
Reflections on the Need for Disambiguation
of Terminology for Software Process

Improvement

Elli Georgiadou(&)

Middlesex University, London, UK
e.georgiadou@mdx.ac.uk

Abstract. Researchers often invent new terms or borrow terms from other
domains which they modify or reinterpret by attaching novel meanings to suit
the context of their investigation. In established disciplines, such as traditional
engineering, physics, and mathematics, there is no ambiguity in the relevant
terminology as terms as well as their relationships are expressed formally,
mostly using mathematical equations. In Software Engineering the fact that there
is a need for a glossary or lists of definitions at the end of every book and within
nearly all research papers, is evidence that the discipline is not yet mature
enough even after 50 years from the coining of the term Software Engineering.
Refinements and re-interpretations of existing terms, combined with new terms
introduced with every innovation, every new technology or tool, by both
researchers and practitioners, result in ambiguities which need to be addressed.
As change is inevitable there needs to be a mechanism through which ambi-
guities can be identified and addressed. This paper outlines major advances in
Terminology Management for Software Process Improvement and reflects on
the constant need for terminology disambiguation. It proposes a bottom-up
pragmatic approach for using ontologies and for integrating research and
practice. It also proposes a framework based on SPI Manifesto values and
principles for the disambiguation of terms for continuous process improvement
and, thus, for enhancing value and for catering for change which is inevitable.

Keywords: Software measurement � Disambiguation � Terminology
Communication � SPI values & principles � Framework

1 Introduction

“Speaking the same language” is a common phrase which does not necessarily refer to
a natural language like English, German, Chinese… but more significantly, it means
common understanding and agreeing with each other. Lack of ambiguity is a funda-
mental requirement for common understanding and communication. Understanding
one another takes place “because there exists a code, a sort of inner competence
between you and me and there exist possible messages, performed as utterances and
interpretable as a set of propositions” [1].

In natural languages we use words as synonyms and thus we use them inter-
changeably but mostly when we intent to place particular emphasis on what we are

© Springer Nature Switzerland AG 2018
X. Larrucea et al. (Eds.): EuroSPI 2018, CCIS 896, pp. 577–589, 2018.
https://doi.org/10.1007/978-3-319-97925-0_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_49&domain=pdf

trying to communicate. For example an item can be referred to as an object, a thing, an
artefact and so on.

In pedagogy for example, the recent explosion of technology based Distance
Education (DE) has resulted in the creation of new terms which, however, are often
used interchangeably as synonyms. Bozkurt et al. [2] in their examination of 633
scholarly articles (covering 5 years from 2009 to 2013) they reported that at least 12
terms are being used by scholars to describe DE.

An example of erroneous use of terms as synonyms from the Information Systems
and Software Engineering domains is that of method and methodology. The use of
these terms as synonyms has been perpetuated for over 40 years. Evidence of this issue
can be found in many articles and acclaimed textbooks such as Avison and Fitzgerald
[3] and Jayaratna [4].

Howell, in her book “Introduction to the Philosophy of Methodology” [5] clarifies
that “a methodology is the rationale for the research approach, and the lens through
which the analysis occurs. Said another way, a methodology describes the general
research strategy that outlines the way in which research is to be undertaken…A
method is simply a tool used to answer your research questions—how, in short, you
will go about collecting your data. Examples of research methods include: Contextual
inquiry, Interview, Survey etc. The methodology should impact which method(s) for a
research endeavour are selected in order to generate the compelling data.”

Another term with many and varied meanings, in everyday life but also in Software
Engineering and Information Systems, is the term model which can be a representation,
a pattern, a prototype, a template, a blueprint, an exemplar, a framework, a paradigm
and so on. Each model represents an item or a process from a specific perspective. In
Software Engineering the term model could denote many different things including
lifecycle development model, a process model, a reference model, a quality model, a
framework, a meta-framework and so on.

According to Barn [6] “conceptual modelling provides a mechanism by which a
shared understanding between business domain specialists and IT specialists positively
enhances the alignment of business and IT goals leading to improved quality of IT
Solutions”. Thomas [7] cited in [6] argued that “no uniform grasp of the term reference
model exists”. This confusion partially arises out of the tendency to declare Application
information models and/or enterprise Information models as “reference models”. Barn
et al. [8] following a review of existing reference models synthesised a definition: “A
reference model is based on a small number of unifying concepts and is an abstraction
of the key concepts, their relationships, and their interfaces both to each other and to
the external environment. A reference model may be used as a basis for education and
for explaining standards and methods to a non- specialist and can be viewed as a
framework for comparing architectures and operations of existing and future systems.”

