
Applying the ISO/IEC 25010 Quality Models
to Software Product

John Estdale1(&) and Elli Georgiadou2

1 IT Architecture Specialists Ltd, Newbury, UK
john.estdale@acm.org

2 Faculty of Science and Technology, Middlesex University, London, UK
e.georgiadou@mdx.ac.uk

Abstract. The software development process focuses on the delivery of a
software implementation – its ‘product’, whether COTS or bespoke. However,
potential acquirers are attracted by the promise of a future ‘service’ from that
product: those aspects of the software’s behavior visible outside it, particularly
those that deliver value in the real world.
ISO/IEC 25010: 2011 provides the leading models for assessing software

product. This is an important contribution towards establishing the delivery
performance of software processes and proposed improvements. This paper
explores the scope and interpretation of the ISO/IEC 25010 quality models, in
the light of this broad, lifetime service-oriented view, also identifying other
significant aspects of product that concern acquirers of software, and for which
quality requirements and quality evaluation are potentially needed. Suggestions
for refinement and extension of the standard complete the paper.

Keywords: Software product quality � Software behavior � Digital service
ISO/IEC 25010 � SQuaRE � Quality models � 7Ms

1 Introduction

The value of software to users and organizations arises from its actual behavior in use,
rather than from any qualities of the source code or the intended behavior as described
in design documents etc. As Hofemann [1] says:

“It requires a change in the mindset to consider software as a service rather than as a product. It
is more than a change in business or delivery model, as in the case of changing to SaaS.”

Furthermore, most applications of significant value will go through a series of
maintenance releases, thus the simple model of software development producing
software product (e.g. Sjøberg [2]) must be extended to cover post-delivery support and
maintenance. In considering Software Process Improvement, we need to include post-
delivery activities.

ISO/IEC 25010: 2011 Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models [3] presents the leading quality
models for software products and computer systems known as ‘software-intensive
computer systems’ [4]. This paper examines the two quality models in this standard in

© Springer Nature Switzerland AG 2018
X. Larrucea et al. (Eds.): EuroSPI 2018, CCIS 896, pp. 492–503, 2018.
https://doi.org/10.1007/978-3-319-97925-0_42

http://orcid.org/0000-0003-1312-534X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_42&domain=pdf

Sects. 4 and 5, with some additional aspects in Sect. 6. The standard mentions “sec-
ondary users who provide support” but the quality of such advice and support is not
assessed in either model, so the In-life experience is considered here in Sect. 7. Sec-
tion 8 draws the conclusions.

The present authors have previously applied ISO/IEC 25010 to smartphone
applications destined for the Apple and Microsoft App Stores [4], and to the differences
between products and prototypes [5]. These provide practical trials of the application of
ISO/IEC 25010. This paper considers Digital Services from delivered software and
comments on some less obvious issues with ISO/IEC 25010 interpretation.

2 ISO/IEC 250xx Series: SQuaRE

The ISO/IEC 25000 to ISO/IEC 25099 series of International Standards is entitled
Systems and software engineering – Systems and software Quality Requirements and
Evaluation, hence the acronym: ‘SQuaRE’. The guide to the series, now in its 2nd

edition [6] states that “the general goal … was to … [cover] two main processes:
software quality requirements specification and system and software quality evaluation;
supported by a system and software quality measurement process. The purpose … is to
assist those developing and acquiring systems and software products with the speci-
fication and evaluation of quality requirements”.

The traditional ISO 9001 position was that quality concerned “conformance to
specified requirements”. This has been broadened to “satisfy stated and implied needs”.
As the universe of such needs is not well-defined and standardized, evaluation of
quality is ultimately purchaser-dependent.

