
How to Deliver Faster with CI/CD Integrated
Testing Services?

Alexander Poth(&), Mark Werner(&), and Xinyan Lei(&)

Volkswagen AG, Berliner Ring 2, 38436 Wolfsburg, Germany
{alexander.poth,mark.werner,xinyan.lei}@volkswagen.de

Abstract. After Volkswagen AG has setup its hybrid cloud products and ser-
vices are expected to have a significant shorter time-to-market and a high quality
level. To satisfy these expectations, the existing testing procedures should have
to speed up, so that it won’tbe the bottle neck for new features that have to be
shipped fast. In order to realize a faster delivery of products and services Testing
as a Service is developed with lean/agile methods [1, 2] and integrated into the
CI/CD pipeline of the Volkwagen Group IT Cloud.

Keywords: Agile software development � Quality assurance (QA)
Cloud � Testing � CI/CD

1 Motivation and Context for the Demand of Testing
as a Service

To meet the needs for testing in a cloud native fashion, Testing as a Service (TaaS) is
setup as one of the Volkswagen Group IT cloud (GITC) services. The focus is to offer a
testing service that is able to scale natively based on cloud technologies. The service
focuses on offering state of the art testing capability for both functional and non-
functional testing in the cloud environment. The motivation for developing TaaS was a
missing link in existing cloud native tools, which could also be run on premise in a
private or hybrid cloud. For a public cloud approach there exists different tools like
BrowserStack, BlazeMeter, etc. But these tools did not offer any possibility to run on
premise in a private cloud and therefore could not be used for testing sensitive
data/applications. As a matter of fact filling a gap like this leads mostly to create a tool
or to change workflows in IT context. As a result of that TaaS has to make a choice of
creating tools or workflows to achieve the goal. Furthermore nowadays companies
have a cloud-first/cloud-only strategy for development of applications. The new
approach leads to a change in thinking and designing new IT applications. The existing
well-proofed development concepts must be reconsidered if we want to make the best
out of the new found possibilities of developing cloud native applications. Based on the
experiences that were gathered during the development of TaaS, it was recognized that
both an API for machine usage and a self-service portal (SSP) for human interaction are
a must for TaaS to be implemented. If we want to make the most out of TaaS for our
company, we have to take the integration concept of the new service into existing
processes into consideration. Most of the benefits from TaaS could be achieved only if

© Springer Nature Switzerland AG 2018
X. Larrucea et al. (Eds.): EuroSPI 2018, CCIS 896, pp. 401–409, 2018.
https://doi.org/10.1007/978-3-319-97925-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_33&domain=pdf

the TaaS can be integrated smoothly in the existing processes in the organization. In the
following chapters it will be described, how the TaaS team improved itself during the
development and achieved success step by step by motivating others and keeping the
focus on the needs of customers.

2 Rapid Development of a Product or a Service

This section describes the implementation of TaaS. To implement TaaS quickly and to
make it customer (user) centric, the GITC implements an intrapreneurship [3] friendly
environment. This environment focuses on selling a “product vision” for the service
and applying for an initial financial support. This basic financial setup is used to
implement a proof of concept (PoC). The 1st venture capital was given in the fourth
quarter of 2016 to develop a PoC for the GITC exhibition in December. After deliv-
ering a successful PoC, the GITC council offers further venture capital for product
increments. The product owner has to apply for the next increment of the service. Each
increment is called a minimal viable product (MVP). This approach is used to analyze
the customer’s feedback and acceptance of the growing service. Furthermore, the
financial support can be stopped quickly in case of not fulfilling the expectations of
performance or business perspectives. Depending on the speed of revenue generation
by the service, the amount of financial support can be adjusted easily to service “in-
comes” and support other services with the money “saved”.

This intrapreneurship-based environment encourages the TaaS team to develop
more than MVPs. Because MVPs are not “attractive” enough for the customer and have
sometimes many constraints. The TaaS team decides to develop SLCs [4]. SLC is the
abbreviation for simple, lovable and complete. This gives the option to run TaaS every
time as a stable product in case the venture capital flow stops and the income is not
enough to cover finance complex stabilization tasks and enhancements to make the
service “user-acceptable”.