In the disciplines of Software Engineering and Information Systems often many
different terms are used to define the same concept. Conversely, the same term may be
used to define several concepts. For example, numerous definitions of Software Quality
have been proposed. Kitchenham and Pfleeger [9] identified five different perspectives
of quality as follows:

578 E. Georgiadou

• The transcendental perspective deals with the metaphysical aspect of quality;
• The user perspective is concerned with the appropriateness of the product for a

given context of use;
• The manufacturing perspective represents quality as conformance to requirements;
• The product perspective implies that quality can be evaluated by measuring the

inherent characteristics of the product;
• The value-based perspective of quality recognises that the different perspectives of

quality may have a different importance, or value, to various stakeholders.

In Siakas et al. [10] we produced an alphabet of software quality in order to
emphasise the fact that numerous terms are used by the community to describe char-
acteristics and sub-characteristics of quality which were (and still are) being used by the
community. In this paper we did not attempt to show interrelationships of the terms but
produced a high level taxonomy of three classes of attributes namely those of primary
interest to developers, sponsors, or users. In all 24 terms were found in the literature on
the main software quality models (at the time) i.e. McCall, Boehm, Dromey, SADT,
and ISO 9126 (Y proved impossible to include) and Zoticality f (Z was coined). In the
process it was established that although there was considerable overlap between the
models, many terms were used to describe the same concept and there were differences
in terminology between models.

Georgiadou [11] in “Navigating the Labyrinth of Software ‘Re’ Words” provided
definitions largely based on IEEE and differentiated between reuse, restructuring, re-
engineering, retro-engineering, reverse engineering and refactoring. By identifying
how these terms relate to each other, and specified what quality improvements can be
gained through practicing each of these processes. In addition the benefits of the
proposed disambiguation of these terms and potential problems were specified.

Kitchenham [12] encapsulated many of the issues relating to the understanding,
definition, and measurement of Software Quality. She argued that “Quality is a com-
plex concept that means different things to different individuals. It can be highly
context dependent. This means that there can never be any simple measure of quality
that will be accepted by everyone. If you are interested in assessing or improving
quality in your organisation, you must ensure that you define what aspect of quality you
are interested in and how you are going to measure it. In fact, if you define quality in a
measurable way, it is usually easier for other people to understand your viewpoint”.

Abran et al. [13] noted that “from the metrology perspective suggests that the field
of software measurement has not yet been fully addressed by current research, and that
much work remains to be done to support Software Engineering as an engineering
discipline based on quantitative data and adequate measurement methods meeting the
classic set of criteria for measuring instruments as described by the metrology body of
knowledge in large use in the engineering disciplines”.

Despite the many advances achieved by the Software Engineering community, it
continues to be reported by both researchers and practitioners such as Rout [14]; Gilb
[15]; Garcia et al. [16]; Navigli [17]; Prokofyev et al. [18], Clarke et al. [19]; Jacobson
et al. [20]; Kirsch and Sauberer [22] Sauberer et al. [22], Clarke et al. [37] that there is a
need to standardise terminology in order to facilitate communication, understanding,
and team work, and thus achieve improvements in process and project management.

Reflections on the Need for Disambiguation of Terminology 579

2 Terminology Management: Vocabularies, Taxonomies,
and Ontologies

The significance of terminology management becomes evident when we look at the
concerns of and debates within the Software Engineering Community (practitioners
and academics) expressed in the literature. Garcia-Penalvo et al. [16] state that “Ter-
minology is vital to the functioning of all sciences, it is concerned with designations in
all other subject fields, and it is closely related to a number of specific disciplines, as
already pointed out by its most distinguished modern protagonist, Eugen Wuster who
called it an interdisciplinary field of study, relating linguistic, logic, ontology and
information science with the various subject fields.”

Taking an example from the field of Medicine, Hu et al. [24]) argue that “gener-
alists typically attach philosophical sophistication to their approach, in supposed
contrast to the narrow remit chosen by the application-bound knowledge engineers, we
would like to indicate that the latter practice can often reflect a multi-faceted rationale,
nuanced by the requirements of the domain.” One can imagine how significant it is for
doctors to speak the same language with other.