2.1 The ISO/IEC 25010: 2011 Quality Model

SQuaRE has simplified the analysis from its predecessor, ISO 9126 [7], and now
divides software quality characteristics into two quality models. Quality in Use is “the
degree to which a product or system can be used by specific users to meet their needs to
achieve specific goals… in specific contexts of use” and the catchall Product Quality is
“characteristics … that relate to static properties of software and dynamic properties of
the computer system”. Given the previously quoted focus on needs, one might ask why
include the second group at all, but ISO/IEC 25000 explains this as providing targets to
drive development and verification, and to predict Quality in Use before delivery [6].
For SPI, it’s helpful to have these supplier measures and exclude the impact of users
and their context.

SQuaRE includes a Technical Specification: ISO/IEC TS 25011:2017 Information
technology—Systems and software Quality Requirements and Evaluation (SQuaRE)—
Service quality models [8]. This focusses on services that “make use of IT systems as
tools to provide value”, so includes a range of service management issues not directly
relevant in this context.

Italics are used throughout this paper to denote the 13 characteristics and 40 sub-
characteristics defined in ISO/IEC 25010. Definitions quoted are all taken from
ISO/IEC 25010 [3].

Applying the ISO/IEC 25010 Quality Models 493

3 Applying the ISO/IEC 25010: 2011 Quality Models

Although ISO 9126 has been much used as a quality model in academic papers, many
alternative quality models have been published over the years [9–11]. Oriol et al. [12]
compared 47 quality models for web services from 65 papers with ISO/IEC 25010 and
found little consistency. Unlike the physical world, with clearly independent dimen-
sions and well-defined measures (length, mass, time, electric current, thermodynamic
temperature, luminous intensity, etc.), software quality concepts such as compatibility
are somewhat nebulous, and indeed have been redefined and reorganized as part of the
ISO/IEC 25010 work [3].

Biscoglio and Marchetti [13] found similar difficulties in applying ISO/IEC 25000,
which they described as “a conceptual framework and not a ready-to-use solution”.

3.1 ISO/IEC 25010 Applied to Digital Services

Behavior is what the software does as it is executed, i.e. it is the observable aspects of a
computerized process. To identify all the causes of variation in the behavior of a
process, one can apply the 7Ms model from quality management [14] shown in Table 2
to ensure completeness.

Table 1. ISO/IEC 25010: 2011: quality models, characteristics and subcharacteristics (These
are taken direct from the standard, following its English spelling, but American English is used
for the remainder of this paper)

Quality in use Product quality Product quality
(cont.)

• Effectiveness
• Efficiency
• Satisfaction

– Usefulness
– Trust
– Pleasure
– Comfort

• Freedom from risk
– Economic risk mitigation
– Health and safety risk
mitigation

– Environmental risk mitigation
• Context coverage

– Context completeness
– Flexibility

• Functional suitability
– Functional completeness
– Functional correctness
– Functional appropriateness

• Performance efficiency
– Time behaviour
– Resource utilization
– Capacity

• Compatibility
– Co-existence
– Interoperability

• Usability
– Appropriateness
recognisability

– Learnability
– Operability
– User error protection
– User interface aesthetics
– Accessibility

• Reliability
– Maturity
– Availability
– Fault tolerance
– Recoverability

• Security
– Confidentiality
– Integrity
– Non-repudiation
– Accountability
– Authenticity

• Maintainability
– Modularity
– Reusability
– Analysability
– Modifiability
– Testability

• Portability
– Adaptability
– Installability
– Replaceability

494 J. Estdale and E. Georgiadou

4 Quality in Use

Sections 4 and 5 follow the structure of the standard shown in Table 1, looking at each
defined characteristic in turn, and commenting on how it may be interpreted, going
down to subcharacteristic level where appropriate.

The definition of Quality in Use quoted in Sect. 2.1 is concerned with measuring
the service to be delivered, so follows the service emphasis of this paper. In a tradi-
tional procurement, Quality in Use would be measured in the Buyer’s environment as
part of Acceptance Test.