Based on the described environment, the TaaS DevOps team focuses on a strategic
view to optimize TaaS for:

• Making testing faster
• Making it more comfortable and easier to use
• Reducing service resources and costs

This motivates the TaaS team to work more in a feedback driven fashion rather than
specification driven. Also it forces the TaaS team to fix bugs as fast as possible and
have a low technical debt in TaaS for fast and nimble reactions to feedbacks.

The formal 4 MVPs in 2017 focused on shipping non-functional load testing,
performance testing, functional testing for responsive web design (RWD) and multi-
browser testing on a user perspective. On a cloud perspective the rollout to GITC was
focused. The MVP roadmap in 2018 focuses on more rollout and enhancement of
existing functions based on user feedback. To get user feedback for every new key
feature, at least one pilot customer has to act as a development partner of TaaS.
Furthermore, after a new feature was released into production, the customers would be

402 A. Poth et al.

asked for feedback about these particular features..These feedback sessions were based
on the starfish retro approach [5].

The TaaS team started with Scrum, but realized later on, that there were depen-
dencies (for example database), that often blocked the implementation of TaaS. This
observation led to a change in Kanban. In 2018 the TaaS team is practicing a Scrumban
approach. The Kanban component is used for operational issues of the DevOps teams.

This agile and lean development method can also have negative impacts to the
DevOps TaaS team. TaaS started in 2018 with no budget. These days were difficult for
the team because it was unclear how long it needs to convince the GITC council for the
next MVP/SLC and how much venture capital will be offered for the rollout to AWS
and feature development for the upcoming MVP/SLC.

A strategic decision was to integrate TaaS into the Volkswagen Group IT devstack
of the Volkswagen AG. Devstack is a project-customizable CI/CD (continuous
integration/continuous deployment) toolchain for Volkswagen AG. Devstack is not
only available for GITC users but offers cross-selling options to a much bigger market
for TaaS. This integration idea TaaS@devstack was born in 2017 but will need some
time for management commitment. Furthermore, the TaaS DevOps team can reduce
ops activities by the delegation of support tasks to the 24 * 7 devstack operation team
in the third quarter of 2018. This will give the TaaS team more flexibility to focus on
user demands and a more stable “financial basis”.

3 Deep Dive into TaaS

TaaS is designed to support all kinds of tests from the commonly known test
automation pyramid [6]. In a classic test pyramid approach there are the following
kinds of tests: unit tests; integration tests; and acceptance tests. The focus is a little bit
different for TaaS because TaaS uses a cloud native approach and therefore from TaaS
point of view the pyramid would be like this:

• unit tests for micro-services on the base layer
• integration tests in the mid-section
• system or business related tests on top

So at the end, several abstraction levels are covered. TaaS is designed to write tests
once and run often – in best case integrated into a CI/CD toolchain. This enables the
user to build a broad base of automated tests, which are executed on each triggered
build. This can ensure a high level of quality of the product built, because the execution
of tests are automated and will become native to the development team. Providing
automated tested applications will also reduce the time-to-market because it ensures
that the developed features of the application will be tested on each build. Using
iterative sprints and a set of regressions tests to build up an application ensures correct
functionalities of the developed application.

Developers focus on developing new features and using an agile approach but the
tests have to be automated and integrated into the build/deployment process. This
approach ensures that the tests are still in the focus of developers and that they are
responsible to deliver new features. A benefit of this setup is that all shipped/delivered

How to Deliver Faster with CI/CD Integrated Testing Services? 403

applications are also tested automatically using regression tests and therefore ensure an
objective quality of the delivered application.

By using a Definition of Done (DoD) concept, the development team ensures that
every micro-service is tested automatically. This is a strong basis to build more
complex integration tests to cover the interaction between micro-services. It would be
possible to verify a whole system of business workflows through these kind of tests.

Because TaaS supports different testing tools, a wide range of testing is possible,
from API (application programming interface) tests for example REST-based to GUI
(graphical user interface) tests using different browsers. Depending on the testing tools,
TaaS supports not only functional testing but also non-functional testing.