Rout [14] argues that semantic technologies are based on ontologies…Ontology
formalizes knowledge meaning and facilitates the search for contents and informa-
tion…The main objective of ontologies is to establish ontological agreements, which
serve as the basis for communication between either human or software agents, hence,
reducing language ambiguity and knowledge differences between agents, which may
lead to errors, misunderstandings and inefficiencies.

Navigli [17] in a comprehensive survey concluded: “Although some contrasting
works have been published on the topic, (of Word Sense Disambiguation) no con-
clusive result has been reported in favour or against the use of sense inventories and
their granularity in applications. Unsupervised approaches might prove successful,
showing that we do not need to rely on predefined lists of senses. However, it might be
as well that the use of sense inventories with a certain granularity (not too fine-grained
nor trivially coarse) allow knowledge-rich and supervised methods to provide a deci-
sive contribution”.

Sauberer et al. [22] in their seminal work “proposed an extension of terminology
change management procedure and the development of an e-learning course which
offers a user-friendly and sound introduction to basic principles and methods of ter-
minology management.”

Jacobson et al. [20, 25] believe that Software Engineering is gravely hampered
today by immature practices. Specific problems include: the prevalence of fads more
typical of fashion industry than of an engineering discipline, the lack of a sound, widely
accepted theoretical basis, the huge number of methods and method variants, with
differences little understood and artificially magnified, the lack of credible experimental
evaluation and validation, the split between industry practice and academic research.
The signatories and founders of SEMAT support a process to re-found software
engineering based on a solid theory, proven principles and best practices that: includes
a kernel of widely-agreed elements, is extensible for specific uses, address both tech-
nology and people issues which are supported by industry, academia, researchers and

580 E. Georgiadou

users, and also support extension in the face of changing requirements and technology.
Table 1 presents a chronology of seminal contributions to the terminology debate,
management and practice.

Table 1. The chronology of seminal contributions in the terminology debate, management and
practice

Ref Researcher
(s)

Focus Major contribution

[14] Rout
(1999)

Established that there are
duplications and discrepancies in
definitions of terms in various
standards

Preliminary evaluation of
consistency and terminology in the
group of software engineering
standards developed by ISO/IEC
JTC1/SC7

[16] Garcia
et al.
(2006)

Vocabulary conflicts and
inconsistencies
Between various standards

Basic software measurement
ontology aligned with metrology

[15] Gilb
(2006)

Planguage Definition of concepts – not terms

[26] Gómez-
Pérez et al.
(2006)

Ontologies Ontologies include a vocabulary of
terms, and some specification of
their meaning

[17] Navigli
(2007)

Word sense disambiguation Automatic identification of correct
sense for scientific literature, Formal
taxonomies

[21] Karsch and
Sauberer
(2011)

Terminological precision Key Factor in Product Usability and
Safety, in Design, User Experience
and Usability, Theory, Methods,
Tools and Practice architecture for

[27] Henderson-
Sellers
(2011)

Metamodels and ontologies Application of ISO/IEC architecture
for ontology life-cycle management

[16] Garcia-
Penalvo
et al.
(2012)

Ontology modelling tool Semantic technologies are based on
ontologies
Ontology formalizes knowledge
meaning and facilitates the search for
contents and information

[25] Jacobson
et al.
(2013)

A thinking framework SEMAT Kernel Software
Engineering Method and Theory

[26] Jacobson
et al.
(2013)

SEMAT Kernel Practice-independent foundation for
the definition of software methods,
the kernel also has the power to
completely transform the ways that
methods are defined and practices
are shared

(continued)

Reflections on the Need for Disambiguation of Terminology 581

3 Communication Through Consistent Terminology
and Ontologies

Misuse and polymorphism of terms hinders effective communication, resulting in
miscommunication and even conflict and failure. The CHAOS Reports identify mis-
communication between business and IT personnel as one of the main reasons for
systems failures is [28].

The use of a common terminology among all stakeholders enables effective
knowledge sharing and lays the foundation for process improvement and success of
projects. One of the Principles of the SPI Manifesto is to “Ensure all parties understand
and agree on process” [http://2012.eurospi.net/index.php?option=com_content&view=
article&id=32&Itemid=33].

