Roughly-balanced Bagging [49] is quite similar to UnderBagging, but it does
not bootstrap a totally balanced bag. The number of positive examples is always
kept fixed (using all of them or resampling them), whereas the number of negative
examples drawn in each iteration varies slightly following a negative binomial
distribution (with q = 0.5 and n = Nmin). Hence, each bag is not force to be
totally balanced.

• Partitioning [17, 124]/Bagging Ensemble Variation [74] is another way to
develop the undersampling, in this case, the instances of the majority class are
divided into IR disjoint datasets and each classifier is trained with one of those
bootstraps (mixed with the minority class examples). As a consequence, the
number of classifiers to be trained is given by the IR of the dataset.

• IRUS[105]. IRUS (Inverse Random UnderSampling) is very similar to Under-
Bagging, but it is named as inverse random undersampling because in each
undersampling phase, the imbalanced distribution is inverted. That is, all the
minority class examples are selected but few majority class examples are
randomly drawn (without replacement). In this way, the new dataset will have
more instances from the minority class than from the majority one. As a result, a
high true positive rate is expected due to the imbalance inversion. On the contrary,
the false positive rate can clearly affect this method. However, false positives are
expected to decrease due to the averaging effect of bagging. Since the number
of examples from the majority class in each iteration is very small, the diversity
should be boosted, alleviating the number of false positives. Moreover, for the
classifier fusion phase, the outputs of each classifier are normalized by their mean
and variance instead of directly using the output of each classifier to perform a
weighted voting.

• α-TreeEnsembles[88] α-trees introduce a new splitting criterion based on alpha-
divergence, which generalizes well-known criteria such as the ones used in
C4.5 or CART. With this new splitting, different trees can be constructed using
different values for the α scalar. The authors take advantage of this fact and use
it to construct ensembles for the class imbalance problem, where the values of
alpha are changed. Moreover, this is combined with undersampling. Hence, these
ensembles can be seen as UnderBagging where α-trees are considered in order
to increase diversity.

7.3.4.3 UnderOverBagging

The methodology followed by UnderBagging to OverBagging is different from that
of OverBagging and UnderBagging. In fact, it is more similar to SMOTEBagging
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in the way to create each bag. Both oversampling and undersampling techniques
are applied. A resampling rate (a%) is set in each iteration (ranging from 10% to
100% always being multiple of 10), which defines the number of instances that are
randomly taken from each class (a%·Nmaj instances). Hence, the first classifiers are
trained with a lower number of instances than the last ones. This way, the diversity
is boosted.

7.3.4.4 IIVotes

Imbalanced IVotes [9] is based on the same combination idea of introducing a
data level algorithm into bagging. In this case, SPIDER is the data preprocessing
technique considered and instead of being combined with bagging, the ensemble
learning model considered is IVotes. Therefore, a preprocessing phase is applied
in each iteration of IVotes before Step 13 of Algorithm 2. This method has the
advantage of not needing to define the number of bags, since the algorithm stops
when the out-of-bag error estimation no longer decreases.

7.3.4.5 RB-Bagging

Likewise its boosting version, RandomBalance Bagging [26] is an hybrid between
SMOTEBagging and UnderBagging, in the sense that RandomBalance preprocess-
ing uses both RUS and SMOTE to create the new dataset. In RB-Bagging, each new
bag is obtained by RandomBalance and hence, all the bags always have the same
number of instances as the original dataset. However, the number of instances from
each class is randomly selected. Depending on the number of instances to be taken
from each class either RUS or SMOTE is applied.

7.3.4.6 EPRENNID

EPRENNID (Evolutionary Prototype Reduction based Ensemble for Nearest Neigh-
bor classification of Imbalanced Data) [111] is a classifier specific ensemble model
based on data preprocessing. The authors make use of k-NN classifier to create an
ensemble. In order to do so, the reference sets for k-NN needs to be different, which
is achieved by the hybridization of prototype selection (where few instances from
the original set are selected) and prototype generation (where those instances are
moved in the feature space aiming at improving the generalization performance). In
this model, both techniques are developed using evolutionary algorithms. The first
one is based on a memetic algorithm, where a local search is included in the genetic
algorithm looking for the best set of instances to be selected. Likewise, prototype
generation is developed by means of differential evolution. Both approaches take
into account the class imbalance in order to perform well in this framework. This is
mainly carried out by considering appropriate performance measures in the fitness
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functions (such as g-mean or AUCROC). Moreover, in order to obtain a diverse set
of k-NN classifiers, diversity is taken into account when selecting the final reference
sets. It should be noted that different from classic UnderBagging approaches, in this
method, both the majority and minority class examples are undersampled in each
final reference set, but this is done in a guided manner. Finally, classifiers in the
ensemble are combined using a dynamic classifier weighting approach.

7.3.4.7 USwitchingNED

USwitchingNED [45] stands for Undersampling Switching Nearest Enemy Dis-
tance. This method is similar to UnderBagging, but it adds an extra step for
increasing the diversity of the ensemble members. In order to do so, Class Switching
ensembles are considered. In these ensembles, diversity is achieved by randomly
switching the classes of selected instances. The authors adapted this methodology
to the class imbalance framework by only switching the labels of majority class
instances. Moreover, these instance were selected depending on a probability, whose
value is inversely proportional to the distance to its nearest enemy (instance from
the minority class). However, as with every other ensemble technique, some kind of
preprocessing was needed in order to address highly imbalanced datasets and hence,
they combined their method with random undersampling that gave the best results
(also SMOTE and random oversampling were considered). As a consequence, the
algorithm works as follows: in each iteration, a fraction of examples from the
majority class are switched (the fraction is a parameter of the method); afterwards,
if the dataset is still unbalanced, random undersampling is applied to completely
balance the dataset. The final prediction is given by majority voting of the ensemble
members.

7.3.5 Hybrid Ensembles

The main difference of the algorithms in this category with respect to the previous
ones is that they carry out a double ensemble learning, that is, they combine
both bagging and boosting (also with a preprocessing technique). Algorithms
using this kind of hybridization were first proposed in [77] (EasyEnsemble and
BalanceCascade, referred to as exploratory undersampling techniques). Other sim-
ilar approaches are HardEnsemble [86] and StochasticEnsemble [8]. All these
approaches use Bagging as main ensemble learning method, but instead of training
a classifier for each new bag, they train each bag using AdaBoost. Hence, the final
classifier is an ensemble of ensembles. The specific details of each method are
explained in the following.
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7.3.5.1 EasyEnsemble

In the same manner as UnderBagging, each balanced bag is constructed by ran-
domly undersampling instances from the majority class and using all the instances
from the minority class. Afterwards, instead of simply learning a classifier, in
EasyEnsemble [77] AdaBoost learning algorithm is considered to learn an ensemble
from the undersampled dataset. Hence, this method can be seen as an UnderBagging
where the base learner used is AdaBoost. If we fix the number of classifiers,
EasyEnsemble will train less bags than UnderBagging, but more classifiers will be
assigned to learn each single bag. Finally, classifier combination is made by the
combination of all classifiers with the corresponding weights assigned by AdaBoost
to each one of them.

7.3.5.2 BalanceCascade

BalanceCascade [77] is similar to EasyEnsemble as they are based on the same
model. However, in BalanceCascade the removal of negative instances is considered
after each bagging iteration (that is, after learning the AdaBoost classifier). Hence,
differently EasyEnsemble, the AdaBoost classifiers cannot be run in parallel as each
one depends on the previous models. In each bagging iteration after learning the
AdaBoost classifier, the majority class examples that are correctly classified with
higher confidences by the current trained classifiers are removed from the dataset,
and they are not taken into account in further iterations. The rest of the method,
including the classifier combination is the same as in EasyEnsemble.

7.3.5.3 HardEnsemble

HardEnsemble [86] is also an ensemble of ensembles. A similar strategy to
EasyEnsemble is followed, but in this case both oversampled and undersampled
datasets are considered. HardEnsemble is composed of a total of 150 classifiers, 50
of which are constructed from oversampled datasets and 100 from undersampled
datasets. As oversampling method a new modification of SMOTE named as Critical
SMOTE is considered, which is proposed in the same work. For undersampling the
authors proposed the usage of Reward-Punishment technique [85], which removes
the cases in the overlapping regions. Preprocessed datasets were afterwards used to
learn a RUSBoost ensemble (10 iterations). Therefore, this is similar to EasyEnsem-
ble but as the preprocessed datasets may not be totally balanced, RUSBoost is
applied instead of directly using AdaBoost algorithm. Finally, all the classifiers
learned were combined by weighted voting strategy (as in EasyEnsemble).
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7.3.5.4 StochasticEnsemble

StochasticEnsemble was proposed in the same work as Balance-St-GrBoost [8],
which we have already reviewed. Both models were focused on addressing high
dimensional datasets. The authors make use of Gradient Boosted Trees, which are
also biased to the majority class and hence, preprocessing techniques are required.
If Balanced-St-GrBoost can be considered as a variation of RUSBoost where the
base classifiers used are Gradient Boosted Trees, then StochasticEnsemble follows
the same idea but replicating the behavior of EasyEnsemble. Hence, it performs
UnderBagging were each bag is learned using Gradient Boosted Trees.

7.3.6 Other

This family of methods differs from the previous ones in the sense that they
are not new ensemble methods as whole but they propose a set of techniques to
improve existing models by mainly either increasing the diversity of the ensemble
(RandomOracles [93], diversity enhancing techniques for improving ensembles [27]
and OrderingBasedPruning [37]) or adapting the AdaBoost algorithm to better learn
in the imbalance framework (Loss factors [101] and GOBoost [79]). The only
exception is MOGP-GP [7], which is an ensemble method based on multi-objective
genetic programming and hence, they way of building the ensemble highly differs
from the ones already reviewed. Hereafter, the approaches in this category are
described one by one.

7.3.6.1 MOGP-GP

The authors of [7] proposed a completely different approach based on evolutionary
computation. First, a multi-objective genetic programming (GP) was considered to
evolve a set of GP classifiers to form the ensemble by trading-off the performance
over the minority and majority classes. This way, any kind of resampling or data
preprocessing phase is avoided. Afterwards, an ensemble selection approach was
developed also using GP to finally select the members of the ensemble.

7.3.6.2 RandomOracles

In [93], Random Oracles are considered to improve the capabilities of existing
ensembles for the class imbalance problem such as SMOTEBoost, SMOTEBagging
and RUSBoost. In such a way, Random Oracles are used as base classifiers instead of
directly considering the selected classifier. The truth is that in Random Oracles, two
base classifiers are learned instead of one in each iteration of the ensemble, because
the feature space is randomly divided into two (via linear or spherical oracles) and
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one classifier is then learned for each part of the feature space. In any case, the rest
of the ensemble model remains unchanged and this is why this method is considered
as a possible improvement of existing ones.

7.3.6.3 Loss Factors

Two new loss factors based on F-measure and G-mean are proposed for AdaBoost
algorithm [101] based on the fact that AdaBoost aims at decreasing the overall
classification error, being not totally adequate for the imbalance framework even if
data is preprocessed in each iteration. Therefore, instead of the loss factor based
on standard accuracy, specific loss factors for the class imbalance problem are
introduced. As a consequence, both alphat and therefore the weight update formula
are changed, taking into account both classes equally. These new loss schemes are
considered together with existing ensembles such as SMOTEBoost, RUSBoost and
RB-Boost.

7.3.6.4 GOBoost

This work also deals with the loss factors of AdaBoost [79]. The authors modify
AdaBoost algorithm changing the function to be minimized by AdaBoost. Instead
of the error rate, they consider the maximization of the g-mean, which is much
more adequate for the imbalance framework. As a result, they derive the new
GOBoost algorithm where the g-mean is maximized. This new algorithm is tested
in combination with existing approaches for the class imbalance such as RUSBoost,
EasyEnsemble, ROSBoost, SMOTEBoost and AdaC2. Hence, it is aimed at comple-
menting existing approaches by making AdaBoost more conscious of the problem.

7.3.6.5 OrderingBasedPruning

Pruning for classifier ensembles consists of removing classifiers from the ensemble
in order to improve the generalization performance of the final ensemble, reduce
the storage necessity and the testing times. In the case of ordering-based ensemble
pruning, classifiers are ordered an added one by one to the final ensemble (instead
of removing classifiers, they are added). In this way, the key factor is the measure
considered to decide which one is the next classifier to be added to the ensemble.
In [37], the authors considered a general framework that was applied to existing
classifiers for the class imbalance problem such as SMOTEBagging, UnderBagging,
RUSBoost, EUSBoost and EasyEnsemble, among others. Existing measures for
ensemble pruning in standard classification scenarios were adapted to the specific
properties of imbalanced datasets. Five new metrics were proposed as an adaptation
of existing ones. The authors showed that the usage of pruning highly enhanced
the results of existing models. Among them, the combination of UnderBagging
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with the Reduced-Error with Geometric Mean (RE-GM) ensemble pruning achieved
remarkable results, being one of the simplest pruning models. The original RE
model consisted of adding the classifiers that achieve the largest reduction of
the classification error (which is the same as those with the greatest accuracy
improvement). Therefore, the error has the same problems as the accuracy measure
when dealing with imbalanced problems, being biased toward the majority class.
The g-mean performance measure is considered to solve this problem by adding the
classifier leading to the ensemble with largest g-mean.

7.3.6.6 Diversity Enhancing Techniques for Improving Ensembles

In [27], the authors developed an extensive experimental study where several
diversity enhancing techniques for classifier ensembles were considered to improve
existing ensemble models for the class imbalance problem. They focused on the
four groups of techniques already introduced in Sect. 7.2.3. More specifically, they
performed experiments with Random Linear Oracles, Disturbing Neighbors, RFW
and Rotation Forest (one method from each category). These diversity enhancing
techniques were combined with methods like SMOTEBagging, UnderBagging,
SMOTEBoost, RUSBoost, RAMOBoost, RB-Boost and RB-Bagging. They con-
cluded that the diversity added by the new introduced techniques paid off with an
increase in the overall performance of the classifiers.

7.3.6.7 PT-Bagging

On the contrary to most of the ensemble-based method presented for addressing
the class imbalance problem, PT-Bagging [24] aims to avoid the rebalancing of the
dataset, which can introduce its own biases. The authors propose to substitute the
adaptation of the learning phase by the adaptation of the testing phase introducing
a simple threshold-moving technique. This technique consists in selecting the best
threshold for predicting each class (instead of the predefined 0.5 that is commonly
considered). Since Bagging is known to provide good probability estimates, the
authors propose different ways of adjusting the threshold depending on the measure
to be optimized. More specifically, the original averaged output probabilities
given by Bagging are transformed to scores dividing them by the respective class
threshold. These thresholds can be adapted to maximize the measure of interest. In
this case, both the average accuracy and F-measure are considered to be optimized.

7.3.6.8 IMCStacking

Similarly to PT-Bagging, the authors of this work avoided rebalancing the dataset
[16]. They considered the usage of Stacking to combine the different base classifier
that were learned from the original training data. Stacking [119] makes use of
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another classifier in order to combine the outputs of the previous ones, this way, the
outputs of the base classifiers are the inputs of the stacked classifier used to finally
predict the output of the ensemble. In order to handle the imbalance, cost-sensitive
logistic regression is used for the combination of the base classifiers. Moreover, the
probabilities given by the base classifiers are transformed by a method named as
inverse feature mapping before using them as input for the cost-sensitive logistic
regression. These feature transformation is based on an exponential transformation
of the probabilities, whose exponentiation parameter is fitted by cross-validation. As
base classifiers Linear Discriminant Analysis, Logistic Regression, Random Forest,
Extremely randomized Trees and Gradient Based Decision Trees are considered.

7.3.6.9 DynamicSelection

In [94], the authors focused on showing the goodness of applying dynamic selection
[14] in the combination phase of the ensemble. Four different dynamic selection
methods were considered together with different Bagging-based ensembles for the
class imbalance problem (RB-Bagging, SMOTE-Bagging and a Bagging version
of RAMO-Boost). Recall that dynamic selection methods can either select a single
classifier or a group of classifiers. In this case, both types were considered. Another
key factor in dynamic selection is the reference dataset used to establish the
competence of each classifier to classify a given test instance. Accordingly, the
authors proposed to apply SMOTE or RAMO to ensure that the resulting dataset
will have enough instances so as to be reliable, and at the same time handle the class
imbalance.

7.4 An Illustrative Experimental Study on Ensembles for the
Class Imbalance Problem

To end this chapter, in this last section we develop a brief experimental study
comparing several selected ensemble methods that we have carefully selected.
In fact, our objective is two-fold: (1) We want to show the effectiveness of
ensemble methods by comparing them against the usage of preprocessing (without
considering ensembles); (2) We present a comparison among ensemble methods and
show the usefulness of ensemble pruning methods to enhance their results. In order
to develop this study, first, we introduce the experimental framework in Sect. 7.4.1.
Then, we present the results obtained and discuss them in Sect. 7.4.2
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7.4.1 Experimental Framework

7.4.1.1 Datasets and Performance Measures

For the experimental analysis we have considered the complete set of imbalanced
datasets in the KEEL data-set repository [1, 2], which is publicly available on the
corresponding web-page.1 The table with the properties of the 66 datasets in this
repository is presented in Chap. 2. We recall that they are binary class imbalanced
problem with IR ranging from 1.5 to 129.

In order to measure the performance of each approach we consider the g-mean,
which requires both classes to be properly distinguished without favoring any
of them. The estimates for this metrics are obtained by means of a Distribution
Optimally Balanced Stratified Cross-Validation (DOB-SCV) [84], as suggested in
the specialized literature for working in imbalanced classification [78]. DOB-SCV
avoids dataset shift [83], which hinders the results obtained in the experimental
analysis. This procedure is carried out using fivefolds, aiming to include enough
positive class instances in the different folds. In this way, we avoid additional
problems in the data distribution, especially for highly imbalanced datasets. In
accordance with the stochastic nature of the learning methods, these fivefolds are
generated with five different seeds, and each one of the five-fold cross-validation
is run 5 times. Therefore, experimental results for each method and dataset are
computed with the average of 125 runs.

7.4.1.2 Algorithms and Parameters

In first place, the baseline classifier that will be used in all the ensembles needs to be
defined. With this goal, we will use C4.5 decision tree generating algorithm [91]. We
should note that the majority of the ensemble methodologies that are tested in this
section were proposed using C4.5 as base classifier. Moreover, it has been widely
used to deal with imbalanced datasets [29, 39, 103], and C4.5 has also been included
as one of the top-ten data-mining algorithms [123]. Therefore, from our point of
view it is the most appropriate base learning for these experiments. C4.5 learning
algorithm constructs the decision tree top-down using the normalized information
gain (difference in entropy) that results from choosing an attribute for splitting the
data. The attribute with the highest normalized information gain is the one used to
make the decision. In Table 7.2, we show the configuration parameters that we have
used to run C4.5.

For the experiments we have selected several representative methods from the
different families that we have analyzed. Regarding Bagging-, Boosting-based
and Hybrid ensemble methods, we have considered the best performers in the
comparison carried out in [35]. Therefore, UnderBagging and SMOTEBagging

1http://www.keel.es/dataset.php

http://www.keel.es/dataset.php
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Table 7.2 Parameter
specification for C4.5

Parameters

Prune = True

Confidence level = 0.25

Minimum number of item-sets per leaf = 2

Confidence = Laplace smoothing [89]

from Bagging-based ensembles, RUSBoost and SMOTEBoost from Boosting-based
ensembles and EasyEnsemble as Hybrid method are considered. Additionally,
we have considered EUSBoost as another more recent Boosting-based method
specifically developed for highly imbalanced datasets. Ensemble methods are
complemented with the best performing ordering-based pruning model in [37] as a
representative of the family Other. Notice that in this case, a base ensemble model is
considered (UnderBagging) together with a post-processing mechanism to reduced
the size of the ensemble (RE-GM). This method is denoted as UnderBagging_RE
in the following. The parameters considered for all the algorithms are the ones
recommended by the authors. The same parameters are used for every dataset.

Regarding the number of classifiers considered for the ensembles, all the methods
should have the same opportunities to achieve their best performance, but avoiding
the fine-tuning of their parameters depending on the dataset. In [35], it was
shown that Boosting-based ensembles work better with only 10 classifiers, whereas
Bagging-based ones need 40 to reach their maximum potential. Hence, we consider
10 classifiers for the former ensembles and 40 for the latter and Hybrid ones. For
the case of UnderBagging_RE, following the recommendations of the authors, 100
classifiers are initially built, but the final pruned ensemble will only consists of 21
classifiers.

We should notice that the only category not included in the comparison is the
cost-sensitive ensembles. We prefer not to include models in this category because
previous experiments [35] have shown that setting the costs with a general pattern
do not allow them to achieve their maximum potential and hence, the comparison
may be not totally fair in this case.

Finally, in order to compare the performance of ensemble methods with data level
ones, we have considered the most commonly used methods for data preprocessing
in classifier ensembles, that is, RUS and SMOTE. SMOTE configuration is the
standard one with a 50% class distribution, 5 neighbors for generating the synthetic
samples, and Heterogeneous Value Difference Metric for computing the distance
among the examples.

All experiments have been developed under KEEL software [1, 2]. We must
stress that the implementations of the algorithms in the comparison are publicly
available in KEEL source code.
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7.4.1.3 Statistical Analysis

In order to compare the different algorithms appropriately a statistical analysis of
the results needs to be carried out. Non-parametric tests are considered as suggested
in the literature [25, 38, 40]. Any interested reader can find additional information
on the Website http://sci2s.ugr.es/sicidm/. We consider two different tests.

• Pairwise comparisons. Wilcoxon paired signed-rank test [117] is used to find out
whether significant differences exist between a pair of algorithms.

• Multiple comparisons. Friedman aligned-ranks test [53] is used to detect statis-
tical differences among a set of algorithms. Then, if significant differences are
found, Holm post-hoc test [54] is used to check if the control algorithm (the best
one) is significantly better than the others (that is, 1 × n comparison).

Moreover, we show the p-value for each comparison, which represents the lowest
level of significance of a hypothesis resulting in a rejection. In such a manner, we
are able to know how different two algorithms are.

In addition, the average aligned-ranks of each algorithm (used in the Friedman
aligned-ranks test) are considered in order to compare at a first glance the behavior
of each algorithm with respect to the others. These rankings are computed by first
calculating the difference between the performance obtained by the algorithm and
the mean performance of all algorithms in the corresponding data-set. Then, these
differences are ranked from 1 to k · n (being k the number of data-sets and n the
number of methods), assigning the corresponding rank to the method from which
the difference has been computed. Hence, the lower the rank is, the better the method
is. At last, the average ranking of each algorithm in all data-sets can be computed to
show their global performance.

7.4.2 Experimental Results and Discussion

Table 7.3 presents the g-mean results obtained in test by each method for each
dataset considered. Moreover, the average performance of each method is presented
in the last row. The first two columns of methods correspond to preprocessing
approaches (RUS and SMOTE) without considering ensembles, whereas the rest
of them are ensemble methods. Notice that the last one is an ensemble model with
a post-processing mechanism to prune classifiers. The best result in each row is
stressed in bold-face.

At a first glance, it can be observed that the overall performance of RUS and
SMOTE is considerably lower than that of the ensemble models. Among ensemble
models, in this framework, SMOTEBagging and SMOTEBoost are the ones with
the worst overall performance, whereas EUSBoost and UnderBagging_RE perform
the best. Anyway, one should notice that there are datasets were the worst methods
overall perform better than the rest, which is in accordance with the no free lunch
theorem.

http://sci2s.ugr.es/sicidm/
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Table 7.3 Test results for the selected preprocessing and ensemble methods using the g-mean
performance measure
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abalone19 0.6510 0.2946 0.6942 0.2756 0.6648 0.2428 0.6702 0.7023 0.6956

abalone918 0.6854 0.6442 0.7533 0.6802 0.7335 0.6322 0.7264 0.7176 0.7320

cleveland0vs4 0.7335 0.6932 0.8420 0.7330 0.8609 0.7229 0.8557 0.8594 0.8583

ecoli0137vs26 0.6706 0.7797 0.7078 0.7625 0.7269 0.7790 0.7602 0.8044 0.7897

ecoli0146vs5 0.8247 0.8753 0.8880 0.8791 0.9145 0.8936 0.9022 0.8937 0.9046

ecoli0147vs2356 0.7953 0.8356 0.8272 0.8599 0.8514 0.8627 0.8539 0.8380 0.8632
ecoli0147vs56 0.8180 0.8652 0.8707 0.8590 0.8822 0.8994 0.8919 0.8812 0.8907

ecoli01vs235 0.8355 0.8438 0.8791 0.8943 0.8811 0.8653 0.8858 0.8836 0.9025
ecoli01vs5 0.8234 0.8614 0.8676 0.8808 0.9017 0.8887 0.9188 0.9049 0.9102

ecoli0234vs5 0.8061 0.8830 0.8549 0.8913 0.8987 0.8831 0.8925 0.8868 0.8876

ecoli0267vs35 0.8125 0.8537 0.8488 0.8528 0.8596 0.8503 0.8488 0.8525 0.8545

ecoli0346vs5 0.8174 0.8727 0.8722 0.8779 0.8839 0.8778 0.8892 0.8794 0.8856

ecoli0347vs56 0.8165 0.8529 0.8721 0.8492 0.8875 0.8836 0.8848 0.8714 0.8923
ecoli034vs5 0.8278 0.8840 0.8861 0.9053 0.9115 0.9001 0.9087 0.9052 0.9047

ecoli046vs5 0.8316 0.8871 0.8816 0.9071 0.9098 0.8904 0.8950 0.8921 0.9059

ecoli067vs35 0.8182 0.8421 0.8517 0.8495 0.8535 0.8541 0.8480 0.8552 0.8565
ecoli067vs5 0.8471 0.8535 0.8781 0.8832 0.8851 0.8879 0.8778 0.8646 0.8847

ecoli0vs1 0.9740 0.9766 0.9803 0.9810 0.9736 0.9750 0.9730 0.9719 0.9772

ecoli1 0.8753 0.8838 0.8965 0.9043 0.8896 0.8677 0.8996 0.8998 0.9035

ecoli2 0.8680 0.8888 0.9046 0.9131 0.9061 0.9154 0.9037 0.9048 0.9044

ecoli3 0.8441 0.8333 0.8791 0.8400 0.8562 0.8296 0.8645 0.8736 0.8682

ecoli4 0.8243 0.8989 0.8923 0.9197 0.9234 0.9035 0.9218 0.9256 0.9271
glass0123vs456 0.9061 0.9125 0.9327 0.9395 0.9276 0.9168 0.9295 0.9391 0.9366

glass0146vs2 0.6125 0.6680 0.6981 0.6245 0.6176 0.6860 0.6730 0.7003 0.7363
glass015vs2 0.5766 0.6539 0.7093 0.6457 0.6134 0.6813 0.6745 0.6611 0.6889

glass016vs2 0.5791 0.6436 0.6751 0.6073 0.6282 0.6499 0.6855 0.6525 0.7024
glass016vs5 0.9044 0.8827 0.9411 0.9863 0.9462 0.8914 0.9570 0.9497 0.9759

glass04vs5 0.9939 0.9295 0.9939 0.9908 0.9939 0.9757 0.9939 0.9835 0.9939
glass06vs5 0.9081 0.9061 0.9106 0.9924 0.9901 0.9811 0.9947 0.9462 0.9921

glass0 0.7783 0.7886 0.8214 0.8328 0.8397 0.8377 0.8449 0.8322 0.8437

glass1 0.7041 0.7414 0.7664 0.7620 0.7932 0.8126 0.7842 0.8059 0.7939

glass2 0.6101 0.6424 0.7418 0.7084 0.6615 0.6668 0.6812 0.6726 0.7468
glass4 0.8375 0.8343 0.9030 0.9004 0.8697 0.7922 0.8776 0.8640 0.8915

glass5 0.9392 0.9438 0.9473 0.9748 0.9556 0.9235 0.9717 0.9518 0.9659

glass6 0.8808 0.8944 0.9079 0.9269 0.9239 0.9157 0.9224 0.9121 0.9245

haberman 0.6241 0.6443 0.6554 0.6551 0.6476 0.6489 0.6226 0.6491 0.6528

(continued)
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Table 7.3 (continued)
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iris0 0.9897 0.9897 0.9897 0.9877 0.9897 0.9897 0.9897 0.9897 0.9897
led7digit02456789vs1 0.8176 0.7978 0.8139 0.8336 0.8381 0.6222 0.8253 0.8159 0.8209

newthyroid1 0.9156 0.9514 0.9471 0.9548 0.9541 0.9757 0.9597 0.9531 0.9471

newthyroid2 0.9267 0.9595 0.9593 0.9630 0.9703 0.9764 0.9650 0.9626 0.9618

pageblocks13vs4 0.9497 0.9897 0.9802 0.9952 0.9800 0.9911 0.9828 0.9610 0.9941

pageblocks0 0.9457 0.9483 0.9609 0.9579 0.9558 0.9410 0.9511 0.9620 0.9633
pima 0.7085 0.7212 0.7576 0.7556 0.7275 0.7326 0.7426 0.7361 0.7513

segment0 0.9833 0.9920 0.9866 0.9917 0.9920 0.9933 0.9916 0.9925 0.9898

shuttlec0vsc4 1.0000 0.9998 1.0000 0.9999 1.0000 0.9998 1.0000 1.0000 1.0000
shuttlec2vsc4 0.9712 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9881 1.0000
vehicle0 0.9264 0.9312 0.9485 0.9632 0.9573 0.9642 0.9541 0.9653 0.9547

vehicle1 0.7229 0.7394 0.7963 0.7837 0.7669 0.7641 0.7752 0.7998 0.7941

vehicle2 0.9408 0.9510 0.9703 0.9721 0.9738 0.9809 0.9744 0.9794 0.9734

vehicle3 0.7185 0.7351 0.7994 0.7774 0.7701 0.7459 0.7762 0.7971 0.7953

vowel0 0.9465 0.9753 0.9585 0.9877 0.9725 0.9860 0.9741 0.9758 0.9684

wisconsin 0.9562 0.9587 0.9689 0.9706 0.9685 0.9676 0.9656 0.9752 0.9700

yeast0256vs3789 0.7704 0.7640 0.8087 0.7916 0.7878 0.7728 0.7941 0.7910 0.8126
yeast02579vs368 0.8984 0.9004 0.9142 0.9169 0.9011 0.8937 0.9032 0.9040 0.9116

yeast0359vs78 0.6692 0.6800 0.7330 0.6993 0.7047 0.6164 0.7192 0.7175 0.7217

yeast05679vs4 0.7703 0.7834 0.8189 0.8138 0.8126 0.7713 0.8133 0.8288 0.8210

yeast1289vs7 0.6048 0.6445 0.7279 0.6498 0.6912 0.5658 0.7075 0.6919 0.7076

yeast1458vs7 0.5155 0.5040 0.6270 0.5458 0.6039 01.3651 0.6004 0.6157 0.6225

yeast1vs7 0.6664 0.6495 0.7617 0.7245 0.7373 0.7086 0.7599 0.7506 0.7647
yeast2vs4 0.9116 0.8911 0.9428 0.9262 0.9255 0.8747 0.9230 0.9386 0.9396

yeast2vs8 0.7142 0.7480 0.7366 0.7815 0.7610 0.7258 0.7549 0.7598 0.7439

yeast1 0.6922 0.7074 0.7297 0.7253 0.7136 0.7175 0.7222 0.7151 0.7306
yeast3 0.9169 0.9105 0.9306 0.9326 0.9233 0.8828 0.9235 0.9285 0.9340
yeast4 0.8107 0.7562 0.8375 0.8125 0.8269 0.7151 0.8303 0.8441 0.8502
yeast5 0.9425 0.9540 0.9587 0.9615 0.9543 0.8984 0.9481 0.9584 0.9632
yeast6 0.8280 0.8019 0.8664 0.8243 0.8501 0.7518 0.8475 0.8485 0.8688
Average 0.8076 0.8222 0.8536 0.8421 0.8554 0.8312 0.8606 0.8577 0.8691
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Table 7.4 Wilcoxon test to compare the preprocessing techniques (RUS and SMOTE) [R+] against
the ensemble-based models [R−] using the g-mean performance measure

Comparison R+ R− p-value

RUS vs. SMOTE 528.5 1682.5 0.00024 Rejected for SMOTE at 95%

UnderBagging 9.0 2202.0 0.00000 Rejected for UnderBagging at 95%

SMOTEBagging 99.0 2112.0 0.00000 Rejected for SMOTEBagging at 95%

RUSBoost 7.0 2204.0 0.00000 Rejected for RUSBoost at 95%

SMOTEBoost 645.5 1565.5 0.00338 Rejected for SMOTEBoost at 95%

EUSBoost 12.0 2199.0 0.00000 Rejected for EUSBoost at 95%

EasyEnsemble 15.5 2195.5 0.00000 Rejected for EasyEnsemble at 95%

UnderBagging_RE 3.0 2208.0 0.00000 Rejected for UnderBagging_RE at 95%

SMOTE vs. UnderBagging 260.5 1950.5 0.00000 Rejected for UnderBagging at 95%

SMOTEBagging 211.0 2000.0 0.00000 Rejected for SMOTEBagging at 95%

RUSBoost 222.5 1988.5 0.00000 Rejected for RUSBoost at 95%

SMOTEBoost 838.5 1372.5 0.09370 Rejected for SMOTEBoost at 90%

EUSBoost 109.5 2101.50 0.00000 Rejected for EUSBoost at 95%

EasyEnsemble 78.5 2132.5 0.00000 Rejected for EasyEnsemble at 95%

UnderBagging_RE 35.5 2175.5 0.00000 Rejected for UnderBagging_RE at 95%

RUS vs. SMOTE 528.5 1682.5 0.00024 Rejected for SMOTE at 95%

In order to gain more insights into the results, we first perform a comparison
between data-level methods and ensemble ones. In order to do so, we carry out a
Wilcoxon test between each data-level method (RUS and SMOTE) and the ensemble
models. These tests are presented in Table 7.4.

As it can be observed, all the tests are rejected with high confidence in favor of
the corresponding ensemble method. Hence, it can be concluded that the usage of
ensemble methods pays off although the increase in the complexity of the algorithms
and the final models. We should also notice that we have included the comparison
between RUS and SMOTE. The test is rejected in favor of SMOTE, which could be
expected as SMOTE performs a more complex guided sampling than RUS, which
can discard important information from the majority class. We should keep this
result in mind because we will show how this result changes when these approaches
are considered to build ensembles.

In the second part of this experimental study, we aim to compare the different
ensemble approaches. Table 7.5 summarizes the overall g-mean performance of
these approaches together with the results of the Friedman Aligned-ranks test and
the corresponding Holm post-hoc test.

Focusing on the overall g-mean test and the final ranked position following
aligned-ranks, one can observe that UnderBagging_RE is the best performing
approach. EUSBoost is the second best performing algorithm, which is based on
evolutionary undersampling in combination with Boosting. Then, all the methods
based on RUS are the ones achieving the best performances: EasyEnsemble (Hybrid
model using RUS), UnderBagging (RUS in Bagging) and RUSBoost (RUS in
Boosting). Finally, the worst performing models are SMOTEBagging (SMOTE in
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Table 7.5 Average results (g-mean), ranks (Friedman aligned test) and adjusted p-values (Holm
test) for the comparison among ensemble-based methods. Control method is pointed out with
asterisks in the Holm test column. Symbol * near the p-value implies significant differences at
95%, whereas symbol + sets the confidence degree at 90%

Ensemble model g-mean in test Ranking (Friedman aligned) APV (Holm test)

UnderBagging 0.8536 231.83 (4) 0.00039*

SMOTEBagging 0.8421 247.30 (6) 0.00004*

RUSBoost 0.8554 240.99 (5) 0.00010*

SMOTEBoost 0.8312 316.35 (7) 0.00000*

EUSBoost 0.8606 215.17 (2) 0.00189*

EasyEnsemble 0.8577 225.92 (3) 0.00071*

UnderBagging_RE 0.8691 142.95 (1) ********

Bagging) and SMOTEBoost (SMOTE in Boosting). This ranking is remarkable
in comparison with the result that we have previously analyzed were SMOTE
was clearly outperforming RUS. However, when moving to ensemble where these
approaches are used to create diversity and at the same time to balance the dataset,
it seems that RUS is much more appropriate than SMOTE. This fact could be due
to the greater diversity that RUS provides to the ensemble, since its totally random
nature can benefit this aspect.

Anyway, we should also pay attention to the results of the statistical test.
UnderBagging_RE is the control method as it achieves the larges number of ranks. It
is interesting to observe that this method is capable of statistically outperforming all
the other ones. This fact puts into perspective that the methods in Other family that
we have reviewed in the previous section have really something to give to existing
ensemble methods. Hence, using these kinds of models together with existing
ensemble can make a difference. In this case, the only difference with respect to
UnderBagging is that the ensemble has been pruned using an ordering-based method
following an adapted measure that considers the g-mean. Regarding the rest of the
ensemble methods, one can observe that all of them except for SMOTEBoost have
a similar number of ranks and there may not be statistical differences among them.

7.5 Summarizing Contents

In this chapter, solutions based on the usage of ensembles of classifiers for class
imbalance were presented and analyzed as a powerful and widely considered
alternative to deal with imbalanced datasets. The existing models can be classified
into three main categories: cost-sensitive approaches, data preprocessing-based
ensembles and others. Although many methods have been proposed combining data
preprocessing with ensemble learning techniques, recently, several methods that
cannot be clearly classified into this category have emerged, as they consider more
complex combinations.
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According to the brief experimental study carried out there is no doubt about the
superiority of ensemble-based models against simple data preprocessing algorithms.
However, there are still challenges that require new ensemble solutions to further
improve current approaches. Most of the research effort has gone to how to build
diverse classifiers in this scenario, but few attempts have been made on how to
improve the way the classifiers in the ensemble are combined: either considering
dynamic ensemble selection models or advanced aggregation strategies.
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Chapter 8
Imbalanced Classification with Multiple
Classes

Abstract Dealing with multi-class problems is a hard issue, which becomes
more severe in the presence of imbalance. When facing multi-majority and multi-
minority classes, it is not straightforward to acknowledge a priori which ones should
be stressed during the learning stage, as it was done in the binary case study.
Additionally, most of the techniques proposed for binary imbalanced classification
are not directly applicable for multiple classes. To analyze in detail all these issues,
the chapter is structured as follows. First, Sect. 8.1 introduces the general character-
istics on multi-class imbalanced classification. Section 8.2 describes decomposition
based approaches and how standard preprocessing techniques can be directly
applied. Then, Sect. 8.3 presents the ad-hoc approaches for both preprocessing and
classification methods. The performance metrics employed in the context of multi-
class imbalanced problems are enumerated in Sect. 8.4. Next, a brief experimental
study to contrast some of the state-of-the-art and promising approaches in this area
is carried out in Sect. 8.5. Finally, the concluding remarks are given in Sect. 8.6.

8.1 Introduction

The topic of imbalanced classification has been traditionally related to binary
datasets [9, 47, 67, 78, 92] Specifically, it is common to refer to a minority or
“positive” class, and a majority or “negative” class. Therefore, most of the research
carried out in this topic has been focused to stress the recognition of the less
represented class.

However, in several real applications practitioners must deal with more than two
classes. Some clear examples are microarray research [105], protein classification
[112], medical diagnosis [16], activity recognition [41], target detection [83] and
video mining [42]. All these problems have one thing in common: the distribution
of examples among the classes is not homogeneous.

In this sense, we must refer to the extension of the imbalanced classification
problem to the multi-class scenario [27, 45, 55] And as the number of classes
increases, so does the challenges of representing the whole problem space accu-
rately. In a general case study we must refer to the restriction for the larger
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number of boundaries to consider. But concretely in the imbalanced scenario, the
most significant issue that must be taken into account is the presence of multi-
minority and multi-majority classes [98]. This implies that is no longer possible
to focus on just a single class to reinforce the learning models towards it. But this
is not the only difficulty when addressing multiple class imbalanced datasets. All
data intrinsic characteristics that caused a performance degradation in the binary
case [67, 90], are now further accentuated. Among others, the dependency among
classes (including overlapping) and relations between same-class examples must be
analyzed in depth [94].

These facts arise a simple yet significant question: how can multi-class imbal-
anced datasets be properly addressed? However, there is not a simple answer to that.
We must face the challenge to extend standard solutions designed for binary-class to
be applied in this scenario. On the one hand, data level solutions (preprocessing) are
not directly applicable as the search space is increased, i.e. to determine the proper
sampling rate for each class [30]. On the other hand, algorithmic level solutions
become more complicated since there can be more than one minority class [113].

To address all these issues, we must stress one simple, yet effective way to
maintain traditional binary-class imbalanced approaches to be applied in multi-
class problems: by means of decomposition strategies [35]. Specifically, original
datasets are divided into binary ones following the divide-and-conquer paradigm.
As a result, a set of classifiers must be learned, each one being responsible for one
of the novel binary problems. In the testing phase, the outputs of all the classifiers
for a given instance are aggregated to make the final decision [58]. Therefore, the
difficulty in addressing the multi-class problem is shifted from the classifier itself to
the combination stage.

Among decomposition strategies, the most popular techniques are the One-vs-
One (OVO) [46, 53] and One-vs-All (OVA) [5, 18] schemes. The former approach
divides the original problem in as many pairs of classes as possible, ignoring the
examples that do not belong to the related classes. Then, these are learned in an
independent way by the so called base learners or base classifiers of the ensemble
[33]. The latter takes one class as “positive” and the joint of the remaining ones as
“negative”. Therefore, there are as many classifiers as classes, one of each devoted
to recognize a single class.

Class decomposition is not the only option in this case. There are many ad-hoc
approaches that are also able to learn directly from the entire dataset. These type
of methods thus consider the class distribution globally in the search of a more
robust modeling, both from the perspective of preprocessing [1] and algorithmic
modification [100]. Another possibility is incorporating misclassification costs as a
general cost-sensitive learning scheme [91].

In addition to the structural modifications in the approaches’ design, the valida-
tion of the results must be also adapted in the context of multi-class imbalanced
datasets. In this sense, general metrics of performance must be applied to guarantee
a good sensitivity for all represented classes [89]. Therefore, and following a similar
strategy than for the learning scheme, we must focus on both ad-hoc measures and
aggregation of binary ones, particularly via micro- and macro-averages [31].
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8.2 Multi-class Imbalanced Learning via
Decomposition-Based Approaches

An intuitive approach for handling multi-class imbalanced datasets is to apply a
decomposition strategy [35]. When the original problem is reduced to a set of two-
class subsets, then it can be directly solved by one of existing techniques for the
binary imbalanced scenario, such as those already described in previous chapters.

In this section, the different decomposition strategies for multi-class problems,
namely OVO and OVA, will be first introduced (Sect. 8.2.1). Then, some repre-
sentative examples of research works that have applied this methodology will be
presented (Sect. 8.2.2). Finally, a brief discussion on both the advantages and future
directions in this field of research will be provided (Sect. 8.2.3).

8.2.1 Reducing Multi-class Problems by Binarization
Techniques

Many proposals have been developed under the label of binarization for multi-
classification [35]. The underlying idea is to undertake the multi-classification using
binary classifiers with a divide and conquer strategy. Binary problems are simpler
to solve than the original multicategory problem. However, drawbacks exist, as
the outputs from each new classifier have to be combined in order to make the
final decision of the predicted class. Hence, a correct management of the outputs is
crucial to produce a correct prediction.