Depending on the processed data (sensitive or private) it is not an option for testing
these applications in a public cloud. Using standard already existing testing tools will
miss the capabilities/benefits, that cloud native approach offers. TaaS is designed to be
cloud native and therefore benefit from the different advantages that a cloud native
application will offer. TaaS makes use of well-known open source software such as
Selenium [7], JMeter [8], Docker [9], Kubernetes [10] etc.

TaaS does not use any proprietary tools and interfaces and can be easily integrated
into different CI/CD-toolchains without a complex setup. This open design prevents
also any tool constraints, which could lead to a tool lock-in later on.

TaaS does not limit the development team to follow either a top-down approach or
a bottom-up approach because it supports both ways of testing an application. Fol-
lowing the top-down approach, the tests have to follow defined business processes and
cover the acceptance criteria of customer journeys. Using this approach, we are starting
from the top of the test pyramid to cover relevant customer journey and features.

In a bottom-up approach, tests are designed and developed for micro-services,
which will be deployed. This ensures that all the developed micro-services are covered
with automated tests. These could be integrated with integration tests covering basic
steps.

3.1 The API and the Self-service-Portal

As already noted before, TaaS is designed to write a test once and run it often (see
Fig. 1). In the first step, the tests which should be executed later are designed and
written in the IDE (integrated developer environment) of the tester. This also helps to
reduce the time-to-market because the development team can use all the well-known
tools to write necessary tests.

The registration in TaaS and the execution of tests via TaaS is implemented using a
two-step process. Senior user/administrator double checks and therefore limits the valid
URLs (unified resource locator) or IP (internet protocol)-addresses/endpoints which
could be used for the tests to prevent DoS (denial of service) attacks using the provided
cloud resources. The endpoints for the test object are fixed and cannot be changed by
the provided test cases. After a valid configuration of the tests, that includes which test
cases to run and how often, the configuration of the test is completed.

Depending on the project requirements the tests can be triggered manually using
the self-service-portal or can be integrated into an already existing CI/CD-tool chain.

404 A. Poth et al.

After executing the tests and finishing the test runs, the logs of the test execution are
collected and stored for analyzation. Depending on the test results, the development
team has to decide how to process it further:

• fixing the bug, that was found during the execution
• adjusting the tests according to the acceptance criteria of the feature

In both cases, the quality of the developed application is raised and enables a faster
time-to-market. In the first case, a fixed bug means one error less in the developed
application. The second case raises the quality because a test, which tests the wrong use
case/feature does not affect the overall quality of the application. Tests have to be
handled like code, which means that test cases have to be refactored from time to time.

3.2 Load and Performance Testing

The kind of tests which cover load and performance testing is also possible to be
executed using TaaS. Performance testing is used to determine the performance of a
test objective in terms of responsiveness under a defined work load. In general the
minimum, maximum and average response times are measured. A load test is a specific
form of performance testing because it tests the system behaviour under a defined work
load. The work load could be a number of users/sessions performing specific number of
actions within a defined duration. These tests are used to identify bottlenecks in the
application. To support these kinds of testing, the open source tool JMeter is supported
by TaaS and can be found in the self-service portal.

To cover several scenarios different versions of JMeter are offered from which the
customer could use the desired version. JMeter was designed to simulate test behaviour
and measure performance. By design, JMeter is capable to test the performance on

Fig. 1. An overview of the workflows with TaaS

How to Deliver Faster with CI/CD Integrated Testing Services? 405

static and also dynamic web applications. It provides a simulator for heavy load to
check the overall performance of the test objective under different load scenarios. The
most commonly used protocols are web protocols (http, https) and REST based web
services.

JMeter’s built-in multi-threading framework offers the possibility to run concurrent
tests by many threads and could scale natively on a cloud platform. The customer is
able to select the desired amount of JMeter workers using the self-service portal. To
offer the customer horizontal scaling options, a cluster is set up with one master and
depending on the customer needs several slaves. The master controls the slaves and
manages the distribution of tests to be executed. The slaves for the heavy work are
testing the defined test objects with the desired load as defined in the test configuration.

3.3 Functional Testing

To offer responsive web design and multi-browser testing, dynamic grids with required
settings are dynamically allocated. To quickly offer the required and specific settings,
different Docker containers with the demanded browsers, like Firefox [11] or Chrome
[12] and desired versions are setup in the grid. Selenium is used as the test engine.

