
Trends in Relational Program
Verification

Bernhard Beckert and Mattias Ulbrich

Abstract Relational program verification refers to the verification of relational
properties, which relate different programs, different versions of the same program,
or the same program for different inputs. Recently, there is a growing interest in
relational properties. One of the main reasons for this trend is that relational prop-
erties avoid the bottleneck of having to write complex requirement specifications.
Instead, the programs that are compared serve as specification of each other. In this
chapter, we give an overview of current trends in relational program verification.
We describe the main scenarios where relational program verification is employed
to ensure dependability of systems, including regression verification and proving
non-interference properties. And we discuss recent trends in how to use deductive
verification to prove relational properties.

1 Introduction

Relational program verification refers to the verification of relational properties,
which relate different programs, different versions of the same program, or the same
program for different inputs. For relational verification several program runs need
to be compared. In this chapter, we give an overview of current trends in relational
program verification.

There are many interesting program properties that are relational in nature. The
most prominent examples are variants of program equivalence: Two (different)
programs are equivalent if they terminate in equivalent program states whenever
started in equivalent states. Another important kind of a relational property is non-
interference: If it is provable that any two runs of a system that differ in the initial
value of some variable x result in the same output, then consequently the variable x

B. Beckert (�) · M. Ulbrich
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: beckert@kit.edu; ulbrich@kit.edu

© Springer Nature Switzerland AG 2018
P. Müller, I. Schaefer (eds.), Principled Software Development,
https://doi.org/10.1007/978-3-319-98047-8_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98047-8_3&domain=pdf
mailto:beckert@kit.edu
mailto:ulbrich@kit.edu
https://doi.org/10.1007/978-3-319-98047-8_3

42 B. Beckert and M. Ulbrich

does not interfere with the output (the system does not reveal information about the
initial value of x).

Recently, there is a growing interest in relational properties, and relational
verification is an important trend in formal methods. One of the main reasons for
this trend is that relational properties avoid the bottleneck of having to write complex
requirement specifications which impedes the use of formal verification in practice.
Instead, the programs that are compared serve as specification of each other. For
example, onemay prove that—except for intended changes—a new programversion
behaves as the old one (regression verification).

Even though, intuitively, relating several program runs seems to be a more
complex task than just investigating single runs, relational program verification is
in many cases easier than functional verification. As explained in the course of this
chapter, this is in particular true if the programs resp. program runs that are being
compared are similar to each other, i.e., if they run (nearly) in lockstep, produce
similar results, and/or are structurally similar.

For functional verification, the effort grows with the size and complexity of
the program to be verified (and its specification), while for relational program
verification, the effort mainly depends on the size of the difference between the
programs resp. program executions (and the complexity of the relational property).
Thus, if the difference is small, even large and complex programs can be handled.
One can exploit the fact that differences are often local and only affect a small
portion of a program.

Nevertheless, relational verification is not a trivial task. It may still require
complex auxiliary specifications that describe the functionality of sub-components
or detail the relation between the two systems (coupling invariants).

Relational properties are a very general concept. In this chapter, we focus on
scenarios

1. where the programs being compared are written in the same language—as
opposed to verifying translation relations where one of the programs is an
executable specification, written in a abstract language and the other is the
concrete system—, and

2. where concrete programs are proved to satisfy a relational property—as opposed
to proving correctness for program transformations or program generation or
compilation in general.

Structure of This Chapter
First, in Sect. 2, we introduce and define the basic concepts of relational prop-

erties and relational verification. Then, in Sect. 3, we describe the main scenarios
where relational program verification is employed to ensure dependability of
systems, including regression verification and proving non-interference properties.
In Sect. 4, we discuss recent trends in how to use deductive verification to prove
relational properties. Finally, we draw some conclusions in Sect. 5.

Trends in Relational Program Verification 43

2 Basic Notions and Definitions

The following definitions are independent of a particular programming language.
We assume a set P of programs is given. To simplify the presentation, we assume
that all programs operate on the same state space S . The semantics of a program

P ∈ P is a relation
P→ ⊂ S × S , where s

P→ s′ means that the program P ,
when started in state s, may terminate in state s′. If the programming language is

deterministic, the relations
P→ are partial functions onS . The concrete structure of

states depends the declarations in the programs and on the programming language;
in particular, they may contain local variables, stacks, heaps etc. The value of a
program variable x in a state s ∈ S is denoted by s(x). We assume that there is a
special state err ∈ S to indicate a program has failed an assertion.

In the following, we define and discuss different types of functional and relational
properties.

Definition 1 (Functional Safety Property) A functional safety property F is a set
F ⊆ (S × S), i.e., a set of state pairs.

A program P ∈ P satisfies F iff, for all s, s′ ∈ S , s
P→ s′ implies (s, s′) ∈ F ,

i.e.,
P→ ⊆ F .

Intuitively, a functional safety property F is the set of all those state pairs s, s′ such
that it is a correct program behaviour for P to terminate in state s′ when started in s.

Example 1 The functional property that a program must either decrease the value
of the variable x by 1 when started in a state with x > 0 or not terminate at all, can
be formalised as

{ (s, s′) | if s(x) > 0 then s′(x) = s(x) + 1} .

Note that this functional property does not place any restrictions on how a program
affects other parts of the state besides the variable x.

A functional property includes those state transitions that are considered “good”
or “admissible” by the property. A program is judged against the property for every
state transition separately. In contrast to that, a relational property sets transitions
into relation. Satisfaction of a relational property by programs P1, P2 is judged

by considering each of the transitions in
P1→ in the context spanned by the state

transitions of
P2→ and vice versa.