The most common decomposition strategies include OVO [33] and OVA [85].
Below, we describe the main characteristics of both approaches.

8.2.1.1 The One-vs-One Scheme (OVO)

In the OVO strategy, an m-class problem is divided into m(m − 1)/2 two-class
problems (one for each possible pair of classes). Each binary classification sub-
problem is face up by a different classifier. The learning phase is thus carried out
using a subset of the original training instances considering only those that contain
any of the two classes considered, whereas the instances with different class labels
are simply ignored. This methodology is illustrated in Fig. 8.1.

In validation phase, a pattern is presented to each one of the binary classifiers.
An easy way of organizing the outputs of these base classifiers for an instance is
by means of a score-matrix RM , from which different combination models can be
applied:

RM =

⎛

⎜⎜⎜
⎝

− r12 · · · r1m

r21 − · · · r2m

...
...

rm1 rm2 · · · −

⎞

⎟⎟⎟
⎠

(8.1)



200 8 Imbalanced Classification with Multiple Classes

Fig. 8.1 Example of the
OVO binarization technique
for a 3-class problem

where rij ∈ [0, 1] represents the confidence of the classifier discriminating classes
i and j in favor of the former; whereas the confidence for the latter is computed by
rji = 1 − rij (if the classifier does not provide it1).

The final output of the system is derived from the score matrix by different
aggregation models. The weighted voting strategy is the widest used strategy, where
confidences are aggregated class by class (by rows) and the one with the largest sum
of confidences is predicted.

8.2.1.2 The One-vs-All Scheme (OVA)

OVA decomposition divide an m class problem into m binary problems. Each
problem is face up by a binary classifier which is responsible of distinguishing one
of the classes from all other classes. The learning step of the classifiers is done using
the whole training data, considering the patterns from the single class as positives
and all other examples as negatives. This methodology is illustrated in Fig. 8.2.

In validation phase, a pattern is presented to each one of the binary classifiers
and then, the classifier which gives a positive output indicates the output class. In
many cases, the positive output is not unique and some tie-breaking techniques are
required. The most common approach uses the confidence of the classifiers to decide
the final output, predicting the class from the classifier with the largest confidence.
Instead of having a score matrix, when dealing with the outputs of OVA classifiers
(where ri ∈ [0, 1] is the confidence for class i) a score vector RV is used:

1If the classifier provides both confidence degrees, one must ensure that they are normalized such
that rij + rji = 1.
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Fig. 8.2 Example of the
OVA binarization technique
for a 3-class problem

RV = (r1, r2, . . . , ri , . . . , rm) (8.2)

As in the case of OVO decomposition, the most straightforward approach to
determine the final output label is by considering the index with the maximum value
from the score vector RV .

8.2.2 Binary Imbalanced Approaches for Multi-class Problems

As we have stressed previously, binarization techniques are very useful in overcom-
ing the gap between two-class and multi-class imbalanced datasets. In particular,
they make it possible to apply any of the standard solutions, particularly those that
rebalance the training set.

One of the most representative research works in this context, can be found
in [27]. In this paper, authors made use of both OVO and OVA in conjunction
with well-known preprocessing techniques for both over- and under-sampling, as
well as a weighting procedure for cost-sensitive learning. By means of a thorough
experimental study they analyzed which binarization is more appropriate for
imbalanced classification. Then, they compared all possible combinations with the
imbalanced technique in order to determine the best synergy between strategies. As
baseline classifiers, they selected algorithms based on different paradigms; namely,
decision trees, SVMs and instance-based learning, with aims at providing a better
generalization. Using a strong validation procedure, results shown that OVO and
oversampling was the most robust approach overall.
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In [63], authors presented a similar study but focusing on the problem of
weld-flaws classification. They investigated the behavior of several distance-based
classification algorithms in conjunction with different preprocessing techniques,
namely undersampling, oversampling, and hybrid approaches. To cope with mul-
tiple classes, they applied the OVA scheme, considering that some of the classes
of the problem contained less than 10 examples. They found out that nearest-
neighbors classifiers are well suited for this task, especially the 1-NN classifier with
agglomerative hierarchical clustering based preprocessing [19].

A cost-sensitive ANN approach embedded into OVO learning scheme was
introduced in [54]. The rationale to use such a decomposition scheme is based on the
findings made in [27]. Regarding the inner procedure, the cost is computed based
on the Receiver Operating Characteristic (ROC) curve analysis [113], moving the
threshold seeking the best ration between the True Positive rate and False Positive
rate. As stated previously, estimates of the cost matrix were obtained for each class
pair independently.

Among different solutions for addressing the binary-class imbalanced problem,
ensemble learning approaches have also to be excelled [36]. However, as in the
case of standard preprocessing mechanisms and algorithmic approaches, the most
well-known ensembles for imbalanced classification are limited to the binary case
study. Taking this issue into account, authors from [110] developed a complete
experimental analysis to contrast the performance of different ensemble techniques
from the state-of-the-art [36], when embedded into an OVO learning workflow.
To check the flexibility of the proposed approach we have tested it with three
different base classifiers from the field of rule learning, ANNs and SVMs. They
stressed the goodness of three ensemble techniques, namely Easy-Ensemble [66],
SMOTE-Bagging [99] and RUS-Boost [87], for empowering OVO techniques in
multi-class imbalance scenarios. Apart from the discovery of this positive synergy,
this research opened the way for interesting future work, both regarding the
aggregation mechanisms (for both OVO and ensembles), and the building of the
ensembles.

Other authors have also combined decomposition techniques with ensemble
learning. For example, in [112] a hybrid sampling technique is proposed as a
committee of classifiers for the biological problem of protein identification. First,
the OVA scheme is considered to focus on each class separately. Then, if the
subset of data contains a high degree of imbalance (IR), a preprocessing stage
that combines both over- and undersampling balanced the input instances. Finally,
to carry out the learning of the classifiers, three different sub-feature spaces are
considered via feature extraction process. Finally, a majority vote is applied during
the testing phase to the different classifiers in the ensemble.

A similar idea can be found in [88]. Following also the OVA scheme, the training
set is divided into as many subsets as number of classes. Then, for each class,
the classifier is built iteration by iteration focusing on the hardest instances, thus
following a boosting mechanism [32], to overcome somehow the class-imbalance
that is created when contrasting one class versus the rest. To emphasize the
recognition of misclassified instances, a resampling procedure is applied to add
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multiple copies of such data, i.e. increasing their weight. In addition to the former,
the SMOTE oversampling technique is also considered on the misclassified data
for including more information to problem space. However, the use of SMOTE
is only taken into account after several iterations of the process, for the sake of
avoiding overfitting. The efficacy of this novel framework was shown by extensive
simulations conducted using different base classifiers.

Focusing on the OVO learning scheme itself, several approaches have been
designed with aims at empowering the recognition of the most difficult classes.
In particular, some authors pointed out that standard aggregation procedures have
a bias towards “easily separable” classes, i.e. the confidence degrees for those
instances belonging to that classes are likely to be much higher than that of the
remaining ones [39]. In the aforementioned work, authors propose a new aggrega-
tion model based on similarity measures, in particular via Restricted Equivalence
Functions (REF) [10]. REFs enables the modification of the decision boundaries of
the base classifiers, thus boosting the values in the score matrix without changing
the underlying base classifiers. Parameters of the REFs are optimized via a genetic
procedure in order to adapt them in favor of the difficult classes.

A recent work also considers a smart adaptation of the aggregation step for
improving the global recognition of all classes represented in the problem [96]. The
premise is that each OVO classifier loses some information by reducing the dataset
to two classes. This loss is somehow counteracted by aggregating the local scores
over all classifiers to obtain a final prediction. However, to improve the enhance
the recognition ability of the system, some global summary information should also
be included. Specifically, for a test instance the summary terms evaluate its global
affinity with all candidate classes. As these values are computed following fuzzy
rough set theory, this aggregation scheme is called Weighted Voting with Fuzzy
ROugh Summary Terms or WV-FROST for short, whereas the whole methodology
was named as FROVOCO.

A work that combined cost-sensitive learning with OVO decomposition can be
found in [111]. Specifically, authors make use of a Cost-Sensitive Back-Propagation
Neural Network (CSBPNN) [113], which in contrast to over-sampling and under-
sampling to change the training data distribution, is based on the threshold-moving
method to alter the output of different nodes in the final layer of the network. The
goodness of the binarization procedure was tested throughout a complete experi-
mental study, in particular due to the higher quality of sophisticated aggregation
approaches when combining the outputs of the binary CSBPNN classifiers.

A multi-model method for multiclass cost-sensitive classification was proposed
in [7]. It is based on a previous approach for binary datasets named as ROC front
[13]. The method carries out a multi-objective optimization strategy that considers
both kinds of classification errors (false positive and false negative) as objectives,in
order to build a Pareto-optimal pool of classifiers. During the decision stage, the best
classifier can be selected according to the environment using iso-performance lines.
Due to the constraints in the multi-class context, two extensions were developed.
On the first hand, a OVO pairwise decomposition is used to transform the original
problem and thus to apply the computation of the misclassification costs. On the
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other hand, several classifiers are related to the same pair of classes, i.e. for each
ROC point. This fact suppose a complication for determining the best combination
of pairwise classifiers among the different possibilities. To solve this problem, first,
a greedy algorithm is used for sequentially choosing the classifiers of each ROC
front, according to their decreasing AUC. All the ROC Front classifiers are evaluated
through their multiclass performance when combined with other pairwise classifiers.
For sub-problems that have already been processed, the retained classifier is taken
into account in the combination, whereas for remaining sub-problems (with a greater
AUC),the default classifier is used for combination. For a more detailed description
of this process, reader may refer to [7].

Finally, we must refer to an alternative to address the multi-class problem as
suggested in [12]. In this research, authors focused on associative based classifiers,
whose rules are mined according to both their support (noted as frequency) and
confidence (correct coverage). The bias towards majority classes in such scenario is
clear. When considering the OVA decomposition scheme, a further degradation on
the performance is caused by the union of many instances into a single “negative”
class. In OVO, conflicting rules may appear for different pair of classes. For this
reason, authors define the OVE (One-Versus-Each) framework. It follows a similar
procedure than in OVA, i.e. focusing on one-class for the rule generation, but instead
of joining instances as a single negative class, the frequency of the rule is computed
independently for each class. Then, frequencies are compared with a parameter
matrix that contains both the “positive” frequency threshold and the “infrequency”
ones. If the rule values are within the appropriate ranges, it is stored in the final
model. In order to achieve the best performance, the parameter matrix is computed
via an optimization method.

8.2.3 Discussion on the Capabilities of Decomposition
Strategies

In this part of the chapter we have reviewed some of the most significant approaches
to deal with multi-class imbalanced problems via class decomposition. We have
stressed two different strategies to be taken into account: OVO and OVA.

OVA is one of the widest used schemes not only in this context, but for
binarization purposes in general. This popularity is probably due to several factors.
First, its simplicity in its working procedure, i.e. it requires less decomposition
and a direct aggregation mechanism. This issue also affects the efficiency of the
learning stage, especially in the case of a high number of classes. Finally, since
all classifiers are trained with the complete dataset, they provide a robust output
confidence degree.

In spite of these good capabilities of OVA, it comprises one great drawback
for the classification of imbalanced datasets: extremely uneven distributions may
appear when contrasting the less represented classes versus the rest. In addition to
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the former, some of the data-level difficulties that degrade the performance, such as
overlapping or class noise [67] are still present in the training set.

For this reason, OVO strategy is recommended be applied in the event of
skewed class distributions. The most significant advantage in this case is the
simplification of the boundary areas of the problem, as shown in Fig. 8.1. This way,
those aforementioned intrinsic data characteristics, especially overlapping, can be
properly addressed. Furthermore, the required time for the training can be even
lower than in the case of OVA as fewer examples are considered for each binary
classifier.

However, we must state that the goodness in training the classifiers by pairs
of classes can be also be a disadvantage. In testing phase, every new pattern
is submitted to all binary classifiers. However, we must be aware that some of
them have been trained with a subset of data that did not contain any instance
with the actual class label. Therefore, the output given by these classifiers cannot
be relevant to the final prediction, leading to what has been defined as the non-
competent examples problem [34, 51]. Usually, OVO aggregations suppose that the
base classifiers will do a correct prediction in the cases where the new pattern is
one of the considered pair of classes, and therefore considering a voting strategy,
the class with the largest number of votes would be the correct class. However,
the assumption about the base classifiers is not always fulfilled and the global
performance can be hindered.

Fortunately, several authors have proposed different solutions to overcome this
undesirable situation [29, 37, 40, 96]. The basis of all these methods is common:
to take into account not only the confidence degrees of the score-matrix during the
decision stage, but also to compute the “competence” of the confidence degrees
that are given for the aggregation. To do so, the most straightforward approach is
to measure the similarity of the query instance to each of the classes, and then to
weight the former score values.

In addition to the former, it seems worthwhile to design new fusion approaches
suitable for cases with skewed distributions. This way it may be possible to
compensate for the imbalance both on decomposed class level and on final output
combination level.

Another possible improvement in this framework is to utilize a different approach
for each pair of classes, leading to a more flexible learning. All solutions reviewed
in this Section are quite naive in this sense, as they not comprise that pairwise
relationships may vary. Calculating the cost penalties or oversampling ratios
individually for each pairs is a good starting direction, but the true challenge lies
in proposing a framework that will be able to select specific data or algorithm-level
solution on the basis of subproblem characteristics [69].

In addition to the standard OVO and OVA decomposition strategies, more sophis-
ticated binarization techniques can seen as a promising direction. In particular, we
may refer a broader framework known as Error Correcting Output Codes (ECOC)
[4, 23]. In this context, aggregation of classes are given within a “code-matrix”;
then, the final output is obtained by decoding the code word given by the outputs
of the classifiers for a new input pattern. The challenge in this case is to found
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an automatic designing of this code-matrix [43, 80], and using different error
correcting codes [72, 75]. The final goal is being able to build hierarchical methods
by aggregating classes according to their similarities or dissimilarities. Then, as
suggested throughout this section any solution must be taken into account to
alleviate the uneven class distribution at each level. Finally, using a sequential, step-
wise approach will allow to determine the final class. Alternatively, decomposition
with one-class classifiers can be considered, as they are robust to class imbalance
and can serve as an efficient tool for dealing with difficult multi-class datasets [57].

8.3 Ad-hoc Approaches for Multi-class Imbalanced
Classification

In previous sections, we have stressed the excellent properties of applying a
decomposition strategy for addressing multi-class imbalanced datasets. However,
the global outlook on the problem space is somehow rejected. In other words,
pairwise relations may be a too strong over-simplification, hiding some complex
relations among the classes.

For this reason, some researchers have focused on a general perspective with
aims at finding specific solutions, rather than adapting standard ones to the multi-
class context. In this section, we present an overview of those ad-hoc approaches for
multi-class imbalanced classification, both on preprocessing (Sect. 8.3.1), algorith-
mic modifications (Sect. 8.3.2), cost-sensitive learning (Sect. 8.3.3) and ensemble
methodologies (Sect. 8.3.4). Finally, we carry out a short discussion on those
findings extracted throughout this part of the chapter (Sect. 8.3.5).

8.3.1 Multi-class Preprocessing Techniques

The majority of the proposals for rebalancing the training set are focused on the
binary problem. As reported in Sect. 8.2, most of these cannot be directly extended
to the multi-class case study, mainly due to the multi-majority and multi-minority
examples. There are some exceptions, such as the random oversampling and random
undersampling, from which all examples are iteratively replicated or removed (in
each case) until the class distribution is completely balanced.

A more sophisticated approach, but following similar guidelines, is the Static-
SMOTE resampling procedure [28]. As its name suggests, it is based on the well-
known SMOTE algorithm [14], which generates new synthetic data based on the
neighborhood instances of the same class. To cope with the multi-class problem,
the procedure is applied in M steps, being M the number of classes in the dataset.
In each iteration, the class with the lower number of instances is selected, and it
is oversampled at 100%, i.e. examples are duplicated. It is possible that the same
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class is selected in different iterations. In such case, only the original instances are
considered for generating synthetic data.

Different from SMOTE related techniques, the MDO was proposed in [1]. As
already explained in Chap. 5, the core idea of this approach is to not generate
synthetic minority instances at random, but rather to guarantee that an artificial
instance has the same Mahalanobis distance [70] to its class mean as the seed
element from which it was constructed. By considering this restriction, synthetic
samples are expected to be placed in dense areas of the minority class regions. In
this sense, MDO may reduce the risk of overlapping among different classes. In this
sense, it also aims at avoiding the possible over-generalization that is present in other
over-sampling techniques. In the context of multiple classes, the MDO procedure
is iterated class by class considering a complete balanced output, i.e. the number
of new generated instances is equal to nmaj − ni where the former stands for the
number of instances of the majority class and the latter for the number of instances
of the current class.

Finally, we must refer to the research made in [94], where authors analyze the
effect of oversampling techniques in multi-class problems focusing on different
types of instances, namely safe, borderline, rare, and outliers. This categorization
was first defined in [74], where the neighborhood of the instances is considered.
Safe examples are those surrounded by those of the same class, whereas borderline
are close-by to a similar ratio of different class examples. The last two groups of
examples were used to characterized those ones in homogeneous areas belonging to
a different classes. The main difference between rare and outlier examples is that the
former are located within a small cluster of examples, where the latter are isolated.

Experimental results obtained in this work [94] showed that the oversampling
of some classes and examples may cause either an improvement or a deterioration
of the performance depending on their characteristics, instead of indiscriminately
preprocessing all the classes. In general terms, the best configurations found by
the authors were characterized by not preprocessing safe examples, although the
magnitude of their presence may affect the preprocessing of other types of examples.
For borderline examples, preprocessing should be always carried out. Applying
oversampling on outliers depends on whether the safe examples are representative
enough within the core of the class: if the amount of safe examples is rather low,
preprocessing outliers is usually a good alternative. Finally, preprocessing of rare
examples mainly depends on the amounts of safe examples and outliers. If both
quantities are similar enough (either higher or lower) their preprocessing can be
recommended.

8.3.2 Algorithmic Solutions on Multi-class

Several authors have focused on adapting the core procedure of the learning
algorithms in order to design skew-insensitive approaches. For example, in decision
trees a Hellinger distance modification were proposed in [17]. By means a thorough
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experimental analysis, authors show the good properties of the Hellinger distance in
imbalanced domains over popular alternatives such as entropy (gain ratio). In order
to adapt the binary Hellinger distance to multi-class problems, all possible pairs are
considered, similar to the OVO decomposition scheme. Finally, authors suggested
the use of such Hellinger distance decision trees as ensemble of classifiers.

There are also some proposals that generalize learning algorithms into multi-
class cases with SVMs. The reason for not considering these approach within
Sect. 8.2 (a simple adaptation in decomposition scheme) is because of the mandatory
use of binarization in these cases, due to nature of SVMs. For example, a model
based on Support Vector Data Description (SVDD) [95] (initially designed for
outlier detection) and binary trees (BTs) was proposed in [24]. To determine the
structure of the BTs the Mahalanobis distance was applied as separability measure
to consider both the distance between each dataset and imbalanced degree (which
can be used to calculate the separability degree among different datasets). Then, a
different classifier was built by describing the boundary of the target via SVDD.

In [21] we may found a new variant named as Near-Bayesian SVMs (NBSVMs).
It focus on minimizing the asymmetric-cost scaled Bayes error. Being based
on SVMs, this was achieved by combining decision boundary shifting within
the margin with cost-sensitivity. While the shifting is expected to achieve better
inductive performance, even for training datasets that are linearly separable; the
unequal regularization penalties (higher penalty for minority class) are expected to
ensure that the shift does not result in undue misclassification of the minority class.
NBSVM is extended to the inherently imbalanced OVA approach for multi-class
classification and also to cases where the two classes have different misclassification
costs.

In the context of ANNs, a learning paradigm that has gained much attention for
both standard and imbalanced classification is Extreme Learning Machines (ELMs)
[50]. However, the decision boundary of ELM tends to be pushed towards the region
of the minority class [115]. A thorough study for the causes and factor that influence
this behavior in ELMs is carried out in [106]. In addition, authors propose an
optimal decision output compensation-based ELM (ODOC-ELM) for improving the
recognition of the minority class examples. To do so, the geometric mean is used to
determine the proper decision boundary, representing it as an optimization problem.
In the case of multiple minority classes, the space turns in to a multi-variate one, so
that a Particle Swarm Optimization [52] is applied for the task.

Following the ideas from boosting [32], dynamic sampling approaches can be
regarded as a mixture of preprocessing and algorithmic adaptation. They are based
on the integration between preprocessing process (either sampling or cost matrix
setting) and training process. This way, several drawbacks can be avoided, such as
excessive training times and/or overfitting due to oversampling, loss of information
due to undersampling, and misleading costs that can affect the learning stage. One
good example of a dynamic sampling approach can be found at [64]. In this research
paper, authors make use of Multilayer perceptrons (MLPs) due to a twofold reason:
it can be directly used for multi-class problems, and the sequential training model
based in epochs allows the application of the aforementioned approach. To avoid the
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initial bias of the majority class instances, the training set is completely balanced by
random oversampling prior learning. Then, a heuristic mechanism was proposed to
determine whether a training example should be learned (i.e., be used to update the
weights of an MLP) in a training epoch. To determine its value, an a combination
between the class ratio (minority classes should be stressed) and the current error of
the MLP (difficult examples are “boosted”) is taken into account.

A very similar approach was developed in [3], where proposed a dynamic method
that allows the efficient use of oversampling strategy on severe multi-class imbal-
anced problems. In this particular case, the method is based on the back-propagation
mean square error (MSE) for automatically identifying the oversampling rate for the
SMOTE technique. To achieve this goal, the class ratios are first computed as the
fraction between the number of examples of a class and the majority one. These
values will be used as a probability threshold for the selection of the examples as
inputs to the ANN. Then, the training set is balanced applying SMOTE class by class
to reach a 1:1 ratio for all classes. Finally, the ANN is trained selecting examples at
random depending on the initial computed class ratios, following the same scheme
than in [64]. When a epoch is finished, class ratios (probability thresholds) are
updated according to the MSE obtained for each class. Their values are increased
when the error in a given class is higher than for the majority class.

8.3.3 Multi-class Cost-Sensitive Learning

The use of a cost-matrix to guide the learning is a straightforward option to force
the modeling of minority class instances by providing them a higher penalty value.
However, as it happened with resampling strategies, while determining an optimal
value in the binary context can be difficult, the case study with multiple classes
impose higher constraints.

A trivial solution to this issue was first given in [114]. Specifically, authors
applied a instance weighting mechanism. To allow each class to become equally
important, a factor of Ni/Nmax was considered, being Ni the number of examples
of the i-th class and Nmax the number of examples for the majority class of the
problem. The robustness of this approach was tested in the thorough experimental
study made in [27].

Following a different perspective for approaching the problem, authors from [2]
proposed a data expansion technique taking into account different costs associated
with several ways to misclassify examples. Specifically, each training example is
map in K new examples, each for a given class represented in the initial problem.
With a given weight assigned to each of these examples, there are more degrees of
freedom to obtain all the misclassification costs for the original instance.

A similar approach can be found in [104], where authors not only considered
the influence of cost on labels, but their reduction further computed the influence
of cost on features. In addition, the cost-sensitive learning problem was reduced
to a standard classification one. By operating on the cost matrix, authors derived
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well-behaved reductions to simplify the previous translation, helping to gain
understanding of the nature of cost-sensitive multi-class classification.

Finally, with aims at obtaining a robust cost matrix for the training of Deep Belief
Networks [49] in imbalanced problems, the proposal in [109] used a differential
evolution algorithm [81], where each individual represented a different cost matrix.
Although the experimental validation is carried out only in binary problems, this
algorithm can be easily extended to the multi-class case study.

8.3.4 Ensemble Approaches

Ensemble-based classifiers, also known as multiple classifier systems [76] of clas-
sifiers have excelled as a powerful solution for both standard [103] and imbalanced
classification [36], as it was pointed out already in Chap. 7. This fact implies their
spread use also for multi-class problems.

Whereas boosting algorithms were initially designed for binary classification,
these can be easily extended to multi-class problems following the AdaBoost.M1
generalization first presented in [32]. Among different cost-sensitive ensemble
classifiers for imbalanced problems, authors from [91] selected the weighting
strategy of AdaC2 algorithm to obtain the AdaC2.M1 ensemble methodology.
Finally, in order to determine the cost setups to be applied, a Genetic Algorithm
was used.

A very relevant algorithm also based in AdaBoost is AdaBoost.NC. The binary
version of this method was proposed in [97] and incorporates negative correlation
learning. It is based on the AdaBoost algorithm and extends it by introducing
diversity between the constructed classifiers. The instance weights are not solely
used to better recognize misclassified elements in later iterations, but also to enhance
the diversity. The methodology was extended to handle more than two classes in
[101]. In their study, authors noted that the application of random oversampling
is required to improve the recognition of minority instances. To avoid increasing
the training time, we incorporate this instruction by a modified initialization of the
ensemble weights, in order to give a higher significance to smaller classes.

In spite most of the solutions for the class imbalance problems aims at rebalance
or weight the training instances, a quite different scheme was proposed in [44].
Specifically, and following the suggestions made in [56], a parallel FS is applied.
The removal of irrelevant and/or redundant features may allow to diminish the noise
in the input data, especially for the minority class instances. This way, a conjunction
between Adaboost and a wrapper FS is applied using KNN as the baseline classifier,
being the complete methodology named as BPSO-Adaboost-KNN. To adapt this
procedure to the multi-class problem, authors considered a novel AUC metric known
as AUCarea [44].

Same authors from BPSO-Adaboost-KNN propose an Adaptive Multiple Clas-
sifier System [62]. This classification algorithm is composed of three different
ensemble learning algorithms, namely AdaBoost.M1 [32], Under-Sampling Bal-
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anced Ensemble [56, 93] and Over-Sampling Balanced Ensemble (SMOTEBoost)
[15]. For the latter algorithms, different aggregation rules are considered. Finally,
and following the findings extracted in the authors’ previous work [44], an FS is
applied to address the possible noise present in the dataset. In order to select the most
appropriate synergy of methodologies for the final classification, imbalanced data is
categorized into eight different types based on their IR; dimension and number of
classes.

In [59] an extension of the Roughly Balanced Bagging [8, 48] for multi-class
problems was proposed, known as MRBBag. In such method, the main modification
concerns a construction of bootstrap samples. Whereas in the original approach
the number of majority examples is decided probabilistically according to the
negative binomial distribution (all minority ones are included in all bags), now a
mulinomial distribution is considered by using the classes’ prior probabilities. This
way, minority class instances will be more likely to be replicated than majority ones
within each bag. Two versions of this model are suggested, depending on the size
of the bags. On the one hand, oMRBBags considers each bag to contain the same
number of instances than the original dataset. On the other hand, uMRBBag will
limit the size of the bags to that of the minority class.

A more recent approach known as “Ensemble classifier from a Feature and
Instance Selection by means of Multi-Objective Evolutionary Algorithm” (EFIS-
MOEA) was proposed in [26]. This novel approach addressed learning on difficult
classes focusing on the uneven class distribution and the overlapping simultane-
ously. To do so, the C4.5 decision tree [82] was embedded in a wrapper procedure,
applying the well-known NSGA-II multi-objective optimization algorithm [22]. The
basis for this methodology involves several components. First, FS was devoted
to simplify the overlapping areas easing the generation of rules to distinguish
between the classes. Second, selection of instances from all classes addressed
the imbalance itself by finding the most appropriate class distribution for the
learning task, as well as possibly removing noise and difficult borderline examples.
Finally, the non-dominated solutions of the Pareto front from the MOEA could
be directly combined into an ensemble of classifiers [84]. Additionally, before the
use of the NSGA-II procedure, three different approaches to address imbalance are
considered in synergy with EFIS-MOEA, namely (i) acting directly over the original
training set; (ii) using a weighting cost-sensitive scheme; and (iii) applying SMOTE
preprocessing.

The use of Deep Learning [60] has been also investigated for multiclass
imbalanced data with ensemble learning. In particular, the research made in [107]
combines the application of stratified random undersampling together with a
regularization parameter for the weighting of the classifiers during the learning of
the boosting ensemble. This synergy is the strongest point of the methodology, as it
allows to better focus on the borderline examples.

Finally, we must stress a recent work that analyze the dynamic selection of
ensembles [86]. It is based on the fact that during the generation stage classifiers are
“local” to their training data. Therefore, it is reasonable to determine the true com-
petence of the classifiers during the inference process. With this premise, authors
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applied preprocessing for the generation of the ensemble to deal with the intrinsic
imbalance, and then exploit the local competency of base classifiers in the integra-
tion step. An extensive experimental study allow authors to validate the premise that
both techniques together provide a significant enhancement of the results.

8.3.5 Summary and Future Prospects on Ad-hoc Approaches

The goodness of ad-hoc solutions for the multi-class imbalanced problems over
decomposition techniques is clear: the problem can addressed as a whole taking into
account the relationship among the classes, instead of “losing” some information
due to the binarization, and depending on the robustness of the final aggregation
mechanism. However, the task of designing such type of direct solutions is far to
be straightforward. Implementing inbuilt mechanisms requires in-depth knowledge
about the nature of the classifiers and underlying reasons of their failure in minority
class recognition. Below, we discuss on the capabilities and challenges for the ad-
hoc approaches on multi-class imbalanced classification.

8.3.5.1 Preprocessing Techniques

Regarding preprocessing techniques, simple re-balancing towards the biggest or
smallest class is not a proper approach, as shown by the experimental results
obtained in [27, 96]. Instead, one should focus on those areas of the problem
that actually need to be reinforced. We basically refer to small disjuncts and
overlapping, which now may appear with more than two groups. Additionally, other
possible difficulties may arise, such as the class label noise that causes the problem
boundaries to be poorly defined. All these issues clearly affect in more severe way
in the presence of multiple classes. Therefore, it will be positive to define a clear
taxonomy for the different type of instances present in each class, as well as their
relations to other classes [62, 94].

In accordance with the former, new data cleaning and sampling procedures must
be developed to handle presence of these varying characteristics of the classes and to
their mutual relations. The final goal is to balance the performance on all represented
concepts. Therefore, hybrid approaches, utilizing more than one method seem as an
attractive solution.

From another perspective the indiscriminate discarding of overlapping instances
for a given set of classes may deteriorate the correct boundary learning from the
others. A possible way to address such task is to consider projections to new spaces
to alleviate the overlapping, in a similar way than kernels are applied for SVMs.

Finally, a proper identification of the class noise is also mandatory due to its
strong influence in the classifiers’ performance. This preprocessing stage may not
only redefine class boundaries, but also to rebalance the classes (in case wrong
labels are assigned to majority classes). The hitch in this case is not only being able
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to detect and filtering noise data, but also to develop strategies for the relabeling
process.

8.3.5.2 Algorithmic Approaches

When addressing algorithmic approaches, we must consider a deeper insight into
how multiple skewed distributions affect the forming of decision boundaries in
classifiers. This way, it is possible to adapt some well-performing state-of-the-art
classifiers to this scenario by incorporating some ot the capabilities that have shown
to be quite effective for addressing the class imbalance. A first example is the
Hellinger distance [17], which can be applied to other distance-based classifiers.
The paradigm of ELM has also gained much attention in the last years [61, 65, 108],
and the output weights can be shifted towards the most difficult classes [106].
Finally, density-based methods should be explored in combination with those trying
to overcome the class overlapping [26].

8.3.5.3 Cost-Sensitive Learning

For cost-sensitive multi-class learning, the different importance among original
samples can be a crucial factor for the performance of learning algorithms, but how
to deal with it remains unexplored. Some approaches try to optimize the costs in
a wrapper scheme by means of evolutionary algorithms [91, 109]. However, rather
than focusing on the performance to guide the search, additional objectives may be
considered to avoid the overfitting.

8.3.5.4 Ensemble Systems

Finally, ensemble solutions should be investigated in depth. These are known to
provide very robust solutions by focusing on “different” parts of the problem, either
by bagging or boosting. However, this is achieved in exchange of higher training
times and a poor interpretability of the final models. In addition to the former, there
is a necessity in maintaining the diversity and compactness in the ensemble system
[38] as well as a proper selection of useful base learners.

8.4 Performance Metrics in Multi-class Imbalanced
Problems

Carrying our a proper comparison among classification models is a complex and
still open challenge. This task depends not only on what type of understanding of
the committed error is aimed to be evaluated, but also on the nature of the problem
itself, to avoid a wrong bias of the evaluation. This is exactly the case of imbalanced
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problems, from which the single performance for each class must be taken into
account in order to analyze whether a given class is boosted in detriment of the
other.

From the binary confusion matrix, several metrics have been proposed to deal
with the imbalanced class distribution, namely the AUCROC , the Geometric Mean
of the true rates (GM) or the F-measure, as shown in Chap. 3. However, the extension
of the former metrics to the context of multi-class problems must be carefully
regarded. Several research papers have studied this generalization such in [31, 89]
and [11]. In the work from Ferri et al. [31], authors also propose a taxonomy of
existing performance metrics, organized into three groups, where many of them
share the second and third types:

1. Qualitative metrics that are used when the minimization of the number of
classification errors is seek. Some examples are accuracy, GM, macro-averaged
accuracy, mean F-measure, Kappa statistic and minimum sensitivity.

2. Probabilistic metrics that aim at testing the reliability of the model. Mean
absolute error, mean squared error or the LogLoss error (cross-entropy) are
examples of this type.

3. Raking metrics that are based on how the model ranks the examples, such as the
AUC metric.

This organization of measures is totally consistent to that shown in previous
Chap. 3 for imbalanced binary classification. In addition to the former, and as it
was pointed out also in Chap. 3.2, prior to the introduction of the different metrics
of performance that might be used for multi-class imbalanced problems, we must
recall the misleading use of standard accuracy. Since correct classifications count
the same, disregard the class label, it is impossible to determine if the good or bad
behavior of the model is due to a certain subset of the classes [39]. Unfortunately,
there are still many research works that keep using this performance metric in
imbalanced domains [45].

Throughout this section, we follow a similar notation as shown in [31]. Given a
dataset, we denote by m the number of examples, and c as the number of classes.
f (i, j) represents the actual probability of example i to be of class j . We assume
that f (i, j) always takes values in 0,1 and, strictly, it is not a probability but an

indicator function. With mj =
m∑

i=1
f (i, j), we denote the number of examples of

class j .
Given a classifier, p(i, j) represents the estimated probability of example i to

be of class j taking values in [0, 1]. Cθ(i, j) is 1 iff j is the predicted class for
i obtained from p(i, j) using a given threshold or decision rule θ (especially in
multiclass problems). Otherwise, Cθ(i, j) is 0. We will omit θ in what follows.

• Kappa statistic: (KapS) compensates for random hits [6, 20]. In contrast to
accuracy rate, kappa evaluates the portion of hits that can be attributed to the
classifier itself (i.e., not to mere chance), relative to all the classifications that
cannot be attributed to chance alone. This metric was also introduced for binary
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classification in Chap. 3.2, but it is more commonly applied for multi-class
classification. Following the current notation, KapS is computed as.

KapS = P(A) − P(E)

1 − P(E)
(8.3)

where P(A) is the relative observed agreement among classifiers, and P(E) is
the probability that agreement is due to chance. As shown in Chap. 3.2, P(A) is
just the accuracy of the classifier, and P(E) is the expected accuracy, defined for
multiple classes as follows:

P(E) =

c∑

k=1

([
c∑

j=1

m∑

i=1
f (i, k)C(i, j)] · [

c∑

j=1

m∑

i=1
f (i, j)C(i, k)

])

m2
(8.4)

• Mean F-Measure (MFM): In the binary case (please refer to Chap. 3.2), the
standard F-measure (with β = 1) computes a trade-off between precision and
recall of both classes:

FMj = 2 · Recallj · Precisionj

Recallj + Precisionj

(8.5)

Recallj =

m∑

i=1
f (i, j)C(i, j)

mj

(8.6)

Precisionj =

m∑

i=1
f (i, j)C(i, j)

mj∑

i=1
C(i, j)

(8.7)

In the multi-class case, the average for the F-measure achieved for each class
(taken as positive) and the remaining ones (taken as a whole as negative) is
usually computed.

MFM =

c∑

j=1
FMj

c
(8.8)

• Minimum sensitivity (MS): Is the minimum value of the sensitivities for each
class. Therefore, it allows to determine which is the class that hinders the
classification ability of the whole model:
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MS = min
j=1,...,c

Recallj (8.9)

• Macro average arithmetic (MAvA): Also known as average accuracy, average
recall, or balanced accuracy, it is computed as the mean of the individual hits for
each class.

MAvA = 1

c

c∑

j=1

Recallj (8.10)

• Macro average geometric (MAvG): Also known as the geometric mean, it is
more “strict” in the sense that the global value is highly affected in case of low
performing classes.

c

√√√√
c∏

j=1

Recallj (8.11)

• Mean Probabilistic AUC (MPAUC): In most cases, the AUC metric is computed
using a single point from the ROC-Curve, i.e. without taking into account
the a-posteriori probabilities given by the classifier. However, when the confi-
dence degrees of each output are given, it is preferable to calculate the AUC
approximating the continuous ROC-curve by a finite number of points [25] (see
also Chap. 3.3). In such way, a model in which true positives relay on high
confidences, whereas false positives are related to low confidences, will present
a higher performance value.

This way, the coordinates of these points in ROC-space are taken as false
positive (1 − Precisionj ) and true positive rates (Recallj ) obtained by varying
the threshold of the probability above which an instance is classified as positive.
The curve itself is approximated by linear interpolation between the calculated
points. The AUC can therefore be determined as the sum of the areas of the
successive trapezoids. This method is referred to as the trapezoid rule and is also
described in e.g. [71].

PAUC(j, k) =

m∑

i=1

f (i,j)p(i,j)
mj

−
m∑

i=1

f (i,k)p(i,j)
mk

+ 1

2
(8.12)

Finally, MPAUC is computed as the macro-average of the pairwise AUC
values of all pairs of classes.

MPAUC = 2

c(c − 1)

∑

j<k

PAUC(j, k) (8.13)
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To summarize this section, we must refer to the problem in the aggregation of
the metrics. By using macro averages, the individual recognition degree reached
for each class is somehow diluted. This is of extreme significance in case of a
large number of classes, where high accuracy rates compensate low classifications.
Furthermore, it is still not possible to identify the source of difficulty of the problem.
These facts imply the relevance of general metrics that directly combine the values
from the confusion matrix, as well as considering the global information shown in
the former.

However, regarding the use of different metrics, one must be aware of the high
level of correlation that is shown among them. This issue was reported in both [31]
and [11]. Therefore, one should focus on the most informative metrics, as well as
those ones that are widely used so as to be able to be able to compare the quality of
the novel proposals with respect to the state-of-the-art.

Finally, the advantages of representation metrics such as AUC or cost-curves
must be also taken into account [77]. However, being initially designed for the
binary case study, their representational comprehensibility for the analysis of multi-
class problems is lost, as well as increasing the computational complexity. For this
reason, at present few alternatives have been proposed to clear this gap [44, 79], so
that the effort of research should be addressed in this way.

8.5 A Brief Experimental Analysis for Imbalanced
Multi-class Problems

This section is devoted to put in value all the topics presented throughout the chapter.
Specifically, the behavior among some state-of-the-art solutions, both considering a
decomposition strategy or a direct approach, will be contrasted. Also, it contains
some evaluation metrics with aims at analyzing the possible correlation of the
results. To do so, in Sect. 8.5.1 the selected benchmark data, the algorithms for
comparison and their parameters, and the performance metrics are introduced. Then,
Sect. 8.5.2 shows the experimental results and contains a brief discussion.

8.5.1 Experimental Setup

For this study, 18 multi-class datasets with different properties have been selected.
These are shown in Table 8.1, were the number of instances, features (numeric and
nominal) and classes are listed. We also provide the distribution of the instances
over the classes to give an indication of their imbalance.

To carry out a fair evaluation, the 10-fold DOB-SCV partitioning scheme from
[73] was used. The main reason is to avoid the data-shift problem, the issue of
having different distributions in the training and test partitions of the evaluation. In
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Table 8.1 The 18 multi-class imbalanced datasets used in our experimental study. The number of
features is divided between numeric and nominal ones, e.g. the automobile dataset has 15 numeric
features and 10 nominal features

Dataset ID # inst # feat m Class distribution

Automobile aut 150 25 (15/10) 6 3/20/48/46/29/13

Balance bal 625 4 (4/0) 3 288/49/288

Cleveland cle 297 13 (13/0) 5 164/55/36/35/13

Contraceptive con 1473 9 (9/0) 3 629/333/511

Dermatology der 358 34 (34/0) 6 111/60/71/48/48/20

Ecoli eco 336 7 (7/0) 8 143/77/2/2/35/20/5/52

Glass gla 214 9 (9/0) 6 70/76/17/13/9/29

Led7digit led 500 7 (7/0) 10 45/37/51/57/52/52/47/57/53/49

Lymphography lym 148 18 (3/15) 4 2/81/61/4

Newthyroid new 215 5 (5/0) 3 150/35/30

Pageblocks pag 5472 10 (10/0) 5 4913/329/28/87/115

Satimage sat 6435 36 (36/0) 6 1533/703/1358/626/707/1508

Shuttle shu 58000 9 (9/0) 7 45586/49/171/8903/3267/10/13

Thyroid thy 7200 21 (21/0) 3 166/368/6666

Wine win 178 13 (13/0) 3 59/71/48

Winequality-red wqr 1599 11 (11/0) 6 10/53/681/638/199/18

Winequality-white wqw 4898 11 (11/0) 7 20/163/1457/2198/880/175/5

Yeast yea 1484 8 (8/0) 10 244/429/463/44/51/163/35/30/20/5

the fold construction of DOB-SCV, regions of same-class elements are divided over
different folds, to guarantee a proper representation of such a region in all partitions.
The use of this partitioning scheme for imbalanced data was advised in [68].

The full datasets and all partitions are available from the KEEL dataset repository
(http://www.keel.es) for any interested reader that wishes to repeat the current
analysis.

With the sake of including a representative algorithm from each type discussed
in Sects. 8.2 and 8.3, we have selected four different approaches. Specifically,
as multi-class imbalanced learning via decomposition-based approaches we have
considered one method from preprocessing and one novel methodology, namely
OVO with SMOTE-C4.5 classifier for the first type, and FROVOCO for the second
type. Regarding ad-hoc approaches for multi-class imbalanced classification, we
have also chosen one preprocessing method and one ensemble, namely the MDO
preprocessing in combination with C4.5 as well, and AdaBoost.NC.

All parameters are the recommended ones from the authors. In AdaBoost.NC,
we have set the penalty strength λ to 2, as done in earlier work e.g. [27, 100]. The
number of classifiers in the ensemble was set to 10, which is a lower value than the
one used by these referenced studies. In a preliminary evaluation, we observed that
this value provides better average results on our selected datasets.

For the C4.5 with OVO learning in combination with SMOTE, the classifier
was used with pruning mechanism, using a confidence level of 0.25, and minimum

http://www.keel.es
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number of item-sets per leaf = 2. SMOTE considered a balance rate of 1, with 5
neighbors to create artificial data, and the HVDM distance functions [102]. Finally,
the MDO preprocessing needs only one parameter, i.e. the balance rate, which was
set to 1.