Consistent terminology minimises miscommunication and develops common
understanding. Terminology involves the terms themselves, their meanings, but also
and the relationships between them. The adoption of consistent terminology helps
avoid each researcher inventing a language of their own from scratch. Pfitzmann and
Hansen [29] asserted: “Of course, each paper will need additional vocabulary, which
might be added consistently to the terms defined here”. Thus by showing relationships
between terms a list or glossary of terms is converted to a consistent terminology.

Table 1. (continued)

Ref Researcher
(s)

Focus Major contribution

SEMAT is Actionable, Extensible,
Practical

[18] Prokofyev
et al.
(2013)

Word sense disambiguation (WSD:
the ability to identify the meaning of
words in context in a computational
Manner

Ontology based disambiguation

[19] Clarke
et al.
(2016)

Problems with terminology diversity Sustained effort by multiple
disciplines, including terminology
expertise, software development
specialist, knowledge management
know-how and computational
linguistics
Towards a canonical software
development process and roles
ontology

[22] Sauberer
et al.
(2017)

Content development of terminology
management

Extension of terminology change
management procedure
The development of an e-learning
course which offers a user-friendly
and sound introduction to basic
principles and methods of
terminology management

582 E. Georgiadou

http://2012.eurospi.net/index.php%3foption%3dcom_content%26view%3darticle%26id%3d32%26Itemid%3d33
http://2012.eurospi.net/index.php%3foption%3dcom_content%26view%3darticle%26id%3d32%26Itemid%3d33

Quality Models such as the McCall, Boehm, Dromey, ISO9126 etc. reviewed in
Côté et al. [30] are expressed in textual form but also in high level diagrammatic
representations with characteristics and sub-characteristics where the decomposition of
each characteristic indicates the relationship ‘belongs to’. Côté et al.’s review showed
commonalities across these Quality Models but also some inconsistencies and ambi-
guities in the classification and meaning of several terms. For example Correctness is
decomposed into Traceability, Completeness and Consistency whilst in McCall Cor-
rectness is analysed into Functionality and Reliability by Dromey.

Masolo and Borgo [31] emphasize that “we need to find a common ground, as
different researchers often rely on definitions of quality referring to quite different
things: adherence to requirements, fitness for a particular purpose, user satisfaction etc.
We believe that it can be done based on the recent efforts of establishing the notion of
software quality and its usage in terms of the formal ontology”.

Calero et al. [32] in an extensive review of the literature concluded that ontologies
in Software Engineering and Technology aim to share knowledge of the problem
domain and use a common terminology among all interested parties (not only
researchers), and to filter the knowledge when defining models and metamodels.

Gómez-Pérez et al. [26] argue that “ontologies aim to capture consensual knowl-
edge in a generic way, and that they may be reused and shared across software
applications and by groups of people. Ontologies include a vocabulary of terms, and
some specification of their meaning. This includes definitions and an indication of how
concepts are interrelated, which collectively impose a structure on the domain and
constrain the possible interpretations of terms.”

Jacobson et al. [25] explain that kernel allows you to add practices, such as user
stories, use cases, component-based development, architecture, pair-programming,
daily stand-up meetings, self-organizing teams, and so on to build the methods you
need. Mahon [36] emphasises that practitioners can use the SEMAT Kernel and par-
ticularly the pre-prepared cards to guide practitioners so that they can carry out their
processes efficiently and effectively.

4 The Role of Standards in Reducing of Ambiguity

A standard is defined by Gonzalez-Perez et al. [21] as a “document, established by
consensus and approved by a recognized body, that provides, for common and repeated
use, rules, guidelines or characteristics for activities or their results, aimed at the
achievement of the optimum degree of order in a given context”. Standards are needed
in order to avoid idiosyncrasy, to ensure repeatability, to reach consensus, and reassure
customers. Most products have safety standards but process standards are more rare,
and are also much more difficult to enforce. Standardising a process can ensure that no
steps are skipped. Also a standardized process which is understood and
accepted/institutionalised can improve quality (productivity and reliability).

Gonzalez-Perez et al. [33] refer to the need for various ISO International Standards
to be consistent with each other in terms of terminology, structure and semantics. They
propose a potential harmonization across ISO software engineering standards (within
Sub-Committee 7 (SC7) of ISO/IEC within Joint Technical Committee 1 (JTC1) by

Reflections on the Need for Disambiguation of Terminology 583

creating a core set of concepts and their relationships, effectively creating an abstract
domain ontology for software engineering standards creation and utilization.