Definition 2 (Relational Safety Property) A relational safety property R is a set
R ⊆ (S × S) × (S × S), i.e., a relation on state pairs.

Two programs P1, P2 ∈ P satisfy R iff, for all s1, s′
1, s2, s

′
2 ∈ S :

if s1
P1−→ s′

1 and s2
P2−→ s′

2 then
(
(s1, s

′
1), (s2, s

′
2)

) ∈ R .

44 B. Beckert and M. Ulbrich

Intuitively, a relational property R consists of those combinations of state
transitions (si , s

′
i) that—by definition of that property—are allowed to “co-exist”

in the semantics of the two programs.

Example 2 One of the simplest but also most often used relational properties is
program equivalence. If the two programs are started in the same initial state, then
they terminate in the same state (if they terminate at all); if they are started in
different states, their terminal state is not restricted:

Fequiv = {(
(s1, s

′
1), (s2, s

′
2)

) ∣
∣ if s1 = s2 then s′

1 = s′
2

}

Example 3 Another prominent relational property is non-interference (see
Sect. 3.1.1). The requirement that the input variable h does not interfere with
the output variable l can be expressed as (assuming that h, l are the only variables
in the state):

Fnon-interference = {(
(s1, s

′
1), (s2, s

′
2)

) ∣
∣ if s1(l) = s2(l) then s′

1(l) = s′
2(l)

}

Relational properties allow two dimensions of variation: transitions of the same
program may be compared for different initial states or transitions of different
programs may be compared for the same initial state; or both dimensions of
variation may be combined. The case P1 = P2, where P1 and P2 are the
same program, is a special case that is frequently considered in practice. Such
single-program relational properties, which are also called 2-properties, including
non-interference, are discussed in Sect. 3.1.

The concept of relational properties is stronger and more expressive than
functional properties. In fact, every functional property can also be represented as a
relational property: For a functional property F , the relational property R = F × F

is satisfied by a program P = P1 = P2 (Definition 2) iff F is satisfied by P

(Definition 1).
The notion of relational safety properties as given in Definition 2 does not cover

all interesting relational properties. Only those properties can be expressed that can
be checked by looking at two state transitions at a time. However, there are many
properties that require to compare three or more transitions—of the same program
or of different programs.

Example 4 Consider a program best that chooses the “best” element from a set X

according to some heuristic. Even if we may not want to or be able to specify which
element is the best one in any situation, we may require consistency of choice: If
a set X is split into two overlapping subsets X1,X2 (i.e., X = X1 ∪ X2), and the
program chooses the same element x from X1 and from X2 (i.e., x = best(X1) =
best(X2)), then it must choose x from X as well (x = best(X)).

Properties such as consistency, which can (only) be defined by the comparison
of three transitions, are called 3-properties. This concept can be extended to k-
properties for k ∈ N by generalising Definition 2.

Trends in Relational Program Verification 45

However, k-properties do still not cover all interesting properties. For example,
termination for all initial states is a rather simple property that is not a k-property
for any k. Termination is a liveness property and is existential in nature, while all
k-properties are universal in nature, requiring that all k-tuples of state transitions are
“good” in some sense.

Example 5 The relational property that, wheneverP1 terminates when started in the
initial state s, the program P2 also terminates when started in s can be formalised
as:

for all s, s′
1 ∈ S with s

P1−→ s′
1 there is an s′

2 ∈ S with s
P2−→ s′

2

As explained above, this property (called mutual or relational termination) cannot
be expressed as a relational safety property. This parallels the functional case:
Termination of a single program can also not be formulated as a (functional) safety
property.

The taxonomy of properties can be further extended to more complex combi-
nations of universal and existential quantification, though such complex property
types are rare in practice. Clarkson et al. [10] introduce a taxonomy of relational
properties, including k-safety and k-liveness properties, considering a program
semantics with traces instead of pre-/post-state pairs, which is useful for reactive
systems, process algebras, etc.

So far, we have discussed the concepts of relational properties and when they
are satisfied by programs. For relational verification, i.e., to prove that programs
satisfy a relational property, we need a further concept, namely coupling properties.
A coupling property is a relation on states, which intuitively holds for corresponding
states during the execution of two (or more) related programs. For example, if two
programs run in lockstep (i.e., their traces are the same), then identity is a trivial
coupling property. Coupling properties that hold throughout program execution are
also called a coupling invariant. Typically coupling invariants do not need to hold
in all states of a trace but only at certain synchronisation points.

A coupling predicate is a formula (in some logic used for deductive verification)
that expresses a coupling property. Coupling predicates that are inductive, i.e., for
which it is possible to prove by induction on the length of the traces that the
property holds throughout the execution, are a powerful tool for verifying relational
properties (see Sect. 4).

3 Application Scenarios

In this section, we describe the main scenarios where relational program verification
is employed to ensure dependability of systems, including regression verification
and proving non-interference properties.

46 B. Beckert and M. Ulbrich

3.1 Single-Program Properties

Single-program properties relate runs of the same program for different inputs.
Typically, they require that, if the inputs are in some relation to each other, then
the outputs must be in some (other) relation.