Finally, to evaluate the performance of the included methods, we apply two
different evaluation measures. On the one hand, the average accuracy (MAvA) as
qualitative metric. The second measure is the mean AUC (MAUC) so as to include
a ranking metric that take into account the output probabilities of the classifier.

8.5.2 Experimental Results and Discussion

In Table 8.2 we show the experimental results for the four selected classification
methods. Abbreviations are as follows: “Ada” for AdaBoost.NC, “SMT” for
OVO+C4.5-SMOTE, “MDO” for MDO+C4.5 and “FROVO” for FROVOCO.

The table is divided into two parts, the left-hand side contains the results
computed with MAvA and the right-hand side those computed with MAUC.

First of all, we must stress in first place the necessity of adapting the learning
methodology to the context of imbalanced data. Specifically, the results of the
standard C4.5 decision tree are quite far from the average shown by the remaining
approaches. Therefore, as it was stressed in the binary case study, for multiple
classes it is even more important to apply different techniques to boost the minority
classes if we aim to identify all concepts included in the problem.

Regarding the absolute comparison among the methods that are designed to
address the imbalance, we may observe the high quality of FROVOCO in contrast
with the remaining algorithms. AdaBoost.NC also obtains very good average results
for both MAvA and MAUC. Both methods include an ensemble of classifier, thus
boosting the recognition ability for every single model. In the case of FROVOCO the
advantages rely on the class division, focusing on finding a good separation pair by
pair. For AdaBoost.NC, the classifier focuses on the difficult examples iteration by
iteration. We have shown that both approaches imply a clear advantage for achieving
a robust performance.

In the case of the preprocessing algorithms (OVO+C4.5-SMOTE and
MDO+C4.5) results are good on average, but not so high as in the previous case. The
first approach (OVO+C4.5-SMOTE) is a straightforward adaptation of the solution
for binary problems, and artificial instances are built disregard the relations among
classes, just focusing on the different pairs. For MDO, although the Malanahobis
distance is well suited to cope with overlapping, the generated synthetic instances
do not allow the classifier to make a difference with respect to learning using the
original dataset.

Finally, we must remark that the two evaluation measures capture complementary
performance information. The MAvA solely focuses on the number of hits and
misses, while the MAUC takes the confidence of the predictions of a classifier
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into account. Based on the analysis presented in Table 8.2, we may stress that the
prediction confidences of FROVOCO are significantly more reliable than those of
the remaining algorithms.

8.6 Summarizing Comments

In this chapter, we have carried out a thorough review on the topic of multi-class
imbalanced datasets. First, we have stressed the importance of this framework, as
it comprises an additional level of difficulty with respect to the binary case study.
In particular, we have referred to the problem of multi-majority and multi-minority
classes, the inner relations among the classes, and the higher incidence of the data
intrinsic characteristics.

Then, we have enumerated the main ways of addressing this issue. On the
one hand, we may proceed by applying binarization techniques to transform the
original problem into several two-class datasets. This way, standard solutions for
the imbalanced class distribution may be directly applied, shifting the problem
of addressing the multi-class dataset to the final combination stage. On the other
hand, we have introduced several ad-hoc solutions (from preprocessing, algorithmic
and cost-sensitive learning) that are directly applied to the multi-class problem.
Additionally, we have stressed the significance of ensemble-based approaches in
this context. For both binarization and ad-hoc approaches, we have carried out an
in depth discussion for analyzing the goodness and drawbacks of both types of
solutions, also providing some topics that should be considered as future work.

Next, we have presented some useful metrics of performance for multi-class
imbalanced learning, allowing readers to select the one that better suites to his/her
validation procedure. Finally, a short experimental study has been carried out
in order to show the behavior for some state-of-the-art techniques, as well as
understanding the differences between the MAvA and the MPAUC metrics of
performance.
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Chapter 9
Dimensionality Reduction
for Imbalanced Learning

Abstract One of the most successful data preprocessing techniques used is the
reduction of the data dimensionality by means of feature selection and/or feature
extraction. The key idea is to simplify the data by replacing the original features with
new created that extract the main information or simply select a subset of original
set. Although this topic has been carefully studied in the specialized literature for the
classical predictive problems, there are also several approaches specifically devised
to deal with imbalance learning scenarios. Again, their main purpose is to exploit
the most informative features to preserve as much as possible the concept related
to the minority class. This chapter will describe the most-known techniques of
feature selection and feature extraction developed to tackle imbalance data sets.
We will consider these two main families of techniques separately and we will
also provide the recent advances in feature selection and feature extraction by non-
linear methods. In addition, we will mention a recently proposed discretization
approach which is able to reduce the numeric features into categories. The chapter
is organized as follows. After a short introduction in Sect. 9.1, we will review
in Sect. 9.2 the straightforward solutions devised in feature selection for tackling
imbalanced classification. Next, we will delve deeper into describing more advanced
techniques for feature selection in Sect. 9.3. Section 9.4 will be devoted to explain
the redefined feature extraction techniques based on linear models. In Sects. 9.5
and 9.6, a non-linear feature extraction technique based on autoencoders and a
discretization method will be outlined, respectively. Finally, Sect. 9.7 will conclude
this chapter.

9.1 Introduction

High dimensional data can be very usual in imbalanced learning. A common
characteristic of high dimensional data is that the number of variables far exceeds
the number of samples. As we know, classical classifiers are thought to train from
datasets in which the number of samples in each class is not equal. The fact that
high dimensionality can pose additional challenges when it comes to a balanced
prediction in the class has been investigated. In particular, several studies have
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been done on the prediction of microarray data, which are high-dimensional tools
commonly used in the biomedical field.

An important aspect that specifically characterizes the classification for high
dimensional data is the need to make some type of DR, either through FS or feature
extraction. The former consists of identifying a subset of features that will be used to
learn the classification model, and can be done before the classifier is developed or
can be incorporated into the classification method. In feature extraction, a reduced
set of artificial attributes is created from the most informative aspects of the original
features and this new set will replace the original one to perform learning tasks.

The importance of DR for high dimensional data is based on two facts: some
classification models cannot be derived if the number of features is greater than the
number of observations, and the removal of features that are redundant or have clear
correlations with others will improve the predictive accuracy.

In the literature, the results show that the naive use of classifiers in imbalanced
high-dimensional data can produce highly biased classification results towards the
majority class [1]. The extent of this bias depends on the classification method, the
magnitude of the class difference and the level of class imbalance, and is further
increased when standard methods of FS are used; the standardization of attributes
generally increases the bias and should be avoided, unless the class imbalance is
equal in training and testing group. In addition, the use of a balanced training
data set is suggested as a good option for the design of accurate model by using
data-level sampling techniques. In [1], the authors evaluated the performance of six
classification algorithms and three sampling approaches (over- and undersampling
and undersampling ensemble) and an algorithm-based threshold approach for
logistic regression modeling and Random Forests.

According to [17], these analyses and interpretations are incomplete. For exam-
ple, they did not take into account the correlation structure between genes in
their simulation studies and completely omitted to investigate the effect of lack
of data, which is the main factor contributing to the low performance of standard
classification algorithms. These reasons motivated the analytic study in [17], where
they stated that the classification performance of high-dimensional imbalanced
data is affected by the imbalance ratio, the distributions of minority and majority
class data, the sample size and FS, as well as the classification algorithm and
the correction strategy. A standard classifier could perform well in classifying
imbalanced data when the sample size is large enough.

The standard recommendations given to tackle high-dimensional imbalanced
data sets are summarized as: (1) to gather the samples for each class as balanced
as possible, (2) to estimate the implications of class imbalance using standard
classifiers and (3) a suitable classifier can be selected based on the effect of class
imbalance and the pre-specified misclassification costs.

Before we begin to mention DR techniques, it is worth mentioning the study
of high dimensionality in two widely known pillars of imbalanced classification:
SMOTE and KNN.



9.2 Feature Selection 229

A proper investigation on the effects of high-dimensional data on SMOTE
oversampling was conducted in [2]. The conclusions achieved were the following
ones:

• In the low-dimension environment, SMOTE is effective in reducing the class
balance problem for most classifiers.

• SMOTE barely influences most of the classifiers trained in high dimensional data.
• When the data is large, SMOTE is beneficial for k-NN classifiers if a FS is carried

out before.
• SMOTE is not beneficial for discriminant analysis classifiers even in the low-

dimension configuration.
• Undersampling is preferred for some kind of classifier in high dimensional

settings.

KNN suffers from hubness which is usually associated with the high dimensional
feature spaces present in data. Hubs are small groups of samples that account for
most of the observed neighbor situations, and they are very common in KNN. The
phenomenon of hubness gets worse in high dimensional data and it influences the
bias of the classification rule. In [23], the authors attempted to correlate hubness
as an aspect of the imbalance high dimensional classification problems. Their
analysis showed some surprising results, such that the minority class induces a high
misclassification of the majority class in high dimensional data sets, unlike the low
dimensional case.

9.2 Feature Selection

The FS is a data preprocessing task that selects a subset of features or attributes
from the entire feature set and eliminates redundant features that do not con-
tribute to performance [9]. FS methods have been introduced to avoid the “curse
of dimensionality”, meaning that the required number of calculations becomes
enormous as the number of dimensions increases, maintaining or even improving
the performance of predictor.

There are three main approaches for FS: filtering, wrapping and embedding. Fil-
ter methods select high-range features based on statistical or information measures.
The wrapper approach makes the selection by using the classifier as a black box
and classifying the subset of characteristics by their predictive outcome. Because a
complete search requires 2n different evaluations, greedy or test and trial techniques
are more convenient to explore the best solutions. A sensitivity analysis could be
used to calculate the relevance of each characteristic according to each classifier.
Embedded methods, unlike wrapping approaches, select features while taking into
account the design of the classifier and local information, and they are integrated in
the modeling process.
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This section will be divided into two parts. First, we will mention the first
studies carried out in FS for imbalanced scenarios. Next, we will describe the
most representative feature selectors devised or updated to address imbalance
classification.

9.2.1 Studies of Classical Feature Selection in Imbalance
Learning

There are several FS methods studied in the imbalance learning problem. First,
the standard methods proposed as they are were analyzed to check whether or not
they are beneficial in the performance of imbalanced classification. In [8], three FS
methods were analyzed in the prediction of diabetic nephropathy with imbalanced
data: ReliefF, sensitivity analysis with SVM and Recursive feature elimination with
SVM (SVMRFE).

The key idea in ReliefF is to evaluate the contribution of each feature to the
class difference and intraclass similarity [15]. With a randomly selected data,
the algorithm looks for the closest k hits (those with the same class label) and
errors (those with a different class label). After that, it updates the quality of the
contribution of the features with regard to the difference between the features values
of the selected data and the closest ones. The pseudocode is shown in Algorithm 1.
The diff(f, Ii, Ij ) function calculates the difference between the values of the
characteristics of two instances. Therefore, the weight vector W[f ] increases when
the characteristic value of the selected instance is different from that of the nearest
Mj(C). On the other hand, it decreases when there is a difference between the
characteristic values of the selected instance and the nearest Hj . Finally, according

Algorithm 1 ReliefF algorithm
function RELIEFF(All the instances and their class labels)

Set all weights W[f ] = 0
Set arbitrary iteration number a

for i = 1 to a do
Randomly select an Instance Ii

Find the k nearest hits Hj

Find the k nearest misses Mj(C) for each class C �= Class(Ii )

for f = 1 to number of features do
W[f ] = W[f ] −∑k

j=1 diff(f, Ii , Hj )/m · k+
∑

C �=Class(Ii )

[
P(C)

1−P(class(Ii ))

∑k
j=1 diff(j, Ii ,Mj (C))

]
/(m · k)

end for
end for
return Weight vector W[f ].

end function
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Algorithm 2 Sensitivity analysis method
function SA(A predictive model F(x))

Set all weights W[f ] = 0
Set O[a] = 0
for f = 1 to number of features do

Initialize an instance x = [x1 = mean(x1), x2 = mean(x2), . . . , xn = mean(xn)].
for j = min(xf ) to max(xf ) do

Set xf = j

Set O[j ] = F(x)

end for
W[f ] = max(O) − min(O)

end for
return Weight vector W[f ].

end function

Algorithm 3 SVM-RFE method
function SVM-RFE(Training instances xo and their class labels y)

Initialize subsets of surviving features s = [1, 2, . . . , n]
Initialize feature ranking list r = []
while s �= [] do

Restrict training instances to the subset of surviving features X = Xo(:, s)
Train the SVM with the restricted instances and their class labels
Compute the weight vector of the SVM model w =∑sc

i yiαixi

Compute the ranking criteria Ck = (wk)
2, for all k

Update the feature ranking list according to the criteria
Eliminate features with the lowest ranking

end while
return Feature ranking list r

end function

to the weight values in W[f ], the ranking of each feature can be identified and then
to carry out the FS by removing those with the smallest weight values.

Sensitivity analysis is another method that has been widely used to rank input
features in terms of their contribution to the output discrimination as wrapper [22].
It involves varying each input feature over a reasonable range with the fixed ones
and observing the relative changes in the outputs. As a result, the features that
produce the greatest deviation in output are considered most important. Algorithm 2
shows the pseudocode of the sensitivity analysis method. The algorithm calculates
the difference between the maximum and minimum output of the predictive model
when a feature value varies from its minimum possible to its maximum with the
other features remaining fixed.

SVM-RFE is an example of embedded method and a similar approach that
eliminates less important features recursively [10]. It uses the weight magnitude
as ranking criterion. The algorithm scheme is presented in Algorithm 3.

The main conclusion achieved in [8] is that ReliefF had advantages in com-
putation because they do not interact with classifiers. By contrast, the wrapper
and embedded methods were more computationally expensive, but offered better
performances than ReliefF in imbalance classification.
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The imbalance nature of the software defect prediction was also studied in
[13]. Some filter-based feature ranking were studied in this contribution: chi-square
(CS), information gain (IG), gain ratio (GR), two types of ReliefF (RF and RFW),
and symmetrical uncertainty (SU). The authors considered four scenarios covering
several questions in imbalance classification: (1) FS based on original data and
training data based on original data; (2) FS based on original data and training data
based on sampled data; (3) FS based on sampled data and training data based on
original data; and (4) FS based on sampled data and training data based on sample
data. The results showed that FS based on sampled data resulted in significantly
better performance than FS based on original data.

The paradigm of text classification was explored in [18]. Again, several feature
ranking based algorithms are analyzed from the point of view of three main draw-
backs detected: they are highly problem dependent, they are univariate functions
and they fail in multiple class problems with imbalanced class distribution because
of the bias to the majority class. The analysis included IG, normalized IG and CS
as information-theoretic scoring measures; Document frequency (DF), odds ratio
(OR) and precision and recall for information-retrieval scoring measures. Regarding
imbalanced learning, most feature ranking methods fail when applied to multiple
class problems with non-uniform class distributions. Feature ranking methods can
select relevant features for easy classes, while they cannot learn in difficult or small
classes. They pay more attention to easy and large classes to compensate for their
weakness facing difficult classes. This behavior compensate their overall accuracy,
even though there are a large number of negative results for small and difficult
classes. As the authors recommend, one approach to reducing the destructive impact
of the imbalance is to make use of the classification of local characteristics rather
than a global scheme.

A comprehensive experimental study involving the most representative datasets
in microarray data using well-known FS methods is presented in [3]. As expected,
the authors devote a major part of the experimental analysis to the imbalance
nature of microarray data sets. Seven classical feature selectors were used using
many configurations. The results obtained in this experimental study are highly
dependent on the classifier, the FS method, and in particular the dataset. A general
recommendation on the careful study of the particularities of each problem and
classifier is given before tackling an imbalance learning problem.

9.2.2 Ad-hoc Feature Selection Techniques for Tackling
Imbalance Classification

There are many attempts to select the best features when dealing with imbalanced
classification problems. In this section, we will describe the most relevant presented
in the specialized literature.
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9.2.2.1 Feature Selection with Biased Sample Distribution

As we have seen, ReliefF is essentially an instance-based filtering method. This
means that ReliefF’s ability to estimate the quality of attributes depends largely on
the number of instances of different classes in the data set. Although the algorithm
depends on the class distribution of the instances, it does not consider the class
distribution while classifying the attributes. For balanced datasets, this filtering
procedure works well. However, performance degrades significantly when the data
set is imbalanced or biased towards a specific class. Since many applications often
provide users with unbalanced datasets, it is strongly recommended that a filtering
approach take into account data imbalance issues to improve the performance of
imbalanced datasets.

Three enhancements of ReliefF were devised in [12] to handle imbalance
classification:

• Higher Weight (HW) feature selection
In HW (see Algorithm 4), the class distributions are firstly calculated. When
updating the weight for each feature, if the randomly selected instance xi is from
the minority class, we add a higher weight by using the next equation instead of
the original.

W[a] = W[a] −
k∑

j=1

diff(a, xi , hi)/(m · k)+

∑

C �=class(xi )

⎡

⎣
(

P(C)

1 − P(class(xi))

)
×

k∑

j=1

diff(a, xi ,Mj (C))

(
1 +
(

1 − min

m

))⎤

⎦ /(m · k)

Algorithm 4 Higher weight ReliefF FS
function HW(D a training set with m instances and n attributes)

W[] = 0f orallattributes

min = number of minority class examples
for f = 1 to m do

Randomly select an instance xi from D.
Find xi ’s k nearest instances Hij, j = 1, . . . , k with the same label as xi

for each class C �=class(xi ) do
Find xi ’s k nearest Mj(C), j = 1, . . . , k labeled as class C

end for
for each attribute a = 1 to n do

if xi is a minority class example then
Use new equation to update weight W[a]

else
Use original equation to update weight W[a]

end if
end for

end for
return Weight vector W.

end function
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Algorithm 5 Differential minority repeat FS
function DMR(D a training set with m instances)

{Smajority,Sminority
} ← build majority and minority subsets from D.

Nmajority ← number of instances in Smajority

Nminority ← number of instances in Sminority

Dn ← Nmajority − Nminority

Dminority ← randomly sample Dn from Sminority

S′
minority ← Sminority

⋃
Dminority

S′ ← Sminority

⋃
Dminority

⋃
Smajority

W[] ← apply ReliefF to S′
return Weight vector W.

end function

Algorithm 6 Balanced minority repeat FS
function BMR(D a training set with m instances)

{Smajority,Sminority
} ← build majority and minority subsets from D.

Nmajority ← number of instances in Smajority

Nminority ← number of instances in Sminority

S1, S2, . . . , SN ← randomly split Smajority into N subsets with

N = Nmajority

Nminority
and Smajority = S1

⋃
S2
⋃

. . .
⋃

SN

for each subset i = 1 to N do
S′

i = Si

⋃
Sminority

Wi [] ← apply ReliefF to the S′
i

for each attribute j = 1 to n do
W[j ] ← W[j ] + Wi [j ]

end for
end for
return Weight vector W.

end function

On the other hand, if xi is from the majority class, we keep the original weight
function to estimate the weight for the attributes. In doing so, we assign a higher
weight value to genes that are able to differentiate a minority class example from
a majority class example.

• Differential Minority Repeat (DMR). This method, illustrated in Algorithm 5,
alters the original dataset in such a way that it becomes relatively balanced, so
that the minority class examples are not neglected while calculating the weight
for attributes. If we compute the difference between the number of majority
and minority class examples, we can update the minority instance subset by
randomly selecting and duplicating as many instances from the minority instance
as necessary and then adding and merging these to a new built example dataset.

• Balanced Minority Repeat (BMR). In this technique, which is shown in
Algorithm 6, we undersample and decompose the majority class examples into a
number of small subsets, each of which has almost the same number of instances
as the minority class example set. The number of the newly created subsets is
estimated by the ceiling of the ratio between the ratio of number of examples in
the majority set and minority set, let us call it N . After it, each created subset
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is aggregated with the original minority subset, obtaining a total of N relatively
balanced subsets. At the last step, ReliefF is applied to each subset, and the a sum
of the weight values for each gene over all N subsets is computed.

9.2.2.2 Combating the Small Sample Class Imbalance Problem Using
Feature Selection

Most of the content in [27] examines the performance of various FS metrics and how
they address the problem of class imbalance. Because there are two other general
approaches to dealing with this problem, we must also examine the performance of
sampling techniques and algorithms. They selected a representative example of each
of these approaches to compare it to the FS methods. The FS metrics are single-
sided or double-sided. They differ according to whether they select only positive
features or a combination of positive and negative features. Positive features are
those that, when present, indicate class membership, while negative features indicate
non-membership of a class. A one-sided metric uses the signed value of a feature’s
score and will therefore only select positive features. A two-sided metric ignores the
punctuation mark of a feature and only considers the absolute value; you can select
both positive and negative features.

The authors evaluated binary and continuous FS methods. Within the continuous
family, there are several attempts to directly deal with imbalanced classification
problems:

• Pearson Correlation Coefficient (PCC) measures the strength and degree of the
linear relationship between a feature and the class labels. It is a one-sided metric;
a two-sided version can easily be created by taking the square value of the scores.

• Feature Assessment by Sliding Thresholds (FAST) is an algorithm designed
to find the ROC curve representing a features predictions for the class labels. It
selects those features with the greatest area under the ROC. This is a two-sided
metric.

• Feature Assessment by Sliding Thresholds (FAIR): Precision-Recall uses a
modification of the FAST algorithm that instead finds the Precision-Recall curve
associated with a features predictions for the class labels. Those features with the
greatest area under the P-R curve are selected. This is a two-sided metric.

• Signal-to-Noise Correlation Coefficient (S2N) measures the ratio of some
desired signal (i.e., the class labels) to the background noise in a feature. While
this ratio is originally an electrical engineering concept, in the ML community. It
is a one-sided metric.

According to [27], the best FS metrics are S2N, FAST and PCC. These metrics
do not discretize the attributes; the conversion of continuous noisy characteristics
into binary characteristics seems to amplify the noise and makes the binary feature
selectors to work worse with a small number of attributes. In contrast, continuous
metrics were not so affected by noise and separated the classes slightly better.
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9.2.2.3 Discriminative Feature Selection by Nonparametric Bayes Error
Minimization

There is an algorithmic framework that employs a nonparametric estimator to
minimize the Bayes error rate when a subset of features is being selected. It was
proposed in [29] with the goal of studying the underlying properties of the subset
of margin-based FSs algorithms such as Relief, revealing their weaknesses and the
way of how to mitigate them. As a consequence, the authors devised two alternative
algorithms:

• Parzen-Relief, which resembles the standard Relief algorithm, but instead of
kNN, it uses the Parzen window method to estimate the Bayes error.

• MAP-Relief, which incorporates the class distribution into the margin maximiza-
tion objective function and thus effectively captures the imbalanceness among
classes.

9.2.2.4 Feature Selection for High-Dimensional Imbalanced Data

Two promising approaches were developed in [31] to cope with high-dimensional
data in imbalance classification problems. As it is well-known, the samples belong-
ing to the larger classes have more influence on the FS method. By contrast,
the samples of the minority class are crucial to achieve a good performance in
imbalanced learning but they have less dominance in the FS process. Because of
that, two procedures were proposed to solve these problems in FS. The former
is a class decomposition based FS and the latter is a FS based on the Hellinger
distance.

• Decomposition-based Feature Selection. In [31], authors proposed a frame-
work based on decomposition for FS. Specifically, as shown in Algorithm 7, there
are three phases in this frame. In Phase I, they used K-means clustering in class i

(i = 1, 2, . . . , C) according to the number of K(i) clusters preset by the user to
break down the majority class into relatively balanced pseudo-subclasses. Then
it changes the instance labels of class i to the subclass labels provided by the K-
means clustering, thus forming a multi-class data set with

∑C
i=1 K(i) subclasses.

After, the pseudo-labels for the samples with the pseudo-subclasses are got. For
some smaller classes, decomposition is unnecessary, which means that K(i) = 1.
In Phase II, the procedure measures the goodness of each feature with pseudo-
labels and the traditional measurement of the goodness of each feature. It then
ranks the features according to the goodness based on the calculated scores. Then,
the good features of the top k are selected and the pseudo-labels to the original
labels are released. Finally, in Phase III, we can do the classification or other task
with the selected features and the labels released.

• Feature Selection based on the Hellinger Distance. Here, we describe an
alternative method of FS based on Hellinger’s distance for imbalanced data, also
proposed in [31]. Hellinger’s distance is a measure of distributive divergence. Let
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Algorithm 7 Decomposition based framework for FS
function DFFS(D a training set with M features and C classes. L is the label set. K is a vector
that specifies the number of local clusters.)

Phase I: local clustering
for class i = 1 to C do

clusterLabel(i) = Clustering(D(i),K(i))
L(i) = changeLabel(L(i),clusterLabel(i))

end for
Phase II: score calculation
for feature j = 1 to M do

score(j ) = scoreMeasure(feature(j ),L)
end for
ranking features according to score
features with higher scores coming first
D′ = D(sample set with the top-M-scores features)
Phase III: validation
learningModel = build(D′,L)
return D′ as the training set after FS.

end function

P and Q denote two measures of probability that are continuous distributions
with respect to a third measure of probability λ. The definition of Hellinger’s
distance can be given as

dH (P, q) =
√∫

Ω

(
√

P −√Q)2dλ.

This definition does not depend on λ. It can also be defined for a countable space
θ :

dH (P, q) =
√∑

θ∈Θ

(
√

P(θ) −√Q(θ))2.

Hellinger’s distance range is in [0,
√

2]. It is symmetrical and not negative, which
implies dH (P,Q) = dH (Q,P ). Hellinger’s distance allows us to capture the
notion of “affinity” between probability measures in a space of finite events. If
P = Q, then the distance is 0, and if P and Q are completely disjoint, the
distance will be

√
2. Therefore, the best feature we want to select is the one that

carries the minimum affinity between the class. The minimum affinity means
that this feature is more discriminatory between classes. Thus, the Hellinger’s
distance can be used to measure the predictive power of the features to classify
the samples.

For computing efficiency, we discretize all continuous features into p inter-
vals. Assuming a two-class problem, let X+ be positive class and X− be the
negative one, we want to calculate the distance at the aggregated normalized
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frequencies on all partitions. Thus, Hellinger’s distance between X+ and X− is:

dH (X+, X−) =

√√√√√
p∑

j=1

(√
|X+j |
X+

−
√

|X−j |
X−

)2

.

9.2.2.5 Iterative Feature Selection

There is a proposal in [14] where an iterative method is designed for processing
the FS for imbalanced data. Algorithm 8 presents the procedure of this approach. It
consists of two basic steps:

1. Use of the random subsampling technique (RUS) to balance data. RUS creates
the balanced data by randomly removing examples from the majority class. In
this algorithm, they look at two postsampling ratios: 35:65 (RUS35) and 50:50
(RUS50), meaning that the ratio between the minority and majority examples is
35:65 and 50:50, respectively, after sampling.

2. Applying a filter-based FS technique to the sampled data and ranking all features
according to their predictive capacity (scores). They explored 18 filter-based FS
techniques.

The filter-based FS techniques used are: Chi-Squared, Gain Ration, Information
Gain, Relief, ReliefW, Symmetrical Uncertainty, F-Measure, Odds-Ratio, Power,
Probability Ratio, Gini Index, MI, Kolmogorov-Smirnov Statistic, Deviance, Geo-
metric Mean, AUCROC , AUCPR , Signal-to-noise ratio.

Algorithm 8 Iterative FS algorithm

function IFS(D a training set with features Fj , j = 1, . . . , M and two classes ∈ {fp, nfp}. A
filter-based feature ranking technique ω. A data sampling technique �. A predefined threshold:
number (percentage) of the features to be selected.)

for i = 1 to k do
Use � to balance D and get the balanced data Di .
Employ ω to rank features on Di , and get new rankings ωi(F

j ), j = 1, . . . , M .
end for
Create feature ranking R by combining the k different rankings ωi(F

j )|i = 1, . . . , k ∀j

with mean (average).
return Select features according to R and a predefined threshold.

end function
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9.3 Advanced Feature Selection

This section is devoted to enumerate and briefly describe several FS techniques used
in imbalanced learning, mainly divided into two groups: ensemble and/or wrapper
based techniques and evolutionary-based techniques.

9.3.1 Ensemble and Wrapper-Based Techniques

The main approaches based on ensembles or sophisticated wrappers are the
following ones:

• In [30], an ensemble-based wrapper approach is proposed for the selection of
features from highly imbalanced datasets. The proposed algorithm retains the
advantages of wrapper FS while maximizing data usage and reducing the FS
bias simultaneously by forming multiple base classifiers with balanced subsets
of samples. A hybrid multisampling procedure is used to create balanced sample
subsets. At the same time, they introduce a unified framework that incorporates
the ensemble FS and multiple sampling in a mutually beneficial way.

• FS using SVMs [19]: here, it is presented a family of embedded methods for
selecting features in a backward fashion using vector support machines that are
inspired by the algorithm SVM-RFE [10] backward selection procedure. The
reason for this approach is that it removes those features whose elimination
has less impact on the final solution, considering a problem of imbalance
classification. To do this, the algorithm tries to recreate the main objective of
this task: to achieve the best predictive performance in an unseen subset, using a
cost sensitive metric.

• The Ensemble FS (EFS) is a type of ensemble learning approach based on
FS. Unlike the traditional selection of features, EFS seeks not only to find an
appropriate subset for learning, but from the perspective of the ensemble to
obtain the best ensembe. The selected subsets of features usually have a strong
impact on the performance of the final ensembles. If these subsets are prone to
the minority class, then the whole will be beneficial to the minority class. In [32],
the authors proposed the Imbalanced Ensemble FS (IEFS), which imports costs
into feature subset evaluation functions using weight-based evaluation methods
and adds penalty-reward factors. During the process of searching for subsets of
characteristics, a reward will be given while increasing the classification accuracy
of the minority class. Otherwise, a punishment will be imposed.
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9.3.2 Evolutionary-Based Techniques

Regarding evolutionary-based FS techniques, we may find in the literature several
proposals:

• Joint optimization of granularity learning and FS in genetic-based fuzzy rule
systems (GA-FS+GL) [25]: it is a proposal based on an standard generational
genetic algorithm for the database definition that allows us to carry out FS
and learn an adequate number of labels for each selected variable (granularity
learning).

• In [21], a genetic algorithm that combines four tasks; namely IS, instance
weighting, FS and feature weighting; was used to optimize the performance of
the NN rule. The individuals of the population are represented by hybrid arrays
formed by binary and real numbers and the operators to recombine individuals
are the classical from binary genetic algorithms and differential evolution in real
coded parts.

• The ECBL’14 Big Data competition consisted of an huge imbalanced classi-
fication problem of bioinformatics. The winner algorithm was ROSEFW-RL
[24], based on several MapReduce approaches to balance the classes distribution
through random oversampling, detect the most relevant features via an evolu-
tionary feature weighting process and a threshold to choose them and to build
an appropriate Random Forest model. The feature weighting was performed by
using a differential evolution algorithm guided by the NN rule. After the process,
the associated weights are obtained and a threshold is used to decide which
features will be selected to build the model.

9.4 Linear Models for Feature Extraction

Feature extraction involves reducing the quantity of resources needed to explain an
oversized set of information. Feature extraction can be seen as a transformation of
the original feature space to a smaller feature space to reduce the dimensionality. It is
well-known [6] that feature extraction can significantly reduce the dimensions of the
feature space compared with FS. When carrying out analysis of complex data, one
of the foremost issues stems from the amount of features concerned. Analysis with
an outsized variety of variables typically needs an oversized quantity of memory and
computation power, additionally it should cause a classification algorithm to overfit
to training samples and generalize poorly to new samples. Feature extraction may
be a general term for methods of constructing mixtures of the variables to induce
around these issues while still describing the information with sufficient accuracy.
Many data scientist practitioners believe that a properly optimized feature extraction
is the key to achieve an effective model construction.

The results will be improved using created sets of application-dependent features,
usually built by an expert. One such method is termed feature engineering. As
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an alternative, general DR techniques are used such as: Independent component
analysis, Latent semantic analysis, Partial least squares or Principal component
analysis.

This section will describe the major proposals for feature extraction based on
linear models in imbalanced learning. Although there are many applications of these
techniques in this topic, they are used as secondary processes to improve a part of a
whole algorithm or methodology. Thus, these applications will not be mentioned
here; instead, we will describe the ad-hoc linear features extraction techniques
thought for dealing with imbalanced class distributions.

9.4.1 Asymmetric Principal Component Analysis

Given q n−dimensional column vectors for training where the positive class ω0
has q0 samples and the negative class ωc has qc samples, q = q0 + qc, compute
the class-conditional mean vectors M0, Mc, and covariance matrices �0, �c. The
covariance matrix of the class mean is computed as

�m = 1

q
[q0(M0 − M)(M0 − M)T + qc(Mc − M)(Mc − M)T ],

where M is the mean over all training samples. It is not difficult to get the covariance
matrix of the total training data by

�t = 1

q
(q0�0 + qc�c) + �m. (9.1)

If the a priori probabilities of the two classes are estimated by p0 = q0/q and
pc = qc/q, the covariance matrix of the total training data can be expressed as

�t = p0�0 + pc�c + �m. (9.2)

In the literature, �t is often called total scatter matrix, �m is called between-class
scatter matrix, and �w = p0�0 + pc�c is often called within-class scatter matrix.

PCA applies eigen-decomposition on �t , i.e., �t = ΦΛΦT , and keeps the m

eigenvectors Φm, Φm ∈ R
�×�, corresponding to the m largest eigenvalues. An

n−dimensional pattern vector X is transformed to an m−dimensional feature vector
X̂ by X̂ = ΦT

mX,m < n. The role of PCA in the classification is far beyond the
low-dimensional data representation or solving the singularity problem of �w. For
a quantitative analysis of the role of PCA in classification, we can model the class-
conditional distributions by multivariate Gaussian density functions. The Bayes
optimal decision rule detects a positive sample X if

(X − Mc)
T �−1

c (X − Mc) − (X − M0)
T �−1

0 (X − M0) > b, (9.3)
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where b = ln(|�0|/|�c|) + 2(ln pc − ln p0). After applying eigen-decomposition,
the Bayes decision rule (9.3) is simplified as

n∑

k=1

g2
k

λc
k

−
n∑

k=1

h2
k

λ0
k

> b, (9.4)

where gk is the projection of (X − Mc) on the eigenvector Φc
k corresponding to the

eigenvalue λc
k of �c and hk is the projection of (X − M0) on the eigenvector Φ0

k

corresponding to the eigenvalue λ0
k of �0.

Many approaches modify the above optimal decision rule into

m∑

k=1

g2
k

λc
k

+
n∑

k=m+1

g2
k

pc

−
m∑

k=1

h2
k

λ0
k

−
n∑

k=m+1

h2
k

p0
> b, (9.5)

which replaces the n − m smallest eigenvalues of both classes by two constants pc

and p0, respectively, and often m << n.
Eigenvalue λc

k or λ0
k is the variance of the positive or negative training samples

projected on the eigenvector Φc
k or Φ0

k . It is an estimate of the class true ensemble
variance based on the available training data. If the eigenvalues deviate from the
ensemble variances, the decision rule (9.3) and (9.4) overfits the training samples
and therefore there will be a poor generalization over test data.

Thus, similar to (9.5) that replaces the smallest eigenvalues by a constant,
removing the subspace spanned by the eigenvectors of �0 and �c corresponding
to the smallest eigenvalues improves the generalization of the classifier. However,
the principal components of �m should not be removed as they contain the
discriminative information. Hence, it is obvious that PCA on �t = p0�0 +pc�c +
�m plays an important role in classification. It alleviates the overfitting problem
or improves the generalization capability by removing the subspace spanned by
eigenvectors of �0 and �c corresponding to the small eigenvalues while keeping
the principal components of �m.

However, in (9.1) and (9.2), �0 and �c are weighted by q0/q and qc/q or by
p0 and pc. These weights are required for PCA to achieve the least-mean-square
reconstruction error. In classification, the goal is to remove dimensions in which
the sample-based class-conditional variables are unreliable. The reliability of a
covariance matrix is not dependent on the class prior probability. The Bayes optimal
decision rule (9.3) minimizes the sum of the two errors weighted by p0 and pc do
that the threshold b depends on p0 and pc. More training samples of a class may
results in a more reliable covariance matrix if they are properly collected. However,
it is not the more but the less reliable covariance matrix that should be heavily
weighted so that more dimensions characterized by the small variances of this class
can be removed. It is thus clear that PCA on the total data scatter matrix �t (9.1)
or (9.2) does not effectively remove the unreliable dimensions because �t is not
constructed from a classification point of view.
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To address this problem, the author in [11] proposed to construct an asymmetric
pooled covariance matrix by

�α = α0�0 + αc�c + �m, (9.6)

where α0 and αc are determined by the reliability of the covariance matrices �0 and
�c, α0 +αc = 1. Different from (9.1) and (9.2), α0 and αc are unrelated to the class
a priori probabilities. The objective of the proposed asymmetric pooled covariance
matrix �α is to facilitate an effective removal of the unreliable dimensions. Hence,
larger values of α0 or αc should be assigned to the less reliable covariance matrix so
that more dimensions characterized by the small variances of the less reliable class
can be removed by eigen-decomposition of �α .

If there is no prior knowledge about the class characteristics and the data
collection procedure, less training samples in general result in a less reliable
covariance matrix. Thus, it was suggested to construct the asymmetric pooled
covariance matrix in the form of

�α = 1

q
(qc�0 + q0�c) + �m, (9.7)

In sharp contrast to the scatter matrix �t (9.1) that weights the covariance
matrices proportionally to the number of training samples, the proposed �α (9.7)
pools them with weights inversely proportional to the number of training samples.

The asymmetric principal component analysis (APCA) applies eigen-
decomposition on �α (9.6), i.e.,

α0�0 + αc�c + �m = ΦΛΦT , (9.8)

and extract the m eigenvectors Φ̂ from Φ corresponding to the m largest eigenvalues
in Λ. It aims at removing the unreliable dimensions to alleviate the overfitting
problem and hence to achieve a better classification performance in imbalanced
problems.

9.4.2 Extraction of Minimum Positive and Maximum Negative
Features

In [26], the authors proposed a method for extracting, in terms of absolute
values, the minimum positive and maximum negative feature in binary imbalanced
classification. This means that the positive features extracted are expected to be in
an interval [−ξ, ξ ], and the negative features fall into (−∞,−ξ) ∪ (ξ,+∞), where
ξ is a positive scalar. Two models were developed to perform the feature extraction.

The technique is mainly oriented to linear classifiers (LDA, SVM, etc.), which
classify a sample x based on the sign of the value
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f (x) = xT w + wo, (9.9)

where w is the coefficient vector and w0 is the threshold. Linear classifiers have bad
issues related to the assumed presence of a hyperplane that perfectly could separate
the data into two classes, which rarely occurs and with the trend of misclassifying
outliers.

Thus, the basic idea of the method proposed in [26] is to seek for a pair of
parallel hyperplanes h±(x) : wT x = ±ξ for classification. The positive samples
are expected to be clustered in the belt area A defined as:

A : −ξ ≤ wT x ≤ +ξ. (9.10)

The negative samples are expected to be in the area A defined as:

A : wT x > +ξ ∪ wT x < −ξ. (9.11)

Compared with the negative samples, the positive samples are nearer to the
hyperplane h0(X) : wT x = 0. This methods assigns two asymmetrical areas to
these two classes instead of assigning two symmetric half-spaces to the positive and
negative class. The outcome is to assign a larger area to the negative class.

The scalar wT x is the feature of sample x after projecting onto the feature
extractor w. From Eqs. 9.9 and 9.10, we know that the positive features fall into the
interval [−ξ, ξ ], and the negative features fall into (−∞,−ξ) ∪ (ξ,+∞). In order
to enlarge the separation, the method seeks the minimum possible and maximum
negative features in terms of absolute value for imbalanced classification.

Correctly, we can obtain the feature extractor w by solving the following l

inequalities, where l denote the total number of samples and l1 are the number of
samples from the positive class:

{
|wT xi | ≤ ξ, i = 1, 2, . . . , l1

|wT xi | > ξ, i = l1 + 1, l1 + 2, . . . , l
(9.12)

Nevertheless, there are three problems in solving these inequalities: (1) there is
no solution in some cases, (2) when they are solvable and have infinite solutions
there is a not straightforward way to choose the best ones and (3) it is high time
consuming.

Next, the authors in [26] proposed two modifications of the model in Eq. 9.12.

9.4.2.1 Model 1

It is an special case of the model in Eq. 9.12 where the parameter ξ is set to zero.
This model minimizes the positive features to be zero and maximizes the negative
features, as follows:
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max
w

||XT
2 w||2 s.t. ||XT

1 w||2 = 0, (9.13)

where the matrices X1 and X2 are the positive and negative samples, respectively.
To solve Eq. 9.13 efficiently, they designed a two-step procedure. The first step

generates a set of candidate feature extractors onto which the positive samples have
zero projections. From this set, the second step takes the vectors onto which the
negative samples have the maximum projections as the feature extractors.

9.4.2.2 Model 2

They proposed the next model

min
max||XT

2 v||2
||XT

1 v||2. (9.14)

Among all the vectors v onto which the negative samples have maximum
projections, this model picks out the ones onto which the positive samples have
minimum projections and takes them as the feature extractors. Again, there is a
two.step procedure to solve this model. This first step generates a set of vectors onto
which the negative samples have projections as large as possible. From this set, the
second step picks out the vector onto which the positive samples have minimum
projections.

9.5 Non-linear Models for Feature Extraction: Autoencoders

Deep learning tools have been also used for imbalanced learning, such as the case
of autoencoders. An autoencoder produces useful feature representation when the
number of neurons in the hidden layer is different from the number of inputs,
allowing a change of dimensionality to the input data. DR can be also done as well
with autoencoders.

In [20], the authors propose the Dual Autoencoding Features (DAF), which is a
feature learning method based on stacked autoencoders, providing a new form to
solve imbalance classification problems. Two stacked autoencoders with different
activation functions are used to learn features from the input space with imbalanced
data to extract important characteristics from data. They are concatenated to form
the DAF.

First of all, we have to introduce the concept of autoencoder used in [20]. A
single autoencoder consists of the input layer, the encoding layer and the decoding
layer. For each sample xi in the training dataset D, where xi and N denote the n-
dimension input vector of the i-th sample and the number of samples, respectively,
we can define the encoding layer as:
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f (x) = se(Wex + be), (9.15)

where We, be, and Se(·) denote the weight matrix, the bias vector and the activation
function of the encoding layer, respectively. Similarly, the decoding layer is defined
as:

g(x) = sd(Wdx + bd), (9.16)

where Wd , bd , and Sd(·) denote the weight matrix, the bias vector and the activation
function of the decoding layer, respectively.