4.1 Achievement of Needs

ISO/IEC 25010 does not include the evaluation of an application’s specific function-
ality and features, as their value can only be measured in relation to the needs of the
acquiring organization. The Quality in Use model therefore seeks to quantify the
‘usability’ (effectiveness, efficiency and satisfaction) of the application, when specific
users attempt to meet their specified goals. ISO/IEC 25010 defines effectiveness as the
“accuracy and completeness with which users achieve specified goals”, and efficiency
as “resources expended in relation to the accuracy and completeness with which users
achieve goals”.

As an example of the sort of interpretation of the standard that may be needed to
apply it, much of the content of App Stores consists of games, or items for

Table 2. Process variation across digital services

‘M’ Normal interpretation in
manufacturing context

Digital service equivalent

Machine The equipment and technology
required

The platform (operational
environment), with the software
application installed on it

Method How the process is performed by
the human element: policies,
procedures etc.

Limited in this context to supporting
processes in Operations and Support

Material Raw materials and other
ingredients

Requests and their parameters from the
service consumer (human or app)

Man (power) People involved in providing the
service

Humans are not involved in servicing
most requests, but are needed to keep
the service running longer term, e.g.
Operations and Support staff

Management The organization of the
manpower

The Digital Service Manager

Milieu Environmental conditions Existing data, infrastructure services
and other apps sharing the platform

Measurement Process measurements used to
monitor and control the process

These are not further defined, so the
ISO/IEC 25010 characteristics will be
used

Applying the ISO/IEC 25010 Quality Models 495

entertainment. Apple stated the need as: “If your App doesn’t provide some form of
lasting entertainment value, or is just plain creepy, it may not be accepted.” [15]
However, Apple does attempt to restrict the silly, witness their statement: “We don’t
need any more Fart apps” [16], (which raises the question of how they determine
whether a new one provides a significant advantage over the many already in store!).
This is quite a stretch from SQuaRE’s solemn discussion of “stated and implied needs”.

4.2 Freedom from Risk

As explained in ISO/IEC 25010, compliance was dropped in the move from ISO/IEC
9126-1:2001, as compliance with laws and regulations should be stated customer
requirements, presumably ‘Musts’, not quantifiable qualities.

In complex industries, such as telecommunications it is known that legal and
regulatory requirements, developed at different times, by different authorities, often
conflict. More generally, many customers are likely to have no knowledge of the
potential constraints on functionality and features of issues such as Privacy, Data
Protection, the Distance Selling Regulations or the contractual rules of the five main
Credit Card schemes for different industries and scenarios. Product suppliers should
take responsibility for making themselves aware of all restrictions on the use of their
product in the sales territory, and make explicit any usage restrictions and assumptions.

Whilst we may assume that acquirers state a need for overall legal compliance in
their operating territories, it is likely that this will not be developed in detail, leaving the
implications to be explored during product evaluation. We propose that Compliance be
reinstated, this time as Legal Compliance under the Freedom from risk characteristic, to
cover the product’s claim for Legal, Regulatory and Contractual compliance. An
associated quality measure might be “Clarity of Obligations to be met by the Customer
to achieve Legal Compliance, when adopting this system”, leaving the customer to
decide whether the issues reported by the Supplier are acceptable under functional
suitability.

5 Product Quality

These characteristics are primarily of interest to the supplier, and to those acquirers
who wish to get more involved technically.

Functional suitability is an early view of the product’s likely effectiveness, dis-
cussed in Sect. 4.1. ISO/IEC 25010 divides it into the subcharacteristics functional
completeness, appropriateness and correctness. It is left to potential acquirers to do
their own assessment and selection, based on their particular needs.

Performance efficiency includes time behavior, resource utilization and capacity.
For software products, measures taken during development may not use the acquirer’s
exact platform/environment, so extrapolation to the delivered service may be difficult.