3.1.1 Non-interference and Information-Flow Properties

For complex programs, one cannot easily tell how the input data is processed and
how it affects the final state of the programs and flows into output variables. Secure
information flow requires that the (public) output of a program does not depend
on its (secret) inputs—resp. only to a certain degree. This is a relational safety
property (Definition 2), which is also called non-interference as the secret input must
not interfere with the public output. The non-interference property relates different
runs of a program: For any two runs starting in states that only differ in the secret
part of the initial state (the public part may be different), the observable (public) part
of the final state must be the same (see Example 3). If a program is non-interferent,
an attacker cannot learn the secret input by observing the public output—where we
assume that the attacker knows the source code of the program and can control the
public input.

Joshi and Leino [19] and Amtoft and Banerjee [2] were the first to give
semantical definitions of information flow based on relational properties. A full
definition of information flow in terms of the input-output function’s equivalence
kernel can be found, e.g., in [21]. The survey paper by Sabelfeld and Myers [26]
gives an overview of language-based information-flow analyses.

While deductive verification of non-interference properties is a rather new
development, there have been static security-enforcing techniques based on syntax
or types for a long time. Type systems and program-dependency-graph-based
analyses (e.g., by Hammer and Snelting [16]) allow analysis of larger programs,
but are less precise than deductive methods.

3.1.2 Symmetry Properties

An important kind of relational properties are symmetry properties, which express
that, if two initial states are symmetric (or in some other way similar) to each other,
they lead to symmetric (similar) final states.

If the number of possible inputs for a program is large, the effort for both testing
and formal verification can be greatly reduced if the state space can be partitioned
using a relational symmetry property. To exploit a symmetry relation S for verifying

Trends in Relational Program Verification 47

(or testing) a program P w.r.t. a functional property F (compatible with S), it
suffices

1. to show that P has the relational symmetry property S,
2. to show that P satisfies F for a small subset X ⊆ S of representatives, and
3. to show that X reaches all states inS via symmetry S.

From this it can be concluded that P satisfies the property F for all s ∈ S .

Example 6 A typical symmetry property is permutation-invariance Sperm. Assume
for this example that all states are arrays of length N (i.e., S = N

N). A program
P is called permutation-invariant if its result is the same for an array a and for a
permuted array σ(a) (for some permutation σ ∈ SymN):

Sperm = {(
(s1, s

′
1), (s2, s

′
2)

) ∣∣ if s1 = σ(s2) for some σ ∈ SymN, then s′
1 = s′

2

}

The typical set Xperm of representatives is the set of sorted arrays. Hence, if a
program P is permutation-invariant, it suffices to prove a functional property for
sorted arrays only, which reduces the search space considerably.

For the example of verifying voting rules, the use of symmetry properties is
discussed extensively by Beckert et al. [7]. Voting rules are highly symmetric
algorithms for fairness reasons; for example, the election result must be symmetric
w.r.t. the order of voters and the order of candidates. There is also related work
on breaking symmetries on the problem-specification level (e.g., by Mancini and
Cadoli [23] and Cadoli and Mancini [9]).

3.2 Multi-Program Properties

Multi-program relational properties compare two or more programs by their
observable behaviour. Typically, the properties considered in practice are a variant of
program equivalence. The programsmay be required to be fully equivalent, or some
relaxed version of equivalence may be used that allows for exceptions or replaces
identity of results with similarity (e.g., using isomorphism of states).

Multi-program properties are not fundamentally different from single-program
properties. In fact, Beckert et al. [6] show how the verification of a multi-program
property can be reduced to verification of a single-program property by combining
the input programs into a single program that comprises the possible behaviours of
all original programs. While this reduction is theoretically possible, it is inefficient
in practice.

48 B. Beckert and M. Ulbrich

3.2.1 Regression Verification

One of the main concerns during software evolution is to prevent the introduction
of unwanted behaviour, commonly known as regressions, when implementing new
features, fixing defects, or during optimisation. Undetected regressions can have
severe consequences and incur high cost, in particular in late stages of develop-
ment. Currently, the main quality assurance measure during software evolution
is regression testing [1]. Regression verification—a notion coined by Godlin and
Strichman [15]—is a complementary approach that attempts to achieve the same
goals with program verification techniques. This means formally verifying that
the two programs satisfy a relational equivalence property. In the basic form of
regression verification, we try to prove that the two program versions terminate in
identical final states for any initial state. In more sophisticated scenarios, we want to
verify that the two programs (a) are equivalent only for some initial states, namely
those not affected by the evolution step (conditional equivalence), or (b) differ in a
formally specified way given by a relation on the final states that is different from
the identity (relational equivalence). If regression verification is successful, it offers
guaranteed coverage without requiring additional expenses to develop and maintain
a test suite.

Interestingly, regression verification can be applied to information-flow proper-
ties. The goal then is proving that the new program version does not leak more
secrets than the old one. This leads to a two-program 4-property; one of the rare
cases of relational k-properties with k > 3 that are of practical interest.

3.2.2 Translation Validation

As said in the introduction, relational program verification focuses on scenarios
where concrete programs are proved to satisfy a relational property. Ideally, one
would like to prove correctness of a program transformation in general, i.e.,
to conduct a universal proof that implies correctness of the transformation for
all programs. Then, no proof would be required for individual instances of the
transformation.

But in many cases the general proof is too complex and impractical. Then, trans-
lation validation is a useful alternative, where we show for a concrete application
of the program transformation that its result is equivalent to the original program.
During the translation, useful information (like coupling predicates, information
about applied loop unwinding, etc.) can be gathered (as witnesses) to aid the
relational verification process. An example for this approach was presented by
Lopes et al. [22] for proving correctness of optimisations in llvm code.