The output of the autoencoder is:

y = g(f (x)) (9.17)

The aim of the autoencoder is to learn a feature representation in the encoding
layer such that the outputs of the autoencoder reconstruct the inputs. Thus, the learn-
ing problem of an autoencoder is to find a set of parameters θ = {We, be,Wd, bd}
to minimize the reconstruction error between the inputs and the outputs of the
autoencoder:

arg minθ

N∑

i=1

L (xi, g (f (xi))), (9.18)

where

L(x, y) = ||y − x||2. (9.19)

To avoid overfitting, the l2 weight decay penalty us added to restrict the
magnitudes of weights. Then, the optimization problem is rewritten as follows:

arg minθ

1

2

N∑

i=1

L (xi, g (f (xi))) + 1

2
λ||W ||2, (9.20)

where λ and W denote the regularization parameter and the matrix consisting of
two weight matrices (We and Wd ) respectively. The parameter θ of an autoencoder
is usually optimized using back-propagation, but in this case, the desired outputs are
the same than the inputs.

The autoencoder can be stacked together to derive deeper and more abstract
features to support better representation of patterns. In stacked autoencoders, the
outputs of the encoding layer of an autoencoder are fed to the next autoencoder as
their inputs [5].

In the following, we will describe the framework of DAF. It combines the
feature learned from two stacked autoencoders which use the sigmoid and the
tanh functions as activation functions, respectively. Figure 9.1 shows the overall
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Fig. 9.1 DAF framework

procedure of the DAF over all datasets, distinguishing the feature learning from the
feature encoding. Both functions are defined as follows:

sigmoid(x) = 1

1 + e−x
, (9.21)

tanh(x) = ex − e−x

ex + e−x
(9.22)

DAF uses 2-layer stacked autoencoders to learn features, but it does not limit the
number of autoencoders to being stacked. According to the authors, a single layer
autoencoder may not be powerful enough to learn useful features, and the stacked
autoencoders with more than 2 layers may not yield much better representation at
the cost of slower training time. For these reasons, they justify the need of using
stacked autoencoders with 2-layers with different activation functions.

Algorithm 9 shows the feature learning procedures for the DAF and Algorithm 10
shows the feature encoding procedures for a given sample set. The training dataset
will be used to train with Algorithm 9 and then samples in both the training and
the testing sets are encoded using Algorithm 10 to get the DAF for both sets. The
DAF of the training set is used to train the classifier for solving an imbalanced
classification problem.
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Algorithm 9 Feature learning of the DAF
function DAF LEARNING(N , n, l, mj , D denote the number of samples, the number of
features, the number of autoencoders, the number of neurons on the encoding layer of the j -
th autoencoder, and the n × M input feature matrix.)

Scale each input feature to the range [0, 1].
Set ϕ = D, and m0 = n.
for j = 1 to l do

Train an autoencoder with the sigmoid activation function using σ and Eq. 9.20 with mj

neurons on the encoding layer and m(j−1) neurons on both the input and the decoding layer.
Compute the outputs of the encoding layer for all training samples to get mj ×N matrix

Hj .
Set ϕ = Hj

end for
Repeat the previous loop to train another stacked autoencoder by replacing the sigmoid

activation function by the tanh function.
return Two stacked autoencoders with sigmoid and tanh activation function, respectively.

end function

Algorithm 10 Feature encoding of the DAF
function DAF ENCODING(X denotes the n × NX input feature matrix of a five set of samples)

Get two stacked autoencoders with sigmoid and tanh activation functions by the Algo-
rithm 9.

Compute the values of the encoding layer of the lth sigmoid stacked autoencoder for all
samples in X to get ml × NX matrix Hsigmoid .

Compute the values of the encoding layer of the lth tanh stacked autoencoder for all samples
in X to get ml × NX matrix Htanh.

Concatenate Hsigmoid and Htanh by rows to get the learned feature matrix HDAF .
return 2ml × NX learned feature matrix HDAF .

end function

9.6 Discretization in Imbalanced Data: ur-CAIM

To the best of our knowledge, there is only an attempt of ad-hoc discretization
technique thought for dealing with imbalance learning problems. This algorithm,
denoted by ur-CAIM, is an extension of the well-known CAIM [16] discretizer.

CAIM stands for Class-Attribute Interdependency Maximization criterion, which
measures the dependency between the class variable C and the discretized variable
D for attribute A. The method requires the computation of the quanta matrix [7],
which, in summary, collects a snapshot of the number of real values of A within each
interval and for each class of the corresponding example. The criterion is calculated
as:

CAIM(C,D,A) =
∑n

r=1
max2

r

M+r

m
,

where m is the number of intervals, r iterates through all intervals, i.e. r =
1, 2, . . . , m, maxr is the maximum value among all qir values (maximum value
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within the rth column of the quanta matrix), M+r is the total number of continuous
values of attribute A that are within the interval (dr−1, dr ].

The CAIM criterion formula is biased towards the majority class instances and
it is not capable of handling such imbalanced data. In [4], the authors present a
new algorithm, called ur-CAIM, that solves the above mentioned problems of the
original CAIM algorithm, analyzing the behavior and performance of the original
CAIM on imbalanced data. The ur-CAIM algorithm is a free parameter algorithm,
which means that it does not require any user-entered parameter settings. The
algorithm is capable of automatically selecting the most appropriate number of
discrete intervals. In addition, it overcomes the bias of the CAIM algorithm of
choosing a number of intervals very close to the number of classes, which provides
more flexible discretization schemes.

The ur-CAIM criterion is defined as:

ur-CAIM = CAIMN · CAIR ·(1 − CAIU),

where CAIMN stands for a normalized version of the standard CAIM criterion to
the range [0, 1], CAIR is the class-attribute interdependence redundancy criterion
[28] with a modification in the MI to handle imbalance data more appropriately, and
CAIU is the class attribute interdependence uncertainty criterion [4].

The criterion ur-CAIM represents a compensation for processing the number of
intervals. The CAIM part of the formula advocates a more generalized scheme with
fewer intervals, while the CAIR and CAIU advocate a greater number. The ur-CAIM
criterion thus makes it possible to evaluate different behaviors of different metrics
and presents a unique quality measure of the discretization scheme that works well
with imbalanced data.

The rest of the algorithm works exactly like the original CAIM.

9.7 Summarizing Comments

DR is an important aspect of imbalanced classification. We have seen that numerous
studies have been published that analyze the deterioration in the behavior of classical
algorithms, such as SMOTE, when undertaking high-dimensional data.

The most commonly used and analyzed techniques in DR are the FS. Again,
much emphasis has been placed on analyzing the properties of classical ranking-
based methods when dealing with high-dimensionality problems and combining
them with all kinds of sampling techniques. The ReliefF algorithm is particularly
noteworthy, with several adaptations specifically designed for imbalanced classifi-
cation.

Feature extraction techniques have just been developed in this area. While there
are many applications and they have been combined in more complex processes,
in this chapter we have mentioned two linear and one non-linear proposals based
on stacked autoencoders. There is still much to be done in this discipline, since
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the nature of imbalanced learning makes it conducive to devising new techniques
of feature extraction that take into account the classes of examples acting in a
supervised manner.

Finally, a discretization proposal has been presented that comes as an adaptation
to the classic CAIM technique and that helps to preserve the intervals that
contain minority examples and shows better behavior in this type of problems.
Discretization is a field that has also been underdeveloped and requires more effort
to improve the algorithms that require it to work.
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Chapter 10
Data Intrinsic Characteristics

Abstract Although class imbalance is often pointed out as a determinant factor
for degradation in classification performance, there are situations in which good
performance can be achieve even in the presence of severe class imbalance. The
identification of situation where the class imbalance is a complicating factor is
an important research question. These situations are often associated to some
data intrinsic characteristics. This chapter describes some of these characteristics.
Section 10.2 discuss some studies using data complexity measures for categorizing
imbalanced datasets. Section 10.3 discuss the relationship between class imbalance
and small disjuncts. Section 10.4 analyses the problem of data rarity or lack of
data. Section 10.5 discuss the problem of class overlapping, a complicating factor
for class imbalance. Section 10.6 discuss the problem of noise in the context of
class imbalance. The influence of borderline instances is discussed in Sect. 10.7.
Section 10.8 analyses the problem on shifting between training and deployment
datasets. Section 10.9 describes problems with imperfect data. Finally, Sect. 10.10
concludes this chapter.

10.1 Introduction

Class imbalance was widely acknowledged as a complicating factor for classifi-
cation. However, some studies also argue that the imbalance ratio is not the only
cause of performance degradation in learning from imbalanced data [46, 60]. These
and other studies point out that many data intrinsic characteristics, in conjunction
of an imbalanced class distribution, may account for the poor performance in
classification problems.

As a matter of fact, standard classifiers may achieve good performance in some
highly imbalanced domains, as long as the data at hand can be considered linearly
separable (or of low complexity). Furthermore, state of the art techniques for dealing
with class imbalance may fail in some problems, where other factors (such as noise
or class overlapping) are complicating factors for classification.

Understanding these data intrinsic characteristics, as well as their relationship
with class imbalance, is crucial for applying existing and developing new techniques
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to deal with imbalance data. Studies alongside this line of research include the
estimation of the inherent complexity of the data set, the presence of sub-concepts
and small disjuncts, the lack of sufficient data, the overlapping among class regions,
noisy instances, class boundaries and rare borderline examples, data shifts between
training and testing data, and data imperfection. This chapter discuss some of these
data intrinsic characteristics can be considered when dealing with class imbalance.

10.2 Data Complexity for Imbalanced Datasets

Possible causes for degradation in performance of learning algorithms include
deficiencies in the algorithms, mismatch between methods and problems, and
intrinsic difficulties in the data [34]. Understanding some characteristics in the data
may help in identifying families of algorithms which are more adequate to data with
some properties, pointing out some difficulties in data as well as identify intrinsic
difficulties in the data.

Unfortunately, developing measures for evaluating the characteristics in a dataset
is not a trivial task, as classification difficulty may have different natures [33].
Several approaches have been developed aiming to evaluate the complexity of a
dataset based on the overlapping of values within a single feature; estimates of
the separability of classes and measures of geometry, topology, and density of
manifolds [33, 49, 72].

Some research work has been conducted to study the relationship of classification
complexity and class imbalance. In [90], the authors have used data complexity
measures to gain some insights about the behavior of a data sampling method
based on data projection in two text classification tasks. Complexity measures were
computed globally for the entire dataset and in a per class basis. In [2], a complexity
measure based on kNN rule is proposed. Roughly speaking, this measure is high if,
in the training set, a large proportion of minority class instances is misclassified by
kNN. The proposed measure has a strong linear correlation with sensitivity, unlike
other measures presented in [33].

In [47], the authors study the relationship between Fisher discriminant ratio [33]
with the class imbalance ratio, and the performance of classifiers with and without
treatment for class imbalance. This measure aims to measure the degree of class
overlapping, considering each feature of the dataset in isolation. Their main result is
that the imbalance ratio by itself cannot justify the degradation in performance, and
the Fisher discriminant ratio can help in characterizing the behavior of classifiers
under presence of class imbalance. The relationship of class overlapping and class
imbalance under the context of software defect prediction was studied in [11].

The proportion of class labels in the neighborhood of an instance was used in [51]
for characterizing the minority class instances into different types. The proportion
of kNN from the same class compared to neighbors from different classes can range
from k : 0 (all neighbors are from the same class as the analyzed instance) to
0 : k (all neighbors belong to the different classes). Depending on this proportion
minority class instances are divided into:
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• Safe instances: where the majority of NNs’ instances belongs to the same class.
• Borderline instances: where the proportion of instances in the neighborhood is

close to a balanced distribution.
• Rare instances: when the majority of neighbors belongs to a different class.
• Outliers: when the all the NNs belong to a different class.

An ad-hoc and a parametric kernel approach for delimiting the thresholds for
each category were proposed in [51]. The ad-hoc approach is suitable for small
values of k (e.g., 5), whereas the kernel approach can be applied to larger values.
The authors advocate the idea that different types of instances should have different
treatments, and focus on rare and outliers’ cases. Experiments for tuning the number
of neighbors depending on other data characteristics was carried out in [6].

An approach for estimating the complexity of individual instances was proposed
in [73]. The instance hardness measure is based on the frequency that the instance
is misclassified by different classifiers. Authors claim that the one of the factors
that contributes to instance hardness is the degree of imbalance. Instance hardness
can be used for undersampling by removing from the training set the instances of
majority class with high degree of hardness. Figure 10.1 shows an example of this
approach for an artificial dataset where the instances from the majority class were
undersampled according to the instance hardness until some desired imbalance ratio
is achieved. In Fig. 10.1, the original imbalance ratio is 1:9 (one minority to nine
majority) and is undersampled to the ratios 1:4, 1:2 and 1:1 (top right, bottom left
and bottom right, respectively). The majority, minority and removed instances are
shown in blue, red and cyan, respectively.

10.3 Sub-concepts and Small-Disjuncts

A common problem faced by learning algorithms is that instances from the same
class normally do not belong to a homogeneous region in the input space. Indeed,
it is common that the “concept” beneath a class is split into several sub-concepts,
spread over the input space. This lack of homogeneity is particularly problematic
in algorithms based on the strategy of dividing-and-conquering (e.g., as in decision
trees) and set covering (e.g., as in rule induction), where the sub-concepts lead to
the creation of small disjuncts [36]. The name is related to the fact that, in divide-
and-conquer and set covering approaches, the models are divided in several pieces,
and a concept class is represented as disjunction of different pieces for each class.

Figure 10.2 shows graphical representations of two different datasets. In the
figure to the left (Fig. 10.2a), only one large concept is present for each class.
However, in the figure to the right (Fig. 10.2b), the concept represented by blue
dots is split into two groups. In this case, the learned model is composed by two
pieces, where one of them is small disjunct. The presence of sub-concepts (and
small disjunct) may accentuate the problem of class imbalance, as different levels
of imbalance may exist for each sub-concept.
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Fig. 10.1 Instance hardness used for undersampling

Fig. 10.2 Datasets with and without sub-concepts. (a) No sub-concepts. (b) Sub-concepts

It is reported in the literature that small disjuncts are problematic because they
concentrate most of the errors of a classifier [36, 88]. One possible reason for this
ER is the degree of imbalance between disjuncts of different sizes [39, 61, 86]. Class
imbalance may also lead to generation of small disjuncts which are not necessarily
related to sub-concepts.
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Fig. 10.3 Imbalanced Datasets with and without sub-concepts. (a) Dataset without small dis-
juncts. (b) Sub-concepts

In some case, the formation of small disjuncts appear due to the sparsity and
scarcity of data, a situation common in class imbalance [46]. Figure 10.3 illustrates
this situation. In this figure, the same dataset is shown in both sides. In the figure to
the left (Fig. 10.3a) one (relatively) large disjuncts for each class exists. However, as
the dataset is imbalanced (the number of red squares is much larger than the number
of blue circles), the blue circle class is scarce, and a ML algorithm may found two
small disjuncts rather than the larger disjunct, as shown in the figure to the right
(Fig. 10.3b).

Besides class imbalance, small disjuncts may also be caused by other reasons,
such as the inability of the algorithm to properly represent the class boundaries, the
occurrence of class overlapping and noise instances, among others.

Figure 10.4 shows the small disjunct formation due to the inability of ML
algorithms which can only represent models by splitting the input space by axis-
parallel lines, such as most regular decision tree learning algorithms. In this
situation, small disjuncts were created as a way of the algorithm to approximate the
oblique decision boundary. In the figure to the left (Fig. 10.4a), the class boundary
is correctly identified as an oblique line (e.g., as in a logistic regression or SVMs),
whereas in the figure to the right (Fig. 10.4b), the decision boundaries are composed
by axis-parallel splits (e.g., as in a decision tree learner).

Small disjuncts may also appears when there is a class overlap in some regions
of the input space. Figure 10.5 illustrates this situation. To avoid creating larger
overlapped disjuncts, as in the figure to the left (Fig. 10.5a), the learning algorithm
may prefer to generate smaller disjuncts, as in the figure to the right (Fig. 10.5b).

Another possible reason for the appearance of small disjuncts is the presence of
noisy instances. If noisy instances occur in a similar region in the input space, they
me mistakenly interpreted as a small disjunct. Figure 10.6 illustrates this. The figure
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Fig. 10.4 Formation of small disjuncts due to the inability of a decision tree to handle oblique
class boundaries. (a) Oblique decision boundary. (b) Axis-parallel splits cannot approximate well
the boundary

Fig. 10.5 Formation of small disjuncts for avoiding overlapping regions. (a) Large overlapped
disjuncts found. (b) Sub-concepts created to avoid overlapping areas

to the left (Fig. 10.6a) represents a dataset with two noisy instances. In the figure
to the right (Fig. 10.6b), these two noisy instances are mistakenly interpreted as a
small disjunct. The occurrence of noise may also split a larger disjunct, if the noisy
instances invades the boundaries of a different class [46].

In [86], a graphical evaluation approach was proposed to evaluate the concen-
tration of errors towards small disjuncts, for classifiers which allows a piecewise
evaluation of each disjunct. The main idea is to order the disjuncts by the disjunct
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Fig. 10.6 Formation of small disjuncts due to the presence of noisy data. (a) Instances outside the
class boundaries are due to noise. (b) Noisy instance are mistakenly identified as a small disjunct

size, and plotting the percentage of correctly classified instances in the x-axis
versus the percentage or errors in the y-axis for each disjunct. Figure 10.7 shows
an example of an ER Curve. The curve is generated by starting with the smallest
disjunct from the classifier and then progressively adding larger disjuncts, according
to the disjunct size. The diagonal line represents a classifier in which classification
errors are distributed uniformly across the disjuncts. If the ER curve is above this
diagonal, then errors are more concentrated in the smaller disjuncts. The area under
this curve is the EC index. Values of EC granter than 0.5 indicates that errors are
majority concentrated in small disjuncts.

To alleviate the problem with small disjuncts, several approaches were proposed
in the literature [86, 88]:

• Obtaining more training data. Poorly represented classes may lead to the
apparition of small disjuncts, specially in the minority class. Acquiring new data
in under-represented regions could alleviate the problem [38].

• Use adequate inductive bias. To avoid the introduction of artificial small
disjuncts in caused by a mismatch between the algorithm bias and the data at
hand, richer inductive bias may be required [9, 22, 23].

• Using more appropriate metrics. Adequate metrics could help in properly iden-
tifying disjuncts when classes overlaps or in the presence of noisy instances [35].
Another possible option is to use different metrics independent of class imbal-
ance [13, 18, 59]

• Better control pruning. Correctly determining pruning parameters could help
in establishing an appropriate trade-off between disjunct sizes and classification
performance. A strong pruning strategy will eliminate most small disjuncts by
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Fig. 10.7 Example of ER curve. Disjuncts are ordered by size, such that |si | < |sj |, and the
percentage of correct classified instances is plotted against the percentage of incorrectly classified
instances

generalizing the classification rules, while no pruning will highly increase the
likelihood of smaller (and maybe spurious) disjuncts.

• Using ensembles Different ensemble techniques have been proposed to over-
come the problem of class imbalance [10, 28, 68, 84]. As ensembles work by
combining the output of different classifiers, the detrimental effect of small
disjuncts may be averaged out by using ensembles.

A method developed to handle both class imbalance and small disjuncts have
been proposed in [39]. It uses a cluster based oversampling. Authors argument that
handling both problems together is an interesting and worthy approach to improve
performance.
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10.4 Lack of Data

A problem that often arises in classification is the small number of training
instances. This issue, often reported as data rarity [87] or lack of data [65], is
related to the “lack of density” or “insufficiency of information”. In these scenarios,
learning algorithms do not have enough data to make generalizations about the
underlying concept, producing poor models. This is because a sufficient amount of
data is required by learning algorithms to make generalizations about the datasets.
Without a sufficient large training set, a classifier may not generalize characteristics
of the data. Furthermore, the classifier could also overfit the training data, with a
poor performance in out-of-sample tests instances [65].

The lack of data problem is intensified in the presence of class imbalance. To
gain some insight of the reasons, consider the artificial dataset shown in Fig. 10.8.
In both plots the ratio between positive (blue dots) and negative (red squares) is the
same: 1/10. However, the number of instances in the figure to the left (Fig. 10.8b) is
about 10% of the number of instances in the figure to the right (Fig. 10.8b).

In the former case, we have an absolute rarity of the positive instances, due to
the small sample size. Besides an imbalance proportion, very few instances of the
positive class were available for training a classifier. In the latter case, however, we
have a relative rarity. Even though the dataset is imbalanced the number of positive
instances may be sufficient to train a reasonable classification model. Indeed, an
experimental framework developed in [89] shows that performance increases as
more training set instances where available, for the same imbalance ratio.

Although the relative rarity may be a problem in some domains, absolute rarity is
a much worse problem. It has been shown that sampling techniques, a method often

Fig. 10.8 Imbalance dataset with and without lack of data. (a) Lack of data to represent the
problem. (b) Data of the problem is well represented
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used in to deal with class imbalance, may fail in the case of absolute rarity [20].
FS can be used to reduce the data sparsity, and thus improve results of learning in
presence of class imbalance and small sample size [20, 85].

10.5 Overlapping and Separability

Class overlapping occurs when the input features are not sufficient to correctly
differentiate among instances of different classes, and the same regions of the input
space contains instances from more than one class. Therefore, the class boundaries
overlap in these regions.

It has been shown, using artificially generated datasets, that class overlapping
is complicating factor for imbalanced classes [60]. The experiments conducted by
the authors, using the learning algorithm C4.5, support the claim that when the
class overlapping is larger, the influence of class imbalance in the degradation in
performance of the induced classifiers is stronger.

Figures 10.9 and 10.10 shows a simplified version of these experiments for
different learning algorithms. In both figures, data is artificially generated from a
bivariate Gaussian distribution with a uniform covariance. In Fig. 10.9, the center of
mass of each class is one standard deviation apart from each other, resulting in a high
class overlapping. The data from Fig. 10.10 were generated using the same pattern,
although the center of mass is located two standard deviations apart from each other,
thus the classes are less overlapped. In both figure, the first line corresponds to
data generated from the same class proportion (a balanced dataset), whereas in the
second line the class ratio is 1/5 (an imbalanced dataset). The values in the lower
right corner indicate the AUCROC .

Fig. 10.9 A comparison of decision boundaries induced by different learning algorithms for
highly overlapped datasets
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Fig. 10.10 A comparison of decision boundaries induced by different learning algorithms for low
overlapped datasets

Analyzing both figures, we can observe the influence of class imbalance and
class overlapping in each dataset. In the former case, where the datasets are more
overlapped, the deterioration in performance comparing balanced and imbalanced
datasets is much stronger than in the latter, where the datasets are less imbalanced.
The stronger deterioration can be observed for all classifiers in the highly overlapped
case (Fig. 10.9). The induced class boundaries changes considerably, and we can see
a much larger influence of the majority class in imbalanced case. On the other hand,
in the less overlapped datasets, the influence is much lower (Fig. 10.10). In this
particular case, RBF SVM and kNN are more affected, but the influence region of
both classes changes less for the other learning algorithms.

These figures show that class overlapping do play an important role in the
performance degradation when associated to class imbalance, as the highly over-
lapped dataset is stronger affected by class imbalance when compared to the lower
overlapped dataset. Other studies have drawn similar conclusion using different
experimental evaluation.

In [73], authors conjectured that instance complexity is affected by class
imbalance and class overlapping. However, the relationship between these two
components is unknown, and other sources may contribute to the degree of hardness
of instances.

The relationship between the performance and complexity of learned models
and the problems of overlapping and class imbalance was studied in [16]. The
authors show that overlapping and imbalance, as well as the training set, have
interdependent effects in the model complexity and performance and that it is not
possible characterize their effects by considering them only in isolation. However,
the analysis of the overlap problem in isolation shows it is a much more serious
issue than imbalance.
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A comparative study of kNN and other four learning algorithms in the context of
overlapped and imbalanced classes was performed in [25]. They investigate prob-
lems where the degree of imbalance differs according to the degree of imbalance,
including in an inverse rate to the original imbalance degree. They conclude that
algorithms with a local scope (like kNN) are more dependent of changes in the
local imbalance ratio. In this case, the local imbalance ratio and the size of the
overlap region are more important than the overall imbalance ratio. Furthermore,
their results also show that the influence of the class with more instances in the
overlap reviews is are better classified by global learning algorithms, whereas the
less predominant class tends to be better classified by local methods.

A measure proposes a measure for estimating the degree of overlap in a region
of the input space was proposed in [7]. The measure is based on the R-value,
proposed in [55], which considers the number of instances of different classes in
the k neighborhood of each instance from a given class, averaged over all classes.
The extension proposed in [7] also consider the imbalance ratio. This and other
measures are used as meta-features for a meta-learning for predicting an adequate
learning algorithm for a dataset.

10.6 Noisy Data

Real world data generally present many inconsistencies that negatively affects data
quality. These inconsistencies are generally denominated as noise, and can decrease
the performance of learning algorithms [94]. Two types of noise are distinguished
in the literature: feature (or attribute) and class noise. Class noise is generally
assumed to be more harmful than attribute noise in ML [21]. Instance noise alters the
observed values of features (e.g., adding a Gaussian noise to a continuous feature)
while class noise somehow affects the observed class values (e.g., by somehow
flipping the label of a minority class instance to the majority class label).

Considering the context of class imbalance, the presence of class noise can be
much problematic than in balanced scenarios, highlighting the necessity to deal with
these noisy instances. Mislabeled minority class instances will contribute to increase
the perceived imbalance ratio, as well as introduce mislabeled noisy instances inside
the class region of the minority class. On the other hand, mislabeled majority class
instances may lead the learning algorithm, or imbalanced treatment methods, focus
on wrong areas of input space.

Several algorithms originally developed to deal with class noise have been
used as, adapted for, or combined with sampling techniques. In [3], e.g., noise
cleaning algorithms were adapted for undersampling by only removing instances
from the majority class. Author investigate five data cleaning methods adapted for
undersampling:

• Tomek Links Give a pair of instances (ei, ej ) from different classes, this pair
is called a Tomek link [80] if, for a given distance measure d, there is not
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another instance ez such that d(ei, ez) < d(ei, ej ) or d(ej , ez) < d(ei, ej ). For
undersampling, the majority class instance from Tomek links are removed.

• Condensed Nearest Neighbor Rule (CNN) is based on the construction of
a consistent subset. A subset Ê ⊂ E is said consistent if 1NN rule using
Ê correctly classify the instances from E [30]. The adaptation for working
as an undersample by forming Ê by the union of a randomly draw positive
instance with the minority instances. The 1NN rule is used to classify the
remaining instances and incorrectly classified instances are added to Ê. The set
Ê corresponds to the undersampled set.

• One-sided selection (OSS) Consists in the application of Tomek links followed
by the CNN Rule [41].

• CNN + Tomek Similar to OSS, but first apply the CNN rule followed by the
application of Tomek links.

• Neighborhood Cleaning Rule (NCL) is based on the Edited NN rule [43],
which for noise cleaning removes instances which at least two out of three
instances belong to a different class. For undersampling, this was adapted to
remove majority class instances. If the instance belongs to the majority class
and at least two out of three NNs are from the other class, then the instance is
removed. However, if the instance belongs to the minority class and the instance
is misclassified by its three NNs, the neighbors from the majority class are
removed.

Figure 10.11 shows a pictorial comparison of these data cleaning methods
adapted for undersampling, for an artificial dataset. Blue dots represent majority
class instances, red squares minority class instances, and green crosses removed
instances. These techniques have in common that they perform an informed sam-
pling. Some methods focus on removing instances from regions that the presence of
one class is abundant, and others near the decision boundaries.

The association between the oversampling technique SMOTE with Tomek links
removal and the Edited Neighborhood Rule was also explored in [3]. In this case,
these methods are used as data cleaning methods, aiming to remove potentially noise
instances from both classes after the synthetic instances were generated. The idea is
that artificially generated instances may also introduce noise, that can be removed
by the cleaning process.

An empirical investigation about the impact of class imbalance and class noise
was performed in [81]. Authors conducted a series of experiments to answer six
research questions: (1) what is the impact of class noise in presence of class
imbalance? (2) is the noisy class location significant? (3) are the effects of class
noise in imbalanced datasets similar in different learning algorithms? (4) the
sampling algorithms performs well in the presence of class noise? (5) are there
differences in sampling techniques with different levels of noise? and (6) can we
derive some guidance rules to improve noise dealing techniques in presence of class
imbalance? Authors conclude that there is considerable impact class noise in the
performance in presence of class imbalance, although some algorithms are relatively
robust to the presence of noise. This is particular true for noise in the minority
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Fig. 10.11 Noise cleaning algorithms adapted for undersampling
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class. The sampling techniques do help some algorithms, although Naïve Bayes,
2NN, 5NN and MLP ANN are little benefited by sampling. Among the compared
sampling algorithms, ENN and random oversampling techniques tend to perform
better for high levels of class noise and filtering techniques are not adequate to
remove noise, because correctly labeled instances from the minority class filtered
out sensible degrade performance.

A similar research procedure under the context of software quality data was
performed in [69]. Authors analyzed the impact of class noise and class imbalance
comparing 11 different learning algorithms and 7 different data sampling techniques
in the task of predicting the modules system failure in 12 software quality datasets.
Authors conclude that, within this domain, class noise is more harmful than
class imbalance to classification algorithms. Furthermore, simple undersampling
techniques such as random undersampling and ENN were the most robust to
noise, and OSS is relatively unaffected by the increase in noise level. Random
oversampling and SMOTE obtained good results on average, but were outperformed
by the undersampling techniques. Finally, Naïve Bayes and SVMs performed best
in this domain.

A combination of oversampling, threshold calibration and noise filtering was
used in [64] for improving performance of educational data to predict student
performance. They use random forest as classifier, SMOTE for over sampling, cost
sensitive threshold adjustment and removal of instances near the class boundaries,
and achieves significant improvement in terms of AUC.

A recent study [66] proposed a new oversampling technique that focuses on noise
reduction and selective sampling of the minority for synthetic generation of new
instances. Their approach first marks potentially noise class instances for removal,
and uses the estimate of the probability of instances belonging to the minority class
to selective choose instance seeds to generate new synthetic instances. Experimental
evaluation using 40 datasets indicates an increasing trend in the sensitivity in
majority class and G-mean.

Clustering has been used to identify noise instances prior to oversampling in [48].
To cluster instances, the adaptive hierarchical clustering algorithm CURE [27] is
applied. Besides clustering, CURE is capable of identifying potential noise instances
which are not assigned to generated clusters. Each cluster has a representative
instance, and artificial instances are generated between instances belonging to a
cluster and the representative instance.

10.7 Borderline Examples

It is interesting to differentiate among different types of instances, according to their
location with respect to the decision boundaries [41, 51]. A common categorization
is the division in instances near the class boundaries (borderline instances), instances
in class homogeneous regions (safe instances) and instances of a different class
inside homogeneous regions of another class (class noisy instances). It has been
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Fig. 10.12 A visual comparison among traditional SMOTE and the two borderline-SMOTE
variations

empirically shown that the degradation in performance of a classifier is strongly
affected by the number of borderline examples [52].

Different class imbalance treatment methods have been proposed to explore these
different types of instances. Applying SMOTE to instances near the borderline was
investigated in [29]. Authors developed two strategies, Borderline-SMOTE1 and
Borderline-SMOTE2, which apply oversampling only to instances near the class
boundaries. If all the NNs of a instance of the minority class belongs to a different
class, the instance is considered noise. Instances which are not considered noise but
the number of instances from the majority class outnumbers the number of instances
from the minority class are considered borderline, and SMOTE is applied to
these instances. The main difference between Borderline-SMOTE1 and Borderline-
SMOTE2 consists in the generation of artificial instances: while, for each minority
class instance, Borderline-SMOTE1 generates a new artificial instance considering
only the NN from the minority class to interpolate, Borderline-SMOTE2 also
interpolates to the NN from the majority class.

Figure 10.12 shows a graphical example of traditional SMOTE and the two
versions of Borderline-SMOTE. Observe that in the two borderline variations,
artificial instances are generated closer to the class boundaries. Moreover, as
Borderline-SMOTE2 also generate artificial instances considering instances from
the other class, the generated instances are closer to the decision boundaries of the
majority class.
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Fig. 10.13 A visual comparison between ADASYN and SMOTE SVM

Two approaches that use an adaptive synthetic sampling for instances near the
class boundaries are ADASYN [31] and SMOTE SVM [53]. ADASYN generates
artificial instances based on the density distribution of class skew ratio in the
neighborhood. For each instance, the local class imbalance degree is computed
as the fraction of majority instances in its k-nearest neighborhood. This local
imbalance degree is normalized to represent a density function. The density function
is then used to calculated the number of artificial instances that should be generated.
The main idea is that a larger number of instances are generated near the class
boundaries, as these instances have a higher local imbalance degree. SMOTE SVM
uses the support vectors generate by learning a classifier with SVM to approximate
the class boundaries. The artificial instances are generated using two approaches.
The first one is by randomly interpolating the instance to a NN of the same class.
This is used if most of the NNs of the minority class instance also belongs to the
minority class. The second approach is by extrapolating the instance towards the
class boundaries by interpolating to a NN of opposite class with the restriction of
not crossing the class boundaries given by the support vector.

Figure 10.13 shows a visual comparison between ADASYN and SMOTE SVM.
ADASYN concentrates in generating instances near the class boundaries and
dense instances, while the extrapolation process of SMOTE SVM concentrate in
generating instances following the support vectors found by SVM.

Safe-level SMOTE [8] and SPIDER [75] are also two sampling techniques
which deals with different instance differently. Safe-level smote is somehow
opposite to borderline SMOTE. Instead of oversampling instances near the class
boundaries, safe-level smote oversample instances in “safe” regions. The rationale
is that oversampling near class boundaries may introduce spurious instances, and
in some cases, degrade performance. SPIDER is a hybrid undersampling and
oversampling approach. It combines majority class noise instance filtering with
(optional) relabeling of majority instances near class boundaries, with informed
oversampling by replicating negative instances near the class boundaries.

A hierarchical fuzzy rule learning approach which assigns higher granularity
to subspace in borderline areas was proposed in [19]. This approach was shown
to be competitive in highly imbalanced datasets, where the difficult in classifying
minority class instances in the borderline is accentuated.
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10.8 Dataset Shift

In many real-world applications, the conditions in which we draw data for learning
the model is different from the conditions in which the learned model will be
deployed. This phenomenon is called dataset shift, and occurs when the testing
(unseen) data suffers a change in the distribution of a single feature, a combination
of features, or the class boundaries [50]. In this case, the common assumption that
training and testing data follow the same distributions is violated.

In [76], six reasons for dataset shift are discussed:

1. Simple Covariate Shift: Given a data generative process that can be modeled
as P(y|x)P (x), simple covariate shift occurs when only the distributions of
covariates x change and everything else is the same. For instance, suppose
we want to predict the likelihood of fraudulent purchases (y), given different
payment methods (x). The model is learned using past historical data, but due to
a large adoption of some modern payment methods (e.g, an increase in mobile
e-wallets apps payments), the distribution of different payment methods is
affected. Theoretically, a covariate shift in P(x) should have no effect in P(y|x),
but the data available at training time may not provide complete information
for the deployment scenario, and thus with some side effect in classification
performance [77].

2. Prior Probability Shift: Prior probability shift occurs when only the P(y)

distribution changes over time, while everything else stays the same. A classic
example is SPAM detection: a user uses her past historical income messages
to train a classifier for tagging new e-mail messages as SPAM or NO-SPAM.
However, latter on the classifier is trained, her e-mail address may be placed in a
spammer’s list, increasing the number of SPAM messages she receives. Thus, the
prior probabilities of receiving SPAM messages has been changed between train
and test time. In general, a change in P(y) between training and testing time will
affect the prediction. However, for a known shift in P(y), prior probability shift
can be corrected by adjustments to the posterior class probabilities and decision
thresholds [17, 92].

3. Sample Selection Bias: This type of shift occurs when the distributions differ
as a result of the training data sampling process. Generally, it is assumed that
training data is an independent and independently distributed sample of the
population. However, in many situations, this unbiased sampling process is
impractical or even unfeasible. For instance, in some medical applications, an
arbitrarily defined number of healthy and sick patients is normally used, even
though this ratio does not match the illness prevalence in the entire population.
Some sentiment analysis studies use a similar number of positive and negative
opinionated messages despite the true ratio of these messages. The number of
genes for some organisms is unknown, thus a sample which matches the true
prevalence could not be drawn. Some strategies for coping with sample selection
bias in ML are presented in [93].
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4. Imbalanced Data: The data sampling process for dealing with imbalanced data
is a form of deliberately introduce a dataset shift for computational or modeling
purposes. Due to this sampling process, the data distribution in the training
dataset no longer matches the imbalanced test scenario. Although sampling
techniques may improve classification performance and favor the minority class,
a decrease in performance of the majority class may occur. A thorough discussion
about data sampling methods was presented in Chap. 5.

5. Domain Shift: It is often the case that data acquisition or representation
processes may change over time. For instance, in a camera surveillance system,
a camera of a higher resolution may replace an older camera. Although the
underline data generation process remains the same, the higher resolution camera
uses a different representation for the captured images. If the learning algorithm
is trained with data acquired with the older camera, the introduction of the new
one implies in a domain shift. Different approaches for domain shift adaptation
have been proposed, among them [5, 14, 24, 56].

6. Source Component Shift: This type of shift is related to data coming from
multiple sources, and there is a difference between sources used for training
and sources where the models will be applied. This kind of shift occurs quite
often. For instance, in a retailer chain a sale predictive model could be developed
from data for stores of some region, but it is applied to all stores of the chain.
Source component shift can be further divided into three categories. Mixture
Component shift occurs when the sources are not identified, and there is a
difference in the proportion of instances coming from different sources between
train and test scenarios. Mixing component shift has a similar scenario as mixture
component shift, but with an additional issue that data is somehow aggregated in
each source. In factor component shift, data is dependent on some factors, where
the “strength” of each factor changes from training ant test time.

Although artificial data shift introduction by data sampling are often used as
a technique for improving performance with imbalance data, other types of data
shift may have a negative impact in the performance classifiers under imbalanced
scenarios. In simple covariate shift, for instance, the minority class may provide
insufficient information for fully characterize the concept, leading to a poor
performance of classifying the new minority instances when the shift occurs. Prior
probability shift may also pose some issues for performance evaluation. Some
metrics such as ROC curves (see Chap. 3) are less sensitive to shifts in prior
probabilities, as they decouple the performance by considering a probabilistic
framework for each class independently. However, in many real-world applications,
only focusing on the probabilistic model without also considering the trade-offs
among class for decision purposes is not enough [32]. Prior probability shift should
be taken into account when incorporating some utility loss function for converting
likelihoods into crisp class predictions [42]. Domain shift and source component
shift may lead to higher instability and variance in the low prevalent classes, in
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comparison to higher prevalent classes. Identifying the occurrence of data shifts
may also be difficult under imbalance datasets, due to low prevalence of minority
classes.

Dealing with dataset shift is a challenging problem on itself, with significant
real world implications. However, this problem is even more challenging under the
presence of class imbalance. The possible failures that arise from not taking into
account the occurrence of dataset shift (e.g. sample selection bias, prior probability
shift) have been explored in the literature, but few studies focus on particularities
of class imbalance. Furthermore, models that work well in static scenarios may fail
in situations of non-stationary environments. These issues are interesting venues for
future research work.

10.9 Imperfect Data

Imperfect data are prevalent in real world applications. Several studies have aimed
to classify the different types of data imperfections and their possible sources [57].
Some problems correlated to data imperfection include incompleteness, impre-
cision, inconsistency and uncertainty. These problems are originated from many
reasons, such as faulty sensors, inadequate data transcription, unreliable data
acquisition or transmission sources, data collection errors and the lack of data
representation standards, and many methods for improving data quality prior to data
modeling have been proposed [1, 44, 58, 67].

The possible drawbacks of dealing with imperfect and imbalanced data are two-
fold: First, methods aimed to cope with imbalanced data may have their performance
reduce due to the bad quality of data [62, 63, 82, 87]. Second, imbalance data may
influence the performance of methods to deal with imperfect data [12, 15, 40].

Traditionally, data imperfection and class imbalance are treated separately.
However, few attempts try to deal with imperfection and imbalance jointly. Data
clustering combined with under-sampling has been used in [74] for identifying
spurious data points.

In the context of MV handling in [79], a method for tackling datasets with MVs
and class imbalance is presented. The method uses 1NN in minority class instances
to input the MVs. The method performed better than data imputation techniques
which does not take class imbalance into account. Class stratification was used
in [15] as a strategy to improve imputation in the presence of class imbalance. The
fuzzy rule learning classifier FURIA [37] was also used to handle uncertainty. The
degree of class imbalance was used as a feature in a meta-learning approach for
recommending a imputation method in [71].

To handle label uncertainty, in [91] a method which explores label correlation
for the task of label distribution learning. This task aim to quantify the percentage
of each class label in a given instance. In label distribution tasks, there is a natural
uncertainty in label assignments, and the label correlation approach they propose
can alleviate the problem of rarity of some labels. In [54, 78], cross-conformal pre-
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diction [83] for predicting label confidences. Cross conformal prediction combines
conformal prediction [70] with cross-fold calibration for improving estimates for
imbalance datasets. Some approaches incorporate fuzzy theory [4, 26] and rough
sets [45] for handling data uncertainty in imbalanced contexts.

Another important kind of imperfection are data scarcity and noisy instances,
which were discussed in Sects. 10.4 and 10.6, respectively.