496 J. Estdale and E. Georgiadou

5.1 Compatibility

This is divided into interoperability between applications – the exchange and use of
information, and co-existence – the impact on other products sharing the same plat-
form. Note that these are concerned with how functionality is implemented, so are
perhaps best thought of as ‘features’ not functions.

Co-existence is not a purely passive concept. Even after the arrival of properly
protected multi-programming operating systems on PCs, it remains important that a
product be ‘well-behaved’ rather than ‘misbehaved’ [17, 18], so should use supplied
services for co-operative sharing of resources with the other (uncontrolled) applications
running on the platform [5].

Interoperability is defined as “the degree to which two or more systems, products
or components can exchange information and use the information that has been
exchanged”. Even if the product has no advertised interfaces to other products, in
practice, users will assume interoperability with the native operating system capabili-
ties, such as cut/copy/paste text between fields on a display screen, and objects between
application windows [5].

5.2 Usability

Before the product is released, enabling Quality in Use to be measured as an emergent
property (see Sect. 4.1), usability can be measured by relevant product subcharacter-
istics: appropriateness recognizability, learnability, operability, user error protection,
user interface aesthetics, and accessibility. Appropriateness recognizability is descri-
bed as “the degree to which users can recognize whether a product or system is
appropriate for their needs”, so covers the supplier’s marketing literature. The avail-
ability of formal training and on-line help assist in several areas, but they are features of
the supplier’s solution, and it is the resulting usability of the product that is important.

5.3 Reliability

This includes availability and recoverability. In the real world, these are rarely pure
application features, but aspects of the overall service, obliging human users and
supporting staff to co-operate to handle whatever the application does not do for itself.

5.4 Security

Today’s customers demand built-in mechanisms for controlling access, ensuring data
integrity and protecting confidentiality. On a smartphone, much of the security sur-
rounding a service is provided by the operational/usage environment, co-existing with
the other applications and settings chosen by the platform owner. For example:

“iOS is designed and built to … accept and install software that has been approved by Apple
and run through the App Store. As such Apple has pretty much guaranteed that you won’t
encounter any malicious software on your iOS device” [19].

Applying the ISO/IEC 25010 Quality Models 497

5.5 Maintainability

ISO/IEC 25010 defines maintainability as “the degree of effectiveness and efficiency
with which a product … can be modified by the intended maintainers”. The description
of maintainability includes modifications carried out by “business or operational staff,
or end users”, so would include the deployment of supplier fixes.

Analyzability covers assessing the impact of an intended change, diagnosing defi-
ciencies and failures, and identifying parts to be modified. Analyzability also covers
problems noticed first in the field, requiring reliable configuration identification [5].

Testability is important, both at low-level (by allowing components to be tested
independently and automatically) and at high-level, by developing and maintaining
regression test suites to demonstrate that the previous service has not been downgraded.
For the service, it is also useful to have post-installation and post-recovery tests, to
confirm the service is working properly after human intervention.

Siakas and Georgiadou [20] proposed an extension (to ISO 9126), that Extensibility
be considered as a primary level characteristic asserting that modular and object-
oriented software “has become more extensible as tried and tested classes can be
integrated into existing systems without the need to construct from scratch, or re-test
the whole system”.

5.6 Portability

Traditionally software portability has been a concern of developers working with the
source code, involving recompilation, re-building etc. Applications are generally
bought as implementations that execute only on specified platforms/computer ranges,
and a customer wishing to move elsewhere has to buy the appropriate implementation
for the new platform. Customers will then need to migrate their existing data, con-
figuration, backups, users, etc. to the new environment.

Portability in ISO/IEC 25010 includes adaptation by end users and for “different…
operational or usage environments”, so it includes the purchased implementation’s
ability to run on any instance of the supported platform, including plug-compatible,
virtual, outsourced or cloud-based environments.

The specification of the platform required is actually a critical matter to all
commercially-minded software product vendors, as they will want to ensure that their
software continues to work on any new and improved platforms added to the range in
the future [4].