Rout [14] analysed a number of SC7 standards, documenting in which standards
identified terms occurred together with their (disparate) definitions, only recently has
harmonization become a crucial action point (rather than a vague concern) in SC7,
especially under Special Working Group 5 (SWG5). Rout provided a table of Dupli-
cated terms in SC7 Standards and related documents. He stated that his effort at the
time was “…only to establish the necessity of resolving these differences for further
improvement within the standards and processes in the software-engineering domain.”

The INTERNATIONAL STANDARD ISO/IEC/IEEE 24765 First edition 2010-
12-15 Systems and software engineering—Vocabulary was published by ISO JTC
1/SC 7, in 2010 [23]. This International Standard was prepared to collect and stan-
dardize terminology “The scope of each concept defined has been chosen to provide a
definition that is suitable for general application. In those circumstances where a
restricted application is concerned, a more specific definition might be needed. Terms
have been excluded (a) if they were considered to be parochial to one group or
organization; (b) if they were company proprietary or trademarked; (c) if they were
multi-word terms whose meaning could be inferred from the definitions of the com-
ponent words; and (d) if their meaning in the information technology (IT) field could be
directly inferred from their common English meaning. Approximately two- thirds of
the definitions in this International Standard are new since IEEE Std 610.12 was last
updated in 1990, a reflection of the continued evolution in the field”.

ISO/IEC TR 14143-3:2003, [34] Information Technology—Software measurement
—Functional size measurement—Part 3: Verification of functional size measurement
methods (term 3.8) defines the term repeatability (of results of measurements) i.e.
closeness of the agreement between the results of successive measurements of the same
measurand carried out under the same conditions of measurement. Repeatability may
be expressed quantitatively in terms of the dispersion characteristics of the results.
[International vocabulary of basic and general terms in metrology, 1993, definition
3.6].

5 Universal Concepts, Research Ambitions and Pragmatic
Customisation

Researchers often start their investigations with a top-down, wide ranging ambition
spanning a large knowledge area even involving universal concepts, ideas, themes, and
principles that are found and can be proven within, between, and across various subject
areas and disciplines. As the researchers gradually gain insights and understanding of
the enormity and complexity of their originally ambitious scope and purpose, they
narrow down their investigation focussing on more specific problems. For example
Software Quality Models some of which were mentioned earlier in this paper aim to
provide a universal framework for all types of software systems. However, it is only
when they pragmatically consider the methods and techniques used for various cate-
gories, types and complexity of a more narrow selection of systems, they gain further
insights and they produce bottom-up tangible solutions.

584 E. Georgiadou

During their journey from the general to the specific and then to the general they
often generate new knowledge expressed in novel interpretations of existing terms or
they even generate new terms in order to exemplify their research contribution, the
originality of their work. Continuous change and continuous improvements, innova-
tions and changes in technologies bring their own new terms (which may be synonyms
to existing terms) to add to the already highly populated vocabulary of Software
Engineering. This in turn generates ambiguity.

Practitioners are normally focussed on in-house projects and challenges. Their own
experiential knowledge is often very useful for the theoreticians especially when they
form part of the same team integrating theory and practice.

For continuous terminology improvement and process improvement too, we need
to always revisit our initial research question to ensure validation and verification of
our findings. As T.S. Eliot said “We shall not cease from exploration. And the end of
all our exploring will be to arrive where we started and know the place for the first
time”. T.S. Eliot, Little Gidding (1888–1965).

Šmite et al. [35] observed that “there is no unified empirically based glossary or
reference model established in the field, which contains a clear description of the
various terms that are used to describe sourcing strategies, or a taxonomy that would
explicitly define the relationships between the different terms. They proposed a tax-
onomy for Global Software Engineering by categorizing the elected terms based on
generalization-specialization relationships and illustrate how the taxonomy can be used
to categorize and map existing knowledge. The contribution targets future researchers,
who will publish or synthesize further empirical work and practitioners, who are
interested in published empirical cases. Therefore this work is expected to make a
contribution to the future development of research in the GSE field, and alleviate
Understandability and transferability of existing and future knowledge into practice.