10.10 Summarizing Comments

Class imbalance has been widely acknowledged in the literature as a factor which
may decrease performance of learning algorithms. However, it is also acknowledged
in the literature that real-world data present other characteristics that, in conjunc-
tion with class imbalance, can potentially worsen the performance of learning
algorithms. In this chapter, we discuss data complexity, sub-concepts and small
disjuncts, data scarcity, data overlapping, noisy data, borderline examples, dataset
shift and imperfect data. These issues are important complicating factors for class
imbalance, as well as challenging problems for successful application of learning
algorithms on itself.
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6. Błaszczyński, J., Stefanowski, J.: Local data characteristics in learning classifiers from
imbalanced data. In: Gawñeda, A.E., Kacprzyk, J., Rutkowski, L., Yen, G.G. (eds.) Advances
in Data Analysis with Computational Intelligence Methods, pp. 51–85. Springer, Cham (2018)

7. Borsos, Z., Lemnaru, C., Potolea, R.: Dealing with overlap and imbalance: a new metric and
approach. Pattern Anal. Appl. 21(2), 381–395 (2018)

8. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-smote: safe-level-
synthetic minority over-sampling technique for handling the class imbalanced problem. Adv.
Knowl. Disc. Data Min. 5476, 475–482 (2009)

9. Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data
mining. Inf. Sci. 163(1), 13–35 (2004)

10. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: improving prediction of
the minority class in boosting. In: Proceedings of the Principles of Knowledge Discovery in
Databases, PKDD-2003, Cavtat-Dubrovnik, Croatia, pp. 107–119 (2003)



274 10 Data Intrinsic Characteristics

11. Chen, L., Fang, B., Shang, Z., Tang, Y.: Tackling class overlap and imbalance problems in
software defect prediction. Softw. Qual. J. 26(1), 97–125 (2018)

12. Chowdhury, A., Alspector, J.: Data duplication: an imbalance problem? In: ICML’2003
Workshop on Learning from Imbalanced Data Sets (II), Washington, DC (2003)

13. Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees
are robust and skew-insensitive. Data Min. Knowl. Disc. 24(1), 136–158 (2012)

14. Cortes, C., Mohri, M.: Domain adaptation and sample bias correction theory and algorithm for
regression. Theor. Comput. Sci. 519, 103–126 (2014)

15. Davis, D., Rahman, M.: Missing value imputation using stratified supervised learning for
cardiovascular data. J. Inf. Data Min. 1(2), 1–13 (2016)

16. Denil, M., Trappenberg, T.P.: Overlap versus imbalance. In: Farzindar, A., Keselj, V. (eds.) 23rd
Canadian Conference on Artificial Intelligence (Canadian AI 2010), Ontario. Lecture Notes in
Computer Science, vol. 6085, pp. 220–231. Springer (2010)

17. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference on
Artificial Intelligence, Seattle, Washington, pp. 973–978. Lawrence Erlbaum Associates Ltd
(2001)

18. Fawcett, T.: PRIE: a system for generating rulelists to maximize ROC performance. Data Min.
Knowl. Disc. 17(2), 207–224 (2008)

19. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification systems
with genetic rule selection for imbalanced data-sets. Int J. Approx. Reason. 50(3), 561–577
(2009)

20. Forman, G., Cohen, I.: Learning from little: comparison of classifiers given little training.
Knowledge Discovery in Databases, PKDD 2004, Pisa, pp. 161–172 (2004)

21. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans.
Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

22. Friedman, J.H., Kohavi, R., Yun, Y.: Lazy decision trees. In: Association for the Advancement
of Artificial Intelligence/Innovative Applications of Artificial Intelligence Conference, vol. 1,
pp. 717–724 (1996)

23. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of rule learning. Springer, London
(2012)

24. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.,
Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1),
2096–2030 (2016)

25. García, V., Mollineda, R.A., Sánchez, J.S.: On the k-NN performance in a challenging scenario
of imbalance and overlapping. Pattern Anal. Appl. 11(3–4), 269–280 (2008)

26. Gu, X., Ni, T., Wang, H.: New fuzzy support vector machine for the class imbalance problem
in medical datasets classification. Sci. World J. 2014, 1–12 (2014)

27. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases.
ACM SIGMOD Record 27(2), 73–84 (1998)

28. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation:
the DataBoost-IM approach. ACM SIGKDD Explor. Newslett. 6(1), 30–39 (2004)

29. Han, H., Wang, W.Y., Mao, B.H.: Borderline-SMOTE: a new over-sampling method in
imbalanced data sets learning. In: Huang, D.S., Zhang, X.P., Huang, G.B. (eds.) International
Conference on Intelligent Computing, ICIC’2005, Hefei, China. Lecture Notes in Computer
Science, vol. 3644, pp. 878–887. Springer, Berlin/Heidelberg (2005)

30. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3), 515–516 (1968)
31. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for

imbalanced learning. In: IEEE International Joint Conference on Neural Networks (IJCNN
2008), Hong Kong, pp. 1322–1328. IEEE (2008)

32. Hernández-Orallo, J., Flach, P., Ferri, C.: A unified view of performance metrics: translating
threshold choice into expected classification loss. J. Mach. Learn. Res. 13, 2813–2869 (2012)

33. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans.
Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)



References 275

34. Ho, T., Basu, M., Law, M.: Measures of geometrical complexity in classification problems. In:
Basu, M. (ed.) Data Complexity in Pattern Recognition, pp. 1–23. Springer, London (2006)

35. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.
Mach. Learn. 11(1), 63–90 (1993)

36. Holte, R.C., Acker, L.E., Porter, B.W.: Concept learning and the problem of small disjuncts.
In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, IJCAI’89,
Detroit, vol. 1, pp. 813–818. Morgan Kaufmann Publishers Inc., San Francisco (1989)

37. Hühn, J., Hüllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction. Data Min.
Knowl. Disc. 19(3), 293–319 (2009)

38. Japkowicz, N.: Concept-learning in the presence of between-class and within-class imbalances.
In: Stroulia, E., Matwin, S. (eds.) 14th Biennial Conference of the Canadian Society for Com-
putational Studies of Intelligence, AI’2001, Ottawa, pp. 67–77. Springer, Berlin/Heidelberg
(2001)

39. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM Sigkdd Explor. Newslett.
6(1), 40–49 (2004)

40. Kołcz, A., Alspector, J.: Asymmetric missing-data problems: overcoming the lack of negative
data in preference ranking. Inf. Retr. 5(1), 5–40 (2002)

41. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided
selection. In: International Conference on Machine Learning, Nashville, vol. 97, pp. 179–186
(1997)

42. Kull, M., Flach, P.: Novel decompositions of proper scoring rules for classification: score
adjustment as precursor to calibration. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Porto, pp. 68–85. Springer (2015)

43. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribu-
tion. In: Artificial Intelligence in Medicine, Cascais, pp. 63–66 (2001)

44. Leung, C.K.S.: Mining uncertain data. Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 1(4),
316–329 (2011)

45. Liu, J., Hu, Q., Yu, D.: A weighted rough set based method developed for class imbalance
learning. Inf. Sci. 178(4), 1235–1256 (2008)

46. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with
imbalanced data: empirical results and current trends on using data intrinsic characteristics.
Inf. Sci. 250, 113–141 (2013)

47. Luengo, J., Fernández, A., García, S., Herrera, F.: Addressing data complexity for imbalanced
data sets: analysis of smote-based oversampling and evolutionary undersampling. Soft Comput.
15(10), 1909–1936 (2011)

48. Ma, L., Fan, S.: Cure-smote algorithm and hybrid algorithm for feature selection and parameter
optimization based on random forests. BMC Bioinf. 18(1), 169 (2017)

49. Morais, G., Prati, R.C.: Complex network measures for data set characterization. In: 2013
Brazilian Conference on Intelligent Systems (BRACIS), Fortaleza, pp. 12–18. IEEE (2013)

50. Moreno-Torres, J.G., Raeder, T., Alaiz-RodríGuez, R., Chawla, N.V., Herrera, F.: A unifying
view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

51. Napierala, K., Stefanowski, J.: Types of minority class examples and their influence on learning
classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3), 563–597 (2016)

52. Napierała, K., Stefanowski, J., Wilk, S.: Learning from imbalanced data in presence of noisy
and borderline examples. In: Kryszkiewicz, M., Jensen, R., Hu, Q., Szczuka, M. (eds.) Rough
Sets and Current Trends in Computing, Warsaw, pp. 158–167. Springer, Berlin/Heidelberg
(2010)

53. Nguyen, H.M., Cooper, E.W., Kamei, K.: Borderline over-sampling for imbalanced data
classification. Int. J. Knowl. Eng. Soft Data Paradigms 3(1), 4–21 (2011)

54. Norinder, U., Boyer, S.: Binary classification of imbalanced datasets using conformal predic-
tion. J. Mol. Graph. Model. 72, 256–265 (2017)

55. Oh, S.: A new dataset evaluation method based on category overlap. Comput. Biol. Med. 41(2),
115–122 (2011)



276 10 Data Intrinsic Characteristics

56. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component
analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

57. Parsons, S.: Current approaches to handling imperfect information in data and knowledge
bases. IEEE Trans. Knowl. Data Eng. 8(3), 353–372 (1996)

58. Pearson, R.K.: Mining Imperfect Data: Dealing with Contamination and Incomplete Records,
vol. 93. SIAM, Philadelphia (2005)

59. Prati, R.C., Flach, P.A.: Roccer: an algorithm for rule learning based on ROC analysis. In:
International Joint Conference on Artificial Intelligence, Edinburgh, pp. 823–828 (2005)

60. Prati, R.C., Batista, G., Monard, M.C., et al.: Class imbalances versus class overlapping: an
analysis of a learning system behavior. In: 4th Mexican International Conference on Artificial
Intelligence, MICAI’2004. Lecture Notes in Computer Science, Mexico City, vol. 2972,
pp. 312–321. Springer (2004)

61. Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Learning with class skews and small disjuncts.
In: 17th Brazilian Symposium on Artificial Intelligence, SBIA’2004, São Luis. Lecture Notes
in Computer Science, vol. 3171, pp. 296–306. Springer (2004)

62. Pruengkarn, R., Wong, K.W., Fung, C.C.: Data cleaning using complementary fuzzy support
vector machine technique. In: International Conference on Neural Information Processing,
Barcelona, pp. 160–167. Springer(2016)

63. Pruengkarn, R., Wong, K.W., Fung, C.C.: Imbalanced data classification using complementary
fuzzy support vector machine techniques and smote. In: IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Banff (2017)

64. Radwan, A.M., Cataltepe, Z.: Improving performance prediction on education data with
noise and class imbalance. Intell. Autom. Soft Comput. 1–8 (2017). https://doi.org/10.1080/
10798587.2017.1337673

65. Raudys, S.J., Jain, A.K., et al.: Small sample size effects in statistical pattern recognition:
recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264
(1991)

66. Rivera, W.A.: Noise reduction a priori synthetic over-sampling for class imbalanced data sets.
Inf. Sci. 408, 146–161 (2017)

67. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A framework for
clustering uncertain data. Proc. VLDB Endow. 8(12), 1976–1979 (2015). Waikoloa, Hawai

68. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: a hybrid approach
to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 40(1),
185–197 (2010)

69. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Folleco, A.: An empirical study of the
classification performance of learners on imbalanced and noisy software quality data. Inf. Sci.
259, 571–595 (2014)

70. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9, 371–421
(2008)

71. Sim, J., Lee, J.S., Kwon, O.: Missing values and optimal selection of an imputation method and
classification algorithm to improve the accuracy of ubiquitous computing applications. Math.
Prob. Eng. Art. ID. 538613, 1–14 (2015)

72. Singh, S.: Multiresolution estimates of classification complexity. IEEE Trans. Pattern Anal.
Mach. Intell. 25(12), 1534–1539 (2003)

73. Smith, M.R., Martinez, T., Giraud-Carrier, C.: An instance level analysis of data complexity.
Mach. Learn. 95(2), 225–256 (2014)

74. Sowah, R.A., Agebure, M.A., Mills, G.A., Koumadi, K.M., Fiawoo, S.Y.: New cluster
undersampling technique for class imbalance learning. Int. J. Mach. Learn. Comput. 6(3), 205
(2016)

75. Stefanowski, J., Wilk, S.: Improving rule based classifiers induced by MODLEM by selective
pre-processing of imbalanced data. In: Proceedings of the RSKD Workshop at ECML/PKDD,
Warsaw, pp. 54–65 (2007)

https://doi.org/10.1080/10798587.2017.1337673
https://doi.org/10.1080/10798587.2017.1337673


References 277

76. Storkey, A.: When training and test sets are different: characterising learning transfer, chap. 1.
In: Lawrence, C.S.S. (ed.) Dataset Shift in Machine Learning, pp. 3–28. MIT Press, Cambridge
(2009)

77. Sugiyama, M., Müller, K.R.: Input-dependent estimation of generalization error under covari-
ate shift. Stat. Decis. 23(4), 249–279 (2005)

78. Sun, J., Carlsson, L., Ahlberg, E., Norinder, U., Engkvist, O., Chen, H.: Applying mondrian
cross-conformal prediction to estimate prediction confidence on large imbalanced bioactivity
data sets. J. Chem. Inf. Model. 57(7), 1591–1598 (2017)

79. Takum, J., Bunkhumpornpat, C.: Parameter-free imputation for imbalance datasets. In: Inter-
national Conference on Asian Digital Libraries, Chiang Mai, pp. 260–267. Springer (2014)

80. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)
81. Van Hulse, J., Khoshgoftaar, T.: Knowledge discovery from imbalanced and noisy data. Data

Knowl. Eng. 68(12), 1513–1542 (2009)
82. Van Hulse, J., Khoshgoftaar, T.M., Napolitano, A.: Evaluating the impact of data quality on

sampling. J. Inf. Knowl. Manag. 10(03), 225–245 (2011)
83. Vovk, V.: Cross-conformal predictors. Ann. Math. Artif. Intell. 74(1–2), 9–28 (2015)
84. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models.

In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM’09, Nashville,
pp. 324–331. IEEE (2009)

85. Wasikowski, M., Chen, X.W.: Combating the small sample class imbalance problem using
feature selection. IEEE Trans. Knowl. Data Eng. 22(10), 1388–1400 (2010)

86. Weiss, G.M.: Learning with rare cases and small disjuncts. In: Proceedings of the Twelfth
International Conference on Machine Learning, Tahoe City, pp. 558–565. Morgan Kaufmann
(1995)

87. Weiss, G.M.: Mining with rarity: a unifying framework. ACM Sigkdd Explor. Newslett. 6(1),
7–19 (2004)

88. Weiss, G.M.: The impact of small disjuncts on classifier learning. In: Stahlbock, R., Crone,
S.F., Lessmann, S. (eds.) Data Mining – Special Issue in Annals of Information Systems.
Annals of Information Systems, vol. 8, pp. 193–226. Springer, Boston (2010)

89. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution
on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

90. Weng, C.G., Poon, J.: A data complexity analysis on imbalanced datasets and an alternative
imbalance recovering strategy. In: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, pp. 270–276. IEEE Computer Society, Hong Kong (2006)

91. Xu, M., Zhou, Z.H.: Incomplete label distribution learning. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence, Melbourne, pp. 3175–3181. AAAI
Press (2017)

92. Xue, J.C., Weiss, G.M.: Quantification and semi-supervised classification methods for handling
changes in class distribution. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, pp. 897–906. ACM (2009)

93. Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In: Proceedings
of the Twenty-First International Conference on Machine Learning, Banff, p. 114. ACM (2004)

94. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3),
177–210 (2004)



Chapter 11
Learning from Imbalanced Data Streams

Abstract Mining data streams is one of the most vital fields in the contemporary
ML. Increasing number of real-world problems are characterized by both volume
and velocity of data, as well as by evolving characteristics. Learning from data
stream assumes that new instances arrive continuously and that their properties
may change over time due to a phenomenon known as concept drift. In order
to achieve good adaptation to such non-stationary problems, classifiers must not
only be accurate and able to continuously accommodate new instances, but also
be characterized by high speed and low computational costs. A very challenging
subfield of this domain is imbalanced data stream mining. It combined difficulties
from streaming and imbalanced data, as well as introduce a plethora of new
ones. Algorithms designed for such scenarios must be flexible enough to quickly
adapt to changing decision boundaries, imbalance ratios, and roles of classes. In
this chapter we will discuss the basics of data stream mining methods, as well
as review existing skew-insensitive algorithms. Background in data streams is
given in Sect. 11.1. Section 11.2 discusses in-depth learning difficulties present
in imbalanced data streams. Data-level and algorithm level methods for skewed
data streams are discussed in Sect. 11.3, while ensemble learners are overview in
Sect. 11.4. Section 11.5 concentrates on issue of emerging and disappearing classes,
while Sect. 11.6 deals with the limited access to ground truth in streaming scenarios.
Finally, Sect. 11.7 concludes this chapter and presents future challenges in the field
of learning from imbalanced data streams.

11.1 Introduction

The analysis of huge volumes of data is recently the focus of intense research,
because such methods could give a competitive advantage for a given company. For
contemporary enterprises, the possibility of making appropriate business decisions
on the basis of knowledge hidden in stored data is one of the critical success
factors. Similar interests in exploring new types of data are present in many other
areas of human activity. In many of these applications, one should also take into
consideration that data usually comes continuously in the form of data streams [15].
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Representative examples include network analysis, financial data prediction, traffic
control, sensor measurement processing, ubiquitous computing, GPS and mobile
device tracking, user’s click log mining, sentiment analysis, and many others.

A data stream is a potentially unbounded, ordered sequence of data items which
arrive over time. The time intervals between the arrival of each data item may
vary. These data items can be simple attribute-value pairs like relational database
tuples, or more complex structures such as graphs. A data stream is a sequence
< S1, S2, . . . , Sn, . . . >, where each element Sj is a set of instances (or a single
instance in case of online learning), where each of them is independent and
randomly generated according to some stationary probability distribution Dj .

The main differences between data streams and conventional static datasets
include:

• data items in the stream appear sequentially over time,
• there is no control over the order in which data items arrive and the processing

system should be ready to react at any time,
• the size of the data may be huge (streams are possibly of infinite length); it is

usually impossible to store all the data from the data stream in memory,
• usually only one scan of items from a data stream is possible; when the item is

processed it is discarded or sometimes stored if necessary, or aggregated statistics
or synopses are calculated,

• the data items arrival rate is rapid (relatively high with respect to the processing
power of the system),

• data streams are susceptible to change (data distributions generating examples
may change on the fly),

• the data labeling may be very costly (or even impossible in some cases), and may
not be immediate.

These data stream characteristics pose the need for other algorithms than ones
previously developed for batch learning, where data are stored in finite, persistent
data repositories. Typical batch learning algorithms are not capable of fulfilling all
of the data stream requirements such as constraints of memory usage, restricted
processing time, and one scan of incoming examples. Note that some algorithms,
like Naïve Bayes, instance based learning or neural networks are naturally incre-
mental ones. However, simple incremental learning is typically insufficient, as it
does not meet tight computational demands and does not tackle evolving nature of
data sources.

Examples from the data stream are provided either online, i.e., instance by
instance, or in the form of data chunks (portions, blocks). In the first approach,
algorithms process single examples appearing one by one in consecutive moments
in time, while in the other approach, examples are available only in larger sets
called data blocks (or data chunks). Blocks are usually of equal size and the
construction, evaluation, or updating of classifiers is done when all examples from
a new block are available. This distinction may be connected with supervised or
semi-supervised frameworks. For instance, in some problems data items are more
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Fig. 11.1 Two main types of concept drift with respect to their influence over decision boundaries.
(a) Initial distribution. (b) Virtual concept drift. (c) Real concept drift

naturally accumulated for some time and labeled in blocks while an access to class
labels in an online setup is more demanding.

Data streams may evolve over time. By a stationary data stream we will consider
a sequence of instances characterized by a transition Sj → Sj+1, where Dj = Dj+1.
However, many real-life problems may be subject to various types of concept drift
[18, 35]:

• Drifts may be analyzed from the point of view of their influence on learned
decision rules or classification boundaries. Here, we distinguish real and virtual
drift (Fig. 11.1). The former has an influence on decision boundaries (posterior
probabilities) and additionally may impact unconditional probability density
function. Therefore, it poses a challenge for the learning system and must be
handled every time it appears. The latter type of drift holds no influence over
decision boundaries, yet affects the conditional probability density functions.
Therefore, it does not affect currently used classifier. Nevertheless, it still should
be detected to understand the reason behind such a change in analyzed stream.

• Drifts can be categorized according to the speed of changes taking place within
the stream (Fig. 11.2). Sudden concept drift is characterized by Sj being rapidly
replaced by Sj+1, where Dj �= Dj+1. Gradual concept drift can be considered as
a transition phase where examples in Sj+1 are generated by a mixture of Dj and
Dj+1 with their varying proportions. Incremental concept drift is characterized
by a much slower ratio of changes, where the difference between Dj and Dj+1
is not so significant.

• There is a special type of concept drift, known as recurring drift. In such a case
it is possible that a concept from k-th previous iteration may reappear Dj+1 =
Dj−k , once or periodically.

• Two other types of drifts are connected with potential appearance of incorrect
information in the stream: blips and noise. Blips are random changes in stream
characteristics that should be ignored (may be seen as outliers). Noise represents
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Fig. 11.2 Different types of
concept drift according to the
ratio of changes. (a)
incremental, (b) gradual, (c)
sudden, (d) recurring

significant fluctuations in feature values or class labels, representing some
corruption in received instances.

• One may analyze the impact of the drift on the decision space [42]. Here, we
may distinguish local and global drifts. Former ones affect only a small part of
the stream, like a certain subset of classes. Latter ones have effect on the entire
stream, which actually makes them easier to detect and handle.

• Finally, we must notice that in most real-world problems the nature of changes is
far from being well-defined or known, and we must be able to deal with hybrid
changes through time, known as mixed concept drift.

Considering the aforementioned problems, one may easily see that tackling
concept drift is a major challenge for data stream mining. Thus, we may use one of
the following three solutions. First, rebuild the classifier whenever a new instance
becomes available, which implies a prohibitive computational cost. Second, monitor
the state of the stream, detect incoming change and rebuild the classifier when
change becomes too severe. Third, use an adaptive method that will automatically
adjust to any changes in the stream. Let us now present three main ways to tackle
concept drift that are based on those principles: concept drift detectors, sliding
windows, and online learners.

1. Concept drift detectors are external algorithms that measure the properties
of stream and the accuracy of the classifier over time, which can be used
to trigger classifier updates [33]. Characteristics measured by them usually
include standard deviation [16] and instance distribution [52]. A change in these
characteristics will indicate an appearance of concept drift.

2. Sliding windows keep a batch of most recent and relevant examples in a
dedicated buffer. The buffer is being used by the classifier and is being constantly
updated with new instances [60]. Being of fixed size means that instances are
bound to spend there a given amount of time (corresponding to the buffer size)
and then being discarded. This allows to store the current state of the stream in
the memory. Removal of old instances is achieved by either crisp cutting-off or
weighting with applied forgetting factor.
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3. Online learners exhibit an ability to continuously update their structure instance
after instance. This ability allows them to adapt to changes in stream as soon as
they appear. To be considered as an online learner, a given algorithm must fulfill
a number of requirements. They include processing each instance at most once,
working under time and memory constrains, and having a predictive accuracy not
lower than a batch model trained on the same set of instances. Some of popular
classifiers are actually able to work in online mode, e.g., Neural Networks or
Naïve Bayes. However, there exist a plethora of methods modified to provide
efficient online mode of operation [10].

An important issue connected with data stream mining is how to compare and
evaluate streaming classifiers. In the context of data stream mining, especially in
non-stationary environments, canonical metrics and evaluation procedures become
no longer applicable. We deal with massive, continuously incoming and evolving
data that requires updating the learning model and adjusting to shifts and drifts.
New classes may appear, feature space change and decision rules loose relevance
over time. Additionally, canonical metrics for measuring the quality of learning
process are not sufficient to perform a meaningful evaluation of models. When
dealing with streams we cannot assume that all of the data will fit in memory and
we must take into consideration limits imposed on the computational resources we
have at our disposal. Algorithms must follow certain time and memory constraints.
When change appear in a stream not only the accuracy of the updating procedure
is important, but also reaction time. Quick change of learning model and gradual
recovery is often more reasonable than gathering data for a period of time and
trying to rebuild the learner in a single effective but time consuming step. Instead of
checking the single performance of algorithm we are more interested in tracking
its characteristics over the course of stream progression. The following aspects
must always be taken into account during properly executed evaluation of streaming
algorithms:

• Predictive performance: this is an obvious criterion measured in all learning
systems. However, in data streams the relevance of instances is being reduced
over time and by using a simple averaged measure we lose information on how a
given classifier was able to adapt to changes. Therefore, prequential metrics are
commonly used here. They give highest priority to the most recent examples
and utilize a forgetting factor to reduce the impact of early stages of stream
mining on the final metric. Prequential accuracy [17] is the most commonly used
one, although for imbalanced data streams one should use prequential AUC [5],
prequential G-mean [56], or class recall [58].

• Memory consumption: it is necessary to monitor not only the average memory
requirements of each algorithm, but also their change over time with respect to
actions being taken.

• Update time: here one is interested in the amount of time that an algorithm
requires to update its structure and accommodate new data from the stream. In
an ideal situation, the update time should be lower than the arrival time of a new
example (or chunk of data).
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• Decision time: amount of time that a model needs to make a decision regarding
new instances from the stream. This phase usually comes before the updating pro-
cedure takes place. So, any decision latency may result in creating a bottleneck in
the stream processing. This is especially crucial for algorithms that cannot update
and make predictions regarding new instances at the same time.

These factors make data stream mining a challenging learning scenario.

11.2 Characteristics of Imbalanced Data Streams

Data stream mining is a challenging learning scenario on its own. However, in many
real-life scenarios it may simultaneously be affected by the presence of concept
drift and class imbalance [26]. Such imbalanced data streams combine difficulties of
their respective fields, creating an emerging paradigm in ML. Mining such streams
require a combined monitoring of underlying class distributions and drift detection
[63]. The general framework for learning from imbalanced data streams is given in
Fig. 11.3.

When creating ML algorithms for imbalanced data stream mining, one must take
into account the following characteristics unique to this problem [23, 28, 59]:

Simultaneous concept drift and imbalance ratio drift A major challenge lies in
the fact that not only characteristics of underlying class generators, but also the ratio
of class imbalance may change over time. One needs to detect both of these changes
in order to properly adapt the underlying classification system. Drift Detection
Method for Online Class Imbalance (DDM-OCI) [55] addresses this issue by an
online monitoring of the drops in the minority class recall. After a significant drop
has been observed, a drift alarm is being raised. This is a highly efficient solution for
drifts occurring in minority class, but tends to overlook changes taking place in the
majority class. This issue was addressed by Linear Four Rates (LFR) [54] algorithm
that monitors at once four performance metrics derived from the confusion matrix:
precision and recall for both minority and majority classes.

Fig. 11.3 General framework for learning from imbalanced data streams
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Dynamic relationship among classes In static binary skewed problems the role of
classes is well-defined at the beginning. However, in case of drifting data streams
the relationships between the classes may change dynamically. The imbalance ratio
may evolve over time, either increasing or decreasing the difficulty of incoming
stream. Therefore, methods that take the fixed imbalance ratio under consideration
(like cost-sensitive solutions) cannot be used, as a need for adaptation arises.
Furthermore, a problem that started as imbalanced may become balanced, making
the previous adaptations of a classifier obsolete, or even harmful to the recognition
system. When a minority class has been strongly oversampled, the decreasing
imbalance ratio will lead towards emergence of a new classification bias, this
time towards the starting minority class. Finally, classes may switch roles and
minority class may become the majority one and vice versa. This makes usage
of any preprocessing or algorithm-level modifications difficult, as their adaptation
towards a better recognition of a given class may actually become no longer valid.
A classifier that was aiming to alleviate the bias towards a given class (majority at
the time), will only empower the imbalance phenomenon when this class suddenly
switches to becoming minority. These three difficulties require development of
fast and adaptive solutions to imbalanced data streams, augmented with forgetting
mechanism allowing a better accommodation of sudden class role switches. The
discussed issues become even more challenging in a case of multi-class imbalanced
data streams, where relationships among classes are much more difficult to analyze
and both multi-minority and multi-majority cases may be present.

Online emergence and disappearance of classes An important issue related to
data streams is the possibility of evolving setup of classes. New classes may emerge
during the progress of a data stream, while instances from existing ones may start to
appear less frequently, or even disappear completely. While the detection of novel
patterns in stream is a challenging task itself, it is also strongly connected with the
problem of class imbalance. When we are facing initial instances coming from an
emerging class, it is very difficult to distinguish them from noise. Furthermore, at
the beginning a new class usually will be represented only by a handful of instances,
leading to a problem of extreme class imbalance (very high IR). Even if at some
point of time classes will reach a roughly balanced distributions, until this happens
we must deal with imbalanced scenario. Therefore, one must consider novel class
detection and online imbalance learning as highly correlated cases. Algorithms for
dealing with skewed data streams will be necessary, even if temporary until we
gather enough instances from the new class. Similar situation will happen when one
of the classes will start appearing less frequently. What may be initially a balanced
problem, will with time increase its IR until the class completely disappears. Usually
we do not want to compromise the performance on any of classes and we must
account for such a growing IR. Finally, new emerging classes may change the nature
of analyzed problem. A binary data stream may evolve into a multi-class one, posing
a plethora of new challenges. Therefore, we must take into account not only changes
in IR, but also the possible transition between binary and multi-class problems (both
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Fig. 11.4 Six states of imbalanced data stream with concept drift and novel class appearance. (a)
S1: two-class imbalance. (b) S2: imbalance ratio changes. (c) S3: classes switch roles. (d) S4: new
class emerges. (e) S5: three-class imbalance. (f) S6: class disappears

ways). Example of such learning difficulties in drifting imbalanced data streams are
given in Fig. 11.4.

Evolving instance characteristics The instance-level difficulty plays an important
role in learning from imbalanced data. The simplest taxonomy is to consider either
safe or difficult instances in the minority class. Other works propose a more detailed
insight into the nature of difficult instances, categorizing them as borderline, small
disjuncts and outliers. In general, minority instances that are overlapping with
majority ones and have few neighbors from the same class are pose the highest
difficulty for any classifier. While there have been studies on how minority instance
characteristics can be used to improve the learning outcomes, they were limited only
to static scenarios. In data stream setting, an instance that initially was considered
as difficult may turn out to be a safe one when more instances arrive. On the other
hand, concept drift may increase the overlapping among classes, in turn changing
safe instances into difficult ones. Finally, varying ratios of instance arrival among
classes after a concept drift may lead to a small size sample problem, not giving
enough instances to derive meaningful decision boundaries.

Limited access to ground truth Most of works in data stream mining (and
especially in imbalanced data streams) assume a fully supervised learning model.
Class labels become available right after a model made its prediction and are use
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to update it. This is a highly unrealistic scenario, especially in case of high-speed
and massive data streams. One must assume that either the access to ground truth is
highly limited (due to need for a human expert), delayed, or even impossible. While
recent years brought a number of active and semi-supervised learning solutions
for drifting data streams, vast majority of them assumed that classes are balanced.
Skewed distributions will strongly affect these algorithms, increasing the probability
of sampling majority instances. This in turn will only further increase the IR.
Therefore, sampling mechanisms must be carefully adapted to alleviate this bias and
making a fair and efficient sampling of both minority and majority classes possible.

Having discussed the learning difficulties specific to imbalanced data streams, let
us present the most important works in this field that aims to tackle these challenges.

11.3 Data-Level and Algorithm-Level Approaches

Adaptation of data-level approaches to imbalanced drifting data streams is not a
trivial case. Random under- and oversampling are characterized by a low com-
putational complexity, making them potentially attractive solutions for streaming
problems. However, their randomized nature becomes unreliable when dealing with
constantly arriving instances and it is easy to lose any control over them when
concept drift appears. In case of oversampling, one must take into account the
memory requirements necessary for storing additional instances. Guided solutions,
especially those based on SMOTE algorithm, are characterized by a high com-
putational and memory complexities. Their required neighborhood analysis may
become prohibitive when minimization of latency is crucial. Furthermore, SMOTE-
based methods are known to suffer from challenging minority class distributions,
often introducing synthetic examples in an unreliable manner. As the structure of
minority class constantly evolves, the meaningful creation of new instances becomes
far from trivial. Additionally, artificial instances may cause a dataset shift that may
incorrectly trigger a drift detector, resulting in a false alarm. In static domain this
problem is solved by data cleaning (post-processing), but once again the complexity
of this step may prevent it from being applicable to data streams.

11.3.1 Undersampling Naïve Bayes

This online learning framework for Naïve Bayes classifier is based on updating the
base classifier with new instances from the stream following an undersampling
approach [45]. If the new instance originated from the minority class, then it
was always used for updating the classifier. However, if the new instance came
from the majority class, then it was used with a given probability equal to the
current imbalance ratio. This allowed for balancing the training set for Naïve
Bayes classifier. However, authors do not accounted for concept drift presence and
assumed that the same class is always the minority one.
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11.3.2 Generalized Over-sampling Based Online Imbalanced
Learning Framework (GOS-IL)

The proposed model in [3] stores three parameters for each class: the number of
instances that were misclassified by the current classifier, the number of instances
from this class that arrived from the stream so far, and the number of instances from
this class that were used to update the classifier. GOS-IL performs oversampling of
only misclassified instances, thus reducing the computational effort and decreasing
the chances of introducing noisy synthetic instances. Additionally, oversampling is
performed only when the current imbalance ratio calls for it and when the error
of the classifier reaches a given threshold. Once again, no specific mechanism for
handling concept drift and evolving class characteristics is included.

11.3.3 Sequential SMOTE

Authors from [37] assumed offline (training) and online (streaming) phases. Prin-
cipal curve was used on the initial batch of training instances to model the shape
of the minority class. This allowed for calculating the projection distance of
instances to principal curve, which in turn affected the membership function values
used for oversampling the minority class and undersampling the majority one.
The membership function values were incrementally re-calculated after each new
instance, in case of minority ones after oversampling (which pushed the principal
curve towards to favor the minority instances). Once again, no drift handling
approach was utilized. Authors extended this idea in [38], where they have added
several measures for instance-level importance that were used to more efficiently
fit the principal curve. Additionally, they have proposed a fast leave-one-out cross-
validation for setting the parameters of their method in an online manner.

Algorithm-level approaches seem more naturally applicable to data stream
scenario. They are based on combining one of existing techniques for making
classifiers skew-insensitive with online learning solutions allowing for a constant
adaptation to data stream. Therefore, most of existing learners are based on neural
networks, Support Vector Machines and decision trees.

11.3.4 Recursive Least Square Perceptron Model (RLSACP)
and Online Neural Network for Non-stationary and
Imbalanced Data Streams (ONN)

These classifiers from [21] and [22] are adaptations of neural networks to imbal-
anced drifting data streams. Both of these models include a forgetting function that
allows to discard examples from outdated concepts in an effective manner, as well
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as weighted error calculation to reduce the bias towards the minority class. The
forgetting mechanism can be controlled by the user, allowing to adjust the forgetting
ratio to the anticipated type of concept drift. However, authors do not propose any
mechanism for automatic adjustment of this parameter, making in impractical in
scenarios with mixed concept drift.

11.3.5 Dynamic Class Imbalance for Linear Proximal SVMs
(DCIL-IncLPSVM)

This is an incremental SVM training method to handle streaming class imbalance
[46]. Authors proposed a simplified and fast weight update strategy, allowing for
accommodating new instances from a stream and balancing class distributions.
The weight calculation process is guided by the imbalance ratio of the newest
chunk, thus achieving adaptation to the current class proportions. However, this
method takes into account only the latest set of instances, heavily relying on proper
windowing technique being used.

11.3.6 Kernelized Online Imbalanced Learning (KOIL)

This SVM modification uses two buffers of fixed size for storing support vectors
learned from minority and majority classes [24]. New support vectors are weighted
based on their distance to k-nearest support vectors from the opposite class. This
allows for filtering outliers and balancing the influence of support vectors between
imbalanced classes. Additionally, KOIL uses a sophisticated scheme for replacing
support vectors once the buffer for any of classes becomes full.

11.3.7 Gaussian Hellinger Very Fast Decision Tree
(GH-VFDT)

Decision trees are highly popular in data stream mining and therefore they seem
as an excellent tool for being modified to handle imbalanced data streams. This
algorithm-level modification [36] is based on hybridization between Hellinger
distance split measure for skew-insensitive tree induction [9] and Very Fast Decision
Tree (VFDT) training algorithm [12]. Hoeffding bound is being used to determine
when to conduct a new split in a tree, measuring the error ε using the following
inequality:

ε ≤
√

R2ln(2/δ)

2n
, (11.1)
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where n is the number of processed instances, R is the range of a real-valued random
variable (e.g., for an information gain the range is log c, where c is number of
classes) and δ is a standard deviation of this variable. By combining this bound with
skew-insensitive splitting criterion, authors created an effective online tree induction
algorithm that was not affected by skewed distributions. However, this classifier on
its own does not have any drift coping mechanisms and needs to be combined with
e.g., drift detector.

11.3.8 Cost-Sensitive Fast Perceptron Tree (CSPT)

This online decision tree [29] is a hybrid solution combining a VFDT with a linear
perceptron at each leaf [4], allowing to speed-up the decision making process and
improving the overall predictive power. It uses online perceptron approach with
sigmoid activation function and squared error optimization. To allow parameter
update after each instance, authors use stochastic gradient descent approach, training
a single perceptron per each class in the stream.

Contrary to other works, CSPT use a McDiarmid’s inequality for controlling the
splitting criteria, as recent works pointed out a flaw in the Hoeffding bound [50].
McDiarmid’s bound is a generalization of the Hoeffding’s bound, being applicable
to both numerical and non-numerical data, as well as better describing the split
measures:

ε ≤
√

8 ln(1/δ)

n(S)
, (11.2)

where S is a set of instances in analyzed decision tree node.
CSPT introduces a cost-sensitive modification during the classification step

following a moving threshold principle [66], by calculating the output of k-th
perceptron in a leaf of our decision tree as:

h∗
wk

(x) =
K∑

l=1

hwk(x) · cost[k, l], (11.3)

where cost[k, l] is the misclassification cost between k-th and l-th class, provided by
the user. This solution is highly compatible with data stream mining requirements, as
it does not impose significant additional computational needs and do not rely on data
preprocessing. Additionally, it is easily applicable for both binary and multi-class
data streams, making it a versatile approach. The cost parameter is calculated by
monitoring the current imbalance ratio among classes and setting the cost according
to local pairwise imbalance ratios. The costs will change with the progress of the
stream, as labels of incoming instances will be recorded and used to update the
current skewness levels. Such a solution does not require to keep the instances in
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memory, as only counters for each class are needed. This is combined with a cut-off
thresholds that allows to store counters only for most recent instances.

CSPT was also extended to incorporate the information about the evolving
structure of classes. An online estimation of instance-level difficulty is conducted
using a sliding window approach and defined taxonomy of six levels of difficulty λ

that can be assigned to each new minority instance based on how contaminated is its
neighborhood. This is measured by parameter ρ that states how many of k neighbors
belong to the same minority class. Details are presented in Table 11.1.

In order to accommodate for evolving instance properties, CSPT incorporates
information from a drift detector. When a warning signal is being raised, the window
will be reduced to 1/4 of its original size. This will allow to accommodate the
change that starts to appear by taking into account a reduced subset of recent
instances. When a drift is being detected, the window in being flushed in order to
not include instances from the previous concepts into the analysis after the change.
The same happens when minority classes switch places with majority. To apply
this information about instance-level difficulty, authors proposed to use the fact that
training procedure of perceptrons used in leafs of CSPT can be influenced by the
number of iterations over each instance. Each new minority instance is presented to
CSPT λ times, where λ is the difficulty level associated with this instance. This will
force CSPT to concentrate on the most difficult instances.

11.4 Ensemble Learning Approaches

Ensemble solutions has gained a significant attention in both static [61] and
streaming [30] data classification. They offer excellent predictive performance
combined with their flexible line-up of base classifiers that can be used to handle
concept drift [42]. Although ensembles have been successfully applied to learning
from imbalanced data streams, this field can be seen as still in development.

11.4.1 Stream Ensemble Framework (SE)

This ensemble learning algorithm separates instances from the new data chunk
into positive (the minority class) and negative (other classes) subsets [19]. A new
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classifier is trained by using all of collected positive instances and combining them
with a randomly selected subset of the negative instances originating only from the
new data chunk. The selected subset size is dynamically calculated using the current
class IR. A newly trained classifier is added to the existing ensemble. A standard
majority voting technique is used for classifier combination. As data streams may
be potentially of an infinite size, SE maintains instances coming from a bounded
number of most recent chunks. Two strategies are used for this: fixed (each of
stored chunks contributes equal number of instances) or fading (the more recent
chunks contribute more instances). SE assumes that all of minority instances are
always stored and used to train new classifiers, which makes its usage prohibitive in
scenarios with drifting minority class.

11.4.2 Selectively Recursive Approach (SERA)

This is an extension of SE that uses a selective sampling of the minority class [6].
Mahalanobis distance is applied for selecting a subset of most relevant minority
instances (originating from the previous chunks) to be combined with the ones from
the recent chunk. A Bagging approach is used on the majority class, to achieve
reduction of the number of its instances. This allows to alleviate SE limitations on
drifting minority classes, at the cost of making SERA highly sensitive to proper
selection of the number of minority instances.

11.4.3 Recursive Ensemble Approach (REA)

This is a further extension of SERA [7]. It basically applies the k-NN principle
to measure the similarity between old and new minority class instances, in order to
retain only the most diverse ones. Each base classifier is assigned a weight reflecting
its performance on the most recent chunk.

11.4.4 Boundary Definition Ensemble (BD)

This is a weighted ensemble that uses a propagation of both minority and majority
instances to the new chunks, in order to improve the learning process of constantly
evolving class boundary [32]. Similarity between two data chunks is being measured
using a combination of information gain and Hellinger’s distance, allowing for an
implicit drift detection. A linear function defined as an inverse of similarity of two
chunks is being used for classifier weighting. BD is subject to some limitations, like
small weight differences or reduced variance, and authors discuss that this can be
resolved by a more advanced combination function.
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11.4.5 Learn++.CDC (Concept Drift with SMOTE)

This is an extension of popular Learn++ ensemble [48], adapted to an incremental
learning from imbalanced data [11]. Learn++ is extended with Bagging, balanced
using undersampling each bag. In order to achieve a balanced performance on both
classes, classifiers are weighted by their predictive capabilities on minority and
majority instances. Furthermore, SMOTE may be applied on the minority class.
Learn++.CDC assumes that minority class has static properties and the roles of
classes do not change over time.

11.4.6 Ensemble of Online Cost-Sensitive Neural Networks
(EONN)

It incorporates a cost-sensitive learning scheme during online neural network
training [20]. An pool of neural networks is being initially trained using random
weights and these models are preserved for the entire data stream processing. New
instances are used to update the base classifiers, allowing for adaptation to changes
in data. EONN uses a fixed cost-matrix, with cost for errors on minority class being
twice as high as for other classes. This limits the applicability of EONN to streams
with drifting IR. Classifiers are combined with weighted voting, using a modified
Winnow strategy.

11.4.7 Ensemble of Subset Online Sequential Extreme
Learning Machines (ESOS-ELM)

Randomized neural networks are used as base classifiers, each trained separately on
different balanced subset of instances from the stream [43]. Two types of buffers
(short-term and long-term) allow for keeping the members of the ensemble, as well
as recording the changes in the stream properties. Two different learning schemes
were proposed for moderate and high imbalance ratios (the difference being the
way of processing majority class instances). However, the algorithm replicates the
limitations of some of the previous methods, assuming that the minority class is
never subject to a concept drift.

11.4.8 Oversampling- and Undersampling-Based Online
Bagging (OOB and UOB)

This approach takes into an account potential dynamic changes in IR and class roles
over time [57]. It combined Online Bagging with sampling that are able to balance
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the stream instance by instance. A dedicated concept and imbalance drift detector
is used to change the sampling ratios of OOB/UOB and their view on minority
class when necessary. A further modification, called WEOB, uses a combination of
both under and oversampling in order to choose the better strategy for the current
state of the stream. An adaptive weighting combination scheme was proposed to
accommodate this hybrid solution, where the weights of the sampling strategies are
either computed as their G-mean values or are binary (meaning only one of them
will be used at a time). A multi-class extension of this method was discussed in
[58], where complex relationships among multiple skewed classes are handled by
marking them as multi-minority and multi-majority types.

11.4.9 Dynamic Weighted Majority for Imbalance Learning
(DWMIL)

Popular Dynamic Weighted Majority ensemble [27] has been adapted to work with
imbalanced data streams [34]. Four main characteristics of DWMIL include fast
adaptation to various types of concept drift, no need for storing any historical
data, requirements for a small number of base classifiers, and using only a single
parameter to determine how to manage the minority class.

11.4.10 Gradual Resampling Ensemble (GRE)

In [49], authors propose to apply a sampling only on selected instances from the
stream, in order to avoid propagating drifting examples. Additionally, instances that
have a low probability of increasing the overlapping with the majority class are
selected for the oversampling. This is combined with DBSCAN clustering approach
that is used to detect disjuncts in the incoming chunks of data and detect rare
instances or outliers. GRE uses continuously updated base classifiers, allowing it
to track changes in the stream. Past chunks are also subject to balancing by using
newly arriving minority class instances.