To support this kind of testing TaaS supports the usage of Selenium to enable the
testing of different browsers and versions. Selenium is an automated testing framework
for web applications and provides features like playback of formerly recorded business
processes. Using this approach no specific knowledge is needed to be able to build test
steps.

For each test run, a preconfigured Docker image is used in which the target
browser, version and the tests to be executed are prepared. So the customer can decide
which web browser and which version he needs to use for testing his business pro-
cesses. In the self-service portal, the customer is able to configure relevant meta data for
his test execution including the size. Using the provided WebDrivers from Selenium,
most web browsers are supported and can be controlled by several programming
languages (Java, C#, JS, …). This enables the development team to write tests in the
preferred programming language, which reduces the time for writing tests and setting
up testing tools etc. An agile development team could focus on delivering new features,
which are covered by tests written in the preferred programming language.

For enabling the testing of web browsers running on remote machines Selenium
offers the Selenium Grid. Since the Selenium Grid has a scalable design, it allows
executing tests in parallel on different machines. This approach matches perfectly with
the cloud-native approach of TaaS. In the end, a highly scalable and flexible infras-
tructure could be offered to the customer to support the testing of different web
browsers. Without the need to setup an instance of Selenium or Selenium Grid, TaaS
enables the customer to execute tests for different web browsers at a fingertip. After the
test execution, TaaS enables downloading the test results for analyzation of the test
runs.

TaaS supports the whole testing life cycle of software testing starting from pro-
viding the necessary testing infrastructure (JMeter, Selenium), offering a highly scal-
able and flexible architecture to scaling horizontally.

406 A. Poth et al.

To offer maximum flexibility to the customers of TaaS the application specific
setups and configurations are shipped with the customers Docker container.

To minimize the overhead of managing the different configurations of testing setup,
the TaaS design uses Docker containers. These containers are prepared in advance with
the different versions of the offered testing tools. The customized test configuration
including the tests to execute are mounted onto the prepared Docker containers, which
are started according to the customer setup.

Depending on the setup, several nodes are spun up in the existing Kubernetes
cluster which starts the desired number of pods to support the customer specific test
configuration. This lean architecture allows a fast and flexible way to manage several
different customer setups.

Important to notice is that each customer uses his/her own network, which is
generated on demand for each test run. This limits the potential (negative) side effects
of running instances in parallel or shared resources etc.

From the customer point of view, the whole setup of testing tool is already done
and he can focus on the design and preparation of his specific tests. He does not need to
know how to setup and maintain an architecture on a cloud but can benefit from the
offered TaaS solution.

He is an expert in his domain of the test objective and can now use the saved time
to invest in more and better tests. Using the possibility to integrate TaaS in an already
existing CI/CD toolchain could improve the overall quality of the developed applica-
tion, because all defined tests run automatically after each application deployment. This
helps the customer of TaaS to get a fast feedback of the quality of the build and the
delivered application.

Using TaaS enables the customer to control the development process very tightly to
ensure that the development team focuses on delivering new and tested business values.
The development team is still aware of the new developed features and is therefore very
quick in fixing defects that are found and also in adjusting new business features. In the
past there was a large time gap between developing new business features and getting
feedback of the testing on the productive environment. The development team may
have been changed in the meantime or they are working on different projects. In either
way, it costs time to recall the past activities and to focus again on the new task.

This container contains technology specific things for example for an Angular
application the protractor [13] test-stack and the specific tests for execution. The figure
below (Fig. 2) shows a setup with cucumber [14].

3.4 Outlook

The next functionality on the roadmap of TaaS is mobile testing integration. The SLC
approach leads the TaaS team to focus on 80% of the solution with Appium [15].

The goal is to test an Android app to ensure a good scalable approach. This will
enhance the feature set provided by TaaS to support the wide range of mobile devel-
opment and therefore testing.

Consumer-driven contract testing is another candidate on the roadmap of TaaS.
With this feature TaaS would cover all the levels of the testing pyramid that was

How to Deliver Faster with CI/CD Integrated Testing Services? 407

introduced in Sect. 3. The ultimate goal of TaaS is to be an open testing platform with
extensible capabilities.