Trends in Relational Program Verification 49

3.2.3 Contextual Equivalence

Contextual equivalence [24], also called backward compatibility [29], is a relational
property of (sub-)programs requiring that they behave equivalently when included
into any possible program context. This property, which is important for, e.g.,
evolution or refactoring of library functions, is an extension of basic program
equivalence. Instead of (only) requiring two programs P1, P2 to be equivalent in
the sense that

s
P1−→ s′ iff s

P2−→ s′ for all s, s′ ∈ S ,

contextual equivalence requires that

s
Q[P1]−−−→ s′ iff s

Q[P2]−−−→ s′ for all programs Q[·] and s, s′ ∈ S ,

where Q[Pi] is the result of inserting the program Pi as a sub-program into Q[·].
Relational program verification to prove contextual equivalence requires an

adequate semantic model for open programs. In the object-oriented setting, the
program logic used for verification must account for features such as inheritance and
callbacks. Welsch and Poetzsch-Heffter [29, 30] provide a solution for the context
of Java and Boogie; Murawski et al. [24] show how the difficulties can be dealt with
using game semantics.

3.2.4 Refinement

Refinement is a relational property between two behavioural descriptions, where
usually one is more abstract and one is more concrete. Since this chapter focuses on
relational program verification, we concentrate on the program verification aspects
of refinement proofs. In algorithmic refinement, an abstract imperative algorithm
descriptionA is refined into a more detailed concrete descriptionC, e.g., by defining
how abstract concepts are turned into actual data structures. A distinguishing trait of
refinement is that the algorithms may be non-deterministic: In the abstract program,
the algorithm may have choices (like choose x such that x > 0) which are
deliberately left open on the abstract level, whereas a refinement step may concretise
the statement (e.g., into x := 5).

Refinement is not a relational safety property according to Definition 2 since it
cannot be expressed using only universal quantification. As we have seen, program
equivalence for deterministic programs, which requires that two programs started
in the same state terminate in the same state (if they both terminate), can be
formalised with universal quantification using the relational safety property Fequiv

(see Example 2):

for all s1, s2, s′
1, s′

2 ∈ S : if s1
C−→ s′

1 and s2
A−→ s′

2 , then
(
(s1, s′

1), (s2, s′
2)

) ∈ Fequiv

50 B. Beckert and M. Ulbrich

In the presence of non-deterministic behaviour, however, this property scheme is not
adequate: The abstract program A may have several different terminal states, and
they cannot be all equal to the terminal state(s) of C. Instead, it must be required
that s′

1 is a possible terminal state for P2 using a different property scheme

for all s1, s′
1 ∈ S exist s2, s′

2 ∈ S such that:

if s1
C−→ s′

1, then s2
A−→ s′

2 and
(
(s1, s

′
1), (s2, s

′
2)

) ∈ R

for some refinement relation R ⊆ (S × S) × (S × S). If the input and output
coupling predicate for this refinement step is the identity (like for equivalence),
then the refinement relation Requiv = {(

(s, s′), (s, s′)
) ∣

∣ s, s′ ∈ S
}
must be

used. Interestingly, mutual termination (see Example 5) falls also into this property
scheme using the relation Rterm = {(

(s, s1), (s, s2)
) ∣

∣ s, s1, s2 ∈ S
}
.

Ulbrich [28] uses a dynamic logic to formulate and discharge refinement proof
obligations. Dynamic logic [17] is a program logic like Hoare logic. But it is
more general as it supports nesting of statements and supports “forall” and “exists”
terminal state operators.

4 Verification of Relational Properties

Two trends in research for the verification of relational properties can be observed
that lift existing successes in program verification to relational questions:

1. Reduction of relational properties to functional safety properties that can be
verified using off-the-shelf functional program verification tools.
This makes recent and future technological advances in functional verification
automatically available for relational verification, too. Issues like modularisa-
tion, loop-handling, framing, etc. that are similar for functional and relational
verification can be left to the existing functional program verification machinery.

2. Exploiting similarities between intermediate states in the compared program
runs.
Examining the program runs to be compared individually has serious disad-
vantages in many cases. For many practical application scenarios for relational
verification, the program runs are related in the sense that intermediate synchro-
nisation points in the compared programs can be identified at which the states of
their runs are similar. This can ease the verification burden considerably.

These trends are not dependent on each other. But it can be observed that often
they both play a role in relational verification methods.

Trends in Relational Program Verification 51

4.1 Reduction to Functional Verification

Early approaches to verifying relational properties devised specialised logics for
handling relational questions. Benton [8] first introduced the theory of a relational
Hoare calculus to reason about relational properties, and Yang [31] introduced a
relational separation logic with special syntactic extensions that allow the specifica-
tion of separating conjunctions on two heaps instead of only one.

The seminal paper by Barthe et al. [4] introduced a general notion of product
programs that supports a direct reduction of relational verification to standard
functional verification. Product programs are not tied to a particular application
scenario. To make use of single-program functional verification tools for relational
two-program verification, functional verification is applied to a product program
constructed from the two programs to be compared. For the construction, it is
important that the two programs cannot interfere with each other. We hence assume
that the two programs P1 and P2 operate on disjoint sets of variables. In case this
assumption does not hold, e.g., for the analysis of a single-program relational prop-
erty where the programs are identical, disjointness can easily achieved by variable
renaming. Syntactically, a product program P operates on both the variables (heaps,
stacks, memories, etc.) of P1 and those of P2 and consists of the statements of both
P1 and P2. Semantically, a product program operates on the state spaceS ×S and
satisfies for all s1, s′

1, s2, s
′
2 ∈ S :

if s1
P1−→ s ′

1 and s2
P2−→ s ′

2 then (s1, s2)
P−→ (s ′

1, s
′
2) or (s1, s2)

P−→ err ,

i.e., the result state of P consists of the result states s1 and s2 that would arise if P1
and P2 were run separately—or P may terminate in the special error state err, i.e.,
fail an assertion.