Replaceability focuses on the replacement of an existing product, or one version by
another. Developers should also consider broader service issues such as the migration
of existing data and minimizing changes to the user interface.

Established commercial practice is that any new release will at least maintain all
previous functionality and features, and maintain access to existing customer data, i.e.
be ‘upward compatible’, with no ‘regression’. In some cases suppliers guarantee to
meet the costs of any incompatible upgrade. Customers need surety that key product
characteristics will be continued for as long as they want, so ‘promises’ should be
backed up by contractual obligations on the supplier and any future substitute.

498 J. Estdale and E. Georgiadou

5.7 Supportability

The ‘supportability’ of a product is similar to maintainability in Sect. 5.5, contributing
as one factor in the prediction of future experience, where neither the demand nor the
response are known. It can be improved through the inclusion of appropriate functions
and features for support activities. Most maintainability aids are useful contributors,
although their emphasis must be changed to focus on defect reporting: the identification
of defects in terms of errors in behavior and when exactly these happen. Other mea-
sures should take into account typical support scenarios from the acquirer’s viewpoint,
e.g. urgent calls for assistance, remote diagnosis, and support without access to source
code or proprietary Intellectual Property: information or tools.

6 Other Characteristics of the Product at Delivery

6.1 Honesty and Openness

App Stores are a distinct world, with many unexpected perspectives [4]. There is an
explicit requirement for open and honest communication – both for an acquirer con-
templating a purchase, and for a user downloading an app. Reasons for rejection by
Apple can include [15]:

• “Apps that do not perform as advertised by the developer”
• “Apps that include undocumented or hidden features inconsistent with the

description”
• “Apps that are intended to provide trick or fake functionality that are not clearly

marked as such”.

Misleading documentation is not considered in the SQuaRE quality model.

6.2 Product Maturity

Bennett and Rajlich [21] suggested that products go through a maturity lifecycle, a
staged model of initial development, active evolution, servicing and phase out.
Acquirers looking for reliability might prefer a product in the third stage, whereas those
hoping for growing functionality would prefer the second. In 1974 Lehman [22]
emphasized that “first software systems must be continually adapted, or they become
progressively less satisfactory. At the same time, software is becoming more and more
complex and more expensive than before. As a software system evolves its complexity
increases unless work is done to maintain or reduce it”. In [23], Lehman also showed
the strong effect that past product maintenance has on future quality.

7 In-life Experience, Post-deployment

This is what ultimately matters to the acquirer, but is unknown until a particular
product has been bought, deployed, and a reasonable settling-in period allowed. Pre-
dictions of Quality in Use may be attempted from the supplier’s Quality in Use data,

Applying the ISO/IEC 25010 Quality Models 499

from reference sites, or from previous, related work by this supplier. The ISO/IEC
25010 quality models are inevitably focused around acquisition, but could be applied to
normal operation, and to mid-life or supplier reviews.

Other activities affecting the acquirer’s post-deployment experience can be split in
various ways, e.g. Cancian [24]. In-life administration, production, support, mainte-
nance and their manageability should be considered before selecting a product, but
SQuaRE does not currently address them. They are all Post-deployment processes,
subject to the performance variability of the 7Ms (see Sect. 3.1), so further Quality in
Use and Product Quality characteristics could be defined. The acquirer could request
the product supplier to provide all these supporting services for an agreed price, in
which case a comprehensive set of additional service level measures would be needed.

Application-specific activities that support the functionality and features provided
to direct and indirect users can be split into those that satisfy the acquirer’s needs as
normal, and other supporting activities introduced by the developer. The former are
needed by the acquirer, so are covered by the 25010 usability models, whereas the
latter are just part of the cost of ownership of that particular product and hence
overheads.