11.5 Evolving Number of Classes

As mentioned in Sect. 11.2 emerging and disappearing classes in data streams
are strongly connected with the imbalance domain. Although most of works on
novel class detection do not concentrate on mechanism how to tackle skewed class
distributions, they can be easily utilized in most imbalanced learning frameworks.
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11.5.1 Learn++.NovelClass (Learn++.NC)

This algorithm [44] is an extension of Learn++ [48] dedicated to handling novel
classes appearing in the stream. The main contribution lies in the classifier combi-
nation phase. Learn++.NC uses a dynamic weight consult and vote algorithm that
allows base classifiers to exchange information regarding potential novel instances.
As the most competent classifiers are assigned highest weight, we prevent a situation
in which classifier trained on new instances is outvoted by classifiers that did not
have access to novel instances.

11.5.2 Enhanced Classifier for Data Streams with Novel Class
Miner (ECSMiner)

This approach is dedicated to simultaneous novelty detection and classification
in data streams with present time constraints [39]. In high-speed data stream
scenarios, new instances must be evaluated within a bounded time frame, to avoid
bottlenecking the constantly arriving new data. This is crucial for novelty detection
module that is usually characterized by a high computational complexity. ECSMiner
takes also into account a delay in an access to true class labels. Three buffers are
being used for instance storage: potential novel instances, instances waiting for class
labels, and labeled instances to be used in training new classifiers.

11.5.3 Multiclass Miner in Data Streams (MCM)

MCM is an further extension of novel class detection ensembles that take into
account evolving feature space [41]. It assumes that new features may appear
over time, a common problem in some applications (e.g., new phrases in textual
data streams). Each base classifier uses feature space homogenization with lossless
conversion, allowing avoiding differences between training and testing sets. The
outlier detection module uses an adaptive threshold for changing definitions of
novel instances. The novelty detection module was constructed with the usage of
Gini coefficient to simultaneously measure the difference among new instance and
existing classes, as well as its similarity to other novel instances stored in a buffer.
MCM is capable of detecting multiple new emerging classes at the same time, with
an usage of graph-based class description.



296 11 Learning from Imbalanced Data Streams

11.5.4 AnyNovel

This ensemble uses a two-step cluster formation [1]. Firstly, a supervised learning
method divides the initial data into clusters, each of which is assigned as a separate
class. Next, an unsupervised clustering detects sub-concepts within each class
cluster, leading to creation of locally specialized models. AnyNovel is capable of
efficiently distinguishing between actual novel concept appearance, drift present
in one of the existing sub-concepts or singular outliers appearance. Novel concept
are defined as residing outside all existing cluster-based models and consistently
moving away from all existing concepts. In order to remove outdated classes
that disappear from the stream, a sequential forgetting mechanism was applied.
AnyNovel uses an active learning module to reduce the labeling cost during data
stream processing.

11.5.5 Class-Based Ensemble for Class Evolution (CBCE)

This algorithm differentiates among three possible scenarios: class emergence,
disappearance and re-occurrence. CBCE constructs its ensemble by storing inde-
pendent online classifiers for every single class that has appeared at a given point of
stream progress [53]. This is done via one-vs-all binary decomposition. Addition-
ally, each base classifier is updated with instances after a dynamic undersampling
technique that allows for countering the evolving disproportions between instances
in classes. CBCE works only with base classifiers that provide decisions in a form
of a score, which makes usage of some popular online classifiers impossible. When
a novel class emerges, its prior probability is being estimated and a new one-vs-all
classifier is trained. Classifiers may be deactivated when a concept disappears and
reactivated when its re-occurrence has been detected.

11.5.6 Class Based Micro Classifier Ensemble (CLAM) and
Stream Classifier And Novel and Recurring Class
Detector (SCARN)

CLAM is an ensemble of micro-classifiers, with each base model is a cluster-based
classifier trained using only instances coming from a single class [2]. For each new
instance, the ensemble of micro-classifiers checks if it belongs to any of existing
classes. If not, then it is considered as a potential novel instance. When the buffer
of novel instances becomes full, a new classifier is trained on them and added to the
ensemble. SCARN approach utilizes two separate ensembles [2]: a primary one and
an auxiliary one. The primary ensemble is responsible for differentiating between
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known classes and outliers. Each detected outlier is delegated to the auxiliary
ensemble that decides whether this is a reoccurring concept from previously known
class or a completely new case.

11.6 Access to Ground Truth

Obtaining a true class label for new instance coming from a data stream is far from
being a trivial task [40]. If we would have an access to a theoretical oracle that
would provide us with such an information every time a new instance becomes
available, then there is no need to have any classification procedures. In most
real-life applications, a domain expert is required to analyze given instance and
label it. While one may theorize that a company developing a specific data stream
mining system should have such an expert at their disposal, we cannot forget
the costs connected with such a procedure. This can be viewed as a monetary
costs, as an expert would require a payment for sharing his knowledge, as well
as a time cost, as an expert needs to spend some time analyzing each instance.
Therefore, in a real-life scenario neither a constant label query is possible (as a
given company would quickly use-up its budget), nor instant label availability. Even
if these factors, for various reasons, play less important role, the human throughput
must also be considered. A given expert cannot work non-stop and will have limited
responsiveness per given time unit. Thus, in cases of massive and high-speed data
streams assumption of continuous label availability cannot hold.

Most popular approaches include active learning solutions that allow to select
only a limited number of instances for labeling. They are usually selected to offer
new information to the classifier, instead of reinforcing old concepts. Although there
is a good amount of research on active learning for static scenarios [51], there
exist but a few solutions that take into account the drifting and evolving nature
of streams [31, 62, 67], label latency [47], or working under assumption that only
initial data is being labeled and no further ground truth access is to be expected [13].
This issue becomes even more difficult when dealing with imbalanced drifting data
streams. Here, the labeling must be performed in a way that will not concentrate
only on one of the classes. While most standard labeling methods will display bias
towards majority class, we cannot forget that one cannot do the opposite and sample
only minority. A balanced selection from both classes is necessary to maintain an
effective data stream classifier.

11.6.1 Online Active Learning with Bayesian Probit

This is one of the first frameworks for skew-insensitive active learning from data
streams [8]. For selecting instances, they used importance weighting principle with
online Bayesian learning with IID assumptions on non-IID data.
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11.6.2 Online Mean Score on Unlabeled Set (Online-MSU)

An unsupervised score is being used to manage and evaluate the performance
of multiple active learning algorithms [14]. A prediction mechanism was used to
estimate their performance on incoming instances and thus leading to an automatic
selection of most competent active learning algorithms from the pool without a
need for an evaluation set. Their online learning mechanism is capable of switching
among active learning strategies to achieve improved labeling of imbalanced data
streams.

11.6.3 Cost-Sensitive Online Active Learning Under a Query
Budget (CSOAL)

This method optimizes in an online manner two different cost-sensitive measures
[65]: the weighted sum of sensitivity and specificity, and the weighted cost. This
is combined with an asymmetric update rule and authors showed the usefulness of
their approach to detecting malicious URLs. CSOAL does not take into an account
the potential of concept drift occurrence.

11.6.4 Online Active Learning with the Asymmetric Query
Model

Two types of evaluations of each new instance are being used, taking into account
initial probabilities of which of them may belong to minority and majority classes
[64]. During push evaluation only the minority instances are being considered. Push
and query evaluation also takes into account the impact of obtaining a label for
given instance. Authors optimize their system using F -score, but do not take into an
account the possibility of concept drift occurrence.

11.6.5 Genetic Programming Active Learning Framework
(Stream-GP)

Genetic programming classifiers are combined with uniform and biased instance
sampling to achieve efficient adaptation to imbalanced data streams with limited
access to ground truth [25]. Their active learning scheme was based on the output
of the best individual from the population. If the elite member predicts that a given
instance belongs to a minority class, it is more likely that a ground truth will be
obtained for this instance.
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11.7 Summarizing Comments

Learning from imbalanced drifting data streams combines the difficulties embedded
in data stream mining and imbalanced data classification domains, as well as
creates its own unique characteristics. This fascinating domain is still relatively
new and many issues still await to be properly analyzed, understood, categorized,
and addressed. Let us conclude this chapter by discussing the most important open
issues and future challenges that imbalanced data stream mining must face in years
to come.

• Data-level methods: there is a need for developing new under- and oversampling
methods that can adapt to various types of concept drift and are characterized by
a low computational complexity.

• In-depth research into multi-class imbalanced data streams: there is a need
for a detailed taxonomy of learning difficulties that we may encounter in multi-
class imbalanced data streams, methods for measuring the relationships among
classes, as well as those flexibly adapting to emerging and disappearing classes.

• Considering online instance difficulty: in the static data framework, other data
difficulty factors such as decomposition of the minority class into rare sub-
concepts, overlapping with other classes, and presence of very rare minority
cases in the majority class regions are also considered as more influential than the
global imbalance between classes. Considering them in drifting scenarios, where
sub-concepts or rare cases appear over time and overlapping regions change, is
an open research problem.

• Evaluation measures: there is not an agreed upon standard what metrics to
use for imbalanced data streams, especially in case of multi-class problems.
Additionally, new statistical tests of significance must be developed that will
take into account multiple predictive metrics, training/testing times, and memory
consumption, in order to allow for a truly in-depth comparison of various
methods.

• Benchmark datasets: the number of real-world publicly available datasets for
testing imbalanced stream classifiers is still too small. Additionally, there are no
agreed upon benchmarks and data generators that allow to create both binary
and multi-class imbalanced data streams with concept drift and various learning
difficulties embedded.

• Open-source code repositories: algorithms for mining imbalanced data streams
are spread upon different languages, personal websites and varying implementa-
tions. There is a need for an unifying environment or package that will collect
most important methods in order to facilitate reproducible research and easy
comparison among different approaches under fair conditions.

We envision that next decade will bring significant developments in this area, as
many contemporary real-world applications call for existence of such ML methods.



300 11 Learning from Imbalanced Data Streams

References

1. Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S.: Anynovel: detection of novel
concepts in evolving data streams. Evol. Syst. 7(2), 73–93 (2016)

2. Al-Khateeb, T., Masud, M.M., Al-Naami, K., Seker, S.E., Mustafa, A.M., Khan, L., Trabelsi,
Z., Aggarwal, C.C., Han, J.: Recurring and novel class detection using class-based ensemble
for evolving data stream. IEEE Trans. Knowl. Data Eng. 28(10), 2752–2764 (2016)

3. Barua, S., Islam, M.M., Murase, K.: GOS-IL: a generalized over-sampling based online
imbalanced learning framework. In: Neural Information Processing – 22nd International
Conference, ICONIP 2015, Proceedings, Part I, Istanbul, 9–12 Nov 2015, pp. 680–687 (2015)

4. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree learning from
evolving data streams. In: Advances in Knowledge Discovery and Data Mining, 14th Pacific-
Asia Conference, PAKDD 2010, Proceedings. Part II, Hyderabad, 21–24 June 2010, pp. 299–
310 (2010)

5. Brzezinski, D., Stefanowski, J.: Prequential AUC: properties of the area under the ROC curve
for data streams with concept drift. Knowl. Inf. Syst. 52(2), 531–562 (2017)

6. Chen, S., He, H.: SERA: selectively recursive approach towards nonstationary imbalanced
stream data mining. In: International Joint Conference on Neural Networks, IJCNN 2009,
Atlanta, 14–19 June 2009, pp. 522–529 (2009)

7. Chen, S., He, H.: Towards incremental learning of nonstationary imbalanced data stream: a
multiple selectively recursive approach. Evol. Syst. 2(1), 35–50 (2011)

8. Chu, W., Zinkevich, M., Li, L., Thomas, A., Tseng, B.L.: Unbiased online active learning
in data streams. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, 21–24 Aug 2011, pp. 195–203 (2011)

9. Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees
are robust and skew-insensitive. Data Min. Knowl. Discov. 24(1), 136–158 (2012)

10. Czarnecki, W.M., Tabor, J.: Online extreme entropy machines for streams classification and
active learning. In: Proceedings of the 9th International Conference on Computer Recognition
Systems CORES 2015, Wroclaw, 25–27 May 2015, pp. 371–381 (2015)

11. Ditzler, G., Polikar, R.: Incremental learning of concept drift from streaming imbalanced data.
IEEE Trans. Knowl. Data Eng. 25(10), 2283–2301 (2013)

12. Domingos, P.M., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,
20–23 Aug 2000, pp. 71–80 (2000)

13. Dyer, K.B., Capo, R., Polikar, R.: COMPOSE: a semisupervised learning framework for
initially labeled nonstationary streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1),
12–26 (2014)

14. Ferdowsi, Z., Ghani, R., Settimi, R.: Online active learning with imbalanced classes. In: 2013
IEEE 13th International Conference on Data Mining, Dallas, 7–10 Dec 2013, pp. 1043–1048
(2013)

15. Gaber, M.M.: Advances in data stream mining. Wiley Interdiscip. Rev. Data Min. Knowl. Disc.
2(1), 79–85 (2012)

16. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection. In: Advances in
Artificial Intelligence – SBIA 2004, Proceedings of the 17th Brazilian Symposium on Artificial
Intelligence, São Luis, Maranhão, 29 Sept–1 Oct 2004. Lecture Notes in Computer Science
3171, Springer (2004). ISBN: 3-540-23237-0

17. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach.
Learn. 90(3), 317–346 (2013)

18. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

19. Gao, J., Ding, B., Fan, W., Han, J., Yu, P.S.: Classifying data streams with skewed class
distributions and concept drifts. IEEE Internet Comput. 12(6), 37–49 (2008)



References 301

20. Ghazikhani, A., Monsefi, R., Yazdi, H.S.: Ensemble of online neural networks for non-
stationary and imbalanced data streams. Neurocomputing 122, 535–544 (2013)

21. Ghazikhani, A., Monsefi, R., Yazdi, H.S.: Recursive least square perceptron model for non-
stationary and imbalanced data stream classification. Evol. Syst. 4(2), 119–131 (2013)

22. Ghazikhani, A., Monsefi, R., Yazdi, H.S.: Online neural network model for non-stationary and
imbalanced data stream classification. Int. J. Mach. Learn. Cybern. 5(1), 51–62 (2014)

23. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and
imbalance: an overview. Prog. AI 1(1), 89–101 (2012)

24. Hu, J., Yang, H., King, I., Lyu, M.R., So, A.M.: Kernelized online imbalanced learning
with fixed budgets. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, 25–30 Jan 2015, pp. 2666–2672 (2015)

25. Khanchi, S., Heywood, M.I., Zincir-Heywood, A.N.: Properties of a GP active learning
framework for streaming data with class imbalance. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2017, Berlin, 15–19 July 2017, pp. 945–952
(2017)

26. Khanchi, S., Vahdat, A., Heywood, M.I., Zincir-Heywood, A.N.: On botnet detection with
genetic programming under streaming data label budgets and class imbalance. Swarm Evol.
Comput. 39, 123–140 (2018)

27. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting
concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

28. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog.
AI 5(4), 221–232 (2016)

29. Krawczyk, B., Skryjomski, P.: Cost-sensitive perceptron decision trees for imbalanced drifting
data streams. In: Machine Learning and Knowledge Discovery in Databases – European
Conference, ECML PKDD 2017, Proceedings, Part II, Skopje, 18–22 Sept 2017, pp. 512–527
(2017)

30. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for
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Chapter 12
Non-classical Imbalanced Classification
Problems

Abstract Most of the research in class imbalance are carried out in standard
(binary or multi-class) classification problems. However, in recent years, researchers
have addressed new classification frameworks beyond standard classification in
different aspects. Several variations of class imbalance problem appear within these
frameworks. This chapter reviews the problem of class imbalance for a spectrum of
these non-classical problems. Throughout this chapter, in Sect. 12.2 some research
studies related to class imbalance where only partially labeled data is available
(SSL) are reviewed. Then, in Sect. 12.3 the problem of label imbalance in problems
where more than a label can be associated to an instance (Multilabel Learning) is
discussed. In Sect. 12.4 the problem of class imbalance when labels are associated
to bags of instances, rather than individually (Multi-instance Learning), is analyzed.
Next, Sect. 12.5 refers to the problem of class imbalance when there exists an
ordinal relation among classes (Ordinal Classification). Finally, in Sect. 12.6 some
concluding remarks are presented.

12.1 Introduction

Over the past several decades, new real-life problems have motivated the devel-
opment of new classification frameworks that go beyond standard supervised
classification [30]. These frameworks have different constraints on the access or
nature of supervised data, such as (1) the inherent relationship between instances
and labels of a problem, which may be beyond the one-instance one-label standard,
(2) the access of partial class information for the training examples, (3) an
ordinal relationship among classes. Class imbalance may have different causes and
consequences within these frameworks.

Therefore, new techniques for dealing with peculiarities and specificities of these
problems are necessary. This chapter discuss some research related to imbalanced
data when not all class labels of the instances are available (Semi-supervised learn-
ing), when instances are associated to more than one label (Multilabel learning),
when the label is associated to a bag of instances (Multi-instance learning), when
classes are ordered (Ordinal classification) and for regression problems.
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12.2 Semi-supervised Learning

SSL refers to a class of supervised tasks where typically a small set of labeled
examples is available, although the learning algorithm also have access to a larger
set of unlabeled instances. This scenario is common in situations where collecting
data is cheap, however it is expensive to label all the instances to train a classifier.
Labeling all instances is costly because it generally requires the know-how of a
domain expert (e.g., a linguist specialist to label sentences collected from the web)
or some costly procedure (e.g., perform a crash test for testing the resilience of
a material). SSL is an interesting way to avoid the cost of having external agents
manually labeling data.

The rationale behind SSL is that unlabeled data, when used in conjunction with a
small amount of labeled data, can provide important information for improving the
learning process. To this end, SSL aims to make use of the combined information
in labeled and unlabeled data in such ways that the classification performance is
improved when compared to discarding all the unlabeled data and only using the
labeled data in the learning process [10, 74].

Similar to the classical supervised learning framework, we are given l labeled
instances, were each instance is a pair < xi, yi >, for i ∈ {1, . . . , l}. Each xi ∈ X is
associated to its corresponding class label yi ∈ Y , were X is the input space and Y

the set of possible classes. Additionally, we are given u unlabeled instances xj , for
j ∈ {l + 1, . . . , l + n}, where xj ∈ X.

The general SSL spectrum encompass some specific tasks, depending on the
scope and constraints. If the scope of the SSL task is to predict only the class of
the u unlabeled instances, without generalizing beyond them, the task is known as
transductive learning [61]. In the case the scope includes learning a general function
F : X → Y , that can be applied to out-of-sample instances, the task in inductive.
A special inductive case occurs when we only have instances for one class (the
“positive” class). This case is known as PU-learning, for Positive and Unlabelled
instances learning. Another related task is AL, where departing from a small labeled
sample, the AL algorithm selects instances to be labeled by a human expert.

12.2.1 Inductive Semi-supervised Learning

The most popular inductive SSL algorithms include self-training, EM, co-
training [8], and graph-based methods [73]. SSL have been applied to
some high-imbalanced domains, including sentiment analysis [40]; author
identification [38]; protein splice site prediction [53]; and liver transplantation
donor-recipient matching [50]. Due to the imbalanced class ratio in these domains,
different techniques have been used to deal with imbalanced data for SSL.

Random subspace generation [33], combined with under-sampling, was used
in [40] to deal skewed distributions in sentiment analysis. The approach consists
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in using under-sampling to generate K balanced samples, where K is proportional
to the closest integer approximation of the ratio between the majority and minority
classes. For each K sample, two random subspaces are generated by randomly
splitting their features, and a classifier is leaned for each subspace. These classifiers
are used to choose a pair of instances from the unlabeled set to be labeled as
positive and negative, with highest confidence according to the SSL algorithm co-
training [8]. These instances are added to the training set, and the process is repeated
N times, where N is a parameter set by the user.

In [38], a metric sensitive to class imbalance is used in the Common n-Gram
(CNG) [52] profiling approach for author identification. This version of CNG is
used as one of the views of a co-training like algorithm [8]. The second view is an
SVM classifier, trained over the d most frequent n-grams (d is dynamically chosen
based in the intrinsic dimension [39] of the n-grams). When both views agree in the
author identification for a text in the unlabeled set, it is added to the training set. The
process is repeated until all authors in the unlabeled set are predicted, or when it is
both views disagree for all unlabeled texts.

Algorithm level and data level approaches to deal with class imbalance were
explored in [53] in conjunction with the SSL algorithm self-training. Self-training
first learn a classifier, using any classification algorithm as a base-learner, and use
it in a bootstrap sample from the unlabeled sample to select the most confident
classified instances to add to the training set. The algorithm retrain itself with the
augmented training set. Two data-level and two algorithm level approaches were
investigated. At data-level, the first approach consists in applying SMOTE [16] to
the training set before each new labeling. The second approach is to select only the
instances classified as positive to include in the training set. At the algorithm-level,
the first approach consists in using a cost sensitive algorithm as base-learner. The
second approach uses an ensemble build using balanced samples from the training
data.

To augment the minority class prior to using the SSL algorithm based on label
propagation [73], in [50] an over-sampling technique based on the KNN is applied.
The approach consists in applying the kNN to classify the instances in the unlabeled
set, and use the ones classified as positive, alongside the labeled data, as seeds for
propagating the labels in the embedded graph [73].

12.2.2 Transductive Learning

In transductive learning [26], the objective is to, using a set of labeled instances,
infer the labels of a fixed test set. This differs from inductive learning in a sense that
in inductive learning, the objective is to infer a general model that can be used to
classify out-of-the-sample instances.

To overcome the problem of imbalanced data in transductive SVM (TSVM) [35]
in the unlabeled instances, progressive transductive SVM (PTSVM) was proposed
in [17]. The main idea is to progressively and iteratively label pairs of instances
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of opposite classes with high confidence. If in one step it is not possible to label
a pair with high confidence, the algorithm tries to label, with high confidence, an
instance of one of the classes (probably the majority one). When it is not possible
to identify instances to label with high accuracy, TSVM is applied to label the
remaining instances. In [68], TSVM is associated to sampling techniques to handle
the class imbalance problem.

Personalized transductive learning (PTL) [46] builds a unique local model for
each instance, by considering their adjacent instances. In [46], this idea was explores
using SVM as base learner, and the models are organized hierarchically, in a
spanning tree-like fashion. Experimental results conducted by the authors shows
good classification performance in imbalanced data sets.

Graph based transductive learning uses a graph embedding approach to label
instances by means of label propagation in graph. In [65], a generalized cost
function that introduces node normalization terms to incorporate resilience to
label imbalances. Also in the context of graph based transduction, in [64] a
label regularization method is proposed to handle class imbalance in the task of
microscopic image annotation.

12.2.3 PU-Learning

Positive and unlabeled learning, or one-class learning, is related to problems where
only instances of one of the classes is available. These problems can be seen as
extreme cases of SSL.

One-class SVMs are shown to be useful to deal with extremely unbalanced,
high dimensional noise feature spaces such as text classification [51]. In [36], a
combination of PU-learning algorithms and resampling methods is proposed with
the objective of enriching the training set. A systematic study about the correlation
of class imbalance and one class classification under the occurrence of concept drift
was carried out in [69].

In a recent study [71], a weighting approach was used to improve classification
in PU-learning scenarios. Weights are first determined via Monte-Carlo simulations,
and weighted one-class SVMs were used. The difference between class imbalance
in the sample set and in the underline distribution was recently investigated in [34].

12.2.4 Active Learning

In AL, the algorithm asks for intervention from the user (or eventually some
other information source) to obtain the labels of some unlabeled instances. In the
standard configuration, the main idea is to actively ask for external supervision
from the selected instances, aiming to improve classification performance. Besides
improving classification, the algorithm also aims to minimize the need of external
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supervision, as this process is costly. To this end, the algorithm should wisely select
informative instances that needs external supervision by, e.g., selecting instances
that the algorithm may consider ambiguous or hard to classify.

AL can have two different roles in the context of learning from imbalance
data [1]. The first role concerns in applying an AL algorithm to an imbalanced data
set. In this case, the main challenge is to assure that instances from the minority
class are queried to the user. The second role is to reduce, and potentially eliminate,
the adverse effects of the class imbalance in the learning process by using AL
techniques.

Querying examples from an unlabeled set with substantial class imbalance may
pose several difficulties for AL. Indeed, this has been pointed out as one of the
obstacles for a larger adoption of AL [3]. Traditional AL techniques often aim to
increase diversity by considering.

Under the task of Named Entity Recognition in Natural Language Processing
tasks, [58, 75] use sampling techniques associated to AL algorithms during the
annotation task to acquire new training instances. A bootstrap sampling approach
based on NNs was used in [75] for sampling. When a new unlabeled instance is
labeled by the external agent, a sampling technique is applied in the neighborhood
in this instance.

In [25], it has been advocated that using SVM’s as base learning algorithm for
AL is less sensitive to imbalanced data sets. A cost weighted version of SVM’s [7],
where costs are defined by means of inverse class proportions. The main argument
is that cost sensitive SVM’s put more preference on the minority class. A drawback
is that, in AL applications, the class proportion is often unknown, and difficult to
estimate.

Few approaches attempt to use AL techniques to alleviate the class imbalance
problem were proposed. In [24], and adaptive mechanism that combined AL and
sampling was proposed. The main idea is to use an AL algorithm to suggest the
most informative instances for oversampling. Synthetic new instances are generated
by linear interpolating between the suggested instances and their NNs.

Another approach is to actively search for new (out-of-sample) instances to
alleviate the class imbalance problem [2]. The main idea is to search for instances
of the specific class within the unlabeled set of instances [5] or instances in different
regions of the input space [6] to improve classification performance.

12.3 Multilabel Learning

In MLL [31], each instance can be associated to a set of relevant labels, instead of a
single label per instance.1 These relevant labels are generally represented as a binary
vector, with size equal to the total number of labels, indicating if the corresponding

1Multilabel learning differs from multi-class classifier as in the latter only one label, from a set
larger than two possible classes, is associated to each instance.
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label is relevant or not. MLL algorithms were applied to several domains, including
text classification, multimedia, and biology.

Three main families of algorithms are generally applied to deal with MLL. The
first family uses data transformation to transform a multi-label data set into binary
or multi-class data sets. The conversion to binary data sets is generally done in a
per-label basis, an approach known as Binary Relevance (BR). The Label Power Set
(LP) approach converts a multi-label data set into a multi-class one, by considering
each possible label combination which appear in the data set as a class. The second
family consists in adapting existent learning algorithms to directly cope with multi-
label data sets. Major learning algorithms have been extended, including decision
trees, ANNs, KNN, SVMs, to name a few. The third family consists in ensembles
of classifiers. See [31] for a detailed overview of these methods.

Class imbalance has an important complication in MLL: different labels may
have different degrees of imbalance. In other words, the same data set may have
some very frequent labels accompanied of other very infrequent ones. Furthermore,
some labels may be correlated, implying some frequent and infrequent labels co-
occurring very often.

12.3.1 Imbalance Quantification

In MLL, we are given a set of N examples, where each example is associate to a
vector of L possible labels. As there are many labels, there is no a single index for
indicating the degree of imbalance. Two traditional measures for indicating the label
frequencies are cardinality and density. Label cardinality is the average number of
relevant labels per instance, and label density denotes average of label cardinality
over the total number of labels. These measures are shown in Eqs. 12.1 and 12.2,
respectively.

Cardinality = 1

N

N∑

i=1

L∑

j=1

lij (12.1)

Density = Cardinality

L
(12.2)

These measures provide an overview of the overall occurrence of labels, but they
do not provide information about the degree of imbalance of the labels. In [13],
the imbalance ratio per label, IRLbl(li) (Eq. 12.3), as the ratio between the most
frequent label and each label li , as shown in Eq. 12.3, where freq(l) returns the
frequency of the label l.

IRLbl(li) = maxL
j=1

(
freq(lj )

)

freq(li)
(12.3)
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To summary the imbalance ratios of the labels, two measure were proposed.
The first one, MeanIR (Eq. 12.4), computes the average level of imbalance ratios,
while CV IR (Eq. 12.5) measures variation of IRLbl(li), i.e., similarity of level of
imbalance between all labels. For a nearly balanced data set, all IRLbl(li) values
are close to 1, which results in values of MeanIR and CV IR close to 1 and 0,
respectively.

MeanIR = 1

N

L∑

i=1

(IRLbl(li)) (12.4)

CV IR = IRLblσ

MeanIR
, IRLblσ =

√√√√ 1

L − 1

L∑

i=1

(IRLbl(li) − MeanIR)2

(12.5)
To assess the concurrence among frequent and infrequent labels, in [12, 15] the

authors propose a measure named SCUMBLE (Eq. 12.6). This measure is inspired
in the Atkinson index, an econometric measure for measuring social inequality in
populations. SCUMBLE measures to what extent labels with different imbalance
levels appear jointly. The idea is to use each instance of the data set as a population
and each label as an individual. IRLbl(li) and

∏L
j=1 IRLbl(lij ) are the average

and product of the IRLbl relevant to the instance.

SCUMBLE = 1

N

N∑

i=1

⎛

⎜
⎝

1

IRLbl(li)

⎛

⎝
L∏

j=1

IRLbl(lij )

⎞

⎠

1
L

⎞

⎟
⎠ (12.6)

12.3.2 Methods for Dealing with Imbalance in MLL

Methods for dealing with imbalance labels in MLL can be grouped into three
categories: resampling techniques, algorithm adaptation and ensemble. This section
describes some of these approaches.

12.3.2.1 Resampling

Some methods under this category follow the problem transformation technique,
and then apply some binary or multi-class sampling approach in the transformed
problems. In [23], BR is combine with wrapper FS (using C4.5 as wrapper) together
with undersampling by removing majority labels participating in a Tomek link [59].
Random undersampling (LP-RUS) and random oversampling (LP-ROS), associated
with LP transformation, was explored in [11]. The authors group label sets as
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frequent and infrequent groups. LD-RUS remove instances from majority group,
while LD-ROS duplicate instances from the minority one. Similarly, in [13], random
undersampling and random oversampling were used. However, instead of using sets
of labels (as in LP-RUS and LP-ROS), labels are group according to the comparison
of IRLbl (Eq. 12.3) to MeanIR (Eq. 12.4). The majority group are composed by
the labels with IRLbl greater than MeanIR, and the minority group by the labels
lower than MeanIR. ML-RUS remove instances linked to labels in majority group,
where ML-ROS duplicate instances from the minority group.

Generation of synthetic instances has also been explored. In [27], SMOTE [16]
was used together with three label transformation strategies. The first strategy
transforms the instances in which the minority label appears as positive, and the
remainder as negative, and runs SMOTE. The second approach is similar to the
first, but only the instances in which the minority label appears in isolation are
transformed to positive, and the remainder as negative. The third approach considers
all the subsets in which the minority label appears, and runs SMOTE several times,
one per each subset. An extension of SMOTE, named MLSMOTE, designed to
directly cope with multilabel data was proposed in [14]. Instead of transforming the
multilabel data set to a binary one, this approach operates directly in the multilabel
version. It can operate over a list of minority classes (generally all labels for which
IRLbl is greater than MeanIR). Instances which belong to one of the labels in the
list are used as seeds to generate synthetic instances by interpolating with its NNs.
To generate the labels associated to an instance, three approaches were proposed:
union and intersection between the labels of the two instances, and a third based on
the counting of the labels of the NNs of the two instances.

As the instances may be associated to more than one label, oversampling or
undersampling a multilabel data set may produce a side effect: in the first case,
oversampling an instance with minority label may also oversample a majority
one, while in the latter, undersampling an instance with a majority label may also
undersample a minority one, in the case an instance is associated to both labels.
To overcome this drawback, an algorithm that takes into account the concurrence
among labels, named REMEDIAL [12], is proposed. The algorithm evaluates the
SCUMBLE of the instance. If an instance has a high SCUMBLE, its labels are
decoupled using MeanIR as a threshold. This instance is then replaced by two new
instances: one with minority labels and other with majority labels. The rationale
behind the decoupling process is that, once labels are separated, oversampling and
undersampling techniques would produce better results by avoiding their side effects
due to multiple labels associated to the same instance. After the application of
REMEDIAL, any sampling algorithm can be applied.

12.3.2.2 Algorithm Adaptation

There are algorithms adapted to MLL which also incorporate mechanisms to
deal with imbalanced labels. Some of them are a combination of some data
transformation method together a classifier adaptation. In [18], Min-Max modular
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network was used to split each label into smaller tasks. To derive balanced samples,
some projections approaches were considered, including random, clustering and
PCA. The simpler tasks are binary, and SVM is used as base classifier. The
prediction is a combination of the prediction of the derived tasks, using the Min-Max
rule. In [72], a hybrid algorithm, which combines a multi-class data transformation
approach with imbalance information labels was developed. This is done by deriving
a new multi-class label by cross-coupling its correlation with other randomly chosen
label. This new class is ternary, based on the combination of the most infrequent
value of the label with the two values of the other label. A scoring multi-class
algorithm is applied to predict this new class, and a threshold is automatically
set up based on the F-measure. To improve reliability, this process is repeated K

times, where K is a parameter. The label prediction is based on voting over the K

predictions.
An enrichment process to adjust for label imbalance in ANNs was investigated

in [57]. The idea is to first group similar instances, making clusters of different sizes.
An initial training set is constructed by selecting the same number of instances in
each cluster, and instances are added/removed according to maintain or improve
classification performance.

A weighting coefficient was used in [29] to deal with label imbalance in the
classification of sub-cellular localization of human proteins. This task present very
high levels of label imbalance. The proposed algorithm is based on Gaussian process
modeling, allied to latent information from the feature space and correlations among
labels. Weights are placed at each instance according to the likelihood of labels in
each sample.

For tackling variation among label proportions, in [22] is investigated two ways
to maximize macro F-measure. One approach is a plug-in rule for deriving the
maximizing F-measure in a probabilistic model and the other is a structured loss,
suitable for maximizing the F-measure of training time of structures SVMs.

A two-stage approach based on a multilabel hypernetwork was recently proposed
in [54] to handle class imbalance in MLL. In their algorithm, labels of a multi-label
data set are divided into two groups based on their imbalance ratios: imbalanced
labels and common labels. In the first stage a multi-label hypernetwork is trained
for a first prediction of all labels. In the second stage, the predictions obtained in the
first stage are further refined utilizing the correlations between common labels and
imbalanced labels to improve the learning performance of imbalanced labels.

12.3.2.3 Ensemble Learning

In [56] proposes a method based on a ensemble of binary classifiers. For each label,
a bagging of classifiers is induced. Each classifier within the bagging is formed
by an “inverse undersampling”, a process were all the minority label instances
are included, together with a similar sample size of remainder instances. The
objective is to generate the bagging with classifiers induced from balanced samples.
A combination of heterogeneous multilabel classifiers was used in [55]. To handle
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class imbalance, different methods for aggregating the different classifiers, as well
as different thresholding and weighting mechanisms with tuning carried out by
cross-validation.

A recent approach [21] uses a structured forest of Hellinger Decision Trees
for addressing the problem o class imbalance under MLL. A structured forest is
an ensemble of structured trees. Structured trees apply an on-the-fly transforming
approach based on clustering approach that maps multiple labels to a single one.
Once transformed, a standard decision tree can be applied. To cope with class
imbalance, a splitting criterion based on Hellinger Distance Decision Trees (HDDT)
were used. HDDTs are known to be robust to class imbalance [19].

The authors of [45] use a two-layer stack-like ensemble of the MLkNN algorithm
for exploiting label associations in MLL. They report an improvement in compari-
son of MLkNN without stacking, as well as other MLL algorithms.

12.4 Multi-instance Learning

In MIL [32], training examples consist in “bags” (collections of instances) instead of
isolated instances. This allows the representation of complex problems, like images,
molecules and texts, by means of their decomposition into pieces. For example,
consider the case of text classification. In this case, portions of a document (for
instance, each sentence of the text) can be represented by instances, whereas the
entire document itself is represented as the bag of these instances.

Although multi-class classification may be used [47, 70], the standard model
assumes that bags belong to one of two possible classes (generically called positive
and negative). Furthermore, only the labels of the bags are known (i.e., the
individual labels of the instances within each bag are unknown). For example, in text
classification, classes are associated to the entire document, not to each sentence. A
bag is labeled as positive if it contains at least one positive instance, and negative
otherwise. In the text classification example, a bag is positive if at least one sentence
is associate to the positive class, and there is no need of an association for all
sentences. More formally, in MIL pairs {Bi , yi} compose a data set, where Bi is
a bag, and yi is its class. Moreover, each Bi is composed by a set containing j

instances {Bi1, . . . , Bij } (the index i represents a bag, and the index j instances
within the bag) and, generally, the class yi ∈ {0, 1}.

Under MIL context, class imbalance can occur at two levels: instance imbalance
and bag imbalance. Label imbalance refers to an imbalanced distribution of
instances within each bag. Although, strictly speaking, the classes of individual
instances are not known, the actual distribution of classes within the positive bags
are likely to be unbalanced, as in the standard model only one instance is required
to a bag be considered positive. Furthermore, the class distribution in each bag
may vary substantively, depending on the problem. Bag imbalance is a direct
generalization of class imbalance in single instance learning to bags. In this case,
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the number of positive bags is very low when compared to the number of negative
bags.

12.4.1 Methods for Dealing with Imbalance in MIL

As in the case of MLL, the approaches to address the imbalance in MIL can be also
grouped into three different categories: resampling techniques, algorithm adaptation
and ensemble. In the remainder of this section, we introduce some examples for
these types of solutions.

12.4.1.1 Resampling

Different resampling techniques have been adapted to MIL problems, for both
instance level and bag level.

InstanceSMOTE [66] first converts the MIL data set to single instance data set by
assigning to each instance the corresponding class of the bag. The standard SMOTE
is then applied to the converted data set to generate new synthetic instances. Finally,
the bags are reconstructed back by assigning the new instances to the same bag of
the seeds used to generate them.

Three different instance level sampling techniques were investigated in [42].
The approaches rely on kernel density estimation to estimate the degree that each
instance can be considered positive. The first approach performs an oversampling
within positive bags. A set T + containing the “most positive” instance in each
positive bag, i.e., the instance which is most likely to be considered positive
inside each positive bag, is created. SMOTE oversampling is then used to generate
synthetic instances, based seed instances seeds drawn from T +. These synthetic
instances are then added to corresponding bag the seeds belong to. The second
approach perform an undersampling within positive bags. The approach is similar,
but instead of adding synthetic instances to bags, the idea is to remove negative
instances from the positive bags. A set T − of “most negative” instances is created.
The undersampling is based on KNN: when the majority of the neighbors on an
instance in T −, considering all instances in all bags, belongs to negative bags,
the instance is considered borderline and it is removed. The third approach is an
undersampling within negative bags. The undersampling is also based on KNN:
when the majority of neighbors of an instance in a negative bag, considering all
instances in all bags, belong to a positive bag, the instance is considered borderline
and is removed.

In [66], it was also investigated two ways to apply oversampling techniques at
bag level. To balance the data set, Bag_oversampling randomly duplicates minority
class bags. BagSMOTE [66] is a SMOTE adaptation to deal with bag level MIL
imbalance. The idea is to create one synthetic bags for each minority class (positive)
bag. The creation of the instance is performed by interpolating each instance within
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the seed bag to the NN instance from the instances of all positive bags. The new
synthetic bag is formed by the interpolated instances originated from the same seed
bag.

Another bag level sampling adaptation was proposed in [43]. As in [42], the
approach uses kernel density estimation to identify the most positive instances. The
method draw two positive bags at random, and identify the “most positive” instance
in each bag. A synthetic instance is created by interpolating these two instances,
and put into a new positive bag. The bag is then filled with other instances, until
the size is equal to the average bag size. To this end, the “most negative” instance is
selected in one of the bags, and new synthetic instances are added by interpolating
this instance with random selected instances from the other bag.

12.4.1.2 Problem Adaptation

Cost-based techniques were also investigated in [66, 67]. Their approach is based
on boosting (more specifically, AdaBoosting). A cost update weighting scheme was
developed by the authors to handle bag imbalance. The class imbalance ratio is used
as a proxy to the cost ratio. Four weighting update rules were proposed, with better
results reported when compared with sampling.

Two methods based on Fuzzy sets were proposed in [62], to handle the class
imbalance problem under MIL: one based on information extracted at bag-level
and other at instance-level. They determine the membership degree to the fuzzy
rough lower approximation of the two classes. The main difference between then
is how they compute the lower approximation values for a bag. The instance-
level methods determine the values for instances within the bags. To this, they use
similarity between instances, and an affinity degree of instances with bags and of
instances with classes. The instance-based values are then aggregated at the bag
level. On the other hand, bag-level algorithms try to directly derivate the lower
bound approximation from the entire bag, using a metric to measure similarity
between bags and the affinity of bags with classes.

In [41], the authors propose a new support vector machine (SVM) multiple-
instance formulation that uses a bag-representative selector to train SVMs on
bag-level information. Their approach is capable of identifying instances that
are highly significant in classification (bag-representatives) for both positive and
negative bags while finding the optimal class separation hyperplane. This approach
alleviates the influence of class imbalance issues by allowing both positive and
negative bags to have at most one representative instance.

12.4.1.3 Ensembles

A recent approach explores combination of MIL classifiers to handle imbalance data
in multi-instance classification. The approach combines different multi-instance
views aiming to reach a consensus among the weighted class predictions over the
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multiple views to take advantage of the complementary information these views
provide.

12.5 Ordinal Classification and Regression

The ordinal classification, or ordinal regression, is a supervised classification
problem in which the objective is to predict the category to which a pattern belongs,
having a relation of order between categories [28]. In addition, when the problem
clearly manifests an ordinal nature, it is expected that this order will be present
somehow in the input space of the data. The data are labeled according to a set of
levels so that an order is established between them. The ordinal regression differs
from the nominal classification in that there is a relation of order between the
categories; and differs from the standard regression in that the number of levels is
finite, and the difference between these levels is not defined. In this way, the ordinal
classification ranks between classification and regression.

Such sorting problems should not be confused with sorting or ranking problems.
The ordering problems are intended to relate all the patterns of the generalization
set to a total order. Ranking with rank refers to ordering patterns with relative order.
Ordinal classification can also be used to sort patterns, but the aim is to obtain good
classification accuracy while maintaining order of patterns.

The problems of ordinal classification present two major questions that must be
considered for the design of the learning algorithms. First, the nature of the problem
indicates that the order of the classes must be related in some way to the distribution
of patterns in the attribute space, as well as to the topological distribution of
the classes (although, in general, this relation will be a nonlinear relationship).
Consequently, a classifier must exploit this a priori knowledge about the input space.
Second, when evaluating the performance of an ordinal classifier, the performance
metrics must consider the order of the classes, so that classification errors between
adjacent classes should be considered as less important than classification errors
between not adjacent classes (more separated on the ordinal scale).

For example, consider a set of prediction data of the size with the target variable
taking values in the {very small, small, medium, large, very large} set with a clear
natural order relationship between classes. It is evident that wrongly predicting the
large class when the real class is small represents a more serious error than the
error associated with very small prediction. Thus, specific performance measures
are required to evaluate the performance of an ordinal classifier.