The concession that a product program is allowed to fail in more cases than
the original programs allows us to combine programs into product programs more
liberally. Assumptions about intermediate states or the synchronisation of P1 and P2
can be added to P using assertions in the code of P . During a proof for P , these
assertions are to be proved correct, thus justifying the assumptions made during the
construction of P . We will encounter product programs with additional assertions
in Sect. 4.2.

Product programs pave the way for using functional program calculi to formalise
and discharge relational properties. Instead of a special relational Hoare logic and
calculus using quadruples {φ} P1 ∼ P2 {ψ} to talk about two programs [8], the
traditional Hoare triple {φ}P {ψ} can be analysed using a standard Hoare calculus:

|	 {φ}P {ψ} implies |	 {φ} P1 ∼ P2 {ψ} (1)

The challenge now is to find good principles for the construction of product
programs. Most obviously, the sequential composition (P1 ;P2) is a valid product

52 B. Beckert and M. Ulbrich

program. In fact, the “implies” in implication (1) turns into an “iff” for sequential
composition. Accordingly, to formulate the non-interference property for a pro-
gram P as a functional proof obligation, Barthe et al. [5] and Darvas et al. [11]
suggested to employ self-composition, i.e., to sequentially compose two copies of P .

However, this simple direct sequential composition has substantial drawbacks,
as already reported by Terauchi and Aiken [27] soon after introduction of the
technique of self-composition. The problem can be visualised by the following
thought experiment:

Example 7 Take a (non-trivial) deterministic program P operating on a single
variable x that consists of a single while-loop. In order to verify that P is equivalent
to a clone Pc (with the same code, but the variable is renamed to xc), one
can try to prove the Hoare triple {x = xc}(P ;Pc){x = xc} based on simple
sequential composition. To deal with the loops, sufficiently strong loop invariants
must be found for the two consecutive loops. It turns out that the strongest possible
functional loop invariant that together with the negated guard is satisfied only by a
single value (depending on the initial value of x) must be used. Any weaker loop
invariant leaving freedom of choice for the values of x and xc would not suffice to
imply the required equality x = xc in the final state of (P ; Pc).

Loop invariants are difficult to find, automatically or manually. Hence, it is of
vital importance to find better ways to construct product programs if one wants
make the technique accessible to state-of-the-art automatic or interactive verification
tools.

4.2 Exploiting Similarity Between Program Runs

The key to solving the problem of sequential composition exposed in Example 7 is to
exploit similarities between program states that occur in the runs that are compared
during the verification. This allows one to simplify the steps of the verification.

Revisiting Example 7, we see how a different execution policy makes things a
lot easier: Assume the two loops were not executed consecutively but alternatingly,
i.e., executing one iteration of the loop of P , then one of Pc, then again one of P ,
and so on. Then, whenever an iteration of Pc finishes, (a) both loops have iterated
equally often and (b) x = xc holds. This is indeed a sufficiently strong coupling
invariant to complete the trivial proof. Regardless of the complexity of the result
that P computes, the simple coupling predicate suffices for an inductive proof.

The idea of similarity exploitation is to identify locations (e.g., line numbers)
in both programs such that, when they are reached, the corresponding states of the
programs are coupled. Pairs of such locations are called synchronisation points.
In principle any two states can be coupled, and there is no formal definition of
when two states are “similar” or “coupled”. A synchronisation is well chosen (in
the context of a proof) if there is a simple enough coupling predicate that can be
used in program verification to abstract the states at the synchronisation point.

Trends in Relational Program Verification 53

Figure 1 illustrates the idea of coupling states for relational verification. Figure 1a
depicts the verification task {φ}(P1 ; P2){ψ} for the sequential composition. The
two programs must be handled separately. One needs to do verification steps to
the effect of extracting functional before-after-predicates Θ1 for P1 and Θ2 for P2
(using, e.g., a weakest precondition or a Hoare calculus) and then reason that
φ ∧ Θ1 ∧ Θ2 → ψ . Figure 1b shows how this can be avoided: Instead of
considering a program run as one state transition, it is broken down into segments
leading from synchronisation point to synchronisation point. Every segment (framed
block in Fig. 1b) is verified individually. If CplA,CplB are coupling predicates that
capture the relation between states at the synchronisation points A resp. B and
θ1, θ2 are before-after-predicates for the transition from synchronisation point A to
point B in the respective programs, then the verification condition for the segment
is CplA ∧ θ1 ∧ θ2 → CplB . The validity of the entire proof condition then follows
inductively, in very much the same way as loop invariant proofs for functional
programs.

A challenge here is to identify good locations at which to set synchronisation
points. Most natural candidates are those points where functional program verifi-
cation also applies abstraction in form of loop invariants: the entry points of loops
(loop heads).