7.1 Customer Support by Supplier

Product selection will be much better informed, if the acquirer has a clear idea of the
operational environment to be used, and the associated IT services it hopes to give its
users (see Trinkenreich [25]). Support is sometimes confusingly included under
maintenance. ISO/IEC 15504-5: 2006 [26] makes a clear distinction, with a Customer
Support process (OPE-2) whose purpose is “to establish and maintain an acceptable
level of service through assistance and consultation to the customer to support effective
use of the product”. Customer Support’s objective should be to resolve issues and
minimize the need for repeat or follow-up calls: Seddon’s ‘failure demand’ [27], that is
“demand caused by a failure to do something or do something right for the customer”.
Tourniaire [28] suggests that less than 5% of calls are actually the result of a software
bug.

The QuEST Leadership Forum’s TL 9000 aims to meet the “supply chain quality
requirements of the worldwide telecommunications industry” [29] and has defined
support metrics, which are collected from registered suppliers every month.

As support is a post-acquisition activity, with only minor influence from the pro-
duct’s technical implementation, ISO/IEC 25010 does not cover it. Nevertheless, the
supplier’s support capability is an important element in software product evaluation,
and should at least be mentioned, even if it is then explicitly excluded from the scope of
the ISO/IEC 250xx series.

7.2 In-life Maintenance

Most software is bought-in, so acquirers want to understand the likely work, effort and
cost required to maintain the product in service for their users, depending on their
management goals [30]. This will inevitably be affected by the frequency and com-
plexity of upgrades, resulting from the policies and procedures of the supplier, in terms

500 J. Estdale and E. Georgiadou

of commitment to fixing reported defects, quality and timeliness of new releases
containing bug fixes, etc.

8 Conclusions

We have not attempted to look at all the criteria involved in acquiring software and
creating and sustaining an ongoing relationship with its supplier, but restricted our-
selves to the delivered software, and the product-specific implications, post-
deployment.

The ISO/IEC 25000 series is a major step forward in software quality requirements
specification and quality evaluation. Whilst the definitions and their notes are useful,
readers may miss or dismiss many important interpretations. The acquirer’s activities
post-deployment are not considered, and yet must be a major part of their decision-
making.

Our contribution has been to explore the scope of ISO/IEC 25010 and introduce
further significant properties: legal, regulatory and contractual compliance, extensi-
bility, supportability, honest description, product maturity, and in-life activities
including Customer Support by Supplier and In-life maintenance.

Process improvement initiatives change the process, but also affect the resulting
product. Management’s goals may be to improve specified ‘dimensions’ of the product
(the characteristics and subcharacteristics discussed earlier), maintain the existing
levels, or disregard them (i.e. leave them unmanaged except where they appear in client
requirements). ISO/IEC 25010, together with our proposed extensions, provides a
comprehensive quality model which can be used as the basis for specifying whether a
changed process should improve, maintain or ignore each dimension.

Future work will investigate case studies in order to assess the various impacts
identified in this paper and also validate our suggestions for clarification and extension
of the standard.

We thank the anonymous referees for their help in clarifying the text.

9 Relation to SPI Manifesto

This paper addresses Principle 3 of the SPI Manifesto [31]: Base improvement on
experience and measurements. ISO/IEC 250xx series can be used to baseline the
performance of existing processes in terms of the output product, and to specify any
corresponding performance change intended from process improvement. ISO/IEC
25010 provides a comprehensive model to ensure all relevant dimensions are
addressed.

Applying the ISO/IEC 25010 Quality Models 501

References

1. Hofemann, S., Raatikainen, M., Myllärniemi, V., Norja, T.: Experiences in applying service
design to digital services. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 134–148. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_10

2. Sjøberg, D.I.K.: The relationship between software process, context and outcome. In:
Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T.
(eds.) PROFES 2016. LNCS, vol. 10027, pp. 3–11. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-49094-6_1

3. ISO: ISO/IEC 25010:2011, Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models

4. Estdale, J.: App stores & ISO/IEC 25000: product certification at last? In: Phalp, K., et al.
(eds.) SQM XXIV: Systems Quality: Trends and Practices, pp. 37–48. Southampton Solent
University (2016)