4 Conclusion

In this paper, we have presented the history and details about TaaS in Volkswagen AG.
The product enables developers to enjoy the benefits of rapid development velocity in
the cloud native age. TaaS supports different kinds of tests. With the help of TaaS, tests
can be easily integrated into a CI/CD toolchain and can be implemented with different
frameworks. TaaS hides the complexity of setting up and managing the test-
environment away from software developers, so that software developers can focus
more on developing business values. In order to ensure all the benefits and the ongoing
agility, the TaaS team developed the service in a more feedback driven way rather than
a specification driven way. The TaaS team has worked closely with pilot users in order
to keep the feedback loop shorter for all the core functionalities. It also helps to focus
on implementing the SLCs.

This paper shows our effort to ensure quality even with a high development
velocity and our experiences about agile/lean product development in large and
sometimes bureaucratic corporations. It also shows a possible way to improve the
innovative nature in a large corporation with the help of an intrapreneurship friendly
environment.

From a software process improvement view, the summary should be that in the
future the process and method authority is not enough to deliver added value without
understanding the involved technological principals, which are the drivers for an
operative excellence in a fast changing and scaling environment.

Fig. 2. An example setup of CI/CD integrated functional test

408 A. Poth et al.

5 SPI Manifesto Reflection

The presented TaaS approach also follows the values and principles that are described
in the SPI Manifesto [16, 17, 18]. The TaaS team has tried to motivate all the people
involved, for example the venture capital and the customers. As a part of the moti-
vation, the TaaS team has improved the development process based on the experiences
gained with customers from MVP to SLC. It is a dynamic and adaptable way to satisfy
customer needs with an agile/lean mindset. The SPI Manifesto’s values and principles
are a guide for the TaaS team to make the best choice for the team and its customers.

References

1. Sutherland, et al.: http://www.agilemanifesto.org
2. Sutherland, et al.: http://agilemanifesto.org/principles.html
3. Pinchot, G.: Intrapreneuring: Why You Don’t Have to Leave the Corporation to Become an

Entrepreneur. Berrett-Koehler Publishers, 2. Auflage (1985). ISBN 1-57675-082-5
4. https://blog.asmartbear.com/slc.html
5. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
6. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson Education

(2010)
7. https://www.seleniumhq.org/
8. https://jmeter.apache.org/
9. https://www.docker.com/
10. https://kubernetes.io/
11. https://www.mozilla.org/de/firefox/
12. https://www.google.com/chrome/
13. https://www.protractortest.org/
14. https://cucumber.io/
15. http://appium.io/
16. Korsaa, M., et al.: The SPI Manifesto and the ECQA SPI manager certification scheme.

J. Softw.: Evol. Process 24(5), 525–540 (2012)
17. Messnarz, R., et al.: Social responsibility aspects supporting the success of SPI. J. Softw.:

Evol. Process 26(3), 284–294 (2014)
18. Sanchez-Gordon, M.L., Colomo-Palacios, R., Amescua, A.: Towards measuring the impact

of the SPI Manifesto: a systematic review. In: Proceedings of European System and Software
Process Improvement and Innovation Conference, pp. 100–110 (2013)

How to Deliver Faster with CI/CD Integrated Testing Services? 409

http://www.agilemanifesto.org
http://agilemanifesto.org/principles.html
https://blog.asmartbear.com/slc.html
https://www.seleniumhq.org/
https://jmeter.apache.org/
https://www.docker.com/
https://kubernetes.io/
https://www.mozilla.org/de/firefox/
https://www.google.com/chrome/
https://www.protractortest.org/
https://cucumber.io/
http://appium.io/

	How to Deliver Faster with CI/CD Integrated Testing Services?
	Abstract
	1 Motivation and Context for the Demand of Testing as a Service
	2 Rapid Development of a Product or a Service
	3 Deep Dive into TaaS
	3.1 The API and the Self-service-Portal
	3.2 Load and Performance Testing
	3.3 Functional Testing
	3.4 Outlook

	4 Conclusion
	5 SPI Manifesto Reflection
	References