Technically, the coupling can be implemented in different ways. One possibility
is to produce product programs in which the loops are iterated alternatingly. Figure 2
shows how programs in a simple while programming language (with side-effect-
free expressions) can be woven into a product program. Three possibly ways to

Fig. 1 Visualisation of relational verification and trace similarities. (a) Uncoupled analysis. (b)
Tightly coupled runs

Fig. 2 Different product programs for two loops. (a) Sequential composition. (b) Perfect synchro-
nisation. (c) Loose synchronisation

54 B. Beckert and M. Ulbrich

weave two loops are presented: Fig. 2a is the direct sequential composition which
does not make use of synchronisation points. In Fig. 2b, the loop bodies are iterated
alternatingly and always in pairs. Verification using this product program requires
that the loops iterate equally often because otherwise the assertion that the loop
conditions cnd1 and cnd2 evaluate equivalently will fail. Finally, Fig. 2c shows
how the limitation of equal number of iterations can be lifted by adding conditionals
that check the loop guards individually. This product loop first executes the loop
bodies alternatingly and then, when one program has terminated the loop, finishes
the remaining loop in an uncoupled fashion.

It is noteworthy that the verification of the perfect synchronisation scheme from
Fig. 2b also implies mutual termination (see Example 5) of the two loops. The
added assertion ensures that both loops iterate equally often for any input, which
is sufficient for mutual termination (assuming the loop bodies have no further
loops). Hence, although mutual termination is not a relational k-property, sufficient
conditions can be encoded into product programs that imply the property. Elenbogen
et al. [13] and Hawblitzel et al. [18] formulate more sophisticated relational safety
properties that entail mutual termination.

Relational proofs for fully synchronised loops can already be conducted using
the early relational calculi presented by Benton [8] and Yang [31].

4.3 More Elaborate Synchronisation Schemes

Verification by means of coupling predicates works well in many situations—but
only if the two programs under inspection reach related states whenever they reach
a synchronisation point. If that premise does not hold, e.g., when comparing two
completely different sorting algorithms for equivalence (say, to show that the result
of mergesort is the same as that of bubblesort), looking for good synchronisation
points would be futile since the inner structure of the algorithms is so different that
specifying the relationship between states would be more difficult than verifying
that both are stable sorting functions.

The strict lockstep combination in which exactly one loop iteration of the first
program corresponds to exactly one loop iteration of the second program is, in many
cases, not flexible enough to account for all typical synchronization scenarios. It
may very well be that for one program, a loop needs to first be unwound a number
of times before entering a lockstep synchronous part; or each loop iteration of
one program does not correspond to one but to k iterations of the other program;
and, of course, many other synchronisation schemes are possible. Figure 3 shows

Fig. 3 Loosely coupled runs

Trends in Relational Program Verification 55

a schematic example of loosely coupled loops in which program states are not in a
1:1 relationship.

When dealing with relational program verification by reduction to functional
verification, a flexible synchronisation mechanism can be achieved by defining a
set of transformation rules that can be used to weave two programs into a single
program, which is a product program by construction. This has originally been
suggested by Barthe et al. [4] for weaving two programs, a generalisation (that
supports several programs and modular verification) has been presented by Eilers
et al. [12]. Banerjee et al. [3] present a relational Hoare logic supporting flexible
program weaving without necessarily producing a product program in the course.

Relational verification has a high potential for automation: Regardless of the
complexity of the actual computation, the compared program runs in a relational
verification task can be very closely related. For instance, in a regression verification
scenario, two programs may be identical but for the assignments to a single variable
x. In many cases, it is enough to specify relationally how the variable x is treated
differently and assume that nothing else has changed.

If the coupling predicates between corresponding loop iterations is close to
equality, it is indeed a good candidate to not have it specified by the user but
to infer it automatically using inference techniques for loop invariants. Felsing et
al. [14] have shown that relational coupling predicates can be inferred automat-
ically for regression verification of non-trivial programs. The approach supports
loosely coupled synchronization points and uses dynamic exploration to find loop
unwinding ratios that promise a good synchronisation between programs [20]. In
this approach, coupling predicates are modelled as uninterpreted predicates within
constrained Horn clauses [25]. Modern SMT solvers are used to infer sufficiently
strong inductive predicates such that the relational post-condition is satisfied.

4.4 Alternative Approaches

While in the previous sections, we have presented a general technique to deal with
relational properties in deductive verification, it should be mentioned that product
program construction (or similar techniques relating symbolic program executions)
is not the only way to deal with relational properties deductively. For single-program
properties, it is sometimes possible to formulate verification conditions that only
require a single invocation of the program. However, this requires that program
constructs are embedded into the logic more deeply, in particular that programs
can occur in the scope of quantifiers. In Hoare logic, formulas like ∀x {φ}P {ψ}
are syntactically not allowed. But, in dynamic logic [17], such a quantification is
possible.

56 B. Beckert and M. Ulbrich

Darvas et al. [11] noted that non-interference of a (secret) variable h with a
(public) variable l for a program P can be expressed using a single program
invocation of P in dynamic logic:

∀l∃r∀h 〈P 〉r = l

Because of the order of quantifiers in this formula, it expresses that, for all input
values of l, there is a single result value r for the public variable l that is independent
of the input value for h.

5 Conclusions

Relational properties are ubiquitous, and there are many application scenarios in
which they play a rule. The effort for relational program verification mainly grows
with the size and complexity of the difference between the compared programs resp.
program runs. As the size of the difference is a different dimension than size and
complexity of the programs themselves, relational verification has the potential to be
usable in cases where functional verification is infeasible. In particular, the need for
writing requirement specifications can often be avoided. Thus, relational verification
can extend the reach of formal methods to new application scenarios.

While—on a theoretical level—the expressiveness of relational properties is the
same as that of functional properties, experience shows that some new techniques
are needed in practice for relational verification, which moreover differ for different
use cases. In particular, the heuristics needed to automatically find synchronisation
points and coupling invariants depend on the application scenario.