5. Estdale, J.: Products and prototypes: what’s the difference? In: SQM XXV: Achieving
Software Quality in Development and in Use, pp. 65–76. Southampton Solent University
(2017)

6. ISO: ISO/IEC 25000:2014, Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE

7. ISO: ISO/IEC 9126, various parts and dates. Software engineering – Product quality. Being
superseded by SQuaRE [5]

8. ISO/IEC TS 25011:2017 Information technology—Systems and software Quality Require-
ments and Evaluation (SQuaRE)—Service quality models

9. Georgiadou, E.: Software process and product improvement: a historical perspective.
Cybern. Syst. Anal. 39(1), 125–142 (2003). https://doi.org/10.1023/A:1023833428613

10. Côté, M.A., Suryn, W., Georgiadou, E.: In search for a widely applicable and accepted
software quality model for software quality engineering. Softw. Qual. J. 15(4), 401–416
(2007)

11. Miguel, J.P., Mauricio, D., Rodriguez, G.: A review of software quality models for the
evaluation of software products. Int. J. Softw. Eng. Appl. (IJSEA) 5(6), 1–24 (2014). https://
doi.org/10.5121/ijsea.2014.5603

12. Oriol, M., Marco, J., Franch, X.: Quality models for web services: a systematic mapping. Inf.
Softw. Technol. 56(10), 1167–1182 (2014). https://doi.org/10.1016/j.infsof.2014.03.012

13. Biscoglio, I., Marchetti, E.: Definition of software quality evaluation and measurement
plans: a reported experience inside the audio-visual preservation context. In: Holzinger, A.,
Cardoso, J., Cordeiro, J., Libourel, T., Maciaszek, L.A., van Sinderen, M. (eds.) ICSOFT
2014. CCIS, vol. 555, pp. 63–80. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-25579-8_4

14. Bergman, B., Klefsjö, B.: Quality from Customer Needs to Customer Satisfaction. McGraw-
Hill, Maidenhead (1994)

15. App Store Review Guidelines. https://developer.apple.com/app-store/review/guidelines/.
Accessed 17 Apr 2018

16. McCann, T.: The Art of the App Store. John Wiley, Indianapolis (2012)
17. Gibson, S.: ‘Well-behaved’ and ‘misbehaved’ software: past and present. InfoWorld 8(43),

65 (1986)
18. Gibson, S.: Programs that ‘behave’ lend themselves to compatibility successfully. InfoWorld

8(43), 69 (1986)

502 J. Estdale and E. Georgiadou

http://dx.doi.org/10.1007/978-3-319-13835-0_10
http://dx.doi.org/10.1007/978-3-319-49094-6_1
http://dx.doi.org/10.1007/978-3-319-49094-6_1
http://dx.doi.org/10.1023/A:1023833428613
http://dx.doi.org/10.5121/ijsea.2014.5603
http://dx.doi.org/10.5121/ijsea.2014.5603
http://dx.doi.org/10.1016/j.infsof.2014.03.012
http://dx.doi.org/10.1007/978-3-319-25579-8_4
http://dx.doi.org/10.1007/978-3-319-25579-8_4
https://developer.apple.com/app-store/review/guidelines/

19. Haslam, K.: iOS security risks: after the XcodeGhost exploit is Apple’s iOS really safer than
Android? Plus: what security apps do you need for iPad & iPhone. http://www.macworld.co.
uk/feature/iosapps/is-ipad-iphone-ios-safe-xcodeghost-what-security-software-need-
3453938/#antivirus. Accessed 16 Apr 2018

20. Siakas, K.V., Georgiadou, E.: PERFUMES: a scent of product quality characteristics. In:
International Software Quality Management Conference, pp. 211–220. BCS, London (2005)