6 A Framework for Achieving Disambiguation of Terms

Following this investigation, we propose a framework (depicted in Fig. 1) for
launching, carrying out and implementing the terminology disambiguation process.
The central node (Number 7) forms the core of the framework. It is the on-going sub-
process of reviewing all the works coming from all other stages and all committees,
sub-committees, standards bodies and so on. This is a continuous and cyclic monitoring
and co-ordinating sub-process. The bidirectional arrows emphasise the need of change
of information, updating all stakeholders and responding to external changes.

Questions to be posed and answered at this stage include:
Which terms and combinations of terms are used to characterise different elements,

factors, actors, actions?

• Which terms are erroneous and Why?
• Which terms are deficient?
• Which terms are new? Are they related to existing terms?
• What are the unambiguous, correct terms, their definitions and their relationship to

other terms.

Reflections on the Need for Disambiguation of Terminology 585

Throughout the whole process pertinent questions need to be aked and answered.
For example: “Who are the stakeholders? “Some of these stakeholders will be
responsible for finanancing the intitiative, some will be carrying out the examination of
existing terms, etc. hence at stage 2 we need to convince all stakeholders that change is
necessary so the question “Why change “must be posed and answered. Terms of
reference (stage 3) include questions like “What is the budget?”, “What is the time-
frame for the completion of the tasks”, “What are the roles and responsibilities?”,
“Who are the people undertaking these roles”.

There are distinct roles for carrying out administrative and management tasks.
Domain experts are involved in the identification of inconsistencies, deficiencies, and
errors in terms existing terms. Terms and their relationship to other terms may be
accepted, rejected, modified, refined, and incoprorated in existing databases. If experts
disagree and cannot reconcile their differences in opinion terms may be rejected or
revisited for further elaboration.

Fig. 1. A framework for the effective disambiguation of terms

586 E. Georgiadou

7 Conclusion

7.1 Value Gains from the Elimination of Ambiguities in Terminology

Ambiguities in terminology can be addressed and minimised even eliminated through
the use of ontologies which are context specific. This is the reason that there exist
Ontologies for Requirements, for Risk Management, for Project Management etc.
Ontologies reduce conceptual and terminological ambiguity, as they provide us with a
framework for unification which in turn facilitates communication and knowledge
sharing among diverse viewpoints, contexts, cultures etc.

The latest important contribution comes from Ralph [38] in his paper “Toward
Methodological Guidelines for Process Theories and Taxonomies in Software Engi-
neering”. He provides an incisive analysis of the issues, “clarifies the nature and
functions of process theories and taxonomies in software engineering research, and
synthesizes methodological guidelines for their generation and evaluation”. He is
challenging us with areas of future research.

The systems and software engineering disciplines are continuing to mature while
information technology advances. New technological innovations and methodological
thinking reflect the rapid change. The multi-disciplinarity of Software and Systems
Engineering brings immense complexity and challenges to academics and practitioners
alike. New terms are being generated and new meanings are being adopted for existing
terms (INTERNATIONAL STANDARD ISO/IEC/IEEE 24765).

Process improvement can be achieved and value gains can be achieved for the
benefit of the organisation, the project, the individuals involved, and the whole Soft-
ware Engineering community through avoiding miscommunication, confusion and
even conflict. Only when agreed and accepted standards of incorporating all the
revised, refined or totally new terms are systematically incorporated in a consistent and
unambiguous terminology.

7.2 Future Work and Acknowledgements

Future work will involve the refinement and validation of the proposed framework, and
development of technical infrastructure which will enable further automation of the
process of term disambiguation.

Acknowledgements and thanks are due to the anonymous reviewers for their
thorough reviews, critical comments, expert advice, and useful suggestions for
improving the original submission.

References

1. Eco, U.: Social life as a sign system. In: Robey, D. (ed.), Structuralism: An Introduction,
Clarendon, Oxford (1973)

2. Bozkurt, A., et al.: Trends in Distance Education Research: A Content Analysis of Journals
2009–2013 (2015)

3. Avison, D., Fitzgerald, G.: Information Systems Development: Methodologies, Techniques
and Tools. Graw-Hill (2003)

Reflections on the Need for Disambiguation of Terminology 587

4. Jayaratna, N.: Understanding and Evaluating Methodologies, NIMSAD: A Systemic
Approach, McGraw-Hill (1996)

5. Howell, K.E.: An Introduction to the Philosophy of Methodology. Sage Publications,
London (2013)

6. Barn, B.S.: On the evaluation of reference models for software engineering practice. In:
Proceedings of the 2nd India Software Engineering Conference, ISEC 2009, pp. 111–116
(2009)