References

1. Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press,
2008. ISBN: 978-0-521-88038-1.

2. Torben Amtoft and Anindya Banerjee. “Information Flow Analysis in Logical Form”. In:
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26–28, 2004,
Proceedings. Ed. by Roberto Giacobazzi. Vol. 3148. Lecture Notes in Computer Science.
Springer, 2004, pp. 100–115. ISBN: 3-540-22791-1. https://doi.org/10.1007/978-3-540-27864-
1_10.

3. Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. “Relational Logic with
Framing and Hypotheses”. In: 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, December 13–15, 2016,
Chennai, India. Ed. by Akash Lal et al. Vol. 65. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum
fuer Informatik, 2016, 11:1–11:16. ISBN: 978-3-95977-027-9. https://doi.org/10.4230/LIPIcs.
FSTTCS.2016.11.

https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11

Trends in Relational Program Verification 57

4. Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational Verification Using Product
Programs”. In: FM 2011: Formal Methods - 17th International Symposium on Formal Methods,
Limerick, Ireland, June 20–24, 2011. Proceedings. Ed. by Michael J. Butler and Wolfram
Schulte. Vol. 6664. Lecture Notes in Computer Science. Springer, 2011, pp. 200–214. ISBN:
978-3-642-21436-3. https://doi.org/10.1007/978-3-642-21437-0_17.

5. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. “Secure Information Flow by Self-
Composition”. In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28–30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society, 2004, pp. 100–114. ISBN:
0-7695-2169-X. https://doi.org/10.1109/CSFW.2004.17.

6. Bernhard Beckert, Vladimir Klebanov, and Mattias Ulbrich. “Regression verification for Java
using a secure information flow calculus”. In: Proceedings of the 17th Workshop on Formal
Techniques for Java-like Programs, FTfJP 2015, Prague, Czech Republic, July 7, 2015. Ed. by
Rosemary Monahan. ACM, 2015, 6:1–6:6. ISBN: 978-1-4503-3656-7. https://doi.org/10.1145/
2786536.2786544.

7. Bernhard Beckert et al. “Automated Verification for Functional and Relational Properties of
Voting Rules”. In: Sixth International Workshop on Computational Social Choice (COMSOC
2016). June 2016.

8. Nick Benton. “Simple relational correctness proofs for static analyses and program transfor-
mations”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14–16, 2004. Ed. by Neil D.
Jones and Xavier Leroy. ACM, 2004, pp. 14–25. ISBN: 1-58113-729-X. https://doi.org/10.
1145/964001.964003.

9. Marco Cadoli and Toni Mancini. “Using a Theorem Prover for Reasoning on Constraint
Problems”. In: AI* IA 2005: Advances in Artificial Intelligence. Springer, 2005.

10. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. “Civitas: Toward a Secure Voting
System”. In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), 18–21 May 2008,
Oakland, California, USA. IEEE Computer Society, 2008, pp. 354–368. ISBN: 978-0-7695-
3168-7. https://doi.org/10.1109/SP.2008.32.

11. Ádám Darvas, Reiner Hähnle, and David Sands. “A Theorem Proving Approach to Analysis
of Secure Information Flow”. In: Security in Pervasive Computing Second International
Conference, SPC 2005, Boppard, Germany, April 6–8, 2005, Proceedings. Ed. by Dieter Hutter
and Markus Ullmann. Vol. 3450. Lecture Notes in Computer Science. Springer, 2005, pp. 193–
209. ISBN: 3–540-25521-4. https://doi.org/10.1007/978-3-540-32004-3_20.

12. Marco Eilers, Peter Müller, and Samuel Hitz. “Modular Product Programs”. In: Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14–20, 2018, Proceedings. Ed. by Amal Ahmed. Vol. 10801.
Lecture Notes in Computer Science. Springer, 2018, pp. 502–529. ISBN: 978-3-319-89883-
4. https://doi.org/10.1007/978-3-319-89884-1_18.

13. Dima Elenbogen, Shmuel Katz, and Ofer Strichman. “Proving mutual termination”. In: Formal
Methods in System Design 47.2 (2015), pp. 204–229. https://doi.org/10.1007/s10703-015-
0234-3.

14. Dennis Felsing et al. “Automating regression verification”. In: ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15–
19, 2014. Ed. by Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher. ACM, 2014, pp.
349–360. ISBN: 978-1-4503-3013-8. https://doi.org/10.1145/2642937.2642987.

15. Benny Godlin and Ofer Strichman. “Regression verification: proving the equivalence of similar
programs”. In: Softw. Test., Verif. Reliab. 23.3 (2013), pp. 241–258. https://doi.org/10.1002/
stvr.1472.

16. Christian Hammer and Gregor Snelting. “Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs”. In: Int. J. Inf. Sec.
8.6 (2009), pp. 399–422. https://doi.org/10.1007/s10207-009-0086-1.

17. David Harel, Dexter Kozen, and Jerzy Tiuryn. “Dynamic logic”. In: SIGACT News 32.1 (2001),
pp. 66–69. https://doi.org/10.1145/568438.568456.

https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1145/2786536.2786544
https://doi.org/10.1145/2786536.2786544
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/ 10.1007/s10703-015-0234-3
https://doi.org/ 10.1007/s10703-015-0234-3
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/568438.568456

58 B. Beckert and M. Ulbrich

18. Chris Hawblitzel et al. “Towards Modularly Comparing Programs Using Automated Theorem
Provers”. In: Automated Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9–14, 2013. Proceedings. Ed. by Maria Paola
Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer, 2013, pp. 282–299. ISBN:
978-3-642-38573-5. https://doi.org/10.1007/978-3-642-38574-2_20.