21. Bennett, K., Rajlich, V.: Software maintenance and evolution: a roadmap. In: International
Conference on Future of Software Engineering, pp. 73–90. ACM, New York (2000). https://
doi.org/10.1145/336512.336534

22. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program
life cycle. J. Syst. Softw. 1(1), 213–221 (1980). https://doi.org/10.1016/0164-1212(79)
90022-0

23. Lehman, M.M., Perry, D.E., Ramil, J.F.: Implication of evolution metrics on software
maintenance. In: International Conference on Software Maintenance, pp. 208–217. IEEE
(1998). https://doi.org/10.1109/icsm.1998.738510

24. Cancian, M.H., Hauck, J.C.R., von Wangenheim, C.G., Rabelo, R.J.: Discovering software
process and product quality criteria in software as a service. In: Ali Babar, M., Vierimaa, M.,
Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 234–247. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13792-1_19

25. Trinkenreich, B., Santos, G., Barcellos, M.P.: SINIS: a method to select indicators for IT
services. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS,
vol. 9459, pp. 68–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26844-6_6

26. ISO: ISO/IEC 15504-5:2006 Process assessment – Part 5: An exemplar Process Assessment
Model

27. Seddon, J.: Freedom from Command and Control: A Better Way to Make the Work Work,
2nd edn. Vanguard Education, Buckingham (2005)

28. Tourniaire, F., Jarrell, R.: The Art of Software Support: Design and Operation of Support
Centers and Help Desks. Prentice Hall, London (1998)

29. TL 9000 Overview. http://www.tl9000.org/about/tl9000/overview.html. Accessed 16 Apr
2018

30. Woherem, E., Neil, M., Estdale, J.: Software process improvement through the GQM
approach: a maintenance case study. In: 3rd International Conference on Software Quality,
pp. 147–156. ASQC, Milwaukee (1993)

31. Pries-Heje, J., Johanson J. (eds.): SPI Manifesto. http://www.iscn.com/Images/SPI_
Manifesto_A.1.2.2010.pdf. Accessed 28 May 2018

Applying the ISO/IEC 25010 Quality Models 503

http://www.macworld.co.uk/feature/iosapps/is-ipad-iphone-ios-safe-xcodeghost-what-security-software-need-3453938/#antivirus
http://www.macworld.co.uk/feature/iosapps/is-ipad-iphone-ios-safe-xcodeghost-what-security-software-need-3453938/#antivirus
http://www.macworld.co.uk/feature/iosapps/is-ipad-iphone-ios-safe-xcodeghost-what-security-software-need-3453938/#antivirus
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1109/icsm.1998.738510
http://dx.doi.org/10.1007/978-3-642-13792-1_19
http://dx.doi.org/10.1007/978-3-319-26844-6_6
http://www.tl9000.org/about/tl9000/overview.html
http://www.iscn.com/Images/SPI_Manifesto_A.1.2.2010.pdf
http://www.iscn.com/Images/SPI_Manifesto_A.1.2.2010.pdf

	Applying the ISO/IEC 25010 Quality Models to Software Product
	Abstract
	1 Introduction
	2 ISO/IEC 250xx Series: SQuaRE
	2.1 The ISO/IEC 25010: 2011 Quality Model

	3 Applying the ISO/IEC 25010: 2011 Quality Models
	3.1 ISO/IEC 25010 Applied to Digital Services

	4 Quality in Use
	4.1 Achievement of Needs
	4.2 Freedom from Risk

	5 Product Quality
	5.1 Compatibility
	5.2 Usability
	5.3 Reliability
	5.4 Security
	5.5 Maintainability
	5.6 Portability
	5.7 Supportability

	6 Other Characteristics of the Product at Delivery
	6.1 Honesty and Openness
	6.2 Product Maturity

	7 In-life Experience, Post-deployment
	7.1 Customer Support by Supplier
	7.2 In-life Maintenance

	8 Conclusions
	9 Relation to SPI Manifesto
	References