Imbalanced data naturally appear in ordinal classification problems, since there
are usually classes that are naturally less likely (i.e., extreme classes). Several appli-
cations have been considered in the specialized literature. For instance, in melanoma
image classification problems, there are significantly more patterns associated with
benign lesions with respect to melanomas [49] (especially when considered thick).
Also, in [37], the authors addressed an application to an emergency and disaster
information service considering an ordinal classification problem with 10 types
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of ranked risks and a weighted KNN method devised for tackling such kind of
problems.

While accuracy is the most common metric for standard classification, the Mean
Absolute Error (MAE) is the most common measure in the context of ordinal
classification [28]. In addition, several alternative measures have been proposed in
multi-class classification, for example, to evaluate individual performance in classes
[20] (including those worst-ranked classes). Similarly, the mean MAE (average
MAE, AMAE) has been proposed by Baccianella et al. [4] to more accurately
assess performance in imbalanced data sets. Furthermore, in [63], the authors
presented an extension of receiver operating characteristics (ROC) for more than
two ordered categories, which fits the ordinal regression setting. The idea behind
it is to estimate the volume under an r-dimensional surface (VUS) for r ordered
categories. Thus, VUS evaluates the ranking returned by an ordinal regression model
instead of measuring the error rate. A comprehensive survey on the state-of-the art of
imbalanced classification and, especially, the performance measures used in several
settings, can be found in [9].

The state-of-the-art in standard ordinal classification can be found in [28]. In this
book, we are interested in those approaches focused on imbalanced learning, either
for ordinal classification or regression. Thus, the next two sections will be devoted to
describe the available methods proposed for imbalanced regression and imbalanced
ordinal classification.

12.5.1 Imbalanced Regression

The prediction of rare extreme values of a continuous variable is very relevant for
several real-world domains. The theory of extreme values is a branch of statistics
focused on modeling abnormally high and low values in the queues of distributions.
This theory describes unsupervised approaches to modeling abnormally high and
low values in distribution queues. When we consider supervised approaches, the
objective is to obtain a model that relates the values of a set of predictor variables
to a numerical target variable for which we are interested in accurately predicting
their rare extreme values. These problems can be seen as equivalent to classification
problems with imbalanced class distributions that have been studied for a long time
within automatic learning. The main difference is that we have a numeric target
variable, that is, a regression task. This type of problem is particularly difficult
because: (1) there are few examples with rare target values; (2) the errors of the
learned models are not equally relevant because the main objective of the user is the
predictive accuracy of the rare values; and (3) standard prediction error metrics are
not adequate to measure the quality of models given the bias of user preference.

In [60], the first attempts to reformulate the standard resampling approaches
to the prediction of extreme values of a continuous variable were described. The
authors proposed the problem formulation as follows. Given a data set composed by
xi input feature vectors and a target continuous variable Y , the goal is to obtain
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a model that estimates the unknown regression function Y = f (x). However,
in predicting rare values, the particularity is to improve as much as possible the
predictive accuracy on a certain subset of the domain of Y , called the rare or
extreme values of Y . In this context, the standard regression estimators (i.e. the mean
absolute error) suffer for similar problems to standard accuracy in classification of
imbalanced classes.

In prediction of extreme values for regression, we are interested in that our model
can accurately predict an extreme value (high precision) and, moreover, our model
is able to make value predictions for the cases where the true value is an extreme
(high recall). A first idea is to transform the regression problem in an imbalanced
classification problem considering that the user is able to provide information on
how to distinguish a extreme value from the domain. But it will ignore the numeric
difference notion among the output values, achieving a counter-intuitive approach
to deal with regression problems. Different formulations were given to deal with
the numeric accuracy in extreme values prediction for regression, see [9] for more
details.

Another perspective is to preprocess the training data so as the guide the learner
to the examples which are of interest for the end user. This change is carried out by
balancing the distribution of least represented (even though more relevant) cases
with replications, sampling or generation of new instances. Although there are
many resampling approaches in the standard imbalanced classification literature,
few attempts were made to apply these strategies to equivalent regression tasks.
They were proposed in [60] and we next describe the classical under-sampling and
the upgrade of SMOTE to tackle regression tasks.

12.5.1.1 Under-sampling for Regression

As we know, the basic idea of under-sampling is to reduce the number of
observations with the most common target variable values in order to better balance
the ratio between these observations and those with the target values that are less
frequent. In classification, this consists in obtaining a random sample of the training
cases with the majority (and less interesting) class values.

In regression, we model a continuous objective variable. The concept of impor-
tance can be used to determine the values of a continuous target variable that are
more relevant to the application or user. We can use the relevance function values
to determine what observations are common or non-interesting values that should
be under-sampled. That is, the strategy of under-sampling aims at selecting samples
whose target value has less relevance than a parameter defined by the user. This
threshold will define the set of observations that are relevant according to the user’s
preference bias:

Dr = {< x, Y >∈ D : φ(Y ) ≥ tE} (12.7)
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where tE is an user defined threshold that measures the relevance and φ(Y ) is a
relevance function defined as a continuous function φ(Y ) : Y → [0, 1] that maps
the target variable domain Y into a [0, 1] scale of relevance, where 0 represents the
minimum and 1 represents the maximum relevance. Please refer to [60] to illustrate
how a relevance function works.

Hence, under-sampling will be carried out on the rest of observation Di = D/Dr .
The quantity of selected observations will be given according to the size of the set
Dr , randomly selecting nu cases from Di for each case in Dr . nu is another user
defined parameter which will set the desired ratio between standard and extreme
observations.

12.5.1.2 SMOTE for Regression

SMOTE algorithm is another resampling method extended to regression problems
[60]. There exist three issues of the SMOTE algorithm that are needed to be adapted
if we want to tackle regression tasks: (1) How to define what are the relevant
observations and “normal” cases; (2) how to create new synthetic examples; and
(3) how to decide the value of the target variable of these new synthetic examples.

The first issue is solved in the original SMOTE algorithm in a straightforward
manner due to the fact the user knows the target class to be oversampled, which
is usually the minority or positive class. In regression, we have to resort to the
definition of a relevance function, as mentioned in previous section, and a user-
defined threshold to be applies on the output of this function in order to decide
which examples will belong to Dr .

The second issue regarding the generation of new cases, can be solved adapting
the same mechanism used in the original SMOTE approach to be suitable to
simultaneously handle categorical and numerical attributes.

Finally, the third factor is to decide the output value of the new synthetic
point. According to [60], both distances are calculated between the new generated
synthetic case and the original case to be over-sampled and the synthetic case and
the randomly chosen NNs (in other words, the two seed examples). The output value
is estimated by an aggregated average of these two values according to an inverse
function of their distances.

As result, the SMOTER proposal to tackle regression tasks with rare cases
prediction was developed in [60].

12.5.2 Ordinal Classification of Imbalanced Data

Regarding imbalanced ordinal classification, as far as we known, there are two over-
sampling approaches developed for general purposes. The next two sections will
describe in brief how they work.
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12.5.2.1 Graph-Based Over-sampling

This technique [48] creates synthetic patterns by considering the distribution of
minority class data and the ordering of data. The main assumption of this method
is that class ordering should be considered when the resampling patterns for an
ordinal classification problem and that this order is generally represented by a
latent manifold. To exploit this collector, it captures the structure of the data by
constructing a pattern based graph and consider the paths that preserve the ordinal
constraints of the data for over-sampling. In addition, new patterns are created at the
border between adjacent classes, in order to smooth the ordinal nature of the data
set.

12.5.2.2 Cluster-Based Weighted Over-sampling

CWOS-Ord [44] is a proposed technique to address ordinal classification with
imbalanced data sets. This method aims to address this problem by first clustering
the minority classes and then over-sampling them based on their distances and
ordering the relationship with the instances of other classes. The final size for over-
sampling clusters depends on their complexity and initial size so that more synthetic
instances are generated for the more complex and smaller clusters, while fewer
instances are generated for less complex and larger clusters.

First, a modified agglomerated hierarchical clustering is introduced to reduce
the generation of superimposed synthetic instances during over-sampling. This is
achieved by iteratively combining clusters of the same class while considering
clusters of instances of other classes. Secondly, a new measure is proposed that
quantifies the balance between the complexity of the cluster and the initial size of the
cluster. The new measure is used to determine the number of instances oversampled
for each cluster. Finally, a new probability distribution that incorporates the distance
as well as the range distance to other class instances is presented, so that the
instances closest to the nonadjacent classes are over-sampled. As an additional
contribution in [44], the existing oversampling methods for binary classification
have been extended to ordinal regression.

12.6 Summarizing Comments

Class imbalance has been widely studied for standard classification problems
(binary and multi-class classification). However, different variations of class imbal-
ance also occurs in other classification frameworks such as SSL, MLL, MIL and
ordinal classification. These frameworks require new techniques aimed to deal with
their peculiarities and specificities. This chapter reviewed some recent research
work related to class imbalance within these frameworks.
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Chapter 13
Imbalanced Classification for Big Data

Abstract New developments in computation have allowed an explosion for both
data generation and storage. The high value that is hidden within this large volume
of data has attracted more and more researchers to address the topic of Big
Data analytics. The main difference between addressing Big Data applications
and carrying out traditional DM tasks is scalability. To overcome this issue, the
MapReduce framework has arisen as a “de facto” solution. Basically, it carries
out a “divide-and-conquer” distributed procedure in a fault-tolerant way (supported
by a distributed file system) to adapt for commodity hardware. Apart from the
difficulties in addressing the Big Data problem itself, we must take into account
that the events of interest might occur infrequently. Having in mind the challenges
of mining rare classes in standard classification tasks, adding this to the problem of
addressing high volumes of data impose a strong constraint for the development of
both accurate and scalable solutions. In order to present this interesting topic, current
chapter is organized as follows. First, Sect. 13.1 provides a quick overview on Big
Data analytics in the context of imbalanced classification. Then, Sect. 13.2 presents
the topic of Big Data in detail, focusing on the MapReduce programming model,
the Spark framework, and those software libraries that includes Big Data imple-
mentations for ML algorithms. Section 13.3 shows an overview on those works
that address imbalanced classification for Big Data problems. Then, Sect. 13.4
presents a discussion on the challenges and open problems on imbalanced Big Data
classification. Finally, Sect. 13.5 summarizes and concludes this chapter.

13.1 Introduction

Vast amounts of raw data are surrounding us in nowadays world, implying that data
can no longer be directly treated by humans or manual applications. Technologies
as the World Wide Web, engineering and science applications and networks,
business services and many more generate data in exponential growth thanks to the
development of powerful storage and connection tools [1]. Organized knowledge
and information cannot be easily obtained due to the management of such Big Data
and can neither be easily understood or automatically extracted [20, 40].

© Springer Nature Switzerland AG 2018
A. Fernández et al., Learning from Imbalanced Data Sets,
https://doi.org/10.1007/978-3-319-98074-4_13

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98074-4_13&domain=pdf
https://doi.org/10.1007/978-3-319-98074-4_13


328 13 Imbalanced Classification for Big Data

It is well known that data alone produces information but not knowledge. Its real
value lies on the possibility of extracting useful knowledge for decision-making
or the exploration and comprehension of the phenomenon that produced the data.
Nowadays, the current volume of data managed by our systems has surpassed the
processing capacity of traditional methods, and this applies to DM as well [10, 71].

The previous fact is translated into longer training times, or may even make
impossible to cope with such data traditional software implementations. It becomes
necessary to carry out a migration towards a more efficient framework from which
DM algorithms are able to use the whole dataset in a reasonable elapsed time
[1, 57]. This framework is known as MapReduce [14], and it mainly consists of two
processes: (1) Map, that divides the computation into several parts, one devoted for
a different chunk of the total data; and (2) Reduce, that aggregates the partial results
from the previous stage. By implementing these two processes, any algorithm will
be automatically distributed in a transparent way, and it will be run within a fault-
tolerant scheme as supported by a distributed file system.

Several platforms for large-scale processing have been developed including
MapReduce capabilities [20, 34]. Two clear and well-known examples are Hadoop1

[43] and Spark2 [73, 74]. Whereas the former includes a standard implementation
for MapReduce, the latter includes several features that benefit the scalability for
iterative processing, thus implying some advantages for ML algorithms.

The emergence of Big Data also brings new problems and challenges for the
class imbalance problem [19]. First, standard approaches in preprocessing and cost-
sensitive learning must be re-designed (sometimes, entirely) to adapt their procedure
to novel MapReduce-style distributed frameworks. Second, the data partitioning
associated with this type of process may result on a lack of data of the minority
class examples, and/or the generation of small disjuncts (please refer to Chap. 10).
Finally, we must refer not only to the increasing data volume, but also to the nature
of the problem itself. Regarding current Big Data applications, incoming data may
be heterogeneous and/or atypical, i.e. what is known to Variety of data. This issue
may force algorithms to be able to handle this graph-based structures (for social
networks [35]) or video sequences (for computer vision [11]).

By studying the specialized literature, it can be acknowledged that the topic
of imbalanced classification in Big Data is still at an early stage of development
[19]. Few research works have been published at present, and some of them are
just preliminary proposals that are not able to scale well. Throughout this chapter,
the most significant approaches related to preprocessing, cost-sensitive learning,
and applications for Big Data will be reviewed. This is made to analyze the inner
structure of these methodologies, and so to understand how the imbalanced data
problem in Big Data can be overcome.

1http://hadoop.apache.org
2http://spark.apache.org/

http://hadoop.apache.org
http://spark.apache.org/
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Finally, a thorough discussion on the main issues to be addressed for future work
on the topic will be presented. This will include several guidelines that may allow
researchers to develop high quality solutions in this area of research.

13.2 Big Data: MapReduce Programming Model, Spark
Framework and Machine Learning Libraries

In this section, we will first introduce some concepts on Big Data and its strong
relationship with the MapReduce programming model to support scalability in
data processing (Sect. 13.2.1). Then, we will focus on the Spark programming
framework, as it is probably the widest used technology for ML purposes in Big
Data (Sect. 13.2.2). Finally, we introduce the Mahout and MLlib libraries that
include some state-of-the-art ML algorithms for Big Data (Sect. 13.2.3).

13.2.1 Introduction to Big Data and MapReduce

In the era of information technology, the problem of managing Big Data applications
is becoming the main focus of attention in a wide variety of disciplines such as
science, business, industry, among others. Data and the ability to process and extract
knowledge from it are the “new gold” in the digital economy in which we move [23].
Therefore, the significance of Big Data come along with analytics [41, 57]. Among
other benefits, extracting significant value and insight within such data allows to
improve the productivity (in business) or to obtain new scientific breakthroughs (in
different knowledge domains).

However, Big Data certainly represents “big” challenges for the data analytics
community [50]. Currently, researchers must deal with highly distributed data
sources, validating data, coping with sampling biases, formats and structures to
develop algorithms that consider distributed and highly parallel architectures [31].
This implies that the information retrieving, management, processing, and the
knowledge extraction are no longer straightforward to be carried out by means of
the classical tools and methodologies [36]. Big Data makes it essential to develop
rapid distributed versions that make affordable the learning process, since no batch
architecture is able to address such magnitudes [17].

Considering these facts, ML solutions must evolve in order to adopt this data-
intensive problems [38]. Many platforms for large-scale processing have been
developed to bring closer the distributed technologies to engineers and data
scientists. This has been achieved by hiding the technical nuances derived from
these distributed environments [20].

The most significant solution to design data processing algorithms for Big Data
problems is clearly the MapReduce scheme [14, 15]. It was designed to allow
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efficient data combination from multiple sources in a transparent way for the
programmer, also providing a fault-tolerant execution scheme.

There are just two requirements for using this scheme. On the one hand,
it demands algorithms to be expressed into a simple design pattern using two
primary functions: Map and Reduce. The first one is devoted to split the data for
processing, whereas the second collects and aggregates the results. On the other
hand, the MapReduce model is defined with respect to an essential data structure:
the <key,value> pair. The processed data, the intermediate and final results work
in terms of <key,value> pairs. In this way, the Map and Reduce are defined as
follows:

• Map function: first reads data and transforms them into a key-value format.
Transformations in this phase may apply any sequence of operations on each
record before sending the tuples across the network. Output keys are then shuffled
and grouped by key value so that coincident keys are grouped together to form
a list of values. Keys are then partitioned and sent to the Reducers according to
some key-based scheme previously defined.

• Reduce function: it performs some kind of aggregation on the lists to eventually
generate a single value for each pair. As an optimization, the reducer is also used
as a combiner on the map outputs. This improvement reduces the total amount
of data sent across the network by combining each word generated in the Map
phase into a single pair.

From another perspective, MapReduce, concretely the Reduce stage, can be seen
as a information and/or model fusion process that aggregates partial results to obtain
a more coarse-grained outcome. Although the Reduce phase may be skipped in
some jobs in order to perform a straightforward parallelization of tasks, it is not the
case in most of use cases in Big Data.

To summarize its procedure, Fig. 13.1 illustrates a typical MapReduce program
with its Map and Reduce steps. The terms ki : vj refer to the key and value pair
that are computed within each Map process. Then, values are grouped linking them
to the same key, i.e. ki : vj , . . . , vh, and feed to the same Reduce process. Finally,
values are aggregated with any function within the Reduce process to obtain the
final result of the algorithm.

Initially released as privative tool from Google [13], an open source counterpart,
known as Hadoop, has been traditionally used in academia research [70]. The main
idea behind Hadoop was to create a common framework which can process large-
scale data on a cluster of commodity hardware, without incurring in a high cost in
developing (in contrast to HPC solutions) and execution time. Hadoop MapReduce
was originally composed by two elements: the first one was a distributed storage
system called Hadoop Distributed File System (HDFS), whereas the second one was
a data processing framework that allows to run MapReduce-like jobs. Apart from
these goals, Hadoop implements primitives to address cluster scalability, failure
recovery, and resource scheduling, among others.

HDFS [3] can be deemed as the main module of Apache Hadoop. It supports
distributed storage for large-scale data through the use of distributed files, which
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Fig. 13.1 The MapReduce programming model

themselves are composed by fixed-size data blocks. These blocks or partitions are
equally distributed among the data nodes in order to balance as much as possible
the overall disk usage in the cluster. HDFS also allows replication of blocks across
different nodes and racks. In HDFS, the first block is ensured to be placed in the
same processing node, whereas the other two replicas are sent to different racks to
prevent abrupt ends due to inter-rack issues.

Hadoop MapReduce evolves to a more general component, called Yet Another
Resource Negotiator (YARN) [72], which provides extra management and mainte-
nance services relied to other components in the past. YARN also acts as a facade for
different types of distributed processing engines based on HDFS, such as Spark,3

Flink4 or Storm.5 In short, YARN was intended as a generic purpose system that
separates the responsibilities of resource management (performed by YARN), and
running management (performed by top-level applications).

13.2.2 Spark: A Novel Technological Approach for Iterative
Processing in Big Data

Apache Spark Framework [2] was born in 2010 with the publication of Resilient
Distributed Datasets (RDD) structures [73], the keystone behind Spark. Although
Spark has a close relationship with Hadoop Ecosystem, it provides specific support

3http://spark.apache.org
4http://flink.apache.org/
5http://storm.apache.org/

http://spark.apache.org
http://flink.apache.org/
http://storm.apache.org/
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for every step in the Big Data stack, such as its own processing engine, and
ML library.

Apache Spark [30] is defined as a distributed computing platform which can
process large volume data sets in memory with a very fast response time due to its
memory-intensive scheme. It was originally thought to tackle problems deemed as
unsuitable for previous disk-based engines like Hadoop. Continued use of disk is
replaced in Spark by memory-based operators that efficiently deal with iterative and
interactive problems (prone to multiple I/O operations).

The heart of Spark is formed by Resilient Distributed Datasets (RDD), which
transparently controls how data are distributed and transformed across the cluster.
Users just need to define some high-level functions that will be applied and managed
by RDDs. These elements are created whenever data are read from any source,
or as a result of a transformation. RDDs consist of a collection of data partitions
distributed across several data nodes. A wide range of operations are provided
for transforming RDDs, such as: filtering, grouping, set operations, among others.
Furthermore RDDs are also highly versatile as they allows users to customize
partitioning for an optimized data placement, or to preserve data in several formats
and contexts.

In Spark, fault tolerance is solved by annotating operations in a structure
called lineage. Spark transformations annotated in the lineage are only performed
whenever a trigger I/O operations appears in the log. In case of failure, Spark re-
computes the affected brach in the lineage log. Although replication is normally
skipped, Spark allows to spill data in local disk in case the memory capacity is not
sufficient.

Spark developers provided another high-level abstraction, called DataFrames,
which introduces the concept of formal schema in RDDs. DataFrames are dis-
tributed and structured collections of data organized by named columns. They can
be seen as a table in a relational database or a dataframe in R, or Python (Pandas).
As a plus, relational query plans built by DataFrames are optimized by the Spark’s
Catalyst optimizer throughout the previously defined schema. Also thanks to the
scheme, Spark is able to understand data and remove costly Java serialization
actions.

A compromise between structure awareness and the optimization benefits of Cat-
alyst is achieved by the novel Dataset API. Datasets are strongly typed collections
of objects connected to a relational schema. Among the benefits of Datasets, we
can find compile-time type safety, which means applications can be sanitized before
running. Furthermore, Datasets provide encoders for free to directly convert JVM
objects to the binary tabular Tungsten format. These efficient in-memory format
improves memory usage, and allows to directly apply operations on serialized data.
Datasets are intended to be the single interface in future Spark for handling data.
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13.2.3 Machine Learning Libraries for Big Data

As stated throughout this chapter, designing robust and efficient ML solutions based
on MapReduce is not an easy task. Fortunately, several libraries have been made
available so that researchers and practitioners are able to use some state-of-the-art
algorithms for Big Data problems. Two of the most well-known libraries are Mahout
(based on Hadoop) and MLlib (based on Spark):

13.2.3.1 Hadoop: Apache Mahout

Since the magnitude of learning problems has been growing exponentially, data
scientists demands rapid tools that efficiently extract knowledge from large-scale
data. This problem has been solved by MapReduce and other platforms by providing
scalable algorithms and miscellaneous utilities in form of ML libraries. These
libraries are compatible with the main Hadoop engine, and use as input the data
stored in the storage components.

Apache Mahout [48] was the main contribution from Apache Hadoop to
this field. Although it can be deemed as mainly obsolete nowadays, Mahout is
considered as the first attempt to fill the gap of scalable ML support for Big Data.
Mahout comprises several algorithms for plenty of tasks, such as: classification,
clustering, pattern-mining, etc. Among a long list of golden algorithms in Mahout,
we can highlight Random Forest or Naïve Bayes.

The most recent version (0.13.0) provides three new major features: novel
support for Apache Spark and Flink, a vector math experimentation for R, and GPU
support based on large matrix multiplications. Although Mahout was originally
designed for Hadoop, some algorithms have been implemented on Spark as a
consequence of the latter one’s popularity. Mahout is also able to run on top of
Flink, being only compatible for static processing though.

13.2.3.2 Spark: MLlib and SparkPackages

MLlib project [51] was born in 2012 as an extra component of Spark. It was
released and open-sourced in 2013 under the Apache 2.0 license. From its inception,
the number of contributions and people involved in the project have been growing
steadily. Apart from official API, Spark provides a community package index [12]
(Spark Packages) to assemble all open source algorithms that work with MLlib.

MLlib is a Spark library geared towards offering distributed ML support to Spark
engine. This library includes several out-of-the-box algorithms for alike tasks, such
as: classification, clustering, regression, recommendation, even data preprocessing.
Apart from distributed implementations of standard algorithms, MLlib offers:

• Common Utilities: for distributed linear algebra, statistical analysis, internal
format for model export, data generators, etc.
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• Algorithmic optimizations: from the long list of optimizations included, we
can highlight some: decisions trees, which borrow some ideas from PLANET
project [53] (parallelized learning both within trees and across them); or general-
ized linear models, which benefit from employing fast C++-based linear algebra
for internal computations.

• Pipeline API: as the learning process in large-scale datasets is tedious and expen-
sive, MLlib includes an internal package (spark.ml) that provides an uniform
high-level API to create complex multi-stage pipelines that connect several
and alike components (preprocessing, learning, evaluation, and so on). spark.ml
allows model selection or hyper-parameter tuning, and different validations
strategies like k-FVC.

• Spark integration: MLlib is perfectly integrated with other Spark components.
Spark GraphX has several graph-based implementations in MLlib, like LDA.
Likewise, several algorithms for online learning are available in Spark Streaming,
such as online k-Means. In any case, most of component in the Spark stack are
prepared to effortlessly cooperate with MLlib.

13.3 Addressing Imbalanced Classification in Big Data
Problems: Current State

In this section, we discuss the current state-of-the-art on the topic of imbalanced
classification for Big Data. These include initial approaches for addressing the
problem, making use of those methods and solutions that were mentioned in
the previous section. In Table 13.1 we show the list of selected proposal in a
taxonomy regarding the type of methodology applied to handle the imbalanced data
distribution, or whether they comprise an application paper.

In the remainder of the section we describe each one of these models. Specifi-
cally, Sect. 13.3.1 contains the description for those techniques related to data pre-
processing. Section 13.3.2 includes those approaches that carry out an algorithmic
modification by means of a cost-sensitive learning. Finally, Sect. 13.3.3 presents the
application papers on the topic.

Table 13.1 Summary of approaches for imbalanced classification in Big Data

Type of technique References

Data pre-processing [4, 29, 33, 39, 42, 58, 59, 65, 66, 75]

Cost-sensitive learning [46, 59, 61, 67],

Applications on imbalanced Big Data [16, 21, 27, 55]
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13.3.1 Data Pre-processing Studies

Among the different solutions to address imbalanced classification in Big Data,
data pre-processing is possibly the one has attracted the highest attention from
researchers. Therefore, we may find several approaches that aims at adapting
directly the standard undersampling and oversampling techniques to the MapReduce
framework. In this sense, both random undersampling, random oversampling
and SMOTE are the widest used algorithms, being applied within each Map
process seeking for scalability. Furthermore, some ad hoc approaches based on
undersampling and oversampling have been also developed, including evolutionary
undersampling, a rough set based SMOTE, and an ensemble algorithm. Finally, we
will point out a first approach for the multi-class case study.

13.3.1.1 Traditional Data Based Solutions for Big Data

In the first work to be discussed, authors performed a thorough study with the
objective of evaluating the performance of traditional solutions for the class
imbalance in the context of Big Data [59]. With this aim, several pre-processing
techniques were adapted and embedded in a MapReduce workflow. Specifically,
the random oversampling (ROS-BigData), random undersampling (RUS-BigData)
and the SMOTE (SMOTE-BigData) MapReduce versions were proposed in this
research. For every technique, each Map process was responsible for adjusting
the class distribution for their data partition, either by the random replication of
minority class instances (ROS-BigData), the random removal of majority class
instances (RUS-BigData) or the synthetic data generation carried out by SMOTE
(SMOTE-BigData). Then, a unique Reduce process was responsible for collecting
the outputs generated by each mapper and randomized them to form the balanced
dataset. The Random Forest implementation from Mahout6 [47, 52] was selected
as baseline classifier for the experiments, applied over three different imbalanced
Big Data problems from the UCI dataset repository [44], with up to 6 millions
of instances. One of the outcomes of their study [59] was the observation that
random oversampling is more robust than the other techniques when the number
of data partitions is increased. In contrast, the performance of SMOTE, random
undersampling and cost-sensitive learning methods was not as high as expected.

This literature showed a preliminary study made using Hadoop, which implied
a lower scalability in contrast with Spark based approaches. Additionally, all
preprocessing and classification methods worked locally within each Map, thus
limiting the potential of these algorithms.

A recent approach based on the use of Graphics Processing Units (GPUs) for
the parallel computation of SMOTE has been proposed in [29]. The preprocessing

6http://mahout.apache.org/

http://mahout.apache.org/


336 13 Imbalanced Classification for Big Data

technique is adapted to commodity hardware by means of a smart use of the main
memory, i.e. by including only the minority class instances, and the neighborhood
computation via a fast GPU implementation of the kNN algorithm [28].

Finally, an additional efficient GPU-based implementation was proposed for
rapid training and updating of online classifiers, i.e. focused in the area of
imbalanced data streams for Big Data. Specifically, an extreme learning machine
was used in synergy with undersampling and oversampling [42]. Authors showed
that the use of pre-processing allowed the classifier to efficiently adapt to non-
stationary properties of incoming objects, while alleviating the influence of skewed
distributions on its performance.

13.3.1.2 Random OverSampling with Evolutionary Feature Weighting
and Random Forest (ROSEFW-RF)

Another work which showed the success of the application of random oversampling
in the scenario of Big Data can be found in [66]. This literature described the
methodology followed to achieve the first place of the ECBDL’14 Big Data
challenge. This dataset consisted of an imbalance bioinformatics Big Data problem
formed by 32 million instances and more than 600 attributes with just a 2% of
positive instances. The algorithm, named as ROSEFW-RF, was based on several
MapReduce approaches to (1) balance the classes distribution through random
oversampling, (2) detect the most relevant features via an evolutionary feature
weighting process and a threshold to choose them, (3) build an appropriate Random
Forest model from the pre-processed data and finally (4) classify the test data.

In accordance with these issues, this work has two novel contributions with
respect to [59]:

• On the one hand, authors stressed that in order to deal with extremely imbalanced
Big Data problems such as the one described above, this implies an increment in
the density of the underrepresented class by using higher oversampling ratios
[58].

• On the other hand, a FS approach was suggested to avoid the curse of dimension-
ality. Specifically, the authors developed a MapReduce implementation based
on the evolutionary approach for Feature Weighting proposed in [63]. In this
method, each map task performed a whole evolutionary feature weighting cycle
in its data partition and emitted a vector of weights. Then, the Reduce process
was responsible of the iterative aggregation of all the weights provided by the
maps. Finally, the resulting weights were used with a threshold to select the most
important characteristics.

The combination of the instance and feature pre-processing approaches was
shown to achieve high quality results in this case study. However, this proposed
methodology has the constraint of applying a high ratio of oversampling, thus
requiring a high training time.
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13.3.1.3 Evolutionary Undersampling

Regarding undersampling approaches, in [65] authors developed a parallel model
to enable evolutionary undersampling methods under the MapReduce scheme.
Specifically, the aforementioned model consisted of two MapReduce procedures.
The first MapReduce task learns a decision tree in each map after performing
evolutionary undersampling pre-processing. Then, a second MapReduce job is
initiated in order to classify the test set. The evolutionary undersampling step is
further accelerated by adding a windowing scheme adapted to the imbalanced
scenario. In order to analyze the quality of this proposed method [65], authors
carried out an experimental study with the C4.5 decision tree over different versions
of the KDDCup’99 dataset, by gradually increasing its number of instances. Results
shown the goodness of the global model in terms of accuracy and efficiency. An
extension of this model implemented within the Spark framework has been recently
presented in [64].

13.3.1.4 Data Cleaning

Another research that carries out a data reduction scheme (data cleaning) can be
found in [39]. Specifically, authors proposed a MapReduce based KNN classifier
for DNA Big Data problems. As stated previously, authors included a data reduction
stage within the Map processes prior to the learning in order to study the best suited
option, together with an analysis of the scalability.

13.3.1.5 NRSBoundary-SMOTE

In [33], authors proposed a MapReduce design of the NRSBoundary-SMOTE, an
algorithm based on Neighborhood RoughSet Theory [32]. This adaptation consisted
of two MapReduce procedures.

The first MapReduce task was responsible for the partition of the dataset, and
the second MapReduce task carried out the oversampling of the minority class
examples. More specifically, the first MapReduce job divided the training set
according to neighborhood relation and it generated three subsets as output, called
Positive, Minority and Boundary. The “Positive” subset contained the majority
class samples from which its neighbors shown the sample class label. As its
name suggests, the “Minority” subset contained the minority samples. Finally, the
“Boundary” subset stored those minority samples with any majority class sample
in its neighbors. In the second MapReduce job, every map get a data block of the
Boundary set and it computed for each sample in its partition the KNNs. Then, the
reduce process selected for each sample one of its neighbors randomly to interpolate
with it. If the new synthetic sample belonged to the neighbor of samples that in
Positive, another neighbor were selected from the list. Otherwise, the synthetic
example was generated.
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In both MapReduce processes the Positive and Minority sets were added to
the Hadoop Distributed Cache [70]. This feature disables the scalability of the
algorithm, as long as the training dataset must fit on the Hadoop Distributed Cache.

13.3.1.6 Extreme Learning Machine with Resampling

A MapReduce approach based on ensemble learning and data resampling can be
found in [75]. This algorithm consists of four stages: (1) alternately over-sample p

times between positive class instances and negative class instances; (2) construct
l balanced data subsets based on the generated positive class instances; (3) train l

component classifiers with extreme learning machine algorithm on the constructed
l balanced data subsets; (4) integrate the l ELM classifiers with simple voting
approach.

To carry out the data pre-processing, the algorithm first calculated the center of
positive class instances, and then sample instance points along the line between the
center and each positive class instance, in a similar style than SMOTE [8]. Next,
for each instance point in the new positive class, the method first find its KNN in
negative class instances with MapReduce, and then sample instance points along the
line between the instance and its k nearest negative neighbors. The process of over-
sampling is repeated p times. In the second stage, the algorithm sample instances
l times from the negative class with the same size as the generated positive class
instances. Each round of sampling, the method put positive class and negative class
instances together thus obtain l balanced data subsets.

In order to verify the effectiveness of this proposed method [75], authors selected
7 data sets from UCI repository (with less than half million examples) and compared
with three state-of-the-art approaches for classical DM (no Big Data approaches):
SMOTE-Vote, SMOTE-Boost and SMOTE-Bagging, showing better speed-up and
performance in terms of the g-mean metric. The drawback of this proposal is the
iterative oversampling process applied in the first stage, being computationally
expensive.

13.3.1.7 Multi-class Imbalance

Finally, a preliminary study regarding multi-class imbalanced classification was
introduced in [4]. This methodology consisted of two steps. First, they used the
One-vs.-All (OVA) binarization technique [24] for decomposing original dataset
into subsets of binary classes. This process was carried out in a sequential way.
Then, the SMOTE Big Data approach [59] was applied for each binary subset of
imbalanced binary class in order to balance the data distribution, following the same
scheme as suggested in [18]. Finally, to carry out the classification step the Random
Forest implementation of Mahout was used [47, 52]. This work is interesting as a
first step on the topic, but it lacks from a true Big Data experimental framework as
all datasets selected contain less than 5,000 examples.
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13.3.1.8 Summary

We can see that the recent years have seen a significant interest in adapting current
methods to work on Big Data computing paradigms for imbalanced data. Between
undersampling and oversampling, the latter is the widest used approach, and it
seems to be more robust to the scalability in terms of number of Maps. All these
existing implementations can be regarded as the state-of-the-art from which to
improve the performance with more sophisticated techniques, both for the binary
and multi-class imbalanced datasets.

13.3.2 Cost-Sensitive Learning Studies

In this section we enumerate several methodologies that include algorithmic
modifications for taking into account a higher significance for the positive class.
Specifically, four approaches are being revised, two of which are based on SVMs,
and two for rule based systems, i.e. decision trees (random forest) and fuzzy rule
learning.

13.3.2.1 Cost-Sensitive SVM

In [61] a cost-sensitive SVM using randomized dual coordinate descent method
(CSVM-RDCD) was proposed. The authors performed an experimental study with
several datasets, where they compared their proposed approach with some cost-
sensitive SVMs from the state-of-the-art. However, in this paper, the authors did
not use any of the existing solutions for the development of algorithms to address
massive amounts of data, such as algorithms based on Hadoop or Spark frameworks.
The proposal performed iterative calculations that could not be carried out when the
problem size grows in size.

13.3.2.2 Instance Weighting SVM

Another approach based on SVMs can be found in [67]. In the aforementioned
research, authors combined an instance-weighted variant of the SVM with a Par-
allel Meta-learning algorithm using MapReduce. Specifically, a symmetric weight
boosting method was developed to optimize the instance-weighted SVM. In the
MapReduce design, each Map process applies a secuencial Instance Boosting SVM
algorithm in the examples of its partition and generates a base learner. Then, the
models generated by the all Maps form an ensemble of classifiers. Therefore, no
Reduce step is used as no fusion of the models was required. One of the limitations
of this MapReduce scheme is the iterative process that is performed in each Map
task. In addition, the datasets used in the experiments do not exceed half a million
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instances, raising the question whether this approach can be scalable for real Big
Data problems.

13.3.2.3 Cost-Sensitive Random Forest

In addition to the study of data pre-processing techniques, another contribution
made in [59] was the extension of the Random Forest classifier to a cost-sensitive
learning approach for enhancing the learning of the minority class examples. In
particular, it consisted of two MapReduce process. The first process was devoted to
the creation of the model where each map task built a subset of the forest with the
data block of its partition and generated a file containing the built trees. Then, the
second MapReduce process was initiated to estimate the class associated to a data
test set. In this process, each map estimated the class for the examples available in
its partition using the previous learned model, and then the predictions generated by
each map were concatenated to form the final predictions file.

13.3.2.4 Cost-Sensitive Fuzzy Rule Based Classification System (FRBCS)

In [46] authors extended Chi-FRBCS-BigData, a MapReduce implementation of a
FRBCS made in [60], to address imbalanced Big Data. Specifically, they modified
the computation of the rule weights during the learning stage by considering the
data distribution. This way, the initial fuzzy learning algorithm was transformed to
a cost-sensitive learning scheme, which authors noted as Chi-FRBCS-BigDataCS.
Following the workflow defined in [60], the Chi-FRBCS-BigDataCS algorithm
consisted of two MapReduce procedures: the first MapReduce process was devoted
to the creation of the model, then, the second MapReduce process was responsible to
estimate the class associated to a dataset. More specifically, in the first MapReduce
process, each Map process was responsible for building a rule base using only
the data included in its partition, then, the Reduce process was responsible for
collecting and combining the rule bases generated by each map task to form the
final rule base. When the first MapReduce process devoted to the building of the
model had finished, the second MapReduce process was initiated. In this process,
each map task estimated the class for the examples included in its data partition
using the previous learned model, then, the predictions generated by each map
were aggregated to conform the final predictions file. The classification job did not
include a reduce step.

In order to analyze the quality of their proposed approach, the authors run the
experiments over three datasets up to 6 millions of instances from the UCI repository
[44]. The experimental study showed that the proposal is able to handle imbalanced
Big Data obtaining competitive results both in the classification performance of the
model and the time needed for the computation.
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13.3.2.5 Summary

Cost-sensitive classification has not witnessed the body of works as with the data or
algorithmic based approaches for directly addressing the issues of class imbalance.
This could also imply the complexity of the underlying process of cost-sensitive
classification – from procuring costs for different types of errors to the algorithmic
complexity.

13.3.3 Applications on Imbalanced Big Data

In addition to novel proposals and experimental analysis, there are also significant
applications in the area of imbalanced Big Data. It is of extreme importance not
only to design novel approaches for the research community, but also to add a
practical perspective that can be of interest for common users and corporations.
In this section, we give several examples of real application areas for Big Data. The
areas covered are bioinformatics, traffic accident prediction, biomedical purposes,
human activity recognition, and fraud detection.

13.3.3.1 Pairwise Ortholog Detection

In [27] authors focused on the Pairwise Ortholog Detection (POD) problem. It
combined several gene pairwise features (alignment-based and synteny measures
with others derived from the pairwise comparison of the physicochemical properties
of amino acids) to address Big Data problems. The methodology followed to address
this problem consisted of three steps: (1) the calculation of gene pair features to
be combined, (2) the building of the classification model using ML algorithms to
deal with Big Data from a pairwise dataset, and (3) the classification of related
gene pairs. In order to achieve high quality results, authors made use of several
Big Data supervised techniques that manage imbalanced datasets. Specifically, they
selected those presented in [59] and [58] such as Random Forest for Big Data
with Cost-Sensitive (RF-BDCS), Random Oversampling with Random Forest for
Big Data (ROS+RF-BD) and the SVMs for Big Data (SVM-BD) for the Apache
Spark MLib [51] combined with Random Oversampling (ROS+SVM-BD). The
effectiveness of the supervised approach for POD is compared to the well-known
unsupervised Reciprocal Best Hits, Reciprocal Smallest Distance and a Automated
Project for the Identification of Orthologs from Complete Genome Data algorithms.
For the experiments, the authors focused on benchmark datasets derived from
the following yeast genome pairs: S. cerevisiae and K. lactis, S. cerevisiae and
C. glabrata and S. cerevisiae and S. pombe. Four datasets were derived from
each genome pair comparison with different alignment settings. The authors found
that the supervised approach outperformed traditional methods, mainly when they
applied ROS combined with SVM-BD.
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An extended version of the previous research was recently published in [26].
Authors propose two novel contributions. From the viewpoint of the gene data
extracting, authors investigate the goodness of alignment-free protein features. This
way, the identification ability of the classifiers for orthologs at the twilight zone is
increased. From the viewpoint of the computational scalability, novel approaches
based on Spark are applied both in the preprocessing and in classification steps.
Thanks to this, exact models can be learned in a very efficient way, also allowing to
better capturing the whole information of the dataset.

13.3.3.2 Traffic Accidents Prediction

In [55] authors developed a DM process for classification of imbalance data
based on MapReduce to predict traffic accidents with the highway traffic data.
More concretely, the previous paper presented a classification analysis process of
imbalance data prediction based on Apache Hadoop [70], Hive [62] and Mahout
[47]. It consisted of five processing steps: (1) a pre-processing step that combined
the datasets and creates training datasets (using Hive), (2) oversampling technique
to solve imbalance data problem in the training dataset, (3) cluster classification
analysis to discover the numbers of cluster and the data ratio of cluster by using
the k-means MapReduce implementation from Mahout, (4) a classification analysis
with several clusters using a MapReduce implementation of logistic regression (also
from Mahout) and, (5) analysis of the results. In order to validate the classification
analysis process, the authors used data form Korea Highway Corporation which
contain traffic data created between Jan. 1st, 2011 and Jun. 30th, 2013 on the
Gyeongbu line which connects Seoul with Busan, having a total size of about
300 GB. This work was an extension of their previous approach presented in [54]
by including a MapReduce implementation of the SMOTE algorithm. The first
MapReduce task was responsible to calculate distances among every example. In
the second MapReduce job, each Map task was devoted to sort the results by the
distances so that every examples k-NN are revealed. Then, in the Reduce phase, the
SMOTE calculations were conducted to create synthetic examples using the k-NN
and the attributes of the entire dataset from the Hadoop Distributed Cache [70]. This
last feature imposes hard constraints for the scalability of the algorithm.

13.3.3.3 Biomedical Data

A large-scale ML classifier based on functional networks was used in [16] for the
classification of biomedical data. In their methodology, an iterative process is carried
out to sample the data in a MapReduce sampling strategy prior to the learning
stage of the model until the accuracy reaches a stable value. The algorithm is based
on a ANN using a the Newton-Raphson’s method with the maximum likelihood,
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obtaining more robust results than other well known algorithms such as SVMs, feed
forward ANNs, k-NN or random forest techniques.

13.3.3.4 Human Activity Recognition

Holistic data stream mining was investigated in [22], from which authors proposed
and developed a stream-based holistic analytics and reasoning in parallel approach
(SHARP for short), using decision trees for the classification. It was based on
the principles of incremental learning and lightweight processing, being this way
capable of induce a prediction model from Big Data. A more recent research was
conducted to analyze the behavior of SHARP for imbalanced class distributions
[21]. To do so, authors use the human activity recognition as case study, and SMOTE
as preprocessing approach to rebalance the uneven data distributions.