19. Rajeev Joshi and K. Rustan M. Leino. “A semantic approach to secure information flow”.
In: Sci. Comput. Program. 37.1-3 (2000), pp. 113–138. https://doi.org/10.1016/S0167-
6423(99)00024-6.

20. Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich. “Relational Program Reasoning Using
Compiler IR - Combining Static Verification and Dynamic Analysis”. In: J Autom. Reasoning
60.3 (2018), pp. 337–363. https://doi.org/10.1007/s10817-017-9433-5.

21. Vladimir Klebanov. “Precise quantitative information flow analysis - a symbolic approach”.
In: Theor. Comput. Sci. 538 (2014), pp. 124–139. https://doi.org/10.1016/j.tcs.2014.04.022.

22. Nuno P. Lopes et al. “Provably correct peephole optimizations with alive”. In: Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15–17, 2015. Ed. by David Grove and Steve Blackburn. ACM, 2015,
pp. 22–32. ISBN: 978-1-4503-3468-6. https://doi.org/10.1145/2737924.2737965.

23. Toni Mancini and Marco Cadoli. “Detecting and Breaking Symmetries by Reasoning on
Problem Specifications”. In: Abstraction, Reformulation and Approximation. Springer, 2005.

24. Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. “Game Semantic Analysis
of Equivalence in IMJ”. In: Automated Technology for Verification and Analysis - 13th
International Symposium, ATVA 2015, Shanghai, China, October 12–15, 2015, Proceedings.
Ed. by Bernd Finkbeiner, Geguang Pu, and Lijun Zhang. Vol. 9364. Lecture Notes in Computer
Science. Springer, 2015, pp. 411–428. ISBN: 978-3-319-24952-0. https://doi.org/10.1007/978-
3-319-24953-7_30.

25. Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. “Classifying and Solving Horn Clauses
for Verification”. In: Verified Software: Theories, Tools, Experiments 5th International
Conference VSTTE 2013, Menlo Park, CA, USA, May 17–19, 2013, Revised Selected
Papers Ed. by Ernie Cohen and Andrey Rybalchenko. Vol. 8164. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 1–21. ISBN: 978-3-642-54107-0. https://doi.org/10.1007/
9783642541087_1

26. Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow security”. In:
IEEE Journal on Selected Areas in Communications 21.1 (2003), pp. 5–19. https://doi.org/
10.1109/JSAC.2002.806121.

27. Tachio Terauchi and Alexander Aiken. “Secure Information Flow as a Safety Problem”.
In: Static Analysis, 12th International Symposium, SAS 2005, London, UK, September 7–
9, 2005, Proceedings. Ed. by Chris Hankin and Igor Siveroni. Vol. 3672. Lecture Notes in
Computer Science. Springer, 2005, pp. 352–367. ISBN: 3-540-28584-9. https://doi.org/10.
1007/11547662_24.

28. Mattias Ulbrich. “Dynamic Logic for an Intermediate Language: Verification, Interaction and
Refinement”. PhD thesis. Karlsruhe Institute of Technology, 2013.

29. Yannick Welsch and Arnd Poetzsch-Heffter. “A fully abstract trace-based semantics for
reasoning about backward compatibility of class libraries”. In: Sci. Comput. Program. 92
(2014), pp. 129–161. https://doi.org/10.1016/j.scico.2013.10.002.

30. Yannick Welsch and Arnd Poetzsch-Heffter. “Full Abstraction at Package Boundaries of
Object-Oriented Languages”. In: Formal Methods, Foundations and Applications - 14th
Brazilian Symposium, SBMF 2011, São Paulo, Brazil, September 26–30, 2011, Revised
Selected Papers. Ed. by Adenilso da Silva Simão and Carroll Morgan. Vol. 7021. Lecture
Notes in Computer Science. Springer, 2011, pp. 28–43. ISBN: 978-3-642-25031-6. https://doi.
org/10.1007/978-3-642-25032-3_3.

31. Hongseok Yang. “Relational separation logic”. In: Theor. Comput. Sci. 375.1-3 (2007), pp.
308–334. https://doi.org/10.1016/j.tcs.2006.12.036.

https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1016/S0167-6423(99)00024-6
https://doi.org/10.1016/S0167-6423(99)00024-6
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1007/978-3-319-24953-7_30
https://doi.org/10.1007/978-3-319-24953-7_30
https://doi.org/10.1007/978364254108 7_1
https://doi.org/10.1007/978364254108 7_1
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24
https://doi.org/10.1016/j.scico.2013.10.002
https://doi.org/10.1007/978-3-642-25032-3_3
https://doi.org/10.1007/978-3-642-25032-3_3
https://doi.org/10.1016/j.tcs.2006.12.036

	Trends in Relational Program Verification
	1 Introduction
	2 Basic Notions and Definitions
	3 Application Scenarios
	3.1 Single-Program Properties
	3.1.1 Non-interference and Information-Flow Properties
	3.1.2 Symmetry Properties

	3.2 Multi-Program Properties
	3.2.1 Regression Verification
	3.2.2 Translation Validation
	3.2.3 Contextual Equivalence
	3.2.4 Refinement

	4 Verification of Relational Properties
	4.1 Reduction to Functional Verification
	4.2 Exploiting Similarity Between Program Runs
	4.3 More Elaborate Synchronisation Schemes
	4.4 Alternative Approaches

	5 Conclusions
	References