7. Thomas, O.: Understanding the term reference model in information systems research:
history, literature analysis and explanation. In: Bussler, Christoph J., Haller, A. (eds.) BPM
2005. LNCS, vol. 3812, pp. 484–496. Springer, Heidelberg (2006). https://doi.org/10.1007/
11678564_45

8. Barn, B.S., Dexter, H., Oussena, S., Petch, J.: An approach to creating reference models for
SOA from multiple processes. In: IADIS Conference on Applied Computing, Spain (2006)

9. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Softw. 13, 12–21
(1996)

10. Siakas, K.V., Berki, E., Georgiadou, E., Sadler, C.: The complete alphabet of quality
software systems: conflicts and compromises. In: 7th World Congress on Total Quality &
Qualex 97, New Delhi, India, 17–19 February (1997)

11. Georgiadou, E.: Navigating the labyrinth of software ‘re’ words. In: Dawson, R., Ross, M.,
Staple, G. (eds.) Proceedings of the 17th International Conference Software Quality
Management (SQM), Software Quality in the 21st Century. BCS (2009)

12. Kitchenham, B.: Software Metrics, Measurement for Software Process Improvement.
NCC/Blackwell, Oxford (1996)

13. Abran, A., Sellami, A., Suryn, W.: Metrology, measurement and metrics in software
engineering. In: Proceedings of the 5th International Workshop on Enterprise Networking
and Computing in Healthcare Industry (IEEE Cat. No. 03EX717) (2003)

14. Rout, T.P.: Consistency and conflict in terminology in software engineering standards. In:
Proceeding of the Fourth IEEE International Symposium and Forum on Software
Engineering Standards (ISESS 1999), pp. 67–74. IEEE Computer Society Press, Los
Alamitos (1999)

15. Gilb, T.: Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage. Elsevier Butterworth-Heineman,
Oxford (2005)

16. Garcia-Penalvo, F.J., Colomo-Palacios, R., Garcia, J.: Towards an ontology modelling tool.
A validation in software engineering scenarios. Expert Syst. Appl. 39(13), 11468–11478
(2012)

17. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41(2), 10:1–10:69
(2009)

18. Prokofyev, R., Demartini, G., Boyarsky, A., Ruchayskiy, O., Cudré-Mauroux, P.: Ontology-
based word sense disambiguation for scientific literature. In: Serdyukov, P., et al. (eds.)
ECIR 2013. LNCS, vol. 7814, pp. 594–605. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36973-5_50

19. Clarke, P.M., et al.: Refactoring software development process terminology through the use
of ontology. In: Kreiner, C., O’Connor, Rory V., Poth, A., Messnarz, R. (eds.) EuroSPI
2016. CCIS, vol. 633, pp. 47–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44817-6_4. ISBN 978-3-319-44817-6

20. Jacobson, I., Pan-Wei, N., McMahon, P., Spence, I., Lidman, S.: The Essence of Software
Engineering—Applying the SEMAT Kernel. Addison-Wesley, Boston (2013). Forthcoming
in January 2013 but available in a prepublication version on safaribooksonline.com

588 E. Georgiadou

http://dx.doi.org/10.1007/11678564_45
http://dx.doi.org/10.1007/11678564_45
http://dx.doi.org/10.1007/978-3-642-36973-5_50
http://dx.doi.org/10.1007/978-3-642-36973-5_50
http://dx.doi.org/10.1007/978-3-319-44817-6_4
http://dx.doi.org/10.1007/978-3-319-44817-6_4

21. Karsch, B.I., Sauberer, G.: terminological precision - a key factor in product usability and
safety. In: Marcus, A. (ed.) DUXU 2011. LNCS, vol. 6769, pp. 138–147. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21675-6_16

22. Sauberer, G., Villar, B.N., Dreßler, J.R., Schmitz, K.-D., Clarke, P.M., O’Connor, R.V.: Dowe
speak the same language? Terminology strategies for (software) engineering environments
based on the Elcat model - innovative terminology e-learning for the automotive industry. In:
Stolfa, J., Stolfa, S., O’Connor, Rory V., Messnarz, R. (eds.) EuroSPI 2017. CCIS, vol. 748,
pp. 653–666. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64218-5_54. ISBN
978-3-319-64218-5