13.3.3.5 Fraud Detection

An Scalable Real-time Fraud Finder (SCARFF) was developed as a complete open
source solution for the fraud detection problem [7]. It integrates different Big Data
tools for a three stage pipeline. First, it uses Kafka for the log data collection
of all transactions. Next stage comprises Spark Streaming for the aggregation
of the transactions, and carries out both an scalable feature extraction and the
online learning and classification. Finally, results are stored in a Cassandra NoSQL
database management system for the sake of computing statistics over different time
periods.

13.3.3.6 Summary

Addressing real problems is maybe much harder than trying to design and test
a given model. In the previous case, we must take into account the specific
features of the case study and to adapt or create new models to obtain the highest
performance. We have reviewed several case studies. First, the use of random forest
and SVM classifiers have been applied in conjunction with data pre-processing and
cost-sensitive learning; the final objective was finding the most robust ortholog
proteins detection. In the second case study, a combination of several steps,
including SMOTE pre-processing, clustering, and logistic regression, allowed the
achievement of quality solutions. Next, a data reduction scheme was used for the
biomedical data in conjunction with ANNs. Finally, two differente applications were
reviewer in the area of data stream mining. On the one hand, and embedded systems
that combined decision trees and SMOTE in human activity recognition. On the
other hand, a complete open source scalable platform for fraud detection.
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13.4 Challenges for Imbalanced Big Data Classification

The general design of Big Data approaches can be regarded from a double
perspective [56]: (1) approximative fusion of models (one submodel per partition,
eventually fused); and (2) exact fusion for scalable models (compounding model
with the same output as the sequential version). This comprises for both learning
classifier models and preprocessing techniques.

The “approximative” case is usually the most common, as it just requires to run
the standard model over a chunk of the initial data, and then to aggregate the partial
results into a single output. However, the quality of the solutions achieved by this
type of algorithms is significantly degraded as the number of Maps is increased in
the search of efficiency and scalability.

The reason for this behavior is twofold. On the one hand, the use of local data
provides only a small view for the global problem space, that also may lead to a
different representation of the data in each Map process. On the other hand, fewer
positive class instances are included into each subset of data for the Map processes,
and models are clearly biased.

As stated in Chap. 10, a problem related to the lack of data is the potential
presence of small disjuncts [45, 68] in the data associated to each Map, also as a
consequence of the data division process.

When designing SMOTE-based oversampling methods following a direct
approximative workflow, the quality of the output data may deteriorate. This
is because SMOTE is relying on the positive class neighborhood to generate
new examples, and when that neighborhood is sparse and disjointed, it becomes
challenging for SMOTE to achieve its potential. Additionally, in a Big Data scenario
with a very large number of features, the computation of the actual neighbors
become higher, and so it is the variance for the newly created instances [5].

Taking into account all these issues, we must point out several challenges that
must be addressed in order to go one step further in the topic of imbalanced
classification for Big Data problems:

1. There is a necessity in a thorough design at the implementation level for current
algorithms. In other words, an effort for the design and development of robust
methodologies to address Big Data imbalanced problems has to be made. Novel
Big Data programming frameworks such as Spark [73] add different operators
that can ease the codification of this kind of solutions, allowing to take advantage
of the iterative features of these operators.

2. The design of novel algorithms for the generation of artificial instances. To
achieve this goal, the different level of partitioning must be taken into account
for the sake of maintaining the robustness of the modeling when seeking for a
higher level of scalability and predictive performance.

In addition, other resampling strategies can be considered to counteract
simultaneously the between-class imbalance and the within-class imbalance [37].
The main idea is to identify these small regions of data by means of clustering
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approaches, and to stress the significance of these areas by generating data within
this area.

We posit that it is an opportunity to expand SMOTE for a Spark or Hadoop
implementation to counter the challenges of small disjuncts, fewer number of
positive class examples, and high dimensionality. An appropriate extension of
SMOTE will then allow us to leverage the power of SMOTE in the Spark/Hadoop
frameworks of tackling Big Data.

3. Considering different trade-offs for the ratio between classes. It has been shown
that the standard 1:1 might not be the best class distribution to solve the
imbalanced classification problem [9, 69]. Therefore, the data fragmentation and
locality related to the different subsets in each Map process, can be overcome
by means of the generation of additional data. In this sense, we may refer to the
findings obtained in [58] and [66] in which a higher ratio of oversampling allows
the achievement of better results.

4. Focus on the MapReduce workflow. First, we can act on the learning classifier
itself with each Map task. Because instances in the small disjuncts are likely to
be difficult to predict, one could possibly use Boosting algorithms to improve
their classification performance [25].

Second, we can also take advantage of the MapReduce programming scheme
focusing on the Reduce stage. Specifically, we must analyze two different
schemes for the classification techniques: (1) carrying out a model aggregation
(fusion) from the outputs of every Map process; or (2) building an ensemble
system and combine their predictions during the inference process.

Therefore, we must be aware on the twofold perspective “fusion” versus
“ensemble” of models in the MapReduce scheme, and how to introduce diversity
within each Map process so that the joint of single models can lead to an optimal
solution.

5. Manage Variety of the data. Big Data comprises Volume, Velocity, and also
Variety of input sources. Regarding this last characteristic, we must be aware
of those multiple type of applications in Big Data analytics in which data to
process and classify comes in form of graphs, XML structures, video sequences,
hyperspectral images, associations, tensors, and so on [6, 49]. Standard ML
techniques are not capable of address properly such complex structures, and
trying to convert them to numerical values may hinder the final quality of
the system. Therefore, it seems appropriate to design both preprocessing and
learning algorithms adapted to this novel data representations to achieve the
highest advantage in this context.

13.5 Summarizing Comments

This chapter has focused on the topic Big Data problems. The significance of
carrying out analytics tasks in this context is beyond all doubts, and imbalanced
classification is not an exception. However, obtaining insight and knowledge from
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such volume of information is not a straightforward process. Standard solutions
must be adapted to a novel scalable and fault tolerant distributed scheme known as
MapReduce.

To have a complete understanding of this novel framework, the inner details of
the MapReduce programming scheme have been presented. Additionally, the most
significant technologies that implement it, namely Hadoop-MapReduce and Apache
Spark, have been described. Finally, some ML libraries for Big Data in which well-
known algorithms MapReduce implementations are available, were also introduced.

Once the concept of Big Data has been make clear, a deep review for those
solutions that have been already proposed to deal with imbalanced classification in
this scenario have been carried out. These approaches have been organized into three
parts considering whether they use a data pre-processing approach, an algorithmic
modification via cost-sensitive learning, or they rather aim to solve a given real
application.

Finally, we have stressed some open problems related to inner data characteristics
such as the lack of data and small disjuncts generated in the data partitions in the
Map processes. Taking this into account, we have posited several challenges that
must be taken into account in order to develop high quality solutions in this area of
research. On the one hand, a detailed design of artificial data generation techniques
to improve the behavior of pre-processing approaches. On the other hand, study
the different possibilities related to the fusion of models or the management of an
ensemble system with respect to the final Reduce task.
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Chapter 14
Software and Libraries for Imbalanced
Classification

Abstract Researchers in the topic of imbalanced classification have proposed
throughout the years a large amount of different approaches to address this issue.
To keep on developing this area of study, it is of extreme importance to make these
methods available for the research community. This allows for a double advantage:
(1) to analyze in depth the features and capabilities of the algorithms; and (2) to
carry out a fair comparison with any novel proposal. Taking the former into account,
different open source libraries and software packages on imbalanced classification
can be found, being built under different tools. In this chapter, we compile the most
significant ones focusing on their main characteristics and included methods, from
standard DM to Big Data applications. Our intention is to make close to researchers,
practitioners and corporations, a non-exhaustive list of the alternatives for applying
diverse algorithms to their problem in order to achieve the most accurate results
with the lowest effort. To present these software tools, this chapter is organized
as follows. First, in Sect. 14.1 the significance of software implementations for
imbalanced classification is stressed. Then, Sect. 14.2 introduces the Java tools,
i.e. KEEL [2] and WEKA [17]. Next, Sect. 14.3 focus on different R packages.
The “imbalanced-learn” Python toolbox [29] from “scikit learn” [39] is described
in Sect. 14.4. Big Data solutions under Spark [26] are summarized in Sect. 14.5.
Finally, Sect. 14.6 provides some concluding remarks.

14.1 Introduction

The interest for Analytics and DM solutions started as soon as practitioners realized
the advantages derived from the knowledge extraction process [22]. This task can be
carried out over a myriad of applications, such as finances, medicine, engineering,
and many others. However, most of the users from the former areas are non-
specialized in computer science, and therefore it might be difficult for them to design
and implement the software needed to accomplish their goals.

This fact motivated the rise of many commercial and noncommercial software
suites that eases the application of the state-of-the-art algorithms in DM. Many
corporations opt for a commercially distributed solution (e.g. SPSS Clementine,
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Oracle DM or KnowledgeSTUDIO), but the associated licenses are not suitable for
other practitioners.

In this sense, there is a strong community that develop a good number of open
source tools. There are several advantages related to this type of software [11]. First,
it allows implementations to be publicly available for all the research community,
who can take advantage of these models for their own applications. Additionally,
it supports transparency, meritocracy, and community development, i.e. explicit
collaborative participation to gather interesting feedback to improve the capabilities
and performance of the initial design. Finally, this collaboration and sharing allow
other people to make modifications to the source code and incorporate those changes
into their own projects.

Throughout this chapter, we focus on those open source libraries and packages
that comprise methods and techniques for addressing imbalanced classification.
Specifically, we have selected tools from different programming communities,
namely Java,1 R2 and Python.3 Additionally, we include some initial software
approaches in the scenario of Big Data [14, 34]. Our aim is that different users
may select the most appropriate solution for them, depending on both their previous
experience and requirements.

14.2 Java Tools

Java is a high level programming language that gained wide popularity for scientific
applications due to some of its advantages. Among others, we may stress that it
is stable, portable for several platforms, object-oriented for the ease of use and
compatible with novel languages such as Scala or JRuby.

Two of the most well-known software tools for DM purposes are KEEL [2] and
WEKA [17]. The reason for their success is basically the inclusion of some of
the most significant state-of-the-art algorithms, and their ease of use. Specifically,
experiments can be directly designed from a workflow based panel, in which loosely
coupled, individual processing nodes can be “bolted together” to permit complex
computational operations. This issue implies no need to use any programming
environment.

The main difference between KEEL and Weka is that the former provides a
complete module for imbalanced classification, whereas the latter is limited to cost-
sensitive and simple resampling. In what follows, we will describe in detail KEEL
software and the imbalanced module (Sect. 14.2.1), and then we will explain how to
address imbalanced problems in Weka (Sect. 14.2.2).

1https://www.java.com/
2https://www.r-project.org/
3https://www.python.org/
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14.2.1 KEEL Software Suite

The KEEL software4 was originally developed as a tool pretty much focused on
the implementation of evolutionary algorithms and soft computing techniques for
standard DM problems such as regression, classification or association rules, as well
as data preprocessing techniques [8, 20]. KEEL was launched in 2009 [1] and later
upgraded in 2011 [2] as a non-commercial Java suite, so that, it could be on all major
platforms.

KEEL provides a simple GUI to design experiments with different data sets
and computational intelligence algorithms in order to assess the behavior of
the algorithms. Moreover, KEEL was designed with a two-fold goal: research
and educational. This suite came along with KEEL-dataset,5 a repository that
includes standardized data set partitions for comparison purposes in the KEEL
format and shows some algorithms’ results over these data sets. This repository
provides researchers with quality well-known data sets, allowing easier comparative
experimental studies. Focusing on imbalanced classification, it comprises a total of
167 benchmark problems under different scenarios:

1. 22 datasets with an imbalance ratio between 1.5 and 9. These are considered as
low imbalanced problems.

2. 100 datasets with an imbalance ratio higher than 9. These are divided into three
different parts, depending on the research papers in which they have been used.
All of them are considered to be highly imbalanced problems, i.e. comprising an
additional difficulty for the classification task.

3. 15 Multiple class imbalanced problems. These are used to extend the studies in
imbalanced classification when several classes are involved.

4. 30 Noisy and Borderline Examples. These are synthetic problems to analyze the
behavior in the case of both imbalance and noise.

As mentioned previously, the KEEL Software Suite provides a complete module
for the experimentation of this type of problem. Specifically, the implemented
solutions came from both external approaches, i.e. data pre-processing, and internal
approaches, i.e. algorithmic and cost-sensitive learning classifiers. In addition, it
contains a large number of ensemble methods that works either at the data-level
or by considering to embed a cost-sensitive framework in the ensemble learning
process.

Figure 14.1 summarizes the three main contributions of this module, which are
also listed below:

1. Preprocessing techniques: Apart from the existing preprocessing techniques
included in the original KEEL Experiment section, this module includes two
new categories: Over-Sampling Methods and Under-Sampling techniques. These

4http://www.keel.es
5http://www.keel.es/datasets.php

http://www.keel.es
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Fig. 14.1 Imbalanced learning module main characteristics. (a) Under-sampling and over-
sampling models. (b) Imbalanced learning algorithms. (c) Tailored statistical tests and example
of experiment design

preprocessing techniques may be later connected to standard DM models. Reader
may recall data level techniques for imbalanced classification in Chap. 5.

2. Methods: KEEL provides tailored algorithm for the class-imbalanced problem.
It contains the state-of-the-art in ensemble learning (up to 21 methods, already
described in Chap. 7) [18] and cost-sensitive classification such as C.5, ANNs
and SVMs (see Chap. 4).
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3. Visualisation and Statistical Tests: As in the case of standard classification,
KEEL includes a number of visualization and statistical utilities. For this
module, these have been modified to take into account the imbalanced problem.
Specifically, it uses geometric mean and area under ROC curve (AUC) as more
appropriate performance measures for this scenario (see Chap. 3).

The advantages of KEEL with respect to other alternatives to develop experi-
ments on imbalanced classification are enumerated next:

• Its use is independent on previous knowledge on computer science.
• As imbalanced datasets are already available within the tool, initial testing is

straightforward. Additionally, it includes an easy-to-use importation window to
add user data for further experimentation.

• It contains the largest collection of approaches to address imbalanced classifi-
cation. Furthermore, these methods come from different families of techniques,
namely preprocessing, cost-sensitive, and ensemble learning. Finally, a statistical
analysis of the results can be directly carried out within the experimental
workflow.

The latest source code version of KEEL (3.0) can be downloaded at https://
github.com/SCI2SUGR/KEEL.

14.2.2 Weka

Weka is probably one of the most well-known software tool to perform ML and
DM tasks [17]. Its algorithms can either be applied directly to a dataset from
its own interface or imported into the users’ Java code. Weka contains tools for
data pre-processing, classification, regression, clustering, association rules, and
visualization. Due to its enormous widespread usage, a complete set of extra
packages are available for completing its functionalities.

In the event of addressing imbalanced data, Weka provides two solutions. On the
one hand, to carry out a training data rebalancing. On the other hand to perform a
cost-sensitive classification.

The rebalancing procedure is selected via instance filtering methods (see
Fig. 14.2). By default, Weka includes oversampling (named as “resample”) and
undersampling (named as “SpreadSubsample”). In addition to these, the SMOTE
preprocessing can be included via the package manager.

• Resample produces a random subsample of a dataset using either sampling
with replacement or without replacement. The main parameter is a bias factor
that determines the final ratio of class distribution. This way, the current class
distribution may be maintained in the subsample, or it can be biased toward a
uniform distribution. The only constraints are that the original dataset must fit
entirely in memory and the dataset must have a nominal class attribute, although
the unsupervised version might be used in this case.

https://github.com/SCI2SUGR/KEEL
https://github.com/SCI2SUGR/KEEL
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Fig. 14.2 Weka preprocessing techniques

• SpreadSubsample allows to randomly subsampling the data by also specifying
the spread desired in the classes. For example, user may specify that there be at
most a 2:1 difference in class frequencies.

• SMOTE implements the original algorithm from [9]. Required parameters are
the number of neighbors to build synthetic instances from a given data point, and
the percentage of new created examples, that is, if a 100% is chosen, then the
minority class will be doubled.

Previous preprocessing filters can be applied in a chain, so that “SpreadSubsam-
ple” undersampling can be applied after the “SMOTE” oversampling.

Regarding cost-sensitive learning, there are basically two ways to proceed.
The first one is via instance weighting using the “ClassBalancer” filtering. The
second one is by importing a user derived cost-matrix. In this case, there are two
different options, which are based on meta learning. On the one hand, to use the
“CostSensitiveClassifier” approach. On the other hand, to opt for the “MetaCost”
scheme. An example is illustrated in Fig. 14.3.

• The goal of “ClassBalancer” is reweighting the instances in each class to obtain a
same total class weight. When used in conjunction with “FilteredClassifier,” only
the training data will be reweighted so that each class has the same total weight,
i.e. test data will be left unchanged.

• When using the “CostSensitiveClassifier”, two additional methods can be used
to introduce cost-sensitivity: reweighting training instances according to the total
cost assigned to each class; or predicting the class with minimum expected
misclassification cost (rather than the most likely class). Performance can often
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Fig. 14.3 Weka cost-sensitive learning example

be improved by using a Bagged classifier to improve the probability estimates of
the base classifier.

Since the classifier normalizes the cost matrix before applying it, it makes it
hard coming up with a cost matrix, i.e. to balance out imbalanced data. The most
straightforward solution is to set the cost as to equalize the class distributions,
i.e. achieving a 1:1 class distribution afterward. The hitch here is that this could
be limited to 2-class problems.

• The application of the cost matrix in MetaCost is more intuitive. This classifier
should produce similar results to one created by passing the base learner to
Bagging, which is in turn passed to a “CostSensitiveClassifier” operating on
minimum expected cost. The difference is that MetaCost produces a single cost-
sensitive classifier of the base learner, giving the benefits of fast classification and
interpretable output (if the base learner itself is interpretable). This implemen-
tation uses all bagging iterations when reclassifying training data (the MetaCost
paper reports a marginal improvement when only those iterations containing each
training instance are used in reclassifying that instance).

MetaCost will compute the costs (Costs) based on the class distribution the
bagged base learner returns (Class probs) and select the class with the lowest
cost (Chosen class).

Finally, we must remark that apart from these methods to cope with imbalanced
distributions, Weka also includes evaluation methods for this scenario, such as the
probabilistic AUC metric.

The advantages of the Weka tool for its use in the scenario of imbalanced
classification are marginal in contrast to KEEL. In this case, very simple solutions
for this area of work are included. Moreover, in the case of cost-sensitive learning,
the necessity of setting up a cost-matrix may cause the achievement of sub-optimal
models. However, the choice for Weka is well suited when users aim at achieving
some preliminary results in the context of imbalanced classification.
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Latest version of Weka (3.8.2) may be obtained from http://www.cs.waikato.ac.
nz/ml/weka/downloading.html.

14.3 R Packages

R is an open source programming language made by mathematicians. It is mainly
based on statistical computations that can be used both interactively, through its
command line, and programmatically, through written R scripts. Because of its
flexibility and exploratory data analysis functionality, including rich visualization
skills, R is nowadays one of the most used tool for data science for users of different
communities [44].

R and its libraries implement a wide variety of statistical and graphical tech-
niques. In addition, R is an extensible software tool whose functionality can be
augmented through packages. An R package usually provides an specific functional-
ity, documentation, data, and usage examples. What makes R extensibility different
from other similar tools is the availability of a distributed package repository, named
CRAN (Comprehensive R Archive Network) [25], which eases the automated
download and installation of these packages.

Regarding the packages providing support to imbalanced classification, dif-
ferent oversampling and undersampling preprocessing methods can be found.
Specifically, we will refer to unbalanced (Sect. 14.3.1), smotefamily (Sect. 14.3.2),
rose (Sect. 14.3.3), DMwR (Sect. 14.3.4), and the most recent contribution for R,
the package simply known as imbalance (Sect. 14.3.5). Finally, the mlr package
supports cost-sensitive classification (Sect. 14.3.6).

14.3.1 Package Unbalanced

The unbalanced package was developed by researchers of the ML group from
Université Libre de Bruxelles [12]. It contains some of the most well-known
sampling and distance based methods for imbalanced classification task, which are
listed below:

• Oversampling methods: random oversampling (ubOver) and SMOTE
(ubSMOTE).

• Undersampling methods: random undersampling (ubUnder), OSS (ubOSS),
CNN (ubCNN), ENN (ubENN), NCL (ubNCL) and Tomek-Links (ubTomek).

All these methods can be called by a wrapper function ubBalance that allows
testing all these strategies by simply changing the argument type. A simple example
is illustrated in Fig. 14.4.

Apart from implementing some of the most well-known preprocessing tech-
niques for imbalanced classification, its main feature is to propose a “Racing”

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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Fig. 14.4 R programming steps to carry oversampling and undersampling with unbalanced
R package. (a) How to carry out oversampling with “ubOver” function. (b) How to carry out
undersampling with “ubOver” function

algorithm to select adaptively the most appropriate strategy for a given unbalanced
task (ubRacing). This function compares the 8 previous preprocessing algorithms,
plus applying the learning over the original dataset. Candidates are assessed on
different subsets of data and, each time a new assessment is made, the Friedman
test is used to dismiss significantly inferior candidates. A 10-FCV is used to provide
the assessment measure to the race. If a candidate is significantly better than all the
others than the race is terminated without the need of using the whole dataset. In
case there is not evidence of worse/better methods, the race terminates when the
entire dataset is explored and the best candidate is the one with the best average
result. Supported algorithms are stated in the mlr package.

We may observe an example of the imbalanced Race working procedure in
Fig. 14.5.

Finally, in order to test its functionality, the package includes the ubIonosphere
dataset. It is a modification of the Ionosphere dataset contained in mlbench package.
It has only numerical input variables, i.e. the first two variables are removed. The
Class variable, originally taking values bad and good, has been transformed into
a factor where 1 denotes the minority (bad) and 0 the majority class (good). This
variable is our target and it is in the last column of the dataset.

As summary, the advantages of this package is the number of different prepro-
cessing techniques, especially for undersampling, and the use of the meta-learning
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Fig. 14.5 Automatic selection of the preprocessing procedure with the “Racing” function from
unbalanced R package

procedure for selecting the most appropriate algorithm. However, it lacks from a
variety of oversampling approaches, which are more commonly used in the special-
ized literature. Latest version (2.0) can be found at CRAN package repository.6

14.3.2 Package Smotefamily

smotefamily is an R package developed with aims at providing a collection
of various oversampling techniques, all of which to be considered as SMOTE

6https://cran.r-project.org/web/packages/unbalanced/index.html

https://cran.r-project.org/web/packages/unbalanced/index.html
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Fig. 14.6 Example of how to generate oversampled data with different techniques with the
smotefamily R package

extensions [42]. Implemented approaches are listed next. SMOTE, ADASYN,
Adaptive Neighbor Synthetic Majority Oversampling TEchnique (ANS),
Borderline-SMOTE, DBSMOTE, SafeLevels-SMOTE and Relocating Safe-level
SMOTE (RSLS) [41]. A simple example of its working procedure is shown in
Fig. 14.6

The strongest point of this package is basically compiling some of the best
behaving oversampling techniques [32]. However, there is still lots of SMOTE
extensions that can provide high quality results depending on the scenario the user
is addressing.

Latest version (1.2) can be found at CRAN package repository.7

14.3.3 Package ROSE

This R package has its basis on the Random Over-Sampling Examples (ROSE)
algorithm [33, 36]. It is a bootstrap-based technique which aids the task of binary
classification in the presence of rare classes. It handles both continuous and
categorical data by generating synthetic examples from a conditional kernel density
estimate of the two classes. Additionally, function ovun.sample implements more
traditional remedies to the class imbalance, such as oversampling the minority class,
undersampling the majority class, or a combination of over and undersampling.

Different metrics to evaluate a learner accuracy are also supplied. Specifically,
roc.curve function returns the ROC curve and computes the area under the curve
(AUC) for binary classifiers; whereas accuracy.meas function computes precision,
recall and the F measure of a prediction.

7https://cran.r-project.org/web/packages/smotefamily/index.html

https://cran.r-project.org/web/packages/smotefamily/index.html
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Holdout, bootstrap or cross-validation estimators of these accuracy metrics are
computed by means of ROSE and provided by function ROSE.eval, to be used in
conjunction with virtually any binary classifier.

Finally, it provides the “hacide” simulated training (1,000 instances) and test
(200 instances) set for imbalanced binary classification. It is represented by 2 real
features. The rare class may be described as a half circle depleted filled with the
prevalent class, which is normally distributed and has elliptical contours. The IR is
49 (positive examples are just the 2% of the data).

There are several interesting features for the ROSE package. First, we may
find an alternative to the SMOTE-like oversampling approaches, i.e. with ROSE
synthetic instances are depending on their density estimation, rather than randomly.
Second, it provides a direct way to asses the classification performance with the
AUC metric and visualization of the ROC. Finally, a complete validation procedure
is also available to simplify this process. However, it lacks from a more complete
list of preprocessing algorithms.

A simple usage example is shown in Fig. 14.7. Latest version (0.0–3) can be
found at CRAN package repository.8

14.3.4 Package DMwR

The functions and data for “DM with R” (DMwR) package comprise a complete list
of methods to carry out different DM tasks, from preprocessing, to classification and
regression. It was developed to complement the book from L. Torgo [47].

Among the included functions, it supports the SMOTE preprocessing algorithm.
It allows to carry out both oversampling (by creating synthetic instances) and
undersampling (by random removal of majority instances). The latter value is
considered as a percentage of the final number of minority instances in the dataset,
i.e. after the oversampling step. The function can also be used to obtain directly
the classification model from the resulting balanced data set. This can be done by
including the name of the R function that implements the classifier in the parameter
learner. A small example is depicted in Fig. 14.8.

The DMwR package presents a large collection of functions for those users who
want to initiate in the area of DM. It is not specifically designed to address the
imbalanced classification task, but the inclusion of the SMOTE algorithm allows to
check the behavior of the classifiers in the event of these uneven class distributions.

Latest version (0.4.1) can be found at CRAN package repository.9

8https://cran.r-project.org/web/packages/ROSE/index.html
9https://cran.r-project.org/web/packages/DMwR/index.html

https://cran.r-project.org/web/packages/ROSE/index.html
https://cran.r-project.org/web/packages/DMwR/index.html
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Fig. 14.7 A complete workflow for the experimentation with imbalanced dataset with ROSE R
package
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Fig. 14.8 Example of the SMOTE preprocessing with DMwR R package

14.3.5 Package Imbalance

The software named as imbalance is the one of the latest packages for imbal-
anced classification published at CRAN [10]. This software was developed with the
idea of overcoming some of the missing capabilities of the related R packages. First
of all, it stresses the significance of oversampling techniques by providing the most
recent approaches published in the specialized literature. Additionally, it includes a
complete visualization environment, so that the practitioner is now able to determine
graphically the influence of the novel synthetic instances in the training data. Finally,
it allows for an easier integration of the implemented approaches with the remainder
packages on imbalance classification at CRAN.

In this library, there are 5 different novel oversampling algorithms available, plus
a filtering method. For the ease of usage, the package also includes the method
oversample as a wrapper for all implemented methods, also including the origi-
nal SMOTE preprocessing and several well-known extensions. The aforementioned
new preprocessing techniques are listed below:

• mwmote. The Majority Weighted Minority Oversampling Technique (MWMOTE)
[4] is an extension of the standard SMOTE algorithm [9, 16]. It is focused on
stressing the influence of borderline minority instances, as well as small disjuncts
that may be found close to these borderline areas.
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• racog, wracog. Rapidly Converging Gibbs (RACOG) and wrapper-based
RACOG (wRACOG) [13] are two methods designed for discrete attributes.
Instead of using the classical interpolation as in most SMOTE extensions, the
generation of novel examples is carried out using a Gibbs Sampler scheme. The
difference between both approaches is the stop condition. While RACOG has an
a priori number of instances to be generated, wRACOG uses a classifier as in a
“wrapper” scheme.

• rwo. In Random Walk Oversampling (RWO) [52] the idea is to kept new
synthetic instances as close as possible to the original ones. This is done by taking
into account both the mean and deviation of the numerical attributes.

• pdfos. Probability Distribution density Function estimation based Oversam-
pling (PDFOS) [19] uses a multivariate Gaussian kernel methods to locally
approximate the minority class.

• neater. filteriNg of ovErsampled dAta using non cooperaTive gamE theoRy
(NEATER) [3] that, as the name suggest, is based on game theory. This way, it
focus the cleaning procedure on those instances that with higher probability of
belonging to the opposite class, based on each instance neighborhood.

To evaluate the oversampling process, a visual method named as plot
Comparison is included. It plots a pairwise comparative grid of a selected
set of attributes, both in the original dataset and the oversampled one. That way, if
a proper oversampling has been performed, larger minority clusters in the resulting
dataset are expected to be shown.

To evaluate the oversampling process, a visual method named as plot
Comparison is included. It plots a pairwise comparative grid of a selected
set of attributes, both in the original dataset and the oversampled one. That way, if
a proper oversampling has been performed, larger minority clusters in the resulting
dataset are expected to be shown.

The following example loads a dataset included in this package and applies two
different preprocessing techniques, namely MWMOTE and RWO. Both approaches
are set to get a completely balanced dataset. For the sake of contrasting the output
of both alternatives for oversampling, a pairwise visual comparison between first
three attributes of the original and modified datasets is plotted. The output can be
observed in Fig. 14.9, and in Fig. 14.10.

library("imbalance")

data(yeast4)

dataset=yeast4

imbalanceRatio(dataset)

# 0.03558967

toOversample = as.integer(nrow(dataset) - (nrow(dataset)*

imbalanceRatio(dataset)))

newSamples <- mwmote(
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dataset,

numInstances = toOversample

)

newDatasetMW <- rbind(

dataset,

newSamples

)

plotComparison(

dataset,

newDatasetMW,

attrs = names(dataset)[1:3]

)

newDatasetRWO <- oversample(dataset,ratio=1,method="RWO")

plotComparison(

dataset,

newDatasetRWO,

attrs = names(dataset)[1:3]

)

Latest version (1.0.0) can be found at CRAN repository.10

14.3.6 Package mlr: Cost-Sensitive Classification

Up to now, we have reviewed those R packages that include functions to perform a
preprocessing step allowing to strengthen the subsequent estimation of any binary
classifier. However, cost-sensitive classification is also possible using the ML with R
(mlr) package [7]. There are two ways to achieve this. On the one hand, to use class-
dependent misclassification cost, where an ordinary ClassifTask must be generated.
On the other hand, to consider example-dependent misclassification costs, by means
of a CostSensTask function.

In the first case, mlr supports thresholding and rebalancing. Thresholding is used
to turn posterior probabilities into class labels are chosen such that the costs are
minimized. This requires a Learner that can predict posterior probabilities. During
training the costs are not taken into account. Rebalancing requires the learning

10https://cran.r-project.org/web/packages/imbalance/index.html
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Fig. 14.9 MWMOTE over yeast4
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Fig. 14.11 Cost-sensitive learning by class-dependent misclassification costs with mlr R package

classifier that supports class weights or observation weights. Steps for both types
of tasks are summarized in Fig. 14.11.

In the case of example-dependent misclassification costs, the feature values x

and an n × K cost matrix that contains the cost vectors for all n examples in the
data set are required. mlr provides several wrappers to turn regular classification or
regression methods into Learners that can deal with example-dependent costs:

• makeCostSensClassifWrapper (wraps a classification Learner): This is a naive
approach where the costs are coerced into class labels by choosing the class label
with minimum cost for each example. Then a regular classification method is
used.

• makeCostSensRegrWrapper (wraps a regression Learner): An individual regres-
sion model is fitted for the costs of each class. In the prediction step first the costs
are predicted for all classes and then the class with the lowest predicted costs is
selected.

• makeCostSensWeightedPairsWrapper (wraps a classification Learner): This is
also known as cost-sensitive one-vs-one (CS-OVO) and the most sophisticated
of the currently supported methods. For each pair of classes, a binary classifier
is fitted. For each observation the class label is defined as the element of the
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Fig. 14.12 Cost-sensitive learning by example-dependent misclassification costs with mlr R
package

pair with minimal costs. During fitting, the observations are weighted with the
absolute difference in costs. Prediction is performed by simple voting.

In Fig. 14.12 and example is shown using the third method commented above.
The wrapped Learner is created and trained on the CostSensTask defined above.

mlr is one of the widest used packages in R when addressing DM tasks. It
contains a large amount of different ML techniques, as well as a vast documentation
available in the Web.11 In spite no preprocessing techniques are explicitly included,
they can be integrated with the current mlr functions. Finally, it allows different
alternatives for cost-sensitive learning, as described throughout this section, adding
a good functionality to this package for addressing imbalanced classification.

Latest version (2.12.1) can be found at CRAN package repository.12

14.4 Python Libraries

The Python programming language has become one of the most popular tools for
scientific computing. There are several reasons for becoming such a wide-spread
programming solution. First, we may refer to its high-level interactive nature, being
an easy to learn, powerful language. Specifically, it is compound of efficient data
structures for object-orient programming. In addition it offers a simple and dynamic
typing which, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.
Furthermore, it has a wide and mature ecosystem of scientific libraries, which adds
a higher support for algorithmic development in ML and exploratory data analysis
[35, 40].

11https://mlr-org.github.io/mlr-tutorial/release/html/
12https://cran.r-project.org/web/packages/mlr/index.html

https://mlr-org.github.io/mlr-tutorial/release/html/
https://cran.r-project.org/web/packages/mlr/index.html


370 14 Software and Libraries for Imbalanced Classification

The Python interpreter and the extensive standard library are freely available
in source or binary form for all major platforms from the Python Web site,13 and
may be freely distributed. The same site also contains distributions of and pointers
to many free third party Python modules, programs and tools, and additional
documentation.

In spite of the number of different libraries developed for Python, to the best
of our knowledge it was not until 2017 when the first solution for the task of
imbalanced classification was released. We refer to the imbalanced-learn
open-source Python toolbox [29].

This toolbox depends only on numpy, scipy, and scikit-learn and is distributed
under MIT license. Specifically, it was designed to be fully compatible into the
aforementioned scikit-learn environment [39], being part of the “scikit-learn-
contrib” supported project. Documentation, unit tests as well as integration tests are
provided to ease usage and contribution.

The imbalanced-learn toolbox provides a wide range of preprocessing
methods to cope with the problem of imbalanced dataset. Specifically, authors
divided the implemented approaches into four different groups: (i) under-sampling,
(ii) over-sampling, (iii) combination of over-and under-sampling, and (iv) ensemble
learning methods. All of these are summarized in Table 14.1.

Each sampler class implements three main methods inspired from the scikit-learn
API: (i) fit computes several statistics which are later needed to resample the data
into a balanced set; (ii) sample performs the sampling and returns the data with the
desired balancing ratio; and (iii) fit sample is equivalent to calling the method fit
followed by the method sample. A class Pipeline is inherited from the scikit-learn
toolbox to automatically combine samplers, transformers, and estimators.

It also provides a classification report similar to scikit-learn,including some
specific state-of-the-art metrics that are specific to evaluate the imbalanced learning
problem. Specifically, these are recall, specificity, f-measure (F1), geometric mean,
Index of Balanced Accuracy (IBA), and support.

Authors of the imbalanced-learn toolbox have made available a tutorial with
general-purpose and introductory examples in the sphinx-gallery.14 Specifically, an
illustration of the working procedure of all the included algorithms may be found
in the aforementioned online documentation site. Figure 14.13 shows different 2D
outputs for the application of SMOTE and its variants. Figure 14.14 shows the
Python source code used to rebalance a training set with the SMOTE algorithm
using the imbalance-learn software.

Source code, binaries, and documentation can be downloaded from https://
github.com/scikit-learn-contrib/imbalanced-learn. Future versions of this Python
library aim to include additional methods based on prototype/instance selection,
generation, and reduction. Additionally, user guides are also intended to become
more complete.

13https://www.python.org/
14http://contrib.scikit-learn.org/imbalanced-learn/auto_examples/index.html

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
https://www.python.org/
http://contrib.scikit-learn.org/imbalanced-learn/auto_examples/index.html
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Table 14.1 List of preprocessing techniques included in the imbalanced-learn Python
library

Preprocessing Technique Ref.

Under-sampling Random majority under-sampling with replacement

Extraction of majority-minority Tomek links [46]

Under-sampling with cluster centroids

NearMiss-(1 & 2 & 3) [51]

Condensed nearest neighbour [23]

One-sided selection [27]

Neighbourhood cleaning rule [28]

Edited nearest neighbours [50]

Instance hardness threshold [43]

Repeated edited nearest neighbours [45]

AllKNN [45]

Over-sampling Random majority over-sampling with replacement

SMOTE – Synthetic minority over-sampling technique [9]

bSMOTE(1 & 2) – Borderline SMOTE of types 1 and 2 [21]

SVM SMOTE – Support vectors SMOTE [38]

ADASYN – Adaptive synthetic sampling approach for imbal-
anced learning

[24]

Hybrid sampling SMOTE + TomekLinks [5]

SMOTE + ENN [6]

Ensemble sampling EasyEnsemble [30]

BalanceCascade [30]

14.5 Big Data Software: Spark Packages

Many platforms for large-scale processing have emerged in the Big Data environ-
ment in recent times, as it was introduced in Chap. 13. Apache Spark15 [26] as one
of the most powerful engines in this environment, is aimed at performing faster
distributed computing on Big Data by using in-memory primitives. This platform
allows user programs to load data into memory and query it repeatedly, making it a
well suited tool for online and iterative processing (especially for ML algorithms).
It was developed motivated by the limitations in the MapReduce/Hadoop paradigm
[31, 49], which forces to follow a linear dataflow that make an intensive disk-usage.

Spark is based on distributed data structures called RDDs. Operations on RDDs
automatically place tasks into partitions, maintaining the locality of persisted data.
Beyond this, RDDs are an immutable and versatile tool that let programmers
persist intermediate results into the memory or disk for re-usability purposes, and
customize the partitioning to optimize data placement. RDDs are also fault-tolerant.

15http://spark.apache.org/

http://spark.apache.org/
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Fig. 14.13 An illustration of the SMOTE method and its variants with imbalanced-learn
Python toolbox

The lazy operations performed on each RDD are tracked using a “lineage”, so that
each RDD can be reconstructed at any moment in case of data loss.

In addition to Spark Core, some additional projects have been developed to
complement the functionality provided by the core. Among these sub-projects (built
on top of the core), we must stress the ML library (MLlib) [37]: is formed by
common learning algorithms and statistic utilities. Among its main functionalities
includes: classification, regression, clustering, collaborative filtering, optimization,
and DR. This library has been especially designed to simplify ML pipelines in large-
scale environments.

To address classification with imbalanced data, the Logistic Regression classifier
from MLlib supports cost-sensitive learning. To do so, weights can be set to the
input data by including an additional column. Then, in the command line that creates
the classifier it is necessary to three different columns: (i) features; (ii) label; (iii)
weights. More details on this functionality can be consulted in the following link:
https://issues.apache.org/jira/browse/SPARK-9610. During the writing of this book,
the class weighting for the Random Forest algorithm was under development, with a
major priority, as stated in the project board at https://issues.apache.org/jira/browse/
SPARK-9478.

Apart from the former solution, no preprocessing solution from MLlib is directly
related with imbalanced classification. For this reason, some authors on the topic
have developed complementary libraries that can be used when facing Big Data
imbalanced problems.

https://issues.apache.org/jira/browse/SPARK-9610
https://issues.apache.org/jira/browse/SPARK-9478
https://issues.apache.org/jira/browse/SPARK-9478
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Fig. 14.14 Python script for applying SMOTE preprocessing and variants with
imbalanced-learn Python toolbox
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A first example is the evolutionary undersampling proposed by Triguero et al.
[48]. Through different iterations, this model is able to find the most appropriate
subset of majority instances that, in conjunction with the minority ones, achieve the
best results when training a decision tree in imbalanced domains. Through Spark in-
memory operations, this model is able to make an efficient use of data. The complete
source code can be downloaded at https://github.com/triguero/EUS-BigData.

An easy to use random oversampling and random undersampling built in Scala
was one of the contributions made in [15]. It was included in Spark-packages
repository at https://spark-packages.org/package/saradelrio/Imb-sampling-ROS_
and_RUS, while the complete source code with examples is available at
https://github.com/saradelrio/Imb-sampling-ROS_and_RUS. In the oversampling
implementation, after the replication of the minority class data points, all examples
are repartitioned. This prevents ending up with exactly the same examples in a
single partition when carrying out the classification stage.

Finally, we must stress the Spark implementation of the SMOTE and SMOTE-
TL preprocessing algorithms, which can be downloaded from https://github.com/
adritor7/SMOTE-and-Tomek-Links-in-Spark. It contains its own implementation
of the kNN procedure for obtaining the neighborhood when building the new
synthetic instances. Similar to the case of random oversampling described above,
after filtering out the majority class data points, the minority class examples are
repartitioned. This is carried out in order to avoid all minority class data points to
be stored in the same data chunk, and thus hindering data parallelism.

14.6 Summarizing Comments

In this chapter, we have compiled the most significant open source tools that provide
algorithms to address the imbalanced classification task. We have divided them with
respect to their supported language, namely Java, R, Python. Additionally, we have
provided some examples of Scala algorithms in Spark for Big Data applications.

KEEL and Weka are two classical Java software tools used by both research and
academia for DM with ML algorithms. Specifically, we have stressed the signifi-
cance of KEEL for imbalanced classification. This is due to the fact that it provides a
complete module with a large amount of approaches from all types of solutions from
this area. There is a large set of preprocessing techniques, algorithmic modifications,
cost-sensitive learning, and ensemble learning algorithms. The goodness of both
KEEL and Weka is their workflow panel, from which any un-experienced user from
every area of knowledge can simply build a chain of methods for carrying out the
experimentation.

Regarding R-based solutions, we have enumerated an exhaustive list of different
libraries that have been either developed ad hoc for the imbalanced classification
task, or that support solutions to cope with uneven class distributions. The only
hitch in this case is the necessity of writing all the necessary source code in order to
include these algorithms.

https://github.com/triguero/EUS-BigData
https://spark-packages.org/package/saradelrio/Imb-sampling-ROS_and_RUS
https://spark-packages.org/package/saradelrio/Imb-sampling-ROS_and_RUS
https://github.com/saradelrio/Imb-sampling-ROS_and_RUS
https://github.com/adritor7/SMOTE-and-Tomek-Links-in-Spark
https://github.com/adritor7/SMOTE-and-Tomek-Links-in-Spark
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Together with R, Python is a popular choice for both computer scientists and
users from other areas to carry out scientific computations and programs. However,
to the best of our knowledge there is only a recent library that allows to carry out
data preprocessing to rebalance the training set for imbalanced classification.

Finally, we have focused on the future of Big Data. Being a novel work scenario,
there are still few software tools available. Specifically, we have enumerated three
approaches, namely an evolutionary undersampling, random over and undersam-
pling and SMOTE. It is therefore of extreme importance to develop a complete
library that comprises standard solutions for the imbalanced classification, following
the same trend than in for the previous languages.
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