23. ISO/IEC/ IEEE 24765, ISO International Standard ISO/IEC/ IEEE 24765 First edition 2010-
12-15 Systems and software engineering—vocabulary was published by ISO JTC 1/SC 7

24. Hu, B., Dasmahapatra, S., Dupplaw, D., Lewis, P., Shadbolt, N.: Reflections on a medical
ontology. Int. J. Hum.-Comput. Stud. 65(7), 569–582 (2007)

25. Jacobson, I., Ng, P.-W., Spence, I.: Enough of process—let’s do practices. J. Object
Technol. 6(6), 41–67 (2007)

26. Gómez-Pérez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.
Springer, London (2006). https://doi.org/10.1007/b97353

27. Henderson-Sellers, B., Gonzalez-Perez, C., McBride, T., Low, G.: An ontology for ISO
software engineering standards: 1) creating the infrastructure. Comput. Stand. Interfaces 36
(3), 563–576 (2014)

28. Standish Group: The CHAOS Report. The Standish Group International (1994). http://
www.standishgroup.com/sample_research/chaos_1994_1.php

29. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
anonymity, unlinkability, unobservability, pseudonymity, and identity management –

version v0.34. Technical report, TU Dresden and ULD Kiel (2011)
30. Côté, M.-A., Suryn, W., Georgiadou, E.: In search for a widely applicable and accepted

software quality model for software quality engineering. Softw. Qual. J. 15(4), 401–416
(2007)

31. Masolo, C., Borgo, S.: Qualities in formal ontology. In: Hitzler, P., Lutz, C., Stumme, G.
(eds.) Proceedings of the Workshop on Foundational Aspects of Ontologies (FOnt 2005),
pp. 2–16 (2005)

32. Calero, C., Ruiz, F., Piattini, M. (eds.): Ontologies for Software Engineering and Software
Technology. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34518-3

33. Gonzalez-Perez, C., Henderson-Sellers, B., McBride, T., Low, G.C., Larrucea, X.: An
ontology for ISO software engineering standards, 2) proof of concept and application. Int.
J. Hum.-Comput. Stud. 65(2007), 569–582 (2007)

34. ISO/IEC TR 14143-3:2003: [23] Information technology—Software measurement—Func-
tional size measurement—Part 3: Verification of functional size measurement methods

35. Šmite, D.: An empirically based terminology and taxonomy for global software engineering.
Empir. Softw. Eng. 19(1), 105 (2014). ISSN 1382-3256

36. Mahon: The Essence of Software Engineering - Applying the SEMAT Kernel. With Pan Wei
Ng, Paul Mc Mahon, Ian Spence and Svante Lidman. Addison-Wesley (2013)

37. Clarke, P., et al.: An Investigation of Software Development Process Terminology. In:
Clarke, Paul M., O’Connor, Rory V., Rout, T., Dorling, A. (eds.) SPICE 2016. CCIS, vol.
609, pp. 351–361. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38980-6_25

38. Ralph, P.: Toward methodological guidelines for process theories and taxonomies in
software engineering. IEEE Trans. Softw. Eng. (2018). https://doi.org/10.1109/TSE.2018.
2796554

Reflections on the Need for Disambiguation of Terminology 589

http://dx.doi.org/10.1007/978-3-642-21675-6_16
http://dx.doi.org/10.1007/978-3-319-64218-5_54
http://dx.doi.org/10.1007/b97353
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://dx.doi.org/10.1007/3-540-34518-3
http://dx.doi.org/10.1007/978-3-319-38980-6_25
http://dx.doi.org/10.1109/TSE.2018.2796554
http://dx.doi.org/10.1109/TSE.2018.2796554

	Reflections on the Need for Disambiguation of Terminology for Software Process Improvement
	Abstract
	1 Introduction
	2 Terminology Management: Vocabularies, Taxonomies, and Ontologies
	3 Communication Through Consistent Terminology and Ontologies
	4 The Role of Standards in Reducing of Ambiguity
	5 Universal Concepts, Research Ambitions and Pragmatic Customisation
	6 A Framework for Achieving Disambiguation of Terms
	7 Conclusion
	7.1 Value Gains from the Elimination of Ambiguities in Terminology
	7.2 Future Work and Acknowledgements

	References

